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Abstract

Background Sarcopenia is an age-related muscle disease that increases the risk of falls, disabilities, and death. It is
associated with increased muscle protein degradation driven by molecular signalling pathways including Akt and
FOXO1. This study aims to identify genes, gene interactions, and molecular pathways and processes associated with
muscle aging and exercise in older adults that remained undiscovered until now leveraging on an artificial intelligence
approach called artificial neural network inference (ANNi).

Methods Four datasets reporting the profile of muscle transcriptome obtained by RNA-seq of young (21-43 years)
and older adults (63-79 years) were selected and retrieved from the Gene Expression Omnibus (GEO) data repository.
Two datasets contained the transcriptome profiles associated to muscle aging and two the transcriptome linked to re-
sistant exercise in older adults, the latter before and after 6 months of exercise training. Each dataset was individually
analysed by ANNi based on a swarm neural network approach integrated into a deep learning model (Intelligent
Omics). This allowed us to identify top 200 genes influencing (drivers) or being influenced (targets) by aging or exer-
cise and the strongest interactions between such genes. Downstream gene ontology (GO) analysis of these 200 genes
was performed using Metacore (Clarivate™) and the open-source software, Metascape. To confirm the differential
expression of the genes showing the strongest interactions, real-time quantitative PCR (RT-qPCR) was employed on
human muscle biopsies obtained from eight young (25 * 4 years) and eight older men (78 = 7.6 years), partaking
in a 6-month resistance exercise training programme.

Results CHAD, ZDBF2, USP54, and JAK2 were identified as the genes with the strongest interactions predicting aging,
while SCFD1, KDM5D, EIF4A2, and NIPAL3 were the main interacting genes associated with long-term exercise in older
adults. RT-gPCR confirmed significant upregulation of USP54 (P = 0.005), CHAD (P = 0.03), and ZDBF2 (P = 0.008) in
the aging muscle, while exercise-related genes were not differentially expressed (EIF4A2 P = 0.99, NIPAL3 P = 0.94,
SCFD1 P = 0.94, and KDM5D P = 0.64). GO analysis related to skeletal muscle aging suggests enrichment of pathways
linked to bone development (adj P-value 0.006), immune response (adj P-value <0.001), and apoptosis (adj P-value
0.01). In older exercising adults, these were ECM remodelling (adj P-value <0.001), protein folding (adj P-value
<0.001), and proteolysis (adj P-value <0.001).

Conclusions Using ANNi and RT-qPCR, we identified three strongly interacting genes predicting muscle aging, ZDBF2,
USP54, and CHAD. These findings can help to inform the design of nonpharmacological and pharmacological interven-
tions that prevent or mitigate sarcopenia.
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Introduction

Aging is accompanied by sarcopenia, defined as a gradual loss
in lean skeletal muscle mass, strength, and endurance.’? This
condition correlates with increased risk of developing physi-
cal disabilities and a myriad of diseases including chronic ob-
structive pulmonary disease and death, making it a major
public health concern.®* Sarcopenia is a complex condition
marked by increased catabolic activity with consequential
loss of muscle mass, systemic inflammation, and elevated ox-
idative stress.>® A greater understanding of the molecular
mechanisms regulating muscle mass is urgent towards the
prevention and treatment of this condition, co-morbidities,
and dependency among older people.’

As mentioned, sarcopenia is characterized by increased
catabolic activity, leading to muscle loss and subsequent atro-
phy. Molecular pathways underpinning this catabolic activity
include inactivation of Akt (protein kinase B), which causes
the translocation of FOXO1 (Forkhead box protein O1) to
the nucleus, leading to the expression of atrophy-associated
ubiquitin, the E3 ligases FBX032 (F-box protein 32), and
TRIM63 (tripartite motif containing 63). An alternative cata-
bolic pathway independent of Akt is TNF-o (tumour necrosis
factor alpha) activation, which regulates the downstream
transcription factor NF-xB (nuclear factor kappa B) that in
turn leads to the upregulation of TRIM63.° In addition, mus-
cle aging is associated with increased expression of inflamma-
tory cytokines such as TNF-a and IL-6 (interleukin 6), which
stimulate muscle atrophy through the ubiquitin—proteasome
pathway.'®

Physical exercise is a nonpharmacological intervention and
the only recommended treatment for sarcopenia patients,
showing additional benefits in improving life expectancy
and delaying the onset of age-associated disorders such as
osteoporosis, diabetes, atherosclerosis, and cardiovascular
diseases.’*? Resistance training in particular has been
shown to activate muscle protein synthesis, which induces
an increase in muscle size and strength. Such increase is par-
ticularly relevant as it helps counteracting increased catabolic
activity associated with muscle aging and to preserve muscle
mass.”® It is generally recognized that resistance training in-
creases muscle protein synthesis via phosphorylation of
mammalian target of rapamycin (mTOR) through insulin-like
growth factor (IGF-1) and Akt, which further leads to activa-
tion of p70S6K (70 kDa ribosomal S6 protein kinase).** Al-
though mTOR and inflammatory pathways play an important
role in muscle aging and adaptation to exercise, other genes
and pathways are likely to be involved given the complexity
and scale of such events. An example is apelin, a small,
secreted peptide hormone recently identified as a key molec-
ular driver of muscle regeneration that decreases during mus-
cle aging. For example, BGE-105, an oral agonist of the apelin
receptor APJ, has revealed positive effects in reducing symp-
toms of frailty and decreasing muscle loss.*>*®

Deep learning (DL), as a subdiscipline of artificial intelli-
gence, is a rapidly evolving field emerging across healthcare
with promising integration to develop tools for diagnosis,
prognosis, and treatment management.”” DL functions
similarly to the human brain by using multi-layered neural
network algorithms to make predictions, which enables the
solving of complex problems thanks to the exponential in-
crease in the data within models.'® Artificial neural network
(ANN) is a DL technique that has succeeded in discovering
new genes that have the strongest influence on the regula-
tion of sarcomas,*® developing a more precise classification
model to predict hypertension®® and responsiveness to hepa-
titis C treatment?* and providing clinical scores for the assess-
ment of Alzheimer’s disease severity.>> ANN has never been
used to investigate the transcriptome associated with aging
muscle or exercise in older adults. Most studies employ
conventional statistical computing (e.g., linear and multiple
regression analysis, R and Python programming) to detect dif-
ferentially regulated genes.>**?* In this study, we aim to
identify age- and exercise-associated genes and to predict
the strongest interactions between them using ANN that
could have remained undetected using conventional statisti-
cal computing. Findings are expected to better inform exer-
cise interventions and help identifying therapeutic targets
for pharmacological interventions aiming to mitigate sarcope-
nia, the latter still lacking.

Materials and methods
Publicly available datasets

Four datasets were selected from the studies, GSE8479,
GSE9419, and GSE117525, publicly available at the Gene
Expression Omnibus data repository (Home - GEO - NCBI
(nih.gov)). The inclusion criteria were RNA-seq data of skele-
tal muscle of young (32 + 11 years) and older healthy adults
(73.5 + 10.5 years) on exercise training with a minimum
duration of 6 months. All time-points of isolated RNA from
biopsies taken after 24 h of intervention were included, and
samples taken immediately post exercise and up to 24 h were
excluded to avoid detecting transient gene expression.
Datasets with <10 000 gene transcripts were excluded for
accurate assessment and comparison of datasets. In total,
two datasets of young versus older adults and two datasets
of long-term resistance exercise were included in the analy-
sis, all deposited and searchable prior to 2020.

Subject characteristics of GEO dataset obtained from
GSE8479 study: Skeletal muscle samples from healthy older
(n = 25, 65-84 years, 12 female and 13 male) were col-
lected of which 14 completed 6-month twice-weekly full
body progressive resistance exercise training programme
(pre- vs. post-exercise). The participants had thorough
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screening before admission to the study (telephone screen-
ing, medical evaluation including past history, consent from
physician, and resting electrocardiogram before and after
submaximal exercise test) and were chosen to be relatively
active (walking, cycling, golfing, and tennis three or more
times a week) to study the effects of aging per se. Exclusion
criteria included hypertension, evidence of coronary heart dis-
ease, congestive heart failure, chronic obstructive pulmonary
disease, diabetes mellitus, renal failure, smoking, and ortho-
paedic disability.

Subject characteristics of GEO dataset obtained from
GSE9419 study: Prior starting the study, 10 healthy older
men (63-79 years) completed an evaluation including an
electrocardiogram, routine clinical blood and urine chemis-
tries, and a written medical history. All subjects had clinically
normal heart, liver, and kidney functions with no presence of
diabetes mellitus.

Subject characteristics of GEO dataset obtained from
GSE117525 study: Skeletal muscle samples were obtained
from healthy older (n = 41, 64-75 years, 15 female and
26 male) adults before and after 6-month full body
strength training programme three times per week. Before
inclusion, medical history of all subjects was evaluated, and
an oral glucose tolerance test and electrocardiogram before
and after exercise test were performed. Exclusion criteria
included cardiac and peripheral vascular disease, orthopae-
dic limitations, and type 2 diabetes. All subjects were
recreationally active.

Artificial neural network inference analysis

Enriched gene transcripts were fed into an artificial neural
network inference (ANNi) algorithm (Intelligent Omics) to
identify the top driver and target genes in aging and exercise
(see Figure 1 representing schematics of the interaction
algorithm). This approach utilized a swarm of smaller neural
networks addressing part of a potential inferred network.
This approach was selected over a single deep network that
would lack transparency, ‘explainability’, and have (we have
previously found) significant levels of redundancy and
overfitting. The networks were trained to maximize general-
ity using early stopping and regularization. The swarm of
trained models were then parameterized and integrated into
a deep network by integration of weights.

More specifically, multiple shallow neural networks were
used to model the potential interaction between genes
across multiple stochastically derived data sets. The underly-
ing structure of the neural network is a weighted, directed
graph, interconnecting artificial neurons (i.e., nodes) orga-
nized in layers with artificial synapses (i.e., links) that carry
a value (i.e., weight), transmitting data (i.e., signals) from
one node to the other nodes. All incoming signals from the
input layer were processed based upon a set of defined pa-

rameters (i.e., error computation function, acceleration mea-
sure, and input weights) by the nodes in the intermediate
layer (i.e., hidden layer), and an activation function was ap-
plied to the resulting sum. This sum was then used to deter-
mine the output result (i.e., predicted value) generated by
the nodes in the output layer. This approach was then
repeated across the ensemble of stochastically derived
networks. Due to the connectionist computation in ANNs,
the architecture of the ANN can be easily modified to address
different questions and can compose complex hypotheses
that can explain a high degree of correlation between
features without any prior information from the datasets.
Hence, a backpropagation MLP was chosen as the ANN to
model the gene—gene interaction in this paper. The principle
of the algorithm is to show the relationship between genes
from the same pool, to shed light on how these molecules
interact with each other and to identify new relationships be-
tween these molecules by iteratively calculating the influence
that multiple variables may have upon a single one. The pre-
diction weights and signal directions were used to model
the strengths of the interaction signals and the direction of
the interaction link between genes. The ANN model was
validated using Monte Carlo cross-validation to minimize
the risk of overfitting and to optimize the generalization
ability of the model.

Interactome and pathway enrichment analysis

The top 200 driver and target genes previously identified by
ANNi were used to generate interactome maps. To generate
these maps, these genes were fed into the Cytoscape soft-
ware with the STRING add-on. To identify significantly
enriched GO processes, signalling pathways and network pro-
cesses, these same 200 top genes were fed into the
MetaCore (Clarivate™) and Metascape databases.

Study design and subject characteristics of muscle
biopsies used for real time-quantitative
polymeraze chain reaction analysis

The most influenced and influential genes previously identi-
fied by ANNi were further investigated by RT-gPCR of human
muscle biopsies. Muscle biopsies were obtained from eight
young (25 * 4 years, 184 + 6 cm and 83 + 13 kg) recreationally
active (skiing or team sports two times per week) males®® and
eight older male adults (78 + 7.6 years, BMI 25.4 + 2.3).%°
Aged participants completed a 6-month resistance training
programme with three sessions per week with 100%
compliance. Assessment of oral glucose tolerance test and
insulin sensitivity as well as investigation for cardiovascular
disease, drug treatment, heart rate, blood pressure, body
mass index, and smoking were performed. Hand grip
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Figure 1 Overview of the interaction algorithm.

strength, leisure-time physical activity (four questions), and
gait speed were measured prior initiation of the intervention.
Biopsies from m. quadriceps were obtained before the train-
ing programme (baseline) and 24 h after the last training ses-
sion (for aged adults). For analysis, comparisons were made
between young and aged baseline and aged baseline versus
aged exercised. Subjects were informed of the potential risks
and discomforts prior to signing an informed consent form.
All participants provided informed written consent. The study
was approved by the Ethical Regional Board in Uppsala (Dnr
2012/154) and Ethical Regional Board in Umea (2010-223-
31M) and conducted in accordance with the Declaration of
Helsinki.

RNA isolation, reverse transcription, andreal time-
quantitative polymerase chain reaction

To assess the differential expression of the top drivers and tar-
get genes, RT-qPCR was employed, using to that end, muscle
biopsies from eight young and eight aged male donors (see
participant and intervention details in the previous section,
Tables S2 and S3). One aliquot of ~10 mg frozen muscle tissue
was homogenized using TRIzol (Invitrogen Life Technologies
Carlsbad, CA), and total RNA was extracted. RNA
concentration and purity were obtained by UV spectroscopy
(Nanodrop 2000, Thermo Scientific). Three hundred nano-
grams of total mMRNA was subsequently reverse transcribed

Journal of Cachexia, Sarcopenia and Muscle 2024
DOI: 10.1002/jcsm.13562



New genes and gene interactions found linked to muscle aging

into cDNA using an iScript” cDNA Synthesis Kit (Bio-Rad) in a
total volume of 10 pL. Real-time PCR was performed on a
CFX96 Touch Real-Time PCR Detection System (Bio-Rad). The
reaction mix consisted of 5 ng of the diluted cDNA template,
2x SYBR Green PCR Mastermix (Bio-Rad), and 400 nM
gene-specific primers. The cycling procedures were 20 s at
95°C and 1 min at 95°C followed by 40 cycles at 95°C for
20 s and 60°C for 1 min. Primers were purchased from Sigma
Aldrich. A complete list of primers used for RT-qPCR, includ-
ing names and sequences, is provided in Table S1. Each
individual sample was assayed on the same plate. GAPDH
(Hs00172113_m1) was used as the housekeeping gene. For
further control, b-actin (Hs01375212_g1) was analysed as an
additional reference gene. The results were almost identical
with b-actin or GAPDH as housekeeping genes. Hence, the
GAPDH/B-actin ratio did not change across time points. Target
gene expression was subsequently reported as a ratio relative
to the respective reference genes by the 2724 formula.

Genes identified by ANNi as most influenced or influential
but with no differential expression as per qPCR were interro-
gated using the MetaMEx database.

Statistical analysis

The data were generally presented as mean * the standard
error of the mean (SEM). Statistical analysis was conducted
using Graph Pad Prism for Mac Version 9.04. Relative gene
expressions were compared using two-sided unpaired (young
vs. aged) or paired (before and after exercise in aged) t test
with Welch’s correction. P values <0.05 were considered
statistically significant and were indicated within figures
as *P < 0.05.

Results

Artificial neural network inference

analysis identifies the genes USP54, JAK2, CHAD,
and ZDBFZ2 with the strongest interactions in
skeletal muscle aging

ANNi analysis of differentially expressed transcripts allowed
us to detect the most influential (drivers) and influenced
genes (targets) associated with muscle aging. We identified
USP54 (Ubiquitin Specific Peptidase 54), JAKZ (Janus
Kinase 2), FST (Follistatin), and SKAP2 (Src Kinase Associated
Phosphoprotein 2) as the main drivers and CHAD
(Chondroadherin), ZDBF2 (Zinc Finger DBF-Type Containing
2), CDKNIA (Cyclin Dependent Kinase Inhibitor 1A), and
ARHGAP11B (Rho GTPase Activating Protein 11B) as the main
targets. The interactomes created by Cytoscape software

showing the top 200 drivers and targets with centralization
and weighted interactions are depicted in Figures 2A and 3A.

Next, we investigated the GO processes, process networks
and pathway maps associated with these same top 200 genes
using Metacore. The most enriched GO processes were the
TRAIL-activated apoptotic signalling pathway and sucrose
processing pathways (Figures 2B and 3B). With regard to pro-
cess networks, p53 signalling and androgen receptor signal-
ling were identified as the most significant ones (Figures 2C
and 3C), while BMP-GDF (adj P-value 0.006) and IL5 signalling
via JAK/STAT (adj P-value <0.001) were found as the main
pathway maps (Figures 2D and 3D). Interestingly, the extrinsic
apoptotic signalling pathway was found among the top 10 GO
processes in both age-related datasets (adj P-value 0.01,
Figures 2B and 3B). Then, we used Metascape?’ to identify
the most enriched biological process and GO network cluster.
The top-level enriched biological processes were growth,
signalling, metabolic, and cellular processes (Figures 2E and
3E). Regulation of growth, apoptotic signalling pathways,
and mitochondrion organization were found to be the most
enriched GO networks in the aging-predicting datasets
(Figures 2F and 3F).

Artificial neural network inference analysis
identifies the genes EIF4A2, NIPAL3, SCFD1, and
KDM 5D with the strongest interactions in response
to exercise

ANNi analysis of differentially expressed gene transcripts was
performed to identify the top drivers and targets associated
with exercise. The top drivers among exercise-responsive
genes in the context of skeletal muscle aging were EIF4A2
(Eukaryotic Translation Initiation Factor 4A2), MO25 (Mouse
protein-25), NIPAL3 (NIPA Like Domain Containing 3), and
FOXP2 (Forkhead Box P2) and the top targets SCFDI (Secl
Family Domain Containing 1), FUSIPZ (FUS-interacting ser-
ine-arginine-rich protein), KDM5D (Lysine Demethylase 5D),
and USP9Y (Ubiquitin Specific Peptidase 9 Y-Linked), as
depicted in Figures 4A and 5A, respectively. The most enriched
GO processes were cellular and primary metabolic processes
and apoptotic processes of luteolysis (Figures 4B and 5B),
while protein folding (adj P-value <0.001) and proteolysis
(adj P-value <0.001) were identified as the top process
networks (Figures 4C and 5C). Regarding pathway maps,
Th2-cytokine-induced mucous metaplasia in asthma and
ECM remodelling (adj P-value <0.001) prevailed among train-
ing studies (Figures 4D and 5D). Interestingly, process network
of actin filaments within cytoskeleton was present in top for
both aged and in exercised older skeletal muscle (Figures 3C
and 4C).

Exercise-responsive genes with the strongest interaction
(top 200) that were fed into the Metascape database showed
metabolic process, developmental process, and biological
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regulation as the most enriched GO biological processes
(Figures 4E and 5E). Translational initiation, histone lysine
demethylation, and translation factors were the top clusters
with the most significantly enriched GO networks (Figures 4F
and 5F).

Real time-quantitative polymeraze chain reaction
confirmed significant differential expression of
genes associated with muscle aging but not with
exercise

Differential expression of the top drivers and targets genes
associated with aging previously identified by ANNi was
quantified by real-time gPCR (Figure 6A). The genes USP54
(P = 0.005), CHAD (P = 0.025), and ZDBF2 (P = 0.008) were
found to be significantly upregulated in aged individuals com-
pared with young.

Similarly, differential expression of the top drivers and tar-
gets genes associated with resistance training previously identi-
fied by ANNi was quantified by real-time gPCR (Figure 6B).
These genes were not found differentially regulated in older in-
dividuals before and after exercise training (EIF4A2 P = 0.99,
NIPAL3 P = 0.94, SCFD1 P = 0.94, and KDM5D P = 0.64). Next,
we decided to interrogate whether these genes were previously
associated with exercise using MetaMEx. After inputting
EIF4A2, NIPAL3, SCFD1, and KDM5D into the MetaMEx data-
base, and the search adjusted for healthy older subjects
(>60 years) and filtered by 24-week training duration, studies
associated with resistance were found more than aerobic exer-
cise training (Figure 6C—F). Taken together, these data suggest
that EIF4A2, NIPAL3, SCFD1, and KDM 5D can be associated with
exercise in older adults.

Discussion

ANNs have allowed the discovery of novel biomarkers of
cancer’*® and are used in clinical practice to predict diseases
such as Alzheimer’s disease.?? In this study, we successfully
employed it to discover novel genes related to muscle aging
and resistance training, the interactions between them, as
well as the most enriched GO processes and pathways. As
we advance the current understanding of molecular events
occurring in the aging muscle and during exercise, we are also
promoting the design of more informed and targeted lifestyle
interventions and pharmacological interventions aimed at
mitigating sarcopenia.

Notably, ANNi analysis identified a set of strong
interacting genes predicting muscle aging distinctive from
what was previously detected in the original studies that
employed traditional statistical computational methods. In
the original studies the most significant genes were FDXR

(ferrodoxin reductase), UQCRH (uniquinol-cytochrome c re-
ductase hinge protein), SUCLA (succinate CoA ligase), UBAZ
(ubiquitin-activating enzyme E1), CFLAR (CASP8 and
FADD-like apoptosis regulator), and SUMO23 (small ubiquitin
like modifier 3).2%?° In the present one, they are CHAD,
ZDBF2, USP54, and JAK2 with differential expression con-
firmed by RT-qPCR for the first three genes.

CHAD is a member of leucine rich proteoglycan gene fam-
ily, which is expressed in cartilage, as well as in bone, tendon,
and human skeletal muscle.>*® While CHAD deficient mice
show altered cartilage and bone structural and functional
development,®* downregulation of CHAD has been observed
in exercised muscle transcripts,®? suggesting its involvement
in skeletal muscle homeostasis as extracellular matrix compo-
nent. CHAD expression levels were low in comparison with
ZDBF2 and USP54 but still found to be significantly upregu-
lated in aged muscle.

ZDBF2 is known to be involved in DNA methylation during
embryo development and genomic imprinting.>® This study is
likely the first one identifying ZDBFZ2 as one of the top target
genes associated with skeletal muscle and/or aging.

USP54 has a known function in the regulation of several
tissues including skeletal muscle®** via ubiquitin—protea-
some-dependent proteolysis, which is a major protein degra-
dation system with a crucial role in skeletal muscle
homeostasis>> and therefore muscle aging. Significant upreg-
ulation of USP54 gene expression in older versus young adults
identified by ANNi and confirmed by RT-qPCR analysis cor-
roborates the role of USP machinery in muscle atrophy.

JAK2 mediates several signalling actions in cell growth,
development and differentiation and is also associated with
cytokine receptors.®® It was also associated with sepsis-
induced muscle wasting.®’

GO analysis performed downstream to ANNI using
Metacore suggests a significant enrichment of network pro-
cesses and pathways maps related to apoptosis, cell signal-
ling, and immune response. Previous transcriptome studies
on muscle aging have reported similar findings—the enrich-
ment of inflammation-, apoptosis-, and mitochondria-related
pathways,”** suggesting a unique transcriptome signature of
aging muscle.

Similar to aging, ANNi predicted exercise-related genes
quite distinctive from those previously identified using tradi-
tional statistical computational methods. Our analysis sug-
gests that SCFD1, KDM5D, EIF4A2, and NIPAL3 were the
genes with the strongest interactions within the network in
response to long-term exercise in older adults while the
original studies reported SLPZ (secretory leukocyte peptidase
inhibitor), DDX223 (DEAD-box helicase 23), and CDKNIA (cy-
clin dependent kinase inhibitor 1A) as the most significant.
However, ANNi predicted genes were not differentially
expressed between aged and young individuals. This is not
entirely unexpected, because ANNi predicts gene interactions
and their strength not the extent of differential gene regula-
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Figure 4 EIF4A2 and MOZ25 are the main drivers while SCFDZ and FUSIPI are top targets in exercised aged muscle based on GSE8479 dataset. (A)
Thickness represents the interaction strength, arrows the directionality, the most influencing genes (i.e., drivers) are in blue and the main influencers
(i.e., targets) are depicted as orange in the interactome map. (B-D) Charts by Metacore depicting top 10 overrepresented GO cellular processes (B),
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significantly enriched biological processes (E) and networks clusters of GO terms (F) in exercise responsive genes with the strongest interactions as a

result of ANNI analysis.
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Figure 6 USP54, CHAD, and ZDBF2 were significantly upregulated in aged muscle. (A) The differential expression of the most influenced (CHAD and
ZDBF2) and influencing (USP54) age-related genes were confirmed by real-time PCR of young and aged muscle biopsies. (B) Exercise-related genes in
older adults remained unchanged. *P < 0.05 compared with young. (C—F) The online tool MetaMEx provides list of published studies on skeletal muscle
response to exercise for a single gene with forest plots of individual statistics (fold-change, FDR, 95% confidence interval) and meta-analysis score.

tion. So, although these genes were not differentially
regulated, they can still to play a role in exercise in older
adults due to the strength of their interactions with other
genes. Further experiments including gene knockout models

are necessary to validate the influence of SCFD1, KDMA5D,
EIF4A2, and NIPAL3 in resistance training.

Bioinformatic analysis carried out downstream to ANNI using
Metacore suggests the enrichment of process network and
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pathway maps related with ECM-remodelling, protein folding,
and cancer, whereas Metascape suggests dominance of
biological process involved metabolism and development cor-
roborating the notion that exercise can impact the muscle
transcriptome.®® The original transcriptome studies suggest
significant enrichment in genes related to mitochondrial reg-
ulation, extracellular matrix, glucose metabolism, and vascu-
larization in response to chronic resistance training in older
adults.?®3°

The SCFD1 gene has been implicated in the pathogenesis
of amyotrophic lateral sclerosis (ALS),*® while downregulation
of KDM 5D has been associated with poor prognosis in several
tumours.**

NIPAL3 is an integral component of the cell membrane
predicted to be involved in magnesium ion transport*? while
EIF4F has a crucial role in muscle cell differentiation via the
PI3K/mTOR signalling pathway.** Although no differential ex-
pression of KDM5D, SCFD1, EIF4AZ2, and NIPAL3 in exercised
aged muscle was confirmed by RT-qPCR, after feeding the
genes in the MetaMex software, these were confirmed to
be previously associated with long-term resistance training
studies on older adults.

A question that imposes is whether the genes identified in
this study by ANNi relate with genes well established in the
literature to play a role on muscle aging including AKT,
FOXO01, FBXO32, TRIM63, or IL-6. A study showing reporting
that IL-6 induces muscle atrophy via gp/JAK2/STAT3 pathway
suggests they do.?’

To summarize, by applying ANNi analysis, we detected pre-
viously unreported muscle aging related genes, including
ZDBF2 and CHAD, and confirmed the role of USP54. Using
GO analysis, we confirmed the involvement of signalling
pathways and processes involving apoptosis, cell signalling,
and immune response. This provides a valuable contribution
to the field by not only improving our knowledge on aging
muscle and the effects of long-term exercise but also suggest-
ing potential new targets for drug discovery and other thera-
peutic treatments aimed at ameliorating sarcopenia.
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