
IEEE SENSORS JOURNAL 1

Gait Anomaly Detection with Low Cost and Low
Resolution Infrared Sensor Arrays

Farbod Zorriassatine , Abdallah Naser , and Ahmad Lotfi

Abstract— Detecting anomalies in human gait could be used as
indicators of human fall risk or other underlying health or psy-
chological issues. This would require collecting reliable gait data.
However, collecting human abnormal gait data is very challenging
compared to data gathered from normal daily activities mainly
because the former are relatively scarce and may exhibit an unman-
ageable variability with unpredictable combinations of distorted
gait patterns. Recently, it was proposed that privacy concerns due
to potential misuses of recorded gait images can be alleviated by
using the thermal images captured by the low-resolution and low-
cost thermal sensor arrays (TSAs). Therefore, to resolve the privacy
concerns and data scarcity simultaneously, this paper proposes
a Gait Anomaly Detection (GAD), to be created as a one-class
classification (OCC) model and implemented as a reconstruction-
based autoencoder (AE), while using TSAs to capture the input
data. The data scarcity is conveniently addressed since this GAD
design, needs only the plentiful ‘normal’ gait of one person of interest (POI) to build its base model. AE’s were deployed
since they learn the intricacies of normal gait patterns, with anomaly threshold placed on the reconstruction errors
of the training data. The high performance in detecting specific classes of POI’s gait anomalies, achieving impressive
mean values across five critical classification metrics, including F1-score (95.26%), accuracy (96.20%), precision (92.76%),
recall (97.92%), and specificity (95.00%), demonstrates the model’s feasibility and practicality. The proposed framework
can facilitate independent living among the older adults as an individualised data-efficient, privacy-safe, and low-cost
approach to GAD.

Index Terms— Thermal sensor array, anomaly detection, deep learning, autoencoders, gait analysis, data scarcity, data
privacy

I. INTRODUCTION

GAIT analysis (GA), is a highly multidisciplinary field.
GA can be used for detecting changes in gait for

enabling early identification of important hazards such as
fall occurrences or their increased risks [1], [2], as well as
other health issues including musculoskeletal and neurological
abnormalities, [3], [4]. Numerous methods are used for gait
analysis including qualitative techniques comprising observa-
tional (physical and visual examination) and subjective clinical
assessment. Quantitative GA methods include kinematic analy-
sis, kinetic analysis, electromyography, deep learning (DL) and
other machine learning (ML) driven techniques [5]. Although
these methods can be complementary, they differ in many
aspects such as simplicity, validity, reliability, cost, availability,
responsiveness, and scalability [6]. GA can be implemented
with two main types of sensors to capture gait data and
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patterns: external sensors (including vision-based systems [7]),
and wearable sensors [5], [8]. The focus here will be on
vision-based sensors. Despite the reported success of modern
quantitative GA research and practices, many challenges exist
which include difficulty of detailed clinical interpretation of
detected gait problems, gait data distortion due to changes
in view point, and ‘noise’ caused by environmental factors
such as terrain obstacles or occlusion affecting the quality and
reliability of gait data [5]. The majority of GA applications are
confined to research institutions and not leveraged sufficiently
in clinical settings [6]. Particularly, with respect to ML based
approaches to GA, some of the main challenges ( [9], [10]), are
privacy concerns (inadvertently allowing misuse of personal
identity information [11]), and gait complexity and variability
(caused by complex interplay of major parts of the nervous,
musculoskeletal and cardiorespiratory systems influenced by
multitude of factors like age, personality, mood and sociocul-
tural [12]). A considerable proportion of the abnormal gait
patterns either collected or simulated by using individuals
replicating gait abnormalities lack adequate resemblance to
the wide range of actual anomalies experienced by people
in the real-world [13]. The effectiveness of DL and other
ML-based methodologies for GA, heavily depends on vast
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quantities of reliable data for training purposes. However,
lack of such data that can truly reflect gait variability has
given rise to another important challenge in GA, i.e. data
scarcity [14]. The standard solutions to data scarcity such
as data augmentation using Generative Adversarial Networks
(GANs) and attention mechanism [15], are claimed to produce
gait sequences that are not consistent with the biomechanical
constraints of human walking [14]. As a viable alternative,
the use of physics-based simulators to synthesise biomechan-
ically plausible walking sequences has been proposed [14].
As for the privacy challenge to GA, conventional visible-
light cameras which are very popular in GA research [7],
are not appropriate for indoor environments (e.g., homes or
nursing homes). To overcome this, [11] recently demonstrated
Thermal Sensor Arrays (TSAs) as practical alternatives to the
conventional cameras and high resolution infrared imaging for
analysing gait data, and in particular for fall detection. Despite
their reported success, TSA-based systems need to reduce their
false-positive errors, although as a possible solution a human-
in-the-loop has been proposed [11].

Anomaly detection (aka novelty detection and abnormality
detection), is a method for raising alarms when a phenomenon
of interest exhibits behaviour that is unusual [16]. GA aims
to assess and quantify gait patterns to specifically provide
diagnosis of the type of problem, while a related technique
called Gait Anomaly Detection (GAD) can be used to detect
when the healthy (or normal) state of an individual has
significantly deviated from their gait norm [4] [17] [18] [19].
Although GAD can indicate that a person may no longer be
in a safe condition to maintain their normal gait patterns, it
typically does not provide specific diagnostics. However, as
a critical early warning system, GAD is used to raise alarms
regarding the safety or health of the individuals concerned.
After detecting a gait anomaly, depending on the situation,
investigative, remedial or rescue measures can be taken by
gait specialists, healthcare staff or family members to help the
person in trouble.

The challenges of data variability and scarcity can lead to
increases in false diagnoses in GA. Therefore, this article aims
to explore whether it is possible to address these challenges
within a GAD solution to achieve a high classification per-
formance with low false positives and negatives realistically
and efficiently. The proposed GAD system, incorporated TSA
sensors to also address the privacy concerns, was created as
a one-class classification (OCC) [20] model and successfully
implemented as a reconstruction-based Autoencoder (AE)
[21]. The reference model was trained on examples of normal
gait, captured by the TSA sensor from only one person. Three
input features including the original TSA recorded thermal
data, and two features of pixel motion analysis using Optical
Flow (i.e. speed and direction) [22], were included in the gait
data. Gait anomalies, presented as three classes of simulated
abnormalities for the same person, were successfully detected.
The contribution of the proposed novel framework in achieving
successful GAD can be summarised as:

1) efficiently creating an anomaly detection base model
from very low resolution thermal images and with
only several short normal-gait footage of one person of

interest (POI), as opposed to requiring gait examples
(normally captured with much higher image resolution)
from a large number of people or public data repositories

2) providing an effective GAD solution to the challenges
of data scarcity and variability while maintaining low
false negative and false positive rates

3) providing the first successful reported use of TSAs
within a semi-supervised AE for a privacy preserving
GAD and facilitating adaptability to real-world settings

4) demonstrating the strength of standard AEs to capture
essential aspects of gait pattern even without needing
additional features such as Optical Flow’s speed and
direction components

The remainder of this paper is organised as follows. In Section
II, a brief overview of related work on vision-based GAD with
emphasis on deep learning methods is provided. In Section
III, the research methodology is described in detail, including
gait data acquisition, architecture of the AE, choice of the
loss function, and training procedure. Section IV presents
three GAD experiments and their setups, results, and analysis
investigating the effects of training size, window size, and type
of input feature. In Section V, the success of the proposed
framework is described while outlining limitations of the
research and avenues for future work.

II. RELATED WORK

In GA applications, when using vision-based monitoring,
the footage of gait is recorded as videos or a series of still
image frames for further detailed analysis of the walking
patterns. Using ML approaches, the vision-based GAD had
been applied in different ways, mainly including: detecting
when the healthy (or normal) state of an individual has
deviated - such as falls or mental disorders [18]; or providing
biometric authentication relying on gait as a unique signature
[23]. In order to analyse the captured data, various types
of features are extracted, either manually and explicitly by
computer vision experts e.g. by capturing and representing the
motion and energy distribution of individuals during walking
sequences [24], pose estimation or silhouette segmentation of
the person from the video frames [25]; or by using inherent and
implicit techniques based on Deep Learning (DL) algorithms
[23]. DL models are used because of their strengths in dealing
with high-dimensionality in gait data [26].

The DL structures reported included Convolutional Neural
Networks (CNNs) using both vision-based [27], and non-
vision data such as [28] [4], Recurrent Neural Networks
(RNNs) [29] and some of the more sophisticated versions
of their Long Short-Term Memory (LSTMs) which have the
ability to retain long-term dependencies in sequential data,
making them suitable for tasks involving time series data [11]
, and transformer models [30]. Variants of CNNs in integration
with Transfer Learning (TL) techniques can learn the spatial
and temporal aspects of gait [26], [31]. Some GAD studies
showed that their Support Vector Machines(SVM) [17] and K-
nearest neighbours (KNN) [32] had displayed a significantly
higher accuracy than other CNN and LSTM models [33].

There seems to be no universal consensus regarding the
superiority of any one particular ML model. For example,
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TABLE I: Comparison of a selection of Gait Anomaly Detection methodologies including wearable, and vision-based sensors
for generally improving healthcare of the elderly population. The entries are organised chronologically starting from year 2018
to 2023 and presently including our current paper. New abbreviation used: Random Forest Classifier (RFC), Decision Tree
Classifier (DTC), and Extra Tree Classifier (ETC)

Article Input features Used Model Deployed Performance Accuracy Baseline Classification

[4] Accelerometer data from subject’s shoes LSTM, CNN
and AE

CNN-based reduction: training accuracy
94% & testing 95%. CNN & AE accuracy
89− 95%.

Public Supervised

[29] Accelerometric and gyroscopic data, video
data, time-synchronised from a smartphone

RNN / CNN Achieved 100% accuracy in detecting
anomalous gaits. SVM classifier: Attained
98.077% classification accuracy on the test

Individual Supervised

[32] Statistical features related to multivariate
time series electromyography (EMG)

KNN algorithm
and random
forest classifier

Accuracy varied from 21% to 97% for
different gait patterns

Public Supervised

[8] Tri-axial accelerometer and gyroscope data. KNN, RFC,
DTC, ETC

KNN achieved 97.03% accuracy, RFC
achieved 94.95% accuracy. Normal cases:
KNN - 48.92%, RFC - 48.27%. Abnormal
cases: KNN - 48.10%, RFC - 46.67%.

Public Supervised

[27] Depth images of gait sequences captured
using Kinect sensor. Foreground subject
images generated through image segment

2D-CNN and
3D-CNN

2D-CNN 94.3% for pathological ,
3D-CNN accuracy: 95%

Public Supervised

[18] Ground Reaction Force (GRF) data from
wearable sensors, Time series GRF
amplitude values of different axes,
Metadata information

mainly CatBoost accuracy 96%, F1 score 95%. Public Supervised

[17] x, y, z linear accelerations, xx, xy, xz
angular speed, Lateromedial and
anteroposterior angles, normalized force

One class -SVM 87.5% accuracy in healthy, 82.5% in MS
patients

Individual Semi-
supervised

[19] Accelerometer and gyroscope signals in 3
axes

Matrix-profile widely varying depending on the class of
anomaly detected

Individual Unsupervised

[28] Acceleration, gyroscope, and orientation
components , Age, weight, and height data

CNN Accuracy ranged from 88%− 91%.
Normal vs. abnormal cases accuracy not
explicitly mentioned in contexts.

Public Supervised

Our
Work

Raw body temperature values from thermal
sensor arrays, plus extracted Optical
Flow’s pixel speed and direction

Reconstruction
based AE

Minimum 95% accuracy in both normal
and abnormal cases, also across F1-score,
precision, and recall metrics

Individual Semi-
supervised

another related study reported using LSTM with 99.7% accu-
racy [11]. Other examples have deployed ensembles of various
models such as One-Class Support Vector Machine together
with isolation forest, robust covariance estimator and local
outlier factor for GAD and reported an accuracy of 98%
[34]. These differences may be well explained by variability
between the gait problems addressed, type of deployed vision-
sensor, preprocessing and feature extraction method, datasets,
and model composition and structure, among other experimen-
tal settings that may have been different. In addition, not all the
related studies shared the same performance metrics as some
never reported accuracy and relied on other reliable criteria
such as F1-score that combines the precision and recall scores
[5]. Therefore, a balanced and objective comparison to identify
the best GAD practice is indeed difficult. In Table I a selection
of various important papers discussing GAD are compared.
The table demonstrates the diversity of the deployed: type of
input features (e.g. accelerometer and vision sensors), models
(e.g. LSTMs, CNNs, SVMs and AEs), accuracy performance
and other metrics, and type of classification approach (e.g.
supervised or unsupervised). Table I also highlights a key
difference: how GAD approaches establish their normal base-
line references, either from a single individual or aggregated
population data in public datasets.

In general, there are at least three main types of anomalies
comprising point, collective, and contextual anomalies [35].

Furthermore, among the major types of anomalies occurring
during GAD, anatomical, biomechanical, and physical ones are
also discussed. Contribution of disorders such as neurological
or musculoskeletal factors, further complicate distinguishing
between the type and cause of gait anomalies identified by
GAD systems [7].

An ML-based GAD can be implemented in three different
ways in terms of type of learning supervised [27] [11],
unsupervised [19],and semi-supervised learning [17]. The type
of learning used may be detrimental to its success in over-
coming the challenge of gait complexity and variability. It
may be argued that supervised learning models commonly
found in the research literature, are limited for addressing this
challenge. This is because abnormal gait patterns are relatively
scarce in the general population (i.e. amongst people of less
than 80 years old), while normal gait patterns are plentiful
[12]. Successful supervised learning (SL) classification models
require a balanced representation of all the classes involved.
In the case of GAD, this means having same size sets of
examples from the normal gait as well as all the other
abnormal gait classes. However, abnormal gait patterns can
manifest themselves with an unmanageably substantial number
of diverse and unpredictable combinations of distorted normal
gait patterns. This is because the normal gait is the result
of interaction of various body parts engaged together and
when one or more of these fail to function as usual, a gait
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abnormality occurs [36]. Consequently, it is impossible to
gather balanced datasets with real-world abnormal examples.
Especially, the datasets created with healthy people acting
as if they have abnormal gait conditions, fail to provide
sufficiently comprehensive representations of all the possible
abnormal gait patterns for use in machine learning models.
More specifically, GAD in the context of an older adult or
a person with congenital gait anomaly, can easily lead to
increased false positives due to a lack of individualisation
of reference normal gait patterns [17]. Therefore, examining
alternatives to supervised learning , i.e. the unsupervised or
semi-supervised approaches, due to their potential for avoiding
training on examples from large sets of anomalous gait patterns
deserves great attention.

Conventionally, AE models as particular cases of feedfor-
ward Deep Neural Networks, attempt to copy (or reconstruct)
their input to their output via an internal latent representation
referred to as embeddings. AEs are frequently used for video
anomaly detection [37]. AEs have been successfully applied in
GAD as they can uncover the underlying structure of the data
[38], for detecting gait sequence anomalies in [21], [39], and
abnormal gait patterns based on a number of multi-modal bio-
signals [38]. Sparse AEs use the sparsity constraint rule to find
subtle patterns in the data by ensuring only a few neurons are
active at any one time [40]. AEs are known in general for their
ability to eliminate the need for manual feature engineering.
AEs capture the 2D structure of gait patterns and aggregate
the spatial and temporal features. By using the reconstruction
error information and setting a threshold on their distribution
related to the training with samples from only the normal class,
these AEs, effectively, provide an anomaly detection model.

Finally, as for using thermal imaging, important benefits
of IR for gait analysis are reliability in silhouette extraction
and the resilience towards complexity of background and
variations in lighting [41]. However, some of the challenges
include limitations caused by occlusion and the field of view
[42]. Based on the motion sequence classification of human
movements, a recent work successfully used the low resolution
TSA data with supervised RNNs [11] to identify human falls
from various other typical activities of daily living (ADL).
A few other studies have harnessed DL alongside these low-
cost, low-resolution infrared sensors to detect anomalies in
gait patterns or for fall detection, for example see [43].
These TSAs using DL have been also used for counting
people [44] and occupancy estimation [43]. A study using
public datasets including high-resolution thermal images of
640 × 480 pixels deployed several variants of Deep Spatio-
Temporal Convolutional Autoencoders (DSTCAEs) [45] by
formulating fall detection as an anomaly detection problem.
The latter reported that their proposed models outperform the
convolutional LSTM-AEs for detecting falls.

III. THE PROPOSED APPROACH

As a pragmatic solution to implement GAD with visual
sensors, autoencoders were identified as a reliable approach.
Their function to reconstruct their input as output provides
them with a powerful capacity to capture gait patterns’ nuances

Fig. 1: Proposed framework for creating a personalised Gait
Anomaly Detection system based on the current normal gait
of the POI. TNR and TPR stand for True Negative Rate
(specificity) and True Positive Rate (recall), respectively.

implicitly. This, in turn, enables AEs to manifest a reconstruc-
tion behaviour when receiving input that is different from what
they have learnt as normal gait or the reference patterns. Gait
anomalies should result in distinctively greater reconstruction
errors that signal the likely presence of deviations from the
learnt ‘knowledge’ of the AE. In Fig. 1, a schematic diagram
of the proposed framework is shown which is further described
below.

A. Thermal Sensor Arrays Signal Acquisition
The proposed framework uses TSAs for anomaly detection.

This is mainly because of their preserving privacy, afford-
ability, and being suitable for home use. Specifically, the
MLX90640 sensor [46] with a −40 to 85◦C operational
temperature range, and an object temperature accuracy of 1◦C
precision across the full measurement scale was employed.
The TSA measures the temperatures of objects in its field of
view and returns the information as a 32× 24 matrix. With a
TSA sensor refresh rate adjustable between 0.5Hz and 64Hz,
it was possible to determine a suitable value for detecting swift
human movements. Specifically, high refresh rates ensure that
even slow movements, often exhibited by elderly individuals,
are captured more frequently across multiple frames [43], [47].
In the experimental setup depicted in Fig. 2, the TSA camera
was placed at a height of approximately 1.7 meters, with a
distance of 1.5 meters from a 2.5-meter walking path. With a
TSA sampling frame rate set at 8Hz, each sampling session
captured between 8 to 12 seconds of useful gait information
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Fig. 2: The arrangement for recording gait showing TSA
position and the subject walking path.

Fig. 3: Four consecutive heatmap frames of a person walking
in front of the TSA camera.

while maintaining sufficiently swift playback of the subject’s
movement. The subject was instructed to walk at a 90◦ angle
to the TSA, providing a lateral view.

Fig. 3 illustrates a sequence of four consecutive heat-map
frames capturing the distinctive gait of a person in motion.
These thermal snapshots offer a pixelated visual representa-
tion, demonstrating the evolving heat patterns as the individual
walks, providing valuable insights into the dynamic thermal
characteristics of their movement without any information to
allow verification of human identity in the TSA’s output.

B. Feature Preprocessing Strategies
In this section, a number of essential feature-related sub-

processes to achieve feature selection, transformation and
creation are provided. These sub-processes were crucial for
improving the future performance of the anomaly detection
model.

1) Segmentation and Grayscaling: Adopting the approach
described in [11], binary thresholding was used to convert
the images into binary levels to isolate regions with dif-
ferent temperatures to better expose the human gait. First
a vector level of threshold values was calculated using the
‘multithresh()’ function in MATLAB [48]. The thresholding
segmented each of the frames, captured by TSA, into multiple

Fig. 4: Three consecutive processing stages - Segmentation,
Grayscaling and Optical Flow - were used to extract additional
information to improve GAD performance.

regions using MATLAB’s ‘imquantize()’ function [49]. The
output of segmentation was initially a new image frame of
the same size as the input image frame, where each pixel was
assigned a value of either 1 or 2. Then, all pixel values less
than or equal to 1, were further converted to 0, and otherwise
to 1, essentially creating a binary mask. Here, a pixel value of
‘0’ generally indicates the areas to ignore as the ‘background’,
and a value of ‘1’ or other non-zero values indicate the areas
of interest, also known as ‘foreground’. Lastly, all the original
thermal pixels corresponding to the above binarised mask
were split accordingly to remove the regions of image that
corresponded to the lowest intensity values. The segmentation
process divided the input thermal image frame into pixels that
had either a strong correlation with a walking subject or none.
This distinction was based on their temperature characteristics.
The resulting transformation after applying a segmented binary
mask to the original thermal data, is a heat-map where non-
body parts appear as dark blue. A typical transformed heat-
map is illustrated as Stage-I in Fig. 4. The next step, i.e.
Grayscaling, shown as Stage-II in Fig. 4, further simplified
the representation of the segmented heat-map into shades of
gray. This was done to allow a more efficient computation
during the next stage, i.e. the Optical Flow analysis, which is
described next.

2) Extracting the Optical Flow Components of Motion Anal-
ysis: Optical Flow method was used to provide two extra
features in addition to the ‘raw’ temperature data, namely:
pixel speed and pixel direction as described below. As far as
gait analysis is concerned, Optical Flow [22] as a fundamental
computer vision technique allows tracking and detection of
objects of interest, i.e. the walking person as in this paper.
Optical Flow is used to break down the apparent movement
of pixels in a picture into their various components i.e.
speed and direction. All the following optical flow equations,
fundamental to this section, are derived from the established
work of [50]. The core assumption of Optical Flow is that
the pixel intensities of an object remain constant over time.
Mathematically, this can be expressed as:

I(x, y, t) = I(x+ dx, y + dy, t+ dt), (1)

where (x, y) are the pixel coordinates in the first image, (x+
dx, y + dy) are the pixel coordinates in the second image, t
is the time at the first frame, t+ dt is the time at the second
frame, I(x, y, t) is the pixel intensity at (x, y) at time t, I(x+
dx, y+ dy, t+ dt) is the pixel intensity at the new location at
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the later time. This equation simply states that the intensity,
I, of a particular pixel remains constant between consecutive
frames. Taking the Taylor series expansion of the right side of
the equation and keeping up to first order terms, results in:

I(x+ dx, y + dy, t+ dt) = I(x, y, t)

+

(
dx

dt

)
Ix+

(
dy

dt

)
Iy + dt · It.

(2)
where Ix and Iy are the spatial derivatives of the image at
(x, y, t), and It is the temporal derivative of the image at
(x, y, t). Setting the two sides of the equation equal to each
other and rearranging terms, the Optical Flow equation is
obtained: (

dx

dt

)
Ix+

(
dy

dt

)
Iy + It = 0 (3)

or, in vector notation:

(u, v) · ∇(I) + It = 0 (4)

where
(u, v) =

(
dx

dt
,
dy

dt

)
(5)

is the Optical Flow (velocity) vector and ∇(I) = (Ix, Iy)
is the gradient of the image. The above is Optical Flow’s
constraint equation. It relates pixel flow to image derivatives.
More specifically, it relates the flow (velocity) of each pixel
to the spatial and temporal derivatives of the image. This is
under-determined, so additional constraints are needed, such
as smoothness constraints or motion assumptions. Methods
like Lucas-Kanade [51] or Horn-Schunck [50] can solve this
equation. Here, only the Horn-Schunck method was used
which assumes that the flow is smooth over the entire image,
and solves the flow vectors in a global manner.

3) Features Saved for Anomaly Detection: For each recorded
image frame, three distinct sets of data channels were pre-
served: temperature, speed, and direction. Speed and direction
channels were initially derived from Optical Flow calculations
and then masked as described in Section III-B.2. However, the
original temperature values recorded for each frame were used
without applying that mask, retaining all the original ‘raw’
temperature data for each individual pixel.

C. Sliding Windows and Data Integration
The input to a GAD model must include data associated

with a long enough time interval to capture the gait pattern.
Rather than analysing the entire video or sequences as a whole,
windowing allows for focused examination within specific
time intervals. Each window consists of a fixed number of
consecutive frames. ‘Sliding window’ refers to scanning of
temporal segments of a given video or sequence - to divide
the longer contiguous footage into smaller sections of equal
length, or windows for GAD processing purposes. This ap-
proach was similar to those of other researchers [52]. Thus, a
window consists of a sequence of related consecutive frames
from the same recording session of the POI’s gait. Fig.5,
provides an example of how the sliding window can extract
windows with a fixed number of frames each. It must be noted

Fig. 5: An example of how efficiently the sliding window
provides enough samples for use as input to the GAD model.
As shown, from an initial short footage of only 20 frames
recorded by TSA (shown on the far left of the illustration) a
sliding-stride of 1 and window size of 10, a total of 11 training
windows can be extracted.

that the possible number of extracted windows from a given
recording decreases as the specified window size increases.

D. Designing the AE based on the Input Data
A fully connected stacked AE model consisting of five

sections: an input layer, an encoder, the middle layer, a decoder
and an output layer was deployed, see [21] for more typical
details. In this model, all the image frames in each window
are concatenated into a single input vector. The result was
consequently a long, flattened vector of values. The size of
the input layer, which must be equal to the size of the input
vector, is then given as in (6).

S = F · I · P (6)

S is the size of the input layer, F is the number of features
used per pixel, I is the number of image frames in each
window, and P is the number of pixels in each frame.
The maximum value for F was 3 as any combination of
temperature, pixel speed and pixel direction features could
be used. As for the encoder the first layer had 512 nodes
and a linear activation function, followed by the second layer
with 256 neurons and Rectified Linear Unit (ReLu) activation
function (AF). Then, 128 neurons were used in the middle
layer (between the encoder and decoder) for the ‘Bottleneck’
section, with a ReLu AF. The use of ReLU in both the
encoder and decoder layers contributed to sparsity because
ReLUs output zero for negative inputs, effectively ‘turning
off’ some neurons. Furthermore, each layer of the encoder
used an L1 regularisation, which also encouraged sparsity
in the encoded representations by placing sparsity on the
hidden layer AFs. A noticeable AE performance improvement
was achieved although a strong sparsity was avoided. This
is attributed to using of rather low values of L1 (0.00001
at the input layer) and even smaller values at the remaining
dense layers. The sparsity level could be tweaked for optimal
balance between reconstruction accuracy and generalisation,
with stronger sparsity constraint potentially leading to rep-
resentations that were non-informative, while weaker sparsity
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could lead to overfitting. The chosen sparsity levels were found
via hyperparameter tuning, where the parameter was adjusted
for the best overall performance on a validation set and
confirming the choice by selecting the highest generalisation
performance model on various test sets with anomalous and
normal representations. The Decoder was designed symmetric
to the encoder with two layers of 256 and 512 neurons
respectively and using ReLU AFs. The output layer which
had the same size as the input layer, used a Sigmoid AF to
ensure the final output of AE lies in the same range as the
input data i.e. a real value between 0 and 1.

E. Training and Testing the AE to Detect Gait Anomalies

The training data was recorded multiple times from only
the current ‘normal’ gait of one POI in relatively healthy
conditions, which is referred here as ‘P1’. Additionally, three
different sets of simulated classes of gait anomalies, referred
to as ‘P2’, ‘P3’, and ‘P4’ respectively, were ‘staged’ by the
same POI and recorded. These gait-anomaly classes were not
planned to mimic any already well-established gait disorders.
‘P2’, ‘P3’, and ‘P4’ were deliberately designed to be uniquely
different from each other and from the normal gait of the
selected POI, referred to as ‘P1’. Thus, ‘P1’ represents the
normal gait of an ageing man with a slight stoop. ‘P2’s
gait simulates the same individual walking with legs wide
apart, creating a distinctly different stride pattern. ‘P3’, in
contrast, depicts a faster-paced gait with legs positioned very
close to each other, differing significantly from both ‘P1’
and ‘P2’. Finally, ‘P4’ involves walking with a much greater
stoop than ‘P1’ and at a slower pace, introducing another
unique variation. The simulation procedure was meticulously
rehearsed multiple times before the final thermal recording to
maintain consistency within each abnormal class. The sets ‘P2’
to ‘P4’ served as the anomalous gait test-sets for phase-II of
the AE training. The total duration of footage for ‘P1’ was
approximately 4 minutes spread across 26 recording session
with an average session duration of 10 seconds. The number
of extracted windows varied depending on the chosen window
size. On the other hand, for the three test classes of abnormal
gait—‘P2’,‘P3’, and ‘P4’—the total duration of footage was
only 2 minutes, sampled over several short 10-second sessions.

Due to the small and limited size of the original data
recorded, the ratio according to which the ‘P1’ dataset was
split between training, validation and test set varied according
to the experiment, as described later in Section (IV.

As outlined in Fig. 1, the training process was divided
between two phases: I and II. The first phase was where the
actual GAD training occurred. This was a semi-supervised
learning because although no class labels were given to the
AE, the input examples were prepared from only one class (i.e.
the normal gait of the POI). Therefore, this was contrary to
unsupervised training where there is absolutely no separation
between the normal and anomalous examples included in the
training set. In Phase-I, the AE had to closely reconstruct,
as its output, the normal-gait windows it received as input.
Thus, as a binary classifier all the ‘normal’ gait data from the
POI, i.e. ‘P1’, were treated as ‘Negative’. Next, if after testing

on gait windows from the P1’s test set, the True Negative
Rate (TNR) - the same as specificity metric - was sufficiently
high (ideally close to 95%) , the training would proceed to
Phase-II.Of course, it was not always possible to reach this
specificity target if the model was not appropriate. The second
stage aimed to evaluate the AE on the gait-anomaly test sets
from ‘P2’, ‘P3’, and ‘P4’ to determine its suitability for later
use as a finalised GAD model (see Fig. 1). Thus, any gait
pattern sufficiently different from the ‘normal’ gait of the
POI must be classified as ‘Positive’ and result in noticeably
higher reconstruction errors. The reconstruction error which
was evaluated in terms of the Mean Squared Error (MSE) is
discussed in the literature [53], [54]. Throughout this study,
a type of percentile-based cut-off on the distribution of MSE
values of the reconstruction errors of the training set (which
included examples from the normal class only) was deployed.
The threshold line set at the 98th percentile of the distribution
of the training set’s MSE values formed the anomaly limit or
borderline between normal and anomalous gait samples.

IV. EXPERIMENTS AND DISCUSSION

The primary objectives of the experiments were to validate
model’s feasibility and functionality, and to determine the
most successful configuration for successfully implementing
the proposed GAD system. Thus, different parameter settings
of training size, window size, and the type of input feature
were investigated. The novelty of the work meant that there
were too many unknown influencing factors. Therefore, initial
experiments focused on establishing a baseline understanding
using a subset of data involving only ‘P1’and ‘P4’, followed
by a comprehensive evaluation with all four data sets, ‘P1’
to ‘P4’, to finalise the model configuration. Each set of ex-
periments was conducted after first achieving a specific target
performance at the end of Phase-I, to serve as the basis for
comparison. Thus, all the experiments were conducted at the
Phase-II of the training process (see Fig.1). During the Phase-I
training, the batch size and number of epochs were set to 32
and 120, respectively. Adaptive Moment Estimation (ADAM)
[55] was used as the optimiser with a fixed learning rate 0.005
to adjust the weights of the network to minimise the loss
function. The AE model architecture was also kept identical to
that described earlier in Section III-E. These measures were
necessary to make the comparative tests within each of the
three sets of experiments, as meaningful as possible.

For classification performance, numerous metrics are avail-
able (for example see [56]). We found F1-score, accuracy,
precision, recall, and specificity most suitable for our objec-
tives (see [3] for a detailed discussion), reducing the likelihood
of biased performance conclusions. F1-score was particularly
expected to stay as high as possible to obtain a good trade-off
between the GAD’s recall and precision performance.

The training set was collected randomly from 55% of the
extracted windows from the POI’s ‘P1’ set. About 8% and 37%
of the remaining windows were allocated to the validation and
test sets for ‘P1’ respectively. During Phase-II, only ‘P4’ was
tested in the first and second experiments. In the final, most
comprehensive experiment, the GAD model was tested against
all three aforementioned anomaly classes.
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Fig. 6: Effect of training size on anomaly detection perfor-
mance at a window size of 8, with ‘P1’ as ‘normal’ and only
using ‘P4’ as ‘abnormal’.

For each of the following experiments, the associated dis-
cussion is provided within the same section as the experiment
itself. This arrangement ensures relevance and efficiency by
directly connecting the experiment’s description with its cor-
responding discussion.

A. Experiment-1: Investigating the Effect of Training
Dataset Size

The intended users of this system, are expected to be
primarily the older adults, many of which may not be able
to conveniently participate in data acquisition efforts. This
may be attributed to their often limiting physical and/or
mental circumstances. Therefore, inspired by few-shot learning
[57], in this experiment, the objective was also to determine
the minimum training size for accomplishing GAD with the
highest classification performance. Only the ‘raw’ temperature
feature was included in each input frame. The window size
was set to 8 frames to obtain a smooth flow of the gait pattern
because the number of frames per second (FPS) of the TSA
had been also set as 8 during all the initial gait recordings.
This resulted in a total of 352 windows extracted by applying
the sliding window process. Four different training sets with
sizes of 38, 52, 99 and 193 windows were created for this
investigation. The remaining windows from ‘P1’ set were
allocated for validation and testing purposes in the Phase-I
of the training.

At each training size, only the model with the highest
recall results from a set of 15 separate runs was included for
comparison with the other training sizes. The results in Fig. 6
clearly show that the largest training size of 193 windows
produced superior performance across all the five metrics
used, while the training size of 99 ranked second. It must
be noted that although the recall metric showed impressive
performance across all the training sizes, including for training
sets with 52 and 38 windows, the specificity metric was zero
for these smaller training sizes. This observation suggests
under-fitting for the training sizes smaller than 99 windows.
The results showed the effectiveness of the proposed approach
for securing useful GAD outcomes with still only a small
training size of 193 windows (despite being the largest in the
above tested range). This was equivalent to only 2.2 minutes of
total captured footage of the ‘normal’ gait. No previous study
to provide a benchmark for comparison of data collection
duration for GAD approaches was found. Investigating the

Fig. 7: Effect of different window sizes, on GAD across 5
performance metrics. At any window size, only the model
with the highest F1-score from 15 separate runs was used for
comparison.

effect of using window sizes larger than 193 was not possible
since the existing TSA footage could not provide any more
windows. However, it is recommended to examine larger
window sizes, obtainable from longer initial recordings, for
enhancing the results further.

B. Experiment-2: Investigating the Effect of Window Size

The objective of this experiment was to find the best input
window size from the available training dataset. As described
in the previous experiment, an initial window size of 8 was
also used here to provide a smooth gait flow. However,
other additional window size values of 6, 10 and 12 were
also investigated. For each input frame, the corresponding
values of ‘raw’ temperature, speed, and direction were used
simultaneously. The performances included in Fig.7, represent
only the models with the highest F1-score results from a set
of 15 separate runs for each given window size. Only the ‘P4’
class was tested for anomalies. As seen from Fig.7, a window
size of 10 showed the best results at or above 95.5% percent
success rates across all the five metrics. The window size
of 12 showed a marked degradation of overall performance
suggesting that more data through larger window of TSA
frames is not necessarily helpful.

A major challenge of using the AE model for GAD, when
using an input data obtained from very low resolution TSA in-
frared images was the apparent loss of detail. Another expected
challenge was the possible loss of information when flattening
the input data into a one-dimensional vector. The successful
GAD performance, suggested that the sparsity driven by the
use of L1 regularisation, ReLU activation functions, and AE’s
inherent dimensionality reduction and reconstruction of the
input may have overcome the above challenges to a great
degree. However, it was also demonstrated here that using a
specific number of random windows as input, each providing
collection of unique frame sequences of gait pattern greatly
improved the performance of GAD especially at a window
size of 10. It is therefore concluded that the sliding windows
must have also contributed to GAD by providing sufficiently
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Fig. 8: Overall performance of the seven feature combinations.
For each feature combination, this shows the average of the
corresponding metric values across the three gait anomaly
conditions: ‘P2’,‘P3’, and ‘P4’.

Fig. 9: Comparison of temperature with speed, including their
averages across four metrics and averaged over all three gait
anomaly conditions: ‘P2’,‘P3’, and ‘P4’.

representative samples for effective learning of the hidden data
structure of the gait patterns.

C. Experiment-3: The Impact of the Type and
Composition of Input Features Used

The objective of the experiments here was to determine
which form of input could provide the best GAD performance
across all the three gait anomaly conditions: ‘P2’,‘P3’, and
‘P4’. With the three initial features of ‘raw’ Temperature,
and Optical Flow’s components of Speed and Direction,
seven distinct feature combinations were possible: 1-All three
features together, 2-Speed and Direction, 3-Temperature and
Direction, 4-Temperature and Speed, 5-Temperature, 6-Speed,
and 7-Direction. The previously discovered best performing
window size of 10 and the associated training size of 166, and
validation and test sets of 24 and 112 windows, respectively,
were used. Only the models with a specificity of 95% were
included in the comparisons. Fig. 8 shows that models based
solely on either ‘raw’ Temperature (overall 95.45%), or Speed
(overall 95.12%), outperformed all the GAD models that
were based on other input feature combinations. The values
reported are the averages of overall performance across the five
metrics. Fig.9 shows the breakdown of GAD performances for
‘raw’ Temperature, Speed, and the averages of both of their
corresponding performances. The specificity metric results
were not included since they were maintained at the same
value of approximately 95%.

To further examine GAD performance for various gait
anomaly classes, Fig.10 provides a detailed breakdown of
the results for each of the three gait anomaly conditions
individually. These values are displayed separately for each
of F1-score, Accuracy, Recall and Precision metrics. It can

(a)

(b)

(c)

(d)

Fig. 10: Comparison of using temperature versus speed as
input features for GAD, including their averages across the
following metrics: (a) F1-score, (b) accuracy, (c) recall, and
(d) precision.

be observed that even for a given ‘winning’ or dominant
input feature type, the GAD performance was not uniform and
varied depending on the type of anomaly class being detected.
Overall, as evident from Fig.10, the ‘Raw’ Temperature feature
provided better detection capability for ‘P2’ and ‘P4’ classes,
while ’Speed’ provided superior detection for the ‘P3’ group
of gait anomalies. This implied that among the two dominant
features, each input feature provided different detection capa-
bilities depending on the type of anomaly encountered. As the
actual type of future gait anomalies cannot be predicted, this
means that an ensemble of different GAD models that each
use different types of input features, should provide a more
balanced overall detection capability than relying on only one
type of ‘top-performing’ input feature.

V. CONCLUSION

Previous work to specifically confirm the feasibility of
performing one-class semi-supervised GAD with very low
resolution thermal images from TSA as input could not be
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found. However, the proposed TSA-based model developed
as a mildly sparse standard AE with fully connected layers,
provided successful performance. This personalised solution
with minimal training data, created from only less than 4
minutes total footage of one POI’s normal gait allowed a
convenient and efficient data collection suitable especially for
the older adult population. Three simulated classes of the
POI’s gait anomalies were detected with approximately 95%
success rate across all the five important classification metrics
(as opposed to many of previously reported works which report
high performance for one or two metrics only). The anomalies
detected were contextual in relation to the normal gait of POI,
as opposed to being global anomalies with respect to the larger
human population. The proposed GAD solution significantly
alleviates the gait data scarcity and data variability problems
because it requires a short footage of just one person’s normal
gait.

Finally, it is important to highlight the limitations of this
study in order to pave the way for future researchers:

• Despite its potential as an early warning system, the semi-
supervised GAD framework cannot resolve the challenge
of positively identifying specific types of gait anomalies.
A possible solution is to integrate diagnostic supervised-
GAD models, which could complement our model.

• Due to the short length of the gait recordings, the suit-
ability of larger window sizes could not be adequately
examined. Larger window sizes may enhance the GAD
model’s ability to learn gait nuances and subtle changes
to improve overall performance.

• The absence of comparative benchmark studies using low
resolution thermal imaging, has made it challenging to
evaluate and optimise our work. A potential solution is
to repeat the experiments on a larger and more diverse
group of targeted users (e.g. including at least 10 or more
volunteer elderly individuals from differing ethnic, gender
and age groups). This could lead to more personalised
baseline models, refining the configuration of person-
alised GAD systems. As a result, various parameters,
including training size, sliding window size, anomaly
threshold, and the choice of AE type could be optimised.
Additionally, considering ensembles of GAD modules
with diverse sensor modalities and environmental con-
ditions may improve performance.

• Creating a more comprehensive dataset with diverse
and real anomalous gait patterns for each individual (as
opposed to solely relying on a few simulated anomalous
classes such as ‘P2’,‘P3’, and ‘P4’), could also provide
a more realistic evaluation of GAD robustness and allow
further optimisation. However, as discussed earlier, the
scarcity of real anomalous examples remains a serious
problem. Exploiting existing public gait datasets with
higher resolution infrared images to extract lower res-
olution images (e.g., through average or max pooling)
and simulating anomalous data with GANs are other op-
tions. Additionally, adapting and potentially retraining the
model for different camera angles and whole-body images
could enhance its robustness across various conditions

and datasets.
• The definition of ‘normal’ gait for a given person must

be periodically updated with the latest ‘still-healthy’ gait
conditions to maintain high classification performance.

• In order to increase detection accuracy in the presence of
challenges such as the distance between the human and
the sensor, and occlusions caused by factors such as thick
clothing or hot objects (e.g., a hot drink), various pre-
processing techniques and the fusion of multiple TSAs
have shown promising results [47] that deserve further
exploration.
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