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Abstract 

Acute myeloid leukaemia (AML) is a haematological malignancy which inhibits the production 

and maturation of functional immune cells. Patients are treated with induction chemotherapy 

and haematopoietic stem cell transplant (HSCT). HSCT replaces the patients defunct immune 

system using donor stem cells. Therefore, disruption via immune suppression is detrimental to 

patient prognosis. At present, AML patient’s prognosis is predicted using cytogenetic 

abnormalities and genetic mutations, however, 50-70% of AML patients are labelled as 

‘intermediate’ risk. This group displays variation in response to frontline chemotherapy and HSCT, 

indicating a need for improved stratification to assign patients tailored treatments. Prognostic 

indicators (PI) are crucial in guiding therapeutic decisions and improving outcomes for AML 

patients. This work focuses on generating prognostic index scores based on methylation 

modulated IFNG driven immune evasion in AML. 

PI scores were generated using AML cell lines (Kasumi-1 and KG-1) subjected to treatment with 

IFNG, and demethylation agent 5AzaC. Pairwise linear regression identified significant treatment-

induced transcriptomic changes and a shortlist of candidate transcripts associated with IFNG 

signalling and demethylation was created. PI scores were computed using normalised 

transcription data from IFNG, 5AzaC and IFNG5AzaC treated cell lines and β-values generated 

using cox proportional hazards forward selection model. The study employed the TCGA patient 

dataset for discovery and BeatAML, HOVON, German-AML, and CN-AML for validation. PI score 

performance was compared to established prognostic methods. 

All PI scores split adult patients in the European LeukemiaNet cytogenetic risk category into 

subgroups with good and poor survival in the TCGA dataset, with the 5AzaC and IFNG PI scores 

association with OS validated in the CN-AML (intermediate risk group) data set (n = 242). 

Comparing the area under the curve (AUC) for PI scores (5AzaC PI AUC = 0.599, IFNG PI AUC = 

0.637, and IFNG5AzaC PI AUC = 0.657), with established prognostic scores revealed comparable 

performance to LSC17 score (AUC=0.65) and the ELN cytogenetic risk categories (AUC=0.66). 

However, they were outperformed by other established scores. The study demonstrated the 

potential of cell line-derived PI scores to predict AML patient survival. 

  



1 Introduction 
 

1.1 Cancer 
Cancer describes a group of diseases in which cells demonstrate abnormally increased growth, 

invade local tissues, and spread to distant secondary sites by metastasis. The transition from a 

normal cell to a cancerous one is achieved through an accumulation of mutations, which bestow 

a growth advantage over normal cells  (Hanahan and Weinberg 2000). Cancer has a major impact 

on health worldwide and is a leading cause of morbidity and mortality. Consequently, a 

significant amount of research and resources is dedicated to cancer research. The global effort 

to investigate cancer has significantly advanced our understanding of the events that initiate and 

drive its pathogenesis, leading to the development of better tools for diagnosis, prognosis, and 

treatment. As cancer develops through mutation, it unsurprisingly becomes a highly 

heterogeneous disease, exhibiting genomic and epigenetic differences both within and between 

tumours. This heterogeneity means that biomarker signatures for prognosis and treatment 

response vary in effectiveness among patients, even with the same cancer type. This inherent 

variability also contributes to common issues such as treatment resistance and relapse. 

Therefore, investigating individual cancers to characterise mechanisms of treatment resistance 

is crucial for improving future patient outcomes. 

1.2 Acute myeloid leukaemia 
Acute myeloid leukaemia (AML) is a fast-developing haematological malignancy, characterised 

by infiltration of the blood and bone marrow by immature myeloid cells. This occurs through the 

accumulation of mutations in myeloid blasts and their progenitor myeloid stem cells, which 

prevent differentiation into specialised blood cells (De Kouchkovsky and Abdul-Hay 2016). The 

bone marrow consequently over produces immature non-functional monocytes and 

granulocytes, eventually causing bone marrow failure and then death. In addition, the leukemic 

cells enter the peripheral blood to disperse across the body, particularly to the lymph nodes, 

spleen and in rare cases, the brain (Estey 2018). Symptoms arise as blood conditions, which are 

caused by the loss of specific functional blood cells; they develop over a few weeks and quickly 

become severe. For example, depletion of red blood cells causes anaemia, resulting in the 

patient feeling fatigued. A reduced neutrophil count (Neutropenia) causes patients to suffer from 

more infections, and a loss of platelets prevents blood clotting. AML patients also experience 



breathlessness, fevers, weight loss, easy bruising, aches and are particularly vulnerable to 

infection (National Health Service 2019). 

 

Figure 1: The transition of haematopoietic stem cells into AML blasts via mutations. The bone marrow produces 
haematopoietic stem cells which can become a myeloid stem cell. These stem cells ordinarily will mature into either 
red blood cells, platelets, or a range of white blood cells. In AML, due to accumulation of mutations, the myeloid stem 
cell does not develop into these specialised cells, and instead usually becomes an immature white blood cell called 
a myeloblast but can also become abnormal red blood cells or platelets, which are collectively termed leukaemia or 
blasts. These abnormal cells ‘crowd out’ normal healthy cells, causing symptoms from lack of platelets, white blood 
cells and red blood cells (De Kouchkovsky and Abdul-Hay 2016). 



1.2.1 Incidence and mortality rate of AML in the UK 
Acute Myeloid Leukaemia (AML) is a rare disease, accounting for less than 1% of all cancer cases 

with approximately 3,200 people diagnosed in the UK every year (Cancer Research 2017b). It is 

an age-related disease, as demonstrated by 42% new cases occurring in people aged 75 and over 

(Cancer Research 2017b) A gender bias is also seen in older groups, with males having a 

significantly higher incidence rate; most evident in the 75-79 age group where there is a 1.9-fold 

increase compared to females (Cancer Research 2017b). 

Figure 2: Incidence and Mortality Rates of AML in the UK circa 2017. A) Incidence rate of AML diagnosis per 100,000 in 
the UK circa 2017 (Cancer Research 2017b) across age groups and gender; Male (blue) and female (pink). B)  
Mortality of AML diagnosis per 100,000 in the UK circa 2017 (Cancer Research 2017a) across age groups and 
gender; Male (blue) and female (pink). C) Mortality rate of AML using European age-standardised mortality Rates per 
100,000 Population in the UK circa 2017 (Cancer Research 2017a). 



As depicted in Figure 2C) low mortality rate has observed for people below 50 and increased for 

those above. Increases in mortality rate are most dramatic in the over 80s population, who are 

more likely to have comorbidities, with mortality rates increased by 189% in 2017 compared to 

1971 (Cancer Research 2017a). 

1.3 Drivers of AML development and progression 
AML is characterised by various mechanisms that allow the disease to proliferate, evade 

destruction by the immune system and progress. As AML originates from hematopoietic stem 

cells or myeloid progenitor cells, it inherently possesses self-renewal capabilities. Mutations and 

environmental factors, such as increased bone marrow vascularisation and altered immune 

environments, significantly contribute to disease progression and patient prognosis  (Shih, T. T., 

et al. 2009, Hussong, Rodgers and Shami 2000, Trendowski 2015). AML evades cell death by 

overexpressing anti-apoptotic genes such as BCL2 and through TP53 mutations, which increase 

proliferation, leading to increased resistance to chemotherapy and poorer survival rates  (Pfeffer 

and Singh 2018, Bories, et al. 2020). Furthermore, AML cells often grow independently of external 

growth signals by upregulating their own signal receptors or continuously activating intracellular 

signalling pathways (Hyrien 2016, Bartek and Lukas 2003). 

Immune evasion is a critical factor in AML progression, where leukaemic cells alter the immune 

microenvironment to suppress immune responses. They achieve this by downregulating HLA 

molecules, expressing immune checkpoint inhibitors, and releasing immunosuppressive 

cytokines. These actions create a tolerant immune environment that favours regulatory T cells 

over effector cells (Cornel, Mimpen and Nierkens 2020, Anderson, Stromnes and Greenberg 

2017). These adaptations allow AML to persist and progress despite the host's immune defence 

mechanisms. 

1.4 AML evades the immune system by manipulating its immune 
environment 

Genomic instability, inflammation, and reprogramming of cellular metabolism all contribute to 

the transformation of healthy cells into cancerous ones. Normally, the immune system detects 

and destroys abnormal cells. Somatic cells present antigens via major histocompatibility 

complexes (MHC) to immune cells. If the antigen is not recognised as self, it triggers a chain of 

events leading to the elimination of the abnormal cells (Chen, D. and Mellman 2017, Chen, Daniel 

S. and Mellman 2013). However, AML can circumvent this recognition process to escape 

destruction and continue to grow (Houghton and Guevara-Patiño 2004).  AML uses various 

mechanisms to causes a paradigm shift of the immune environment from a responsive 



phenotype to a tolerant phenotype, which favours regulatory T-cells over effector cells, thereby 

reducing immune function and preventing AML destruction (Anderson, Stromnes and Greenberg 

2017). Furthermore, AML blasts downregulate the production of immune signalling molecules, 

including MHC, and produce high levels of immune-suppressing cytokines, such as TGFβ1, to 

inhibit immune activity (Cornel, Mimpen and Nierkens 2020). As AML progresses, it employs 

various mechanisms to evade the immune system's effector response and remodel the 

leukaemic microenvironment, facilitating immune escape and resistance to therapies. AML 

blasts use several strategies to avoid immune destruction, including: 

1.4.1 AML downregulates HLAs to prevent antigen presentation to T-cells 
and NK-cells 

HLA-A, HLA-B and HLA-C are classic major histocompatibility complexes (MHC) that present 

antigens for recognition by T-cells and NK-cells to identify and initiate destruction of unhealthy 

cells (Cornel, Mimpen and Nierkens 2020). This resistance mechanism is particularly effective 

against stem cell transplants, which are dependent on T and NK-cells being able to recognise 

antigen-MHC complexes to AML cells  (Jan, et al. 2019). AML blasts genetically delete HLAs and 

downregulate them through epigenetic alterations. Additional methods of immunosuppression 

include upregulating T-cell inhibitory ligands and release of immunosuppressive molecules such 

as PDL-1 and IDO-1 (Christopher, et al. 2018).  

1.4.2 AML induces T-cell exhaustion via immune check point inhibitors 
Ordinarily, immune checkpoints maintain the immune system's balance and promote self-

tolerance. AML exploits these checkpoints to suppress effector cells in its immediate 

environment. A well-studied checkpoint in AML is the programmed cell death protein 1 (PD-1), 

expressed on the surface of T and B cells (Taghiloo and Asgarian-Omran 2021). AML cells express 

the inhibitory ligand PDL1 on their surface, which can bind to PD-1 and transmit a co-inhibitory 

signal causing T-cell exhaustion. Galectin-9 is also expressed on AML blasts, where it binds to T-

cell immunoglobulin and mucin domain 3 (TIM-3) on effector T cells and NK cells. This interaction 

promotes the self-renewal of AML blasts through stimulatory β-catenin and NFκB signalling, 

while simultaneously inhibiting immune cells from releasing pro-inflammatory cytokines, thus 

impairing their function (Silva, et al. 2017). Additionally, high mRNA levels of LAG-3, a ligand for 

immune checkpoint cytotoxic T-lymphocyte associated protein 4 (CTLA-4), have been found to 

be highly expressed in AML patients, and correlate with unfavourable prognosis (Radwan, et al. 

2020). DNAM-1, a receptor on T-cells that binds to ligands CD115 and CD112 on cancer cells to 

regulate cytotoxic activity, is expressed at low levels on T-cells in AML patients. Conversely, its 

competitor, the inhibitory receptor T-cell immunoglobulin and ITIM domain (TIGIT), is 



upregulated. The interaction between TIGIT and CD115/CD112 is theorised to be a mechanism 

of immune evasion, supported by clinical studies linking high expression of CD115 and CD112 

with poor outcomes (Wang, F., et al. 2022). Although immune checkpoint inhibitors are effective 

in solid tumours, clinical trials are ongoing in haematological malignancies such as AML, and as 

such are not currently approved for use.  

1.4.3 AML blasts direct tumour-associated macrophages to 
immunosuppressive M2 phenotype 

Macrophages within the tumour microenvironment are known as tumour associated 

macrophages (TAMs). AML blasts cause TAMs to change from the tumour resistant M1 phenotype 

to the immunosuppressive M2 phenotype. M2 phenotype TAMs release immunosuppressive 

cytokines such as TGF-β and IL-10, which promote leukaemic cell proliferation, inhibit T-cell 

proliferation, and repress inflammation signalling while inducing tissue repair and angiogenesis 

(Mantovani, et al. 2002, Al-Matary, et al. 2016, Mussai, et al. 2013). In AML patients, higher levels 

of M2-type macrophages have been reported in the bone marrow and spleen compared to 

healthy donors, suggesting their contribution to AML progression (Al-Matary, et al. 2016). 

Furthermore, AML leukemic stem cells (AML LSCs) highly express CD47 on their surface, which 

binds to Signal Regulatory Protein Alpha (SIRPα) on macrophages. This interaction inhibits M1 

macrophages from carrying out phagocytosis, further suppressing cancer immunity (Zhang, 

Wenting, et al. 2020). 

1.4.4 AML sabotages T-cell activity by preventing the formation of 
functional immune synapses 

A study found AML patients had an increase in number of T-cells in their peripheral blood when 

compared to age matched healthy donors. However, these T-cells formed faulty immune 

synapses with AML blasts. Gene expression profiling of those T-cells revealed differential 

expression of genes involved in actin cytoskeleton creation compared to the healthy group. While 

the T-cells can form cell conjugates, the required downstream signalling to form the 

immunological synapse are inhibited, preventing T-cell effector function  (Le Dieu, et al. 2009). 

1.4.5 AML blasts release soluble factors which polarise T-cells to a Treg 
phenotype 

In addition to preventing effector function, AML blasts also dysregulate cytokine signalling to 

favour T-regulatory (Treg) cells over T-effector cells  (Curti, et al. 2007). AML blasts release soluble 

immune inhibitory factors such as IL-10, IL-35, transforming growth factor-beta (TGF-β), and 

indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 is discussed in more detail in Chapter 3. Through 



various mechanisms these factors encourage T-cells to polarise towards the T-reg phenotype, 

creating an environment tolerant of the AML blasts and enabling disease progression (Platten, et 

al. 2015, Folgiero, et al. 2014, Locafaro, et al. 2014, Cools, et al. 2008, Walker, M. R., et al. 2003). 

AML patients are reported to have high numbers Tregs, with higher numbers correlating to poor 

outcomes. Immunosuppressive Treg phenotype has been observed to be stronger the closer in 

proximity to the bone marrow of the AML niche (Shenghui, et al. 2011). The disruption to cytokine 

profiles by AML ultimately decreases inflammation signalling by downregulating IL-15 and 

(Interferon gamma) IFNG, further pushing T-cells away from effector phenotypes.  

1.4.6 AML deregulate cellular metabolism to fuel growth while suppressing 
the immune response. 

Arginase II (ARG2) is a protein that catalyses the hydrolysis of the amino acid arginine into 

ornithine and urea. Increased ARG2 expression has been observed in the plasma of AML patients, 

where it inhibits T-cell proliferation and polarises macrophages to the M2 phenotype. 

Additionally, ARG2, in combination with inducible nitric oxide synthase (iNOS), decreases the NK 

cell population in the AML blast environment (Jacamo, et al. 2017). Furthermore, this group found 

the increase in the metabolism of arginine also reduced proliferation of hematopoietic progenitor 

cells (Mussai, et al. 2013). The metabolism of fatty acids and lipolysis has emerged in recent years 

as a mechanism AML uses to gain growth advantage. Adipocytes are common in the stroma of 

bone marrow, and their population increases with age. As AML patients are generally in the older 

population, this cell type Is abundant in the most vulnerable AML populations (Justesen, et al. 

2001). In elderly patients, it has been found that AML remodels the BM niche to promote cell 

survival through lipolysis of adipocytes. AML uses fatty acid oxidation (FAO) to make acetyl-CoA 

from fatty acids provided by its adipocyte heavy environment, which then feeds into the 

tricarboxylic acid cycle (TCA cycle) and to create additional ATP in the oxidatively stressed 

environment of the AML BM (Beloribi-Djefaflia, Vasseur and Guillaumond 2016, Tabe, Konopleva 

and Andreeff 2020). 

1.4.7 AML evades NK cells by sabotaging activating receptor mechanisms. 
NK cells express receptor NKG2D on their surface, which when bound to by its ligand (NKG2DL) 

and other co-stimulatory factors such as MICA, ULBP1/2/3, activate NK cells. However, in AML 

cells lines, high methylation of the promoter for NKG2DL silences its expression on AML cells, 

allowing them to escape NK cells recognition  (Baragaño Raneros, et al. 2015). Additionally, AML 

blasts release a soluble version of NKG2DL which decreases expression of NKG2D on nearby NK 

cells, inhibiting cytotoxicity  (Tettamanti, et al. 2022). Along the same lines, NK cells have another 

activating receptor called DNAM-1 which activates cytotoxic activity through granulation. AML 



blasts upregulate DNAM-1 ligands CD112 and CD155 on their surfaces, which in turn 

downregulates DNAM-1 expression on NK cells. As with T-cells, AML blasts upregulate expression 

of TIGIT on NK cells, inhibiting activity and IFNG secretion, this high expression has been 

correlated with reduced NK cell population in BM of poor prognosis SCT (Stem Cell 

Transplantation) treated AML patients (Hattori, et al. 2019). 

1.4.8 T-cell tolerance through myeloid suppressor cells and tumour 
associated macrophages 

Myeloid derived suppressor cells (MDSCs) are immunosuppressive cells that induce T-cell 

tolerance through expression of PD-L1, IDO1, Arginase II, ROS production and 

immunosuppressive cytokines such as TGFβ and IL-10  (Yang, Y., et al. 2020). MDSCs numbers 

are elevated in the peripheral blood and bone marrow of AML patients when compared to healthy 

controls (Pyzer, et al. 2017). MUC-1 is an oncoprotein which is released by AML blasts in 

extracellular vesicles (EVs). The MUC-1 containing EVs are absorbed by myeloid progenitor cells, 

impairing differentiation, leading to expansion of MDSCs  (Groth, et al. 2019, Pyzer, et al. 2017). 

AML is a complex disease which utilises multiple mechanisms to promote self-renewal and 

evade destruction by the immune system. Complexity in diagnosing and treating patients comes 

from the many mutations that can occur in AML resulting in different phenotypes. Classification 

of AML has changed over the years from morphological characterisation, to incorporate 

molecular indicators such as chromosomal abnormalities and mutations.  

1.5 AML subtypes 
The two systems used to classify AML are the French American-British (FAB) classification and 

the World Health Organisation (WHO) classification. The FAB classification was developed in the 

1970s and assigns subtype to AML based on the cell of origin and its maturity. FAB subtypes are 

identified based on the morphology of leukaemia cells when observed with a microscope. These 

subtypes are summarised in the appendix (7.1), along with names, origin cells and an example 

picture of their appearance. This method was developed in the 1980’s and has been since 

replaced with genetic and cytogenetic markers by the world health organisation (WHO) and the 

European LeukemiaNet (ELN) panel. 

The WHO classification system builds further on the FAB system and is regularly updated with 

consideration of genetics and other known factors that contribute towards prognosis. This is 

summarised in Table 3. 



Table 1:The categories of AML based on WHO classification criteria (American Cancer Society 2018). 
Information gathered from elsewhere is referenced in the table. 

Category name Details 

AML with certain genetic 
abnormalities (gene or 
chromosome changes) 

AML: [t(8;21)] 
AML: [t(16;16) or inv(16)] 
APL with the PML-RARA fusion gene 
AML: [t(9;11)] 
AML: [t(6:9)] 
AML: [t(3;3) or inv(3)] 
AML (megakaryoblastic): [t(1:22)] 
AML with the BCR-ABL1 (BCR-ABL) fusion gene 
AML with mutated NPM1 gene 
AML with dominant biallelic mutations of the CEBPA gene 
AML with mutated RUNX1 gene 

AML with myelodysplasia-related 
changes 

A diagnosis requires more than or equal to 20% of bone marrow 
cells are blasts and additionally either a history of myelodysplastic 
syndrome (MDS), MDS cytogenetic abnormalities or multi lineage 
dysplasia (Weinberg, et al. 2009).  

AML related to previous 
chemotherapy or radiation 

This is a therapy related AML that occurs following treatment with 
chemotherapy or radiation therapy for a prior malignancy (Kayser, 
et al. 2011). 

AML not otherwise specified. 
(AML that does not clearly fit into 
the other groups and correlated 
with FAB classification) 

AML with minimal differentiation (FAB M0) 
AML without maturation (FAB M1) 
AML with maturation (FAB M2) 
Acute myelomonocytic leukaemia (FAB M4) 
Acute monoblastic/monocytic leukaemia (FAB M5) 
Pure erythroid leukaemia (FAB M6) 
Acute megakaryoblastic leukaemia (FAB M7) 
Acute basophilic leukaemia 
Acute panmyelosis with fibrosis 

Myeloid sarcoma 

Diagnosis for when there is a proliferation of myeloid lineage blasts 
at extramedullary sites which disrupts the structure of the tissue it 
is found in. Clinical representations are variable, it has been found 
in soft tissues, lymph nodes and bones. It has also been called 
‘Chloroma’ due to a distinctive green colour caused by high 
expression of myeloperoxidase (Solh, et al. 2016, Avni and Koren-
Michowitz 2011).  

Myeloid proliferations related to 
Down syndrome 

The group involved a spectrum of MDS which evolve in AML in 
children with down syndrome (Trisomy 21). A subset of new-borns 
with down syndrome are born with erythro-megakaryocytic 
myeloproliferative disorder which can develop into acute 
megakaryoblast leukaemia. It is also characterised by GATA-1 
mutation as well as trisomy 21 and additional genetic events 
(Cantor 2015). 

Mixed phenotype acute 
leukaemia (MPALs) 

A rare set of leukaemia that present with mixed lineage that express 
myeloid and lymphoid antigens. It is characterised by therapy 
resistance and adverse cytogenetics (Sharma, et al. 2017, Wolach 
and Stone 2015).  



1.5.1 Molecular markers for risk stratification of AML 
A combination of morphology, cytogenetics and genetic mutations can be used to identify patient 

disease. Correct identification of disease is essential for patient prognosis and assigning 

treatments. Molecular markers are regularly reviewed for their impact on clinical risk, Table 21 

shows the recent categorisation of markers determined by the European LeukemiaNet (ELN) 

panel (Dohner, et al. 2017). Molecular cytogenetics spans techniques that study variations in 

chromosome structure and function and genome variation. Some standard cytogenetic 

techniques to study these features include but are not limited to:  

• Karyotyping- examining an individual’s chromosome complement to reveal missing, 

broken and rearranged chromosomes.  

• Chromosome banding – different aspects of the chromosome can be stained for 

visualisation, for example T-banding stains telomeres and C-banding for centromeres.  

• Fluorescence activated cell sorting (FACS) -sorts and separates chromosomes based on 

the intensity and size of fluorescent signals (Montazerinezhad, Emamjomeh and 

Hajieghrari 2020). 

There are other approaches which report more detailed differences in chromosomes and genes 

such as PCR based methods, in-situ hybridisation methods and comparative genomic vectors 

methods (Groth, et al. 2019, Pyzer, et al. 2017).  

 

Table 2: Table of molecular markers for genetic risk classification of AML as determined by ELN (Döhner, et al. 
2022). 

Prognostic  Genetic abnormality 
Favourable 
  
  

-t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 
-inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/ CBFB::MYH11 
-Mutated NPM1 without FLT3-ITD  
-bZIP in-frame mutated CEBPA 

Intermediate 
  
  

-Mutated NPM1 with FLT3-ITD  
-Wild-type NPM1 with FLT3-ITD (without adverse-risk genetic lesions)  
-t(9;11)(p21.3;q23.3)/MLLT3::KMT2A†,  
-Cytogenetic and/or molecular abnormalities not classified as favourable or adverse 

Unfavourable 
  
  
  

-t(6;9)(p23.3;q34.1)/DEK::NUP214  
-t(v;11q23.3)/KMT2A-rearranged  
-t(9;22)(q34.1;q11.2)/BCR::ABL1  
-t(8;16)(p11.2;p13.3)/KAT6A::CREBBP  
-inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/ GATA2, MECOM(EVI1)  
-t(3q26.2;v)/MECOM(EVI1)-rearranged  
-−5 or del(5q); −7; −17/abn(17p)  
-Complex karyotype monosomal karyotype 
-Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and/or ZRSR2 
-Mutated TP53a 



1.5.2 Genetic heterogeneity in AML 
As indicated by the molecular markers used for risk stratification in Table 2, genetic heterogeneity 

takes many forms in AML from chromosomal abnormalities to molecular mutations. Risk factor 

assessment based on cytogenetics must also consider the complex interactions that can take 

place when the mutations co-occur, and how high and low allele ratios (NPM1 and FLT3-ITD as 

an example) impact on disease. Mutations can be split into functional categories dependent on 

their role in AML development. These mutations occur in receptor tyrosine kinase (RTK) family 

members, transcription factors (TF), nucleophosmin, tumour suppressors and the spliceosome 

complex (DiNardo and Cortes 2016). Emphasis has been placed on the role of RTK family 

mutations and TF mutations which are thought to be key players in malignant transformation but 

are not necessarily always present. RTK mutations such as FLT3, KIT, VRAS, KRAS, PTPN11, NF1 

and NRAS, are present in approximately 66% of cases and promote the proliferation and survival 

of cells  (DiNardo and Cortes 2016). Mutations in TF such as RUNX1, CEPBA, GATA2 and RARA, 

occur in between 5 and 25% of cases dependent on TF and prevent cell differentiation, aiding in 

building an immature progenitor population  (DiNardo and Cortes 2016, Li, Sheng, Mason and 

Melnick 2016a). Additionally, concurrent mutations in RTK and TFs interact synergistically to 

produce a new epigenetic and transcriptional profile, different to any produced by the individual 

categories, further complicating evaluation (Shih, A. H., et al. 2015). 

1.5.3 Epigenetic modifications contribute to AML pathogenesis and 
progression 

Epigenetics describes changes to chromatin structure through modification of histones by 

methylation, acetylation, phosphorylation and more, which change how genes are expressed  

(Itzykson, Kosmider and Fenaux 2013). It is thought that epigenetic mutations are key to inciting 

leukaemogenesis and promoting clonal expansion but cannot initiate transformation without the 

aid of additional mutational events in the population (DiNardo and Cortes 2016, Li, Sheng, Mason 

and Melnick 2016a). Heterogeneity is especially prevalent in AML epigenetic profiles, with 

phosphorylation, acetylation and methylation all recorded to contribute to pathogenesis  (Dhall, 

et al. 2019, Seo, et al. 2022, Shih, A. H., et al. 2015). Somatic mutation of epigenetic regulators 

such as DNA methyltransferases (DNMT), Isocitrate dehydrogenase (IDH) and Ten-eleven 

translocation methylcytosine dioxygenases (TET) are identified in over half of AML cases. A variety 

of cytosine methylation landscapes have been recorded (Figueroa, Abdel-Wahab, et al. 2010). 

Mutations in enzymes DNMT3A, IDH1/2 and TET2 disturb haematopoiesis preventing 

differentiation into specialised blood cells and is key in initiating and progressing AML  (Yang, X., 

Wong and Ng 2019a). 



1.5.3.1 Acetylation status disrupting mutations 
One of the most frequent karyotypic abnormalities in AML is the t(8;21)(q22;q22) translocation 

which fuses RUNX1 to RUNX1T1 (Goldman, et al. 2019). The Leukaemogenesis ability of the 

fusion product AML1-ETO, may be reliant on lysine acetylation. Murine models with lysine 

acetyltransferase p300 knockdown display decreased AML1-ETO acetylation, which correlates 

with an increase in mouse median survival. However, as p300 decreases acetylation on a broad 

range of targets, it is unknown if the effect on survival is linked specifically to AML1-ETO (Link, et 

al. 2016, Wang, L., et al. 2011). 

1.5.3.2 Phosphorylation in AML is associated with drug resistance 
Phosphorylation is the addition of a phosphate group to a protein at the serine (Ser), threonine 

(Thr), or tyrosine (Tyr) residues by a protein kinase. The addition and removal of phosphate groups 

(by phosphatases) regulate the function of the protein (Bachegowda, et al. 2016). The PI3K/AKT 

signalling pathway is activated by phosphorylation and promotes cell growth and proliferation 

while inhibiting apoptosis, and so is tightly regulated. Research has demonstrated that a 

heterozygous deletion mutation in PTEN, a tumour suppressor gene, leads to increased AKT 

phosphorylation in AML cell lines. This overactivation of the PI3K/AKT pathway results in 

uncontrolled cell growth. Additionally, AML patients with low PTEN levels experience higher 

relapse rates within one year compared to those with normal PTEN levels (Chen, Ping, et al. 2016). 

Not only can P-AKT phosphorylate direct downstream targets involved in drug resistance, but the 

excessive signalling increases JNK-p38 MAPK pathways activity causing c-jun dependent 

resistance  (Roszak, Smok-Pieniążek and Stępnik 2017). Furthermore, overactivation of PI3L/AKT 

upregulates P-gp to transport drugs out of cell nuclei  (Chen, Ping, et al. 2016), further 

contributing to chemoresistance. 

1.5.3.3 Mutations in methylation proteins contribute to AML pathogenesis 
DNA methylation is an epigenetic modification where a methyl group is added to the 5th position 

of the cytosine ring in DNA. It acts as an off switch for genes, and regulates many developmental 

processes, including haematopoiesis, where haematopoietic stem cells differentiate into 

specific blood cells. DNA methylation profiles vary considerably between AML cases with 

patients presenting with hypermethylation, hypomethylation and intermediate methylation 

profiles  (Figueroa, Lugthart, et al. 2010). Studies have further investigated AML methylation to 

understand the biological and functional implications of methylation status (Figueroa, Lugthart, 

et al. 2010, Li, Sheng, Mason and Melnick 2016a). Mutations of genes involved in methylation, 

such as DNMT3, TET2 and IDH1 prevent function and produce hypo and hyper methylation 

profiles. 



1.5.3.4 DNMT3A 
DNMT3A is a de novo methylation enzyme and catalyses the addition of new methyl groups on 

DNA molecules. This activity regulates HSC differentiation and self-renewal by epigenetic 

methylation. Mutation in DNMT3A disrupt and impair this function, preventing DNA methylation 

and causing a hypo methylated environment. In turn HSC proliferation increases and 

differentiation into specialised blood cells is impaired. Mutation of DNMT3A commonly occurs 

alongside NPM1, FLT3-ITD, and IDH1 mutations and correlates with relapse and chemotherapy 

resistance (Mayle, et al. 2015). 

1.5.3.5 IDH1/2 
Mutations in IDH1 and IDH2 active sites at the R132 locus of IDH1 and the R140 or R172 locus of 

IDH2 cause a loss-of-function. In the Kreb's cycle isocitrate is normally converted to alpha-

ketoglutarate (αKG), however, mutations in IDH1/2 reverse the reaction converting αKG into 2-

hydroxyglutarate (2-HG) (Ward, et al. 2010). 2HG then competitively inhibits αKF dependent 

enzymes involved in regulating chromatin structure and DNA repair systems including TET 

enzymes and lysin demethylase  (Moran-Crusio, et al. 2011, Figueroa, Abdel-Wahab, et al. 2010). 

This causes a hypermethylated phenotype, silencing many genes including tumour suppressor 

genes, inducing increased DNA damage and impaired myeloid differentiation. The prognosis of 

AML with IDH mutations is poor with IDH1 mutations, but favourable with IDH2 mutations, when 

patients are treated with standard intensive chemotherapy  (Aslanyan, et al. 2014, Kroeze, et al. 

2014, Ahn, et al. 2017). 

1.5.3.6 TET2 
TET2 along with α-KG as a cofactor, catalyses the conversion of 5-methylcytosine (5-mC) to 5-

hydroxymethylcytosine (5-hmC) which is a crucial component needed for DNA demethylation. 

Mutations that disrupt TET2 activity therefore impair DNA demethylation, ultimately leading to 

down-regulation of genes that promote myeloid differentiation and genes that inhibit self-renewal 

in HSCs (Chan and Majeti 2013). TET mutations can lead to hypermethylated DNA signatures 

which have been linked to poorer outcome (Shlush, et al. 2014). Another route for AML to 

suppress immune cells in its local environment is through repurposing IFNG signalling. 

1.6 The role of IFNG in general immunity 
Interferon Gamma (IFNG) is a cytokine involved in both the innate and adaptive immune 

responses to viral and bacterial infections. This cytokine is primarily produced during the innate 

immune response by natural killer cells (NK) and natural killer T-cells (NKT cells). It is also 

secreted after the development of adaptive immunity by CD4+ T Helper 1 (TH1) cells and CD8+ 

Cytotoxic T lymphocytes (CTL) effector cells  (Rybka, Stephanou and Townsend 2009). IFNG 



signals by binding to the IFNG receptor, which is expressed on various cell types. This cytokine 

plays a central role in numerous biological processes, most notably in coordinating the immune 

response. One of its earliest discovered functions is the upregulation of major histocompatibility 

complex (MHC) molecules (Amaldi, et al. 1989) enabling increased antigen presentation (Minn 

2015) and improved immune response. 

IFNG acts as a key regulator of the immune system, influencing the activity of many immune cells 

at the innate and adaptive immunity level (Figure 3). IFNG induces B-cells to favour producing 

opsonising and complement fixing antibodies over IL-4 dependent isotypes such as IgE thereby 

promoting inflammation and enabling phagocytes to clear more microbes and damaged cells  

(Gonzales‐van Horn and Farrar 2015). Working in tandem with the isotype switch, IFNG enhances 

macrophage activity through 1) upregulating expression of FcγRI, enabling a larger uptake of 

pathogens by the macrophage, 2) stimulating them to synthesise more reactive oxygen species 

(ROS) and nitric oxide (NO) (Robinson, C. M., et al. 2010). These molecules are produced within 

lysosomes of the macrophage which fuse with phagosomes that contain microbes, thereby 

destroying the microbes (Thakur, Mikkelsen and Jungersen 2019). IFNG secretion causes a 

paradigm shift from innate to adaptive immune response favouring cell mediated immunity; 

inducing naïve CD4+ T-cells to favour differentiation into TH1 effector cells over TH2 helper cells. 

This promotes specific cytotoxic immunity through upregulation of both MHC classes as well as 

antigen processing, presentation, and costimulatory molecules, increasing pathogen peptide 

presentation and T-cell – APC interactions. Furthermore, a positive feedback loop is formed by 

TH1 cells producing more IFNG and IL-12 while inhibiting IL-4 secreting TH2 cells, creating an 

environment which favours the TH1 effector phenotype  (Schroder, et al. 2004).  



  

Figure 3: The roles of IFNG in the immune response. IFNG is produced first by NKC and NK T-cells during the innate 
response and CD4+ / CD8+ T-cells once antigen specific immunity has developed. IFNG is involved in many immune 
response mechanisms, some illustrated above; left to right. Outer left: IFNG induces B-cells to produce IgG Ab 
subclasses which protect against infectious pathogens. Inner left: IFNG activates macrophages to increase lysosomal 
activity. Inner right: IFNG promotes differentiation of naïve CD4+ T-cells into TH1 cells over TH2 effector cells, TH1 cell 
also produce IFNG resulting in a positive feedback loop. Outer right: IFNG induces the expression of MHC class I and II 
expression on both APC and normal cells, allowing more expression of foreign antigen and bolstering immune response. 



1.7 IFNG; a key cytokine for anti-cancer activity 
IFNG is also involved in immune surveillance, inflammation and known for general anti-tumour 

activity  (Zaidi and Merlino 2011). IFNG inhibits proliferation of cancer cells  (Kotredes and 

Gamero 2013), induces dose dependent apoptosis (Cheon, Yang and Stark 2011), and the 

blockage of angiogenesis resulting in tumour starvation (Sidky and Borden 1987).   

In AML, it has been shown that the reduced ability of CD4+ T-cells to produce IFNG at the time of 

diagnosis can be restored by the time of relapse following stem cell transplantation (Schnorfeil, 

et al. 2015, Lamble and Lind 2018). Kornblau et al also observed reduced IFNG production by 

CD4+ cells, identifying lower IFNG levels in the serum of untreated AML patients compared to 

healthy controls (Kornblau, et al. 2010). AML appears to downregulate IFNG expression to prevent 

a T-cell effector response and shift towards a Treg type. However, in some AML patients, IFNG-

related genes are highly expressed, which correlates with poor overall survival (Corradi, et al. 

2022). 

1.7.1 IFNG signalling upregulates immunosuppressive factors in AML 
Although IFNG has direct anti-tumour activity, and in a functional environment, can prevent 

cancers including AML from taking root, it can also enable cancer growth (Ribas 2015). Adaptive 

immune resistance (AIR) is the process by which a cancer responds to immune surveillance by 

changing its phenotype to evade the immune system. AML can use IFNG to upregulate escape 

mechanisms, and cause immunosuppression to promote immune escape. Some of the methods 

used by AML to evade immune cells were outlined in section 1.4. 

IFNG upregulates numerous molecules in AML, including but not limited to PD-L1, IDO1, non-

classical HLA’s, and BST2. These molecules contribute to remodelling the bone marrow niche 

and an immunosuppressive environment by inhibiting cytotoxic immune cell activity, polarising 

T-cells towards tolerogenic phenotypes, inhibiting memory cell survival, reducing immune cell 

protein synthesis, growth and HSC niche re-localisation.   

In AML blasts, IFNG upregulates PD-L1 levels by various pathways including the STAT1/3 and 

MAPK pathways. PD-L1 prevents AML blasts from being destroyed by cytotoxic T-cells by 

transmitting an inhibitory signal (Berthon, et al. 2010, Moshofsky, et al. 2019). IFNG released from 

various sources including NK cells has been found to upregulate IDO1 expression on AML blasts. 

In short IDO1 catalyses the breakdown of the essential amino acid tryptophan (trp), which 

creates Kynurenine (Kyn). The depletion of TRP is sensed by CD4+ T-cells, which respond by 

reducing protein synthesis to inhibit cell growth. Furthermore, Kyn binds to the aryl hydrocarbon 

receptor on T-cells and dendritic cells (DCs), inducing signalling that shifts naïve CD4+ T-cells to 



differentiate into Treg cells, and DCs to favour a tolerogenic phenotype (Folgiero, et al. 2014, 

Platten, et al. 2015). AML patients with high IFNG expression have been associated with poorer 

overall survival compared to those with lower IFNG expression. IFNG release by AML correlates 

with elevated Treg levels in the bone marrow. Furthermore, transcriptomic analysis of 

mesenchymal stromal cells (MSCs) co-cultured with IFNG-expressing cells showed an induction 

of an IFNG-dependent program of Treg-related genes in the MSCs. This indicates that AML blasts 

can use IFNG to upregulate immunosuppressive factors in themselves, such as IDO1 and PDL1, 

and in the local bone marrow niche by activating Treg induction programs in MSCs (Folgiero, et 

al. 2014, Platten, et al. 2015). 

IFNG further contributes to a tolerant environment by upregulating the expression of nonclassical 

HLA such as HLA-G and HLA-E in AML (Mizuno, et al. 2000, Nguyen, et al. 2009). Expression of 

HLA-G promotes maternal tolerance of the foetus in pregnancy; however, AML and other cancers 

utilise HLA-G expression on their surface to induce immune tolerance by binding to inhibitory 

receptors on immune cells such as ILT-2, ILT-4 and KIR2DL4 (Kren, et al. 2010, Gallegos, et al. 

2016). HLA-E interacts with NK and T-cells to regulate their activity, importantly, HLA-E can bind 

to inhibitory receptor NKG2A on NK cells. In AML IFNG upregulation of HLA-E on AML blasts has 

been found to use this mechanism to inhibit NK cells cytolysis activity in patients posts haplo-

mismatched Haematopoietic stem cell transplant (HSCT) (Nguyen, et al. 2009). 

HSCs usually reside in the bone marrow in an inactive quiescent state, but can be activated in 

response to injury or to restore blood cells through proliferation and differentiation (Loeffler and 

Schroeder 2021). Long term IFNG signalling due to chronic infection has been shown to activate 

HSC, causing IFNG dependent reduction in HSC in the bone marrow (Bogeska, et al. 2022). The 

migration away from the bone marrow is hypothesised to be in part due to IFNG upregulation of 

BST-2 on HSCs, and its binding to E-selectin activating HSCs. Ultimately this results in IFNG 

dependent localisation of HSC from a quiescent and inactive niche to an E-selectin positive and 

active niche, contributing towards AML progression. Increased BST2 expression has also been 

associated with poor overall survival in AML patients (Matatall, et al. 2018, Florez, et al. 2020).  

In summary AML uses IFNG to upregulate AML blast proliferation and upregulates a host of 

immunosuppressive molecules to directly inhibit immune cells. Additionally, it induces immune 

cells in its environment to shift to tolerant phenotypes, both through AML blast direct interaction, 

and induction of immunosuppressive gene programmes in surrounding cells such as MSC. The 

hijacking of inflammation signalling which usually would help to control cancer progression, adds 

layers to how effective treatments can be via standard chemotherapy, and highlights the 



importance in understanding the AML immune environment when developing new treatment and 

prognostic strategies for AML.  

1.8 Treatment strategies for AML 
 Therapeutic strategies for treating AML patients have made limited progress over the past 30 

years, with intensive chemotherapy remaining the predominant treatment method (Döhner, 

Weisdorf and Bloomfield 2015). AML is cured in 35 to 40% of adult patients, 70% of child patients 

and, in only 5 to 15% of elderly patients (Döhner, Weisdorf and Bloomfield 2015). Elderly patients 

are most at risk as they are unable to receive intensive chemotherapy due to endangering side 

effects. Therefore, this category of patients can only receive low intensity therapies or symptom 

management (Döhner, Weisdorf and Bloomfield 2015). AML accounts for approximately 25% of 

childhood leukaemia (Lonetti, Pession and Masetti 2019). For children under the age of 15, overall 

survival rates have plateaued at approximately 70% with intensive chemotherapy. In general, 

younger patients respond better and have higher survival rates than older patients. However, the 

median age of diagnosis is 68, in the age bracket with the lowest survivability. Therefore, 

prioritising the development of alternative strategies for high-risk AML in older patients is high 

priority (Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto 

A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). 2018). Treatment for AML takes many forms, in 

addition to the classical chemotherapy regiment, there are also molecularly targeted therapies, 

immune based treatments and epigenetic strategies.  

1.8.1 7+3 induction chemotherapy  
The front-line treatment for AML is the "7+3" chemotherapy regimen used to induce remission. 

This regimen is comprised of 7 days of dosing with Cytarabine, followed by 3 days treatment with 

an anthracycline antibiotic: Daunorubicin, Idarubicin or Mitoxantrone, depending on the patients 

age and general health. 

Cytarabine is a prodrug which is an analogue of the nucleoside cytidine; a pyrimidine that is 

incorporated into nucleic acids (Rechkoblit, et al. 2018). Once Cytarabine is in the cell, it is 

transformed into a triphosphate form which competes with cytidine to be incorporated into DNA. 

The structure of cytarabine includes an arabinose sugar that causes steric hindering which 

prevents DNA extension, inhibiting the S-phase of cell division (Rechkoblit, et al. 2018, National 

Center for Biotechnology Information. 2020a). Additionally, Cytarabine also inhibits DNA 

polymerase, causing a direct decrease in DNA replication and repair (Blair 2018). For this reason, 

it is most effective in fast cycling cells, where the cell cycle has become dysregulated, which is a 

hallmark of cancer.  



Anthracyclines are a class of cytotoxic drugs able to enter the cell membrane to intercalate 

between DNA base pairs and interact with topoisomerase II. Examples of anthracyclines used in 

combination with cytarabine include Doxorubicin, Daunorubicin, and Idarubicin.  

Anthracyclines work by inhibiting mitosis and cell division through intercalation between DNA 

base pairs. This causes the DNA helix to uncoil, inhibits topoisomerase II activity, and leads to 

both single and double strand breaks in the DNA, ultimately preventing DNA synthesis. 

Additionally, daunorubicin can inhibit DNA polymerase, which disrupts gene expression and 

causes free radical-induced DNA damage, resulting in cell death (Saleem and Kasi 2021, Blair 

2018, National Center for Biotechnology Information. 2020b). Idarubicin is an analogue of 

daunorubicin missing the methoxy group at position 4 which increases its lipophilicity compared 

to Daunorubicin. This increases the rate of its uptake into cells and enables better DNA binding, 

improving on the cytotoxicity of Doxorubicin and Daunorubicin (Assi, et al. 2016). In 2017, the 

FDA approved CPX-351, a 100 nm bilamellar liposomal formulation of cytarabine and 

daunorubicin, for the treatment of high-risk AML (Assi, et al. 2016). This formulation maintains a 

5:1 drug ratio with higher bioavailability, resulting in more effective drug exposure to leukemic 

cells compared to standard therapy. CPX-351 was found to be less toxic than standard delivery 

methods and significantly improved median overall survival (OS) rates in high-risk elderly patients 

from 2 months to 5.1 months (Assi, et al. 2016, Lin, T. L., et al. 2019). 

1.8.1.1 Allogenic hematopoietic stem cell transplant (HSCT) 
Allogenic HSCT provide the best chance of preventing AML reoccurrence, but also carry a greater 

risk of treatment-related morbidity and mortality (TRM). HSCT may be administered in first or 

second remission, depending on if the patients AML is assessed as favourable or unfavourable 

(Assi, et al. 2016, Lin, T. L., et al. 2019, Koreth, et al. 2009, Cornelissen, et al. 2007). The incidence 

of TRM occurring in elderly patients after HSCT has been reduced in recent years, using reduced 

intensity conditioning (RIC). One study reported that patients over the age of 45 survived longer 

when treated with RIC transplantation than those treated with chemotherapy (Russell, et al. 

2015). Two further studies evidenced that RIC transplantation can be favourable in elderly 

patients compared to conventional myeloablative conditioning (MAC) transplantation, which has 

primarily found to be beneficial to younger patients (Passweg, et al. 2015, Cornelissen, et al. 

2015). 

1.8.2 Molecularly targeted treatments 
Targeted therapies are designed to block the growth and spread of cancer by interfering with 

specific proteins, pathways, or genes that are involved in the growth, progression, and spread of 



cancer cells. By targeting the specific molecules or pathways that allow cancer to grow, targeted 

therapies can be more effective than traditional chemotherapy, which often kills healthy cells 

along with cancer cells.  

1.8.2.1 FLT3 targeting therapies 
Some therapies target specific mutations, such as Midostaurin and Gilteritinib for FLT-3 mutated 

AML. Mutations in FLT3 are the most common type of mutation seen in AML, with it appearing in 

approximately one third of patients. There are two categories of mutation in FLT3, internal tandem 

duplicate (FLT3-ITD) and point mutation in the tyrosine kinase domain FLT3 (FMS-like tyrosine 

kinase 3) is a receptor, which when bound to by the FLT3 ligand activates a signalling cascade 

which results in inhibited apoptosis and differentiation. Both types of FLT3 mutation result in 

constitutive activation of the receptor, and therefore inhibition of apoptosis and differentiation 

occur, promoting cancer survival (Kennedy and Smith 2020). Midostaurin is an oncogenic FLT-3 

inhibitor used to treat newly diagnosed patients, in combination with classic cytarabine and 

daunorubicin treatment (Levis 2017). Gilteritinib is a dual FLT3-AXL tyrosine kinase inhibitor 

which is approved for the treatment of relapsed and refractory FLT3mut AML  (Lai, C., Doucette and 

Norsworthy 2019). There is currently an ongoing trial (Trial number: NCT03836209) to compare 

the efficacy of Midostaurin to Gilteritinib combined with induction and consolidation 

chemotherapy  (Luger 2020).  

1.8.2.2 IDH1 targeting therapies 
Another identified drug target is isocitrate dehydrogenase type 1/2 (IDH1/2). Mutations in IDH1/2 

cause overproduction of 2-hydroxyglutarate (2HG) which inhibits DNA and protein 

demethylation. AML cases with IDH1/2mut display lack of differentiation ability, inhibiting IDH 

mutants can restore differentiation ability (Schvartzman, et al. 2019). Two drugs which target this 

molecule are Ivosidenib and Enasidenib mesylate, which are used to treat adult patients with 

relapsed or refractory AML, who have specific mutations of IDH1 or IDH2 respectively (Kim, E. S. 

2017). While Ivodidenib achieves a respectable CR rate of 28.6% alone and 57% in combination 

with Azacytidine, differentiation syndrome (DS) was observed to occur as a common side effect 

in 25% of patients (Lai, C., Doucette and Norsworthy 2019). 

1.8.2.3 BCL2 targeting therapy 
Venetoclax is an alternative therapy available for IDH1mut AML which inhibits B cell lymphoma 2 

(BCL-2). BCL-2 suppresses apoptosis by controlling mitochondrial membrane permeability 

which it achieves by sequestering pro-apoptotic BAX. Venetoclax is approved for use in 

combination with azacytidine, decitabine or low dose cytarabine for novel AML in adults >75 or 

with comorbidities that prevent intensive chemotherapy (Winer and Stone 2019).  Clinical trials 



have shown that Venetoclax benefits from combining with either demethylating agents or low 

dose cytarabine, but currently demethylation is the favoured approach (Lai, C., Doucette and 

Norsworthy 2019). 

1.8.3 Immunotherapy based treatments 
Immunotherapy uses the body’s immune system to fight cancer. Commonly used types of cancer 

immunotherapy include Monoclonal antibodies (mAb, Chimeric antigen receptor (CAR) T-cell 

therapy and vaccines.  

1.8.3.1 Monoclonal antibodies (mAbs) 
mAbs are manufactured proteins, designed to carry chemotherapy or other treatment and deliver 

it to cancer cells. At present, Gemtuzumab ozogamicin (Mylotarg) is the only FDA approved 

monoclonal antibody treatment for AML. Mylotarg consists of two parts. The first is an antibody 

specific to CD33; which is expressed on leukemic blasts >90% in AML patients, but not on normal 

haematopoietic stem cells and so will specifically target the malignant cells. The mAb is 

covalently bonded to the cytotoxic N‐acetyl gamma calicheamicin, which will come in close 

contact with the AML cell and destroy it  (Fostvedt, et al. 2019). Additional antibody targets under 

investigation for AML specific delivery are CD123, CD13, CLL-1 and CD38 (Williams, et al. 2019). 

1.8.3.2 Chimeric antigen receptor (CAR) T-cell therapy 
CAR T-cell therapy involves modifying a patient's T cells to target cancer cells, expanding them in 

a lab, and reinfusing them to attack the cancer (Boyiadzis, et al. 2018). While promising in early 

trials for other leukaemia, its efficacy in AML remains unclear due to the challenge of identifying 

suitable target antigens, as AML antigens often coincide with normal hematopoietic cells, leading 

to potential hematotoxicity therapy (Hofmann, et al. 2019). CAR T-cell and bi-specific T-cell 

therapies have shown some success in preclinical AML studies (Mardiros, Forman and Budde 

2015). Although no CAR T-cell treatments for AML are FDA-approved, several clinical trials are 

ongoing (NCT03766126). However, severe side effects, such as high fevers and very low blood 

pressure, remain a significant concern (Brudno and Kochenderfer 2016). 

1.8.3.3 Vaccines for treatment of AML 
Another avenue being explored for the treatment of AML is vaccines. Dendritic cell and peptide 

vaccines have been tested with the purpose of reinvigorating or priming the immune system 

against leukaemia cells. Dendritic cells are trained in vitro to process and present specific 

tumour antigens, so that when they are administered, they can successfully prime native T-cells 

and restore their anti-leukaemia activity (Stanchina, et al. 2020). DCP-001 is an allogeneic DC 

vaccine, meaning it consists of allogeneic DCs which present preselected tumour specific 



antigens. In this case the antigens were WT-1, PRAME, MAGE-A3 and NY-ESO-1 (van de 

Loosdrecht, et al. 2018). In this phase I study DCP-001 was found to be safe in elderly patients 

and to generate improved immune responses, with much longer OS in patients where there were 

no detectable blasts in circulation  (van de Loosdrecht, et al. 2018). Other DC based vaccines 

have seen success with improving induction of tumour associated antigen carrying CD8+ T cells 

and improving outcome (Trial number: NCT01686334 and NCT01096602)  (Anguille, et al. 2017). 

An additional method to target AML is through targeting epigenetic modifications, such as 

methylation, which is used in AML to inhibit expression of tumour suppressor genes and other 

anti- cancer molecules. 

1.8.4 Epigenetic treatments for AML 
Epigenetic dysregulation contributes to the pathogenesis and progression of AML. Due to the 

reversible nature of epigenetic modifications, they make attractive targets for therapeutics. Those 

therapies include histone deacetylase inhibitors (HDACi), histone demethylation inhibitors 

(HDMi) and DNMTi.  

1.8.4.1 HDMi 
Histone methylation takes place the arginine and lysine amino acids in the histone tail, 

depending on the residue and location, methylation can activate or repress transcription  

(Ramadoss, Guo and Wang 2017, Margueron, Trojer and Reinberg 2005). HDM such as lysine 

demethylase 1 (LSD1) demethylate histone-3 at the K4 residue, downregulating H3K4me3, which 

regulates gene transcription. In mixed lineage leukaemia (MLL) driven AML, inhibition of LSD1 by 

drug or genetic deletion, induced differentiation of AML stem cells  (Maiques-Diaz, et al. 2018). 

Other HDMi such as tranylcypromine (TCP), NCD35 and NCD38 have been demonstrated to 

induce expression of myeloid differentiation genes and inhibit leukaemia growth  (Schenk, et al. 

2012, Sugino, et al. 2017). HDACi Panobinostat has shown limited anti-leukaemia activity in 

clinical trials for myeloid malignancy growth (Schenk, et al. 2012), but performs better when 

combined with HDMi SP2509 in primary leukaemia and cell lines  (Fiskus, et al. 2014). 

Additionally, combination of HDMis GSK2879552 and IMG-7289, in combination with all-trans 

retinoic acid therapy proved effective in vitro (Smitheman, et al. 2019).  

1.8.4.2 HDACi 
Histone acetylation (HAC) and deacetylation (HDAC) enzymes regulate gene expression by 

adding and removing acetyl groups at lysine residues in the histone tail. Addition of the acetyl 

group weakens the interaction between the histone and DNA, opening the DNA up for 

transcriptions (Gujral, et al. 2020). HDAC inhibitors (HDACi) induce apoptosis and activate DNA 



damage response pathways and anti-proliferation pathways in cancers (Insinga, et al. 2005, 

Nebbioso, et al. 2005, Bali, et al. 2005). First generation HDACi (Vorinostat and Panobinostat) 

have been approved by the FDA for cutaneous T cell lymphoma and multiple myeloma, while 

second generation HDACi such as Givinostat have been investigated in vitro and in clinical trials 

for relapsed AML  (Finazzi, et al. 2013, Li, Ying, et al. 2016). Valproic acid (VPA) is another HDACi 

under investigation, which performs hyperacetylation at H3 and H4 histone tails to inhibit activity 

of class I HDACs. VPA treatment has been found to upregulate genes involved in cell cycle arrest, 

DNA repair and apoptosis in AML patient blasts (Rücker, et al. 2016). Other HDACi such as 

omidepsin/depsipeptide, mocetinostat, and entinostat have been rested in clinical trials as 

monotherapies, but in general work best in combination with other treatments  (Gambacorta, et 

al. 2019). 

1.8.4.3 DNMTi  
DNMT inhibitors (DNMTi), such as 5-Azacytidine (5AzaC) and decitabine have been found to 

increase survival in elderly patients who are unsuitable for stem cell transplants or intensive 

chemotherapy. DNMTi promote degradation of WT DNMT, facilitate DNA demethylation, and 

induce cytotoxicity. Both 5AzaC and decitabine have been approved by the European Medicines 

Agency as AML therapeutics in 2008 and 2012 respectively (Al-Ali, Jaekel and Niederwieser 2014). 

Both drugs are analogues of the nucleoside cytidine, and upon entry into the cell are activated by 

successive phosphorylation steps where they are incorporated into DNA and RNA (Diesch, et al. 

2016). Decitabine becomes 5-aza-dCTP following modification in the cell, where it then 

incorporates into DNA and impairs DNA methylation by irreversibly binding to DNMT1, causing it 

to be degraded. At higher doses it also targets DNMT3A/B (Leonhardt, et al. 1992). Methylation is 

then lost in subsequent rounds of DNA replication, altering the methylation profile (Liu, K., et al. 

2003). Additionally, DNMT-5-aza-dCTP-DNA adducts induce apoptosis by activation of DNA 

damage response pathways, upregulating and activation of DNA repair proteins CHK1/2 and 

RAD-51 (Orta, et al. 2014). Low doses of DNMTi are reported to induce DNA hypomethylation of 

tumour suppressor genes promoters, including CDKN2B (p15INK4B) and E-cadherin, 

reactivating them. Unlike Decitabine, 5-Azacytidine is processed into 5-aza-CTP and 

preferentially incorporated into RNA (80-90%), where it inhibits tRNA methylation inhibiting 

production of functional messenger and transfer RNAs (mRNA, tRNA) (Diesch, et al. 2016). 

Inhibition of mRNA and tRNA further inhibits production of proteins, triggering apoptosis  

(Schaefer, et al. 2009). 



A pooled analysis of five randomised clinical trials of AML patients showed significantly better 

overall survival and remission in the DNMTi-treated cohorts than cohorts treated with 7+3 

chemotherapy regiment. However, 50% of the AML patients developed resistance and/ or 

relapsed  (Yang, X., Wong and Ng 2019a). DNMTi are often co-administered with other treatments, 

such as with low dose cytarabine in elderly patients, venetoclax or HDACi such as Vorinostat to 

synergistically improve survival outcomes  (Atalay and Ateşoğlu 2016, Laloi, et al. 2022, 

Kirschbaum, et al. 2014). 

Despite the large array of therapies used and under investigation for AML, all treatments face 

challenges in overcoming resistance.  

1.9 Mechanisms of drug Resistance in AML 
Resistance to chemotherapy and other treatments is a common problem in the cancer research 

field, often leading to relapse and poor prognosis. It is of relevance in AML, as even after more 

than 30 years, the first line treatment for most patients is an induction chemotherapy 

combination of cytarabine and an anthracycline (Döhner, Weisdorf and Bloomfield 2015).  

There are two types of drug resistance: Primary and acquired. Primary drug resistance describes 

tumour cells that are fundamentally not sensitive to chemotherapy drugs and resist the first 

treatment. Acquired resistance refers to tumour cells which are initially sensitive to treatment but 

develop resistance following induction therapy. Through either route, the resistant clone can 

proliferate and further mutate to become the dominant clone, preventing the initial therapy being 

a viable future treatment. Acquired resistance can occur through mutations, which develop via 

genomic instability and external factors.  

Mechanisms of drug resistance in AML include but are not limited to: 1) Drug resistance related 

proteins and enzymes, 2) genetic alterations, 3) aberrant activation of drug-resistance related 

pathways (Zhang, Jing, Gu and Chen 2019). 

1.9.1 Resistance to chemotherapy drugs through efflux pumps 
Resistance achieved through physical relocation of the drug away from the site of action can be 

performed by p-glycoprotein (P-gp), multidrug resistance related protein 1 (MRP1) and lung 

resistance protein (LRP) (Megías-Vericat, et al. 2015).  

1.9.2 Glutathione S-transferases (GST) 
Glutathione transferases are a family of isozymes that catalyse the conjugation of glutathione to 

xenobiotic substrates for removal from the cell. One of the glutathione S-transferases (GST), GST 

π is reported to be highly expressed in AML and thought to work synergistically with MRP1 to 



promote drug resistance (Hatem, El Banna and Huang 2017). Its primary function is to catalyse 

the conjugation of GSH to chemical drugs to reduce their cytotoxicity by: 1) facilitating them to 

be transported out of the cell by efflux pumps and 2) inhibiting drug action by binding GSH to 

electrophilic sites which would otherwise be used to attack DNA (Hatem, El Banna and Huang 

2017, Li, Shuyi, et al. 2017). 

1.9.3 MRP1 
Multidrug resistance-related protein 1 (MRP1) is a GSH specific transporter that removes GSH 

and its bound substrates, from the cell. It also confines drugs to perinuclear vesicles, preventing 

their cytotoxic action, and is associated with poor prognosis (Paprocka, et al. 2017). Ji et al. 

developed doxorubicin micelles that restored sensitivity in MRP1-overexpressing, doxorubicin-

resistant AML cell lines, with in vivo studies showing increased drug accumulation and improved 

cytotoxicity. The micelles worked by depleting ATP to inhibit efflux pumps like MRP1 and 

competitively binding with GSH to reduce drug efflux (Ji and Qiu 2016). 

1.9.4 P-gp and PKC 
P-glycoprotein (P-gp) is a cross-membrane ion pump associated with poor outcomes and shorter 

overall survival (OS) in both novel and relapsed AML (Do, et al. 2007, Megías-Vericat, et al. 2015).  

Drug-resistant AML cell lines, such as SKM-1 and MOLM-13, upregulate P-gp and downregulate 

Bcl-2, but resistance can be reversed with P-gp inhibitors (Imrichova, et al. 2015). P-gp expression 

is linked to NF-κB and PI3K/AKT/mTOR pathway activation. Inhibition of these pathways by 

Balaglitazone decreases P-gp expression and restores sensitivity to doxorubicin (Yousefi, et al. 

2017). Protein kinase C (PKC), a calcium phospholipid-dependent protein kinase, regulates drug 

transporter protein expression, internalisation, and phosphorylation. PKC activation correlates 

with P-gp phosphorylation and drug resistance (Robinson, Kianna and Tiriveedhi 2020).  

1.9.5 LRP 
LRP mediates resistance to chemotherapies by blocking nuclear pores to prevent drug entry to 

the cell, and, transporting drugs out of the nucleus via exocytosis (Zhang, Jing, Gu and Chen 

2019). The impact of LRP1 expression on prognosis is unclear, with conflicting studies: one found 

high LRP expression in bone marrow improved prognosis, while another reported that LRP 

expression on leukemic blasts reduced the chances of achieving complete remission (Kulsoom, 

Shamsi and Afsar 2019, Paprocka, et al. 2017). 



1.9.6 Resistance to chemotherapy by replication of damaged cells 
DNA topoisomerases, such as topoisomerase II (Topo II), facilitate DNA replication and 

transcription. Anthracyclines inhibit Topo II by stabilising the Topo II-DNA complex, preventing 

DNA replication and initiating tumour cell death (Michelson, et al. 2020). Topo II is highly 

expressed in AML, enabling replication of damaged cells despite drug presence. Mutations in 

Topo II, such as K798L and K798P, hinder drug binding, contributing to resistance (Zhang, Jing, Gu 

and Chen 2019). 

1.9.7 Resistance to chemotherapy and molecular targeting drugs through 
gene mutations 

Resistance can also be achieved by mutation of protooncogenes with roles in cell proliferation 

and survival. FMS-like tyrosine kinase (FLT3) mutations play a critical role in AML, indicating 

prognosis and treatment response. FLT3-ITD suggests poorer outcomes, while FLT3-TKD 

mutations, especially with NPM1 mutations, suggest a better prognosis (Boddu, Prajwal, et al. 

2017, Wakita, et al. 2013). FLT3-ITD inhibitors like midostaurin, gilteritinib, and quizartenib target 

this mutation. Wilms tumour (WT1) mutations are associated with AML relapse, with high WT1 

expression signalling poor prognosis (Quek, et al. 2016, Pospori, et al. 2011). Vaccine-based 

strategies targeting WT1 mutations are currently under investigation. WT1 mutations also confer 

resistance to imatinib by upregulating quinolinate phosphoribosyl transferase (QPRT) (Ullmark, 

et al. 2017). RAS family mutations, particularly KRAS, drive constant cell proliferation signalling, 

giving cancer cells a competitive advantage (Burgess, et al. 2017). In AML, RAS mutations, 

including KRAS, correlate with decreased overall and event-free survival during induction 

chemotherapy  (Ball, et al. 2019). 

Characterising AML patients by their mutations and immunosuppressive features is crucial for 

determining the optimal treatment. Over the years, diagnostic methods, stratification into 

treatment groups, and outcome prediction based on AML features have significantly improved.  

1.10 Current methods for diagnosis and prognosis  
Since mutations of genes and chromosomes are a driving factor for AML, cytogenetics is 

commonly used for diagnosis. Cytogenetics is the examination of chromosomes, particularly 

looking for changes to structure where parts or whole chromosomes may be deleted, broken, 

rearranged, or duplicated. Observed changes to chromosomes can be used to diagnose patients 

with a condition and assign appropriate treatments. A high percentage of patients who 

accomplish CR still relapse, and, while CR can be achieved again, with each successive 

treatment the period of successful remission shortens (Bryan and Jabbour 2015). Despite AML 



being well characterised, no single biomarker can predict chemotherapy resistance or outcome 

(Walter, et al. 2015), although it has been long observed that responders and non-responders 

display different gene expression profiles (GEP) (Heuser, et al. 2005, Tagliafico, et al. 2006, 

Raponi, et al. 2008, Visani, Giuseppe, et al. 2017, Visani, G., et al. 2014). Cytogenetics, copy 

number alterations, driver gene mutational status, indels, SNVs, methylation status and 

microRNA gene expression have also been noted to change between AML diagnosis and relapse 

(Hackl, Astanina and Wieser 2017). Identification of the patient subtype and cytogenetics is 

crucial for assigning the correct treatment for the best outcome. 

1.10.1 Stratification of patients into treatment groups 
Patients are stratified for initial treatment by their age, cytogenetic profiles, and mutational 

status. There is not a clear-cut method due to variability in cytogenetic risks being presented 

together. For example, core binding factor (CBF) translocations in AML are associated with better 

prognosis  (Appelbaum, et al. 2006). However, if the patient also has FLT3-ITD; a driver of 

mutation, it confers a poor prognosis. Consequently, assigning treatment becomes more 

complicated. The European LeukemiaNet (ELN) panel (Dohner, et al. 2017) discussed in 1.5.1, 

sorts patients into favourable, intermediate and unfavourable risk groups.  The intermediate 

group presents the most challenge in treating, as this group has unpredictable response to 

treatment (Prada-Arismendy, Arroyave and Röthlisberger 2017).  

1.10.2 Prediction of patient relapse by cytomorphology 
Following the initial induction chemotherapy period, cytogenetics and mutational profiling are 

also used to estimate the risk of relapse. Predictions are based on databases of large patient 

cohort profiles and visual assessment of samples (Fey and Buske 2013).  Remission is assessed 

using cytomorphology and examination of bone marrow and peripheral blood samples. If more 

than 5% of cells are found to be blasts in the bone marrow, and the build-up cannot be attributed 

to another cause, the patient is defined as in relapse (Chen, Xueyan, et al. 2015). However, only 

a small number of cells are examined using this method, and the reliability of the prognosis given 

is dependent on the quality of the sample, as well as the pathologists experience (DeAngelo, Stein 

and Ravandi 2016). 

1.10.3 Prediction of patient relapse by Minimal residual disease 
Alternatively, ‘minimal residual disease’ (MRD) markers could be used to predict relapse. MRD is 

defined as the presence of leukemic cells which are below the level of traditional morphological 

detection. Instead, more sensitive methods including multiparameter flow cytometry (MFC), RT 



quantitative PCR (RT-qPCR) and next generation sequencing (NGS) are used to identify leukemic 

cells in a sample population.  

1.10.3.1 MFC to detect MRD 
MFC is used to identify Leukaemia-associated immunophenotypes (LAIPS) which differ from 

healthy haematopoietic cells. LAIP cells are identified through aberrant expression of antigens 

(Ravandi, Walter and Freeman 2018). There are different categories for LAIP in AML. There is 

‘antigen over-expression’ which has abnormally high expression of cd33 and cd34 on myeloid 

blasts, and ‘lack of antigen expression’ such as reduced HLA-DR expression. Then ‘asynchronous 

antigen expression’ refers to co-expression of antigens typically associated with specific and 

different maturation stages, for example, expression of early markers such as CD34 or CD117 and 

later markers such as CD65 and CD14 on myeloid cells. Finally, there is ‘cross lineage antigen 

expression’ which is the expression of antigens normally found on other lineage cells, for example 

lymphoid markers, on myeloid blasts, examples include CD2, CD5 and CD56 (Ravandi, Walter 

and Freeman 2018, Kern, et al. 2010). The panel for LAIP can include progenitor, myelomonocytic, 

erythro- megakaryocytic, lymphoid lineage and none-lineage markers indicative of cell 

maturation, a full panel for detecting all abnormal LAIP could include up to 100 monoclonal 

antibodies (Bewersdorf, et al. 2019, Ravandi, Walter and Freeman 2018). 

1.10.3.2 RT-qPCR to detect MRD markers 
RT-qPCR is used to identify some markers of MRD. Markers that can be detected with this method 

include core-binding factor subunit β myosin heavy chain 11 (CBFB-MYH11), runt-related 

transcription factor 1 (RUNX1)/RUNX1 translocated to 1 (RUNX1T1), and mutant NPM1. Markers 

detected by RT-qPCR such as mutations in NRAS, KRAS and IDH2 are used for initial diagnosis 

only and are not recommended to be used as single markers for MRD, but to be used in 

combination with a second marker for prognostic significance  (Schuurhuis, et al. 2018). While 

PCR techniques are more sensitive to detecting lowly expressed markers, experiments for 

individual markers need to be optimised and it can be time consuming to perform a panel, 

compared to other approaches that identify multiple markers in one experiment, such as NGS.  

1.10.3.3 NGS to detect MRD markers 
NGS represents a step up from RT-qPCR as it can map out the development of malignant clones. 

Either the genetic profile can be obtained by sequencing an organism’s DNA, or RNA can be 

sequenced for insight into sequences being expressed by the organism at time of extraction. It 

can monitor samples for treatment stratification purposes by detecting mutations such as FLT3-

ITD and IDH1/2 alongside relapse prognosis markers such as CEBPA and NPM1 (Bibault, et al. 

2015, Debarri, et al. 2015, Dohner, et al. 2017). Routine NGS has lower sensitivity than PCR and 



can miss detection of mutations, however the more recently developed ‘error corrected’ NGS 

approach has made strides towards higher sensitivity detection of mutations. An advantage of 

NGS over PCR is that multiple mutations can be identified and analysed in one experiment, 

allowing a more comprehensive patient profile to be built, but it does also require additional 

bioinformatic processing steps (Schuurhuis, et al. 2018).  

1.10.3.4 MRD markers in the future 
MRD is already used to assess and monitor patients with acute lymphoblastic leukaemia (ALL) 

acute promyelocytic leukaemia (APL) and chronic myeloid leukaemia (CML)(van Dongen, et al. 

2015, De Angelis and Breccia 2015, Paschka, et al. 2003). There is a drive to develop and refine 

tests to be applicable to AML, as there is already evidence of its use for relapse prognosis 

(Jongen-Lavrencic, et al. 2018). However, it is not part of routine clinical practice and there is no 

standard protocol in methods or markers used, nor are there established cut off points for said 

markers. The inherent heterogenous nature of AML adds complexity to creating a standard 

protocol to assess MRD, and it may be a case of developing several protocols dependent on 

patients known mutations, cytogenetics, and past treatments. 

1.11 Prognostic signatures for AML  
Biomarkers are measurable molecules that can distinguish between different stages and types 

of cancer. A prognostic signature, which relates these biomarkers to patient outcomes, can 

include gene, transcript, or protein expression, gene mutations, chromosomal abnormalities, 

and epigenetic modifications. These signatures serve multiple purposes, including disease 

diagnosis, prediction of treatment response, and monitoring of disease progression (Bensalah, 

Montorsi and Shariat 2007). The ELN cytogenetic risk categories already mentioned are one way 

to categorise patients but are unable to predict patients that will resist chemotherapy or predict 

better or poorer outcomes in the CN-AML group. Many researchers are developing prognostic 

signatures that work independently and in combination with current strategies to improve 

assessing AML patients for survival, risks of relapse and response to treatments.  

In the context of AML these signatures have been developed using transcriptomic, genetic, 

methylation, and epigenetic profiles of patients, alongside survival data and clinical information. 

Suitable predictors for survival are commonly selected through regression models, such as the 

multivariate Cox regression hazard models, the least absolute shrinkage and selection operator 

(LASSO) model, and, more recently, machine learning and advanced neural networks (ANN) 

(Walker, C. J., et al. 2021, Lai, Y., et al. 2021, Wagner, et al. 2019, Awada, et al. 2021). For example, 

the LSC17 stemness score, a 17-gene signature derived from leukaemia stem cells (LSCs) in AML 



patients, was tested in five independent patient cohorts and found to predict prognosis for 

chemotherapy and allogeneic stem cell transplantation (Ng, et al. 2016). Sha et al developed a 5 

gene score using TCGA dataset via a multivariate logistic regression model (Sha, et al. 2021). 

While Wagner et al created the ‘Parsimonious 3 gene score’ using an artificial neural network 

trained on the HOVON data set and validated in various AML patient data sets (Wagner, et al. 

2019).  

1.11.1 Immune system-related signatures show promise for stratifying 
AML patients 

Recently, AML scores have been developed that consider the interactions between AML, the 

immune system, and the bone marrow niche. Advances in immunogenomic analysis have 

highlighted the significant role of the immune system in AML progression and relapse. 

Furthermore, signatures linking AML survival to immune-related genes and immune activity 

states have emerged and demonstrated similar or improved stratification of patients compared 

to the ELN risk categories (Zhu, et al. 2020, Chen, Yongyu, Qiu and Liu 2024, Tang, et al. 2019, 

Wang, J., et al. 2024).  Recent research in AML has identified immune-infiltrated and immune-

depleted subtypes based on bone marrow transcriptomic profiles (Knaus, et al. 2019, Austin, et 

al. 2023). An 'immune dysfunction signature' (IED), derived from patient transcriptional data, has 

linked a transcriptional program associated with immune senescence to poorer outcomes for 

patients receiving immunotherapy (Rutella, et al. 2022).  

Another signature of interest in the IFN-related DNA damage resistance signature (IRDS).  The 

IRDS signature was originally developed to differentiate between breast cancer tumours that 

were sensitive or resistant to adjuvant chemotherapy treatment (Weichselbaum, et al. 2008). 

They demonstrated that cells with a high IRDS score (IRDS+) exhibited constitutive STAT1/IFN 

signalling and postulated chronic IFNG activation may cause failure to transmit the cytotoxic 

signal and instead promote cancer survival. Further to this, Weichselbaum et al found that knock 

down of STAT1 decreased expression of IFIT1 and ISG15, which re-sensitised their IRDS (+) cell 

line Nu61 to doxorubicin. Implying a connection between those genes and chemotherapy 

resistance (Bernasconi and Borsani 2019). Other groups have found high expression of IRDS 

genes associated with poorer outcome for chemotherapy and radiotherapy treated patients in 

other cancers including glioblastoma (Duarte, et al. 2012), glioma, breast, and prostate cancers 

(Tsai, et al. 2007) as well as head and neck cancers (Khodarev, N. N., et al. 2004)and melanoma  

(Khodarev, Nikolai N., et al. 2009). In recent years, IRDS genes have been linked to immune-

infiltrated AML, and IFNG-related signatures has also been found to correlate with chemotherapy 

resistance and poor survival in AML (Vadakekolathu, et al. 2020, Corradi, et al. 2022). 



These new signatures highlight the critical relationship between the immune system and AML in 

patient prognosis. IFNG, a key immune-regulating cytokine, enhances cellular immunity and 

triggers anti-tumour responses. However, it also contributes to immune evasion and resistance 

to chemotherapy (Mojic, Takeda and Hayakawa 2017, Vadakekolathu, Minden, et al. 2020). While 

treatment post-hematopoietic stem cell transplant (HSCT) reportedly restores immune activity, 

prolonged IFNG signalling is known to suppress immune responses, promote cancer growth, and 

cause T-cell exhaustion (Qiu, et al. 2023). A recent study on newly diagnosed AML patients 

identified a 47-gene IFNG-related signature that links IFNG signalling scores with immune 

activation pathways and resistance to venetoclax treatment. Additionally, the study found that 

IFNG scores varied significantly between FAB subclasses of AML, with late maturity AML (FAB 

M4/M5) exhibiting the highest scores (Wang, B., et al. 2024). 

The varying responses of AML patients to IFNG suggest distinct IFNG response phenotypes, 

where IFNG can activate either supportive or suppressive immune pathways. This shift in IFNG 

response might correlate with AML progression, activating immune programs in early AML 

subtypes, while triggering immune suppressive pathways in mature AML subtypes. The role of 

IFNG in cancer progression and immunotherapy response underscores the need to develop 

prognostic signatures that focus on the interplay between IFNG, the immune system, and AML. 

 

1.11.2 AML cell lines for generation of a novel signature associated 
with IFNG signalling and demethylation status 

The examples above were developed using various methods but commonly used clinical patient 

samples to derive and validate their scores. In this thesis, a score was developed using both cell 

lines and patient data, which was subsequently validated across multiple patient datasets. The 

advantages and disadvantages of using cell lines over clinical patient samples are discussed 

below.  

Biomarkers are measurable indicators of normal or pathogenic biological processes, in addition, 

they can be used to assess success of treatments for diseases. Prognostic scores summarise 

how the expression of various biomarkers are associated with a potential outcome or biological 

state. In cancer, a prognostic score could be associated with overall survival or response to 

therapy and used to stratify patients into the correct treatment groups (Qian, et al. 2021). In many 

cases, prognostic scores are developed using patient samples, however, they can be developed 

using cell lines as models. Prognostic scores incorporate biomarkers of disease (e.g. blood 

pressure, cholesterol, proteins, mRNA) to identify actionable targets to treat disease, define 



outcomes, assign prognosis, and predict responses to treatments  (Califf 2018, Prada-

Arismendy, Arroyave and Röthlisberger 2017). 

In this thesis, a prognostic index score was developed using changes to transcriptomics profiles 

induced by IFNG and demethylation agent 5AzaC. As RNA seq is expensive, only two cell lines 

were studied with three repeats of each treatment (IFNG alone, 5AzaC alone and IFNG and 5AzaC 

in combination). Therefore, cell lines response to both agents was first profiled using other 

methods (chapter 3), before proceeding to a transcriptomic study (chapter 4). Cell lines as 

models for cancer research have been discussed at length. A condensed, but not exhaustive, 

summary of the strengths and shortcomings of cell lines as models for cancer research when 

compared to primary human tissue samples are discussed below  (Mirabelli, Coppola and 

Salvatore 2019). 

1.11.2.1 Advantages of Cell Lines versus human tissue samples for Cancer Research:  
Cell lines are easy to purchase, and well regulated. Easy growth and maintenance of cell lines 

enables low risk evaluation of how induced genetic mutations, epigenetics, exposure to 

environment hazards can affect cancer cell behaviour  (Ferreira, Adega and Chaves 2013, 

Mirabelli, Coppola and Salvatore 2019). Cell lines are well characterised, and consistent, 

allowing more reproducible research than tissue samples, which can vary enormously between 

patients (Grizzle, Bell and Sexton 2011). Importantly, novel treatments can be evaluated more 

freely than with primary tissues, due to limited supply, before continuing to animal models and 

crucially, patients  (Mirabelli, Coppola and Salvatore 2019). 

In contrast, obtaining human primary tissue for cancer research can be difficult and expensive. 

Primary tissue collection is a challenge to standardise, and the tissue may be of variable quality, 

which can make it difficult to compare results across studies and rarely are specimens collected 

and stored consistently, leading to variation (Grizzle, Bell and Sexton 2011). Furthermore, 

maintenance of primary cells required more expertise and yields limited growth at larger costs 

than the well-established protocols used for immortal cell lines. Additionally, there are ethical 

and legal considerations when collecting tissue from living patients, leading to long waits before 

samples are released for research, compared to cell lines, which are immediately available with 

no ethical quandaries  (Richter, et al. 2021). 

1.11.2.2 Disadvantages of Cell Lines versus human tissue samples for Cancer Research:  
While cell lines do enable study of mechanisms and signalling cascades, they are limited in their 

biological relevance compared to primary tissues. Although isolated from primary cells at some 

point, cell lines undergo genetic drift, accumulating many genetic aberrations to enable 



unlimited proliferation and atypical cell (Miserocchi, et al. 2017). These aberrations only increase 

with continued passages, leading to diminishing returns on biological relevance to the original 

tumour tissue (Miserocchi, et al. 2017). Further, while heterogeneity is present between cell lines, 

there are fewer differences between cells of the same cell line due to growth from a limited pool 

of progenitors, which is not representative of the variation seen in a primary cancer tissue 

(Miserocchi, et al. 2017). Additionally, cell lines do not accurately model the complex interactions 

between the cancer and surrounding tissues or the immune system, as they are only a singular 

component grown in isolation  (Ali, et al. 2017). A counter to this is to grow cell lines in artificial 

3D cultures, which use biomaterials to form scaffolds that imitate the cells natural environment; 

however, these cultures can be complex and expensive, requiring careful experimental design 

(Habanjar, et al. 2021). 

In comparison, primary cells are of more biological relevance, with the original genome present, 

preserving original cell behaviours and molecular properties. Human tissues are the most 

biologically accurate representation of cancer in its environment, with high heterogeneity 

between cells tissue  (Miserocchi, et al. 2017). Primary tissue sample biopsies also remove 

healthy cells, retaining interactions with the tumour microenvironment, and enabling study of the 

cross talk between cancer and its environment. 

1.11.2.3 AML is heterogenous and presents further challenges for cell line models 
While cell lines provide an inexpensive and easily manageable model for studying cancers, they 

do not accurately represent the subclonal architecture of AML. In AML, newly proliferated blasts 

continually accumulate additional somatic mutations, evolving over time from the original cell. 

This dynamic is not present in cell lines, where all cells are clonal. Additionally, AML is highly 

heterogenous, as evidenced by the M1- through M7 FAB classification system and WHO 

subdivision into even more groups. Heterogeneity is influenced by many factors, including but 

not limited to, HSC cell of origin, mutational heterogeneity, epigenetic alterations and changes 

due to treatments administered (Gu, Dickerson and Xu 2020, Horibata, et al. 2019, Li, Sheng, 

Mason and Melnick 2016b). Heterogeneity is important to model for, patients with identical 

genetic mutations may respond differently to the same drugs used to treat their tumours. 

In this thesis, four cell lines were used, with a wide spread of cytogenetic characteristics taken at 

different stages of development sources from bone marrow or peripheral blood, from young and 

older patients. Ideally, more cell lines would be used to encompass a wider array of possible 

variations, however time and resources available must also be accounted for. The molecular 

descriptions, as well as age and sample source for each cell lines are presented in Table 3 below. 



Table 3: Details of cell lines used in chapter 3 for studying response to IFNG and 5AzaC treatment, including molecular 
description, the source of the original cells derived from and age of the patient donor. 

Cell line Molecular description Sampled from Age 

Kasumi-1 

AML (FAB M2) 2nd relapse following bone marrow 

transplant. RUNx1-RUNX1T1 (AML1-ETO) fusion gene; 

KIT mutation N822 

Peripheral blood 7 

KG-1 
Erythroleukemia that developed into AML following 

relapse 
Bone marrow 59 

SIG-M5 Monocytic AML (FAB M5a) at diagnosis Bone marrow 63 

THP-1 
AML at relapse carries t (9;11) (p21;q23) leading to 

KMT2A-MLLT3 (MLL-MLLT3; MLL-AF9) fusion gene 
Peripheral blood 1 

With a limited number of cancer cell lines available, it is challenging to encompass the 

heterogeneity of all genetic and epigenetic variations present in patients without primary ex vivo 

samples (Richter, et al. 2021). For this reason, response to IFNG and 5AzaC treatment is also 

highly heterogenous and cannot be generalised across all AML. Therefore, discoveries in the AML 

cell line models may be limited. 

The goal of this work was to develop a novel prognostic index using cell lines treated with IFNG 

and demethylation agent 5-AzaC, that might represent patients with IFNG-related 

immunosuppressive phenotypes and methylation profiles. 

1.11.2.4 Rationale for IFNG treatment 
IFNG is known to activate a suite of immunosuppressive molecules which upregulate immune 

escape mechanisms and remodel the bone marrow niche to encourage T-cells to polarise to 

tolerogenic phenotypes (Ribas 2015, Matatall, et al. 2018, Florez, et al. 2020). Immune escape 

mechanisms such as these prevent immune cells recognising and destroying cancer cells, but 

also reduce the efficacy of chemotherapy which works in conjunction with immune cells to be 

most effective. When chemotherapy destroys AML cells, antigens are released which can be used 

to train the immune cells to find and destroy the AML cells  (Chen, D. and Mellman 2017). In AML 

the immune system is already at a disadvantage due to the inhibited differentiation of blood cells 

and bone marrow producing immature non-functional monocytes, creating a weak or none 

functioning immune system, therefore chemotherapy cannot amplify the immune systems 

effects  (De Kouchkovsky and Abdul-Hay 2016). The rationale to treat AML cell lines with IFNG 

and use the RNA seq data to generate a signature, was that the changes induced would be 

representative of patients with IFNG inducible immunosuppressive AML and may predict patients 

for favourable response to HSCT and reduced response to induction chemotherapy. 



1.11.2.5 Rationale for demethylation treatment 
DNA methylation patterns have been used to stratify acute myeloid leukaemia (AML) risk groups. 

Previously a study in AML patients with CEBPA mutations revealed patients could be divided into 

two clusters based on DNA methylation variations. A hypermethylated profile was observed in a 

cluster made of exclusively CEBPA-double mutations and demonstrated improved prognosis 

than patients deemed favourable by cytogenetic risk category (Figueroa, Lugthart, et al. 2010). 

Similarly, the authors found NPM1-mutated patients can be categorised into four methylation 

clusters, each associated with distinct clinical outcomes. In CN-AML patients without specific 

features for stratification, five DNA methylation clusters were identified, highlighting the 

prognostic potential for this group  (Figueroa, Abdel-Wahab, et al. 2010). In paediatric patients 

two DNA methylation signatures associated with cytogenetics were found to significantly 

correlate with event free survival (Bolouri et al., 2018). Additionally, Luskin et al applied a 

previously developed method for assessing DNA methylation status at 17 prognostic loci 

simultaneously they dubbed the M-score (xMELP) (Wertheim, et al. 2014). Application of the M-

score to 166 de novo AML patients showed improvement on cytogenetics, FLT3-ITD status and 

genetic lesions for predicting which patients would achieve complete remission (CR) from 

induction chemotherapy (Luskin, et al. 2016). The validity of the M-score was confirmed in 

multiple independent AML cohorts, underscoring its potential as a prognostic tool (Dinardo, et 

al. 2017). Therefore, treatment of cell lines with 5AzaC could identify expression signatures 

associated with hyper or hypo methylation, that have the potential to better stratify patients in 

the CN-AML category.  

1.12 Overview of study 
IFNG signalling and demethylation has been associated with an immune-suppressing 

environment in AML patients. Since AML impedes the generation of mature specialised immune 

cells, it is commonly managed with a combination of chemotherapy and HSCT, therefore AML 

exhibiting immune suppression is particularly unfavourable for patients' prospects. This work 

aimed to test if AML cell lines demonstrating an IFNG-triggered immune-suppressing phenotype 

could be used as models for constructing scores that effectively categorise the overall survival of 

AML patients. Higher scores were expected to be associated with immune suppression and 

correlate with worse overall survival. Moreover, the combination of IFNG signalling and 

demethylation was hypothesised to be more detrimental to patient outcomes when occurring 

together rather than individually. The signature generated here is known as a prognostic index 

score (PI score). A PI score is a composite measure that predicts disease outcomes by integrating 

multiple prognostic factors, each assigned a specific weight based on its relative contribution. 



These weights are determined through statistical analysis, often using regression models, to 

produce a robust prediction of patient outcomes. Examples of PI scores include the Nottingham 

Prognostic Index (NPI) for breast cancer and the International Prognostic Index for (IPI) non-

Hodgkin’s lymphoma (International Non-Hodgkin's Lymphoma Prognostic Factors Project 1993, 

Galea, et al. 1992). Despite these scores being produced in the 1990’s, they are still relevant 30 

years later; a testament to their predictive power and the methods used to generate them (Kerin, 

et al. 2022, Maurer 2023). 

In this study AML cell lines (THP-1, KG-1, SIG-M5 and Kasumi-1) were treated with IFNG and 5AzaC 

to induce changes in IFNG signalling and methylation profiles. The effect of this treatment on 

expression of immunosuppressive molecules and chemotherapy efficacy were measured using 

PCR, western blot, flow cytometry and SWATH-MS (Chapter 3). Two cell lines were chosen for 

further study (Kasumi-1 & KG-1), where effects of IFNG and demethylation treatment were 

characterised using RNA sequencing and ontology-based pathway analysis (Chapter 4). Finally, 

the transcriptomic data set produced in chapter 4 was used to create a prognostic index based 

on treatment induced changes in cell lines (Chapter 5). Transcriptomic data was analysed using 

multiple pairwise linear regression to identify transcripts most differentially expressed in 

response to IFNG and 5AzaC. Transcripts were shortlisted for scores based on frequency of 

appearances in regression analysis and PI scores finalised using a forward selection cox 

proportional hazards regression model using overall survival (OS) data from the TCGA patient 

data set, following method outlined by Wagner and Blamey (Blamey, et al. 2007, Wagner, et al. 

2019). PI scores were tested in the TCGA data set for stratification and correlation with survival in 

clinical subgroups and then validated in the Beat-AML, German-AML, CN-AML and HOVON data 

sets. Finally, performance was evaluated against existing signatures (Chapter 5). Full details on 

methods used for characterisation and generation of PI score are described in chapter 2. 

  



2 Methods 
Lists of reagents and equipment used can be found in the appendix, see 7.2. 

2.1 Cell culture 
Ordinarily cells divide only a finite number of times before stopping growth completely. However, 

transformation of cells can be induced or occur spontaneously causing cells to become 

immortalised and divide indefinitely. Cell lines are useful tools in biology that can be used as 

models to study pathology of diseases, screen drugs and test mutations. Cell lines used are 

summarised in Table 4. 

2.1.1 Routine cell culture of AML cell lines 
This study utilised four AML suspension cell lines, full descriptions are detailed in Table 4. All cell 

lines were grown at 37oC in a humidified atmosphere with 5% (v/v) CO2. Growing cells were 

checked 3 times per week for growth and potential contamination. At ~70% confluency cells were 

either split for further growth or used experimentally. To split cells, the suspension was 

transferred to a 50 mL falcon tube and centrifuged at 300 x g for 5 minutes. Supernatant was then 

removed, and the pellet resuspended in fresh medium. This newly prepared suspension was split 

between flasks at a density of 0.5 x 106 cell/mL. 

Table 4: Summary of the four AML cell lines used throughout the study. Details important characteristics, company 
obtained from, growth conditions used and biological source of the cell line (PB = Peripheral blood and BM = Bone 
Marrow). 

Cell line Description Company Growth 
conditions 

Cell 
source Age M/F 

Kasumi-1 

AML (FAB M2) 2nd relapse 
following bone marrow 
transplant. RUNx1-RUNX1T1 
(AML1-ETO) fusion gene; KIT 
mutation N822 

ATCC 

RPMI 1640 
20 % FCS (v/v), 
2 mM 
L-Glutamine 

PB 7 M 

KG-1 

AML (FAB M6) which 
progressed into less 
differentiated AMLfollowing 
relapse 

DSMZ 

Iscove’s MDM 
20 % FCS (v/v), 
2 mM 
L-Glutamine 

BM 59 M 

SIG-M5 Monocytic AML (FAB M5a) at 
diagnosis DSMZ 

Iscove’s MDM 
20 % FCS (v/v), 
2 mM 
L-Glutamine 

BM 63 M 

THP-1 

AML at relapse 
carries t (9;11) (p21;q23) 
leading to KMT2A-MLLT3 
(MLL-MLLT3; MLL-AF9) 
fusion gene 

DSMZ 

RPMI 1640 
20 % FCS (v/v), 
2 mM 
L-Glutamine 

PB 1 M 



2.1.1.1 Trypan blue assay 
Cells were counted using a haemocytometer and 0.4 % Trypan blue solution (93595, Sigma 

Aldrich). Cells which took on the blue stain of Trypan blue were dead and therefore excluded from 

the cell count. The volume for the desired number of cells was calculated according to the 

experiment being performed. The calculated volume was either transferred to a flask for further 

growth or used experimentally, this step was recorded as a passage. 

2.1.1.2 Viability and cell count assay 
Additionally, cells being used for flow cytometry experiments were counted using an automated 

cell counter and Solution 18 AO.DAPI (910-3018, Chemometec). Solution 18 contains DAPI and 

Acridine Orange. DAPI stains dead cells and Acridine orange counter stains both living and dead 

cells. NucleoViewTM software was used to visualise cells and calculate the concentration of 

viable and none-viable cells in samples.  

2.1.1.3 Generating cell stocks 
Stocks were made at the earliest possible passage once cells had been established as healthy 

and reached appropriate volume. The desired number of cells were centrifuged at 300 x g for 5 

minutes, the cell pellet was then resuspended in DMSO (67-68-5, Santa Cruz Biotechnology) and 

FCS (SH30073, GE Healthcare Hyclone) (10%). DMSO is vital to preventing the destruction of 

cells through the formation of ice crystals, however, it is also toxic and therefore diluted in FCS. 

The resulting suspension was distributed to cryogenic vials which were then transferred to a 

CoolCell Freezing System for 24 hours; to control cell freezing and improve cell viability for 

storage at -80oC.  

2.1.1.4 Treatment with IFNG – Preliminary work characterising IFNG response                                                                                                                                                                              
To characterise the AML cell lines response to IFNG; cells were seeded at 0.5 x 106 cells/mL and 

suspended in medium containing 5 or 100 ng/mL IFNG for 48 hrs, before further experimental 

work. Following treatment, cells were either used immediately for extracellular staining by FACs. 

Or the cell pellet and supernatant were harvested for further downstream analysis by qRT-PCR, 

colorimetric assay, or SWATH-MS (Sequential Window Activation of All Theoretical Mass 

Spectra). 

2.1.1.5 Cell pellet and supernatant collection 
Samples were kept on ice where possible. Following the treatment described above, the cell 

suspension was transferred to a 15 mL falcon and pelleted by centrifugation at 300 x g for 5 

minutes. The cells were then washed with 5 mL PBS (BE17-512F, BioWhittaker), suspended in 1 

mL PBS, and transferred to a 1 mL Eppendorf for centrifuging at 250 x g for 5 minutes. Medium 



was removed and stored at -20oC for use in the kynurenine assay, and pellets stored at -80oC until 

RNA extraction. 

2.2 Molecular biology techniques 

2.2.1 RNA-extraction for quantitative real-time PCR 
Cells were grown and treated as described in 2.1and harvested as described in 2.1.1.5. Cell pellet 

RNA was extracted using the RNeasy Mini Kit (Qiagen) as per manufacturers direction. RLT buffer 

was prepared by adding 10 µl of β-mercaptoethanol (M3148, Sigma) per 1 ml of Buffer RLT to 

improve the quality of RNA extracted by denaturing RNases in the sample. RNA samples were 

stored at -80 oC until further use.  

2.2.2 Quantification and quality check of extracted RNA 
Extracted RNA was checked for quantity and quality using the NanoDrop™ 8000 

Spectrophotometer (Thermofisher Scientific). For RNA to pass the quality check; the A260/A280 

value had to be above 1.8, and the A260/A230 value had to be between 1.8 and 2.2. The volume 

of sample required for 1 µg was calculated for cDNA generation by reverse transcription. 

2.2.3 Reverse transcription to generate cDNA 
RNA was converted to cDNA using reverse transcription. For each sample, 1 µg RNA was 

combined with 1µL oligo dT (C1101, Promega) and the total volume adjusted to 10 µL with 

nuclease free water (NFH2O) (AM9930, Ambion). Mixtures were incubated at 70oC for 5 minutes 

to promote primers annealing to single stranded RNA efficiently. Samples were then transferred 

to ice immediately. After which, 5 µl 5x RT buffer (M531A, Promega) to maintain a favourable pH 

for the reaction, 0.7 µl RNasin® (N2515, Promega) to prevent RNA degradation, 1 µl M-MLV 

Reverse Transcriptase (M1705, Promega), 1 µl dNTPs (U1511, Promega), and 7.3 µl NF H2O was 

added to each sample.  The samples were then incubated at 40 oC in a water bath for 1 hour, 

following which, samples were heated to 95 oC for 5 minutes to deactivate the reaction and the 

new cDNA stored at -20 oC.  

2.2.4 Quantitative real-time PCR (qRTPCR) 
Quantitative real-time PCR was used to measure the levels of mRNA expression of a particular 

target in samples. Per reaction, 1 µL of cDNA was combined with 5.75 µL of SYBR Green (172-

5124, Bio-Rad), 0.5 µL of forward and reverse primer to a concentration of 10 µM and 3.75 µL 

NFH2O. Samples were analysed with three technical repeats using a Rotor-Gene Q real-time PCR 

cycler (Qiagen), a minimum of three biological repeats were used for each primer. Denaturation 

was carried out at 95 oC for 5 minutes followed by a 40-cycle program. Each cycle consisted of a 



10 second denaturation (95oC), 20 seconds annealing (all genes were optimised to 58oC) and 20 

seconds extension (72oC). Experiments were designed to comply with MIQE guidelines (Bustin, 

et al. 2009). Samples had to pass melt curve analysis to confirm the amplification of the desired 

gene had occurred and results seen were not caused by primer dimers. Samples were checked 

for contamination by using NTCs (no template control) in each batch ran. Biological replicates 

were used to ensure the differences in qPCR results were a consequence of treatment and not a 

product of batch variation.  

2.2.5 Primer efficiency testing 
Primers were tested for efficiency prior to use. A test sample of cDNA was diluted 5-fold to create 

a serial dilution. All primers were analysed using the method for qRT-PCR described above. A 

standard curve was generated from the serial dilutions with the equation y = mx + b, where m (the 

slope) indicates the primer efficiency. The m value -3.32 gives 100% efficiency and so a slope as 

close to this value as possible is desirable. For primers to pass efficiency testing they had to 

display between 90 and 110% efficiency. An example is given in Figure 4. 

 

Figure 4: Example of a standard curve generated to test for primer efficiency. 

2.2.6 RNA extraction for Next Generation Sequencing (NGS) 
Cells were grown until confluent and treated with either a single dose 5 ng/mL IFNG or 0.5 µM 5-

Azacytidine every 24 hrs, alone or in combination, over the course of 48 hrs. Cells were harvested 

as described in 2.1.1.5. Cell pellet RNA was extracted using the RNeasy Mini Kit (Qiagen) 

following the instruction manuals extraction process for cell line samples, with the addition of 

the on column-DNase digestion step to eliminate DNA and ensure RNA purity. RLT buffer was 

prepared by adding 10 µl of β-mercaptoethanol (M3148, Sigma) per 1 ml Buffer RLT to improve 

quality of RNA extracted by denaturing RNases in the sample. DNase I stock solution was 

prepared by dissolving the lyophilised DNase I in 550 uL RNAse free water provided in the kit using 

a syringe. RNA samples were stored at -80 oC until further use.  

M= -3.33284 
Efficiency = 99.5% 



2.2.7 Preparing RNA for sequencing by Novogene 
Prior to sending the samples to Novogene for analysis they were assessed for quantity and quality. 

First the samples were assessed using the NanoDrop™ 8000 Spectrophotometer, following 

instructions of the manufacturer. This was to ensure that the sample concentration fell within the 

range of 5-500 ng/µL required by the Agilent bioanalyser 2100 (Agilent). Samples were then 

measured using the Bioanalyser 2100 with the RNA Agilent kit and RNA Nano chips following the 

manufactures instructions, to ensure concentration was appropriate and RNA integrity number 

(RIN) was the required minimum 6.8 or above.  

2.3 Metabolic and Protein profiling assays 

2.3.1 Kynurenine assay 
A standard curve was generated by diluting a 50,000 µM L-Kynurenine (K8625, Sigma-Aldrich) 

stock in medium corresponding to the cell line being tested, to make 14 standards ranging from 

0 µM to 200 µM concentration. Cell medium without cells or kynurenine was used as a control. 

Then, 150 µL 30% trichloroacetic acid (T6399, Sigma Aldrich) was added to 300 µL of each 

standard, control, and sample, before vortexing and centrifuging at 8000 x g for 5 minutes at 4oC 

and supernatant then removed. Ehrlich’s reagent was prepared by adding 20 mg p-

dimethylaminobenzaldehyde (156477, Sigma Aldrich) per 1 mL glacial acetic acid (A2683, Sigma 

Aldrich). 75 µL of standard, control and samples were loaded onto 96 well plate in triplicate and 

an equal volume of Ehrlich’s reagent added and mixed. Plates were read after 15 minutes 

incubation at 492 nm, on a Tecan infinite m200 Pro plate reader. Sample absorbance at 492 nm 

was compared to a standard curve of kynurenine concentrations, and sample concentrations 

estimated using y = mx + C. 

2.3.2 Protein extraction for Western blot and mass spectrometry analysis 
Cells were grown for 48 hrs with and without 100 ng/mL IFNG treatment, then harvested as 

previously described in 2.1. To each sample, 300 µL of RIPA buffer (89900, Thermo Scientific), 

spiked with 1 in 100 Halt protease and phosphatase inhibitor cocktail 100x (1861281, Thermo 

Scientific) was added to prevent proteolysis and loss of phosphate groups. In addition, 0.5 M 

EDTA Solution 100x (Thermo Scientific) was added to further inhibit proteases by eliminating free 

divalent cations. Samples were left on ice for 30 minutes, passed through a 29G fine needle 10 

times, sonicated for 5 minutes, and then centrifuged at 12,000 x g for 15 minutes at 4oC. 

Supernatant were stored at -80oC until further use.  

 



2.3.3 Measurement of protein concentration using Pierce assay 
Protein concentration for SWATH-MS samples was measured using Pierce protein assay; a 

colorimetric assay that exhibits less variation than dye binding methods. To prepare the reagent, 

1g of Ionic detergent compatibility reagent (22663, Thermo Scientific) was added per 20 mL 

PierceTM 660 nm protein assay reagent (22660, Thermo Scientific). A pre-diluted protein assay 

standard BSA set (23208, Thermo Scientific) was used with the following concentrations: 0, 125, 

250, 500, 750, 1000, 1500, 2000 µg/mL. Samples were prepared for the assay by diluting 1 in 10 

in DDH2O to eliminate background interference from the lysis buffer. RIPA lysis buffer was diluted 

1 in 10 in DDH2O to act as a background control. In addition, 10% 100x Triton (T8787, Sigma) was 

added to each sample to a total concentration of 0.8% Triton to prevent RNA/DNA in the samples 

forming a precipitate. 10 µL of each sample, standard and background control was added to a 96 

well plate in triplicate. Then 150 µL of protein assay reagent was added to each well, the plate 

was left to incubate for 5 minutes at room temperature and absorbance measured at 660 nm 

using a Tecan infinite m200 Pro plate reader. 

2.3.4 Measurement of protein concentration using Bio-Rad assay 
Protein concentrations for use in western blot were measured using the Bio-Rad protein assay 

dye reagent concentrate (5000006, Bio-Rad). The dye reagent was prepared by diluting dye 

reagent concentrate with DDH2O water 1 in 5. Protein standards were generated by diluting the 

1000 µg/mL protein assay standard from the BSA set (23208, Thermo Scientific) with DDH2O 

water to concentrations: 0, 50, 100, 200, 300, 400 and 500 µg/mL. Samples were diluted 1 in 10 

in DDH2O to eliminate background interference from the lysis buffer. RIPA lysis buffer was diluted 

1 in 10 in DDH2O to act as a background control. Then, 10 µL of each sample, standard and 

background control was added to a 96 well plate in triplicate. To complete the reaction, 200 µL of 

diluted dye reagent was added to each well and mixed using a multipipette. The plate was 

incubated for 5 minutes at room temperature, before absorbance was measured at 595 nm using 

a Tecan infinite m200 Pro plate reader. 

2.3.5 SDS-PAGE  
In preparation for detection of target proteins by western blot, 30 µg of cell lysates were separated 

using SDS-PAGE and transferred to a nitrocellulose (NC) membrane for staining. First samples 

were reduced for SDS-PAGE. 

2.3.5.1 Reducing samples for SDS-PAGE 
Denaturation of sample protein is necessary for efficient separation by SDS-PAGE. Laemmli 

buffer is a reducing agent which reduces inter and intra-molecular disulphide bonds resulting in 



protein denaturation and providing proteins with negative charge. Sample were prepared for 

separation by molecular weight by adding samples at a 3 to 1 ratio to 4 x Laemmli buffer (1610747, 

Bio-Rad). Lysates were then incubated at 95oC for 10 minutes using a heating block, once cooled 

to RT samples were immediately used.  

2.3.5.1.1 Running SDS-PAGE 
Premade gels 4–20% Mini-PROTEAN® TGX™ Precast Protein Gels (4561093, Bio-Rad) were 

inserted into the appropriate running module and placed into the transfer tank. The tank was filled 

with running buffer up to the line indicated by the apparatus being used. In each experiment, 30 

µg of sample was loaded alongside 5 µL of Precision Plus Protein™ WesternC™ Standard 

(1610385, Bio-Rad). To separate proteins the gel was run at 50 V for 5 minutes to check for even 

running and then ran at a constant 100 v for 1 hr. 

2.3.6 Western blot 
Once proteins in samples were separated by SDS-PAGE they were probed for targets of interest 

using western blot.  

2.3.6.1 Transfer of proteins on to nitrocellulose membrane 
Following separation by SDS-PAGE, proteins were transferred from the gel to a NC membrane. 

For this process, a “sandwich” was constructed from sponge, filter paper, the gel and NC 

membrane. All components were pre-soaked in transfer buffer prior to assembly and the order of 

stacking is shown in Figure 5. As the proteins have a negative charge, they move out of the gel, 

towards the positively charged anode, and on to the membrane during the transfer.   

The assembled sandwich was then placed in the transfer tank with electrodes matching the tanks 

orientation to ensure current flows. Then, the sandwich was submerged in transfer buffer and a 

Figure 5: A diagram showing the orientation of components for the “sandwich” used to transfer proteins from gel to 
membrane. 



current of 200 mA applied for 1 hour.  To prevent sticking of the gel to the membrane due to heat 

caused by the current, the tank was kept cold in a polystyrene boxed filled with ice. 

2.3.6.2 Detection of target proteins on nitrocellulose membrane 
Successful transfer of proteins was indicated by a visible ladder on the membrane. Following 

transfer, the membrane was cut into sections according to the molecular weight of proteins of 

interest (POI). Sections were incubated in blocking buffer for 1 hour at RT while shaking. For 

standard proteins, blocking buffer was made up of 1 x TBST and 5 % fat free milk powder. For 

phosphorylated protein, blocking buffer was made of 1 x TBST and 5 % BSA. The blocking step is 

essential as it prevents none-specific binding of antibodies. After the blocking step, blocking 

buffer was replaced with fresh blocking buffer combined with specific antibody for the POI added 

at manufactures recommended concentration. Membranes were incubated with the primary 

antibody overnight at 4oC on a shaker.  

After overnight incubation, primary antibodies were drained off the membranes which were then 

washed 3 times for 10 minutes with 1 x TBST at RT on a shaker to remove unbound antibody. Host 

specific secondary antibody and conjugate for the molecular weight ladder were added to 

blocking buffer at manufactures recommended concentration. The membranes were incubated 

at RT on a shaker for 2 hours. Membranes were washed 3 times for 10 minutes with 1 x TBST at RT 

again. Following the wash step, membranes were placed individually on a dark backing board and 

clarity western ECL substrate (1705060, Bio-Rad) was added at a 1:1 ratio. Imaging of blots was 

carried out on a Syngene G:Box with exposure time ranging from 30 seconds to 3 mins. 

2.3.7 Flow cytometry 
Flow cytometry is a technique which can be used to analyse expression of multiple protein targets 

on large volumes of cells rapidly. Cells are ‘labelled’ with fluorochromes which bind to the POI. 

Cells are injected into the flow cytometry instrument where they enter the flow chamber. Here, 

hydrodynamic focusing occurs by laminar sheath flow facilitating cells to be positioned central 

to the laser. When fluorochromes are hit by the laser they absorb its wavelength of light and emit 

at a different wavelength in response. This signal is used to quantify the target protein present on 

the cell, and hundreds of cells can be analysed per second. The high quantities of data are 

collected and processed by computer.  

The phenotyping of cells for adaptive immune response (AIR) targets and IFNγ response was 

carried out using a Beckman Coulter GalliosTM flow cytometer instrument. The Gallios has a 

capacity of 10 fluorescent channels; the laser wavelengths and filter details are shown in Table 

5. 



Table 5: A summary of Beckman Coulter GalliosTM laser wavelength and filters used. 

Laser Excitation 
wavelength 

Channel Emission 
wavelength 

Blue 488 nm 

FL1 525/40 
FL2 575/30 
FL3 620/30 
FL4 695/30 
FL5 755 LP 

Red 638 nm 
FL6 660/20 
FL7 725/20 
FL8 755 LP 

Violet 410 nm 
FL9 450/40 
FL10 550/40 

 

2.3.7.1 Extracellular staining by flow cytometry for cell immunophenotyping 
Prior to running samples, compensation was carried out per core facility guidance using cell 

populations which were negative for the utilised fluorochromes. Each cell line was grown with 

and without 100 ng/mL IFNG, 2 million cells were taken per treatment sample and split into 4 

FACS tubes containing 0.5 million cells each. Samples were centrifuged at   400 x g for 5 minutes 

at 4oC and medium decanted. Then washed with 2 mL cold pbs and centrifuged again and kept 

on ice. 100 µL FACS buffer was added to all samples along with recommended volume of 

antibodies according to manufacturer. For each treatment, 3 staining conditions were used; 

unstained control, L/D viability control and stained. Samples were vortexed and incubated with 

labelling antibodies for 30 minutes at 4oC protected from light. 200 µL of Isoton was added to 

each FACS tube and samples were analysed using a Gallios flow cytometer (Beckman Coulter). 

2.3.7.2 Determining Daunorubicin EC50 for Kasumi-1 
Cells were grown until confluent; centrifuged at 300 x g for 5 minutes and supernatant removed. 

Cells were then suspended in fresh medium and seeded at 5 million cells per 10 mL medium in 

T25 flasks. They were then dosed with Daunorubicin (30450, Sigma-Aldrich) at 0, 0.2, 0.4, 0.6, 0.8 

and 1 µM. The flasks were incubated at 37oC for 48 hrs and viability determined by Gallios flow 

cytometer (Beckman Coulter).  

2.3.7.3 Testing cell line viability post exposure to IFNG, 5AzaC and Daunorubicin 
Cells were grown until confluent; centrifuged at 300 x g for 5 minutes and supernatant removed. 

Cells were then suspended either in fresh medium only, or fresh medium containing 0.5 ng/mL 

IFNG or 0.5 uM 5-Azacytidine (A2385, Sigma Aldrich) and were seeded 5 million cells per 10 mL 

medium in T25 flasks. They were then dosed with Daunorubicin (30450, Sigma-Aldrich) at 0, 0.1, 



0.2, 0.4 and 2 µM. The flasks were incubated at 37oC for 48 hrs and viability determined by Gallios 

flow cytometer (Beckman Coulter).  

2.3.7.4 Annexin V staining  
In live healthy cells phosphatidyl serine (PS) is located on the inner cytoplasmic layer of the 

plasma membrane. When apoptosis occurs, the plasma membrane structurally shifts, and PS 

translocates to the out layer of the membrane. Annexin V is a cellular protein which has high 

affinity for PS and can be used to detect apoptosis. To act as a dye, Annexin V is conjugated to a 

fluorescent or enzymatic label, where signal is proportional to number of PS bound. The 

difference in signal produced between live and apoptotic cells is typically 100-fold, allowing for 

easy distinction between populations during analysis. As compromised plasma membranes can 

provide Annexin V passage into the inner leaflet of the cell, it is advised to use a live cell stain in 

tandem to avoid false positives.  

2.3.7.5 LIVE/DEAD staining 
Using a live cell stain such as LIVE/DEAD fixable stain, in combination with Annexin V both 

prevents false positive readings and provides more information to distinguish between cell 

populations which are live, apoptotic, and dead. Annexin V alone runs the risk of staining the inner 

leaflet PS in compromised cells, which may be necrotic rather than apoptotic. The LIVE/DEAD 

stain is based on fluorescent reactive dye that detects amine groups on proteins. As this dye does 

not penetrate intact live cell membranes, it only binds outer cell membranes producing a dim 

signal for live cells. Dead cells have damaged membranes, allowing the stain access past the 

membrane and bind to both exterior and interior proteins, causing a much brighter signal, 

typically greater than 50-fold compared to live cells. Therefore, when used in combination, cells 

testing as Annexin V positive, and LIVE/DEAD negative, can be more confidently assigned as 

apoptotic. As it can be assumed the annexin staining is from the outer leaflet and the membrane 

has been shown to be uncompromised by low LIVE/DEAD signal.   

2.3.7.6 Viability staining by flow cytometry 
For viability assays, 2 million cells were taken per sample type and split into 4 FACS tubes 

containing 0.5 million cells each. For each treatment, 4 staining conditions were used; unstained 

control, L/D viability control, annexin control and stained. Samples were centrifuged at 400 x g 

for 5 minutes at 4oC and medium decanted. Then washed with 2 mL cold PBS and centrifuged 

again and kept on ice. 100 µL FACS buffer was added to all samples, except for the annexin 

control. Annexin V is dependent on calcium for binding, therefore 100 µL of calcium free PBS was 

added to ensure a correct baseline. Samples were vortexed and incubated for 30 minutes at 4oC 

protected from light with 0.5 µL L/D viability dye. After this, 2 mL PBS was added to all samples 



which were centrifuged again at 400 x g for 5 minutes at 4oC. Medium was removed and 200 µL of 

cold Annexin v binding buffer (422201, BioLegend) was added to all samples except for the 

annexin control, which was suspended in cold PBS. Samples were incubated at RT for 15 minutes 

protected from light, then analysed using a Gallios flow cytometer (Beckman Coulter). 

2.3.7.7 Gating Strategy for analysing extracellular staining 
Flow cytometry data was analysed using Kaluza 2.0 (Beckman Coulter), the gating strategy is 

outlined in Figure 6. The first step was to identify the live single cell population of interest. To 

exclude debris, forward scatter (FS) was plotted against side scatter (SS) in step 1. Step 2 was to 

plot FS height (FS TOF) against FS area (FS INT), to remove doublets from the analysis. This is 

important as doublets are read as one event, when they are in fact two events, and this can skew 

results. Live/dead stain (3) was used to further ensure the population gated was live, by excluding 

the dead population, which auto-fluoresce. The cell viability dye used was an amine dye, which 

fluoresces when it binds to amine groups on proteins. Live and dead populations were 

distinguished by intensity of the signal. As live cells have their membranes intact, there are fewer 

proteins to be bound by the dye therefore producing a lower signal. In contrast, dead cells 

membranes are damaged and so the dye can permeate through and bind to more proteins inside, 

resulting in a higher intensity signal. The low signal intensity population (Live cells) was gated (3) 

and other targets of interest were exclusively measured from this population (4).  

 

2.3.7.8 Gating Strategy for analysing living populations 
The gating strategy for the annexin V and Live dead staining experiments was the same as above, 

except for step 1, where all cells were gated in the FS vs SS plot. More detail on gating is shown in 

chapter 3. 

Figure 6: Gating strategy for cell surface staining data obtained through flow cytometry. 1) Shows gate A being placed on 
a FS/SS plot excluding dead cells and debris. 2) FS TOF plotted against FS INT and gate J placed to remove doublets in 
data. 3) Live/dead viability dye was used to exclude dead cells from analysis and gate C placed. 4) Example of HLA-A,B,C 
target MFI measured in gate C population 



2.4 Mass Spectrometry 
Correlation between transcriptome and proteome is not absolute, and can be influenced by 

transcript and protein half-life, mRNA degradation and post-translational modifications 

(Chakraborty, et al. 2018). Proteins are the final functional product of the transcription to 

translation mechanisms. As proteins control most cellular processes, it is important to 

understand how they are disrupted in cancer cells. Proteomics is the identification and 

quantification of proteins present at time of sampling and is key to understanding functional 

changes in cell. Proteomics studies are commonly carried out by protein mass spectrometry, 

which has advanced in recent years to accommodate identification of more than 12,000 proteins 

and 10,000 PTM sides in a single sample. MS has been used to generate proteomes of cancer 

patients, but the workflows required to do this are very specialised and unlikely to be clinical 

routine for a long time  (Doll, Gnad and Mann 2019).  

Typically, the sample is vaporised, then ionised by bombardment with electrons, which causes 

whole molecules to become charged or break into charged fragments. Samples are then 

accelerated and exposed to an electronic or magnetic field. This causes separation, as 

depending on the samples mass to charge ratio, they will be ‘deflected’ to different extents. Ions 

are detected by an electron multiplier and results are displayed as spectra. Components of the 

sample can be identified by comparing masses obtained to masses of known molecule or known 

fragmentation patterns. 

The primary challenge of using mass spectrometry for proteomics, is that proteins usually exist 

in complex mixtures within a biological medium. The first problem to be addressed is that the 

ionisation techniques used for large molecules require equal amounts of each molecule present. 

This is rarely the case in biological samples which can wildly differ in volumes of component 

proteins present. If a mixture like this is ionised then proteins in higher abundance will supress 

signals of low abundance proteins, leading to a loss of important data. The second problem is 

that the mass spectra produced by protein samples is highly complex and therefore hard to 

correctly interpret. To combat these problems high-performance liquid chromatography (HPLC) 

is applied prior to MS. This technique separate mixtures into peaks, the contents of which can be 

identified based on the mass spectrum they produce.   

  



2.4.1 The advantages and limitations of the SWATH-MS approach to 
proteomic profiling 

Proteomic profiles were generated and compared between IFNG treated and untreated cell lines 

using mass spectrometry (MS), specifically the SWATH-MS method. When a compound is 

analysed by MS, the first step is for the compound to be transformed into gas phase ions, for 

example by bombarding it with electrons. The ion produced then fragments into smaller charged 

molecules such as ions and radicals, which themselves can further fragment. This produces ions 

of different sizes and charges, which can then be separated by their mass to charge ratio (m/z) 

and detected according to their abundance  (De Hoffmann and Stroobant 2007). There are three 

approaches to generating proteomic profiles using mass spectrometry analysis, which have been 

developed to meet different research needs (Domon and Aebersold 2010) These methods are 

data-dependent acquisition (DDA), selected reaction monitoring (SRM) and data-independent 

acquisition (DIA)  (Liu, Y., et al. 2013). All these analysis types are performed using two MS in 

tandem, designated MS1 and MS2. Samples are ionised and passed through MS1 for screening 

and separation based on their m/z ratio, then ions of a particular m/z ratio are chosen for further 

fragmentation. These fragments are fed to MS2 for further separation by their m/z ratio and 

detected to produce a fragment ion spectrum which is matched to a premade library for 

identification of peptides (De Hoffmann and Stroobant 2007). 

The first approach is data dependent acquisition (DDA). This approach is suited to bias free 

discovery research as it requires no prior knowledge on the analyte and selects proteins of 

interest based on ions with the highest abundancy (Sidoli, et al. 2015). The main drawback of this 

approach is that the most abundant ions can vary between samples, which leads to varied 

quantitation and inconsistency in peptide detection alongside reduced reproducibility of results 

(Wu, J. X., et al. 2016). In the event of too many peptides co eluting in a single MS1 screening, DDA 

preferentially samples highly abundant peptides, and low abundancy peptides are left 

unreported. A further drawback is that peptides are only sampled once or twice, preventing 

precise quantification (Hu, Noble and Wolf-Yadlin 2016).  

Some of the drawbacks of DDA are countered by the selected reaction monitoring (SRM) method, 

which is sometimes referred to as targeted proteomics. SRM accurately and reproducibly 

analyses samples multiple times compared to DDAs once or twice, to quantify a set of 

preselected proteins (Hu, Noble and Wolf-Yadlin 2016, Liu, Y., et al. 2013). SRM can achieve a 

higher sensitivity than DDA and detect low abundance proteins, with the caveat that analysis is 

restricted by prior knowledge and detection is limited to a known predefined list of proteins. In 



addition, SRM is limited to up to one hundred proteins per run, compared to DDA thousands (Hu, 

Noble and Wolf-Yadlin 2016). 

The data independent acquisition (DIA) method differs from the DDA and SRM methods. Firstly, 

unlike DDA where precursor ions are chosen by MS1 scan to be detected by MS2, fragment ions 

are continuously acquired without bias by MS2. Furthermore, unlike SRM, no prior knowledge of 

peptide precursor m/z values is used, and is therefore based on targeted data extraction, as 

opposed to SRM which is based on targeted MS acquisition (Ludwig, et al. 2018). In SWATH-MS, 

the fragment ion spectra within a defined window of m/z are measured, this is repeated over 

several cycles across the complete m/z range (Ludwig, et al. 2018). This method gives three 

pieces of information for a fragment, which are retention time, m/z and abundance (Gillet, et al. 

2012). Which can then be matched to a spectral library for identification. SWATH-MS allows for a 

mid-ground between DDA and SRM, identifying large quantities of peptides with a higher 

reproducibility than DDA, but not to the same sensitivity as SRM.  

SWATH-MS peptide quantification is still three to ten-fold less sensitive than SRM methods, and 

so is not the best option for any research seeking quantification of low abundance proteins 

accurately (Gillet, et al. 2012). Furthermore, data analysis is more challenging than DDA. Peptide 

query parameters (PQP) are set up using spectral libraries generated from previous experiments. 

PQPs include chromatographic elution times of peptides, optimal peptides for a protein and most 

intense fragment ions associated with target protein under applied fragment conditions (Ludwig, 

et al. 2018). The parameters set allow for successful identification of peptides by peptide centric 

scoring (PCS). PCS uses a pre-defined list of peptides and assess if those peptides are in the 

acquired data and to what confidence. This method of analysis is used in SRM as well as DIA 

methods such as SWATH-MS (Ludwig, et al. 2018). SWATH-MS was used to compare cell line 

responses to IFNG based on their proteomic profiles and select cell lines for further study with 

NGS.  

2.4.2 Generating samples for cell line characterisation by SWATH-MS 
Samples for all four AML cell lines were stimulated for 48 hrs with 100 ng/mL IFNG and harvested 

and pellets were lysed. Protein concentrations of lysates were estimated using the pierce protein 

assay, as described in section 2.3.3. Finally, the calculated volume for 50 µg of each sample was 

distributed to eppendorfs in duplicate and stored at -20 oC until samples were analysed.  

  



2.4.3 Sample analysis by SWATH-MS 
Analysis of samples was performed using a SCIEX TRIPLE TOF® 6600 mass spectrometry 

instrument linked to an Eksignent NanoLC 425 HPLC system following Lambert et als method 

(Lambert, et al. 2013) by Dr Amanda Miles, Dr David Boocock and Dr Clare Coveney. Samples 

were loaded into the LC system for fractionation by reverse phase HPLC. To do this 3 µL of each 

sample was injected on a YMC (15 cm by 0.3 mm) Triaer-C18 column and ran using the microflow 

setting (5 µL min).  Independent Data Acquisition (IDA) was used to generate the spectral library. 

This was then passed through targeted analysis by SWATH-MS data acquisition. Files generated 

by IDA analysis of cell line lysates were searched, first separately, then pooled together using 

Protein Pilot 5.0 (SCIEX) and the Human Swissprot database. The OneOmics assembler was used 

to assemble data and generate fold change with confidence data for each protein change and 

normalisation was carried out by Dr Amanda Miles according to method outlined by Jean-Phillipe 

(Lambert, et al. 2013). A 1% False Discovery Rate (FDR) was used as a cut-off point. 

 

2.5 Transcriptomics 
Transcriptomics is a technique used to detect and quantify the complete set of coding and none-

coding RNA transcribed from the genome at a given time. The transcriptome is more complex and 

transient in nature than the genome as it can be influenced by cellular, environmental, and 

external stimuli  (Chakraborty, et al. 2018). The first widely used technique to build transcriptomic 

databases was the microarray, which uses a chip spotted with cDNA molecules that bind to 

complimentary sequences present in the sample. However, microarrays are limited by the need 

for prior knowledge of the transcriptome to design probes and can therefore produce bias results. 

Consequently, microarrays were superseded by RNA sequencing (RNA-seq), which does not use 

transcript specific probes and so is unbiased in its detection. Additionally, RNA-seq has a higher 

specificity and sensitivity allowing it to detect low expression transcripts (Chakraborty, et al. 

2018). The main application of this technology is to identify genes which exhibit differential 

expression between cancer and non-cancer states and provide insight into the proteome. 

2.5.1 RNA sequencing of cell line samples 
The RNA sequencing was carried out by third party Novogene using their Illumina NovaSeq 

platforms, which use a paired-end 150 bp sequencing strategy. The statistical analysis for 

differential expression between samples and FDR correction were also carried out by Novogene 

using the dseq2 analysis package. 

 



2.6 In silico analysis of experimentally acquired and publicly 
available data sets  

In silico analysis was used to further investigate and compare the proteomic and transcriptomic 

data sets generated from cell lines treated with and without IFNG.  

2.6.1 Filtering of mass spectrometry analysis data 
All proteins with a confidence above 60% were considered to have undergone a significant 

change in expression. To further consolidate targets, only changes of two-fold or more were 

further considered for proteins with confidence level between 60 and 75% confidence. Finally, 

the resulting significant proteins were presented as a heat map.  

2.6.2 Metascape analysis  
Mass spectrometry data was uploaded to Metascape as a gene list. A ‘one click’ analysis was 

used to assess enriched pathways per cell line. Biological processes associated with IFNG were 

selected and presented as a heat maps and tables. NGS data was treated in the same way, with 

statistically significant genes predetermined by Novogene analysis and uploaded to metascape.  

2.6.3 Identification of a gene signature using cell line transcriptomic data 
and patient data sets 

Patient data sets are an excellent alternative resource to overcome limited availability of patient 

samples. For the most part, patient data sets that are publicly available are derived from 

transcriptomic or genomic experiments, it is rarer to find proteomic data bases. These data sets 

provide quantified expression of target genes or mRNA, but also clinical data for the patients. 

They provide an alternative no lab-based resource for validation of signatures, with clinical 

parameters that can be used to study specific patient groups. In this study, cell lines treated with 

IFNG, 5AzaC or both were used to generate a transcriptomic dataset, which was then applied to 

the TCGA-AML data set to generate signatures associating the treatment to patient survival. 

These signatures were further validated in the BeatAML, German-AML and CN-AML data sets for 

clinical validation. Data sets were obtained from the cbioportal platform (Table 6).  

  



Table 6: Table of patient data bases used for discovery and validation of prognostic index scores in chapter 5. Title is 
given, along with number of samples, if the data set was used for discovery or validation and a link. 

Title Number of 
samples 

Training or 
validation set Link 

Acute Myeloid 
Leukaemia (TCGA, 
NEJM 2013) 

200 Training https://www.cbioportal.org/study/sum
mary?id=laml_tcga_pub 

Beat AML 672 Validation https://www.cbioportal.org/study/sum
mary?id=aml_ohsu_2018 

Acute myeloid 
leukaemia samples 
=< 60yrs on HG-
U133 plus 2 
(German series) 

537 Validation https://www.ncbi.nlm.nih.gov/geo/quer
y/acc.cgi?acc=GSE6891 

Prognostic gene 
signature for 
normal karyotype 
AML (CN-AML)  

405 Validation https://www.ncbi.nlm.nih.gov/geo/quer
y/acc.cgi?acc=GSE12417 

E-MTAB-3444 
(HOVON) 662 Validation https://www.ebi.ac.uk/biostudies/array

express/studies/E-MTAB-3444 
 

2.6.4 Statistical analysis of omics data 
There are three components to transcriptomic analysis of RNA seq, these are pre-processing of 

data, statistical analysis and functional interpretation or application. Pre-processing of data 

involves short read alignment and assembly, as well as artifact filtering (Fang, Martin and Wang 

2012). For this thesis, pre-processing of data was performed by the company Novogene using 

Dseq2 and data was received as RNA-seq data set where transcript levels were reported as 

discrete counts.  For any data set there will be more than one type of statistical analysis that is 

appropriate, each with their own strengths and limitations. The same data set analysed via 

different techniques could produce similar or markedly different results. If the computing power, 

expertise, and resources are available, it is recommended to use multiple methods and 

investigate transcripts commonly reported (Mou, et al. 2020, Liu, X., et al. 2022).  

2.6.5 Methods of statistical analysis used to assign significance to 
variation between samples 

2.6.5.1 T-Test 
T-tests are commonly used statistical tests which evaluate if the mean of a variable is 

significantly different between two sample datasets. Different T-tests are used depending on the 

number of samples in each group, distribution and variance of the populations and relationships 



between groups  (Student 1908, Welch 1947, Kim, T. K. 2015). The null hypothesis is that the mean 

is the same in both samples. In the case of this thesis, this was used to compare the differential 

expression of a gene or protein between two samples. The T-test is a basic test, which is limited 

by its capacity to only compare two data sets and is not appropriate for data with lots of variation 

or noise, which is common in large omic data sets. Furthermore, if multiple variables are also 

being tested and exceed the number of samples, as in the case of patient data sets with 

thousands of variables to only a few hundred samples, then type 1 errors (false positives) 

likelihood are increased (Korthauer, et al. 2019). When performing multiple comparisons, 

posthoc tests such as the stringent Bonferroni procedure can be applied to limit false positives, 

however this is at the cost of statistical power resulting in reduced detection of true positives 

(Grandhi, Guo and Peddada 2016).  

2.6.5.2 Wald test with Benjamini-Hochberg correction 
Novogene provided statistical analysis of differential expression of transcripts using the Dseq2 

analysis package and Wald test. The Wald test is used for hypothesis testing to compare two 

groups. First the parameters for the model are estimated. In this case the log fold change is the 

coefficient for each parameter and is estimated by maximum likelihood.  The log fold change is 

divided by its standard error to produce the z-statistic. The z-statistic is then compared to a 

standard normal distribution, where a p-value is calculated. The p-value is the probability of the 

z-statistic being observed by random chance. The lower the p-value, the smaller the probability 

of the z-statistic being obtained by chance is, and the more likely the change in expression levels 

is significant. As the test is being carried out on >20,000 transcripts, and the Wald-test used a 

significance cut-off of P<0.05, there is a 5% chance of false positives, resulting in thousands of 

‘positives’ being by chance. DSeq2 applies the Benjamini -Hochberg (BH) correction to control 

the false discovery rate (FDR), where transcripts were ranked by reported p-value and then 

multiplied by n/rank, where n=total number of tests.  

BH correction = 𝑝 𝑥 (
𝑛

𝑟𝑎𝑛𝑘
) 

2.6.5.3 Holm-Sidak correction for multiple comparisons 
The Holm-Sidak method corrects multiple comparisons by adjusting the significance level for 

each test to control the Type I error rate. It ranks p-values, progressively tightening significance 

levels as comparisons are made. The most significant test is evaluated at the standard 

significance level (e.g., 0.05), while the subsequent tests are evaluated at more conservative 

levels to account for the multiple comparisons. If a test's p-value is lower than its adjusted 

significance level, you can conclude that it's statistically significant. This method increases 



chances of avoiding false positives when conducting multiple tests, enabling more reliable 

inferences while maintaining controlled statistical significance  (Holm 1979). 

2.6.5.4 Principal component analysis (PCA) 
In large data sets, such as in omics, where there are thousands of variables, interpretation is not 

straight forward. Principle component analysis is a statistical technique which reduces the 

number of variables of large-scale data, so that it is more interpretable, but the original variance 

and information of the data is preserved  (Jolliffe and Cadima 2016, Ringnér 2008). PCA uses the 

original data set to produce new variables ‘Principal components’ (PC), which are linear functions 

of groups of variables in the starting dataset. PCA identifies which variables explain the largest 

variance in the data set, with PC1 being responsible for the most, and each subsequent PC 

representing less variation. The top PCs can be plotted against one another to separate the 

samples of the cohort. For example, separating healthy controls from a diseased group, or a 

cohort who have received a treatment vs those who have received a placebo (Zhang, Ping, et al. 

2019). Principal component analysis was used to analyse proteomics data to confirm treatment 

with IFNG and 5AzaC had caused significant changes in protein expression profiles of cell lines 

compare to untreated.  

2.6.5.5 Pairwise linear regression 
The relationship between data sets can be examined using pairwise linear regression. Pairwise 

linear regression can offer more statistical power over the standard T-test, as it utilises multiple 

comparisons, as opposed to one over all tests. Using the example of transcriptomics for this 

thesis, the transcriptome expression counts of a treated cell line can be plotted as the dependent 

variable against the transcriptome of an untreated cell line as the independent variable, example 

given in Figure 7: 

  



 

 

 

 

 

 

 

 

 

 

From this plot, a line of best fit described by Y=mx+b can be calculated, where m is the slope of 

the line and b is the Y intercept where the line crosses the Y axis. The coefficient of determination, 

R2 indicates the percentage of variance in in the dependent variable (Y axis) that is predicted by 

the independent variable (X axis). The residual output is then calculated for each observed 

variable where Residual output= observed y value – predicted y value. Residuals measure the 

difference between the predicted and observed value, with larger residuals indicating larger 

deviations from the expected value. A residual can then be divided by the standard deviation of 

all residuals in the data set to produce a standardised residual (Kim, H. Y. 2019). An observation 

of 2-3 standardised residuals or more away from the predicted value indicate further investigation 

warranted to determine if the difference is a result of causation or just chance. In the example 

above, MPO is 73 standard residuals below predicted value, which could be caused by treatment 

of cell line with 5AzaC. To further narrow down the list of variables of interest, the regression can 

be performed multiple times with data generated from biological repeats. A cut off point can be 

determined, for example the top 500 most deviating variables according to standard residual 

output, or anything above 3 standard residuals depending on the data obtained. Variables in 

these lists can be compared, and anything that is repeatedly reported above the cut-off point in 

every single comparison can be shortlisted for further evaluation. This process is used in chapter 

5.  

-73 standard residuals 

Figure 7: Pairwise linear regression of Kasumi-1 5AzaC repeat 2 against Kasumi-1 untreated control sample 1. 
Expression of each transcript is from each sample are plotted against each other as x,y coordinates, and a line of best 
fit is drawn. 



2.6.5.6 Regression for survival analysis 
Regression analysis can be used to establish if there is a relationship between a variable, for 

example smoking, and an event, such as death. Two common types of regression are logistical 

which deals with categorical variables, and linear, for continuous variables. Linear regression is 

used for survival analysis, where a continuous variable, for example expression of a gene, can be 

plotted against survival time. The residuals between the observed data and line of best fit, can 

indicate how likely it is that the variable influences survival.  

2.6.5.7 Cox proportional hazard regression model 
The cox proportional hazard regression model (CPH), introduced in 1972, is a popular survival 

analysis in the biomedical field (Cox 1972). Essentially, the model compares the length of time 

between study start and an event, such as death, disease relapse or recovery, between two or 

more groups of participants. The CPH is a semiparametric method that does not make 

assumptions based on survival time distribution and does not assume covariates impact hazard 

function, and therefore survival. The hazard function describes the probability that an event will 

occur at a given time point, it is used to calculate the hazard ratio; which is the ratio of event 

occurrences at a particular time between two groups. For example, in a drug trial, a hazard ratio 

of 0.5 could indicate that half as many patients experience an event at any time point, than those 

in the untreated group.  

CPH is also able to assess impact of multiple covariates on outcome and, unlike Kaplan-Meier 

and the log rank test, can handle censored data. Censoring occurs in survival data if a) the study 

ends before all participants encounter the event being measured, b) A participant leaves the 

study c) A participant dies of causes unrelated to the study (Schober and Vetter 2018). Censoring 

ultimately means an event has not been observed during the duration of the study, and if the 

patient were to experience the event, it would be to the right of where the patient is censored in 

the timeline. This is the most common type of censor and is called right ‘censoring'. It is 

accommodated in CPH by including the estimates of survival at time points prior to censoring, 

and by excluding from analysis afterwards (Schober and Vetter 2018). Left censoring is when a 

patient experiences the event being observed prior to the study, and therefore is not relevant 

when death is the event.  

Cox proportional hazard regression can be performed with one predictor, termed ‘univariate’, and 

multiple predictors, often termed ‘multivariate’. Multiple regression is preferred as it gives 

improved chance of evaluating impact of variables, while also testing interactions with other 

variables. When performing multiple regression, a common rule is that analysis should be limited 

to 1 variable per 10-20 events, although other methods to determine the ratio have been 



suggested (van Smeden, et al. 2019). Studies have reported that below 10 events per variable 

caused bias, variability, and unpredictable confidence interval coverage (Vittinghoff and 

McCulloch 2007).  

Ergo, a logical method must be used to narrow down the pool of potential contributors to a CPH 

model. This is often performed by statistical testing and selecting an acceptable cut off, for 

example t-tests, P<0.05, or using pairwise linear regression to identify candidates by large 

standard residuals. From here a model can be built, commonly using one of three entry methods 

for selection (Smith 2018). 

Forward selection: The model starts with no variables and adds them one by one based on which 

is most statistically significant, until no more variables in the pool are statistically significant. 

Reverse selection: The model includes all variables, and then eliminates the least statistically 

significant variables one by one, only stopping when every remaining variable in the model is 

statistically significant. 

Stepwise selection: A combination of forward and reverse selection. As with forward selection 

this method starts with no variables and adds the most significant variable to the model. 

However, after every addition, the model re-evaluates the model, removing any variables that are 

no longer significant.  

2.6.5.8 Kaplan-Meier plots 
Kaplan-Meier plots are graphical representations of survival table data, where time is plotted in 

many small intervals, against survival of patients as a percentage (Kaplan and Meier 1958). Each 

sample group is plotted as a line, and when a death occurs in the group, the line decreases, 

creating a stairs effect. Kaplan-Meier is a parametric method, where the following assumptions 

are made: 1) Censored patients have the same chance of survival as uncensored patients 2) 

Probability of survival is the same for a patient regardless of time recruited into study, 3) Time of 

event recorded is accurate (Goel, Khanna and Kishore 2010). At any timepoint, the probability of 

survival (St) is calculated as: 

𝑆𝑡 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑎𝑙𝑖𝑣𝑒 𝑎𝑡 𝑡0 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑑𝑒𝑎𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑎𝑙𝑖𝑣𝑒 𝑎𝑡 𝑡0
     

Where t0 is the start of the study. The probability of survival until that time point is calculated by 

multiplying the current timepoint survival probability by the survival probability of at all time 

points prior to it (Goel, Khanna and Kishore 2010). In Kaplan-Meier, the null hypothesis is that 



there is no statistically significant difference in the survival of the groups compared and is tested 

by the log-rank test and cox proportional hazard test.  

2.6.5.9 Log rank test 
The Log rank test is used to compare survival data between different groups, testing the null 

hypothesis that the probability of a death occurring at a given time point is the same between 

those groups  (Peto and Peto 1972). For all time points the sum of expected number of events in 

a group (Ex) and observed number of events in each group (Ox) is compared  (Goel, Khanna and 

Kishore 2010). 

Log-rank test statistic = (O1 – E1)2 + (O2 – E2)2 
                                                E1                        E2                                   

Using the Chi-squared (X2) table, the value generated in the test, and the degrees of freedom, the 

significance of the difference between the groups can be calculated. If the test statistic is greater 

than the critical value in the X2 table for the desired p-value, then the null hypothesis can be 

rejected (Goel, Khanna and Kishore 2010). As with CPH the Log-rank test accounts for the whole 

time of survival, rather than a specific time point, however unlike CPH, it is limited by only being 

able report significance between groups and not the size or trend of that difference. Plotting the 

survival curve is beneficial for understanding the data, as the test may report no significance if 

curves overlap.   

2.6.5.10 Receiver operating characteristic analysis 
Receiver operating characteristic (ROC) analysis is used to evaluate the accuracy of diagnostic 

tests, which is defined by their sensitivity, ability to detect true positives, and their specificity, 

ability to detect true negatives. To plot a ROC curve, sensitivity (Y axis) is plotted against 1-

specificity (X axis) across different cut off values of the diagnostic test. Where diagnostic tests 

values reporting below or equal to the given cut off are classed as negative tests  (Zou, O’Malley 

and Mauri 2007). Potential ROC curves are presented in Figure 8. AUC is used to summarise a 

diagnostics tests accuracy, with the aim to achieve as close to 1 as possible. In this manner, tests 

can be compared to one another in their performance, by contrasting the AUC for each ROC, to 

see which is more accurate.  



 

 

 

 

 

 

 

Figure 8: Three example ROC curves are shown. Line A shows the hypothetical ‘gold standard’ of accuracy where area 
under curve (AUC) = 1 and hugs the upper left corner of the graph. Line B shows a typical ROC curve with AUC=0.85. 
Line C is a straight diagonal line at a 45oC angle, which shows what random chance looks like, AUC=0.5. Adapted from 
Mauri et al. 

 

2.7 Statistical analysis 
All figures were generated using GraphPad prism V7. Error bars represent standard deviation 

between repeats (p≤0.05 = *, p≤0.01 = **, p≤0.001 = *** and p≤0.0001 = ****). In most cases a 

minimum of 3 biological repeats were used, with any deviations stated in the text of the 

experiment. In figure legend, n = x refers to the number of biological replicates used.  

2.7.1 Data visualisation by heat map Clustering 
Proteins deemed significant were uploaded to MORPHEUS 

https://software.broadinstitute.org/morpheus/) to visualise results by heat maps. Hierarchal 

clustering was performed for each cell line set of proteins, using Euclidean distance and 

complete linkage. This clustering approached helped identification of outliers in repeats. 

2.7.2 Online tools and databases 
Table 7: Table of databases with online tool name, where it was applied and the link to visit. 

Online tool Application Link 
Metascape Identification of 

enriched biological 
processes 

https://metascape.org/gp/index.html#/main/step1  

MORPHEUS Generation of heatmaps 
and clustering 

http://software.broadinstitute.org/morpheus/ 

PCA online 
tool 

Principal component 
analysis 

https://biit.cs.ut.ee/clustvis/ 

 

https://software.broadinstitute.org/morpheus/
about:blank#/main/step1


3 Investigation of immunophenotypes of AML cell 
lines using IFNG and 5-Azacytidine 

3.1 Introduction  
Currently, patients under the age of 60 with AML are treated with induction chemotherapies. This 

treatment involves a 7-day infusion of Cytarabine combined with an anthracycline, such as 

Daunorubicin, administered on days 1 to 3 (National Comprehensive Cancer Network 2013). This 

regimen leads to better outcomes in patients below the age of 60 (Boddu, Prajwal Chaitanya, et 

al. 2017). Patients who achieve remission following chemotherapy then receive post-remission 

treatments to prevent relapse, commonly including HSCT (de Latour, et al. 2012). The aim of 

HSCT is to replace AML cells with healthy blood cells, which can repopulate the immune system 

However, HSCT carries risks, including graft-versus-host disease and high transplant-related 

mortality. Unfortunately, about half of HSCT patients relapse due to mechanisms that override 

the antileukemic activity of the transplant, leading to a poor prognosis (Rautenberg, et al. 2019). 

One potential reason for HSCT failure, is immune escape, which can be induced by multiple 

pathways, including IFNG signalling. 

AML utilises IFNG signalling to upregulate immunosuppressive factors, aiding in immune 

evasion. This process includes the enhanced expression of molecules such as PD-L1, IDO1, non-

classical HLAs, and BST2, which inhibit cytotoxic immune cells and promote tolerogenic 

phenotypes. Such adaptive immune resistance results in poorer overall survival for patients, 

underscoring the importance of understanding the impact of IFNG signalling on patient 

outcomes. AML cell lines with an IFNG-inducible immunosuppressive phenotype could serve as 

models for developing a related prognostic score to stratify overall survival of patients. It was 

expected that patients with higher IFNG PI scores would have more immunosuppressive AML and 

consequently have poorer outcomes. The roles of IFNG and 5AzaC are discussed in subsequent 

sections. 

3.2 IFNG is utilised by AML to escape the immune system  
IFNG signalling is activated when the IFNG cytokine binds to its corresponding receptors on cell 

surfaces. This binding causes the receptor subunits to dimerise and rearrange, leading to the 

activation of receptor-associated JAKs, which auto-phosphorylate and subsequently 

phosphorylate STAT proteins. The phosphorylated STAT proteins form homodimers, translocate 



to the nucleus, and initiate the transcription of IFNG-stimulated genes (ISGs). These ISGs then 

direct the IFNG signalling cascade as depicted and described in Figure 9. 

Figure 9: Diagram depicting the IFNG signalling process. IFNG signal transduction is initiated by the IFNG cytokine 
binding to the IFNG receptor (IFNGR), causing a conformational change (1). Shape change of the receptor triggers the 
Jak2 kinase to auto phosphorylate and subsequently phosphorylate Jak1 (2). Once activated, Jak1 creates two 
adjacent docking sites for STAT1 on the IFNGR by phosphorylating tyrosines on each IFNGR1 chain. STAT1 then docks 
here and is phosphorylated, it then forms a homodimer (3). The phosphorylated STAT1 homodimer undocks from the 
receptor and relocates to the nucleus where it binds the ‘Gamma-interferon-activation sites’ (GAS) elements to initiate 
the IFNG regulated transcription program, which produces genes such as IRF1, TRIM21, TRIM8 and PML (4). SOCS1/2 
are proteins which bind to JAK1/2 to prevent STAT1 phosphorylation and thereby inhibit IFNG signalling (5). TRIM8 which 
is also a product of the IFNG signalling pathways targets SOCS1 for degradation to control its repressive effects on 
signalling (6). Finally, protein tyrosine phosphatases such as SHP1 and SHP2 disrupt IFNG signalling in the cytosol by 
preventing STAT1 phosphorylation by dephosphorylating JAK1/2 and IFNGR1 (7). Additionally, PTPs in the nucleus 
dephosphorylate incoming STAT1 homodimers and export them from the nucleus (8). Figure adapted from 
(Schroder, et al. 2004, Toniato, et al. 2002), blue arrows show movement of phosphoryl groups between 
proteins, black arrow indicates export and red flathead shows inhibitory effect. 

AML manipulates IFNG signalling to upregulate escape mechanisms, creating an 

immunosuppressive environment and promoting immune escape, a process termed 'adaptive 

immune resistance (AIR).' These escape mechanisms contribute to drug resistance by disabling 

the immune system and preventing aspects of the cancer immune cycle, such as T-cell 

activation. For example, chemotherapy destroys AML cells and releases antigens, which the 

immune system can use to target remaining AML cells. However, if T-cells primed with these 

antigens are inhibited or unable to proliferate, many AML cells can escape, reducing the efficacy 



of chemotherapy. Furthermore, the escaped AML cells may be adapted to evade the immune 

system and proliferate, creating more chemotherapy-resistant AML cells (Chen, D. S. and 

Mellman 2017). 

Chronic IFNG signalling is known to induce immunosuppressive pathways in AML. This chapter 

investigates three key mechanisms: the programmed cell death protein 1, programmed death-

ligand 1 (PD-1/PD-L1) pathway, Indoleamine 2,3-dioxygenase 1 (IDO1), and non-classical human 

leukocyte antigen (HLA) class I molecules. 

3.2.1 Programmed death ligand 1 (PD-L1) mediated immune escape 
PD-1 is a well-studied negative checkpoint in cancer. PD-L1 expression is induced by IFNG 

signalling when the STAT1 homodimer binds to the gamma interferon activate sites on DNA in the 

nucleus to activate transcription of several genes (Figure 9). Among those is IRF1, which then 

binds to the promoter of the PD-L1 gene, activating its transcription (Garcia-Diaz, et al. 2017). 

This increases PD-L1 expression on the surface of AML cells which then bind to PD-1 on tumour-

specific T-cells. This interaction transmits an inhibitory signal that suppresses T-cell proliferation, 

facilitating immune evasion (Ribas 2015). Modest constitutive PD-L1 expression has been 

identified in most myeloid and lymphoid cell lines, excluding THP-1. Elevated PD-L1 levels have 

been reported in AML patients with poor survival  (Wang, F., et al. 2022). Furthermore, IFNG-

inducible PD-L1 expression has been shown to reduce CTL-mediated lysis and promote immune 

escape (Berthon, et al. 2010).  
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Figure 10: Diagram of Interferon mediated upregulation of PDL-1 . When T-cells bind via their TCR to the antigen 
presenting MHC of the tumour cell (1), T-cells secrete IFNG (2), resulting in abnormal upregulation of PD-L1 on the 
tumour cell (3).  PD-L1 on tumour cells binds to the PD1 molecules expressed on T-cell (4). This initiates a signalling 
cascade that inhibits the T-cell from functioning (5) and allows the tumour cell to escape T cell mediated cytotoxicity. 



3.2.2 Indoleamine 2,3-dioxygenase-1 (IDO1) mediated immune escape 
IFNG induces IDO1 expression primarily through the JAK/STAT pathway. JAK phosphorylates 

STAT1, which then dimerises and moves to the nucleus to bind the GAS-2 and GAS-3 sites 

upstream of the IDO1 gene, activating its expression (Huang, et al. 2022). Additionally, IFNG and 

STAT1 indirectly boost IDO1 expression by inducing IRF-1 synthesis, which binds to the ISRE-1 and 

ISRE-2 sites. Notably, IRF-1 has been found to be more impactful for inducing IDO1 expression 

than STAT1 (Robinson, Cory M., Hale and Carlin 2005). IDO1 is an enzyme involved in the 

kynurenine (Kyn) production pathway and is commonly expressed by solid tumours. Kynurenine 

binds to the aryl hydrocarbon receptor on T-cells and dendritic cells, prompting naïve CD4+ T-

cells to differentiate into regulatory T-cells and causing dendritic cells to adopt a tolerogenic 

phenotype, thereby facilitating immune escape  (Platten, et al. 2015). A study on cultured 

leukemic blast cells from childhood AML found that IFNG induced IDO1 in approximately half of 

the samples, which was associated with a poorer prognosis (Folgiero, et al. 2014)Additionally in 

adult AML patients, a higher serum kynurenine/tryptophan (Kyn/Trp) ratio, indicative of elevated 

IDO activity, has been linked to decreased survival (Corm, et al. 2009). IDO1 overexpression has 

also been associated with regulatory T-cell phenotypes in CN-AML, correlating with poor 

prognosis (Arandi, et al. 2018).  
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Figure 11: Diagram showing how IDO1 expression on myeloid cells promotes an immune suppressive micro-
environment: IFNG induces the production of IDO/TDO in the tumour cell (1). IDO/TDO catalyse the first step in the 
breakdown of Trp; producing Kynurenine (Kyn) (2). CD4+ T-cells react to decreased Trp by preventing protein synthesis 
through increased GCN2 (3) and inhibiting cell growth by decreasing mTOR (4). CD4+ T-cells sense the Kyn increase 
by its binding to AHR, and start inflammation signalling (5), triggering favoured differentiation into Treg cells over T-
effector cells (6).  In addition, Kyn inhibits IL-2 signalling which inhibits survival of memory CD4 T-cells (7). 



3.2.3 Non-classical HLA-G mediated immune escape 
Classic major histocompatibility complexes (MHC) such as HLA-A, HLA-B and HLA-C present 

antigens for recognition by T-cells to mount immune responses to pathogens or other threats. 

Meanwhile, nonclassical MHC such as HLA-G and HLA-E are often overexpressed by AML to 

prevent immune cells from killing them (Kochan, et al. 2013, Halenius, Gerke and Hengel 2015). 

HLA-G inhibits CD8+ T-cells and NK cells, induces CD4+ immunosuppression, and triggers 

apoptosis of activated CD8+ T-cells and NK cells  (Lin, A. and Yan 2018). Its expression has been 

linked to immune tolerance in AML patients, with significantly higher levels of shed HLA-G 

reported in the serum of those with more advanced AML, particularly in the FAB-M4 and M5 

subtypes (Gros, et al. 2006). Moreover, stimulating cells from FAB-M4 AML patients with IFNG 

was observed to increase the secretion of HLA-G (Gros, et al. 2006). AML patients expressing 

HLA-G have been found to also have significantly higher leukaemic blasts in bone marrow than 

patients that were negative for HLA-G. Furthermore, the percentage of T cells is lower in HLA-G 

positive patients, indicating a poorer prognosis (Yan, et al. 2008). 

3.2.4 Non-classical HLA-E mediated immune escape in AML 
Surface expression of HLA-E is induced by IFNG signalling via the JAK/STAT1 pathway and further 

promoted by overactive proteosome processing (Zheng, et al. 2023). HLA-E promotes immune 

suppression in AML by interacting with the inhibitory receptor NKG2A on NK cells, deactivating 

them (Sullivan, et al. 2008). In healthy cells, HLA-E expression depends on HLA class I leader 

peptides, and a decrease in HLA class I reduces HLA-E expression. However, in AML, HLA-E is 

expressed even without HLA class I. Normally, NK cells detect HLA class I through HLA-E 

expression, and a lack of HLA-E indicates reduced HLA class I, triggering NK cell-mediated lysis. 

AML cells exploit this by downregulating HLA class I and upregulating HLA-E to evade NK cell-

mediated lysis (Nguyen, et al. 2009). Increased HLA-E expression has been observed on primary 

blasts isolated from AML patients when exposed to IFNG producing NK cells (Nguyen, et al. 

2009). Additionally, high IFNG pathway signalling in AML patients with the del7/7q mutation and 

monocytic differentiation correlates with HLA-E expression, and these HLA-E expressing AML are 

found closer to T cells than their HLA-E negative counterparts (Wang, B., et al. 2024). 

3.2.5 Disruption of methylation is associated with AML development and 
outcomes 

Disruption of enzymes involved in DNA methylation pathways affects haematopoiesis and 

contributes to initiation and progression of AML (Yang, X., Wong and Ng 2019b). Clonal 

haematopoiesis refers to the presence of genetically distinct hematopoietic stem cells (HSCs) 



within an individual, often harbouring somatic mutations. Specifically, enzymes involved in DNA 

methylation, such as DNMT3A and TET2, are frequently mutated (Figueroa, Lugthart, et al. 2010, 

Yang, X., Wong and Ng 2019b). These mutations impair differentiation, enhance self-renewal, and 

promote clonal expansion(Tadokoro, et al. 2007, Yang, X., Wong and Ng 2019b). Consequently, 

mutated HSCs outcompete healthy HSCs, leading to clonal expansion and the emergence of pre-

leukemic clones. Over time, these pre-leukemic clones accumulate additional mutations, 

including those affecting cellular signalling pathways (e.g., JAK2, TP53). The competitive 

advantage of mutated HSCs allows them to persist, leading to the transformation into leukemic 

stem cells (LSCs)(Yang, X., Wong and Ng 2019b). LSCs outcompete HSCs through multiple 

strategies. They flourish in a pro-inflammatory environment by releasing TNF-α, which boosts NF-

κB activity, supporting their survival and growth (Kagoya, et al. 2014). They also evade the immune 

system by increasing TIM3 expression, emitting chemokines, and, inducing inflammatory 

secretome helping them avoid immune detection and enabling them to proliferate (Niu, Peng and 

Liu 2022). Furthermore, LSCs manipulate the bone marrow niche by interacting with BMSCs 

(Bone Marrow Stromal Cells) to enhance their survival and resistance to treatment, while 

metabolic reprogramming enables them to efficiently utilise resources, promoting their growth 

and resistance to therapy (Moschoi, et al. 2016, Chen, Wen-Lian, et al. 2014, Niu, Peng and Liu 

2022). LSCs drive the production of leukemic blasts, ultimately culminating in AML(Yang, X., 

Wong and Ng 2019b). 

5AzaC is an analogue of the nucleoside-based cytidine. It is a drug which, administered in low 

doses, inhibits DNA methyltransferase 1 (DNMT1) and in high doses incorporates into DNA and 

RNA, causing cell death (Frosig 2015). DNMT1 manages methylation during DNA replication, it 

favours methylation of hemi-methylated sites and is known as the ‘maintenance’ enzyme as it 

restores methylation sites post DNA replication  (Ambrosi, Manzo and Baubec 2017). Although 

DNMT1 is the highest expressed DNMT in dividing cells, DNMT3A and DNMT3B need to be 

considered as they are not targeted by 5AzaC and play a more active role in methylation. 

DNMT3A/B are de novo DNMTs, meaning they catalyse addition of methyl groups to 

unmethylated DNA, as opposed to DNMT1, which maintains methylated sites. Therefore, while 

treatment with 5AzaC prevent maintenance of already established methylation sites, DNMT3A/B 

are still able to continue creating new methylation sites (Figure 12). Studies have shown that AML 

methylation profiles are linked to patient outcomes (Yang, Wong and Ng 2019). 



 

 

To develop prognostic signatures, cell lines were treated with 5AzaC to inhibit methylation and 

observe changes in mRNA expression. Cell lines were treated with 5AzaC alone and in 

combination with IFNG to determine if demethylation affected the cell lines' responses to IFNG 

at the transcript level. The expectation was that demethylation would induce further 

inflammatory responses to IFNG treatment and could be related to poorer outcomes in patients. 

  

Figure 12:A diagram of methylation status maintenance by DNMT1, DNMT3A and DNMT3B and TET1/2/3. Adapted from 
Ambrosi et al paper (Ambrosi, Manzo and Baubec 2017). Methyl groups are added to the fifth carbon atom on cytosine 
bases of DNA by DNMT3A and DNMT3B. Pre-established methylated sites are maintained by DNMT1. In the absence 
of DNMT1, methylated sites can be lost passively through cell division. TET enzymes actively remove methyl groups 
through conversion to oxidised derivatives, which are consequently removed by DNA repair or lost passively.  



3.3 Objectives of this thesis 
Cytarabine and Daunorubicin are still the backbone of AML therapy after many decades (Blair 

2018). Further research into how to improve patient outcome using these chemotherapies and to 

identify patients who are most likely to respond is needed. IFNG is an essential component of the 

anticancer response which could have negative interplay with chemotherapy in treating AML, as 

well as the success of HSCT (Bernasconi and Borsani 2019, Kong, et al. 2016). Cell line models 

provide an easily accessible way to study the relationship between AML, IFNG, chemotherapy 

and HSCT.   

This thesis seeks to generate prognostic signatures based on AML cell lines treated with IFNG and 

5AzaC and test if ‘high’ IFNG scores are associated with poorer outcome in patients. To do this, 

cell lines must first be selected that exhibit IFNG signalling and IFNG mediated 

immunosuppressive phenotypes, before proceeding to RNA seq (chapter 4) and score generation 

and testing (chapter 5). 

In this chapter, four AML cell lines were treated with IFNG to induce IFNG signalling and 

upregulate expression adaptive immune resistance (AIR) molecules. Cells were also treated with 

5AzaC, a hypomethylating drug used to treat AML in combination with cytarabine for two reasons  

(Huls 2015). Firstly, hypomethylating agents are used in standard clinic for AML and MDS 

treatment, especially in older and less medically fit patients (Stomper, et al. 2021). Secondly, it is 

known that the process used to immortalise cell lines induces significant DNA methylation, and 

therefore silencing at gene promoters, causing global shifts in gene expression and divergence 

from the original transcriptional state. The resultant changes in RNA and protein expression 

measured post treatment, give insight into possible pathways activated by IFNG and 5AzaC 

treatment, acting as a model for hypomethylation and inflammation within AML cells. The final 

aim was to use AML cell lines models to derive a prognostic score to predict patient response to 

induction therapy. 

 

  



3.4  Results  
 

3.4.1 IFNG and demethylation treatment validated prior to characterising 
cell lines 

IFNG signalling and 5AzaC mediated demethylation were validated by western blot- prior to 

further characterisations (Figure 13). Cells were seeded at 0.5 x 106 cells/mL and suspended in 

media with either: 

1. 5 ng/mL IFNG and harvested after 30 minutes. 

2. 0.5 µM of 5AzaC at 0 and 24 hours, and then harvested after 48 hours of 5AzaC treatment. 

3. 0.5 µM of 5AzaC at 0 and 24 hours, followed by 5 ng/mL IFNG at 48 hours, and then 

harvested 30 minutes later. 

IFNG was expected to increase the expression of STAT1, indicating the activation of the IFNG 

JAK/STAT1 signalling pathway. Treatment with 5AzaC was expected to reduce the expression of 

DNMT1, demonstrating that the drug effectively degraded DNMT1. Results showed an increase 

in STAT1 protein expression with IFNG treatments and decrease in DNMT1 expression with 5AzaC 

treatment in both cell lines. 
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Figure 13: Western blot showing IFNG induced STAT1 expression and 5AzaC dependent degradation of DNMT1 in AML cell 
lines. Cell lysates were generated from Kasumi-1 and KG-1 cells both untreated and treated with 5 ng/ml IFNG, 0.5 µm 
5AzaC at 0 and 24 hrs, or a combination of both. Expression of DNMT1 and STAT1 are shown alongside the loading control 
GAPDH. Protein was loaded at 30 µg per sample.  



3.4.2 Analysis shows AML cell Lines express differential IFNG response 
and immunosuppressive phenotypes 

IFNG response and immunosuppressive phenotypes was assessed by measuring known IFNG 

regulated molecules using various methods. This served to characterise the AML cell lines in the 

context of an inflammatory IFNG producing environment and assess them as models for immune 

resistance concurrently. Molecules measured included the AIR molecules as well as a 

downstream product of IDO1/TDO2, kynurenine. First cell lines were assessed for induction of 

genes for IDO1 (IDO1), TDO2 (TDO2) and PDL1 (CD274) in response to treatment with 100ng/mL 

IFNG using RT-PCR (Figure 14).  

Figure 14: Expression of IDO1, TDO2 and CD274 in AML cell lines after treatment with IFNG. Cell lines were treated 
with IFNG (100 ng/mL) for 48 hrs. All genes were measured using the quantitative real-time PCR and 2-ΔΔT method 
(Schmittgen and Livak 2008). Gene expression was normalised against the housekeeping gene, GUSB. Grey = Control, 
Red = IFNG treated samples. Statistical testing done by the Holm-Sidak multiple comparisons method, * = P< 0.05, ** 
= P< 0.01, *** = P<0.001 and **** = P<0.0001, n=3-5. Error bars indicate Standard deviation. 

 All of the cell lines reported an IFNG induced upregulation of IDO1 (SIG-M5 Ctrl = 0.0030, IFNG = 

0.2176 ΔΔCT, THP-1 Ctrl = 0.0044, IFNG = 0.0233 ΔΔCT, KAS-1 Ctrl = 0.0004, IFNG = 0.0027 ΔΔCT, 

KG-1 Ctrl = 0.0018, IFNG = 0.0080 ΔΔCT). However, upregulation of IDO1 was only significant in 

SIG-M5 and KG-1 cell lines (SIG-M5 P<0.01 and KG-1 P<0.001). The increase in IDO1 levels in the 

SIG-M5 and KG-1 cell lines was confirmed by a significant rise in kynurenine production, a 

downstream product of IDO1, in both lines (SIG-M5 Ctrl = 1.9 µM, IFNG = 37.46 µM ,P<0.01, and, 

KG-1 Ctrl = 0.12 µM, IFNG = 1.07 µM, P<0.01) (Figure 15). TDO2 was significantly upregulated in 



both SIG-M5, and THP-1 cell lines (SIG-M5 Ctrl = 0.0105 ΔΔCT, IFNG = 0.1068 ΔΔCT, P<0.001, and 

THP-1 Ctrl = 0.0018 ΔΔCT, IFNG = 0.0837 ΔΔCT, P<0.0001). 

 A significant increase in expression of CD274 in response to IFNG treatment was observed in all 

cell lines, see Figure 14 (SIG-M5 Ctrl = 0.0006 ΔΔCT, IFNG = 0.0321 ΔΔCT, P<0.05, THP-1 Ctrl = 

0.0010 ΔΔCT, IFNG = 0.1310  ΔΔCT, P<0.0001, KAS-1 Ctrl = 0.0007 ΔΔCT, IFNG =  0.0438 ΔΔCT, 

P<0.01, KG-1 Ctrl = 0.0017 ΔΔCT, IFNG = 0.0287 ΔΔCT, P<0.0001). This change was also reported 

by cell surface staining using flow cytometry, Figure 16.  

All cell lines significantly upregulated surface expression of the PD-L1 protein after IFNG 

treatment (SIG-M5 Ctrl = 0.10 MFI, IFNG = 6.96 MFI, P<0.01, THP-1 Ctrl = 0.51 MFI, IFNG = 19.70 

MFI, P<0.001, Kasumi-1 Ctrl = 0.62 MFI, IFNG = 1.35 MFI, P<0.0001 and KG-1 Ctrl = 0.77 MFI, IFNG 

= 1.04 MFI, P<0.05). In addition, highly significant upregulation of the classical immune response 

Figure 15: Expression of Kynurenine (uM) in AML cell lines after treatment with IFNG. Cell lines were treated with 100 
ng/mL IFNG for 48 hrs, measured by Ehrlich’s reagent, n=3. Kynurenine was extracted using 30% TCA, from samples, 
controls, and standards. The concentration of kynurenine samples was estimated using a standard curve of absorbance 
values for set kynurenine concentrations. Grey = Control, Red = IFNG treated samples. Statistical testing done by the 
Holm-Sidak multiple comparisons method, * = P< 0.05, ** = P< 0.01, *** = P<0.001 and **** = P<0.0001, n=3. Error bars 
represent standard deviation.  

Figure 16: Expression of surface proteins HLA-A,B,C, HLA-E, HLA-G and PDL1 on AML cell lines before and after IFNG 
treatment. Cell lines were treated with IFNG (100 ng/mL) for 48 hrs, expression was measured by cell surface staining 
flow cytometry, n=3. Grey = Control, Red = IFNG treated samples. Statistical test: Holm-Sidak multiple comparisons 
method, * = P< 0.05, ** = P< 0.01, *** = P<0.001 and **** = P<0.0001, n=3-4. Error bars represent standard deviation. 



MHC HLA-A, B and C was detected in all cell lines, indicating functional classic IFNG response 

in all samples (SIG-M5 Ctrl = 158.11 MFI, IFNG = 270.10 MFI, P<0.001, THP-1 Ctrl = 61.03 MFI, 

IFNG = 148.98 MFI, P<0.0001, Kasumi-1 Ctrl =11.20 MFI, IFNG = 120.97 ,P<0.0001 and KG-1 Ctrl 

= 35.72 MFI, IFNG = 120.97, P<0.001). The largest increase was seen in the Kasumi-1 cell line, 

with an approximate 10-fold increase.  All cell lines except for KG-1 significantly upregulated HLA-

E in response to IFNG (SIG-M5 Ctrl = 0.09 MFI, IFNG = 3.12 MFI, P<0.0001, THP-1 Ctrl = 0.46 MFI, 

IFNG = 1.40 MFI , P<0.01,  Kasumi-1 Ctrl = 1.62 MFI, IFNG = 5.17 MFI, P<0.01) and HLA-G was only 

significantly upregulated in the SIG-M5 cell line (SIG-M5 Ctrl = 1.24 MFI, IFNG = 26.53 MFI, 

P<0.0001). These results show all cell lines displayed IFNG response, but with varying degrees of 

induction of AIR targets. The gating strategy used to obtain this data can be found in the methods 

section. Example of histogram results are shown in Figure 17.



Figure 17: Examples of Histograms and Gating Strategy Used to Generate Data in Figure 19 . Gates were set on unstained samples as described in methods section. This figure 
shows histograms for HLA-A,B,C (Kasumi-1), HLA-E (KG-1), HLA-G (SIG-M5) and PD-L1 (THP-1) in untreated control  cells (top row) and cells treated with IFNG (100 ng/mL) for 48 
hrs (bottom row). Antibodies, band pass filter and excitation wavelength used are displayed on the X-axis for each graph. 



3.4.3 Global Proteomic profiles demonstrate varied response to IFNG 
treatment 

Assessment of immunosuppressive molecules upregulated by IFNG reported all cell lines to have 

immunosuppressive AIR responses, with the SIG-M5 and THP-1 cell lines displaying similar 

profiles. The SIG-M5 cell line was the only cell line to express all AIR molecules, suggesting a more 

immunosuppressive IFNG induced phenotype than its counterparts. However, looking at only 

specific molecules associated with a particular response paints a limited picture. To 

complement this data and gain a broader and more detailed view of responses, proteomic 

profiles of IFNG treated cell lines were compared to their untreated control counterparts, as well 

as each other. Cell lines were treated with 100 ng/mL of IFNG, and harvested at 48 hrs to be 

analysed by SWATH-MS.    

Cell lines reported between 2,775 and 3,390 proteins differentially expressed in response to IFNG 

treatment (Figure 18). The SIG-M5 and THP-1 cell lines showed the most proteins to be 

differentially expressed between control and IFNG treated condition, with a similar number of 

proteins up and down regulated. The Kasumi-1 cell line reported approximately 300 fewer 

proteins differentially expressed than SIG-M5 and THP-1, followed by KG-1 with the smallest 

breadth of response at approximately 600 less proteins expression changed than the leading 

THP-1 cell line.  

 

Figure 18: Differential protein expression in AML cell lines in response to IFNG treatment. Cell lines were treated with 
IFNG (100 ng/mL) for 48 hrs and protein expression measured by SWATH-MS and compared to untreated controls. 
Total number was also broken down into how many of those proteins are up or down regulated with IFNG treatment, 
n=5/6.   

 

 



3.4.3.1 Pearson correlation and principal component analysis of proteomics show variation 
between cell lines and treatment 

The normalised proteomic profiles reported for samples were assessed for correlation to 

determine variability between cell line response to IFNG, as well as identify any replicate outliers. 

The Pearson correlation coefficient was calculated in Graphpad Prism V using pairs of samples 

and visualised as a heat map in Morpheus (Figure 19). The clustering groups cell lines together 

based on if cells were untreated or treated with IFNG. All cell line and treatments clustered neatly 

except for KG-1.  

Proteomic data was also analysed by principal component analysis (PCA), see Figure 20. 

Conversion of proteomics data to principle components (PCs) confirmed the grouping of cell 

lines that were observed by the Pearson correlation heat map. Proteomic profile data was used 

Figure 19: Pairwise comparisons of Pearson correlation coefficients between proteomics profiles of untreated control 
and IFNG treated AML cell lines. Coefficients were calculated in GraphPad prism V5, then visualised and clustered 
using the Morpheus online tool https://software.broadinstitute.org/morpheus/). Clustering was performed with 
Euclidean distance and complete linkage. Blue indicates low correlation and red indicates higher correlation between 
groups. 



to generate a 2D PCA plot, where PC1 accounted for 23.2 % and PC2 for 17.3 % of variance in the 

samples (Figure 20 A). The plot confirmed cell line replicate fidelity, where samples only 

overlapped with samples from the same cell line. There was no overlap between SIG-M5 control 

cells, and IFNG treated SIG-M5 cells, indicating they are different in their profiles. There was some 

overlap of control and IFNG treated Kasumi-1 and KG-1, indicating while IFNG induced a change 

in these cell lines, the change was not as large as SIG-M5, when measured as a function of PC1 

and PC2. Lastly, IFNG treated THP-1 overlapped with its untreated control suggesting that 

treatment with IFNG did not induce a large shift in its proteomic profile. However, PC1 and PC2 

only represent 40.5% of variability in the whole data sample which includes 4 cell lines. PC1 and 

PC2 may better demonstrate the variability between SIG-M5 and IFNG treated SIG-M5, than 

between the other cell lines and their IFNG treated counterparts. When cell lines were compared 

by PC3 and PC4 (Figure 20 B), then Kasumi-1, SIG-M5 and KG-1 control and IFNG treated profiles 

were separated. 

 



  

 

Figure 20: Principle component analysis of proteomic profiles of untreated control and IFNG treated cell lines. A) 2D 
Principle component analysis of cell line proteomic profiles performed using ClustVis (https://biit.cs.ut.ee/clustvis/). 
A) Shows proteomic profiles as summarised by PC1 and PC2, which account for a total of 40.5% of the data variability. 
B) Shows proteomic profiles summarised by PC3 and PC4, which represent a total of 15.9% of the data variability. 
Prediction ellipses are 95% confident that any new observation from cell lines of this treatment, will fall within the 
ellipse. 

A) 

B) 

https://biit.cs.ut.ee/clustvis/


3.4.3.2 IFNG induced changes to all four AML cell lines proteomic profiles 
All four cell lines tested (Kasumi-1, KG-1, SIG-M5 and THP-1) reported changes to proteomic 

profiles in response to IFNG treatment, numbers of differentially expressed proteins are shown in 

Figure 18. These proteins were assessed for fold change and ‘confidence’ of change. Methods 

outlined by Lambert et al were used to determine significant proteins of interest using their 

‘confidence’ cut off (Lambert, et al. 2013). Using this method, proteins with confidence above 

75% were considered significant, but for the change in expression of a target to be considered 

‘affected’ by IFNG treatment, a fold change >1.5 was required. Proteins between 60 and 75% 

‘confidence’ were also be considered significant if they displayed a fold change of 2 or above. 

Between all four cell lines, only 485 of the 3,744 proteins detected were significantly differentially 

expressed according to confidence and fold change cut off. Expression of those proteins was 

compared in a heat map in Figure 21. Normalised protein expression was Log2 transformed, and 

z-score values were used to generate heat maps. Hierarchical clustering by Euclidean distance 

of rows and columns was performed to produce Figure 21. Control and IFNG treated cell line 

samples clearly cluster based on this selection of proteins. This data has also been presented 

with row clustering to show each respective cell line control samples and IFNG treated samples 

side by side, for ease of visual comparison (Figure 21 B). Side by side comparisons between 

untreated and treated samples of the same cell line show a large breadth of changes in the SIG-

M5 and THP-1 cell lines post IFNG treatment. Comparatively, the Kasumi-1 and kg-1 cell lines 

show fewer visually striking differences between IFNG treated and untreated samples. The four 

cell lines demonstrate that there are different IFNG induced proteomic profiles present.  



The number of proteins uniquely differentially expressed in each cell line, as well as commonly 

changed in multiple cell lines, is shown by Venn diagram in Figure 22. In all cell lines, more 

proteins were significantly upregulated than downregulated in response to IFNG. The SIG-M5 cell 

line had the largest number of significantly differentially expressed proteins, followed by SIG-M5, 

Kasumi-1 and finally KG-1 (341, 141, 101 and 48 respectively). The Venn diagram of upregulated 

A) 

B) 

Figure 21: Heat map comparison of differentially expressed proteins across untreated control and IFNG treated AML 
cell lines. A) Heat map comparing 485 proteins differentially expressed according to confidence and fold change cut 
offs ( >60% confidence, 2-fold change, >75% confidence, 1.5-fold change), Cell lines were clustered by rows and 
columns to show cell line and treatments successfully cluster, B) Proteomics data of the 485 proteins clustered only 
on rows, to allow for easier visual comparison between untreated and IFNG treated samples of the same cell line 
n=5/6. Key for heat maps shown top left for expression values. Heat maps generated in Morpheus 
(https://software.broadinstitute.org/morpheus/). Blue indicates lower expression; red indicates higher expression. 



proteins shown in Figure 22 A shows 177 of the 251 proteins upregulated in SIG-M5 are unique to 

the cell line. The remaining 74 proteins were upregulated in other cell lines too. SIG-M5 and THP-

1 share the most in common upregulated proteins out of all cell line combinations (28 proteins), 

suggesting they are more similar in response to IFNG, than the other combinations of cell lines. 

Overall, there were only 13 proteins significantly upregulated in all IFNG treated cell lines, 

demonstrating the AML cell lines to have unique IFNG response profiles. Far fewer proteins were 

significantly downregulated in all cell lines, and even fewer shared. The most downregulated 

proteins in common between cell lines was between SIG-M5 and THP-1, which have 4 proteins in 

common. However, each cell line had a distinct set of uniquely regulated proteins, indicating their 

unique response patterns to interferon exposure. To further characterise these cell lines beyond 

the number of proteins differentially expressed by IFNG treatments, lists of proteins significantly 

upregulated and down regulated per cell line was subject to enrichment analysis by metascape 

(https://metascape.org).  

 

3.4.3.3 Differentially expressed proteomics profiles were input to Metascape for pathway 
enrichment analysis 

Significantly differentially expressed proteins were converted to gene lists and input to 

enrichment analysis by metascape to identify which biological pathways were most changed due 

to IFNG treatment. The Metascape tool draws on multiple databases to perform its analysis 

including: KEGG Pathway, GO Biological Processes, Reactome Gene Sets, Canonical Pathways, 

A) B) 

Upregulated Downregulated 

Figure 22: Venn diagram depicting unique and common proteins significantly differentially expressed in response to 
IFNG across all four cell lines. A) Shows upregulated proteins, while B) shows downregulated proteins. 

https://metascape.org/


CORUM, TRRUST, DisGeNET, PaGenBase, Transcription Factor Targets, WikiPathways, and 

PANTHER Pathway. Metascape uses the whole genome as background for enrichment (Zhou, et 

al. 2019). To be considered significant, a process had to be reported from the input gene list a 

minimum of 3 times, with a ratio of more than 1.5 times observed counts compared to counts by 

chance. The processes that pass were grouped into clusters by similarities, and the most 

statistically significant member was reported to represent the cluster. As too few significantly 

differentially expressed proteins were unique in some cell lines to produce a meaningful analysis, 

for example only 11 proteins were uniquely upregulated in KG-1, full lists of all proteins 

significantly upregulated or downregulated regardless of commonalties were submitted to 

metascape. The most significant processes in relation to input up or downregulated lists are 

reported in Tables below: 

 

Table 8: The topmost significantly enriched pathways in KG-1 treated with IFNG according to up and down regulated 
protein lists, sorted by significance. Proteins were converted into gene IDs and so are represented by ‘gene’ lists. 
Column ‘gene’ specifies the number of ‘genes’ differentially expressed in the data, from the corresponding pathway. 

Upregulated Downregulated 

Summary 
process ID 

Description Log10(P) Gene Summary 
process ID 

Description Log10(P) Gene 

GO:0002479 Antigen processing 
and presentation of 
exogenous peptide 
antigen via MHC class 
I, tap-dependent 

-17.78 10/75 GO:0043299 Leukocyte 
degranulation 

-2.77 3/537 

R-HSA-
1280215 

Cytokine signalling in 
immune system 

-17.73 17/715     

GO:0019885 Antigen processing 
and presentation of 
endogenous peptide 
antigen via MHC class 
I 

-13.54 6/17     

R-HSA-
196807 

Nicotinate 
metabolism 

-7.21 4/31     

WP619 Type II interferon 
signalling (IFNG) 

-4.88 3/37     

GO:0008285 Negative regulation of 
cell population 
proliferation 

-2.65 5/753     

GO:0046649 Lymphocyte 
activation 

-2.64 5/754     

 

  



Table 9: The topmost significantly enriched pathways in Kasumi-1 treated with IFNG according to up and down 
regulated protein lists, sorted by significance post FDR. Proteins were converted into gene IDs and so are represented 
by ‘gene’ lists. Column ‘gene’ specifies the number of ‘genes’ differentially expressed in the data, from the 
corresponding pathway. 

Upregulated Downregulated 

Summary 
process ID 

Description Log10(P) Gene Summary 
process ID 

Description Log10(P) Gene 

R-HSA-
913531 

Interferon signalling -38.17 27/199 R-HSA-72766 Translation -7.00 6/291 

GO:0034341 Response to interferon-gamma -27.15 21/197 CORUM:324 39s ribosomal 
subunit, 
mitochondrial 

-5.10 3/48 

GO:0031347 Regulation of defence 
response 

-19.37 24/697 GO:0051640 Organelle 
localization 

-3.80 5/655 

GO:0019883 Antigen processing and 
presentation of endogenous 
antigen 

-16.75 9/26 WP4223 RAS signalling -3.35 3/185 

GO:0001817 Regulation of cytokine 
production 

-13.59 20/782 GO:0007005 Mitochondrion 
organization 

-2.01 3/548 

WP619 Type ii interferon signalling 
(IFNG) 

-13.06 8/37     

R-HSA-
1169410 

Antiviral mechanism by IFN-
stimulated genes 

-11.93 9/80     

GO:0002683 Negative regulation of immune 
system process 

-11.27 14/403     

WP5039 Sars-cov-2 innate immunity 
evasion and cell-specific 
immune response 

-9.09 7/68     

GO:0002366 Leukocyte activation involved 
in immune response 

-8.96 15/720     

R-HSA-
8983711 

OAS antiviral response -8.17 4/9     

GO:0032612 Interleukin-1 production -7.19 7/127     
GO:0009617 Response to bacterium -6.13 12/728     
GO:0035456 Response to interferon-beta -5.79 4/31     
GO:1903706 Regulation of hemopoiesis -5.63 9/417     
GO:0051259 Protein complex 

oligomerization 
-5.46 7/229     

GO:0002718 Regulation of cytokine 
production involved in immune 
response 

-5.43 5/84     

GO:0008285 Negative regulation of cell 
population proliferation 

-5.15 11/753     

GO:0060759 Regulation of response to 
cytokine stimulus 

-4.84 6/189     

GO:0035455 Response to interferon-alpha -4.58 3/21     

 

  



Table 10: The topmost significantly enriched pathways in SIG-M5 treated with IFNG according to up and down regulated 
protein lists, sorted by significance. Proteins were converted into gene IDs and so are represented by ‘gene’ lists. 
Column ‘gene’ specifies the number of ‘genes’ differentially expressed in the data, from the corresponding pathway. 

Upregulated Downregulated 

Summary 
process ID 

Description Log10(P) Gene Summary 
process ID 

Description Log10(P) Gene 

GO:004505
5 

Regulated 
exocytosis 

-39.03 61/780 R-HSA-69190 DNA strand 
elongation 

-17.34 10/32 

R-HSA-
1280215 

Cytokine 
signalling in 
immune system 

-25.46 46/715 R-HSA-69183 Processive synthesis 
on the lagging strand 

-9.03 5/15 

R-HSA-
1280218 

Adaptive immune 
system 

-19.74 41/763 R-HSA-15869 Metabolism of 
nucleotides 

-8.90 8/100 

hsa04145 Phagosome -18.76 22/168 R-HSA-
8953854 

Metabolism of RNA -7.47 14/673 

R-HSA-
913531 

Interferon 
signalling 

-17.15 22/199 M66 Pid myc active 
pathway 

-6.65 6/79 

GO:005077
8 

Positive regulation 
of immune 
response 

-16.39 37/761 GO:0034655 Nucleobase-
containing 
compound catabolic 
process 

-6.61 12/557 

WP3888 Vegfa-vegfr2 
signalling pathway 

-14.45 27/439 GO:0043484 Regulation of RNA 
splicing 

-6.33 7/145 

hsa04142 Lysosome  -12.48 15/123 CORUM:115
0 

Histone h3.3 
complex 

-5.95 3/7 

R-HSA-
2262752 

Cellular 
responses to 
stress 

-12.29 30/676 GO:0071897 DNA biosynthetic 
process 

-5.43 7/198 

WP619 Type ii interferon 
signalling (IFNG) 

-12.14 10/37 M46 Pid atr pathway -5.11 4/39 

GO:004211
0 

T cell activation -11.90 25/475 M195 Pid cmyb pathway -5.10 5/84 

GO:000181
7 

Regulation of 
cytokine 
production 

-11.42 31/782 GO:0045930 Negative regulation 
of mitotic cell cycle 

-5.01 8/321 

R-HSA-
9716542 

Signalling by rho 
GTPases, Miro 
GTPases and 
rhobtb3 

-10.88 29/719 GO:0006412 Translation -4.70 11/717 

GO:005134
5 

Positive regulation 
of hydrolase 
activity 

-10.75 30/779 GO:0002366 Leukocyte activation 
involved in immune 
response 

-4.68 11/720 

GO:000222
1 

Pattern 
recognition 
receptor signalling 
pathway 

-10.06 16/212 GO:0009991 Response to 
extracellular 
stimulus 

-4.61 9/477 

GO:004206
0 

Wound healing -9.95 24/538 WP2525 Trans-sulphuration 
and one carbon 
metabolism 

-3.82 3/32 

GO:003002
9 

Actin filament-
based process 

-9.86 29/794 GO:0140053 Mitochondrial gene 
expression 

-3.70 5/165 

GO:000695
4 

Inflammatory 
response 

-9.39 28/778 GO:0033120 Positive regulation of 
RNA splicing 

-3.63 3/37 

GO:006062
7 

Regulation of 
vesicle-mediated 
transport 

-8.76 22/518 R-HSA-
9013407 

Rho GTPase cycle -3.60 3/38 

GO:004306
8 

Positive regulation 
of programmed 
cell death 

-8.43 23/590 M14 PID aurora b pathway -3.56 3/39 

  



Table 11: The topmost significantly enriched pathways in THP-1 treated with IFNG according to up and down regulated 
protein lists, sorted by significance. Proteins were converted into gene IDs and so are represented by ‘gene’ lists. 
Column ‘gene’ specifies the number of ‘genes’ differentially expressed in the data, from the corresponding pathway. 

Upregulated Downregulated 

Summary 
process ID 

Description Log10(P) Gene Summary process 
ID 

Description Log10(P) Gene 

R-HSA-
913531 

Interferon signalling -28.88 25/199 R-HSA-6798695 Neutrophil 
degranulation 

-6.43 6/48
0 

GO:004800
2 

Antigen processing 
and presentation of 
peptide antigen 

-25.95 23/194 hsa03050 Proteasome  -5.51 3/45 

GO:004508
8 

Regulation of innate 
immune response 

-17.11 20/315 GO:0090305 Nucleic acid 
phosphodieste
r bond 
hydrolysis 

-3.04 3/30
6 

WP619 Type ii interferon 
signalling (IFNG) 

-13.35 9/37 GO:0016049 Cell growth -2.50 3/47
3 

GO:000236
6 

Leukocyte activation 
involved in immune 
response 

-13.19 23/720     

GO:005079
2 

Regulation of viral 
process 

-13.07 14/186     

GO:000181
7 

Regulation of 
cytokine production 

-12.45 23/782     

R-HSA-
1236977 

Endosomal/vacuola
r pathway 

-11.58 6/11     

hsa04621 Nod-like receptor 
signalling pathway  

-9.66 11/170     

GO:005170
1 

Biological process 
involved in 
interaction with host 

-8.47 11/220     

GO:003806
1 

Nik/NF-Kappa beta 
signalling 

-8.00 10/188     

GO:003009
9 

Myeloid cell 
differentiation 

-7.41 13/421     

WP3937 Microglia pathogen 
phagocytosis 
pathway 

-6.09 5/40     

GO:199066
8 

Vesicle fusion with 
endoplasmic 
reticulum-Golgi 
intermediate 
compartment (ergic) 
membrane 

-5.80 3/6     

GO:005254
8 

Regulation of 
endopeptidase 
activity 

-5.56 11/429     

WP4197 The human immune 
response to 
tuberculosis 

-5.56 4/23     

GO:000961
7 

Response to 
bacterium 

-5.47 14/728     

GO:000222
1 

Pattern recognition 
receptor signalling 
pathway 

-5.38 8/212     

R-HSA-
168255 

Influenza infection -5.26 7/156     

GO:004563
9 

Positive regulation 
of myeloid cell 
differentiation 

-5.23 6/103     



3.4.4  Metascape reports enrichment in IFNG related processes 
Metascape reported enrichment in protein expression for processes associated with IFNG 

response pathways, such as antigen processing, immune responses to viruses and bacteria, 

lymphocyte activation, inflammatory response, and negative regulation of cell proliferation in all 

cell lines. SIG-M5 reported upregulation of proteins in the positive regulation of cell death 

pathways and exocytosis. No other cell lines showed enrichment for proteins involved in cell 

death, however, expression of proteins part of cell growth and proliferation pathways such as 

translation, organelle localisation, DNA synthesis and regulation of mitosis were downregulated 

across cell lines. This could imply an anti-proliferative effect of IFNG; however, this was not 

tested. Metascape analysis showed enrichment for IFNG regulated processes but did not report 

enrichment for any pathways involved in response to chemotherapy. IFN-related DNA damage 

resistance signature (IRDS) genes, which promote resistance to DNA damage base therapies 

including chemotherapy, have been associated with poorer outcome across many cancer types 

(Padariya, et al. 2021). IRDS at present have not been investigated for association with poor 

outcome to front line chemotherapy in AML. Expression of protein products of the IRDS genes 

were investigated in all four cell lines proteomics data. 

3.4.4.1 Proteomic expression of the IRDS signature 
AML cell lines exhibiting high and low IFNG signalling could be used to generate IFNG signalling 

prognostic indexes, to investigate if overexpression of the IFNG pathway results in poorer 

response to induction chemotherapy and HSCT and thus overall outcome. The purpose was to 

investigate whether AML cell lines exhibit high expression of the IRDS signature, as seen in other 

cancers where high IRDS expression has been associated with poorer outcomes. Therefore, the 

protein products of the IRDS signature were compared across cell lines, using the proteomics 

data as detected by SWATH-MS (Figure 23). IFI44 was not detected by SWATH-MS, and so not 

included in further commentary.  

Untreated control AML cell lines expressed comparable levels of IRDS protein products. 

However, treatment with IFNG revealed varying IRDS protein profiles across the cell lines. 

Surprisingly, although the SIG-M5 cell line exhibited the largest change in the number of 

deregulated proteins in response to IFNG treatment, it did not upregulate IRDS protein products 

as highly as the THP-1 or Kasumi-1 cell lines. Notably, the Kasumi-1 cell line was the only one to 

significantly upregulate all IRDS proteins upon IFNG treatment, reaching much higher expression 

levels than the other cell lines (MX1 Ctrl =97,079 NPA, IFNG =7,075,961 NPA, P<0.0001, OAS1 

Ctrl = 32,495 NPA, IFNG =185,232 NPA, P< 0.0001, IRF7 Ctrl = 22,205 NPA, IFNG = 126,579 NPA, 

P<0.0001, ISG15 Ctrl = 58,738 NPA, IFNG = 2,952,021 NPA, P<0.0001, IFIT1 Ctrl = 2,952,021 NPA, 



IFNG = 1,668,101 NPA, P<0.0001, IFITM1 Ctrl = 12,889 NPA, IFNG = 69,586 NPA, P<0.0001, STAT1 

Ctrl = 125,437, IFNG = 1691790 NPA, P<0.001) (Figure 23). This data indicates that the IFNG-

treated Kasumi-1 cell line uniquely and disproportionately upregulated these IRDS proteins 

compared to the other cell lines. The THP-1 cell line significantly upregulated four out of the seven 

IRDS targets (MX1 Ctrl = 73,612 NPA, IFNG = 147,022 NPA, P< 0.001, IRF7 Ctrl = 12,451 NPA, IFNG 

= 18,277 NPA, P< 0.05, ISG15 Ctrl = 92,075 NPA, IFNG = 354,650 NPA, P<0.0001, STAT1 Ctrl = 

169,530 NPA, IFNG = 1,302,040 NPA, P<0.0001) (Figure 23). Meanwhile, SIG-M5 and KG-1 only 

significantly upregulated STAT1 (SIG-M5 Ctrl =  192,568 NPA, IFNG = 2,462,092 NPA, P< 0.0001 , 

KG-1 Ctrl = 782,133 NPA, KG-1 IFNG = 2,033,763 , P<0.05) and ISG15 (SIG-M5 Ctrl = 42,607 NPA, 

IFNG = 98,182 NPA, P<0.001, KG-1 Ctrl = 55,085 NPA, IFNG = 186,602 NPA, P<0.001) (Figure 23).  

STAT1 acts as a transducer for the IFNG signalling pathway. Therefore, higher expression of STAT1 

could relate to a larger or more intense response to IFNG. However, all cell lines upregulated 

STAT1 to similar levels, indicating that the disparity in IFNG response was not due to baseline or 

inducible STAT1 levels. Another explanation could be that cell lines more responsive to IFNG 

expressed higher levels of the IFNG receptor, thereby amplifying signalling. To test this, the 

untreated control cell lines were stained for CD119 (IFNG receptor 1) cell surface expression 

using flow cytometry (Figure 23B). Although SIG-M5 and THP-1 demonstrated the largest breadth 

of response to IFNG, staining showed all cell lines to have similar receptor expression (SIG-M5 = 

2.92 MFI, THP-1 = 2.72 MFI, KAS-1 = 1.63 MFI and KG-1 = 3.86 MFI). Surprisingly, even though KG-

1 had the smallest breadth of response to IFNG, as quantified by the number of differentially 

expressed proteins and affected IRDS protein products, it expressed CD119 higher than all other 

cell lines. CD119 expression was lowest in Kasumi-1. Therefore, differences in response to IFNG 

could not be attributed to receptor expression or to baseline or IFNG-induced levels of STAT1. 

Differences in IFNG signalling among cell lines were explored more thoroughly in chapter 4. IFNG 

induced expression of IRDS has been linked to chemotherapy resistance in other cancer types. 

IFNG-induced cells were tested for viability in the presence of chemotherapy to determine 

whether the IFNG signalling pathways induced cell death or conferred resistance.  

 



  

Figure 23:Normalised peak area expression of protein products of IRDS genes: MX1, OAS1, IRF7, ISG15, IFIT1, IFITM1 and STAT1 across all four AML cell lines. Control compared to 48 
hrs treatment 100 ng/ml IFNG (n=5-6). Grey = Control, Red = IFNG. B) Base line expression of CD119 (IFNG receptor 1) in all cell lines measured by cell surface staining flow cytometry, 
n=3. Statistical test: Holm-Sidak multiple comparisons method, * = P< 0.05, ** = P< 0.01, *** = P<0.001 and **** = P<0.0001. 

A) 

B) 



 

3.4.5 IFNG treatment drives cell death in Kasumi-1  
The Kasumi-1 and KG-1 cell lines exhibited different responses to IFNG, as evidenced by their 

varying expression levels of IRDS proteins. This indicates they may have different biological 

responses to IFNG that could be explored further. The viability of cells when treated with IFNG 

was compared to those without.  

3.4.6 IFNG induced a cell death response to chemotherapy in the Kasumi-1 
and KG-1 cell lines 

Cells were assessed using flow cytometry by staining for Annexin V and an amine reactive dye 

(LIVE/DEAD™) to determine if IFNG or 5AzaC exacerbated Daunorubicin-activated cell death. 

Cells were pre-treated with IFNG, 5AzaC, or both before Daunorubicin administration, allowing 

time for the treatments to alter signalling pathways and gene expression. The hypothesis was that 

demethylation by 5AzaC could modify IFNG signalling and affect the cells' viability in response to 

chemotherapy. To test this, cells received 5AzaC three times at 24-hour intervals to ensure DNMT 

inhibition. This allowed multiple rounds of DNA replication to occur without active DNMT, 

resulting in demethylated DNA. After three days of treatment, cells were exposed to IFNG, 

Daunorubicin, or both to evaluate the impact of DNA demethylation on cell viability. As this was 

a simple in vitro study with no co-culturing of immune cells, the expected result was for IFNG to 

induce apoptosis of cell lines, and further activate Daunorubicin induced cell death.  

Using the gating strategy described in chapter 2, an experiment was conducted to determine an 

appropriate Daunorubicin concentration for a time course experiment.  The IFNG and 5AzaC 

dosing and schedule is described in Table 12. An initial experiment was run with 0, 0.2, 0.4 and 

0.8 µM Daunorubicin after 48 hrs of treatment to choose the dose that would reduce live cell 

population by approximately 50%. 

 

 

 

 

 

 



Table 12: Outlines the dosing and measurement schedule used to assess cell viability of cell lines treated with IFNG, 
5AzaC and Daunorubicin. 

Day Treatment Cell viability measurement taken 
after Daunorubicin dosing 

0 Cells seeded, 5 ng/mL IFNG 
added, 0.5 µM 5AzaC added N/A 

1 0.5 µM 5, AzaC added, 
Daunorubicin added N/A 

2 0.5 µM 5AzaC added 24 hrs 
3 None 48 hrs 
4 None 72 hrs 

 

The results (Figure 24) demonstrated the impact of increasing concentrations of Daunorubicin on 

the number of cells in live, early apoptosis, necrotic, and dead states. At Daunorubicin 

concentrations of 0.2 and 0.4 µM, a higher percentage of dead cells was observed on average in 

the Kasumi-1 cell line compared to the KG-1 cell line (Kasumi-1: 34.29% and 60.29%; KG-1: 

26.98% and 42.78%). Additionally, more cells in early apoptosis were seen in the Kasumi-1 cell 

line than in the KG-1 cell line across all Daunorubicin doses. Both cell lines exhibited similar 

percentages of necrotic cells at all chemotherapy doses used. Based on this data, a 

concentration of 0.4 µM Daunorubicin was chosen, as it reduced the live cell populations in both 

cell lines to approximately 50% of their untreated counterparts (Kasumi-1 live: untreated: 

75.26%, 0.4 µM: 43.12%; KG-1 live: untreated 86.26%, 0.4 µM: 47.54%). 

3.4.6.1 Flow cytometry time course experiment reveals different response phenotypes of cell 
lines 

Cell lines were primed with IFNG and 5AzaC following the time course described in Table 12. After 

priming, the cells were either left untreated or were treated with 0.4 µM Daunorubicin. The cells 

were harvested 24, 48, and 72 hours post-Daunorubicin treatment, and cell viability was 

measured by staining with Annexin V and LIVE/DEAD stain, allowing separation of dead cells from 

cells in apoptosis or necrosis. The results are summarised in Figure 25. 

IFNG treatment alone induced cell death Kasumi-1 cells, but did not affect KG-1 cells, this was 

most prominently seen at the 72-hour time point (KAS-1 IFNG dead population =  40.99%, KG-1 

IFNG dead population = 7.24%, Figure 26 and Figure 27). Staining with Annexin V and LIVE/DEAD 

stain showed that priming Kasumi-1 with IFNG also increased the number of cells in early 

apoptosis at 72 hours compared to the untreated control (14.61% vs 3.6%, averaged across 3 

repeats). Priming Kasumi-1 with both IFNG and 5AzaC induced more cell death than IFNG alone 

at 72 hours (Kas-1 IFNG5AzaC dead population =50.14%, IFNG dead population = 39.98, P<0.01). 

Furthermore, combining IFNG with Daunorubicin was significantly more effective at killing 



Kasumi-1 cells than Daunorubicin alone at both 48 (Kas-1 IFNG Daunorubicin dead population = 

57.02%, Daunorubicin dead population = 37.65%, P<0.05) and 72-hour time points (Kas-1 IFNG 

Daunorubicin dead population = 80.07%, Daunorubicin dead population = 53.57%, P<0.001, 

respectively). Priming with both 5AzaC and IFNG followed by Daunorubicin was no more effective 

at inducing cell death than IFNG combined with Daunorubicin. 

In KG-1 cells, treatment with IFNG or 5AzaC alone made no significant difference to the 

percentage of cells in the ‘Live,’ ‘Early apoptosis,’ ‘Necrotic,’ or ‘Dead’ categories compared to the 

untreated cells.  Differences in behaviour based on priming were only visible once Daunorubicin 

was added to the cells. In KG-1. Combining 5AzaC priming with Daunorubicin increased the dead 

cell population in KG-1 in comparison to cells treated with only Daunorubicin (KG-1 5AzaC 

Daunorubicin dead population = 62.03%, KG-1 Daunorubicin dead population = 49.99%, P<0.01). 

Similarly to Kasumi-1, combining IFNG priming with Daunorubicin was the most effective 

condition for killing KG-1 cells. At 24, (KG-1 IFNG Daunorubicin dead cell population = 26.58%, 

KG-1 Daunorubicin dead population = 15.19 %, P<0.01) 48, (KG-1 IFNG Daunorubicin dead cell 

population = 70.89% , KG-1 Daunorubicin dead population = 43.04%, P<0.01)  and 72 hours, (KG-

1 IFNG Daunorubicin dead cell population = 86.71%, KG-1 Daunorubicin dead population = 

50.63, P<0.0001)  the combination of IFNG and Daunorubicin induced significantly more cell 

death compared to Daunorubicin alone. Combining IFNG with 5AzaC priming did not improve the 

killing efficiency of Daunorubicin in KG-1 cells. 

Representative scatter plots for cell viability for both cell lines exposed to all treatment types for 

72 hours are shown in Figure 26 and Figure 27.  

 

 

 

 

 

 

 

 

 



 

Figure 24: The population of cells ‘Live’, in ‘Early apoptosis’, ‘Necrosis or ‘Dead’ in both cell lines after treatment with increasing doses of Daunorubicin for 48 hrs. Cell viability was 
determined by staining with Annexin V and LIVE/DEAD stain,  n=3-5. Error bars = standard deviation.  



 

Figure 25: The population of cells ‘Live’, in ‘Early apoptosis’, ‘Necrosis or ‘Dead’ in both cell lines after treatment with IFNG /5AzaC/Daunorubicin at 24, 48 and 72 hrs. Cell viability was 
determined by staining with Annexin V and LIVE/DEAD stain, n=3-6, error bars = standard deviation. 

 

 



 

 

Figure 26: Example scatter plots of Kasumi-1 cells after priming with IFNG and 5AzaC, and treatment Daunorubicin for 72 hrs. Cell viability was determined by 
staining with Annexin V and LIVE/DEAD stain, Annexin V staining is plotted on the X axis labelled ‘FL6 INT’, and LIVE/DEAD stain is plotted on the Y-axis labelled 
‘FL10 INT’. Scatters are from the n2 repeat of data. Top row shows Kasumi-1 cells without Daunorubicin and with IFNG, 5AzaC or both, bottom row are Kasumi-1 
cells with 0.4 uM Daunorubicin and IFNG, 5AzaC or both. 

 



  

Figure 27: Example scatter plots of KG-1 cells after priming with IFNG and 5AzaC, and treatment Daunorubicin for 72 hrs. Cell viability was determined by 
staining with Annexin V and LIVE/DEAD stain, Annexin V staining is plotted on the X axis, labelled ‘FL6 INT’, and LIVE/DEAD stain is plotted on the Y-axis labelled 
‘FL10 INT’. Scatters are from the n2 repeat of data. Top row shows KG-1 cells without Daunorubicin and with IFNG, 5AzaC or both, bottom row are KG-1 cells 
with 0.4 uM Daunorubicin   and IFNG, 5AzaC or both. 

 

 



3.5  Discussion 
Cell lines were categorised based on their response to treatment with IFNG and chemotherapy. 

Cell lines showed a spectrum of IFNG response as determined by known IFNG inducible AIR 

molecules and by breadth of differentially expressed proteins identified by SWATH-MS. First, 

expression of IFNG inducible molecules (IDO1, TDO2, CD274, HLA-A,B,C, HLA-E, HLA-G, PD-L1 

and Kynurenine) were measured by RT-PCR, flow cytometry and colourimetric assays as 

appropriate to establish basic IFNG response and immunosuppressive phenotypes. SIG-M5 was 

the only cell line to significantly upregulate all AIR molecules with IFNG treatment, while all other 

cell lines upregulated five out of the eight AIR molecules (Summary in Table 13). 

Measurement of kynurenine, a downstream product of IDO1/TDO2 signalling, allowed 

assessment of whether the immunosuppressive IDO1/TDO2 pathway had increased activity 

corresponding to IFNG induction of IDO1/TDO2 genes. Out of the four AML cell lines, only SIG-

M5 and KG-1 have a functioning IDO immunosuppressive AIR response to IFNG, supported by 

significantly upregulated IDO1(SIG-M5 Ctrl = 0.0030, IFNG = 0.2176 ΔΔCT, P<0.01, KG-1 Ctrl = 

0.0018, IFNG = 0.0080 ΔΔCT), P<0.01, Figure 14) and kynurenine (SIG-M5 Ctrl = 1.9 µM, IFNG = 

37.46 µM ,P<0.01, and, KG-1 Ctrl = 0.12 µM, IFNG = 1.07 µM, P<0.01, Figure 15) expression in both 

cell lines. However, the increase in kynurenine production by SIG-M5 was substantially larger 

than by KG-1. Although TDO2 was upregulated in THP-1 (THP-1 Ctrl = 0.0018 ΔΔCT, IFNG = 0.0837 

ΔΔCT, P<0.0001, Figure 14), kynurenine production did not increase with IFNG treatment, 

suggesting impairment in the pathway. This result was in line with Hoffmann et al, who found a 

combination of 100ng/mL IFNG and 1ug/mL LPS (lipopolysaccharides) induced a significant 

increase in TDO2 expression, but a reduced kynurenine expression compared to THP-1 treated 

with LPS alone. They hypothesised that the combined treatment of IFNG with LPS also highly 

induced IDO1, which resulted in complete removal of tryptophan, which subsequently resulted 

in signalling for degradation of IDO1 and TDO2 proteins. Hence, when samples were measured 

after 2 days for kynurenine, the negative feedback had already occurred, causing reduced 

kynurenine to be recorded (Hoffmann, et al. 2019). It is possible a similar negative feedback loop 

occurred here.  

Flow cytometry was used to measure expression of the surface proteins HLA-A,B,C, HLA-E, HLA-

G and PD-L1 . In all cell lines HLA-A,B,C was significantly upregulated by IFNG which was 

expected (SIG-M5 Ctrl = 158.11 MFI, IFNG = 270.10 MFI, P<0.001, THP-1 Ctrl = 61.03 MFI, IFNG = 

148.98 MFI, P<0.0001, Kasumi-1 Ctrl =11.20 MFI, IFNG = 120.97 ,P<0.0001 and KG-1 Ctrl = 35.72 

MFI, IFNG = 120.97, P<0.001, Figure 16). HLA-E was expression was induced in all cell lines 



except for KG-1 (SIG-M5 Ctrl = 0.09 MFI, IFNG = 3.12 MFI, P<0.0001, THP-1 Ctrl = 0.46 MFI, IFNG 

= 1.40 MFI , P<0.01,  Kasumi-1 Ctrl = 1.62 MFI, IFNG = 5.17 MFI, P<0.01, Figure 16), and HLA-G 

was only IFNG inducible in SIG-M5 line (SIG-M5 Ctrl = 1.24 MFI, IFNG = 26.53 MFI, P<0.0001, 

Figure 16). Finally, IFNG induced increased expression of PD-L1, the protein product of 

IDO1/TDO2 in all cell lines (SIG-M5 Ctrl = 0.10 MFI, IFNG = 6.96 MFI, P<0.01, THP-1 Ctrl = 0.51 

MFI, IFNG = 19.70 MFI, P<0.001, Kasumi-1 Ctrl = 0.62 MFI, IFNG = 1.35 MFI, P<0.0001 and KG-1 

Ctrl = 0.77 MFI, IFNG = 1.04 MFI, P<0.05, Figure 16). This data showed active expression of various 

immunosuppressive proteins in all four cell lines.  

Cell lines were then treated with IFNG and analysed using SWATH-MS to further characterise their 

IFNG responses. All cell lines reported close to 3,000 proteins differentially expressed. When 

confidence and fold-change cut offs were applied, this decreased numbers of proteins of 

interest. SIG-M5 reported the most differentially expressed proteins in response to IFNG (341), 

while KG-1 reported the least (48). Table 13 summarises chapter 3 AIR and IFNG response 

characterisation results below: 

Table 13: Summary of characterisation data from chapter 3. Ticks represent significant upregulation of RNA or protein 
by IFNG. Also lists the number of proteins including IRDS proteins significantly differentially expressed or upregulated 
with IFNG treatment. 

  

Lists of ‘significantly’ upregulated and downregulated proteins were uploaded to metascape for 

process enrichment. Enrichment analysis did not show upregulation of proteins involved in 

immunosuppressive pathways, contradicting the hypothesis that IFNG induces 

immunosuppressive phenotypes in AML cell lines. However, SWATH-MS is 3-10 times less 

sensitive than SRM, as discussed in Chapter 1, so low-abundance proteins might have been 

missed. Additionally, this was an in vitro test where AML cell lines were treated with IFNG in 

isolation from an immune microenvironment, which might have triggered immunosuppressive 

responses if present. Moreover, this was a short-term assay, so the impact of chronic IFNG 

exposure within a more complex immune microenvironment could not be determined.   



Overall, the characterisation showed cell lines had developed varying degrees of IFNG induced 

AIR, with SIG-M5 upregulating the most AIR molecules, while all other cell lines only upregulated 

five out of the eight tested. Additionally, the SIG-M5 cell line reported the largest number of 

differentially expressed proteins while KG-1 expressed the least. Suggesting there are differences 

between the cell lines IFNG response mechanisms. This was corroborated by the pairwise 

comparisons of Pearson correlation coefficients preformed on SWATH-MS proteomics profiles of 

untreated control and IFNG treated AML cell lines. It was found that KG-1 untreated control and 

IFNG samples overlapped during clustering (Figure 19), suggesting either noneffective IFNG 

treatment, or a low and muted response to IFNG resulting in a similar expression profile to KG-1 

control. This overlap of IFNG treated and untreated KG-1 was also seen in the PCA analysis ( 

Figure 20). In contrast, the SIG-M5, THP-1 and Kasumi-1 cell lines all clustered into defined 

untreated control and IFNG treated groups. This suggested that IFNG was not activating a robust 

signalling response in KG-1 as it was in the other cell lines.  

To further characterise IFNG response, expression of IRDS gene protein products were examined 

as they have been associated with chemotherapy and radiation resistance in other cancer types. 

The SIG-M5 cell line reported only three of seven IRDS proteins as significantly altered, while the 

Kasumi-1 cell line reported all. Furthermore, the expression of the IRDS proteins in IFNG treated 

Kasumi-1 was higher than any other cell line by 10 to 100 times, suggesting an IFNG response 

unique to this cell line, which might have been missed if only gauging IFNG response on AIR 

induction or number of significantly deregulated proteins. For this reason, Kasumi-1 was carried 

forward for analysis, along with KG-1 which showed a comparatively muted response to IFNG, 

expressing the lowest number of differentially expressed proteins (48), and upregulation of only 2 

IRDS proteins. Finally, to investigate how IFNG influenced cell lines response to chemotherapy, 

cell line viability was tested in the presence of Daunorubicin, IFNG and 5AzaC treatments. IFNG 

alone induced cell death in Kasumi-1 (40.99%) and KG-1 (7.24%) cell lines after 72 hrs (Figure 25). 

Furthermore, IFNG combined with Daunorubicin induced further cell death after 72 hrs in both 

cell lines (Kasumi-1=80.07%, KG-1= 86.71%) than treatment with just Daunorubicin (Kasumi-1 = 

53.57%, KG-1 = 50.63%) (Figure 25). Combining IFNG with Daunorubicin was more effective at 

killing both the AML cell lines than Daunorubicin alone. The effect of combining IFNG with 

Daunorubicin also induced increased cell death in KG-1, even though IFNG itself did not induce 

cell death in KG-1 as it did in Kasumi-1. 

All AML cell lines demonstrated IFNG induced upregulation of immunosuppressive mechanisms, 

suggesting IFNG rich environments could contribute to poorer outcomes in AML patients. In 

summary, this chapter investigated if IFNG treatment upregulated expression of adaptive 



immune resistance molecules in AML cell lines and generated proteomic profiles of untreated 

and IFNG treated AML cell lines. Cell lines exhibited different degrees of response to IFNG in 

terms of intensity and breadth of proteins differentially expressed, as measured by flow 

cytometry and SWATH-MS. It was found that cell lines upregulated immunosuppressive 

molecules (IDO1, PDL1, HLA-E/HLA-G), in response to IFNG. These molecules are known to aid 

immune escape and inhibit immune cells, indicating these cell lines could represent different 

types of immunosuppressive AML. This study was limited by its in vitro nature. Therefore, when 

cell lines Kasumi-1 and KG-1 were treated with IFNG and Daunorubicin, cell death was observed 

as opposed to proliferation. The theory of IFNG induced AML resistance to chemotherapy is 

dependent on an in vivo environment with immune cells present for immunosuppressive 

molecules such as IDO1 to take effect. The next step was to generate transcriptional profiles of 

cell lines in response to IFNG and 5AzaC treatment to analyse how influenced the AML 

transcriptome. Furthermore, the profiles created were then used to generate prognostic scores 

associated with each treatment and applied to patient databases to assess correlation with 

patient survival and clinical categories such as cytogenetic risk. In chapter 4, AML cell lines 

Kasumi-1 and KG-1 were treated with IFNG and 5AzaC, and transcriptional profiles were created 

using RNAseq. 

 



4 A comparative RNA sequencing analysis of 
demethylation effects on IFNG induced changes 
to immunosuppressive molecules in Kasumi-1 
and KG-1 cell lines 

4.1 Introduction  
All the possible transcripts that an organism can express are encoded in its genome. Under 

certain circumstances, these transcripts are transcribed into mRNA, which serves as an 

intermediary molecule between the transcript and the protein product. Changes in transcript 

expression can be quantified by measuring RNA transcript levels. Because transcriptomes are 

dynamic and respond to various stimuli, measuring RNA expression provides a snapshot of the 

genes being expressed in a cell at any given time. Thus, transcriptomics is a valuable tool for 

analysing how stimuli affect transcript expression. In this case, it involves quantifying transcripts 

to assess the effects of treatments such as IFNG or 5AzaC (Lowe, et al. 2017). 

In Chapter 3, cell viability assays revealed that IFNG treatment increased cell death in response 

to Daunorubicin in both cell lines. This Daunorubicin-induced cell death was further amplified 

when IFNG was combined with 5AzaC, showing a synergistic effect that was more pronounced in 

Kasumi-1 cells than in KG-1 cells. The differing responses of the two cell lines to IFNG and 5AzaC 

treatments warrant further molecular-level investigation to uncover the underlying mechanisms. 

To this end, next-generation RNA sequencing was performed on the cell lines after treatment with 

IFNG, 5AzaC, or their combination, alongside a non-treated control. 

 
Figure 28:The Workflow and time points for treating cells prior to sending to Novogene for analysis. 

 



4.2 Results 
First, the transcriptomes of untreated Kasumi-1 and KG-1 cells were compared to determine their 

similarity prior to treatment with IFNG or 5AzaC. Transcripts were reported in FPKM (Fragments 

Per Kilobase of exon per Million mapped fragments), a metric which shares similarity with RPKM 

(Reads Per Kilobase of exon per Million reads mapped) but specifically used in paired-end RNA-

seq investigations. After comparing the untreated cell lines, the impact of treatment with IFNG, 

5AzaC, or a combination of both on transcript expression was examined. Only transcripts with an 

initial expression of more than 1 FPKM and significant differential expression between treatments 

and cell lines after FDR correction were selected for further investigation. The 1 FPKM cut-off was 

used because relying solely on fold change can be misleading; it excludes baseline expression 

levels, and significant fold changes might not reflect biologically meaningful differences if initial 

expression is extremely low or zero. Statistical analysis and FDR correction were performed by 

Novogene using the DESeq2 analysis package. Data were transformed using Log2(FPKM+1), and 

Z score values were calculated to generate heat maps. 

In addition to differential transcript expression, enrichment analysis was conducted to identify 

the biological pathways most significantly associated with differentially expressed transcripts 

(DETs). This analysis was also provided by Novogene. As in Chapter 3, lists of significant DETs 

between selected treatment groups were applied to pathway analysis using Metascape (Zhou, et 

al. 2019).  NGS seq identified far more significantly altered transcripts, than SWATH MS detected 

at the protein level.  

4.2.1 Kasumi-1 and KG-1 transcriptomes indicate different AML 
phenotypes 

NGS revealed 47% of transcripts were significantly (Padj < 0.05) differentially expressed between 

the cell lines (Figure 29). Results showed that 14,481 transcripts were differentially expressed 

between the cell lines, with 6,979 and 7,502 upregulated and downregulated respectively in 

Kasumi-1 compared to KG-1. The degree of differences in transcript expression between cell lines 

lays the foundation for cell lines to function in biologically unique ways to one another and 

showcases the heterogenous nature of AML.  



 

 

Figure 29: Volcano plot of differentially expressed transcripts (DET) between cell lines Kasumi-1 and KG-1. Upregulated 
and down regulated transcripts are reported as red and green dots, respectively. Unchanged transcripts are 
represented by blue dots. Padj threshold < 0.05.  

 

Differences between cell lines were further evaluated by identifying the number of transcripts 

expressed exclusively in each cell line. An FPKM > 1 cut-off was used for downstream analysis, 

following the transcriptomic analysis method published by Mortazavi in Nature Methods 

(Mortazavi, et al. 2008). Lists of expressed transcripts for both cell lines were filtered accordingly 

and compared by Venn diagram (Figure 30). This comparison revealed that approximately 10% of 

the transcripts were uniquely expressed in each cell line.  

  



Figure 30: Venn diagram showing number of transcripts expressed specifically the Kasumi-1 or KG-1 cell line or shared 
between both.   

The transcriptomic analysis revealed variations in the directionality of expression for shared 

transcripts between the cell lines, as evidenced by the volcano plot, as well as in the expression 

of transcripts exclusive to each individual cell line.  The cell lines were derived from patients 

exhibiting specific morphologic and genetic features, resulting in some of the divergence in 

transcript expression observed. Consequently, these cell lines, as discussed in chapter 3, can 

serve as models to represent different and specific populations of AML patients, with discoveries 

in either model being clinically relevant.  

4.2.1.1 Pearson correlation and principle component analysis of treated cell lines indicate no 
outliers among samples and show IFNG and 5AzaC induced changes in transcription 

The transcriptomes of samples were compared using Pearson correlation to assess variability 

between treatments and cell lines, as well as to identify any replicate outliers. The Pearson 

correlation coefficient was calculated between pairs of samples and visualised as a heat map 

(Figure 31). Clustering clearly demonstrated that treatment with IFNG and 5AzaC resulted in 

successful replicates with no obvious outliers. This perfunctory form of analysis also reported 

global differences in treatment impact on transcriptomes between cell lines. Treatment of 

Kasumi-1 with IFNG, or combination treatment, resulted in reduced correlation to its control (0.9 

and 0.86 respectively) and 5AzaC treated counterparts (0.9 and 0.87 respectively). In contrast, 

correlation coefficients of KG-1 differed very little between treatments and control. Coefficients 

were high (0.97-1) indicating the KG-1 transcriptome was largely unaffected by IFNG or 5azaC 

treatment. When cell lines were compared to one another, correlation stood at around 0.75, 

regardless of treatments. 

Kasumi-1 KG-1 



 

 

Figure 31: Pairwise comparisons of Pearson correlation coefficients between untreated and IFNG/5AzaC treated cell 
lines transcriptomic profiles.  Left, Kasumi-1, Right, KG-1. Pearson coefficients were calculated by Novogene, and then 
visualised and clustered using Morpheus online tool https://software.broadinstitute.org/morpheus/). Clustering was 
performed with Euclidean distance and complete linkage. Blue indicates low correlation and red indicates higher 
correlation between groups. 

Principle component analysis (PCA) confirmed the expected grouping among cell lines and 

treatment group replicates, when data was transformed to principal components (PC). A 3D PCA 

plot was generated where PC1 accounts for 71.95 % of variance, PC2 for 19.04 % and PC3 for a 

minor 1.50 % of variance. The plot further confirmed replicate fidelity whilst also showcasing 

intergroup variance as a function of cell line and treatment received. 



 

Figure 32:  PC analysis plot displaying all 24 samples as a function of PC1, PC2 and PC3 within the complete 
transcriptomics expression data set. 



4.2.1.2 All treatments induced differential expression of transcripts in both cell lines 
The data revealed a range of expression changes after treatment with IFNG and 5AzaC in both cell 

lines. The most pronounced upregulation was observed for GBP1 (Log2 FC = +18.81) in Kasumi-1 

cells treated with a combination of IFNG and 5AzaC. Conversely, the largest decrease was noted 

in OLFM4 (Log2 FC = -2.18) in Kasumi-1 cells treated with 5AzaC alone. Kasumi-1 exhibited the 

most pronounced response to both treatments compared to KG-1, which showed a more 

subdued response. Nonetheless, KG-1 still demonstrated significant upregulation in certain 

transcripts, such as PNMA5 (Log2 FC = +11.68). A comparison of the number of significantly 

differentially expressed transcripts between the two cell lines is illustrated as a bar chart (Figure 

33). The Kasumi-1 cell line was consistently more responsive to each treatment than its KG-1 

counterpart, with 2 to 4-fold difference in number of transcripts effected. For example, IFNG 

treatment deregulated 11,377 transcripts in Kasumi-1 compared to 2,564 in KG-1. According to 

this data, Kasumi-1 was more responsive to treatment with IFNG and 5AzaC compared to KG-1. 

The NGS and proteomics data sets were used to investigate the IFNG signalling pathway in both 

cell lines and identify the fundamental molecular differences. 

Figure 33: The number of transcripts significantly differentially expressed between treated and untreated Kasumi-1 and 
KG-1 cell lines.  KA = Kasumi-1, KG = KG-1, C = Untreated control, Y = IFNG, 5A = 5AzaC, and Y5A = IFNG and 
5AzaCytidine treatment. Blue = Total number of transcripts significantly differentially expressed (Includes up and down 
regulation), Purple = Number of transcripts which were significantly upregulated, and Pink = Number of transcripts 
significantly down regulated.  

  



4.2.2 IFNG induced four times more differentially expressed transcripts in 
Kasumi-1 than KG-1 

Kasumi-1 and KG-1 have shown different sensitivity to IFNG induction, with Kasumi-1 displaying 

a hyper response and KG-1 a muted response. This deviation was further evident in the 

transcriptomics data.  Analysis of significantly differentially expressed transcripts between cell 

lines and treatments revealed a total of 11,377 and 2,564 transcripts altered in Kasumi-1 and 

KG-1 with IFNG treatment, respectively. These differences were visualised as a heat map (Figure 

34). 

Error! Reference source not found. 

Figure 
34: 

Hierarchical clustering of the significantly differentially expressed transcripts between untreated and IFNG treated cell 
lines. Clustered using Euclidean distance and complete linkage (n = 3 per sample type).   Key for heat maps shown top 
left for expression values. Heat maps generated in Morpheus (https://software.broadinstitute.org/morpheus/). Blue 
indicates lower expression; red indicates higher expression. 

 

Transcript expression was transformed using Log2(FPKM+1) and Z values used, data was then 

subject to hierarchical clustering using Euclidean distance and complete linkage. Distinct 

clusters were assigned to treatment groups of cell lines, indicating consistent treatment across 

samples. Kasumi-1 showed clear clusters where IFNG induced upregulation and downregulation 

of transcripts compared to untreated control cells. In KG-1 these differences were harder to see 

by heatmap as far fewer transcripts were differentially expressed in response to the treatments.  



4.2.2.1 IFNG induced higher expression of first wave IFNG signalling transcripts in Kasumi-1 
than KG-1 

The IFNG signalling cascade was illustrated in chapter 3 (Figure 9). In short IFNG binds to the 

IFNGR, which activates the Jak1 and Jak2 kinases to phosphorylate STAT1, which then 

translocates to the nucleus to initiate IFNG regulated transcription. The NGS data was examined 

for expression of early IFNG induced transcripts TRIM21, IRF1, IFR8 and PML in Kasumi-1 and KG-

1. These transcripts are induced early in IFNG signalling and TRIM21, IRF1 and IRF8 are required 

to form the IRF1-IRF8 complex that initiates the next set of transcript expression in the IFNG 

signalling cascade (Ozato, et al. 2008). Therefore, reduction in transcripts at this level could 

explain the reduced IFNG response seen in KG-1.  

In both cell lines, IFNG treatment significantly upregulated expression of TRIM21, (Kas-1, Ctrl = 

14.53 FPKM, IFNG = 82.45 FPKM, KG-1, Ctrl = 15.60 FPKM, IFNG = 36.94 FPKM) IRF1, (Kas-1, Ctrl 

= 3.47 FPKM, IFNG = 79.39 FPKM, KG-1, Ctrl = 6.24 FPKM, IFNG = 28.97 FPKM) and PML, (Kas-1, 

Ctrl = 5.22 FPKM, IFNG = 35.83 FPKM, KG-1, Ctrl = 8.25 FPKM, IFNG = 12.18 FPKM) (All 

comparisons, Padj < 0.0001, Wald test- BH). Comparisons are shown as graphs in Figure 35. 

IFNG induced expression of these transcripts was higher in Kasumi-1 than in KG-1. In Kasumi-1 

combination of IFNG and 5AzaC induced increased expression of TRIM21 (Kas-1 IFNG5AzaC = 

92.20 FPKM) and PML (Kas-1 IFNG5AzaC = 92.20 FPKM), than IFNG treatment on its own did 

(Both, Padj < 0.0001, Wald test- BH). IRF8 was uniquely and significantly downregulated in 

Kasumi-1 in response to IFNG and further significantly downregulated by combining IFNG with 

5AzaC when compared to only IFNG treatment (Ctrl = 4.07 FPKM, IFNG = 2.49 FPKM, IFNG5AzaC 

= 1.59 FPKM, Both, Padj < 0.0001, Wald test- BH). 

The disparity in transcript expression was present in the first wave of IFNG induced transcripts, 

where IFNG induced expression of IRF1, TRIM21 and PML was much higher in Kasumi-1 than in 

KG-1. Combined with low transcription of IRF8 in KG-1 (<1 FPKM), decreased transcription of 

TRIM21 and IRF1 could have a knock-on effect that decreases transcription of downstream 

targets such as PML compared to Kasumi-1. 



 

Figure 35: Expression TRIM21, IRF1, IRF8 and PML in Kasumi-1 and KG-1 in response to treatments. Data given as FPKM 
(n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test – 
BH correction. * = Padj<0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001. 

 

4.2.2.2 IFNG signalling docking components transcripts are upregulated in Kasumi-1 by IFNG 
Consistent with the IFNGR1 protein expression observed via flow cytometry (Figure 23), IFNGR1 

mRNA was significantly higher in KG-1 compared to Kasumi-1 (KG-1 Ctrl = 33.89 FPKM and Kas-1 

Ctrl = 33.89 FPKM, Padj < 0.0001, Wald test- BH). KG-1 also showed elevated levels of JAK1 mRNA 

(KG-1 Ctrl = 38.99 FPKM) and JAK2 mRNA (KG-1 Ctrl = 7.04 FPKM) compared to Kasumi-1. 

Treatment of Kasumi-1 with IFNG led to significant increases in IFNGR1 (Kas-1 Ctrl = 33.89 FPKM, 

IFNG = 14.13 FPKM, Padj < 0.05, Wald test-BH), IFNGR2 (Kas-1 Ctrl = 12.87 FPKM, IFNG = 16.11 

FPKM, Padj < 0.0001), JAK1 (Kas-1 Ctrl = 11.92 FPKM, IFNG = 16.55 FPKM, Padj < 0.0001, Wald 

test-BH), and JAK2 (Kas-1 Ctrl = 3.95 FPKM, IFNG = 25.62 FPKM, Padj < 0.0001, Wald test-BH). 

IFNG treatment of Kasumi-1 and KG-1 induced changes in IFNG signalling transcripts involved in 

creating the docking sites for STAT1, data is shown in Figure 36. In Kasumi-1, combination of IFNG 

and 5AzaC significantly increased expression of JAK1 (IFNG5AzaC = 21.95 FPKM) and JAK2 

(IFNG5AzaC = 31.28 FPKM) in comparison to IFNG only treatment (Both, Padj < 0.0001, Wald test-

BH). STAT1 transcript was expressed higher in KG-1 than Kasumi-1 (KG-1 Ctrl = 96.98 FPKM, Kas-



1 Ctrl = 19.62 FPKM, Padj < 0.0001, Wald test-BH) as was STAT1 protein expression (KG-1 Ctrl = 

136,478 NPA, Kas-1 Ctrl = 547,440 NPA)(Figure 36). IFNG treatment induced significant 

upregulation of STAT1 in both cell lines compared to untreated control (Kas-1 IFNG = 744.40 

FPKM, KG-1 IFNG = 966.11 FPKM, both, Padj < 0.0001). The combination of IFNG and 5AzaC 

reduced expression of STAT1 in comparison to IFNG only treatment in KG-1 at the transcript level 

(KG-1 IFNG5AzaC = 897.92 FPKM, Padj < 0.05, Wald test-BH. In summary IFNG significantly 

upregulated transcripts for IFNG signalling components STAT1, IFNGR1, IFNGR2, JAK1 and JAK2 

in Kasumi-1, and minorly JAK2 in KG-1 (KG-1 Ctrl = 7.03 FPKM, IFNG = 7.91 FPKM, Padj < 0.05, 

Wald test-BH). STAT1 protein was also significantly induced with IFNG in both cell lines as 

determined by SWATH-MS in chapter 3 (Kas-1 Ctrl = 125,437 NPA, IFNG = 1,959,620 NPA, KG-1 

Ctrl = 782,133 NPA, IFNG = 2,378,399 NPA, both, Padj <0.001, Holm-sidak). In summary, IFNG 

treatment significantly upregulated key signalling molecules (IFNGR1, IFNGR2, JAK1, JAK2, 

STAT1) in Kasumi-1 cells, but only JAK2 was significantly upregulated in the KG-1 cells. These 

results align with the proteomics data in Chapter 3, which showed Kasumi-1 had a robust 

response to IFNG, evidenced by 141 differentially expressed proteins and 7 upregulated IRDS 

proteins, compared to 48 proteins and 2 IRDS proteins in KG-1 



 

Figure 36: Expression of IFNGR1, IFNG2, JAK1, JAK2 and STAT1 transcripts and STAT1 protein in Kasumi-1 and KG-1 in 
response to treatments. Transcript data given as FPKM (n=3) and protein data as NPA (n=5/6). Grey = Control, Red = 
IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test – BH correction. Bottom right 
(STAT1): Normalised peak area expression of STAT1 protein in cell lines, as measured by SWATH-MS, control 
compared to 48 hrs treatment 100 ng/ml IFNG (n=5-6). Grey; Control, Red; IFNG. Holm-Sidak method was used to 
calculate statistical significance between IFNG treated and untreated cells. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 
0.001 and **** = Padj< 0.0001.   

 

4.2.2.3 SOCS1 expression was upregulated by IFNG in both cell lines 
As the differences in signalling intensity occur before the first wave of transcription, the disparity 

in signalling must occur between signal transduction and the STAT1 homodimer binding to DNA. 

SOCS1 is a protein which reduces IFNG signalling by binding to Jak1/2 to prevent phosphorylation 



of STAT1  (Schroder, et al. 2004). TRIM8 is also an IFNG inducible protein whose interaction with 

SOCS-1 has been shown to degrade it (Toniato, et al. 2002). Data gathered by NGS showed that 

SOCS1 transcripts were expressed by KG-1 but not by Kasumi-1 (<1 FPKM). Figure 37 shows IFNG 

induced SOCS1 expression significantly in both cell lines (Kas-1 Ctrl = 0.02 FPKM, IFNG = 15.93 

FPKM, KG-1 Ctrl = 5.57 FPKM, IFNG = 20.01 FPKM, Padj < 0.0001, Wald-test BH). In Kasumi-1, 

combining IFNG with 5AzaC further increased SOCS1 expression than IFNG alone (Kas-1 

IFNG5AzaC = 21.81 FPKM, Padj < 0.0001, Wald-test BH). TRIM8 expression (Figure 37) was similar 

between untreated cell lines and was decreased in response to IFNG in both cell lines to a similar 

level (Kas-1 Ctrl = 8.09 FPKM, IFNG = 6.39 FPKM, Padj < 0.0001, Wald-test BH, KG-1 Ctrl = 8.21 

FPKM, IFNG = 7.01 FPKM, Padj < 0.01, Wald-test BH). Treatment with 5AzaC uniquely upregulated 

TRIM8 in Kasumi-1 (Kas-1 5AzaC = 10.82 FPKM, Padj < 0.0001, Wald-test BH). SOCS1 and TRIM8 

were expressed at similar levels in the presence of IFNG in both cell lines. It is, therefore, unlikely 

the large differences in IFNG signalling were SOCS1 dependent. However, transcript abundance 

is not necessarily an indicator of protein abundance, as many factors such as RNA degradation 

can prevent translation to protein. As SOCS1 and TRIM8 data were not present in the SWATH-MS 

data, no conclusions could be drawn about what was happening in the cell lines at the protein 

level. 

 

Figure 37: Expression of SOCS1 and TRIM8 transcripts in Kasumi-1 and KG-1 in response to treatments. Data is given 
as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene 
Wald test – BH correction. * = Padj<0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001. 

  



4.2.2.4 High expression of SHP1 by KG-1 could inhibit IFNG signalling 
Protein tyrosine phosphatases (PTPs) like SHP1 and SHP2, disrupt IFNG signalling by obstructing 

STAT1 phosphorylation  (Schroder, et al. 2004). PTPs in the cytosol can dephosphorylate Jak1/2 

and IFNGR1, thereby disrupting the phosphorylation chain and preventing STAT1 

phosphorylation, as shown in Figure 9. This reduces the number of STAT1 proteins successfully 

phosphorylated, stopping homodimers forming to activate transcription. PTPs in the nucleus can 

also directly dephosphorylate STAT1 homodimers, rendering them inactive and causing their 

nuclear export  (Schroder, et al. 2004). 

NGS and proteomics data showed KG-1 expressed more SHP2 protein than Kasumi-1 (Kas-1 = 

36,615 NPA, KG-1 = 104,270 NPA, Padj <0.01, Holm-Sidak). However, expression of its transcript 

PTPN11 was similar between the cell lines (Kas-1 = 39.45 FPKM, KG-1 = 39.71 FPKM, NS, Wald-

test, BH) (Figure 38). Expression of SHP1 differed between cell lines (Figure 38). Kasumi-1 

expressed lower levels of SHP1 protein compared to KG-1 (Kas-1= 114,481 NPA and KG-1= 

1,708,676 NPA, Padj < 0.0001, Holm-Sidak) along with its transcript PTPN6 (Kas-1= 5.09 FPKM 

and KG-1= 68.59 FPKM, Padj < 0.0001, Wald-test, BH). It is possible high baseline levels of SHP1 

in KG-1 could prevent IFNG signalling occurring to the same degree as Kasumi-1, which has low 

baseline SHP1 expression. Furthermore, Kasumi-1 upregulated the PTPN6 transcript and 

corresponding SHP1 protein (PTPN6 expression, Control = 5.09 FPKM, IFNG = 11.89 FPKM, Padj 

< 0.0001, Wald-test, BH, SHP1 expression, Control = 114,481 NPA, IFNG = 297,412 NPA, Padj< 

0.01, Holm-Sidak) in response to IFNG, thereby displaying a potential negative feedback loop for 

IFNG signalling, indicative of a functional IFNG response. Meanwhile, IFNG significantly 

downregulated PTPN6 in KG-1 (Control = 68.59 FPKM, IFNG = 60.14 FPKM, Padj < 0.001, Wald-

test, BH) and the protein product was decreased but not reported as significant in the SWATH-

MS data (Control = 1,708,676 NPA, IFNG = 1,581,148 NPA, NS, Holm-Sidak). High SHP1 

expression could have allowed KG-1 to remain IFNG-resistant, while its low expression in Kasumi-

1 might have enabled a hyper-response to IFNG. According to SWATH-MS data from Chapter 3, 

even with IFNG treatment, Kasumi-1 SHP1 levels remained below those in KG-1 and the other cell 

lines (data presented in appendix 7.6), indicating a dampened negative feedback loop, which 

could enable the more intense and prolonged IFNG response, displayed by Kasumi-1. 



 

Figure 38: Expression of PTPN6 and PTPN11 transcripts and matching SHP1 and SHP2 proteins in Kasumi-1 and KG-1 
in response to treatments. Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 
5AzaC. Statistical tests by Novogene Wald test – BH correction. B) Normalised peak area expression of SHP1 and SHP2 
across all four cell lines, control compared to 48 hrs treatment 100 ng/ml IFNG (n=5-6). Holm-Sidak method was used 
to calculate statistical significance between IFNG treated and untreated cells. * = Padj< 0.05, ** = Padj< 0.01, *** = 
Padj< 0.001 and **** = Padj< 0.0001.   

 

4.2.3 Metascape analysis showed IFNG induced a unique biological 
response in each cell line 

The IFNG signalling pathway was operating differently between cell lines, possibly due to 

differential expression of SHP1. The intensity of signalling was distinct between cell lines. To 

investigate how the divergent IFNG signalling intensity effected biological response to IFNG, a 

comparison of differentially expressed transcripts was performed using Metascape.  

 

Transcript lists for each cell line were filtered for differential expression Padj < 0.05 and a fold 

change of 1.5 or more, then separated into two lists of increased (up-regulated) or decreased 

(down-regulated) expression. Venn diagrams were drawn comparing the lists of increased and 

decreased transcripts between each cell line in Figure 39 A and B, respectively. The large gap in 

IFNG signalling intensity had a subsequent impact on breadth of IFNG response, illustrated when 

comparing the number of transcripts differentially expressed following IFNG treatment between 



cell lines. Venn diagrams clearly show IFNG treatment more significantly impacted transcript 

expression in Kasumi-1 than KG-1, with thousands of transcripts differentially expressed 

compared to KG-1’s hundreds. 

 

 

 

 

Figure 39: Venn diagrams comparing transcript lists of differentially expressed transcripts of Kasumi-1 and KG-1 
treated with IFNG. Differential expression was defined as a change of 1.5-fold or more that was also statistically 
significant (Padj < 0.0.5). Comparison of up-regulated transcripts depicted in A, and down regulated transcripts 
displayed in B.  

 

Transcript lists unique to each cell line, as defined by Venn diagram, were uploaded to Metascape 

for pathway enrichment. The top 10 significantly enriched pathways according to the increased 

and decreased transcript lists are displayed for Kasumi-1 and KG-1 in Figure 40, top row and 

bottom row respectively. The Metascape tool used various databases, including KEGG Pathway, 

GO Biological Processes, Reactome Gene Sets, Canonical Pathways, CORUM, TRRUST, 

DisGeNET, PaGenBase, Transcription Factor Targets, WikiPathways, and PANTHER Pathway, to 

conduct its analysis. The tool employed the entire genome as the background for its enrichment. 

For a process to be considered significant, it had to be identified in the input gene list at least 

three times, with a ratio of observed counts to chance counts being greater than 1.5 times. The 

identified processes meeting these criteria were then grouped into clusters based on similarities, 

and the most statistically significant member was selected to represent the cluster. 

Kasumi-
1 

KG-1 A) B) Kasumi-
1 

KG-1 

3569 

(89.4%) 

68 

(1.7%) 

354 

(8.9 %) 

3041 

(91.3 %) 

219 

(6.6%) 

71 

(2.1%) 

Upregulated Downregulated 



 

 

 

 

Metabolism of RNA

Rrna processing in the nucleus and cytosol

Cell Cycle

Trna metabolic process

Ribosomal large subunit biogenesis

DNA repair

DNA replication

tRNA processing

Nucleotide metabolic process

DNA conformation change

0

2
0

4
0

6
0

8
0

1
0
0

0 1
0

0

2
0

0

3
0

0

-log10(P-value)

Term candidate number

Regulated exocytosis

NABA ECM REGULATORS

Immune response-activating cell surface receptor signalling 

Cytokine Signalling in Immune system

Interferon-gamma-mediated signalling pathway

Haemostasis

Positive regulation of stress-activated MAPK cascade

Transport of small molecules

Tumour necrosis factor-mediated signalling pathway

Defence response to bacterium

0
.0

0
.1

0
.2

0
.3

0 2 4 6 8 1
0

-log10(P-value)

Term candidate number

Focal Adhesion

Chemotaxis

Hippo-Merlin Signalling Dysregulation

Regulation of cell activation

Cytokine-cytokine receptor interaction

Cell morphogenesis involved in differentiation

Response to wounding

Cellular response to growth factor stimulus

Positive regulation of synaptic transmission

Second-messenger-mediated signalling

0 1 2 3 4 5

0 5 1
0

1
5

2
0

2
5

-log10(P-value)

Term candidate number

Cell activation Immune response

Regulation of cytokine production

T cell activation

Upregulation of defence response

Cytokine Signalling  in Immune system

Leukocyte differentiation

Response to virus

Positive regulation of cell migration

Regulation of toll-like receptor signalling pathway

Response to molecule of bacterial origin

0

1
0

2
0

3
0

4
0

0 5
0

1
0
0

1
5
0

2
0
0

2
5
0

-log10(P-value)

Term candidate number

Kasumi-1 IFNG: Upregulated pathways 

KG-1 IFNG: Upregulated pathways KG-1 IFNG: Downregulated pathways 

Kasumi-1 IFNG: Downregulated pathways 

Figure 40: The top 10 most significantly enriched pathways in Kasumi-1 and KG-1 treated with IFNG. Enriched pathways were identified by the ‘unique’ up and down regulated transcript 
lists and sorted by significance post FDR. See appendix for table summary process id’s and number of transcripts significantly changed in each pathway. 

 



Pathway analysis showed that changes in Kasumi-1 induced by IFNG were more robust with large 

numbers of transcripts in pathways being altered, for example as many as 252 out of 673 

transcripts for metabolism of RNA. As opposed to in KG-1 where a maximum of 21 out of 644 

transcripts were significantly deregulated in the chemotaxis process. Cell lines shared some 

similarities in responses, both upregulating IFNG viral and immune defence mechanisms. 

Enriched pathways reported for Kasumi-1 included immune response-based processes, mostly 

for mobilisation and activation of immune cells, as well as cytokine signalling and inflammation 

response (Figure 40).  

4.2.4 Investigation of IFNG Induced apoptosis marker transcripts in AML 
cell lines 

This section of work focuses on the analysis of the Kasumi-1 cell line's response to IFNG 

treatment and its potential role in inducing apoptosis as well as an immunosuppressive 

phenotype. The hypothesis for this work is that IFNG induces expression of immunosuppressive 

molecules in AML. In Chapter 3, it was observed that IFNG induced immunosuppressive 

molecules in both cell lines. However, IFNG also triggered cell death specifically in Kasumi-1 

cells. In this study, cells were treated with 5 ng/mL of IFNG, and the expression of transcripts 

involved in apoptosis was analysed. The chosen IFNG dose of 5 ng/mL was based on a dose 

selection study, which showed no increase in cell death in Kasumi-1 cells when treated with 

concentrations higher than 5 ng/mL. To characterise IFNG induced apoptosis, the expression of 

stress sensors ATF3 and BMF, as well as transcripts of genes involved in the P53 pathway for 

growth arrest, such as CDKN1A and GADD45, were analysed. Additionally, IFIT-mediated 

apoptosis pathway transcripts were also investigated. Dose experimental data is presented in 

graphs in the appendix (see 7.4). 

4.2.4.1 Treatment with IFNG induced transcription of stress sensors exclusively in Kasumi-1 
ATF3 is a stress responding transcription factor which regulates transcripts in response to DNA 

damage, furthermore it has been found to co-localise with p53 influencing its DNA damage 

transcriptional program (Zhao, et al. 2016). BMF has been described as a ‘sentinel’, that upon 

detecting cytoskeletal damage, initiates apoptosis via cytochrome C release from the 

mitochondria (Hausmann, et al. 2011). In Kasumi-1, IFNG caused a significant increase in 

expression of stress sensors ATF3 and BMF (ATF3, Ctrl = 1.05 FPKM, IFNG = 12.07 FPKM, and BMF, 

Ctrl = 1.55 FPKM, IFNG = 12.62 FPKM, both, Padj < 0.0001, Wald-test BH). Combination of IFNG 

with 5AzaC proved to be synergistic, causing a further significant increase compared to IFNG 

treatment alone in Kasumi-1 (ATF3, IFNG5AzaC = 21.25 FPKM, BMF, IFNG5AzaC = 17.68 FPKM, 

both, Padj < 0.0001, Wald test- BH) (Figure 41).  



 

Figure 41: Transcript expression changes of ATF3 and BMF inKasumi-1 and KG-1 in response to treatments. Data given 
as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene 
Wald test – BH correction. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

 

4.2.4.2 IFNG induced expression of transcripts involved in p53 mediated growth arrest in 
Kasumi-1 

P53 stops cell division by activating transcript programs for cell cycle arrest and apoptosis. Key 

transcripts transactivated by p53 for cell cycle arrest include CDKN1A, SFN and the GADD45 

transcripts (Benchimol 2001). Transcriptomics data showed (Figure 42) significant upregulation 

of CDKN1A with IFNG (Kas-1 Ctrl = 0.34 FPKM, IFNG = 11.39 FPKM, Padj < 0.0001, Wald test- BH), 

which was further increased by combination with 5zaC treatment in Kasumi-1 (Kas-1 IFNG5AzaC 

= 16.69 FPKM, Padj < 0.0001, Wald test- BH), but not KG-1. Expression of SFN is not presented as 

it remained low under all conditions (< 1 FPKM) in both cell lines and was unaffected by 

treatments. In Kasumi-1 IFNG induced significant increased expression of GADD45A (Kas-1 Ctrl 

= 12.78 FPKM, IFNG = 18.68 FPKM, Padj < 0.0001, Wald test- BH), GADD45B (Kas-1 Ctrl = 10.95 

FPKM, IFNG = 30.48 FPKM, Padj < 0.0001, Wald test- BH) and GADD45G (Kas-1 Ctrl = 0.05 FPKM, 

IFNG = 1.19 FPKM, Padj < 0.0001, Wald test- BH).  Combining IFNG with 5AzaC appeared to 

neutralise the inducing effects of IFNG for GADD45A in Kasumi-1, returning expression to a 

similar level to untreated cells (Kas-1 IFNG5AzaC = 13.08 FPKM). In Kasumi-1, GADD45GIP1 

expression was significantly decreased by IFNG treatment and 5AzaC treatment (Kas-1 IFNG = 

30.16 FPKM, 5AzaC = 43.43 FPKM, both, Padj < 0.0001, Wald test- BH), but there was no 

synergistic effect when both treatments were combined (Kas-1 IFNG5AzaC = 30.27 FPKM). IFNG 

decreased expression of GADD45B in KG-1 IFNG (Padj < 0.0001, Wald test- BH).  



 

Figure 42: Expression changes of p53 regulated cell cycle arrest transcripts in Kasumi-1 and KG-1 cell lines in response 
to treatments. Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. 
Statistical tests by Novogene Wald test – BH correction. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = 
Padj< 0.0001.   

Given the significant IFNG-inducible expression of transcripts CDKN1A, GADD45A, GADD45B, 

GADD45G, and GADD45GIP1 in the Kasumi-1 cell line, the SWATH-MS proteomic data from 

Chapter 3 was revisited to examine the expression of related proteins.  This analysis revealed that, 

among these transcripts, protein products were detected only for CDKN1A (P21) and 

GADD45GIP1 (G45IP), as shown in Figure 43. This aligns with the previous FACS data in chapter 

3, which reported no cell cycle arrest. No significant increase in P21 protein expression was 

observed in either cell line due to high variation between results, which could be attributed to 

several reasons outlined in chapter 2. Conversely, while IFNG induced reduction of 

GADD45GIP1, its protein counterpart, G45IP, was increased in the SWATH MS data (Kas-1 Ctrl = 

137,417 NPA, IFNG = 1,164,951 NPA, KG-1 Ctrl =8,073,761 NPA, IFNG = 8,811,154 NPA). This 

discrepancy could be due to differences in IFNG doses causing varied responses or differences 

at the translation stage. 



 

Figure 43: Expression of CDKN1A and GADD45GIP1 proteins in untreated and IFNG treated Kasumi-1 and KG-1. 
Untreated control was compared to IFNG treated samples 48 hrs after treatment with 100 ng/ml IFNG (n=5-6). Grey = 
Control, Red = IFNG. Holm-Sidak method was used to calculate statistical significance between IFNG treated aned 
untreated cells. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

 

These results suggested that low doses of IFNG might induce a p53 DNA damage response in 

Kasumi-1, resulting in cell cycle arrest, despite its mutational status. Transcript expression for 

TP53 was reported in the NGS data to be higher for Kasumi-1 than in KG-1, which is unsurprising 

as KG-1 is a p53 null cell line (Figure 44 B). The average expression of the p53 protein was higher 

in KG-1 than in Kasumi-1 according to SWATH data (Figure 44 C). However, greater variation was 

observed, likely due to SWATH-MS's struggle to accurately report low abundance proteins, 

suggesting a possible false reading for KG-1 (See 7.6). Furthermore, the SWATH-MS data set was 

generated by treating cells with 100 ng/ml IFNG, in contrast to the NGS data set, which used a 

low dose of 5 ng/ml. Expression was also tested by western blot using the same treatment 

concentrations and schedules as those used to generate the NGS data. Results clearly showed 

that p53 protein was expressed in Kasumi-1, while only faint bands were visible in KG-1 (Figure 

44). All three techniques indicated that treatment with IFNG had no impact on p53 expression at 

either the genetic or protein level.  



 

Figure 44: Expression of TP53 transcript and P53 protein by both cell lines following IFNG and 5AzaC treatments A) 
Western blots comparing p53 protein expression after 48 hrs of 5AzaC treatment and 30 minutes of IFNG, with GAPDH 
as an internal control (n=2). IFNG; 5ng/ml at for 30 minutes after 48 hrs of 5AzaC, 5AzaC; 0.5 µm at 0 and 24 hrs, 
combined; treatments together as stated. B) Expression of TP53 in both cell lines under all treatment conditions (n=3), 
data given as FPKM. C) Quantification of protein abundance of p53 as per western blot conditions stated in A. Grey = 
Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. B) Quantitative densitometry of P53 expression for 
western blots shown in A).  

 

4.2.4.3 Investigation of p53 dependent apoptosis in response to IFNG in Kasumi-1 
Several downstream mediators of apoptosis contain p53 response elements and are transcribed 

by p53 upon stress detection. These transcripts can be categorised based on the localisation of 

their protein products: cell membrane (FAS, PERP, TNFRSF10B), cytosolic (PIDD1, EI24), and 

mitochondrial (BAX, PMAIP1, BBC3, TP53AIP1) (Benchimol 2001). 

4.2.4.4 P53 death receptors may be activated independent of p53 in Kasumi-1 
IFNG induced an up regulation of the death domain receptor FAS in Kasumi-1 (Ctrl = 0.05 FPKM, 

IFNG = 10.33 FPKM, Padj < 0.0001, Wald test- BH) but decreased expression in KG-1 (Ctrl = 4.14 

FPKM, IFNG = 2.45 FPKM, Padj < 0.0001, Wald test- BH), while PERP (FPKM < 1) was unaffected 

and therefore was not presented here. TNFRSF10B was slightly downregulated in Kasumi-1 when 

treated with IFNG (Ctrl = 7.53 FPKM, IFNG = 6.47 FPKM, Padj < 0.05, Wald test- BH), but 

upregulated by 5AzaC (5AzaC = 9.99 Padj < 0.0001, Wald test- BH). Meanwhile, TNFSF10 the p53 

independent TNFRSF10B ligand, was highly upregulated in Kasumi-1 by IFNG, and even higher 

when combined with 5AzaC (Ctrl = 0.70 FPKM, IFNG = 138.95 FPKM, IFNG5AzaC = 191.18 FPKM, 

both Padj < 0.0001, Wald test- BH). TNFSF10 was upregulated in KG-1 upon IFNG treatment, 

A) 

C) B) 



though not to the extent observed in Kasumi-1 (Ctrl = 19.02 FPKM, IFNG = 26.99 FPKM, Padj < 

0.05, Wald test- BH). The increase in TNFSF10 from no mRNA (<0 FPKM) to over 140 FPKM, if 

reflected in protein expression, may induce activation of apoptosis by death domain TNFRSF10B, 

independent of p53 transcription. Further evidence this may be the case in Kasumi-1 is the 

significant increase in induction of CASP3 (Ctrl = 23.42 FPKM, IFNG = 30.14 FPKM, Padj < 0.0001, 

Wald test- BH) and CASP8 (Ctrl = 7.12 FPKM, IFNG = 14.40 FPKM, Padj < 0.0001, Wald test- BH) 

indicating apoptosis induction. Meanwhile FADD, ligand to FAS, was unaffected by IFNG 

treatment (Ctrl = 9.08 FPKM, IFNG = 9.27 FPKM, Padj < 0.05, Wald test- BH) (Figure 45).  

 

Figure 45: Expression of TNFSF10, TNFRSF10B, FAS, CASP3, CASP8 and FADD in Kasumi-1 and KG-1 under all 
treatment conditions. Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. 
Statistical tests by Novogene Wald test – BH correction. * = Padj<0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 
0.0001. 

 

4.2.4.5 IFNG highly upregulated expression of pro-apoptosis molecule PMAIP1 in Kasumi-1 
PIDD1 and EI24 overexpression has been linked to cell cycle arrest and induced apoptosis 

(Benchimol 2001). PIDD1 expression was unaffected by treatments in both cell lines, while IFNG 

downregulated EI24 in Kasumi-1 only (Ctrl = 33.05 FPKM, IFNG = 16.78 FPKM, Padj < 0.0001, Wald 

test-BH). In addition, the transcripts for mitochondrial proteins BBC3 and TP53AIP1 (<1FPKM) 

were very lowly expressed in both cell lines (Figure 46). Treatment with IFNG increased expression 

of BBC3 (Ctrl = 0.39 FPKM, IFNG = 1.08 FPKM, Padj < 0.05, Wald test-BH) and combination 

treatment further increased its expression in Kasumi-1 (IFNG5AzaC = 1.98 FPKM, Padj < 0.0001, 

Wald test- BH). PMAIP1, which is a proapoptotic molecule (Janus, et al. 2020), was significantly 

induced by IFNG in Kasumi-1 and even further upregulated by combined IFNG with 5AzaC 



treatment (Ctrl = 15.04 FPKM, IFNG = 49.77 FPKM, IFNG5AzaC = 72.44 FPKM, both, Padj < 0.0001, 

Wald test- BH). Meanwhile, IFNG downregulated PMAIP1 in KG-1 (Ctrl = 18.53 FPKM, IFNG = 13.26 

FPKM, Padj < 0.01, Wald test-BH) (Figure 46). The overexpression of PMAIP1 has been linked to 

apoptosis in other cancer cell lines, via induction of APAF1 (Kuroda, J., et al. 2010). Despite 

induction of PMAIP1 (Padj < 0.0001, Wald test- BH), APAF1 was only minorly induced in Kasumi-

1 (Ctrl = Padj < 0.05, Wald test- BH). Conversely, despite IFNG downregulating PMAIP1 in KG-1, 

APAF1 was upregulated with IFNG treatment in KG-1 (Both, Padj < 0.01, Wald test- BH). 

 

Figure 46: Expression of PIDD1, EI24, BBC3, PMAIP1 and APAF1 in Kausmi-1 and KG-1 under all treatment conditions.  
Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by 
Novogene Wald test – BH correction. * = Padj<0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001. 

 



4.2.4.6 Kasumi-1 apoptosis could be mediated through IFNG induced expression of IFIT 
proteins  

Kasumi-1 displayed extremely high induction of all three IFIT transcripts and proteins in response 

to IFNG (Figure 47). IFIT1 and IFIT2 have been identified as IFNG inducible proteins which bind to 

MITA (mediator of IRF3 activation) to initiate apoptosis via the mitochondrial pathway 

(Stawowczyk, et al. 2011, Ohsugi, et al. 2017). Furthermore, apoptosis can occur even in the 

presence of non-functional p53 via these mechanisms  (Stawowczyk, et al. 2011). 

Figure 47: Transcript expression of IFIT1/2/3 transcripts and proteins in Kasumi-1 and KG-1 under all treatment 
conditions. Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical 
tests by Novogene Wald test – BH correction. B) Normalised peak area expression of IFIT1/2/3 protein in cell lines, 
control compared to 48 hrs treatment 100 ng/ml IFNG (n=5-6). Holm-Sidak method was used to calculate statistical 
significance between IFNG treated and untreated cells. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 
0.0001.   

 

IFIT2 forms complexes with IFIT1 and IFIT3, the latter of which significantly reduces the ability of 

IFIT2 to induce apoptosis (Kotredes and Gamero 2013). Expression of IFIT1, (Kas-1 ctrl = 4.73 

FPKM, IFNG = 371.42 FPKM, KG-1 ctrl = 1.47 FPKM, IFNG = 3.88 FPKM) IFIT2 (Kas-1 ctrl = 6.53 

FPKM, IFNG = 520.63 FPKM, KG-1 ctrl = 3.68 FPKM, IFNG = 13.46 FPKM) and IFIT3 (Kas-1 ctrl = 

12.98 FPKM, IFNG = 970.06 FPKM, KG-1 ctrl = 7.25 FPKM, IFNG = 54.62 FPKM) was significantly 

upregulated in both cell lines with IFNG treatment, but to a lower extent in KG-1 (All, Padj < 0.0001, 

Wald test- BH). The combination of IFNG and 5AzaC further increased expression of IFIT1/2/3 in 

Kasumi-1 compared to IFNG treatment alone (Kas-1 IFNG5AzaC IFIT1 = 531.83 FPKM, IFIT2 = 

814.07 FPKM, IFIT3 = 1233.68 FPKM, Padj < 0.0001, Wald test- BH). The SWATH-MS data from 

chapter 3 was searched for expression of the protein counterparts. IFIT proteins were also highly 

upregulated in Kasumi-1 (IFIT1 Ctrl =82,613 NPA, IFNG = 1.89 x 106 NPA, IFIT2 Ctrl = 56,064 NPA, 

IFNG = 1.72 x 106
 NPA, IFIT3 Ctrl = 120,500 NPA, IFNG = 3.02 x 106, all, Padj< 0.0001, Holm Sidak), 



and IFIT3 was significantly increased in KG-1 (Ctrl = 150,940 NPA, IFNG = 326,124 NPA, Padj<0.05, 

Holm Sidak) when treated with IFNG. As IFIT3 was also highly significantly upregulated with IFNG 

in Kasumi-1, there is a chance that some IFIT2 was trapped in IFIT2/3 complexes. Although IFIT3 

also binds with IFIT1, it has not been reported if this decreases its ability to induce apoptosis, 

although it has been found to increase IFIT1 half-life and regulate its antiviral response (Johnson, 

et al. 2018). 

4.2.4.7 IFNG induced Annexin 1 expression could promote apoptosis of Kasumi-1 via IFIT1 
Annexin A1 (ANXA1) is a protein which binds to phospholipids in a Ca2+ dependent manner and 

has been identified to play roles in cell proliferation, apoptosis and inflammation when expressed 

by immune cells  (Shao, et al. 2019, Sheikh and Solito 2018, Biaoxue, Xiguang and Shuanying 

2014). As cell lines are not immune cells their expression of ANXA1 likely helps to resolve 

inflammation by constitutively activating caspase 3 activity to promote apoptosis of themselves. 

Additionally, ANXA1 may be translocated to the cell surface of apoptotic cells to act as an ‘eat 

me’ signal for removal by macrophages (Sheikh and Solito 2018).  

Figure 48: Expression of ANXA1 transcript and protein in Kasumi-1 and KG-1 under stated treatment conditions. 
Transcript data given as FPKM (n=3) and protein data was given in NPA (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, 
and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test – BH correction.  B) Normalised peak area 
expression of ANXA1 protein in cell lines, control compared to 48 hrs treatment 100 ng/ml IFNG (n=5-6). Grey; Control, 
Red; IFNG. Holm-Sidak method was used to calculate statistical significance between IFNG treated and untreated 
cells. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

Transcriptomics and proteomics data showed high baseline expression of ANXA1 mRNA (Kas-1 

Ctrl = 1.30 FPKM, KG-1 Ctrl = 75.82 FPKM) and protein (Kas-1 Ctrl = 137,417 NPA, KG-1 Ctrl = 8.07 

x 106
 NPA) in KG-1 compared to Kasumi-1 (Both Padj < 0.0001, Wald-test BH and Holm Sidak 

respectively)(Figure 48). This high expression of ANXA1 prior to treatment is unique to KG-1, as 

SWATH-MS data generated in chapter 3 showed it was lowly expressed in SIG-M5 and THP-1 too 

(Appendix 7.6). Expression of ANXA1 mRNA and protein was significantly upregulated by IFNG 

treatment in Kasumi-1 (mRNA, Kas-1 IFNG = 47.04 FPKM, Padj < 0.0001, Wald-test BH, and, 

protein, Kas-1 IFNG = 1.16 x 106 NPA, Padj< 0.0001, Holm-Sidak) and combining IFNG and 5AzaC 



further upregulated ANXA1 in Kasumi-1 compared to IFNG alone (Kas-1 IFNG5AzaC = 84.20 

FPKM, Padj < 0.0001 Wald-test BH).   ANXA1 expression has been associated with increased RIG-

1 protein (DDX58) expression in lung epithelial cells. RIG-1 activation was observed to induce cell 

death via IFIT1, and reduced ANXA1 expression resulted in decreased IFIT1 expression, thereby 

reducing cell death (Yap, et al. 2020). IFNG induced upregulation of DDX58 in both cell lines (Kas-

1 Ctrl = 1.41 FPKM, IFNG = 113.56 FPKM, KG-1 Ctrl = 3.28 FPKM, IFNG = 7.18 FPKM, Both, Padj < 

0.0001, Wald-test BH), combining IFNG with 5AzaC further significantly upregulated DDX58 

expression in Kasumi-1 compared to IFNG alone (Figure 54, Kas-1 IFNG 5AzaC = 132.00 FPKM, 

Padj < 0.0001, Wald-test BH). The DDX58 protein product RIG-1 was only upregulated in Kasumi-

1 in response to IFNG (Kas-1 Ctrl = 20,193 NPA, Kas-1 IFNG = 333,485 NPA, Padj< 0.0001). In 

Kasumi-1, IFNG induced the expression of ANXA1, IFIT1 and RIG-1 transcripts and proteins, and 

subsequently could initiate apoptosis via this route.  

 

Figure 49: Transcript expression of DDX58 transcript and protein in Kasumi-1 and KG-1 under all treatment conditions. 
Transcript data given as FPKM (n=3) and protein data as NPA (n=5/6). Grey = Control, Red = IFNG, Blue = 5AzaC, and 
Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test – BH correction.  B) Normalised peak area expression 
of RIG-1 protein in cell lines, control compared to 48 hrs treatment 100 ng/ml IFNG (n=5-6). Grey; Control, Red; IFNG. 
Holm-Sidak method was used to calculate statistical significance between IFNG treated and untreated cells. * = Padj< 
0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

 

  



4.2.5 IFNG induction of Immune Evasion Mechanisms in AML cell lines 
The following section explores the expression of immune-related molecules and their potential 

implications in IFNG mediated immunosuppression and immune evasion within AML cell lines. 

Here, expression of known immune resistance molecules such as CD274 (PD-L1) and HLA-E 

were investigated in the transcriptomics data generated in this chapter, and proteomics data 

generated in chapter 3. Other immune evasion molecules, including TNFSF10 (TRAIL), NCR3, 

LGALS9, HAVCR2, PVR, and SIRPα, were also explored to understand their impact on immune 

response regulation. Kasumi-1 was vulnerable to IFNG induced cell death through several 

potential mechanisms. To survive immune response-mediated cell death, cells must employ 

adaptive resistance mechanisms to evade it. Further investigation focused on transcripts 

associated with immune resistance, comparing their expression across different cell lines. 

4.2.5.1 AIR molecules CD274 and HLA-E reported as IFNG inducible by transcriptomics data 
Adaptive immune resistance, discussed in Chapter 3, involves the expression of immune escape 

and resistance molecules. Examination of the transcriptomics data revealed that IFNG treatment 

of Kasumi-1 activated the transcription of certain adaptive immune resistance transcripts and 

unveiled additional mechanisms of immune resistance. Out of the transcripts discussed in 

chapter 3 for adaptive immune resistance, only CD274 (PD-L1) and HLA-E were detected above 

1 FPKM in both cell lines (CD274 Kas-1 Ctrl = 0.01 FPKM, KG-1 Ctrl = 0.10 FPKM, HLA-E Kas-1 Ctrl 

= 90.63 FPKM, KG-1 Ctrl = 131.32 FPKM) (Figure 50). Both CD274 (Kas-1 IFNG = 7.42 FPKM, KG-1 

IFNG = 1.67 FPKM) and HLA-E (Kas-1 IFNG = 821.15 FPKM, KG-1 IFNG = 468.07 FPKM) were 

significantly upregulated with IFNG (both, Padj < 0.0001, Wald test- BH). In Kasumi-1 combination 

of IFNG with 5AzaC further upregulated HLA-E expression in comparison to IFNG only (Kas-1 

IFNG5AzaC = 936.71 FPKM, Padj < 0.0001, Wald-test BH). Transcript expression levels of both 

targets agreed with the protein expression trends detected by flow cytometry in Figure 16. 



 

Figure 50: Expression of CD274 and HLA-E transcripts in Kasumi-1 and KG-1 under all treatment conditions.  Data given 
as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene 
Wald test – BH correction, * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

 

4.2.5.2 The immunosuppressive molecule TRAIL (TNFSF10) was significantly upregulated in 
Kasumi-1 cells following IFNG treatment 

TNFSF10 (TRAIL) binds to death receptors DR4 and DR5 (TNFRSF10A/TNFRSF10B), which have 

death domains, and induce apoptosis via caspases. TRAIL is expressed by NK cells and cytotoxic 

T cells of the immune system. As TRAIL selectively induces apoptosis in tumour cells over normal 

cells, recombinant TRAIL is a favourable anti-tumour treatment (Beyer, et al. 2019). TNFSF10 was 

significantly highly upregulated by IFNG in Kasumi-1 when treated with IFNG (Kas-1 Ctrl = 0.70 

FPKM, IFNG = 138.95 FPKM, Padj < 0.0001, Wald test- BH), and even further when treated with 

both IFNG and 5AzaC (Kas-1 IFNG5AzaC = 191.18 FPKM, Padj < 0.0001, Wald test- BH) (Figure 

51). In comparison, KG-1 baseline expression of TNFSF10 was higher, but IFNG only slightly 

upregulated expression (KG-1 Ctrl = 19.02 FPKM, KG-1 IFNG = 26.99 FPKM, Padj < 0.05), with no 

further increase seen when IFNG was combined with 5AzaC (KG-1 IFNG5AzaC = 26.80 FPKM). 

The upregulation of TNFSF10 could contribute to Kasumi-1 immunosuppression, to induce 

apoptosis of NK and CD8 T cells which express TRAIL receptors (Mirandola, et al. 2004). 

 Receptors for TNFSF10 were consequently looked for in the transcriptomics data. TNFRSF10A 

was expressed at low levels in both cell lines but upregulated by IFNG in Kasumi-1 (Kas-1 Ctrl = 

3.36 FPKM, IFNG = 4.47 FPKM, Padj< 0.01). TNFRSF10B was downregulated in response to IFNG 

and upregulated by 5AzaC in Kasumi-1 only (Kas-1 ctrl = 7.53 FPKM, IFNG = 6.47 FPKM and 5AzaC 

= 9.99 FPKM, Padj < 0.05 and Padj <0.0001 respectively, Wald-test BH). Some cancers upregulate 

‘decoy’ receptors for TRAIL, which do not contain death domains such as TNFRSF10C, 

TNFRSF10D and TNFRSF11B  (Beyer, et al. 2019). Out of the decoy receptors, only TNFRSF10D 

was expressed above 1FPKM in the cell lines and was upregulated by IFNG in Kasumi-1 only (Ctrl 

= 5.61 FPKM, IFNG = 7.97 FPKM, Padj < 0.0001, Wald-test BH). Increased expression of TNFSF10 



could be an adaptive mechanism to attack Th1 cells and promote Tregs, thereby creating an 

immunosuppressive environment, and enabling tumour growth. 

 

 

Figure 51: Expression of TNFSF10, TNFRSF10A/B and TNFRSF10D in Kasumi-1 and KG-1 cell lines under all treatment 
conditions. Data given in FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical 
tests by Novogene Wald test – BH correction, * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

 

4.2.5.3 IFNG induced transcription of LGALS9 and HAVCR2 which can impair NK cell and T-cell 
mediated lysis, while downregulating NCR3LG1 which can prevent recognition by NK 
cells 

NCR3 is a ‘natural cytotoxicity receptor’ expressed on NK cells, which, when activated in the 

absence of an inhibitory signal, induces tumour cell lysis. Tumour cells express NCR3LG1, 

enabling their recognition and destruction by NK cells (Brandt, et al. 2009). Both cell lines 

expressed low levels of NCR3LG1 (Kasumi-1 Ctrl = 7.07 FPKM, KG-1 Ctrl = 1.65 FPKM). IFNG 

treatment significantly decreased NCR3LG1 expression in Kasumi-1 (Kasumi-1 IFNG = 3.73 

FPKM, Padj < 0.0001, Wald test- BH), and this reduction was further enhanced by treatment with 

a combination of IFNG and 5AzaC compared to IFNG alone (Kasumi-1 IFNG+5AzaC = 2.74 FPKM, 

Padj < 0.0001, Wald test- BH)(Figure 52). Low expression may allow cell lines to escape this 

mechanism of immune mediated destruction. 



 

 
Figure 52: Expression NCR3LG1, LGALS9 and HAVCR2 (TIM-3) in Kasumi-2 and KG-1 cell lines under all treatment 
conditions. Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical 
tests by Novogene Wald test – BH correction, * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

Galectin-9 (LGALS9) is known for its role in developing the acquired immune system through 

negative selection of T cells in the thymus  (Wada and Kanwar 1997). Other studies have 

suggested its role as an anti-cancer agent in Myeloma and Chronic Myelogenous Leukaemia  

(Kobayashi, et al. 2010, Kuroda, Junya, et al. 2010). More recently, a study of using primary AML 

patient samples found high levels of Galectin-9 secretion impaired NK cells ability to kill AML. In 

addition, soluble Tim-3 (HAVCR2) decreased secretion of IL-2 by T cells, preventing activation of 

NK and cytotoxic T-cells  (Silva, et al. 2017). HAVCR2 expression was significantly upregulated in 

Kasumi-1 in response to IFNG and IFNG combined with 5AzaC (Kas-1 Ctrl = 1.75 FPKM, IFNG = 

7.03 FPKM, IFNG5AzaC = 10.23 FPKM, both, Padj < 0.0001, Wald-test BH). Transcriptomics data 

showed IFNG significantly upregulated LGALS9 (Kas-1 Ctrl = 20.68 FPKM, IFNG = 86.27 FPKM, KG-

1 Ctrl = 4.58 FPKM, IFNG = 11.15 FPKM, both, Padj < 0.0001, Wald test- BH) in both cell lines.  The 

combination of IFNG with 5AzaC pushed LGALS9 expression higher than IFNG alone in Kasumi-1 

(Kas-1 IFNG5AzaC = 103.97 FPKM, Padj<0.0001, Wald-test BH). Protein expression levels of 

Galectin-9 detected by SWATH-MS reflected the increases seen at the transcript level (see 7.6). 

It is possible both cell lines could use IFNG to upregulate galectin-9 to exploit this mechanism to 

avoid immunosurveillance. However, SWATH MS detects peptides available in a lysed sample, 

and so there is no data on how much of the galectin-9 protein was secreted.   

4.2.5.4 Kasumi-1 may use PVR and Nectin-2 suppress immune cells through binding receptor 
TIGIT 

PVR and Nectin-2 are molecules that regulate immune cell functions and are expressed by 

tumour and myeloid cells. Their counterparts, DNAM-1 and TIGIT, are expressed on immune 

effector cells. Binding of PVR or Nectin-2 to DNAM-1 induces NK and cytotoxic CD8+ T cells to 

promote anti-tumoral action, whereas binding to TIGIT causes an immunosuppressive response 

(Gorvel and Olive 2020).  



 
Figure 53: Expression of NECTIN2 and PVR in Kasumi-1 and KG-1 cell lines under all treatment conditions.  Data given 
as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene 
Wald test – BH correction, * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

 

Transcriptomic data showed Kasumi-1 expressed more NECTIN2 than KG-1 (Kas-1 Ctrl = 23.64 

FPKM, KG-1 Ctrl = 9.75 FPKM), while KG-1 expressed more PVR than Kasumi-1 (Kas-1 Ctrl = 4.65 

FPKM, KG-1 Ctrl = 7.10 FPKM)(Error! Reference source not found.). PVR has higher affinity for t

he immunosuppressive TIGIT target than NECTIN2, but NECTIN2 can still contribute towards 

immunosuppression via TIGIT  (Gorvel and Olive 2020). NECTIN2 was upregulated with IFNG in 

Kasumi-1 (Kas-1 Ctrl = 23.64 FPKM, IFNG = 31.77 FPKM, Padj< 0.0001, Wald-test BH) and further 

upregulated when treated with IFNG and 5AzaC than IFNG alone (Kas-1 IFNG5AzaC = 39.23 

FPKM, Padj < 0.0001, Wald-test BH), while PVR was downregulated with IFNG treatment in 

Kasumi-1 (Kas-1 Ctrl = 4.65 FPKM, IFNG = 3.28 FPKM, Padj < 0.0001). Treatments did not affect 

expression of either target in KG-1. NECTIN2 was upregulated upon treatment with interferon 

gamma in Kasumi-1, and this may offer a potential checkpoint target for investigation in interferon 

dominant AML phenotypes.  

4.2.5.5 Cell lines may use CD47 and SIRPα complexes to avoid phagocytosis by macrophages 
CD47 is a membrane receptor highly expressed on tumours, forming a complex with signal-

regulatory protein α (SIRPA). This signalling complex acts as a ‘don’t eat me’ signal, enabling 

tumours to escape phagocytosis by macrophages (Zhang, Wenting, et al. 2020). CD47 expression 

was higher in KG-1 than Kasumi-1 (KG-1 Ctrl = 26.98 FPKM, Kas-1 Ctrl = 5.85 FPKM), as was the 

protein counterpart (KG-1 Ctrl = 294,812 NPA, Kas-1 Ctrl = 73,069 NPA).  IFNG induced CD47 in 

both cell lines at mRNA level (KG-1 IFNG = 30.95 FPKM, Kas-1 IFNG = 17.17 FPKM, Padj < 0.0001, 

Wald-test BH), and protein level (KG-1 IFNG = 419,110 NPA, Kas-1 IFNG = 141,881 NPA, Padj < 

0.001, Padj < 0.0001, respectively, Holm-Sidak). SIRPA was only inducible in Kasumi-1 (Kas1 Ctrl 

= 14.87 FPKM, Kas-1 IFNG = 18.56 FPKM, Padj < 0.0001, Wald-test BH, Figure 54). While SIRPA 



was lowly expressed at the transcript level in KG-1 (KG-1 Ctrl = 1.63 FPKM), its protein expression 

was comparable to Kasumi-1. Unfortunately, SWATH-MS data for SIRPA showed large variation, 

making the data less reliable. Both cell lines expressed CD47 and SIRPA and therefore might 

utilise the complex for phagocyte evasion in AML cell lines.  

 

Figure 54: Transcript expression of CD47 and SIRPA in Kasumi-1 and KG-1 under all treatment conditions, and 
corresponding protein expression post IFNG. Transcript data given as FPKM (n=3), protein data given as NPA (n=5-6). 
Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test – BH 
correction. B) Normalised peak area expression of CD47 and SIRPA protein in cell lines, control compared to 48 hrs 
treatment 100 ng/ml IFNG (n=5-6). Grey; Control, Red; IFNG. Holm-Sidak method was used to calculate statistical 
significance between IFNG treated and untreated cells. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 
0.0001.   

 

 



4.2.5.6 Cell lines did not express stemness transcripts other than NOTCH1 > 1 FPKM 
Another factor in relapse is stemness of cells and their capacity for self-renewal. Stemness 

transcripts NANOG, OCT4, REX1, NOTCH1 and, NESTIN were investigated in the transcriptomics 

data set  (Gonzalez-Garza, et al. 2018). Except for NOTCH1, the transcripts were expressed very 

lowly and reported at below 0.1 FPKM. KG-1 expressed NOTCH1 to  higher levels than Kasumi-1 

(KG-1 Ctrl = 20.91 FPKM, Kas-1 Ctrl = 8.61 FPKM) and expression was decreased by IFNG 

significantly in Kasumi-1 but not KG-1 (Kas-1 IFNG = 6.66 FPKM, Padj<0.0001, Wald-test BH, 

Figure 55). While 5AzaC treatment decreased NOTCH1 expression in both cell lines (Kas-1 5AzaC 

= 6.63 FPKM, KG-1 IFNG = 16.10 FPKM, both, Padj < 0.0001, Wald-test BH). Due to the lack of 

expression, the stemness transcripts were not useful in characterising the cell lines behaviours.  

Figure 55: Expression of NOTCH1 in Kasumi-1 and KG-1 cell lines under all treatment conditions. Data given as FPKM 
(n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test – 
BH correction. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

 

  



 

4.2.6 5AzaC induced three times more differentially expressed transcripts 
in Kasumi-1 than KG-1 

To investigate the effects of demethylation on each cell line, lists of significantly differentially 

expressed transcripts were composed and submitted to metascape.  The breadth of altered 

expression seen was smaller than when cells were treated with IFNG. Again Kasumi-1 was more 

receptive to changes by 5AzaC than KG-1, with changes to 769 transcripts compared to 219 

differentially expressed transcripts in KG-1. Data was transformed to log2(FPKM+1) and Z-values 

calculated before complete hierarchal clustering. Data summarised in heat map (Figure 56). 

 

Figure 56: Hierarchical clustering of the significantly differentially expressed transcripts between untreated and 
5AzaC-treated Kasumi-1 and KG-1 cell lines.  Hierarchical clustering performed using Euclidean distance and 
complete linkage (n = 3 per sample type).   Key for heat maps shown top left for expression values. Heat maps 
generated in Morpheus (https://software.broadinstitute.org/morpheus/). Blue indicates lower expression; red 
indicates higher expression. 

Transcript lists for each cell line were filtered for significance Padj < 0.05 and a minimum 1.5-fold 

change, then separated into two lists by fold change direction. Venn diagrams were generated to 

compare transcript expression between cell lines, Figure 57A and B, respectively.  



 

 

 

 

 

 

 

Figure 57: Venn diagrams comparing transcript lists of differentially expressed transcripts of Kasumi-1 and KG-1 
treated with 5AzaC. Differential expression was defined as a change of 1.5-fold or more that was also statistically 
significant (Padj < 0.05 ). Comparison of up-regulated transcripts depicted in A, and down regulated transcripts 
displayed in B.   

Transcript lists were uploaded to Metascape for pathway enrichment, the top 10 significantly 

enriched pathways are presented in Figure 58, respectively with more details available in the 

appendix (See 7.3). 

 

4.2.6.1 Demethylation of Kasumi-1 reported pathways which promote regulatory T-cell 
environment as enriched 

Demethylation of Kasumi-1 with 5AzaC promotes IFN type I signalling, which in turn may induce 

signalling through the ERK1/2 cascade and induce cell motility (Tanimura and Takeda 2017). 

Flagged pathways included leukocyte and lymphocyte differentiation, which could be ignored as 

the model consisted solely of AML cells. Myeloid leukocyte activation and macrophage activation 

pathways were upregulated. Changes to cell structure were reflected in increased transcripts for 

extracellular matrix reorganisation and supramolecular fibre organisation. While cell locomotion 

increased, one of the top decreased pathways was cellular extravasation, preventing exit through 

vessel walls. There was also a decrease in synthesis and metabolic pathways, as well as 

pathways involved in the regulation of cell development and morphogenesis involved in 

differentiation. In summary, treatment of Kasumi-1 cells with 5AzaC promoted pathways involved 

in myeloid differentiation and cell mobility. Example transcripts driving differentiation reported as 

part of leukocyte differentiation pathways (totalling 46) included ANXA1 and CCR2. However, 

none of these targets reported significant changes in expression after 5AzaC treatment in the 

transcriptomics data. CCR2, DUSP10 and ZAP70 transcripts reported <1FPKM with and without 

5AzaC treatment.  

Kasumi-
1 

KG-1 A) B) Kasumi-
1 

KG-1 

550 

(80.1%
) 

109 

(15.9%
) 

28 

(4.1%
) 

188 

(69.8%
) 

79 

(29.3%
) 

3 

(1.1%
) 

Upregulated Downregulated 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regulation of cell activation

Leukocyte differentiation

Interferon alpha/beta signalling

Myeloid leukocyte activation

Regulation of cytokine production

Positive regulation of locomotion

Response to wounding

Cytokine Signalling in Immune system

NABA MATRISOME ASSOCIATED

ERK1 and ERK2 cascade

0 5

1
0

1
5

0 1
0

2
0

3
0

4
0

5
0

-log10(P-value)

Term candidate number

Cholesterol biosynthesis

Cellular extravasation

Photodynamic therapy-induced 
unfolded protein response

Sulphur compound metabolic process

Butanoate metabolism

Protein serine/threonine kinase
 signalling pathway

Ear development

Regulation of vasoconstriction

NABA CORE MATRISOME

Neutrophil extravasation

0 2 4 6 8

1
0

0 5 1
0

1
5

-log10(P-value)

Term candidate number

Response of EIF2AK1 to heme deficiency

Cellular amino acid biosynthetic process

Myeloid leukocyte activation

Response to acid chemical

Cytosolic tRNA aminoacylation

Response to molecule of bacterial origin

Import across plasma membrane

Positive regulation of osteoblast proliferation

Behavioural response to pain

Synapse organization

0 2 4 6 8

1
0

0 5 1
0

1
5

2
0

-log10(P-value)

Term candidate number

Transmembrane receptor protein tyrosine
phosphatase signalling pathway

Negative regulation of hormone secretion

GPCR ligand binding

Lymphocyte differentiation

Dendrite development

Protein localization to cell surface

Regulation of system process

Myeloid leukocyte differentiation

Response to alcohol

Apelin signalling pathway

0 2 4 6 8

0 2 4 6 8 1
0

-log10(P-value)

Term candidate number

Kasumi-1 5AzaC: Upregulated pathways 

KG-1 5AzaC: Upregulated pathways KG-1 5AzaC: Downregulated pathways 

Kasumi-1 5AzaC: Downregulated pathways 

Figure 58: The top 10 most significantly enriched pathways in Kasumi-1 and KG-1 treated with 5AzaC. Enriched pathways were identified by the ‘unique’ up and down regulated 
transcript lists and sorted by significance post FDR. See appendix for table summary process id’s and number of transcripts significantly changed in each pathway 

 



4.2.6.2 5AzaC treatment induced fewer changes in KG-1  
Treatment of KG-1 with 5AzaC enriched for amino acid biosynthesis and aminoacylation 

processes, as well as amino acid import across plasma membranes. The most upregulated 

pathway was response of EIF2AK1 (HRI) to heme deficiency; a pathway related to erythrocyte 

generation.  As KG-1 cells are macrophage derived cells and not erythroid precursors, this 

pathway is not able to generate erythrocytes. This pathway has however been shown to effect 

maturation and some functions of macrophages in mice (Liu, S., et al. 2007). KG-1 shared 

upregulation of the pathway ‘myeloid leukocyte activation’ in common with Kasumi-1. The 

process of lymphocyte differentiation was downregulated in KG-1, unlike in Kasumi-1, where it 

was upregulated with the same treatment. Additionally, a top upregulated pathway for KG-1 was 

the extrinsic apoptotic signalling pathway. However, this was contested by the significant 

downregulation of the ‘positive regulation of cell death’ pathway. As seen in the IFNG data, 

enrichment in KG-1 was weaker, as fewer transcripts passed input specifications compared to 

Kasumi-1 (Fold change > 1.5, Padj < 0.05). This led to some pathways being reported as ‘enriched’ 

despite very few transcripts in the pathway being altered. For example, in the ‘positive regulation 

of cell death’ pathway, only 6 out of 725 transcripts were altered, yet it was still reported as 

significant, despite changes to less than 1% of the pathway, which could be coincidental and 

inconsequential. 

 

4.2.7 DNA methylation plays a key role in haematopoiesis 
DNA methylation is an epigenetic modification that influences gene expression and is crucial for 

haematopoiesis, the process of blood cell development. Disturbances in methylation modifiers 

like DNMTs or TETs can disrupt haematopoiesis and contribute to haematological malignancies 

such as AML. Abnormal DNA methylation, including mutations in DNMT3A and TET2, is a 

hallmark of AML. It is therefore unsurprising AML cells treated with a demethylation agent report 

enrichment for leukocyte differentiation. Kasumi-1 was more responsive to changes inflicted by 

5AzaC, as demonstrated in Figure 59 which presents a heat map of significantly altered 

transcripts of leukocyte differentiation (Genes taken from GO:0002521). 



 

 

Figure 59: Heat map of differentially expressed transcripts related to leukocyte differentiation between untreated and 
5AzaC Kasumi-1 and KG-1. Hierarchal clustering performed using Euclidean distance and complete linkage (n = 3 per 
sample type).   Key for heat maps shown top left for expression values. Heat maps generated in Morpheus 
(https://software.broadinstitute.org/morpheus/). Blue indicates lower expression; red indicates higher expression. 

  



4.2.7.1 Differences in response to 5AzaC may be explained by cell line mutations  
The roles DNMT1, DNMT3A/B and TET2 play in methylation of DNA are described and illustrated 

by diagram in chapter 3, Figure 12. Resistance to 5AzaC has been associated with higher DNMT1 

expression in AML cell lines  (Wong, Lawrie and Green 2019). To summarise, 5AzaC is a drug that 

is analogous to the nucleoside cytidine, it can be administered as a drug to inhibit DNMT1. 

DNMT1 is a ‘maintenance’ methylation enzyme, as it tends to methylation of hemi-methylated 

sites, to restore methylation following DNA replication. 5AzaC does not target DNMT3A/B which 

are de novo DNMTs that oversee methylation of unmethylated DNA. While DNMT1 is inhibited by 

5AzaC, DNMT3A/B are unaffected, and continue to catalyse methylation of new sites. The 

western blot shown in chapter 3 (Figure 13) showed KG-1 had higher DNMT1 expression than 

Kasumi-1. However, treatment with 5AzaC also successfully depleted DNMT1 expression in both 

cell lines. 

4.2.7.2 Differences in response to 5AzaC may be explained by cell line mutations 
DNMT3A mutations are very common in AML and found in between 22-33% of AML cases. They 

are associated with worse survival outcome (Wong, Lawrie and Green 2019). DNMT3A mutation 

consequences are not well documented, but the most well studied mutation is the R882 

missense mutation, which causes loss of methylation activity  (Bera, et al. 2020). DNMT3B 

function is redundant of DNMT3A and higher expression of DNMT3B is associated with lower 

event free survival and overall survival (Wong, Lawrie and Green 2019). High DNMT3B expression 

has also been associated with higher genome wide methylation in paediatric AML  (Lamba, et al. 

2018). Interestingly, in older patients DNMT3B expression has not been associated with 

methylation  (Russler-Germain, et al. 2014). TET2 is also frequently mutated, with 17% of AML 

patients harbouring loss of function mutations, which leads to hypermethylation (Yang, X., Wong 

and Ng 2019a). Expression of enzymes involved in DNA methylation was assessed using the 

transcriptomics data. Corresponding proteins were searched for in the SWATH-MS data set but 

were not found. Expression of demethylation enzyme transcripts is shown in Figure 60. 

At base line, expression of DNMT1 (Kas-1 Ctrl = 40.16 FPKM, KG-1 Ctrl = 41.98 FPKM) was similar 

between cell lines (Figure 60). DNMT3A was expressed more highly in Kasumi-1 than KG-1 (Kas-1 

Ctrl = 16.53 FPKM, KG-1 Ctrl = 1.64 FPKM), and DNMT3B was expressed very highly in KG-1 (Kas-

1 Ctrl = 5.86 FPKM, KG-1 Ctrl = 43.23 FPKM). TET2 expression was lower in Kasumi-1 (Kas-1 Ctrl = 

3.39 FPKM, KG-1 Ctrl = 6.28 FPKM) but significantly induced by IFNG in Kasumi-1 (Kas-1 IFNG = 

6.59 FPKM, Padj < 0.0001, Wald-test BH). IFNG caused significant downregulation of all the DNMT 

transcripts in Kasumi-1 (DNMT1= 31.59 FPKM, DNMT3A = 11.64 FPKM, DNMT3B = 3.73 FPKM, all, 

Padj < 0.0001, Padj < 0.0001 and Padj < 0.01 respectively, Wald-test BH), while 5AzaC treatment 



only significantly downregulated DNMT3B in KG-1 (KG-1 5AzaC = 36.06 FPKM, Padj < 0.0001, 

Wald-test BH) which was further decreased when treated with IFNG and 5AzaC compared to 

IFNG alone (KG-1 IFNG5AzaC = 30.61 FPKM, Padj < 0.01, Wald-test BH). Both cell lines expressed 

DNMT1, which is involved in methylation maintenance. Each cell line also expressed one of the 

de novo methylation DNMTs (DNMT3A or DNMT3B) above 10 FPKM, and both had similar 

expression levels of TET2. In Kasumi-1 IFNG reduced DNMT1, DNMT3A and DNMT3B expression, 

while increasing TET2 expression. If this translated to protein expression levels, IFNG could cause 

a decrease in active methylation and maintenance of sites by decreasing expression of DNMT’s, 

while increasing active demethylation through TET2. However, this is assuming that enzymes are 

all wild type. As DNMT mutation is common in AML patients, the mutational status of DNA 

methylation mediators was searched for in the cell lines project COSMIC database  (Tate, et al. 

2019).  

 

Figure 60: Expression of DNMT1/3A/3B and TET2 in Kasumi-1 and KG-1under all treatment conditions. Data given as 
FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald 
test – BH correction. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

 



The COSMIC database reported Kasumi-1 harboured heterozygous mutations of DNMT3A/B at 

multiple codons, but not the well-studied loss of function R882 missense mutation (Russler-

Germain, et al. 2014). The type of mutation was listed as unknown for all instances.  The database 

also reported substitution mutations in TET1 and TET2 in the KG-1 cell line. Mutation of TET2 also 

usually leads to loss of function  (Rasmussen, et al. 2015). As Kasumi-1 has mutated DNMT3A/B, 

de novo methylation of DNA might be inhibited, and methylation status could be low and 

maintained through DNMT1. Therefore, treatment with 5AzaC may be effective in Kasumi-1, as it 

targets DNMT1 preventing methylation maintenance, and methylated sites are lost either actively 

through TET proteins or passively by cell division. In KG-1, DNMT3A/B are not mutated and may 

still carry out de novo methylation. In addition, TET1 and TET2, which would normally catalyse 

active demethylation are mutated, which could prevent their function. In combination, these 

factors could mean KG-1 is in a hypermethylated state compared to Kasumi-1. Fewer changes 

were seen when KG-1 was treated with 5AzaC, and this could be because DNMT1 is not the main 

source of methylation mediation as could be in Kasumi-1.  

4.2.7.3 Combination treatment further increases IFNG signalling in Kasumi-1   
In section 4.2.5, it was observed that the combination of IFNG and 5AzaC induced more 

significant changes in immunosuppressive transcripts compared to IFNG or 5AzaC alone. 

Transcripts such as HLA-E, TNFRSF10B, and HAVCR2 were further upregulated (See Figure 50, 

Figure 51 and Figure 52, respectively) while NC3LG1 (Figure 52) was further downregulated by the 

combination treatment in Kasumi-1. This synergistic effect was unique to Kasumi-1 and was also 

seen in the expression of IFNG-inducible transcripts such as IFIT1/2/3 (Figure 47) as well as 

ANXA1 (Figure 48) and DDX58 (Figure 49).   

To study how combining demethylation with IFNG signalling changed cell lines response, 

transcriptomes were compared between control and combination treated cells. Lists of 

transcripts significantly differentially expressed between control cell lines and treated with IFNG 

alone and in combination with 5AzaC were generated and submitted to metascape.  Then a 

comparison between untreated cells and combination treated cells was performed, to see how 

pathway enrichment correlated to IFNG treated enrichment. Data was transformed to 

log2(FPKM+1) and Z-values calculated before complete hierarchal clustering summarised by 

heat map in Figure 61. 

 



 

 

Figure 61: Heat map of the significantly differentially expressed transcripts between Kasumi-1 and KG-1 under all 
treatment conditions. Hierarchical clustering performed using Euclidean distance and complete linkage (n = 3 per 
sample type). Key for heat maps shown top left for expression values. Heat maps generated in Morpheus 
(https://software.broadinstitute.org/morpheus/). Blue indicates lower expression; red indicates higher expression. 

 

Transcript lists for each cell line were filtered for significance Padj < 0.05 and a minimum 1.5-fold 

change and compared according to if they were up or down regulated. Results are presented as 

Venn diagrams in Figure 62, A and B, respectively, and results for pathway enrichment are shown 

in Figure 62. To find differences unique to combination treatment, transcripts that were found to 

be significantly up or down-regulated in either IFNG only or 5AzaC only treated cells were 

removed, the number of transcripts left in each instance is shown in the Venn diagrams in  Figure 

62, C and D. The top 10 significantly enriched pathways were compared to pathways enriched by 

IFNG treatment. Results can be seen in Figure 63. 



 

 

Figure 62: Venn diagrams comparing transcript lists of differentially expressed transcripts of Kasumi-1 and KG-1 under 
all treatment conditions. Differential expression was defined as a change of 1.5-fold or more that was also statistically 
significant (Padj<0.05).Comparison of increased transcripts in combination treated vs untreated cells B) Comparison 
of decreased transcripts in combination treated vs untreated cells C) Comparison of increased transcripts in 
combination treated vs untreated cells with significant transcripts from IFNG and 5AzaC mono treatment removed D) 
Comparison of decreased transcripts in combination treated vs untreated cells with significant transcripts from IFNG 
and 5AzaC mono treatment removed.
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Figure 63: The top 10 most significantly enriched pathways in Kasumi-1 and KG-1 treated with IFNG and 5AzaC. Enriched pathways were identified by the ‘unique’ up and down regulated 
transcript lists, sorted by significance post FDR. See appendix for table summary process ids and number of transcripts significantly changed in each pathway. 



Prior to removing the IFNG-only and 5AzaC-only transcripts, changes in the combination 

treatment were driven by interferon signalling. The combination with 5AzaC was shown to 

enhance the effects of IFNG in both cell lines. In Kasumi-1, altered pathways were thematically 

the same as IFNG treated cells; pathways reported as upregulated related to interferon signalling 

and several were immune based responses. Pathway’s enrichment shows pre-treatment with 

5AzaC bolstered the IFNG response, increasing the number of transcripts significantly altered in 

reported pathways. Indicating that demethylation synergised with IFNG to promote more IFNG 

related signalling in Kasumi-1. This was most obvious in ‘cytokine signalling in immune system’ 

process, where transcripts upregulated were increased from 157 in IFNG only treatment, to 228 

with combination treatment. Detailed tables with number of transcripts upregulated and 

downregulated compared between IFNG5AzaC combination treatment and IFNG treatment 

alone are available in the appendix (See 7.3). 

 

In KG-1 reported changes to upregulated processes were related to cell differentiation, cell 

remodelling and metabolic processes. More pathways were reported as significantly upregulated 

than when treated with IFNG alone. This could simply be a result of the transcript list having more 

transcripts. There were only 68 upregulated transcripts ‘unique’ to KG-1 reported for IFNG alone, 

and 387 ‘unique’ transcripts reported for IFNG combined with 5AzaC treatment, presenting a 

more robust data set. Five of the 20 decreased pathways were shared between combination 

treated and IFNG treated. Compared to Kasumi-1, increases in number of transcripts altered in 

pathways was very low. Both treatment types caused downregulation of chemotaxis and cell to 

cell adhesion. There was a decrease in transcripts involved with ‘negative regulation of cell 

proliferation’ and ‘positive regulation of cell death’, indicating a possible increase in cell 

proliferation signalling, that might link to increased effectiveness of Daunorubicin with 

combination therapy.  

While combination treatment causes more differential expression of transcripts in KG-1 than 

each treatment alone, demethylation was unable to restore the capacity of KG-1 to respond more 

fully or traditionally to IFNG. This might be due to KG-1 expressing WT DNMT3A/B to de novo 

methylate DNA, while TET1/2 LOF mutations prevent removal of methyl groups, creating a 

hypermethylated pattern compared to Kasumi-1. 
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Figure 64: The top 10 most significantly enriched pathways in Kasumi-1 and KG-1 treated with IFNG and 5AzaC. Enriched pathways were identified by the ‘unique’ up and down regulated 
transcript lists, sorted by significance post FDR. See appendix for table summary process ids and number of transcripts significantly changed in each pathway 



After removing IFNG and 5AzaC monotreatment-specific transcripts, unique pathways to the 

combination treatment emerged. In Kasumi-1 cells, the most upregulated process was ‘Actin 

filament-based process,’ involving transcripts like MAP1B, SPTAN1, and TMOD3. Other 

upregulated pathways included positive regulation of RNA polymerase II promoter activity in 

response to stress and angiogenesis due to hypoxia. Additionally, there was increased expression 

of negative regulation pathways for extrinsic apoptotic signalling, reflecting the dying status of 

the cells. Conversely, downregulated processes in Kasumi-1 indicated declining cell health, 

including RNA metabolism, DNA repair pathways, and cell cycle processes. This downregulation, 

along with inhibited DNA replication, translation, and protein processing, confirms that the 

combination treatment exacerbates IFNG-induced cell death by breaking down pathways for cell 

maintenance, growth, and repair. 

In KG-1 cells, the response to combination treatment differed. The top upregulated process was 

‘regulation of cytokine production,’ including pathways for negative regulation of lymphocyte 

activation and positive regulation of immune response. Upregulated pathways also involved 

antiviral responses and differentiation processes. The most downregulated pathway was 

‘Extracellular matrix organisation,’ with a decrease in transcripts involved in ECM-receptor 

interactions, such as CD44. KG-1 cells also showed downregulation of apoptotic activity, 

including pathways for positive regulation of cell death and apoptotic signalling. However, unlike 

Kasumi-1, KG-1 did not enter a state of cell death. Furthermore, when KG-1 received the 

combination treatment, a more immunosuppressive response was seen, with downregulation of 

IL-18 signalling pathways and chemotaxis-related processes. There was no significant decrease 

in cell growth, DNA repair, transcription, and translation, indicating that KG-1 cells were more 

successful in mitigating the effects of the combination treatment. The response in KG-1 was more 

oriented towards immune modulation, with enriched immunosuppressive pathways and 

decreased expression of transcripts involved in cell motility and adhesion. This differential 

response suggests that the combination treatment of IFNG and 5AzaC may be further 

investigated for its potential to prevent egression in blood circulation of AML cells, particularly 

those resembling the KG-1 phenotype, by targeting cell motility and adhesion mechanisms. IFNG 

induced sensitivity to Daunorubicin 

4.2.7.4 Cell cycle arrest 
Daunorubicin, an anthracycline antibiotic, is effective against both solid and haematological 

cancers. Normally, topoisomerase II binds to DNA and catalyses its cutting and unwinding, 

making it accessible to transcription enzymes. Daunorubicin traps topoisomerase II in a covalent 

complex, preventing transcription and DNA replication, which ultimately causes cell death 



(Tyleckova, et al. 2012). IFNG treatment increased sensitivity of both cell lines to Daunorubicin, 

however pathway analysis through metascape did not report any obvious routes through which 

this was achieved. Expression of markers such as MKI67, PCNA and MCM2 correlate with faster 

proliferation (Whitfield, et al. 2006). In Kasumi-1, IFNG decreased expression of MKI67 (Kas-1 Ctrl 

= 40.15 FPKM, IFNG = 25.91 FPKM, Padj < 0.0001, Wald-test BH), PCNA (Kas-1 Ctrl = 129.55 FPKM, 

IFNG = 82.13 FPKM, Padj < 0.0001, Wald-test BH) and MCM2 (Kas-1 Ctrl = 53.64 FPKM, IFNG = 

30.00 FPKM, Padj < 0.0001, Wald-test BH)(Figure 65). 

 

 
Figure 65: Expression of transcripts for markers of proliferation in Kasumi-1 and KG-1 under all treatment conditions. 
Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by 
Novogene Wald test – BH correction. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

 

Daunorubicin is most effective in rapidly proliferating cells entering the S-phase of the cell cycle, 

where DNA is replicated. Despite significant downregulation of DNA replication transcripts in 

Kasumi-1 cells treated with IFNG, these cells become vulnerable to Daunorubicin. This suggests 

that IFNG induces a mechanism that overcomes resistance caused by cell cycle arrest. It is 

possible that IFNG arrests the cells, and the subsequent addition of Daunorubicin inflicts further 

damage, which cannot be repaired due to downregulated DNA repair pathways. The combination 

of cell cycle arrest, damaged DNA, inhibited DNA replication, and additional stress from 

Daunorubicin treatment could commit the cells to death. 

 

4.2.7.5 IFNG treatment reduced expression of two drug resistance transcripts 
Out of the mechanisms of drug resistance discussed in section 1.9,  only GSTP1 and ABCC1 were 

significantly affected by IFNG treatment (Figure 66). ABBC1 encodes for multi-drug resistance 

protein 1, an ATP dependent efflux pump. GSTP1 is the transcript for a glutathione s-transferase 

which attaches glutathione to substrates, such as drugs, enabling their removal from the cell by 

efflux pumps.  IFNG treatment decreased expression of ABCC1 (Kas-1 Ctrl = 22.11 FPKM, IFNG = 

12.88 FPKM, Padj< 0.0001, KG-1 Ctrl = 45.51 FPKM, IFNG = 41.32 FPKM, Padj<0.001, Wald-test 

BH) and GSTP1 (Kas-1 Ctrl = 236.74 FPKM, IFNG = 114.48 FPKM, Padj< 0.0001, KG-1 Ctrl = 263.74 



FPKM, IFNG = 217.39 FPKM, Padj<0.0001, Wald-test BH) in both cell lines. In both cases, the 

biggest differences were seen in Kasumi-1. Decreased expression of GSTP1 protein could result 

in reduced inhibition of drug action through GSH conjugation and reduced drug export from the 

cell. This could lead to higher accumulation of the drug in cells compared to the control, 

potentially contributing to the observed sensitivity to Daunorubicin in both cell lines when IFNG 

is present. 

 
Figure 66: Expression of ABCC1 and GSTP1 in Kasumi-1 and KG-1 under all treatment conditions. Data given as FPKM 
(n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test – 
BH correction. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

 

4.2.7.6 P2X7 receptor transcript expression increased with IFNG treatment 
The P2X7 receptor is an ATP gated ion channel usually expressed on the cell surface, which 

following high stimulation by ATP, opens a large none-selective pore and triggers cell death. This 

pore opening has previously been shown to increase uptake of Doxorubicin and linked to 

Daunorubicin sensitivity in AML (Pegoraro, et al. 2020). IFNG significantly increased expression 

of the transcript (P2RX7) in both cell lines (Kas-1 Ctrl = 8.39 FPKM, Kas-1 IFNG = 98.13 FPKM, KG-

1 Ctrl = 2.47 FPKM, IFNG = 10.55 FPKM, both, Padj < 0.0001, Wald test- BH) (Figure 67). In Kasumi-

1 combination of IFNG with 5AzaC further increased expression compared to IFNG alone (Kas-1 

IFNG5AzaC = 111.82 FPKM, Padj<0.001, Wald-test BH). This shows another mechanism for 

further nonspecific uptake of Daunorubicin and a potential reason for increased sensitivity to the 

drug, especially in Kasumi-1. There are two isoforms for the P2X7 receptor, P2X7RA and P2X7RB. 

Increased Daunorubicin sensitivity has been associated with increased expression of P2X7RA, 

and resistance to the drug has been associated with higher P2X7RB levels (Pegoraro, et al. 2020). 

However, Information for the protein product is unavailable in the proteomics data, therefore it is 

unknown how affected protein levels are by treatment and which isoform for P2RX7R is present 

in either cell line.  



 

Figure 67: Expression P2RX7 transcript in both cell lines under all treatment conditions. Data was given as FPKM  (n=3). 
Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test – BH 
correction. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.   

Pathway enrichment by metascape did not overtly provide an explanation for the sensitivity to 

Daunorubicin observed in IFNG treated cell lines. Some potential mechanisms could be inferred 

from the transcript expression data and literature available on the subject. Unfortunately, protein 

data was not available to compare against for many of these molecules. Mechanisms for cell 

death may have been identified had cells treated with Daunorubicin and IFNG combined with 

Daunorubicin been analysed by NGS as well.  

 

4.3 Discussion 
The hypothesis of this work was that IFNG induces immunosuppressive phenotype in AML cell 

lines, and that 5AzaC treatment modifies the strength of the IFNG response. Further, that the 

transcriptomes generated from these changes could be used to create a signature using patient 

survival data, that stratifies AML patients who receive HSCT or chemotherapy induction 

treatment. Proteomics data presented in chapter 3 (Figure 18) suggested that Kasumi-1 and KG-

1 had different strength responses to IFNG treatment. KG-1 was found to be the least effected by 

IFNG in terms of number significantly differentially expressed proteins (SIG-M5 = 341, THP-1= 

141, Kasumi-1 = 101, KG-1 = 48), where significance was determined by confidence and fold-

change method (Lambert, et al. 2013). In this chapter, transcriptomics analysis echoed that 

Kasumi-1 was more responsive than KG-1 to IFNG with 11,377 and 2,564 transcripts significantly 

differentially expressed respectively. It found that IFNG induced transcripts associated with 

immunosuppressive phenotype in both AML cell lines. Additionally, treatment with 5AzaC prior 



to IFNG was found to further induce expression of these transcripts in Kasumi-1, but not in KG-1. 

The divergence in response might be due to differences in mutations of methylation machinery, 

however, this was unable to be confirmed. Cell line phenotypes were examined by pathway 

enrichment and characterised based on expression of specific transcripts involved in processes 

of interest. 

 

Metascape analysis of both cell lines revealed enriched pathways such as NF-Kappa Beta 

signalling and the MAPK cascade. Depending on molecular crosstalk from other cell types like 

immune cells (absent in the model), these pathways could either prevent or promote apoptosis 

(Zhang, Wei and Liu 2002, Hoesel and Schmid 2013). Specifically in Kasumi-1, there was 

downregulation of cell cycle, DNA repair, and DNA replication pathways, alongside increased 

vesicle-mediated transport, consistent with observed cell death in viability experiments (Figure 

24). The upregulation of autophagy suggests an effort to protect against IFNG related stress, but 

the effort might then be superseded by enrichment of several apoptosis pathways (Mariño, et al. 

2014). Importantly, 'Positive regulation of cell death' was markedly enriched in Kasumi-1 but 

absent in KG-1, aligning with the results of cell death assays in Chapter 3. In contrast, KG-1 

exhibited significantly upregulated processes such as cytokine signalling activity, immune 

response, and IFNG response. The MAPK stress-activated cascade was also upregulated, but 

unlike Kasumi-1, no other processes associated with cell death were reported. Upregulation of 

exocytosis and transport of small molecules may suggest mechanisms to eliminate IFNG from 

cells. While Kasumi-1 responded to IFNG by halting the cell cycle, KG-1 displayed a more 

immunosuppressive and anti-inflammatory response. Moreover, there was a trend of 

downregulating pathways involved in cell chemotaxis and adhesion, potentially to evade immune 

response by minimising interactions with immune cells. These pathways indicated that Kasumi-

1 was vulnerable to an active immune response involving IFNG delivery by T-cells and NK cells, 

whereas KG-1 was less susceptible. Further investigation into pathways regulating apoptosis 

compared expression of specific molecules between cell lines. 

 

Cell lines were found to have distinct responses to both IFNG and 5AzaC treatment. Kasumi-1 

displayed a hyper IFNG response, seen by induced changes to thousands of transcripts. 

Demethylation was also effective and found to synergise with IFNG to boost IFNG response. The 

low dose of 5 ng/mL IFNG was enough to induce apoptosis programmes and cell cycle arrest. 

Suggesting that these cells would be vulnerable in an inflamed microenvironment with immune 

cells. However, the high IFNG response also caused massive upregulation of several 



immunosuppressive transcripts (TRAIL, CD274, CD47, LGALS9 and HAVCR2). It may be that a 

lower dose of IFNG would not induce apoptosis, and only the immune suppression program. Low 

SHP1/2 expression could indicate hyper IFNG response, and a vulnerability to treatment by HSCT 

to restore local IFNG production, combined with immune blockade, to combat immune 

resistance mechanisms. SHP2 null cells have been shown to be vulnerable to apoptosis when 

treated with IFNG compared to SHP2-expressing cells. You et al previously reported that SHP2 

null mouse fibroblast cells had high STAT1 phosphorylation (You, Yu and Feng 1999). In turn, the 

phosphorylated STAT1 had enhanced DNA binding capability, which was able to suppress cell 

growth and induce cell death. This may be the mechanism for IFNG induced cell death in Kasumi-

1. Summary of Kasumi-1 key features are presented as a diagram in Figure 68. 

  



 

 

 

 

  

Figure 68: Figure summarising key observed effects of Kasumi-1 treatment with IFNG or 5Azac. 1) Due to Low SHP1 
expression, negative feedback is lowered, causing higher intensity signalling. 2) IFNG upregulates transcription of 
several immunosuppressive transcripts whose products either evade or kill immune cells. 3) Cell cycle arrest and 
apoptosis is induced by IFNG dosing. 4) IFNG decreases expression of genes for efflux pumps enzymes involved in 
removal of xenobiotics from the cell, causing an accumulation of Daunorubicin. 5) Demethylation by 5AzaC is effective 
due to mutations in DNMT3A/B preventing de novo methylation, and wild type TET1/2/3 still actively removing sites. 
DNMT1 is the only means of maintaining methylation. Successful demethylation reduces silencing at IFNG related 
gene promoter sites, increasing expression of genes seen in the apoptosis and immunosuppressive programme. DNU 
= Daunorubicin. 



KG-1 on the other hand could be described as resistant to IFNG, possibly due to the high 

expression of SHP-1, with IFNG response transcripts displaying muted expression. Treatment 

with IFNG did not induce the apoptosis programme seen in Kasumi-1, but was still able to induce 

cell cycle arrest, and a muted immunosuppressive response. The response of KG-1 to 5AzaC was 

also minimal. DNMT3A/B are reported as not mutated in this cell line and thus still able to 

methylate new sites. Combined with TET1/2 LOF mutations which might prevent active removal 

of methyl sites, this cell line could be hypermethylated, and reduction of DNMT1 might not have 

as much of an impact on transcription as it does in Kasumi-1. Treatment with 5AzaC did not 

holistically increase IFNG signalling as it did in Kasumi-1 either. Despite the low IFNG response 

(relative to Kasumi-1), IFNG still induced sensitisation to Daunorubicin driven apoptosis in KG-1.  

Importantly, KG-1 expressed high baseline levels of ANXA1 protein (See 7.6), which signalled for 

inflammation resolution, dampening immune response. It also expressed high levels of CD47 to 

avoid immune cells. The high expression of SHP1 and ANXA1 proteins (See 7.6), along with CD47 

mRNA (Figure 54) could make KG-1 recalcitrant to recognition and removal by immune cells. AML 

with these features could be resistant to HSCT, and immune blockade, and better treated with 

chemotherapy. In KG-1, while ANXA1 expression was constitutively high, IFIT1 and RIG-1 

expression remained at low levels compared to Kasumi-1, post IFNG treatment. This could 

explain why KG-1 was not prone to apoptosis, despite high ANXA1 expression. Restoration of the 

IFNG signalling pathway in KG-1, by blocking or downregulation of SHP-1, may restore IFIT1 and 

RIG-1 induction, and possibly induce apoptosis via this pathway. A summary of KG-1 key features 

is presented in Figure 69. 

 



 
Figure 69: Figure summarising KG-1 before and after treatment with IFNG or 5Azac. 1) Due to high SHP1 expression, 
negative feedback already in place, causing reduced IFNG signalling, and a muted IFNG response. 2) IFNG upregulates 
transcription of immunosuppressive transcripts, but not to the same degree as Kasumi-1. Additionally, IFNG does not 
induce apoptosis. 3) High basal expression of ANXA1 and CD47 aid in immune evasion, IFNG treatment further 
increases expression of CD47. 4) IFNG mildly decreases of transcripts for efflux of xenobiotics from the cell, causing 
an accumulation of Daunorubicin. 5) Demethylation by 5AzaC is less effective due to wild type DNMT3A/B still adding 
new methylation sites, and mutant TET1/2 no longer removing methyl groups. DNU = Daunorubicin.  

 

 

 

 

  



There are limitations to the conclusions that can be drawn from this study. Firstly, the data was 

generated from individual AML cell lines without co-cultures involving immune cells. Secondly, 

while NGS is sensitive and reproducible, it does not directly reflect protein expression.  

As this data was generated from cell lines in isolation, with no immune cells present, some of the 

pathways enriched may be limited or irrelevant. The reported activation of immune cells and 

inflammatory response was limited in relevance as no immune cells were present in the model. 

While inflammatory molecules may be upregulated in the cell lines, without immune cells 

present, we cannot say that IFNG treatment would induce mobilisation and activation of immune 

cells from this model.  

Secondly this work used Next-generation sequencing (NGS) to obtain the transcript expression 

data. The transcriptome includes protein-coding RNAs, non-coding RNAs, and regulatory 

microRNAs (Djebali, et al. 2012). RNA sequencing (RNA-seq) holds advantages over alternatives 

like DNA microarrays, offering heightened sensitivity for detecting low-expression transcripts, 

independence from prior genome knowledge, and strong reproducibility (Wang, Z., Gerstein and 

Snyder 2009). Despite these merits, transcriptomic expression levels do not universally mirror 

eventual protein expression. Protein-mRNA correlation is often modest (R < 0.4), suggesting 

mRNA accounts for only 40% of protein variance (Chakraborty, et al. 2018). The residual 60% 

discrepancy stems from processes such as transcription, translation, mRNA and protein 

degradation. Translation, notably, exerts the most influence on protein expression levels 

(Schwanhäusser, et al. 2011). Consequently, combining transcriptomics with proteomics yields 

a more comprehensive cellular snapshot. While cell lines may report significant induction of 

transcripts, these mRNA may not be translated into proteins. Translation is a highly regulated 

process and can be prevented by mechanisms including but not limited to post-transcriptional 

modification such as splicing, RNA degradation by microRNAs (mRNAi), RNA binding proteins 

which prevent ribosome access and low availability of tRNAs or amino acids (Baker and Coller 

2006). Furthermore, NGS probes a sample's transcriptome recording all its RNA transcripts at a 

specific time, introducing a temporal variable into data collection. 

In this study, the Pearson correlation coefficient was employed to quantify the linear relationship 

between transcript expression and its corresponding protein expression. This method was used 

to assess RNA and protein abundance by measuring the strength and direction of association 

between them. Essentially, it determines if increases in RNA levels correlate with corresponding 

increases in protein levels. In this study the hypothesis being tested is that IFNG induces 

immunosuppressive phenotype in AML cell lines, and that this phenotype could be present in 



AML patients that respond poorly to HSCT or chemotherapy induction. For this phenotype to be 

expressed immunosuppressive transcripts must be translated into functional 

immunosuppressive proteins. Pearson correlation was used here to assess if IFNG induced 

changes in transcripts correlate to induced protein expression.   

Notably, in this work, proteomics yielded smaller datasets; baseline proteomics detected 3,744 

proteins across cell lines, contrasting with 58,735 transcripts detected by NGS. Upon IFNG 

treatment, 138 and 67 proteins, along with 11,377 and 2,564 transcripts in Kasumi-1 and KG-1, 

respectively, experienced significant differential expression. Altered proteins were scrutinised 

alongside corresponding transcripts via Pearson correlation, with only significantly modified 

targets considered, reducing background noise. In both datasets, only 137 targets in Kasumi-1 

and 67 in KG-1 demonstrated significant alterations. 

Subsequent correlation significance testing (Figure 70) encompassed untreated and IFNG-

treated data. Outliers inflating R² coefficients were highlighted. Significance was established for 

both untreated and IFNG-treated Kasumi-1, albeit with low R² values (0.087 and 0.043). Notably, 

KG-1 exhibited significance only in the IFNG-treated context, with low R² values (0.0386 for 

untreated and 0.0706 for IFNG-treated). These low correlation coefficients indicated a minor 

portion of protein variance is attributed to mRNA variance. 

Comparing KG-1 and Kasumi-1, the observed correlation between transcripts and proteins fell 

below Chakraborty's R < 0.4 benchmark. The conclusion from these results is that the increase 

in transcript abundance induced by IFNG was not reflected in equivalent increased protein 

expression. Although the transcriptomes indicate an immunosuppressive phenotype, the 

proteome might not. However, Notably, the comparison's validity was compromised due to 

differential IFNG dosing (5 ng/mL for NGS and 100 ng/mL for proteomics), introducing 

unaccounted variance.  

However, protein abundance does not necessarily reflect protein activity, as various factors 

besides its expression level can influence protein function. These factors include post-

translational modifications, protein conformation, localisation, and degradation mechanisms, 

all of which can hinder interactions with other molecules (Lee, et al. 2023, Tan, et al. 2019).  

Additionally, some protein mutations that cause loss of protein activity do not affect protein 

abundance, but rather alter the catalytic or substrate-binding properties of the protein  (Cagiada, 

et al. 2021). Furthermore, protein abundance and sample complexity can influence the 

availability of proteins for mass spectrometric quantitation, which may introduce biases in the 

measurement of protein. Therefore, protein abundance is not a reliable indicator of protein 



activity, and other methods are needed to assess the functional state of proteins in biological 

systems. Signatures derived from IFNG treated AML cell lines may indirectly confirm an 

immunosuppressive phenotype if high expression of signatures correlates with poor survival in 

patients treated with HSCT. 

 

 

Figure 70: Pearson correlation plots comparing transcript and protein expression in Kasumi-1 and KG-1, before and 
after IFNG treatment. Kasumi-1 untreated and IFNG treated (Protein: n=6, transcript: n=3). KG-1 untreated and IFNG 
treated (Protein: n=5, transcript: n=3). A) Comparison of Kasumi-1 untreated transcript and protein expression before 
outlier removed, B) Kasumi-1 untreated transcript and protein comparison after outlier was removed, C) Kasumi-1 
IFNG treated transcript and protein expression before outlier removed, D) Kasumi-1 IFNG treated transcript and 
proteins expression after outlier removed, E) KG-1 untreated comparison between transcript and protein expression, 
no outliers, F) KG-1 IFNG treated comparison between transcript and protein expression, no outliers. Red dots indicate 
outliers.  
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Transcriptomics data showed kasumi-1 to be hyper responsive to IFNG, while KG-1 held a muted 

response. Despite the disparity in IFNG responsiveness, both cell lines were equally vulnerable 

to Daunorubicin when treated with IFNG in advance. Showing a fundamental change occurs, 

even with low level signalling. Differences in cell line response also suggest there may be a 

‘threshold’ of IFNG signalling, that leads to apoptosis. Cells like Kasumi-1, which exceed the IFNG 

signalling threshold by decreasing negative feedback through low SHP1 expression, are 

vulnerable to immune cells, and so also increase immunosuppressive molecule production to 

protect themselves. In contrast, KG-1 protects itself from immune cells by limiting IFNG signalling 

via negative feedback though high SHP1 expression, and high expression of CD47 and ANXA1 to 

evade immune cells and decrease local inflammation.  

As IFNG and 5AzaC treated AML cell lines were found to have IFNG inducible immunosuppressive 

phenotypes, it was determined could be used as models to represent AML which might be 

resistant to chemotherapy and HSCT treatment. It is important to note, that while cell lines 

provide an inexpensive and easy to manage model for studying cancers, discoveries made in 

them are not always applicable to patients. Cell lines change when they undergo immortalisation 

and are not a direct representation of the primary sample they were taken from. KG-1 cell lines 

originate from AML with minimal maturation (FAB M1), while Kasumi-1 represents a more mature 

AML (FAB M2).  AML is highly heterogenous, as evidenced by the M1- through M7 FAB 

classification system and WHO subdivision into even more groups. Heterogeneity is influenced 

by many factors, including but not limited to, HSC cell of origin, mutational heterogeneity, 

epigenetic alterations and changes due to treatments administered (Gu, Dickerson and Xu 2020, 

Li, Sheng, Mason and Melnick 2016a, Horibata, et al. 2019). For this reason, the IFNG response 

is also highly heterogenous, and cannot be generalised across all AML. Therefore, discoveries in 

the AML cell line models may only be applicable to a small subsection of AML and not 

representative of all AML.  Markers found in cell lines therefore require further testing for validity, 

which can be done using the large publicly available cancer patient data sets such as TCGA.    

 

 

 

 

  



5 In silico investigation of markers of interest in publicly 
available datasets 

5.1 Introduction 
Prognostic signatures are quantifiable profiles composed of multiple biomarkers whose 

combined expression can be used to distinguish a biological state or malignancy, such as cancer. 

Different types of components in prognostic signatures include gene expression, gene mutations, 

protein expression, and patterns of epigenetic modification. The uses of prognostic signatures 

are varied and can be applied to diagnose a disease, predict treatment response, or monitor a 

disease state (Prada-Arismendy, Arroyave and Röthlisberger 2017).Bensalah et al. summarises 

cancer-related signatures as profiles composed of molecules produced by the tumour or by the 

body in response to the tumour (Bensalah, Montorsi and Shariat 2007). Their paper highlights six 

types of biomarker applications in cancer summarised in Table 14. 

Table 14: summary of biomarker applications as adapted from Bensalah et al (Bensalah, Montorsi and Shariat 
2007). 

Category Application 

Early detection Used for screening of patients to reveal early-stage cancer. 

Diagnostic Identifies if a tissues mass or other sample type contains cancer. 

Prognostic 
Categorises a patient into risk groups and guides clinicians on best 

treatment. 

Predictive 
Predicts response to treatment or can be used to monitor patient 

response to treatment. 

Therapeutic target 
A molecule that is targeted by specific therapy and whose presence 

indicates response to said therapy. 

Surrogate end point 
A marker that can substitute for clinical end points such as disease 

related mortality, relapse, and disease reoccurrence. 

 

Successful prognostic signatures display high sensitivity and specificity for the condition of 

interest. They should be detectable in blood or tissue samples through routine clinical tests. To 

be implemented in clinic, they must exceed the accuracy of currently used methods of 

stratification or successfully identify patient groups that existing methods cannot. There are three 

core phases for the development of prognostic signatures as highlighted by the Broad Institute’s 



"team approach" and Bensalah et al. (Bensalah, Montorsi and Shariat 2007, Broad Institute 

2016). 

1. Discovery: Multiomics analysis of cell lines, animal models, or clinical samples curates a 

list of potential signature candidates for further investigation. 

2. Verification: Signatures are assessed by various techniques such as 

immunohistochemistry, ELISAs, QRTPCR in clinical samples, or by in silico analysis in 

patient databases. The relationship of the signature to clinical outcomes or biological 

status must be verifiable in a relevant patient population. 

3. Validation: The robustness of the signature is tested in a large patient group separate from 

the population used for discovery. This stage identifies if the signature correctly picks out 

true positives (sensitivity) and rejects false positives (specificity), usually by AUROC. 

Additionally, the signature is compared to other methods of clinical stratification 

currently in use. 

Prognostic signatures are an essential tool for drug development in an industrial setting. Many 

drugs are discarded at early stages of trials due to inefficiency compared to the current standard. 

The development of prognostic signatures to detect patients more suited to certain treatments 

could improve patient care and make it more financially viable for industrial groups to invest in 

novel drug pipelines. Developing signatures to identify valid targets for current therapies could be 

more cost-effective than blindly developing new drugs and administering them non-selectively. 

5.1.1 Prognostic Signatures in AML 
Many types of prognostic signatures are implemented for the assessment of AML patients. These 

include genetic markers, protein markers, methylation patterns, and cytogenetics. Cytogenetics 

refers to the state of chromosomes, which may be missing, rearranged, or broken. A combination 

of cytogenetic and molecular markers is used to stratify patients into risk groups (Table 15). In 

AML, cytogenetics is routinely used to differentiate between patients in favourable, intermediate, 

and unfavourable risk groups. 

Patients with chromosomal abnormalities such as t(8;21), t(15;17), inv.(16), and t(16;16) are 

considered favourable, in addition to those presenting normal cytogenetics and an NPM1 

mutation with WT-FLT3 or isolated biallelic CEBPA mutation. The favourable group achieves 

remission 90% of the time and has an overall survival (OS) of 60% (Prada-Arismendy, Arroyave 

and Röthlisberger 2017). Patients who have a poor-risk karyotype, including inv(3), t(3;3), t(6;9), 

−5, 5q-, −7, 7q-, or a complex karyotype, as well as those with normal cytogenetics and an FLT3-

ITD mutation, exhibit high treatment resistance to induction chemotherapy. This group also has 



an increased likelihood of relapse, as well as low disease-free survival and overall survival rates 

between 5 and 15% (Prada-Arismendy, Arroyave and Röthlisberger 2017). 

Table 15:Summary of cytogenetic and molecular abnormalities used for risk stratification in AML patients, adapted 
from  (Döhner, et al. 2022). 

1. Prognostic  Genetic abnormality 
Favourable 
  
  

-t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 
-inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/ CBFB::MYH11 
-Mutated NPM1 without FLT3-ITD  
-bZIP in-frame mutated CEBPA 

Intermediate 
  
  

-Mutated NPM1 with FLT3-ITD  
-Wild-type NPM1 with FLT3-ITD (without adverse-risk genetic lesions)  
-t(9;11)(p21.3;q23.3)/MLLT3::KMT2A†,  
-Cytogenetic and/or molecular abnormalities not classified as favourable or 
adverse 

Unfavourable 
  
  
  

-t(6;9)(p23.3;q34.1)/DEK::NUP214  
-t(v;11q23.3)/KMT2A-rearranged  
-t(9;22)(q34.1;q11.2)/BCR::ABL1  
-t(8;16)(p11.2;p13.3)/KAT6A::CREBBP  
-inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/ GATA2, MECOM(EVI1)  
-t(3q26.2;v)/MECOM(EVI1)-rearranged  
-−5 or del(5q); −7; −17/abn(17p)  
-Complex karyotype monosomal karyotype 
-Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and/or 
ZRSR2 
-Mutated TP53a 

 

The largest group of patients (~45%) displays normal cytogenetics and is categorised as 

intermediate risk, with variable treatment responses. It is probable that some of these patients 

may belong in the 'unfavourable' risk subgroup; development of molecular markers may help to 

categorise these patients to receive more suitable therapy (Prada-Arismendy, Arroyave and 

Röthlisberger 2017).  

As mentioned in Chapter 1, a prognostic index (PI) is a robust type of prognostic signature created 

through regression analysis to integrate multiple prognostic factors. Each factor is assigned a 

weight, calculated through regression analysis and denoted as the B-value, which is then 

converted into a hazard ratio to describe how each unit increase in the prognostic factor 

contributes to risk. In this chapter, a PI was developed using transcriptomic data from IFNG and 

5AzaC-treated cell lines and verified and validated in silico with clinical and survival data from 

patient datasets. An IFNG-related PI score was anticipated to be linked with immunosuppressive 

AML, with high IFNG and IFNG5AzaC PI scores expected to correlate with poorer overall survival.  

 

 



The workflow for this chapter is as follows: 

1. The Kasumi-1 and KG-1 cell line transcriptomic data generated in chapter 4 was analysed 

for treatment induced changes by multiple pairwise linear regression analysis. 

2. A short-list of transcripts for each treatment type was generated based on magnitude of 

change and frequency of appearances in the top 500 most differentially expressed 

transcripts for each pairwise comparison performed. 

3. For each treatment type, the shortlist was analysed by cox proportional hazards 

regression using the expression and clinical overall survival (OS) data from the TCGA 

patient data set. 

4. Models were built using the forward step selection method by CPH regression. Based on 

Blamey et al, each transcript was weighted by B-value to generate final PI scores. 

5. Scores were assessed in TCGA for stratification and association with clinical subgroups. 

6. PI scores were validated in the Beat-AML, German-AML, CN-AML and HOVON data sets. 

Performance of new PI scores was critically evaluated against existing signatures and 

stratification methods. 

5.2 Method to develop Prognostic Index (PI) scores 
Signatures were generated from the cell line RNAseq data obtained from treatment of Kasumi-1 

and KG-1 cell lines with IFNG, 5AzaC or IFNG and 5AzaC in combination. To evaluate which 

transcripts were most changed by treatment, pairwise linear regression was performed between 

transcriptomes of treated and untreated cell lines. For each treatment, this resulted in 36 

pairwise comparisons. From there, the top 500 transcripts with the largest standard residuals 

((observed y value – predicted y value)/standard error) (SR) were chosen. A shortlist of candidates 

was created where only transcripts that appeared in the top 500 of every pairwise comparison 

was carried forward. Those candidates were then looked for in the TCGA patient database, where 

CPH regression analysis was performed with each list against overall survival with forward 

selection used to build the models. The process is summarised below with each step described 

in more detail in the following pages: 



 

  

Figure 71: Flow chart showing the steps involved in generating a signature from transcriptomics data and TCGA-LAML 
patient data set. 



5.2.1 Step 1: Pairwise comparisons 
To narrow down the pool of candidates from the transcriptomics data for survival analysis, 

pairwise comparisons were performed by linear regression. For each pair, regression was 

performed on the expression of all 58,735 transcripts. The analysis was performed in excel using 

the ‘Excel data analysis toolpak’ add-on.  For each treatment type, regression was performed 

between treated cell lines and untreated cell lines. For example, data from 5AzaC treated 

Kasumi-1 biological repeat 2 (KA_5A_2) was regressed against untreated Kasumi-1 biological 

repeat 1 (KA_C_1), and then KA_C_2, KA_C_3 and so on with each treatment type. To generalise 

the model more, regressions were performed across cell lines too, eliminating cell lines as a 

contributing factor to change. Control was not compared to control and treated was not 

compared to treated. Figure 72 below shows the possible 36 comparisons between each treated 

cell line and control. 

 

Figure 72:A) Shows possible comparisons between each treated and untreated cell lines where treated could be IFNG, 
5AzaC or a combination of IFNG and 5AzaC, 3 biological repeats were available for each condition. B) Pairwise linear 
regression of Kasumi-1 5AzaC repeat 2 against Kasumi-1 untreated control sample 1. Expression of each transcript is 
from each sample are plotted against each other as x,y coordinates, and a line of best fit is drawn. Repeated figure 
from chapter 2, presented again here for ease of reader. 

An example of linear regression is given in Figure 72 B) for 5AzaC treated Kasumi-1 biological 

repeat 2 (KA_5A_2) regressed against untreated Kasumi-1 biological repeat 1 (KA_C_1). As 

described in more detail in chapter 2, the regression fits a linear line describing the relationship 

between the two data sets as Y=mx+b. This slope is used to predict expression of transcripts of 

variable y (KA_5A_2) based on variable x (KA_C_1). The residual output is calculated for all 

observations and converted to standard residual (SR) output. The larger the standard residual 

reported for an observation, the more it has deviated from the expected trend. 

A) B) 



To determine a cut-off point; where an observation has deviated by enough SR to be considered 

of interest, the distribution of SR as absolute values was plotted for all regressions. Examples of 

these plots are given in Figure 73. By plotting from highest to lowest SR, it can be visualised that 

about where observations noticeably differ from predicted (red dotted line).  

5.2.2 Step 2: Shortlisting candidates by frequency of appearances in top 
500 lists 

In comparisons performed 100 to 300 observations exceeded deviation of 3 SR. The top 500 

observations with the largest SR for each regression were carried forward. The top 500 transcripts 

in for each treatment were compiled into lists and duplicates removed, producing lists of 1411, 

1176 and 1162 transcripts for 5AzaC, IFNG and IFNG and 5AzaC treatment respectively. To 

narrow down the lists further, only transcripts that appeared in the top 500 list of all 36 pairwise 

comparisons were selected for further investigation. This left lists of 15, 55 and 56 genes 

respectively, displayed in Table 16 for each treatment type. As IFNG and 5AzaC treatments were 

combined in the final treatment type there is overlap between lists. The IFNG & 5AzaC list shares 

38 transcripts in common with the IFNG only list, and 4 with the 5AzaC only list, while 3 

transcripts are present in every list and 11 are unique to the combined treatment. This has been 

visualised by venn diagram (See appendix 7.7), with a table listing the overlapping transcripts for 

each treatment condition.  

5.2.3 Step 3: Removal of transcripts not in the TCGA database 
Prior to performing CPH univariate analysis, transcript lists generated from pairwise linear 

regression were searched for in the TCGA database. Not all transcripts were present, these were 

mostly mitochondrial transcripts that were lost and in one case, a novel transcript (AL713998.1) 

Figure 73: Two examples of regression analysis, with the top 1000 largest standardised residuals (SR) plotted for each 
comparison. Representative for all data sets, around 200 to 300 of residuals compared this way output values 3 or 
more SR away from their predicted outcomes. Left: Kasumi-1 IFNG treated sample 1 vs KG-1 untreated sample 1, Right: 
Kasumi-1 IFNG and 5AzaC treated sample 2 vs Kasiumi1 untreated sample 3. 



was found with no entrez entry number to search for currently set. The 5AzaC list was shortened 

from 15 to 8, IFNG was shortened from 55 to 50 and IFNG & 5AzaC was shortened from 56 to 50. 

Candidates that were removed are highlighted in red in Table 16. 

Table 16:Lists of transcripts after pairwise linear regression and ranking by number of appearances in the top 500 of all 
36 comparisons for every treatment type. Transcripts shown in red in table are mitochondrial and ribosomal transcripts 
which are routinely filtered out from data as a quality control step, they were also unavailable in data sets for the same 
reason (Subramanian, et al. 2022). 

5AzaC 

MT-CO1 MT-CO2 MT-ND4L CALR RPL41P
1 

MT-RNR1 YBX1 GAPDH MT-TN NPM1 

MT-ND3 TUBB LGALS1 S100A1
1 

BST2      

          
IFNG 
IFI6 EEF1A1 TMSB10 FTL IFITM1 HLA-B TMSB4X IFIT3 HLA-E STAT1 
MT-CO2 MT-CO3 LY6E RPL8 B2M RPS2 SRGN MT-ATP6 BST2 WARS 
ACTB GBP1 AL713998.

1 
RPL7 HLA-A LAP3 UBE2L6 TAP1 HLA-C GAPDH 

PARP10 GBP5 UBA7 PSME1 NPM1 VAMP8 GBP4 PABPC1 GPX1 PSMB9 
RSAD2 PLEK GLUL GBP2 PSMB8 ADAR HLA-DRA PRDX1 NUCB1 EPSTI1 
CALHM6/FAM26
F 

PSME2 GSTP1 ACTG1 PIM1      

          
IFNG & 5AzaC 
IFI6 TMSB10 IFITM1 PABPC1 HLA-B IFIT3 RPL7 MT-CO2 HLA-

DRA 
HLA-E 

RPL8 LY6E RPL41P1 STAT1 ACTB MT-ND4 MT-RNR2 MT-ND3 GAPDH WARS 
GBP1 BST2 CLEC11A B2M EEF1A1 AL713998.1 LAP3 GPX1 SRGN GBP5 
UBE2L6 TAP1 GSTP1 HLA-A PARP10 TRIM22 GBP4 CHCHD2 S100A1

1 
UBA7 

PSME1 PSMB9 HLA-C DTX3L GBP2 PLEK NCOA4 PIM1 RSAD2 CALR 
EPSTI1 APOL6 ATF4 PSMB8 CD74 SPI1     

 

  



5.2.4 Step 4: Cox proportional hazard regression (CPH) to build PI 
The CPH method is described in more detail in the chapter 2 but will be explained here in short. 

CPH is a semi-parametric method which is used to verify a relationship between a variable, 

termed a predictor, and an event, such as death, by calculating hazard ratio (HR) over time, 

between two or more groups.  

The hazard function is the statistical likelihood that at a given time point an event will occur given 

that up to that time point, said event has not occurred. The HR is the ratio of an event happening 

between groups being compared. For example, when looking at survival of patients based on high 

or low expression of a gene signature, a ratio of 0.5 would tell us that half the number of patients 

with high expression of the signature experiences an event compared to those in the low 

expression group. In this thesis, CPH is used to determine if expression of transcripts selected 

thus far significantly relate to AML patient overall survival using CPH univariate analysis, and then 

to build a signature by CPH forward selection model.  

5.3 The TCGA patient data set 
The Cancer Genome Atlas (TCGA) program is a joint venture between the National Cancer 

Institute (NCI) and National Human Genome Research Institute (NHI). The program has 

sequenced and molecularly characterised 33 cancer types generating genomic, transcriptomic, 

epigenomic and proteomic data bases. These data bases are public domain for anyone in 

research to access and use. For this thesis, the Acute Myeloid Leukaemia TCGA  (Cancer Genome 

Atlas Research Network 2013) RNAseq database (with data from 179 samples) was downloaded 

from cbioportal and used to generate initial signatures for testing. This data included clinical data 

for patients, such as overall survival time, expression of 20,531 mRNA transcripts, disease 

reoccurrence and induction therapy used and more.  

5.4 CPH univariate determined significance of individual 
transcripts 

To investigate the relationship between each transcript in the lists generated from cell lines and 

overall survival, CPH univariate analysis was performed using the TCGA data base in Tibco 

Statistica software. Each transcript that was reported as significant is listed in Table 17 below, 

the full set of results for each list is available in the appendix (see 7.8). 

  



Table 17: Presents reported results from CPH univariate analysis of each transcript of interest and patient overall 
survival with P-value < 0.05, and thus deemed 'significant', a full list for all transcripts is available in the appendix (see 
7.8).  

 Transcripts 
Parameter 
Estimate (B-value) 

Standard Error Chi-square P value Hazard Ratio 

5AzaC list 

CALR -0.00002 0.00001 11.34799 0.00076 0.99998 

BST2 0.00043 0.00015 8.83214 0.00296 1.00043 

LGALS1 0.00007 0.00003 7.25487 0.00707 1.00007 

IFNG list 

PIM1 0.00014 0.00004 11.50584 0.00069 1.00014 

LY6E 0.00012 0.00004 10.69635 0.00107 1.00012 

PARP10 0.00027 0.00009 9.64581 0.00190 1.00027 

BST2 0.00043 0.00015 8.83214 0.00296 1.00043 

PRDX1 0.00014 0.00005 7.50531 0.00615 1.00014 

PSMB8 0.00052 0.00019 7.45553 0.00632 1.00052 

IFITM1 0.00024 0.00009 6.55459 0.01046 1.00024 

IFIT3 0.00047 0.00019 6.08997 0.01360 1.00047 

GSTP1 0.00012 0.00005 5.14428 0.02332 1.00012 

GPX1 0.00006 0.00003 4.81383 0.02823 1.00006 

ADAR 0.00009 0.00004 4.58753 0.03221 1.00009 

EPSTI1 0.00062 0.00030 4.33206 0.03740 1.00062 

IFNG & 
5AzaC list 

CLEC11A -0.00008 0.00002 11.52432 0.00069 0.99992 

PIM1 0.00014 0.00004 11.50584 0.00069 1.00014 

CALR -0.00002 0.00001 11.34799 0.00076 0.99998 

LY6E 0.00012 0.00004 10.69635 0.00107 1.00012 

PARP10 0.00027 0.00009 9.64581 0.00190 1.00027 

BST2 0.00043 0.00015 8.83214 0.00296 1.00043 

PSMB8 0.00052 0.00019 7.45553 0.00632 1.00052 

IFITM1 0.00024 0.00009 6.55459 0.01046 1.00024 

IFIT3 0.00047 0.00019 6.08997 0.01360 1.00047 

GSTP1 0.00012 0.00005 5.14428 0.02332 1.00012 

GPX1 0.00006 0.00003 4.81383 0.02823 1.00006 

NCOA4 -0.00005 0.00002 4.42300 0.03546 0.99995 

EPSTI1 0.00062 0.00030 4.33206 0.03740 1.00062 

APOL6 0.00013 0.00006 4.04828 0.04422 1.00013 

 

5.4.1 Interpretation of CPH univariate analysis results 
The key results for univariate analysis are displayed in Table 17, with significance denoted by p-

value, which is determined by the chi-squared test. The parameter estimates, also sometimes 

referred to as the β-value, shows the increase in the log(hazard) for each single unit of the variable 

being tested, in this case, each additional 1 unit of transcript expression. To make interpretation 

easier, the parameter estimate was transformed by exponentiation, and termed the hazard ratio 



(HR). For example, in Table 17, 5AzaC CALR reports -2.3E-05 parameter estimate, when 

exponentiated becomes: exp(-2.3E-05) = 0.999977, which in turn can be expressed in percentage 

as 99%. Therefore, for every increase by 1 unit of CALR mRNA, there is ~ 0.0023% decrease in 

expected hazard, in this case death.  Thus, an increase in CALR expression is suggested to be 

protective, while a decrease would increase risk of death. To generalise, for every increase of 1 

unit of the variable being tested a HR:  

-Above 1 indicates increased risk of hazard 

-Below 1 indicates decreased risk of hazard 

-Exactly 1 indicates no impact on risk of hazard  

The trend for the list above is that for most candidates HR increases with increased expression of 

mRNA transcript, with the exceptions of CALR, CLEC11A and NCOA4, which all decrease. This 

suggested that in general, increased expression of the above lists indicates poorer survival. 

Univariate analysis only assessed a single risk factor at a time, whereas the outcome is likely 

influenced by multiple factors. While increased expression of LGALS1 indicated an increased risk 

of death, it could have a stronger predictor ability if combined with other variables, which 

univariate analysis had reported as insignificant. To identify a signature of multiple variables a 

CPH regression model was used.  

  



5.4.2 Final signatures determined by CPH forward selection model  
CPH regression models were generated using the full lists of transcripts of interest listed in Table 

16, using Tibco Statistica and the forward selection setting with acceptance criteria set to P<0.05. 

As described in chapter 2 methods, this method started with no variables in the model, and 

added variables to the model one by one based on which was the most statistically significant, 

first in isolation, and then in combination with the variables thus far chosen for the model. This 

way a signature of multiple variables was built, with more predictive power than individual 

variables. The summary of the models built are shown in Table 18, while the full regression 

analysis can be found in the appendix (See appendix 7.9) 

Table 18: CPH models created by forward selection for each treatment type (AzaC, IFNG and IFNG & 5AzaC) 

  Summary of Forward Selection CPH models 

 Step 
Parameter 
Estimate (β 
values) 

Effect Entered Score Chi-Square P value 
Hazard 
ratio 

5AzaC list 
1 0.00045 BST2 9.71333 0.00183 1.00045 
2 -0.00002 CALR 11.75729 0.00061 0.99998 

 Step 
Parameter 
Estimate (β 
values) 

Effect Entered Score Chi-Square P value 
Hazard 
ratio 

IFNG 

1 -0.00004 B2M 23.94877 0.00000 0.99996 
2 -0.00002 GAPDH 11.41136 0.00073 0.99998 
3 0.00033 IFIT3 1.65957 0.19766 1.00033 
4 0.00012 LY6E 4.89105 0.02700 1.00012 
5 0.00012 PIM1 5.99830 0.01432 1.00012 
6 0.00124 PSMB8 23.10665 0.00000 1.00124 
7 0.00001 SRGN 8.46569 0.00362 1.00001 
8 0.00010 TMSB10 11.91718 0.00056 1.00010 

 Step 
Parameter 
Estimate (β 
values) 

Effect Entered Score Chi-Square P value 
Hazard 
ratio 

IFNG & 
5AzaC 

1 0.00047 BST2 6.40053 0.01141 1.00047 
2 -0.00001 CALR 1.84682 0.17415 0.99999 
3 -0.00008 CLEC11A 8.26981 0.00403 0.99992 
4 0.00011 LY6E 7.01487 0.00808 1.00011 
5 0.00010 PIM1 4.43433 0.03522 1.00010 



5.4.3 Transcripts selected by the CPH model for PI scores were biologically 
relevant 

As Prognostic scores were generated through purely statistical and data driven methods, 

variables reported for the models were checked for biological relevance, see Table 19.  

Table 19: Summary of transcripts selected by CPH modelling and the biological relevance in context of AML and IFNG 
signalling or demethylation. 

PI score Transcript Relevance 

5AzaC, 

IFNG5AzaC 

BST2 BST2 (Bone marrow stromal cell antigen) is expressed on the surface of HSCs, where it 
plays a part in relocalisation to the bone marrow through binding of E-selectin. It is known 
to be induced by IFNG (Florez, et al. 2020). Demethylation facilitated by RUNX1 
overexpression has been linked to demethylation at CPG in the promoter sites for various 
HSC genes, including BST2, increasing its expression  (Suzuki, et al. 2017). 

5AzaC, 

IFNG5AzaC 

CALR CALR (Calreticulin) is a chaperon protein localised in the ER which relocates to the cell 
surface when exposed to stress, acting as an ‘eat me’ signal to phagocytes, bolstering 
immune recognition of AML cells  (Chen, Xiufen, et al. 2013). 

IFNG B2M B2M is a protein found in the heavy chain of MHCI on cell surfaces, it has been found to 
be prognostic for survival of patients with myelodysplastic syndrome and associated with 
risk of transformation into AML. IFNG upregulates expression of MHC on cell surfaces, 
and therefore B2M (Neumann, et al. 2009). 

IFNG GAPDH GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) has been found to be upregulated 
in response to interfere with IFNG translation and supress chronic signalling (Siska and 
Rathmell 2016). 

IFNG IFIT3 IFIT3 (Interferon Induced Protein with Tetratricopeptide Repeats 3) is an interferon 
stimulated gene (ISG) which is upregulated by IFNG via the jak-stat signalling pathway and 
involved in antiproliferative pathways (Wang, W., et al. 2017, Bhat, et al. 2018). 

IFNG, 

IFNG5AzaC 

LY6E LY6E, a glycophosphatidylinositol-linked glycoprotein which is inducible by interferon, is 
displayed on the surfaces of numerous solid tumours, and has been found to be marker 
of hematopoietic stem cells in mice (Dela Cruz Chuh, et al. 2021, Virtaneva, et 
al. 2001). 

IFNG, 

IFNG5AzaC 

PIM1 Up-regulation of PIM1, a protooncogene and serine/threonine kinase, has long been 
known to be upregulated by IFNG signalling, has been observed in FLT3-ITD AML and 
implicated in FLT3-associated leukemogenesis (Yip-Schneider, Horie and 
Broxmeyer 1995, Fathi, et al. 2012). 

IFNG PSMB8 PSMB8 (proteasome 20S subunit beta 8) is a component of the immunoproteasome 
upregulated by IFNG in AML cells. PSMB8 inhibition triggers a build-up of 
polyubiquitinated proteins in AML cells with high concentration of immunoproteasomes, 
leading to cell death but not in low expressing AML cells (Rouette, et al. 2016, 
Niewerth, et al. 2014). 

IFNG SRGN The SRGN gene encodes a hematopoietic cell granule proteoglycan, used to neutralise 
hydrolytic enzymes, and has been reported to be overexpressed in AML patients of the M1 
and M2 FAB subtypes in comparison to healthy volunteers (Handschuh, et al. 2018) 

IFNG TMSB10 TMSB10 (Thymosin beta-10) encodes a protein that inhibits actin polymerisation and is 
highly expressed in AML progenitor cells (Wu, Junqing, et al. 2020). 

IFNG5AzaC CLEC11A CLEC11A a growth factor protein for primitive hematopoietic progenitor cells. High 
expression of CLEC11A has been reported in leukaemia and as a favourable prognostic 
biomarker in  (Yin, et al. 2021). 

 

As summarised in Table 19, all transcripts selected by the CPH model made sense in the context 

of AML or in the presence of IFNG signalling or demethylation agents. 



5.4.4 Derivation of prognostic indexes using CPH models 
A prognostic index (PI) was generated for each set of transcripts generated from the CPH models 

in Table 18, following Blamey et als published formula  (Blamey, et al. 2007). As per this method, 

expression of transcripts was normalised between 0 and 1 using the min-max approach, and then 

multiplied by the β values generated in the CPH models. In instances where there were multiple 

probes for the same transcript, expression was averaged across all probes and then normalised. 

A general formula for each PI was: 

PI = (βT1 x NT1) + ( βT2 x NT2) + (βT3 x NT3) 

Where βT1 is the β value for T1 (Transcript 1) and NT1 was the normalised value of transcript 1 

and so on for each transcript in the signature. This formula for generating a PI was previously used 

to successfully generate a 3 gene signature for AML, although starting with patient samples and 

using an advanced neural network approach for identifying the initial signature  (Wagner, et al. 

2019). As PI’s generated were very small figures, and some negative, as a final step PI were 

multiplied by 10,000 for ease of use. Final formulas are in the appendix (see 7.11) 

 

5.5 Results 

5.5.1 PI scores contain transcripts capable of stratifying patients with short 
and long OS 

First for every PI score, a Kaplan-Meier plot was generated for each individual transcript using the 

TCGA patient data set. This was performed using a median split to define high and low expression, 

with a log-rank (Mantel -cox) test to compare survival between groups. Results for individual 

transcripts for OS and EFS can be found in the appendix (see 7.9). Results reported that 

expression of transcripts in the same PI score varied in significance and hazard ratio. For example, 

in Appendix 7.12.4 high expression of PIM1 was associated with poor OS (P<0.05), while high 

expression of CALR was associated with be (P<0.01).   

5.5.2 PI scores are strong in univariate analysis 
PI scores were assessed by univariate and multivariate cox proportional hazard models and 

compared to other categorical and continuous variables for outcome in the TCGA data set. When 

evaluated with a univariate model, all PI scores were deemed significant indicators for OS, with 

HR >1 indicating higher expression of PIs to be associated with worse outcomes. When 

multivariate analysis was performed, only sex was significant (P<0.05). 



Table 20: Variables available in the TCGA databased evaluated by univariate Cox proportional hazard models for 
overall survival included: Each PI generated, age at diagnosis, bone marrow blast %, peripheral blood (PB) blast %, 
ELN cytogenetic risk group (1 = good, 2 = intermediate, 3 = poor), FAB subtype, sex (female =1, male = 0) and white 
blood cell count (WBC). Hazard ratios are given along with 95% confidence interval (CI), statistically significant p-
values are in bold text. 

 

 

5.5.2.1 Kaplan-Meier analysis was performed using x-tile software to calculate optimal cut offs 
To determine the PI scores cut-offs that could provide the best OS log-rank p-value, the software 

X-tile, a package developed at Yale school of medicine, was used. This software identifies the 

optimal cut-off point within a given data set for the PI to split patient groups into subgroups with 

significant differences in survival, and works across different gene expression platforms, making 

it suitable for use in all data sets used for this study. More information about this software can be 

found here: (https://medicine.yale.edu/lab/rimm/research/software.aspx)(Camp, Dolled-Filhart 

and Rimm 2004).  

5.5.3 PI scores demonstrated strong prognostic ability in discovery set 
(TCGA) 

All PI scores generated were reported to stratify patients in the TCGA data set when Kaplan-

Meier’s were performed (Figure 74). Survival curves were compared using a log-rank (Mantel-Cox) 

test. When PI were applied to Kaplan-Meier analysis of OS and EFS of TCGA patients, all PI scores 

were significant (minimum P<0.01) and hazard ratio were all reported above 2. In all cases, high 

PI expression was seen to be associated with poorer survival outcome. The most significant 

difference in survival time was seen for IFNG PI OS, where median survival times was four times 

longer for patients with low IFNG scores (46.5 months versus 11 months, PI < 0.0001).  

Variable P value Hazard ratio HR 95% CI Variable P value Hazard ratio HR 95% CI

5AzaC PI 0.2119 0.4083 0.09978 to 1.660 5AzaC PI 0.0008 1.401 1.144 to 1.698

IFNG PI 0.1026 0.8741 0.7393 to 1.022 IFNG PI 0.0007 1.117 1.046 to 1.189

IFNG5AzaC PI 0.0678 3.478 0.8944 to 12.98 IFNG5AzaC PI <0.0001 1.526 1.281 to 1.804

Diagnosis Age 0.1146 1.02 0.9952 to 1.046 Diagnosis Age <0.0001 1.036 1.022 to 1.052

Bone Marrow Blast Percentage 0.6901 0.997 0.9825 to 1.012 Bone Marrow Blast Percentage 0.9798 0.9999 0.9902 to 1.010

FAB 0.8536 0.9722 0.7146 to 1.302 FAB 0.4846 1.043 0.9263 to 1.171

PB Blast Percentage 0.3291 1.008 0.9923 to 1.023 PB Blast Percentage 0.5543 1.002 0.9957 to 1.008

Risk (Cyto) 0.819 1.058 0.6404 to 1.697 Risk (Cyto) <0.0001 2.051 1.514 to 2.785

Sex 0.0374 1.98 1.042 to 3.795 Sex 0.9132 1.021 0.6965 to 1.493

WBC 0.5097 1.003 0.9928 to 1.013 WBC 0.0208 1.005 1.000 to 1.008

Univariate Cox proportional hazard (OS)Multivariate Cox proportional hazard (OS)

https://medicine.yale.edu/lab/rimm/research/software.aspx


 

Figure 74: Kaplan-Meier estimates of OS and EFS for each prognostic index generated in the TCGA data set, with optimal cut off selected by X-tile software. Survival curves were 
compared using a log-rank (Mantel-Cox) test. Right of each set of graphs shows table with number of patients at risk at stated months. Median survival (months) is recorded next 
to each curve. Cut off threshold for each PI low and high stated, HR = Hazard ratio. Chi square and P-value are stated in the top right of each KM plot. HR = Hazard ratio. 
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5.5.4 High PI scores were significantly associated with age and poor ELN 
cytogenetic risk in the discovery series (TCGA) 

Distribution of PI scores within subcategories of the TCGA patient database were examined using 

the optimum cut off thresholds calculated by x-tile. A high IFNG PI score was associated with 

increased age at diagnosis (P<0.05) but the other PI scores were not significantly different 

between patients above and below the age of 60 (Figure 75A). Additionally, high IFNG PI was 

significantly associated with patients who received chemotherapy, but not HSCT treatments 

(P<0.05, Figure 75B). Finally, the proportion of patients expressing high PI scores for 5AzaC, IFNG 

and IFNG5AzaC (P<0.00001, P<0.01 and P<0.01 respectively) were seen to significantly increase 

between patients in the good (5AzaC: 10%, IFNG: 20% and IFNG5AzaC: 10%), intermediate 

(5AzaC: 70%, IFNG: 43%, IFNG5AzaC: 66%) and poor (5AzaC: 56%, IFNG: 44% and IFNG5AzaC: 

50%) ELN cytogenetic risk categories (Figure 75C). Note that the TCGA naming convention is 

different but refers to the same ELN risk categories, where favourable = good, intermediate 

remains intermediate and unfavourable = poor.  

 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 

Figure 75: Distribution of PI scores in different AML groups. A) Distribution of AML patients with low and high PI > 60 and < 60 
years old. B) Distribution of AML patients with low and high PI according to treatment received, Auto HSCT, Allo HSCT, Auto 
and Allo HSCT or chemotherapy. C) Distribution of AML patients with low and high PI by ELN cytogenetic risk group; good, 
intermediate or poor. In all cases comparisons were carried out by the x2 test. NS = Not significant. 
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Median PI scores increased with worsening ELN cytogenetic risk in the discovery series (TCGA) 

As distribution of patients with high PI scores increased in intermediate and high-risk patients, PI 

scores were examined by violin plot. For each score, median PI expression showed a trend of 

increasing with worsening risk category, suggesting a relationship between PI scores and ELN 

cytogenetic risk. Significance increases in medium PI score were present between good and 

intermediate (5AzaC P<0.05, IFNG P<0.01, IFNG5AzaC P<0.01) and good to poor patients (5AzaC 

P<0.01, IFNG P<0.05, IFNG5AzaC P<0.0001). 

 

Figure 76: Violin plot of patient PI scores in the TCGA data set split by ELN cytogenetic risk group, left to right, 5AzaC, 
IFNG and IFNG5AzaC. Median is depicted by a solid line, upper and lower quartiles denoted by dashed lines. 
Significance calculated using Dunnett’s T3 multiple comparison. Median PI scores for each risk category are tabulated 
below each graph.  

The PI scores were next evaluated for their ability to stratify patients within the good, 

intermediate, and poor risk groups. As seen in Figure 77, patients stratified by ELN cytogenetic 

risk groups produced an excellent split as expected for OS (P<0.0001), however, and overlap 

between intermediate and poor risk patients is seen in EFS. The intermediate patients exhibit 

both good and poor outcome, and there is a need for an alternative method to identify which 

patients among the intermediate group will have poorer survival.  



 

Figure 77: Kaplan-Meier estimates of OS and EFS for ELN cytogenetic risk categories generated in the TCGA data set, 
with optimal cut off selected by X-tile software. Survival curves were compared using a log-rank (Mantel-Cox) test. 
Under each graph is a table with number of patients at risk at stated months. Median survival (months) is recorded next 
to each curve. Chi square and P-value are stated in the top right of each KM plot. 

 

5.5.4 All PI successfully stratify intermediate risk patients in the discovery 
series (TCGA) 

Each PI score was applied to each set of patients in the good, intermediate, and poor risk 

categories. The results for the good and poor ELN cytogenetic risk patient groups are not reported 

as too few patients (<40 patients) were available overall, so the reliability of these analysis are not 

adequate to draw conclusions from.  The intermediate risk group contained 101 patients, making 

for a more reliable data set to analyse.  

All PI scores stratified intermediate patients with significance, where a high PI score was 

consistently significantly associated with poorer outcomes in all cases (Figure 78). Median 

survival was around three times as long in low-scoring PI patients for OS, and double for EFS. The 

biggest difference seen for median survival was for 5AzaC PI in OS (low score = 27 months, high 

score = 8.20 months, P<0.01). All PI scores significantly differentiated between intermediate 

patients with poorer and improved outcomes in the TCGA discovery series (P-scores reported in 

Figure 78). 
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Figure 78: Kaplan-Meier estimates of OS and EFS for patients in the intermediate ELN cytogenetic risk group of the TCGA data set, with optimal cut off selected by X-tile software. Survival curves 
were compared using a log-rank (Mantel-Cox) test. To the side of each graph is a table with number of patients at risk at stated months. Median survival (months) is recorded next to each curve. 
Chi square and P-value are stated in the top right of each KM plot. HR = Hazard ratio. 
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5.5.5 High PI scores strongly associated with poor outcome in 
chemotherapy treated patients in the discovery series (TCGA) 

In the TCGA data set, 97 patients received induction chemotherapy and no HSCT treatment. 

When PI scores were applied, significant splits were observed for OS and EFS (Figure 79). In the 

case of EFS, the median survival of patients with low PI scores were undefined, meaning that 

more than 50% of patients were alive by the end of the study (5AzaC PI P<0.001, IFNG PI 

P<0.0001, and IFNG5AzaC PI P<0.0001). In addition to hazard ratios reported at 3.180, 4.341 and 

4.646 for 5AzaC, IFNG and IFNG5AzaC PI respectively, these results indicated a strong 

relationship between PI scores and chemotherapy induction outcome. 

5.5.6 High PI scores associated with poor outcome in patients receiving 
HSCT in the discovery series (TCGA) 

Next, patients who were treated with any kind of HSCT (allo, auto, MUD -72 patients) were 

assessed for outcome using the PI scores. In this case, high 5AzaC and IFNG5AzaC PI scores 

were associated with significantly poorer outcomes in OS whereas only a high IFNG5AzaC PI 

score was significantly associated with poorer EFS (P-scores reported in Figure 80). 
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Figure 79: Kaplan-Meier estimates of OS and EFS for patients receiving induction chemotherapy and no HSCT treatment in the TCGA data set, with optimal cut off selected by X-tile software. 
Survival curves were compared using a log-rank (Mantel-Cox) test. To the side of the graphs are tables with the number of patients at risk at stated months. Median survival (months) is recorded 
next to each curve. Chi square and P-value are stated in the top right of each KM plot. HR = Hazard ratio.  
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Figure 80: Kaplan-Meier estimates of OS and EFS for patients receiving HSCT treatment alone or in conjunction with induction chemotherapy in the TCGA data set, with optimal cut off selected by X-
tile software. Survival curves were compared using a log-rank (Mantel-Cox) test. To the side of the graphs are tables with the number of patients at risk at stated months. Median survival (months) is 
recorded next to each curve. Chi square and P-value are stated in the top right of each KM plot. HR = Hazard ratio.  
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5.5.7 PI scores show variable success in stratifying patients with molecular 
lesions in validation data sets (HOVON and BeatAML) 

There were not enough patients with information for molecular lesions present in the TCGA data 

set for meaningful survival analysis; instead, PI were tested in the HOVON and BeatAML data 

sets. Categories of patients investigated included those with WT and mutated NPM1, WT FLT3 

and FLT3-ITD and finally KMT2A rearranged.  

5.5.7.1 PI scores show variable success in stratifying patients with WT NPM1 and mutated 
NPM1 validation data sets (HOVON and BeatAML) 

In the HOVON data set, patients with mutant NPM1 could not be significantly stratified by any of 

the PI scores for OS or EFS (P>0.05, all, appendix see 7.14.1). When tested in the BeatAML data 

set, 5AzaC and IFNG5AzaC PI scores successfully stratified patients with mutated NPM1 (OS 

available only, Figure 81), P<0.05. Interestingly, this analysis showed high 5AzaC and high 

IFNG5AzaC PI scores were associated with improved outcome for this subset of patients, the 

opposite to the trend shown in HOVON (7.14.1, Figure 81). Furthermore, the IFNG PI, although 

not significant, exhibits the trend of high PI score being associated with poorer outcome. It is 

unclear why the PI scores exhibit opposite trends, although not carried out here, a comparison of 

other clinical features or treatment schedules between the two subsets might reveal more.   

 

Figure 81: Kaplan-Meier estimates of OS of patients with mutated NPM1 in the BeatAML data set, with optimal cut off 
selected by X-tile software. Survival curves were compared using a log-rank (Mantel-Cox) test. Number of patients at risk at 
stated months below each graph. Median survival (months) is recorded next to each curve. Chi square and P-value are 
stated in the top right of each KM plot. HR = Hazard ratio.  

 



When PI scores were applied to patients with WT NPM1 in both data sets, contradicting outcomes 

were observed. In the BeatAML data set, only the IFNG PI score significantly stratified patients 

(P<0.001), with high score associated with poor outcome in OS only (Figure 82).  

Figure 82: Kaplan-Meier estimates of OS of patients with WT NPM1 in the BeatAML data set, with optimal cut off 
selected by X-tile software. Survival curves were compared using a log-rank (Mantel-Cox) test. Number of patients at 
risk at stated months next to graph. Median survival (months) is recorded next to each curve. Chi square and P-value 
are stated in the top right of each KM plot. HR = Hazard ratio.  

This contrasts with the HOVON data set, where IFNG had no significant stratification power 

(P>0.05) (See 7.14.2). In addition, 5AzaC and IFNG5AzaC were significant outcome predictors in 

the HOVON data set for WT NPM1 patients OS and EFS (Figure 83), where they lacked any power 

in the BeatAML data set (See 7.14.3). 

 

 

 

 

 

 

 

 

 

Figure 83:Kaplan-Meier estimates of OS of patients with mutated NPM1 in the HOVON data set, with optimal cut off 
selected by X-tile software. Survival curves were compared using a log-rank (Mantel-Cox) test. Number of patients at 
risk in tables next to graphs. Median survival (months) is recorded next to each curve. Chi square and P-value are stated 
in the top right of each KM plot. HR = Hazard ratio. 

HR = 1.510,  Cut off threshold = 2.98 

HR = 1.716, Cut off threshold = 3.72 

HR = 1.438, Cut off threshold = 2.66 

HR = 1.708, Cut off threshold = 2.94 



5.5.7.2 PI scores show variable success in stratifying patients with FLT3-ITD and WT FLT3 in 
validation data sets (HOVON and BeatAML) 

In the HOVON data set, patients with FLT3-ITD could not be significantly stratified by any of the PI 

scores for OS or EFS (P>0.05, all, see  7.14.4).In the Beat-AML data set, patients with FLT3-ITD 

were best stratified by the 5AzaC and IFNG5AzaC PIs (P<0.01 and P<0.001 respectively). While 

IFNG PI did not report significance (P>0.05), it followed the same trend as the other PI scores 

where high expressions indicated improved OS outcome. This trend was flipped in the patients 

with WT FLT3 where higher scores indicated poorer OS, however, only the IFNG PI scores was 

significant (P<0.0001). Kaplan-Meiers comparing PI scores in WT FLT3 and FLT3-ITD can be seen 

in Figure 84. 

 

 

 

Figure 84: Kaplan-Meier estimates of OS of patients with FLT3-ITD in the BeatAML data set, with optimal cut off selected 
by X-tile software. Survival curves were compared using a log-rank (Mantel-Cox) test. Number of patients at risk in 
tables under graphs. Median survival (months) is recorded next to each curve. Chi square and P-value are stated in the 
top right of each KM plot. HR = Hazard ratio. 



Conversely, when patients with WT FLT3 were analysed with PI scores, only the 5AzaC and 

IFNG5AzaC PI scores produced significant stratification for OS and EFS (P<0.01, P<0.01 for 

5AzaC PI OS ,EFS respectively and P<0.01 and P<0.001 for IFNG5AzaC PI OS and EFS 

respectively). High PI scores also indicated poorer outcome, in agreement with the trend shown 

in the BeatAML patients with WT FLT3 (Figure 85). 

 

Figure 85:Kaplan-Meier estimates of OS of patients with FLT3 WT in the HOVON data set, with optimal cut off selected 
by X-tile software. Survival curves were compared using a log-rank (Mantel-Cox) test. Number of patients at risk in 
tables under graphs. Median suvival (months) is recorded next to each curve. Chi square and P-value are stated in the 
top right of each KM plot. HR = Hazard ratio. 

 

5.5.7.3 IFNG5AzaC PI score was a strong prognostic indicator in patients with KMT2A 
rearrangements 

Next, patients classified as having a KMT2A rearrangement (also known as MLL translocation) 

were assessed in the HOVON data set. In all cases, high PI scores were associated with improved 

outcomes. IFNG and IFNG5AzaC PI scores showed high expression to significantly associate with 

improved median survival for OS and EFS (P<0.05 for IFNG OS and EFS, P<0.001 and p< 0.01 for 

IFNG5AzaC OS and EFS respectively, Figure 86).  



 

 

Figure 86: Kaplan-Meier estimates of OS and EFS of patients with KMT2A rearranged in the HOVON data set, with 
optimal cut off selected by X-tile software. Survival curves were compared using a log-rank (Mantel-Cox) test. Number 
of patients at risk in tables next to graphs. Median survival (months) is recorded next to each curve. Chi square and P-
value are stated in the top right of each KM plot. HR = Hazard ratio. 

 

5.5.8 PI scores stratify patients across validation data sets 
Finally, PI scores were validated in the HOVON, BeatAML, German AML data sets and the German 

CN-AML subset. As expected, there was variation in performance of PI scores across data sets, 

but validation was achieved for at least one score in each data set by Kaplan-Meier.  Figure 87 

shows Kaplan-Meier plots which validated scores in the BeatAML and HOVON data sets. In Beat 

AML, the IFNG PI was the only significant score, with patients in the low PI score category 

achieving improved median OS (18.59 months vs 10.53 months, P<0.001). 

In the HOVON data set, for all PI scores, a high score indicated a poorer outcome, see Figure 87. 

In contrast the BeatAML data set, IFNG PI score was the only score to not be reported as 

significant in stratifying patients, although only just (P=0.0552). In HOVON the 5AzaC PI and 

IFNG5AzaC PI scores significantly stratified patients into poor and improved outcomes for OS, 

(5AzaC PI low OS = 27.99 months vs 5AzaC PI high OS = 14.88 months, P< 0.01. IFNG5AzaC PI 

low OS = 22.31 months vs IFNG5AzaC PI high = 13.11 months, P< 0.001). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 87:Kaplan-Meier estimates of OS of patients in the BeatAML and the HOVON validation data sets, with optimal cut off selected by X-tile software. 
Survival curves were compared using a log-rank (Mantel-Cox) test. Number of patients at risk in tables under graphs. Median survival (months) is under the 
graphs. Chi square and P-value are stated in the top right of each KM plot. HR = Hazard ratio. 

5AzaC PI Beat AML OS IFNG PI Beat AML OS IFNG5AzaC PI Beat AML OS 

5AzaC PI HOVON OS IFNG PI HOVON OS IFNG5AzaC PI HOVON OS 



 

Figure 88: Kaplan-Meier estimates of OS of patients in the German AML and the CN-AML validation data sets, with optimal cut off selected by X-tile software. Survival curves 
were compared using a log-rank (Mantel-Cox) test. Number of patients at risk in tables under graphs. Median survival (months) is under the graphs. Chi square and P-value are 
stated in the top right of each KM plot. HR = Hazard ratio. 

5AzaC PI German AML OS IFNG PI German AML OS IFNG5AzaC PI German AML OS 

5AzaC PI CN AML OS IFNG PI CN AML OS IFNG5AzaC PI CN AML OS 



Next, validation was carried out in the German AML data set, and then PI scores were also tested 

in the cytogenetically normal subset of patients from that data set, termed CN-AML (Figure 88). 

CN-AML patients are considered intermediate risk, so this dataset was used to validate findings 

in the intermediate subset of the TCGA discovery series (Figure 78).  

In the German AML data set, the 5AzaC PI and IFNG5AzaC PI scores were effective in predicting 

OS (Median survival, 5AzaC PI low OS = 13.97 months vs 5AzaC PI high OS = 8.515 months, P< 

0.01. IFNG5AzaC PI low OS = 16.2 months vs IFNG5AzaC PI high = 8.6 months, P< 0.001). The 

IFNG PI score was ineffective in this data set at stratifying patients, with low score patients’ 

median survival of 11.20 months vs high scoring patients 10.70 months (P>0.05), see Figure 88. 

In the CN-AML subset of patients, the 5AzaC and IFNG PI scores were successful in stratifying 

patient outcome for OS. (Median survival, 5AzaC PI low OS = 24.36 months vs 5AzaC PI high OS 

= 9.630 months, P< 0.05.  IFNG PI low OS = 25.87 months vs IFNG PI high = 9.633 months, P< 

0.001).  The final IFNG5AzaC PI score was not significant but did show a similar trend of high 

scores associated with poor OS outcome.  These results resemble those reported by the 86 probe 

set gene expression score generated from the same CN-AML dataset previously (OS, HR = 1.85; 

P = 0.002 and EFS, HR = 1.73; P = 0.001) (Metzeler, et al. 2008). 

  



5.5.8.1 AUC curves of PI scores report similar predictive ability to established scores 
Finally, all PI scores predictive ability for death was assessed using the area under receiver 

operator characteristics (AUC) curve in the TCGA data set. AUC reported for PI scores 

respectively were: 5AzaC PI AUC = 0.599, IFNG PI AUC = 0.637 and IFNG5AzaC PI AUC = 0.657, 

see Figure 89. The PI score’s prognostic ability was compared to other established AML scores in 

the TCGA data set.  

IFNG and IFNG5AzaC PI scores showed comparable performance to the LSC17 score in the TCGA 

data set (AUC = 0.65) (Ng, et al. 2016), which was generated using leukaemia stem cells, and the 

ELN cytogenetic risk categories (AUC = 0.66) (Wang, M., et al. 2018). Scores were outperformed 

by the 5 gene score (AUC = 0.74) developed by Sha et al by multivariate logistic regression model 

using clinical and expression data from the TCGA data set (Sha, et al. 2021). The Parsimonious 3 

gene score by Wagner et al, generated by applying an artificial neural network (ANN) based 

machine learning approach to the HOVON data set, also proved stronger than the PI scores 

generated here (AUC = 0.71) (Wagner, et al. 2019).   

 

  

Figure 89: AUC curves quantify the ability of each PI score to predict outcome in individual patients by their specificity and 
sensitivity in the TCGA data set. TPR = True positive rate, TNR = True negative rate, Lower CL = Lower confidence limit, 
Upper CL = Upper confidence limit, Wald χ2 test used to compare curves. AUC = 1 denotes perfect prediction, AUC = 0.5 
denotes no predictive ability above chance.  



5.6 Discussion 
In this study, novel PI scores were generated from the transcriptomic data of the AML cell lines 

Kasumi-1 and KG-1 under different treatment conditions (IFNG, 5AzaC or IFNG and 5AzaC 

combined). Pairwise linear regression of treated to untreated cell lines revealed transcripts 

changed (indicated by standard residuals) and created a shortlist of candidates associated with 

IFNG signalling and demethylation individually and in combination. Candidates were selected 

that appeared in the top 500 list of all 36 pairwise comparisons for each treatment condition. 

These transcripts were then fed to a CPH forward selection model utilising expression and OS 

data in the TCGA patient set. PI scores were generated following the method outlined by blamey 

et al, weighting transcripts contribution to scores by the β-parameter reported in the CPH 

analysis  (Blamey, et al. 2007).  

The PI scores stratified patients for OS and EFS in the discovery series (TCGA). Then, the scores 

were validated in other data sets (BeatAML, HOVON, German-AML series and CN-AML subset), 

where success in patient stratification varied. Due to the heterogeneity of AML, it is unlikely that 

any single score would prove effective in stratifying patients in all data sets, therefore this result 

is expected. Comparison of prognostic strength of generated scores by AUC analysis (5AzaC PI 

AUC = 0.599, IFNG PI AUC = 0.637 and IFNG5AzaC AUC PI = 0.657) showed similar performance 

to the LSC17 signature (AUC = 0.65), and the established ELN cytogenetic risk categories (AUC = 

0.66), but were outperformed by the parsominous-3 gene score by Wagner et al (AUC = 0.71), and 

the 5-gene score by Sha et al (AUC = 0.74).  

In the discovery series, TCGA, analysis of the PI scores revealed that there was a significantly 

higher proportion of patients with high IFNG PI scores in patients over the age of 60 (P<0.05, Figure 

75). Additionally, more patients who received only induction chemotherapy expressed high IFNG 

PI scores, compared to those receiving HSCT as part of their treatment course (P<0.05, Figure 

75). It was also seen that the proportion of patients expressing high PI scores for 5AzaC, IFNG and 

IFNG5AzaC increased significantly between good, intermediate, and poor ELN cytogenetic risk 

categories (P<0.00001, P<0.01 and P<0.01 respectively, Figure 75). This was corroborated by 

plotting PI scores from patients in each risk category, where median expression of all PI scores 

rises with increasing risk groups (Figure 76). 

Importantly, scores were effective in stratifying two groups of patients in need of improved 

outcome categorisation; patients treated with just chemotherapy, and patients in the 

intermediate risk category  (Prada-Arismendy, Arroyave and Röthlisberger 2017). 



High PI scores were strongly and significantly associated with poor outcome in chemotherapy 

treated patients in the TCGA data set for OS (5azaC: P<0.001, HR = 2.152, IFNG: P<0.001, HR = 

2.317, IFNG5AzaC: P<0.0001, HR = 2.491). PI scores were particularly effective in stratifying 

patients who received chemotherapy induction treatment for EFS (5azaC: P<0.001, HR = 3.180; 

IFNG: P<0.0001, HR = 4.341; IFNG5AzaC: P<0.0001, HR = 4.646). Patients in the low PI score 

categories had a median survival that was undefined, indicating that more than 50% survived the 

duration of the study (Figure 79).  

High PI scores were strongly and significantly associated with poor outcome in intermediate risk 

patients OS (5azaC: P<0.01, HR =1.92 , IFNG: P<0.05, HR = 1.83, IFNG5AzaC: P<0.01, HR = 2.11), 

and EFS (5AzaC: P<0.05, HR = 1.88, IFNG: P<0.05, HR = 1.75, IFNG5AzaC: P<0.01, HR = 

2.07)(Figure 78). Patients with low PI scores were shown to have median OS between 2-3 times 

longer than patients with high PI scores, while median EFS was between 1.5 and 2 times longer 

in low scoring compared to high scoring patients. Overall, patients in the intermediate ELN 

cytogenetic risk group that also expressed low PI had improved OS and EFS compared to those 

with high PI scores. Importantly, a high PI predicted shorter OS, irrespective of whether patients 

received chemotherapy alone or chemotherapy followed by HSCT. 

When scores were assessed by Kaplan-Meier tests in the HOVON, BeatAML, German-AML and 

CN-AML data sets, performance varied. The results of tests in the validation data sets are 

summarised in Figure 90 with hazard ratios (HR) and P-values plotted. The 5AzaC PI could be 

validated in the German-AML, CN-AML and HOVON data sets, IFNG PI was validated in only the 

BeatAML and CN-AML data sets and finally, IFNG5AzaC PI was significant in the German-AML 

and HOVON data set.  

Figure 90: Summary of results of Kaplan-Meier tests across discovery series (TCGA) and validation data sets (BeatAML, 
German AML, CN-AML and HOVON). Hazard ratios (HR) are given as bar charts, significance as calculated by log rank 
(Mantel-Cox) test is denoted as blue circles (P-value). 



Importantly, the effectiveness of the 5AzaC and IFNG PI scores seen in the TCGA data set could 

be validated in the CN-AML data set (Figure 88) (5AzaC, HR = 1.6, P < 0.05 , IFNG, HR = 1.6 P < 

0.05).  The 5AzaC and IFNG PI scores improve on the 86-probe set generated by Metzeler et al by 

consisting of only 2 or 8 transcripts; a more manageable number of targets to test for in clinical 

practice (Metzeler, et al. 2008). 

In all cases where scores were validated, hazard ratios were >1, indicating increased risk with 

rising expression. Suggesting a negative link between 5AzaC demethylation patterns and IFNG 

signalling with survival in generalised populations. The pattern of high PI scores associated with 

poorer outcomes was only disrupted when scores were applied to patients with specific 

mutations. The discovery series did not have enough examples of mutated patients to examine 

for meaningful conclusions, so the HOVON and BeatAML data sets were investigated instead. 

PI scores achieved no stratification for OS in the HOVON data set for patients with mutated 

NPM1. In the BeatAML data set the 5AzaC and IFNG5AzaC scores proved more effective for 

patients with mutated NPM1 (both P<0.05). Interestingly, there is an inverse relationship with the 

scores in these patients, where unlike in the general populations, high PI scores were associated 

with improved outcomes by the 5AzaC and IFNG5AzaC scores, HR = 0.5748 and 0.5452 

respectively (Figure 81). 

When WT NPM1 was assessed in the BeatAML data, only the IFNG PI scores was effective 

(P<0.001) and a high score indicated poor outcome (HR = 1.730) (Figure 12). In the HOVON data 

sets, only the 5AzaC and IFNG5AzaC PI scores were significant for WT NPM1 (OS P<0.01 & 

P<0.0001 respectively, EFS P< 0.01 & P< 0.0001 respectively), and showed the same pattern of 

high PI scores associated with poorer outcome for both OS (HR = 1.510 & 1.716 respectively) and 

EFS (HR = 1.438 & 1.708 respectively) (Figure 83). These results show a potential relationship 

between PI scores and NPM1 mutation status, where in mutated NPM1 high PI scores were 

associated with improved outcomes, but in WT NPM1 this outcome worsened. However, this 

inverse relationship could not be confirmed in the HOVON data set where patients with mutated 

NPM1 reported HR>1 and PI scores were unable to stratify patients (P>0.05) (See 7.14.1).  

In the BeatAML data set an inverse relationship of hazard ratios was observed for all PI scores in 

patients with FLT3 WT (HR>1) and FLT3-ITD (HR<1) in OS. FLT3-ITD and high 5Azac or IFNG5AzaC 

PI scores were associated with improved outcomes (P<0.01 both), whereas WT FLT3 and high 

IFNG PI score was associated with poorer outcome (P<0.0001) (Fig14). The trend of WT FLT3 and 

high PI scores indicating poorer outcome was confirmed in the HOVON data set, however, this 

time only the 5AzaC and IFNG5AzaC scores were significant (Figure 85). 



Finally, patients with rearranged KMT2A and IFNG and IFNG PI scores reported improved outcome 

for both OS (P<0.05 & P<0.001 respectively) and EFS (P<0.05 & P<0.01 respectively), shown in 

Figure 86. 

Overall, PI stratified subgroups of patients with molecular abnormalities and identified individual 

patients with poorer prognostic outcomes such as patients with WT NPM1 and high PI scores. 

Additionally, patients with FLT3-ITD belong in the unfavorable ELN cytogenetic risk group. 

Patients with FLT3-ITD and high PI scores exhibit improved outcomes (Figure 84). 

This study demonstrated the advantages and disadvantages of cell line derived prognostic 

signatures. As expected, PI scores performed best in the discovery TCGA data set than the 

validation data sets, this is due to the bias of the transcripts being chosen using the TCGA OS 

survival and transcript data. Success of scores in validation data sets varied, likely due to differing 

patient characteristics or treatments between data sets due to the heterogeneous nature of AML. 

The PI scores were able to match some existing methods for stratification of patients, including 

ELN cytogenetic risk and the LSC17 signature. An advantage of the PI scores presented here is 

their ability to stratify patient outcomes for those who have received induction chemotherapy as 

well as for patients in the intermediate ELN cytogenetic risk group. However, the PI scores lacked 

the predictive power of other established scores, such as the 5 gene score, or the Parsimonious 

3 gene score. This may be because the PI scores here are generated from a limited number of 

repeats (n=3), from cell lines, which are not perfect reflections of in vivo biological processes, 

whereas the other scores mentioned are generated directly from hundreds of patient samples. 

The model could be improved by increasing the number of cell line repeats and unique cell lines 

used could create more robust and powerful signatures using this method. With more data, 

advanced neural networks (ANN) could be applied to find relationships between expression data 

across cell lines as performed by Wagner et al and others (Kathad, et al. 2021). Additionally, co-

culturing AML cell lines with immune cells would improve to model by providing more data on the 

AML immunosuppressive mechanisms that effectively suppress immune cell activity.  

 

 

 

 

 



6 Discussion 
AML impairs the production and maturation of functional immune cells and is typically managed 

with a combination of chemotherapy and allogenic-HSCT (allo-HSCT). However, after treatment 

by allo-HSCT, there is still a high chance of relapse (50%) within the first 6 months following 

treatment (Yang, J., et al. 2018). Currently, patients are stratified for outcome by the ELN risk 

classification panel. This stratification method uses AML cytogenetic profiles, mutational status, 

blast percentage and minimal residual disease to place patients into favourable, intermediate 

and unfavourable risk groups(Döhner, et al. 2022). Approximately 50% of patients are labelled as 

‘intermediate’ risk, and this group exhibits a wide array of responses to chemotherapy and allo-

HSCT.  

The goal of allo-HSCT is to provide the patient with a "reset" immune system. The elimination of 

AML relies on interactions between the host's antigen-presenting cells (APCs) and donor 

cytotoxic lymphocytes (Kolb 2017). Therefore, immune suppression mechanisms are particularly 

harmful to a patient’s overall survival and risk of relapse.  Although AML employs various 

mechanisms to evade the immune system, this study focused on IFNG-facilitated evasion. IFNG 

is known to upregulate molecules that inhibit cytotoxic immune cells, polarise T-cells towards 

tolerogenic phenotypes, deplete amino acids to hinder cell growth, and generally foster an 

immunosuppressive environment (Taghiloo and Asgarian-Omran 2021, Cornel, Mimpen and 

Nierkens 2020, Locafaro, et al. 2014, Folgiero, et al. 2014). 

The variation in outcome seen in the intermediate ELN group indicates a need for an improved 

stratification method to assign these patients more suited treatments. The hypothesis of this 

work was that IFNG may induce an immunosuppressive phenotype in AML, which drives immune 

escape and leads to poorer patient outcomes. Additionally, the methylation status of AML may 

influence IFNG-driven immune suppression. Furthermore, different IFNG-driven 

immunosuppressive phenotypes could emerge depending on the maturity of the AML. Therefore, 

a prognostic index score based on methylation-modulated IFNG-driven immune suppression 

could stratify patients for survival, with higher scores expected to be associated with increased 

immune suppression and consequently poorer outcomes. To test this hypothesis, AML cell lines 

were used to generate scores related to IFNG-induced immunosuppression. AML cell lines were 

tested and characterised to ensure they presented with IFNG inducible immunosuppression 

phenotypes prior to transcriptomics being performed.  

First, the cell lines were treated with IFNG and assessed for the induction of immunosuppressive 

molecules using RT-PCR, flow cytometry, colorimetric assay, and SWATH-MS. Among the four 



AML cell lines studied, Kasumi-1 was the most responsive to IFNG, while KG-1 was the least 

(Number of significantly differentially expressed proteins: SIG-M5 = 341, THP-1= 141, Kasumi-1 = 

101, KG-1 = 48, Figure 18). Pearson correlation and PCA analyses confirmed the weak response 

of KG-1 compared to the robust responses of SIG-M5, THP-1, and Kasumi-1 (Figure 20). IFNG 

induced increased expression of several AIR molecules in Kasumi-1 (CD274, HLA-ABC, HLA-E, 

HLA-G, PD-L1 and Kynurenine, Figure 14,Figure 15,Figure 16) and significant upregulation of all 7 

IRDS proteins to the highest expression levels out of all cell lines, indicating a strong IFNG 

response (Figure 23). Conversely, IFNG induced changes to only 2 IRDS proteins in KG-1, but still 

upregulated some AIR molecules (Table 13). Consequently, Kasumi-1 and KG-1 were selected for 

further transcriptomic analysis due to their IFNG-inducible immunosuppressive phenotypes, 

despite their differing IFNGresponse strengths. 

The selected cell lines were treated with IFNG and 5AzaC, followed by RNA sequencing. Kasumi-

1 showed a strong response with 11,377 differentially expressed transcripts, while KG-1 had a 

weaker response with 2,564 transcripts, reflecting Chapter 3 findings. Transcription data 

identified high PTPN6 expression in KG-1 compared to Kasumi-1 (Kas-1 = 5.09 FPKM, KG-1 = 68.59 

FPKM, Padj < 0.0001, Wald-test, BH, Figure 38) and its protein product SHP-1 (KG-1 = 1,708,676 

NPA vs. Kas-1 = 114,481 NPA, Padj < 0.0001, Holm-Sidak, Figure 38), which likely accounts for the 

differences in IFNG signalling. SHP-1 prevents phosphorylation of STAT1, limiting IFNG-induced 

transcription (Schroder, et al. 2004). High SHP-1 in KG-1 likely conferred IFNG resistance, while 

low SHP-1 in Kasumi-1 led to a hyper-response. Even with IFNG treatment, Kasumi-1's SHP-1 

levels remained lower than those in untreated KG-1 (data in Appendix 7.6), enabling a prolonged 

IFNG response (Schroder, et al. 2004). Metascape analysis of both cell lines reported enrichment 

in IFNG pathways (Table 8 and Table 9), confirming that IFNG signalling pathways were still 

activated in KG-1 despite its high SHP-1 levels.  

IFNG treatment induced expression of immune evasion transcripts such as HLA-E (Kas-1 Ctrl = 

90.63 FPKM, IFNG = 821.15 FPKM, KG-1 Ctrl = 131.32, IFNG = 468.07 FPKM, both Padj < 0.0001, 

Figure 50), LGALS9 (Kas-1 Ctrl = 20.68 FPKM, IFNG = 86.27 FPKM, KG-1 Ctrl = 4.58 FPKM, IFNG = 

11.15 FPKM, both, Padj < 0.0001, Figure 52) and TNFSF10 (Kas-1 Ctrl = 0.70 FPKM, IFNG = 138.95 

FPKM, Padj < 0.0001, KG-1 Ctrl = 19.02 FPKM, KG-1 IFNG = 26.99 FPKM, Padj < 0.05, Figure 45), in 

both cell lines. Pre-treatment with 5AzaC synergistically enhanced IFNG-induced expression of 

immune escape molecules in Kasumi-1 only, including TNFSF10 (Kas-1 IFNG5AzaC = 191.18 

FPKM, Padj < 0.0001, Figure 45), HLA-E (Kas-1 IFNG5AzaC = 936.71 FPKM, Padj < 0.0001, Figure 

50) and LGALS9 (Kas-1 IFNG5AzaC = 103.97 FPKM, Padj<0.0001, Figure 52), compared to IFNG 

alone. It was hypothesised that KG-1 did not exhibit a strong response to 5AzaC due to a 



hypermethylation state caused by TET1/2 LOF mutations. Therefore, targeting only DNMT1 was 

not as impactful as it was in Kasumi-1. Chapter 4 diagrams summarise these immune 

suppression-related transcript changes in each cell line following IFNG and 5AzaC treatments 

(Figure 68 and Figure 69). The transcriptomics data generated from the IFNG and 5AzaC treatment 

of cell lines were used to generate PI scores.  

Novel PI scores were generated from cell lines treated with IFNG, 5AzaC or both. Short lists of 

significantly differentiated transcripts associated with each condition were identified using 

pairwise linear regression. The top 500 transcripts from all comparisons were input to a CPH 

forward selection model which used TCGA patient survival data. PI scores were made using the 

Blamey et al method and validated in BeatAML, HOVON, German-AML and the CN-AML patient 

data sets.  

PI scores effectively stratified patient outcomes in the TCGA discovery set, and each PI score was 

validated in at least one additional dataset. High PI scores were linked to significantly poorer 

outcomes among patients who received only induction chemotherapy (5AzaC PI, P<0.001, 

IFNGPI, P<0.001 and IFNG5AzaC PI, P< 0.0001,Figure 79) and those who underwent HSCT ( 

5AzaC PI, P<0.01 and IFNG5AzaC PI, P<0.01, Figure 80) in the TCGA discovery series. Additionally, 

a correlation was observed between ELN risk categories and PI scores, with higher PI scores 

associated with worse risk categories in patients (Comparison of good to poor patients: 5AzaC 

PI, P<0.05, IFNG P<0.01, IFNG5AzaC P<0.01, Comparison of good to poor patients:5AzaC 

P<0.01, IFNG P<0.05, IFNG5AzaC P<0.0001, Figure 76). Notably, 5AzaC and IFNG PI scores were 

particularly effective in stratifying patients within the ELN intermediate risk category, as 

demonstrated in both the discovery series (5AzaC PI, P<0.01, IFNG PI, P<0.05 and IFNG5AzaC PI 

,Figure 78) and the CN-AML validation dataset (5AzaC PI, P<0.05, IFNG PI, P < 0.05, Figure 88). 

Finally, AUC analysis (5AzaC PI AUC = 0.599, IFNG PI AUC = 0.637 and IFNG5AzaC PI AUC = 0.657, 

Figure 89) revealed similar performance of these scores compared to the LSC17 signature and 

ELN cytogenetic risk categories (AUC = 0.65 and 0.66, respectively). However, they were 

outperformed by other AML scores, including the parsimonious 3-gene score and the 5-gene 

score by Sha et al. (AUC = 0.71 and 0.74). 

This study postulated that IFNG induces immune suppression in AML, resulting in poorer 

outcomes, and that the methylation status of AML may influence this suppression. Furthermore, 

AML cell lines could be used to develop PI scores associated with this suppression. 

Characterisation of AML cell lines revealed an IFNG-inducible immune response, which was 

enhanced by pretreatment with 5AzaC in one cell line but not in another. All scores were validated 



using at least one additional patient dataset. The IFNG5AzaC score performed best, clearly 

stratifying 'high' and 'low' PI scores, in HOVON (n=593, Figure 87) and German AML (n=417, Figure 

88) datasets (both P<0.0001). In contrast, the IFNG PI score was ineffective (ns, Figure 88), and 

the 5AzaC PI score stratified patients with lower significance (P<0.01, Figure 88) in those data 

sets. However, both IFNG and 5AzaC PI scores effectively stratified patients in the intermediate-

risk group, while the IFNG5AzaC PI score was not significant (P<0.05, P<0.05 and ns respectively, 

Figure 88). 

Overall, this work demonstrated that AML cell lines exhibited IFNG-inducible immune 

suppressive phenotypes. Additionally, PI scores derived from 5AzaC, and IFNG-treated cell line 

models could be used to significantly stratify AML patients. The IFNG5AzaC PI score performed 

best when validated in general AML patient populations, while the individual 5AzaC PI score and 

IFNG PI score showed significant stratification in the intermediate-risk patient population of the 

CN-AML dataset. 

Other groups have explored IFNG-related signatures for AML prognosis. Recently, a study used 

single-sample gene set enrichment analysis on transcriptomics data from 672 de novo AML 

patients to create a parsimonious 47-gene score (Wang et al., 2024). They found that the IFNG 

score correlated with molecules involved in avoiding immune recognition, such as HLA-E and 

CD47-SIRPα, which were also highlighted as IFNG inducible in this thesis. Additionally, the score 

was associated with venetoclax resistance, proliferation of AML blasts, and worse overall survival 

for patients in the training data set. Their score was validated using Kaplan-Meier survival curve 

analysis in the Malani dataset (Malani, et al. 2022), where significant stratification was observed 

with above and below median score cutoffs (P<0.05, n=186). All scores in this thesis were 

validated in at least 2 data sets each, showing similar or stronger performances in terms of 

significance of separation than the IFNG-47 gene score. They did not test the score in 

intermediate risk patients or report AUC specificity and sensitivity, and so the scores cannot be 

compared for performance in that group.  

Furthermore, Wang et al found that IFNG signalling scores had an approximately normal 

distribution, indicating variation in IFNG signalling between patients. IFNG signalling was highest 

in specific cytogenetic groups (CBF AML with inv(16) and non-CBF, non-diploid AML with 

del7/7q), supporting the theory that there may be strong and weak IFNG signalling phenotypes in 

AML patients, as observed in AML cell lines in this thesis (Wang, B., et al. 2024). Another group 

has reported that high IFNG expression in AML BM samples correlated with higher Treg population 

and expression of IDO1. They found that AML cells release IFNG which remodelled the BM 



towards a tolerant phenotype and generated an IFNG related PI where high scores also indicated 

worse survival (Corradi, et al. 2022). Further supporting the idea that there is a specific type of 

IFNG signalling characterised by high IFNG signalling strength related to immunosuppression 

and worse outcome. Their score performed strongly when validated in the TCGA dataset 

(P<0.0001). Genes in their IFNG-based PI were found to correlate with TP53 mutations, which are 

known to be associated with higher IFNG expression and increased Treg populations in AML 

(Vadakekolathu, Lai, et al. 2020, Ragaini, et al. 2022, Sallman, et al. 2020). This suggests a link 

between the IFNG-induced immunosuppressive phenotype and TP53 mutational status, which 

was not explored in this work.  

Finally, the 5AzaC and IFNG5AzaC PI scores shared BST2 and CALR in common with an immune 

related gene (IRG) signature developed by another group for AML (Xu, et al. 2022). This group also 

developed their 7 gene signatures using a CPH model and the TCGA data set and validated in two 

patient data sets (GSE 37642, P<0.01 and GSE 146173, P<0.05). Furthermore, AUC analysis of 

the signature showed slightly improved specificity and sensitivity to the 5AzaC PI score 

developed in this thesis, but not as strong as the IFNG5AzaC PI score (7-gene signature AUC = 

0.621, 5AzaC PI AUC = 0.599, IFNG5AzaC AUC = 0.657).  

Identifying additional AML cell lines with strong IFNG signalling could enhance the model and 

investigate the relationship between IFNG, SHP1, and immune suppression. Experimental 

validation is needed to determine if the loss of SHP1 induces a Kasumi-1-like IFNG signalling 

phenotype in other AML cell lines. This would facilitate the exploration and characterisation of 

the IFNG-SHP1 axis and its role in AML immunosuppression, potentially leading to the 

development of an improved AML cell line derived IFNG-related PI score. Future studies could 

further validate these PI scores in other data sets and explore how these scores can be combined 

with other established scores for improved prognostication in AML. 

In conclusion, the PI scores generated in this study stratified patients with short and long OS and 

EFS in the discovery series (TCGA), and each PI score could be validated in at least two other 

patient data sets. Cell line derived PI scores showed similar sensitivity and specificity, as 

determined by AUC to other AML signatures, developed from patient sample derived PI scores. 

 Although not as powerful as other stratification signatures for AML, the source of data is from cell 

lines, a more readily available resource than patient samples. Cell lines undergo fundamental 

changes from the patient source cells to proliferate indefinitely and be cultured, so they are not 

perfect models of the patient they are derived from. However, they are still biologically relevant 

platforms to study cancer processes, and in combination with patient data sets, this study has 



shown their potential to inform prognostic signatures with clinical relevance. The PI scores 

created in this study are easy to calculate, with 8 or fewer transcripts to measure and have the 

potential to be integrated into clinical practice. Signatures composed of a smaller number of 

components are easier to incorporate into clinical practice, and so these signatures offer 

advantages over the 47-gene IFNG signature and LSC17 gene signatures. Importantly, these 

scores show strength in stratifying patients in the intermediate risk group, where there is currently 

a lack of reliable scores for prognostication (Gerstung, et al. 2017, Döhner, et al. 2017). 

Furthermore, they could improve allocation of intensive chemotherapy treatments to patients 

with intermediate cytogenetic risk and low PI scores, while finding alternative to the subset with 

high PI scores, who may suffer from intense chemotherapy.  

  



7 Appendix 
 

7.1 Table of AML morphology classed by the FAB classification 
system 

 

Table 21:The categories of AML based on the cell of origin and its morphological characteristics according to the FAB 
classification system (American Cancer Society 2018). Descriptions and photos are from (Ladines-Castro, et 
al. 2016). 

FAB  Name Description of 
morphology 

Example by Ladines-Castro et al 2016 

M0 Acute 
myeloblastic 

leukaemia with 
minimal 

differentiation 

Medium sized blasts 
with round nuclei, fine 
chromatin, a 
prominent nucleolus 
and nongranular 
cytoplasm. 

 
M1 Acute 

myeloblastic 
leukaemia 

without 
maturation 

Medium sized blasts 
with a high nucleus to 
cytoplasm ration. The 
nuclei are round with 
immature dispersed 
chromatin and 
sometimes multiple 
nucleoli are present. 
Between 5 and 10% 
have isolated Auer 
rods in the cytoplasm 
or a fine azurophilic 
granulation. 

 

M2 Acute 
myeloblastic 

leukaemia with 
maturation 

Blasts are small or 
medium sized with 

high nucleus to 
cytoplasm ratio. 

Immature chromatin 
is dispersed in the 

nucleus and there is 
one or more nucleoli. 

Again, there are 
isolate Auer rods and  



small amounts of 
azurophilic 

granulation. The 
cytoplasm is 
basophilic.  

M3 Promyelocytic 
leukaemia (PML) 

Has intense 
azurophilic 

granulation and 
scarce basophilic 

staining of the 
cytoplasm. Nucleus 

is irregular with a 
distinct cleft. Some 

PML have long crystal 
structures in the 

cytoplasm and form 
clumps that can be 
differentiated from 
Auer rods by their 

more tubular 
structure. 

 

M4 Acute 
myelomonocytic 

leukaemia 

Blasts are large and 
have a moderate ratio 

of nucleus to 
cytoplasm and 

variable basophilic 
staining. The nucleus 

varies from a typic 
round shape, to 

irregular or kidney 
shape. Nucleoli are 

also prominent. 
 

M5 Acute 
monocytic 
leukaemia 

There are two types of 
M5. The first M5a is 

characterised by large 
blasts with round 

nuclei and dispersed 
immature chromatin 

between 1 and 3 three 

 
M5a 

 
 
 
 
 
 



nucleoli. The 
cytoplasm is 

basophilic and may 
also contain Auer 

rods, granulations, 
and prolongations.  

The second type M5b, 
features 

promonocytes with 
kidney or nucleus 

shaped nucleus. The 
cytoplasm is less 

basophilic and has 
more granulation than 

what is seen in 
monoblasts. 

Additionally, it 
contains some 

vacuoles. 

 
 
 
 

M5b 

M6 Acute erythroid 
leukaemia 

There are two types of 
M6. M6a features 50% 

erythroid precursor 
cells and 30% 

myeloblasts. The 
erythroid cell 

morphology is 
changed in peripheral 

blood. With 
observations of 

fragmented 
erythrocytes 

(schistocytes), 
‘mushroom shaped’ 

cells and spiked 
erythrocytes 

(echinocytes and 
acanthocytes).  

M6b has a 
composition of 80% 
bone marrow cells 
with less than 3% 

myeloid cells. Larger 
erythrocytes 

(macrocytes), 
basophilic stippling of 

 



the cytoplasm and 
Howell-jolly bodies 
and Cabot rings are 

distinctive features of 
the subtype. 

M7 Acute 
megakaryocytic 

leukaemia 

Immature 
polymorphic blasts 

with a dispersed 
irregular nucleus 

containing reticulated 
chromatin and 

between 1 and 3 
nucleoli. The 
cytoplasm is 

basophilic and 
nongranular with a 

similar appearance to 
platelets.  

 

 

7.2  Reagents and equipment 
 

All reagents stored according to manufacturer’s instruction and used within defined expiry date.  

Reagent Supplier 

Cell culture medium  

1640 RPMI without L-glutamine Lonza/ Corning 

Iscove’s MDM without L-glutamine Lonza/ Corning 

MCcoys medium without L-glutamine Lonza/ Corning 

  

Cell culture additives  

5-Azacytidine Sigma 

Foetal Calf Serum  GE Healthcare Hyclone 

Interferon Gamma R&D systems 

L-Glutamine SLS (Lonza) 

  

Other cell culture Reagents  

Dimethyl sulfoxide (DMSO) Santa Cruz biotechnology 

Dulbecco’s phosphate buffered saline (DPBS) SLS (Lonza) 



Trypan blue solution 0.4 % Sigma-Aldrich 

Solution 18 AO•DAPI Chemometec 

  

Chemical reagent  

0.5 M EDTA solution (100x) Thermo Scientific 

5-Azacytidine Sigma-Aldrich 

10x TRIS Glycine Geneflow 

10x TRIS/Glycine/SDS Geneflow 

1M Tris-HCl pH 8 Invitrogen 

2-Mercaptoethanol Sigma-Aldrich 

4x Laemmli buffer Bio-Rad 

Annexin V binding buffer BioLegend 

Bovine Serum Albumin (BDS) Sigma-Aldrich 

Cytarabine Sigma-Aldrich 

Daunorubicin Sigma-Aldrich 

Deoxyribonucleotide triphosphate (dNTP) Promega 

Double distilled water (ddH2O) Barnstead 

Ethanol Fisher scientific 

Glacial acetic acid Sigma-Aldrich 

Halt protease and phosphatase inhibitor cocktail 

(100X) 

Thermo Scientific 

Instant dried skimmed milk Marvel 

Ionic detergent compatibility reagent Thermo Scientific 

Liquid nitrogen BOC 

L-Kynurenine Sigma-Aldrich 

Methanol Fisher Chemical 

NaCl Sigma 

Nuclease-free water Ambion 

Oligo(dT)15 Primer Promega 

Presept tablets Johnson and Johnson 

SDS Sigma 

Sodium deoxycholate Sigma 

Triton x 100 Sigma 

Trichloroacetic acid Sigma-Aldrich 



7.2.1 Consumables and Equipment 
Laboratory Plastics, Glassware and Sharps Supplier 

4–20% Mini-PROTEAN® TGX™ Precast Protein Gels Bio-Rad 

Bijou tubes (7 mL)  Starlab  

Cell culture flasks (T25, T75, T175)  Sarstedt  

Clear flat bottom 6-well plate, sterile (cell culture)  Sarstedt  

Clear flat bottom 24-well plate, sterile (cell culture)  Sarstedt 

Clear flat bottom 96-well plate, sterile (cell culture)  Sarstedt 

Clear flat bottom 96-well plate (protein assay)  Starlab  

Cryogenic vials (1.0 mL)  Starlab  

Falcon tubes (15 mL, 50 mL)  Sarstedt  

Filter tips (10ul, 20ul, 100ul, 200ul, 1000ul)  Starlab  

Glass bottles  Duran  

Glass coverslips  

P-dimethylaminobenzaldehyde Sigma-Aldrich 

Protein Assay Dye Reagent Concentrate Bio-Rad 

PierceTM 660 nm Protein assay reagent Thermo Scientific 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich 

Reverse Transcriptase Promega 

Reverse Transcriptase 5x RT buffer Promega 

RNaseZAP Ambion 

RNasin Promega 

RT 5x Buffer Promega 

Standard BSA set Thermo Scientific 

SYBR Green Bio-Rad 

Trizma (Tris) base Sigma-Aldrich 

Tween 20 Sigma-Aldrich 

  

Kits  

Clarity western ECL substrate Bio Rad 

Cell Proliferation Kit II (XTT) Sigma-Aldrich 

RNeasy mini kit Quiagen 

  



Glass slides  

Nitrocellulose membrane  GE Water & Process Techn.  

Rotor-Gene Strip Tubes & Caps  Starlab  

Pasteur pipettes  Sarstedt  

Petri dishes  Sarstedt  

Scalpels  SLS  

Serological pipettes (5 mL, 10 mL, 25 mL)  Sarstedt  

Syringe filter 0.2μm  Sartorius  

Syringes (20 mL)  Medicina  

Western Blot filter paper  GE Healthcare  

  

 

Equipment Supplier 

4°C Fridge  LEC Medical  

-20°C Freezer  LEC Medical  

-80°C Freezer  Panasonic  

37°C/5% CO2 Incubator  Scientific Laboratory Supplies  

4°C Centrifuge  Eppendorf  

Agilent 2100 bioanalyzer Agilent 

Autoclave  Rodwell  

Benchtop vortex mixer  Scientific Industries  

Chip priming station Agilent 

Class II Safety Cabinet  Walker  

CoolCell Freezing System Corning 

Haemocytometer (counting chamber)  Weber  

Heating block  Lab-Line  

Micropipettes (2 μl, 10 μl, 100 μl, 200 μl, 1000 μl)  Gilson/Starlab  

Minispin benchtop centrifuge  Eppendorf  

Multichannel pipette (300 μl)  Eppendorf  

Nanodrop ND-8000 spectrophotometer  Thermo Scientific  

Nanopure Diamond water reservoir  Barnstead  

NucleoCounter NC-250 Chemometec 

PCR workstation cabinet  Grant-Bio  



Real-time qPCR thermal cycler  Qiagen  

Rocker  Stuart  

SCIEX TripleTOF 6600  

Syngene G:Box  

SCIEX  

Syngene  

Sonicator  Fisherbrand  

Tecan Ultra Microtiter Plate Reader  Tecan  

Thermoblock  Biometra  

Waterbath  Clifton  

Weighing Scale  Fisher Scientific  

Software Company 

GraphPad Prism v8 Graphpad software inc. 

Morpheus (online) Broadinsitute 

Rotor-GeneQ Series Software v 2.3.5 Qiagen 

HL image Quick spots Western vision 

Metacore Clarivate Analytics 

NucleoView Chemometec 

Protein Pilot v5.0 SCIEX 

  

7.2.2 Composition of buffers used 
 

7.2.2.1 Cell culture 
Growth medium for Kasumi-1 Makes 500 mL 

RPMI 1640 1 x 395 mL 

Fetal Calf Serum 100 mL (20 %)  

L-glutamine 5 mL (2mM) 

  

Growth medium for KG-1 Makes 500 mL 

Iscove’s MDM  395 mL 

Fetal Calf Serum 100 mL (20 %)  

L-glutamine 5 mL (2mM) 

  

Growth medium for SIG-M5 Makes 500 mL 

Iscove’s MDM  395 mL 



Fetal Calf Serum 100 mL (20 %)  

L-glutamine 5 mL (2mM) 

  

Growth medium for THP-1 Makes 500 mL 

RPMI 1640 1 x 395 mL 

Fetal Calf Serum 100 mL (20 %)  

L-glutamine 5 mL (2mM) 

 

7.2.2.2 Flow cytometry  
FAC’s buffer For 1 L 

DDH2O 1 L 

BSA 5 g 

Sodium Azide 0.2 g 

  

7.2.2.3 Protein extraction 
RIPA buffer For 50 mL 

1M Tris-HCl pH 8 2.5 mL 

150 mM NaCl 7.5 mL 

10 % SDS 0.5 mL 

10 % Sodium Deoxycholate 2.5 mL 

10% Triton x 100 5 mL 

1 mM EDTA 0.5 mL 

ddH2O 31.5 mL 

 

7.2.2.4 Western blot  
4x Laemmli buffer (1610747, Bio-Rad) For 1 mL 

4x Laemmli buffer 900 µL 

2-Mercaptoethanol 100 µL 

  

7.2.2.5 Running buffer For 1L 

10x TRIS/Glycine 100 mL 

ddH2O 900 mL 

 

7.2.2.6 Transfer buffer 

 

For 1 L 



10x TRIS/Glycine 100 mL 

Methanol 200 mL 

ddH20 700 mL 

  

7.2.2.7 Blocking buffer (5%) For 50 mL 

ddH2O 50 mL 

Instant dried skimmed milk 2.5 g 

10x Tris-buffered saline (TBS) pH 7.6 For 1 L 

Trizma Base 24.2 g 

Sodium Chloride 80 g 

ddH20 1000 mL 

  

7.2.2.8 1x Tris-buffered saline (TBST) pH 7.6 For 1 L 

10x Tris-buffered saline (TBS) pH 7.6 100 mL 

ddH2O 900 mL 

Tween 20 1 mL 

 

7.2.3 Antibodies  
 

7.2.3.1 Antibodies used in western blot analysis  

Reagent Company Cat no Dilution 
DNMT1 XP® Rabbit mAb Cell signalling technology D63A6 1:1000 
p53 Antibody (DO-1): sc-126 MOUSE Santa Cruz Sc-126 1:1000 
Human Phospho-p53 (S46) Antibody R&D systems AF1489-SP 1:200 
STAT1 Rabbit mAb Cell signalling technology 9172S 1:1000 
Phospho-Stat1 (Ser727) Antibody 
Rabbit                                                             

Cell signalling technology 9177 1:1000 

RNF213 Polyclonal Antibody Rabbit Thermo Fisher Scientific PA5-51902 1:250 
GAPDH (D16H11) XP® Rabbit mAb  Invitrogen 5174S 1:1000 

 

  



7.2.3.2 Antibodies used in flow cytometry analysis 

Reagent Catalog 
number 

Supplier Clone Volume 
used (µL) 

Laser 
(nm) 

Dichroic 
filter 

Band 
pass 
filter 

LIVE/DEAD fixable 
yellow dead cell 
stain 

L34968 Invitrogen - 0.5 405 - 550/40 

PE antihuman 
CD119  
(IFN-Y R a chain) 

308703 Biolegend GIR-94 2.5 488 595 SP 575/30 

APC anti human 
HLA-E 

342605 Biolegend 3D12 2.5 638 694 
SP/25 

660/20 

PE anti human HLA-
G  

335906 Biolegend 87G 2.5 488 595 SP 575/30 

APC/FIRE 750 anti-
human HLA-A, B, C 

311443 Biolegend W6/32 2.5 638 - 755 LP 

PE/Cy7 anti-human 
CD274  

329718 Biolegend 29E.2A3 2.5 488 - 755 LP 

Annexin V Alexa 
Fluor® 647 

640943 Biolegend - 2.5 638 - 660/20 

 

7.2.4 Quantitative real-time PCR primers used throughout this study 
 

Gene Primer Primer Sequence Annealing temp (oC) 
GUSB FH1_GUSB 5’ ACTGAACAGTCACCGAC 3’ 58 
GUSB RH1_GUSB 5’ AAACATTGTGACTTGGCTAC 3’ 58 
TDO2 FH1_TDO2 5’ AAGAAAAAGAGGAACAGGTG 3’ 58 
TDO2 RH1_TDO2 5’ CACCTTTACTAAGGAGATGTTC 

3’ 
58 

CD274 FH1_CD274 5’ ATGCCCCATACAACAAAATC 3’ 58 
CD274 RH1_CD274 5’ GACATGTCAGTTCATGTTCAG 3’ 58 
IDO1 FH1_IDO1 5’ TTGTTCTCATTTCGTGATGG 3’ 58 
IDO1 RH1_IDO1 5’ TACTTTGATTGCAGAAGCAG 3’ 58 

 

 

  



7.3 Tables of most significantly enriched pathways reported by 
metascape for each treatment 

 

Table 22: The top 20 most significantly enriched pathways in Kasumi-1 treated with IFNG according to the ‘unique’ up 
and down regulated transcript lists, sorted by significance post FDR. Column ‘transcript’ specifies the number of 
transcripts differentially expressed in the data compared to the total number of transcripts from the corresponding 
pathway. 

Kasumi-1 IFNG 

Upregulated Downregulated 

Summary 
process ID 

Description Log10(P) Transcript Summary 
process ID 

Description Log10(P) Transcript 

GO:0002263 Cell activation 
involved in immune 
response 

-36.94 200/724 R-HSA-8953854 Metabolism of 
RNA 

-83.09 252/673 

GO:0001817 Regulation of cytokine 
production 

-23.74 184/795 R-HSA-8868773 Rrna processing 
in the nucleus 
and cytosol 

-74.18 125/194 

GO:0042110 T cell activation -22.43 129/475 R-HSA-1640170 Cell Cycle -33.40 179/692 
GO:0031349 Positive regulation of 

defence response 
-18.28 130/534 GO:0006399 Trna metabolic 

process 
-27.95 79/193 

R-HSA-
1280215 

Cytokine Signalling in 
Immune system 

-18.26 157/707 GO:0042273 Ribosomal large 
subunit 
biogenesis 

-22.77 43/72 

GO:0002521 Leukocyte 
differentiation 

-17.53 127/526 GO:0006281 DNA repair -22.48 138/567 

GO:0009615 Response to virus -15.90 96/359 GO:0006260 DNA replication -19.98 85/278 
GO:0030335 Positive regulation of 

cell migration 
-14.68 125/555 R-HSA-72306 Trna processing -19.32 49/107 

WP1449 Regulation of toll-like 
receptor signalling 
pathway 

-13.49 52/145 GO:0009117 Nucleotide 
metabolic 
process 

-18.81 154/726 

GO:0002237 Response to molecule 
of bacterial origin 

-13.14 88/346 GO:0071103 DNA 
conformation 
change 

-18.78 91/323 

GO:0002697 Regulation of immune 
effector process 

-12.94 108/474 GO:0042274 Ribosomal small 
subunit 
biogenesis 

-18.58 40/75 

GO:0032103 Positive regulation of 
response to external 
stimulus 

-12.94 85/331 GO:0032200 Telomere 
organization 

-17.92 62/174 

GO:0007249 I-kappab kinase/NF-
kappab signalling 

-12.64 76/282 R-HSA-72203 Processing of 
Capped Intron-
Containing Pre-
mrna 

-16.99 74/244 

GO:0010942 Positive regulation of 
cell death 

-12.48 144/725 GO:0007005 Mitochondrion 
organization 

-16.10 122/551 

GO:0043408 Regulation of MAPK 
cascade 

-11.47 143/740 GO:0044770 Cell cycle phase 
transition 

-16.02 135/641 

GO:0060627 Regulation of vesicle-
mediated transport 

-11.40 113/534 GO:0140053 Mitochondrial 
transcript 
expression 

-15.67 57/165 

GO:0006914 Autophagy -11.28 114/543 WP4022 Pyrimidine 
metabolism 

-15.61 39/83 

GO:0051345 Positive regulation of 
hydrolase activity 

-10.82 147/784 GO:0006403 RNA localization -15.56 70/235 

Ko04060 Cytokine-cytokine 
receptor interaction 

-10.77 70/270 R-HSA-6790901 Rrna modification 
in the nucleus 
and cytosol 

-14.36 32/61 

GO:0043900 Regulation of multi-
organism process 

-10.52 96/437 GO:0090305 Nucleic acid 
phosphodiester 
bond hydrolysis 

-14.32 80/306 

 



KG-1 IFNG 

Table 23: The top 20 most significantly enriched pathways in KG-1 treated with IFNG according to the ‘unique’ up and 
down regulated transcript lists, sorted by significance post FDR. Column ‘transcript’ specifies the number of 
transcripts differentially expressed in the data compared to the total number of transcripts from the corresponding 
pathway. 

Upregulated Downregulated 

Summary 
process ID 

Description Log10(P) Transcript Summary 
process ID 

Description Log10(P) Transcript 

GO:0045055 Regulated 
exocytosis 

-0.27 9/780 WP306 Focal Adhesion -4.30 13/199 

M3468 NABA ECM 
REGULATORS 

-0.23 5/238 GO:0006935 Chemotaxis -4.16 21/644 

GO:0002429 Immune 
response-
activating cell 
surface receptor 
signalling 
pathway 

0.00 6/481 WP4541 Hippo-Merlin Signalling 
Dysregulation 

-3.98 10/122 

R-HSA-
1280215 

Cytokine 
Signalling in 
Immune system 

0.00 7/707 GO:0050865 Regulation of cell 
activation 

-3.86 20/636 

GO:0060333 Interferon-
gamma-
mediated 
signalling 
pathway 

0.00 3/91 Hsa04060 Cytokine-cytokine 
receptor interaction 

-3.53 14/328 

R-HSA-
109582 

Haemostasis 0.00 6/620 GO:0000904 Cell morphogenesis 
involved in 
differentiation 

-3.31 20/723 

GO:0032874 Positive 
regulation of 
stress-activated 
MAPK cascade 

0.00 3/163 GO:0009611 Response to wounding -3.08 19/701 

R-HSA-
382551 

Transport of 
small molecules 

0.00 6/728 GO:0071363 Cellular response to 
growth factor stimulus 

-3.04 19/707 

GO:0033209 Tumour necrosis 
factor-mediated 
signalling 
pathway 

0.00 3/175 GO:0051968 Positive regulation of 
synaptic transmission, 
glutamatergic 

-2.76 5/30 

GO:0042742 Defence 
response to 
bacterium 

0.00 4/348 GO:0019932 Second-messenger-
mediated signalling 

-2.53 14/444 

GO:0051345 Positive 
regulation of 
hydrolase 
activity 

0.00 6/784 GO:0002521 Leukocyte 
differentiation 

-2.40 15/526 

    GO:0016339 Calcium-dependent 
cell-cell adhesion via 
plasma membrane cell 
adhesion molecules 

-2.139 5/43 

    R-HSA-
9006934 

Signalling by Receptor 
Tyrosine Kinases 

-2.04 14/505 

    GO:0062009 Secondary palate 
development 

-1.92 4/25 

    GO:0002683 Negative regulation of 
immune system process 

-1.826 13/484 

    GO:0009617 Response to bacterium -1.699 16/728 
    GO:0035767 Endothelial cell 

chemotaxis 
-1.699 4/32 

    GO:0043114 Regulation of vascular 
permeability 

-1.524 4/36 

    GO:0007423 Sensory organ 
development 

-1.509 13/534 

    R-HSA-
2730905 

Role of LAT2/NTAL/LAB 
on calcium mobilization 

-1.39 3/16 

 



Kasumi-1 5AzaC 

Table 24: The top 20 most significantly enriched pathways in Kasumi-1 treated with 5AzaC according to the ‘unique’ up 
and down regulated transcript lists, sorted by significance post FDR. Column ‘transcript’ specifies the number of 
transcripts differentially expressed in the data, from the corresponding pathway. 

Upregulated Downregulated 

Summary 
process ID 

Description Log10(P) Transcript Summary 
process ID 

Description Log10(P) Transcript 

GO:0050865 Regulation of cell 
activation 

-13.03 41/636 R-HSA-
191273 

Cholesterol 
biosynthesis 

-8.11 6/25 

GO:0002521 Leukocyte 
differentiation 

-12.94 37/526 GO:0045123 Cellular 
extravasation 

-6.57 7/71 

R-HSA-909733 Interferon alpha/beta 
signalling 

-12.41 15/70 WP3613 Photodynamic 
therapy-induced 
unfolded protein 
response 

-4.67 4/27 

GO:0002274 Myeloid leukocyte 
activation 

-11.87 40/660 GO:0006790 Sulphur compound 
metabolic process 

-4.62 11/380 

GO:0001817 Regulation of 
cytokine production 

-11.10 43/795 ko00650 Butanoate 
metabolism 

-4.61 4/28 

GO:0040017 Positive regulation of 
locomotion 

-11.09 37/607 GO:0090092 Regulation of 
transmembrane 
receptor protein 
serine/threonine 
kinase signalling 
pathway 

-4.54 9/255 

GO:0009611 Response to 
wounding 

-11.06 40/701 GO:0043583 Ear development -4.44 8/202 

R-HSA-
1280215 

Cytokine Signalling in 
Immune system 

-10.95 40/707 GO:0019229 Regulation of 
vasoconstriction 

-4.44 5/61 

M5885 NABA MATRISOME 
ASSOCIATED 

-10.73 41/751 M5884 NABA CORE 
MATRISOME 

-4.28 9/275 

GO:0070371 ERK1 and ERK2 
cascade 

-10.41 26/327 GO:0072672 Neutrophil 
extravasation 

-4.01 3/15 

GO:0042116 Macrophage 
activation 

-9.93 15/102 M5887 NABA BASEMENT 
MEMBRANES 

-3.98 4/40 

GO:0030198 Extracellular matrix 
organization 

-7.99 25/395 GO:0050654 Chondroitin sulphate 
proteoglycan 
metabolic process 

-3.86 4/43 

GO:0002237 Response to 
molecule of bacterial 
origin 

-7.79 23/346 GO:0000904 Cell morphogenesis 
involved in 
differentiation 

-3.82 14/723 

GO:0097435 Supramolecular fibre 
organization 

-7.51 34/713 GO:1901654 Response to ketone -3.71 7/193 

GO:0032103 Positive regulation of 
response to external 
stimulus 

-7.48 22/331 GO:0050804 Modulation of 
chemical synaptic 
transmission 

-3.57 10/418 

WP3624 Lung fibrosis -7.15 10/63 GO:0010769 Regulation of cell 
morphogenesis 
involved in 
differentiation 

-3.27 8/300 

ko05144 Malaria -7.06 9/49 GO:0010720 Positive regulation of 
cell development 

-3.24 11/547 

GO:0030098 Lymphocyte 
differentiation 

-6.88 22/358 R-HSA-
5173105 

O-linked 
glycosylation 

-3.21 5/111 

WP2864 Apoptosis-related 
network due to 
altered Notch3 in 
ovarian cancer 

-6.75 9/53 GO:0043087 Regulation of GTPase 
activity 

-3.10 10/481 

GO:0050920 Regulation of 
chemotaxis 

-6.72 17/224 GO:0050808 Synapse organization -3.00 9/411 

  



KG-1 5AzaC 

Table 25: The top 20 most significantly enriched pathways in KG-1 treated with 5AzaC according to the ‘unique’ up and 
down regulated transcript lists, sorted by significance post FDR. Column ‘transcript’ specifies the number of 
transcripts differentially expressed in the data, from the corresponding pathway. 

Upregulated Downregulated 

Summary 
process ID 

Description Log10(P) Transcript Summary 
process ID 

Description Log10(P) Transcript 

R-HSA-
9648895 

Response of EIF2AK1 
(HRI) to heme 
deficiency 

-8.20 5/15 GO:0007185 Transmembrane 
receptor protein 
tyrosine 
phosphatase 
signalling pathway 

-6.53 3/6 

GO:0008652 Cellular amino acid 
biosynthetic process 

-8.03 8/88 GO:0046888 Negative regulation 
of hormone 
secretion 

-4.75 4/62 

GO:0002274 Myeloid leukocyte 
activation 

-7.00 16/660 R-HSA-
500792 

GPCR ligand 
binding 

-4.68 8/467 

GO:0001101 Response to acid 
chemical 

-6.38 11/323 GO:0030098 Lymphocyte 
differentiation 

-3.57 6/358 

R-HSA-
379716 

Cytosolic tRNA 
aminoacylation 

-5.33 4/24 GO:0016358 Dendrite 
development 

-3.53 5/234 

GO:0002237 Response to 
molecule of bacterial 
origin 

-5.21 10/346 GO:0034394 Protein localization 
to cell surface 

-3.20 3/67 

GO:0098739 Import across plasma 
membrane 

-5.16 7/148 GO:0044057 Regulation of 
system process 

-3.15 7/597 

GO:0033690 Positive regulation of 
osteoblast 
proliferation 

-4.78 3/11 GO:0002573 Myeloid leukocyte 
differentiation 

-2.76 4/205 

GO:0048266 Behavioural response 
to pain 

-4.66 3/12 GO:0097305 Response to 
alcohol 

-2.56 4/234 

GO:0050808 Synapse organization -4.57 10/411 hsa04371 Apelin signalling 
pathway 

-2.24 3/146 

GO:0009064 Glutamine family 
amino acid metabolic 
process 

-4.51 5/76 WP3932 Focal Adhesion-
PI3K-Akt-mTOR-
signalling pathway 

-2.16 4/303 

hsa04611 Platelet activation -4.43 6/130 WP481 Insulin signalling -2.13 3/160 
GO:0089718 Amino acid import 

across plasma 
membrane 

-4.33 4/42 R-HSA-
9006934 

signalling by 
Receptor Tyrosine 
Kinases 

-2.07 5/505 

GO:0009612 Response to 
mechanical stimulus 

-4.29 7/202 GO:0010942 Positive regulation 
of cell death 

-2.03 6/725 

GO:0019932 Second-messenger-
mediated signalling 

-4.28 10/444     

GO:0043062 Extracellular 
structure organization 

-4.18 10/457     

GO:0097191 Extrinsic apoptotic 
signalling pathway 

-4.09 7/217     

GO:0097028 Dendritic cell 
differentiation 

-4.07 4/49     

R-HSA-
389357 

CD28 dependent 
PI3K/Akt signalling 

-3.83 3/22     

GO:0001819 Positive regulation of 
cytokine production 

-3.45 9/461     

  



Kasumi-1 IFNG 5AzaC 

Table 26: The top 20 most significantly enriched pathways in Kasumi-1 comparing combination treated cells to control 
cells, prior to removal of IFNG only and 5AzaC only treated transcripts, sorted by significance post FDR. Column 
‘transcript’ specifies the number of transcripts differentially expressed in the data, from the corresponding pathway. 
For ease of comparison, number of transcripts altered by IFNG only treated cells are presented in brackets.  

Upregulated  Downregulated  

Summary 
process ID 

Description Log10(P) Transcrip
t 

Summary 
process ID 

Description Log10(P) Transcript 

R-HSA-
1280215 

Cytokine 
Signalling in 
Immune system 

-59.42 
(-18.26) 

228/707 
(157/707) 

R-HSA-
8953854 

Metabolism of RNA -99.77 
(-83.09) 

278/673 
(252/673) 

R-HSA-
913531 

Interferon 
Signalling 

-47.82 102/199 R-HSA-
72312 

RRNA processing -81.94 135/204 

GO:000181
7 

Regulation of 
cytokine 
production 

-47.10 
(-23.74) 

224/795 
(184/795) 

GO:000639
9 

TRNA metabolic 
process 

-38.17 
(-27.95) 

91/193 
(79/193) 

GO:003434
1 

Response to 
interferon-gamma 

-42.55 96/197 GO:007182
6 

Ribonucleoprotein 
complex subunit 
organization 

-30.80 104/290 

GO:000226
3 

Cell activation 
involved in 
immune response 

-39.50 
(-36.94) 

198/724 
(200/724) 

R-HSA-
1640170 

Cell Cycle -28.75 
(-33.40) 

174/692 
(179/692) 

GO:004211
0 

T cell activation -34.05 
(-22.43) 

144/475 
(129/475) 

R-HSA-
72306 

TRNA processing -28.69 
(-19.32) 

58/107 
(49/107) 

GO:000269
7 

Regulation of 
immune effector 
process 

-28.32 
(-12.94) 

134/474 
(108/474) 

GO:000628
1 

DNA repair -27.81 
(-22.48) 

151/567 
(138/567) 

ko04621 NOD-like receptor 
signalling pathway 

-28.06 73/170 GO:000626
0 

DNA replication -23.08 
(-19.98) 

90/278 
(85/278) 

GO:000961
7 

Response to 
bacterium 

-27.47 
 

175/728 GO:004227
4 

Ribosomal small 
subunit biogenesis 

-22.77 
(-18.58) 

43/75 
(40/75) 

GO:004390
0 

Regulation of 
multi-organism 
process 

-25.84 
(-10.52) 

123/437 
(96/437) 

GO:000911
7 

Nucleotide 
metabolic process 

-22.16 
(-18.81) 

165/726 
(154/726) 

GO:003210
3 

Positive regulation 
of response to 
external stimulus 

-25.48 
(-12.94) 

103/331 
(85/331) 

GO:000652
0 

Cellular amino acid 
metabolic process 

-20.61 102/365 

WP619 Type II interferon 
signalling (IFNG) 

-24.79 31/37 GO:000700
5 

Mitochondrion 
organization 

-19.89 
(-16.10) 

132/551 
(122/551) 

ko04060 Cytokine-cytokine 
receptor 
interaction 

-21.51 85/270 GO:003220
0 

Telomere 
organization 

-19.87 
(-17.92) 

64/174 
(62/174) 

GO:005077
7 

Negative 
regulation of 
immune response 

-21.26 62/159 GO:007110
3 

DNA conformation 
change 

-19.82 
(-18.78) 

93/323 
(91/323) 

GO:000693
5 

Chemotaxis -21.23 148/644 GO:190113
7 

Carbohydrate 
derivative 
biosynthetic 
process 

-19.80 168/783 

ko05152 Tuberculosis -20.29 65/179 R-HSA-
6790901 

RRNA modification 
in the nucleus and 
cytosol 

-19.76 
(-14.36) 

36/61 
(32/61) 

R-HSA-
1280218 

Adaptive Immune 
System 

-19.51 161/756 R-HSA-
72203 

Processing of 
Capped Intron-
Containing Pre-
mRNA 

-19.72 
(-16.99) 

78/244 
(74/244) 

GO:001094
2 

Positive regulation 
of cell death 

-18.97 
(-12.48) 

155/725 
(144/725) 

GO:014005
3 

Mitochondrial 
transcript 
expression 

-19.10 
(-15.67) 

61/165 
(57/165) 

hsa05169 Epstein-Barr virus 
infection 

-18.90 86/299 GO:009030
5 

Nucleic acid 
phosphodiester 
bond hydrolysis 

-18.75 
(-14.32) 

88/306 
(80/306) 

GO:000724
9 

I-kappaB 
kinase/NF-kappaB 
signalling 

-17.80 
(-12.64) 

81/282 
(76/282) 

ko00240 Pyrimidine 
metabolism 

-18.22 46/104 

 



KG-1 IFNG 5AzaC 

Table 27: The top 20 most significantly enriched pathways in KG-1 comparing combination treated cells control cells, 
prior to removal of IFNG only and 5AzaC only treated transcripts, sorted by significance post FDR. Column ‘transcript’ 
specifies the number of transcripts differentially expressed in the data, from the corresponding pathway. For ease of 
comparison, number of transcripts altered by IFNG only treated cells are presented in brackets.  

Upregulated Downregulated 

Summary 
process ID 

Description Log10(P) Transcript Summary 
process ID 

Description Log10(P) Transcript 

R-HSA-6798695 Neutrophil 
degranulation 

-6.09 14/480 hsa04060 Cytokine-cytokine 
receptor interaction 

-9.32 21/328 
(14/328) 

hsa05221 Acute myeloid 
leukaemia 

-5.49 6/70 R-HSA-
1474244 

Extracellular matrix 
organization 

-9.18 20/301 

hsa01230 Biosynthesis of 
amino acids 

-5.32 6/75 GO:0030155 Regulation of cell 
adhesion 

-7.74 29/734 

GO:0043648 Dicarboxylic acid 
metabolic process 

-4.67 6/97 GO:0007178 Transmembrane 
receptor protein 
serine/threonine 
kinase signalling 
pathway 

-7.08 19/363 

GO:0016999 Antibiotic metabolic 
process 

-4.55 7/151 GO:0010942 Positive regulation of 
cell death 

-6.73 27/725 

GO:0045444 Fat cell 
differentiation 

-4.34 8/222 WP4541 Hippo-Merlin 
Signalling 
Dysregulation 

-6.63 
(-3.98) 

11/122 
(10/122) 

R-HSA-9648895 Response of 
EIF2AK1 (HRI) to 
heme deficiency 

-4.09 3/15 GO:0060326 Cell chemotaxis -6.03 16/307 

GO:0071435 Potassium ion 
export 

-3.84 3/18 GO:0009611 Response to 
wounding 

-5.93 
(-3.08) 

25/701 
(19/701) 

GO:0030099 Myeloid cell 
differentiation 

-3.76 10/421 WP2431 Spinal Cord Injury -5.73 10/121 

GO:0033688 Regulation of 
osteoblast 
proliferation 

-3.31 3/27 GO:0030036 Actin cytoskeleton 
organization 

-5.46 24/696 

WP2849 Hematopoietic Stem 
Cell Differentiation 

-3.26 4/65 R-HSA-500792 GPCR ligand binding -5.44 19/467 

GO:0048771 Tissue remodelling -3.21 6/179 GO:0008285 Negative regulation of 
cell proliferation 

-5.38 25/753 

R-HSA-381426 Regulation of 
Insulin-like Growth 
Factor (IGF) 
transport and 
uptake by Insulin-
like Growth Factor 
Binding Proteins 
(IGFBPs) 

-3.10 5/125 R-HSA-
9031628 

NGF-stimulated 
transcription 

-5.21 6/39 

GO:0002237 Response to 
molecule of 
bacterial origin 

-3.03 8/346 GO:0001503 Ossification -5.14 17/402 

GO:0009583 Detection of light 
stimulus 

-2.99 4/77 GO:0001655 Urogenital system 
development 

-5.12 15/321 

GO:0001889 Liver development -2.90 5/138 M159 PID AMB2 
NEUTROPHILS 
PATHWAY 

-5.08 6/41 

GO:0043062 Extracellular 
structure 
organization 

-2.86 9/457 GO:0099560 Synaptic membrane 
adhesion 

-5.01 5/25 

GO:0032787 Monocarboxylic acid 
metabolic process 

-2.80 11/659 ko05202 Transcriptional mis 
regulation in cancer 

-4.97 11/180 

GO:0006734 NADH metabolic 
process 

-2.68 3/44 GO:0009617 Response to 
bacterium 

-4.65 
(-1.699) 

23/728 
(16/728) 

GO:0045936 Negative regulation 
of phosphate 
metabolic process 

-2.58 10/601 GO:0051968 Positive regulation of 
synaptic 
transmission, 
glutamatergic 

-4.60 
(-2.76) 

5/30 
(5/30) 

 



 

 

Kasumi-1 ‘unique’ IFNG 5AzaC 

Table 28: The top 20 most significantly enriched pathways in Kasumi-1 comparing combination treated cells control 
cells, according to the ‘unique’ up and down regulated transcript lists, sorted by significance post FDR. Column 
‘transcript’ specifies the number of transcripts differentially expressed in the data, from the corresponding pathway. 
For ease of comparison, number of transcripts altered by IFNG only treated cells are presented in brackets. 

Upregulated  Downregulated  

Summary 
process ID 

Description Log10(P) Transcript Summary 
process ID 

Description Log10(P) Transcript 

GO:0030029 Actin filament-based 
process 

-6.32 44/796 R-HSA-
8953854 

Metabolism of RNA -14.67 63/673 

GO:1901522 Positive regulation of 
transcription from 
RNA polymerase II 
promoter involved in 
cellular response to 
chemical stimulus 

-4.96 6/22 GO:0034470 NcRNA processing -12.34 43/395 

GO:0048625 Myoblast fate 
commitment 

-3.86 3/5 R-HSA-
73894 

DNA Repair -9.67 35/335 

GO:0008015 Blood circulation -3.76 27/513 M1 PID FANCONI 
PATHWAY 

-7.98 12/47 

GO:0001525 Angiogenesis -3.72 30/600 hsa00510 N-Glycan 
biosynthesis  

-6.74 11/49 

R-HSA-
109582 

Haemostasis -3.47 30/621 GO:0007005 Mitochondrion 
organization 

-6.45 38/509 

GO:2001236 Regulation of extrinsic 
apoptotic signalling 
pathway 

-3.47 12/151 R-HSA-
72306 

TRNA processing -6.10 15/107 

GO:0048588 Developmental cell 
growth 

-3.17 15/234 GO:0009060 Aerobic respiration -5.89 20/189 

WP98 Prostaglandin 
synthesis and 
regulation 

-3.13 6/45 R-HSA-
3700989 

Transcriptional 
Regulation by TP53 

-5.60 29/365 

GO:1901550 Regulation of 
endothelial cell 
development 

-3.09 4/18 CORUM:282 SNF2h-cohesin-
NuRD complex 

-5.34 6/16 

GO:0019934 CGMP-mediated 
signalling 

-3.01 5/32 M84 PID ATM PATHWAY -5.22 8/34 

R-HSA-
5653656 

Vesicle-mediated 
transport 

-2.91 30/673 GO:0006412 Translation -5.15 45/736 

R-HSA-
373752 

Netrin-1 signalling  
-2.88 

6/50 R-HSA-
1640170 

Cell Cycle -5.11 43/692 

GO:0050678 Regulation of 
epithelial cell 
proliferation 

-2.78 20/392 R-HSA-
3108214 

SUMOylation of DNA 
damage response 
and repair proteins 

-4.71 11/77 

GO:0018209 Peptidyl-serine 
modification 

-2.76 18/338 GO:0000959 Mitochondrial RNA 
metabolic process 

-4.71 9/51 

WP3414 Initiation of 
transcription and 
translation elongation 
at the HIV-1 LTR 

-2.71 5/37 GO:0035268 Protein 
mannosylation 

-4.44 6/22 

GO:0060249 Anatomical structure 
homeostasis 

-2.71 17/314 GO:0006260 DNA replication -4.28 21/262 

GO:0006511 Ubiquitin-dependent 
protein catabolic 
process 

-2.68 28/636 R-HSA-
68952 

DNA replication 
initiation 

-4.28 4/8 

GO:0006575 Cellular modified 
amino acid metabolic 
process 

-2.67 12/186 hsa04141 Protein processing in 
endoplasmic 
reticulum 

-4.24 16/169 

GO:0035162 Embryonic 
hemopoiesis 

-2.67 4/23 GO:0042273 Ribosomal large 
subunit biogenesis 

-4.23 10/72 

  



KG-1 ‘unique’ IFNG 5AzaC 

Table 29: The top 20 most significantly enriched pathways in KG-1 comparing combination treated cells control cells, 
according to the ‘unique’ up and down regulated transcript lists, sorted by significance post FDR. Column ‘transcript’ 
specifies the number of transcripts differentially expressed in the data, from the corresponding pathway. For ease of 
comparison, number of transcripts altered by IFNG only treated cells are presented in brackets. 

Upregulated Downregulated 

Summary 
process ID 

Description Log10(P) Transcript Summary 
process ID 

Description Log10(P) Transcript 

GO:0001817 Regulation of 
cytokine production 

-5.62 19/799 R-HSA-
1474244 

Extracellular matrix 
organization 

-6.38 14/301 

GO:0030099 Myeloid cell 
differentiation 

-4.88 12/383 GO:0007015 Actin filament 
organization 

-5.11 15/441 

GO:0019221 Cytokine-mediated 
signalling pathway 

-4.65 13/472 WP2858 Ectoderm 
differentiation 

-4.42 8/144 

R-HSA-
6798695 

Neutrophil 
degranulation 

-4.58 13/480 WP3668 Hypothesized 
pathways in 
pathogenesis of 
cardiovascular 
disease 

-4.23 4/25 

R-HSA-
549127 

Organic cation 
transport 

-4.45 3/10 GO:0010942 Positive regulation of 
cell death 

-3.98 16/618 

R-HSA-
1280215 

Cytokine Signalling in 
Immune system 

-3.93 15/715 GO:0007264 Small GTPase 
mediated signal 
transduction 

-3.87 14/503 

GO:0120035 Regulation of plasma 
membrane bounded 
cell projection 
organization 

-3.78 14/655 M63 PID AVB3 OPN 
PATHWAY 

-3.85 4/31 

GO:0032103 Positive regulation of 
response to external 
stimulus 

-3.76 11/427 GO:0072073 Kidney epithelium 
development 

-3.73 7/136 

R-HSA-
416482 

G alpha (12/13) 
signalling events 

-3.66 5/80 GO:2001233 Regulation of 
apoptotic signalling 
pathway 

-3.54 11/356 

GO:0030029 Actin filament-based 
process 

-3.43 15/796 GO:2001267 Regulation of 
cysteine-type 
endopeptidase 
activity involved in 
apoptotic signalling 
pathway 

-3.49 3/16 

GO:0035455 Response to 
interferon-alpha 

-3.43 3/21 R-HSA-
163685 

Integration of energy 
metabolism 

-3.45 6/108 

GO:0044546 NLRP3 
inflammasome 
complex assembly 

-3.43 3/21 R-HSA-
388396 

GPCR downstream 
signalling 

-3.39 15/629 

GO:0002764 Immune response-
regulating signalling 
pathway 

-3.39 11/472 GO:0009101 Glycoprotein 
biosynthetic process 

-3.31 10/319 

GO:0032088 Negative regulation 
of NF-kappa B 
transcription factor 
activity 

-3.36 5/93 GO:0071379 Cellular response to 
prostaglandin 
stimulus 

-3.19 3/20 

GO:0032642 Regulation of 
chemokine 
production 

-3.28 5/97 GO:0040017 Positive regulation of 
locomotion 

-3.14 14/596 

hsa00340 Histidine 
metabolism  

-3.25 3/24 WP4754 IL-18 signalling 
pathway 

-3.12 9/279 

GO:0050778 Positive regulation of 
immune response 

-3.22 12/576 GO:0099560 Synaptic membrane 
adhesion 

-2.90 3/25 

GO:0043410 Positive regulation of 
MAPK cascade 

-2.76 10/481 GO:0050927 Positive regulation of 
positive chemotaxis 

-2.90 3/25 

GO:0051354 Negative regulation 
of oxidoreductase 
activity 

-2.73 3/36 GO:0030855 Epithelial cell 
differentiation 

-2.82 14/643 



7.4 Optimisation of IFNG Dose Selection for Differential Responses in Kasumi-1 and KG-1 Cell Lines: 
A Comparative Viability Study with Daunorubicin Treatment 

 

Comparison of how varying doses of IFNG changes cell line response to Daunorubicin, as measured by XTT assay at 24 hr intervals after Daunorubicin 
dosing for 3 days, n=3. Grey = 0 ng/mL, Red = 0.5 ng/mL, Blue = 5 ng/mL, and Green = 10 ng/mL IFNG. 



7.5 Electropherograms showing RNA quality of samples used in 
next generation sequencing experiment generate in chapter 4 

 

7.5.1 Gel and electropherogram of RNA extracted from untreated, IFNG 
treated, 5AzaC treated and IFNG and 5AzaC treated Kasumi-1 
samples 

 

 

 

Samples 1 to 3 = Control untreated Kasumi-1 

Samples 4 to 6 = IFNG treated Kasumi-1 

Samples 7 to 9 = 5AzaC treated Kasumi-1 

Samples 10 to 12 = IFNG and 5AzaC treated Kasumi-1 



 
 

7.5.2 Gel and electropherogram of RNA extracted from untreated, IFNG 
treated, 5AzaC treated and IFNG and 5AzaC treated KG-1 samples 

 

 

 

Samples 13 to 15 = IFNG and 5AzaC treated KG-1 

Samples 16 to 18 = 5AzaC treated KG-1 

Samples 19 to 21 = IFNG treated KG-1 

Samples 21 to 24 = Control untreated KG-1 

 

 

 



 

 

7.6 Normalised peak area expression of key proteins measured 
by SWATH-MS in all cell lines referenced in chapter 4 

 

Normalised peak area expression of P53, ANXA1, LGALS9 and SHP1 proteins in cell lines, control 

compared to 48 hrs treatment 100 ng/ml IFNG (n=5-6). Grey; Control, Red; IFNG. Holm-Sidak 

method was used to calculate statistical significance between IFNG treated and untreated cells. 

* = P < 0.05, ** = P < 0.01, *** = P < 0.001 and **** = P < 0.0001. 

  



7.7 Venn diagram comparison of significant transcripts 
determined by pairwise linear regression and ranked on 
number of appearances 

 

 

Venn diagram comparison of transcripts chosen in chapter 5 by pairwise linear regression and ranking on number of 
appearances 

  



Table 30: Table of transcripts compared in venn diagram above showing which transcripts were shared between 
different treatments and which were unique to each treatment. 

IFNG only 5AzaC 
only 

IFNG & 
5AzaC only 

Shared 
IFNG, IFNG 
5AzaC 

Shared 
IFNG,  
5AzaC 

Shared 
5AzaC, 
IFNG 
5AzaC 

Shared 
between 
all 

FTL 
TMSB4X 
MT-CO3 
RPS2 
MT-ATP6 
VAMP8 
GLUL 
ADAR 
PRDX1 
NUCB1 
CALHM6 
PSME2 
ACTG1 

MT-CO1 
MT-ND4L 
MT-RNR1 
YBX1 
MT-TN 
TUBB 
LGALS1 

MT-ND4 
MT-RNR2 
CLEC11A 
TRIM22 
CHCHD2 
DTX3L 
NCOA4 
APOL6 
ATF4 
CD74 
SPI1 

IFI6 
EEF1A1 
TMSB10 
IFITM1 
HLA-B 
IFIT3 
HLA-E 
STAT1 
LY6E 
RPL8 
B2M 
SRGN 
WARS 
ACTB 
GBP1 
AL713998.1 
RPL7 
HLA-A 
LAP3 
UBE2L6 
TAP1 
HLA-C 
PARP10 
GBP5 
UBA7 
PSME1 
GBP4 
PABPC1 
GPX1 
PSMB9 
RSAD2 
PLEK 
GBP2 
PSMB8 
HLA-DRA 
EPSTI1 
GSTP1 
PIM1 

NPM1 CALR 
RPL41P1 
MT-ND3 
S100A11 

MT-CO2 
BST2 
GAPDH 

 

 



7.8 Results of CPH univariate analysis on each list of candidates in order 5AzaC, IFNG and the IFNG & 
5AzaC 

Full table of results for CPH univariate analysis on each list of candidates in order 5AzaC, IFNG and the IFNG 

Parameter Estimates (Data_tcga_rnaseq_5AzaC_list_Clinical-for Statistica) 

Target Parameter 
Estimate 

Standard 
Error 

Chi-
square P value 95% Lower 

CL 
95% Upper 

CL Hazard Ratio 95% Hazard Ratio 
Lower CL 

95% Hazard 
Ratio Upper CL 

CALR -0.000023 0.000007 11.34799 0.00076 -0.000037 -0.00001 0.999977 0.999963 0.99999 
BST2 0.000434 0.000146 8.832139 0.00296 0.000148 0.00072 1.000434 1.000148 1.000721 

LGALS1 0.000068 0.000025 7.25487 0.00707 0.000019 0.000118 1.000068 1.000019 1.000118 
NPM1 -0.00005 0.000031 2.627771 0.10501 -0.00011 0.00001 0.99995 0.99989 1.00001 

GAPDH -0.000003 0.000004 0.554421 0.45652 -0.000012 0.000005 0.999997 0.999988 1.000005 
TUBB 0.000008 0.000012 0.49476 0.48181 -0.000015 0.000032 1.000008 0.999985 1.000032 

S100A11 0.000022 0.00004 0.30482 0.58088 -0.000057 0.000102 1.000022 0.999943 1.000102 
YBX1 0.000005 0.000036 0.016649 0.89733 -0.000065 0.000074 1.000005 0.999935 1.000074 

 

Parameter Estimates (Data_tcga_rnaseq_IFNG_list_Clinical-for Statistica) 

Target Parameter 
Estimate 

Standard 
Error 

Chi-
square P value 95% Lower 

CL 
95% Upper 

CL Hazard Ratio 95% Hazard Ratio 
Lower CL 

95% Hazard 
Ratio Upper CL 

PIM1 0.000143 0.000042 11.50584
3 0.000694 0.000060 0.000225 1.000143 1.000060 1.000226 

LY6E 0.000116 0.000036 10.69634
8 0.001073 0.000047 0.000186 1.000116 1.000047 1.000186 

PARP10 0.000272 0.000087 9.645805 0.001898 0.000100 0.000443 1.000272 1.000100 1.000443 



BST2 0.000434 0.000146 8.832139 0.002960 0.000148 0.000720 1.000434 1.000148 1.000721 
PRDX1 0.000141 0.000051 7.505309 0.006152 0.000040 0.000242 1.000141 1.000040 1.000242 
PSMB8 0.000515 0.000189 7.455528 0.006324 0.000145 0.000885 1.000515 1.000145 1.000885 
IFITM1 0.000240 0.000094 6.554585 0.010461 0.000056 0.000424 1.000240 1.000056 1.000424 
IFIT3 0.000468 0.000190 6.089966 0.013595 0.000096 0.000839 1.000468 1.000096 1.000839 

GSTP1 0.000123 0.000054 5.144279 0.023323 0.000017 0.000229 1.000123 1.000017 1.000229 
GPX1 0.000058 0.000027 4.813825 0.028232 0.000006 0.000111 1.000058 1.000006 1.000111 
ADAR 0.000087 0.000041 4.587531 0.032205 0.000007 0.000167 1.000087 1.000007 1.000167 

EPSTI1 0.000615 0.000295 4.332060 0.037401 0.000036 0.001194 1.000615 1.000036 1.001195 
UBE2L6 0.000280 0.000148 3.589236 0.058155 -0.000010 0.000570 1.000280 0.999990 1.000570 

B2M -0.000010 0.000005 3.507687 0.061085 -0.000021 0.000000 0.999990 0.999979 1.000000 
HLA-E 0.000045 0.000025 3.272423 0.070453 -0.000004 0.000094 1.000045 0.999996 1.000094 
UBA7 0.000088 0.000051 2.952284 0.085756 -0.000012 0.000187 1.000088 0.999988 1.000187 

PSME1 0.000211 0.000130 2.632272 0.104712 -0.000044 0.000465 1.000211 0.999956 1.000465 
NPM1 -0.000050 0.000031 2.627771 0.105009 -0.000110 0.000010 0.999950 0.999890 1.000010 

PSME2 0.000274 0.000175 2.440640 0.118228 -0.000070 0.000618 1.000274 0.999930 1.000618 

RSAD2 0.000398 0.000255 2.436035 0.118576 -0.000102 0.000898 1.000398 0.999898 1.000898 

EEF1A1 -0.000004 0.000003 2.158921 0.141744 -0.000010 0.000001 0.999996 0.999990 1.000001 
RPL8 0.000026 0.000019 1.796913 0.180086 -0.000012 0.000063 1.000026 0.999988 1.000063 
GBP2 0.000093 0.000071 1.726007 0.188922 -0.000046 0.000232 1.000093 0.999954 1.000232 
LAP3 0.000119 0.000091 1.717012 0.190078 -0.000059 0.000297 1.000119 0.999941 1.000297 
TAP1 0.000147 0.000117 1.591938 0.207049 -0.000082 0.000376 1.000147 0.999918 1.000376 

FAM26F 0.000416 0.000373 1.242318 0.265025 -0.000315 0.001147 1.000416 0.999685 1.001148 
PSMB9 0.000274 0.000258 1.123188 0.289233 -0.000233 0.000780 1.000274 0.999767 1.000781 

TSMB10 0.000019 0.000021 0.810586 0.367947 -0.000022 0.000059 1.000019 0.999978 1.000059 
IFI6 0.000084 0.000095 0.775994 0.378369 -0.000102 0.000269 1.000084 0.999898 1.000269 



VAMP8 -0.000066 0.000076 0.765855 0.381502 -0.000214 0.000082 0.999934 0.999786 1.000082 
ACTB 0.000002 0.000002 0.693469 0.404987 -0.000003 0.000007 1.000002 0.999997 1.000007 
GBP4 0.000038 0.000051 0.556383 0.455721 -0.000062 0.000139 1.000038 0.999938 1.000139 

GAPDH -0.000003 0.000004 0.554421 0.456517 -0.000012 0.000005 0.999997 0.999988 1.000005 
FTL 0.000004 0.000006 0.525032 0.468703 -0.000007 0.000016 1.000004 0.999993 1.000016 

RPL7 0.000022 0.000033 0.425881 0.514017 -0.000044 0.000087 1.000022 0.999956 1.000087 
GBP5 -0.000065 0.000108 0.364031 0.546276 -0.000278 0.000147 0.999935 0.999722 1.000147 
PLEK -0.000019 0.000032 0.358713 0.549222 -0.000082 0.000044 0.999981 0.999918 1.000044 
GBP1 0.000061 0.000107 0.318115 0.572743 -0.000150 0.000271 1.000061 0.999850 1.000271 

ACTG1 0.000003 0.000006 0.231360 0.630517 -0.000008 0.000014 1.000003 0.999992 1.000014 
HLA-A -0.000007 0.000014 0.211551 0.645555 -0.000035 0.000022 0.999993 0.999965 1.000022 

HLA-DR 0.000002 0.000004 0.141253 0.707038 -0.000007 0.000010 1.000002 0.999993 1.000010 
SRGN -0.000001 0.000002 0.112406 0.737422 -0.000005 0.000004 0.999999 0.999995 1.000004 
HLA-C 0.000005 0.000016 0.091857 0.761829 -0.000027 0.000037 1.000005 0.999973 1.000037 
GLUL 0.000003 0.000011 0.084142 0.771760 -0.000019 0.000025 1.000003 0.999981 1.000025 
RPS2 -0.000003 0.000015 0.043789 0.834247 -0.000032 0.000026 0.999997 0.999968 1.000026 

NUCB1 0.000010 0.000059 0.028887 0.865041 -0.000106 0.000126 1.000010 0.999894 1.000126 
PABPC1 0.000001 0.000006 0.025565 0.872967 -0.000011 0.000013 1.000001 0.999989 1.000013 

WARS 0.000005 0.000032 0.022460 0.880870 -0.000059 0.000068 1.000005 0.999941 1.000068 
STAT1 -0.000005 0.000046 0.009938 0.920592 -0.000094 0.000085 0.999995 0.999906 1.000085 
HLA-B 0.000000 0.000008 0.001610 0.967999 -0.000016 0.000016 1.000000 0.999984 1.000016 

 

  



Parameter Estimates (Data_tcga_rnaseq_IFNG & 5AzaC_list_Clinical-for Statistica) 

Target Parameter 
Estimate 

Standard 
Error 

Chi-
square P value 95% Lower 

CL 
95% Upper 

CL Hazard Ratio 95% Hazard Ratio 
Lower CL 

95% Hazard 
Ratio Upper CL 

CLEC11A -0.000083 0.000024 11.52432 0.000687 -0.000131 -0.000035 0.999917 0.999869 0.999965 
PIM1 0.000143 0.000042 11.50584 0.000694 0.000060 0.000225 1.000143 1.000060 1.000226 
CALR -0.000023 0.000007 11.34799 0.000755 -3.7E-05 -0.00001 0.999977 0.999963 0.99999 
LY6E 0.000116 0.000036 10.69635 0.001073 0.000047 0.000186 1.000116 1.000047 1.000186 

PARP10 0.000272 0.000087 9.645805 0.001898 0.000100 0.000443 1.000272 1.000100 1.000443 
BST2 0.000434 0.000146 8.832139 0.00296 0.000148 0.00072 1.000434 1.000148 1.000721 

PSMB8 0.000515 0.000189 7.455528 0.006324 0.000145 0.000885 1.000515 1.000145 1.000885 
IFITM1 0.000240 0.000094 6.554585 0.010461 0.000056 0.000424 1.000240 1.000056 1.000424 
IFIT3 0.000468 0.00019 6.089966 0.013595 0.000096 0.000839 1.000468 1.000096 1.000839 

GSTP1 0.000123 0.000054 5.144279 0.023323 0.000017 0.000229 1.000123 1.000017 1.000229 
GPX1 0.000058 0.000027 4.813825 0.028232 0.000006 0.000111 1.000058 1.000006 1.000111 

NCOA4 -0.000047 0.000022 4.423004 0.035458 -0.000091 -0.000003 0.999953 0.999909 0.999997 
EPSTI1 0.000615 0.000295 4.332060 0.037401 0.000036 0.001194 1.000615 1.000036 1.001195 
APOL6 0.000128 0.000063 4.048276 0.044216 0.000003 0.000252 1.000128 1.000003 1.000252 

UBE2L6 0.000280 0.000148 3.589236 0.058155 -0.000010 0.000570 1.000280 0.999990 1.000570 
B2M -0.000010 0.000005 3.507687 0.061085 -0.000021 0.000000 0.999990 0.999979 1.000000 

HLA-E 0.000045 0.000025 3.272423 0.070453 -4E-06 0.000094 1.000045 0.999996 1.000094 
UBA7 0.000088 0.000051 2.952284 0.085756 -0.000012 0.000187 1.000088 0.999988 1.000187 

PSME1 0.000211 0.000130 2.632272 0.104712 -0.000044 0.000465 1.000211 0.999956 1.000465 
RSAD2 0.000398 0.000255 2.436035 0.118576 -0.000102 0.000898 1.000398 0.999898 1.000898 
EEF1A1 -0.000004 0.000003 2.158921 0.141744 -0.000010 0.000001 0.999996 0.999990 1.000001 
DTX3L 0.00013 0.000096 1.806424 0.178938 -5.9E-05 0.000319 1.00013 0.999941 1.000319 
RPL8 0.000026 0.000019 1.796913 0.180086 -0.000012 0.000063 1.000026 0.999988 1.000063 
GBP2 0.000093 0.000071 1.726007 0.188922 -0.000046 0.000232 1.000093 0.999954 1.000232 



LAP3 0.000119 0.000091 1.717012 0.190078 -0.000059 0.000297 1.000119 0.999941 1.000297 
TAP1 0.000147 0.000117 1.591938 0.207049 -0.000082 0.000376 1.000147 0.999918 1.000376 

TRIM22 0.000074 0.000061 1.438299 0.230415 -0.000047 0.000194 1.000074 0.999953 1.000194 
PSMB9 0.000274 0.000258 1.123188 0.289233 -0.000233 0.000780 1.000274 0.999767 1.000781 

SPI1 0.000043 0.000046 0.860067 0.353720 -0.000048 0.000134 1.000043 0.999952 1.000134 
ATF4 -0.000032 0.000036 0.810918 0.367849 -0.0001 0.000038 0.999968 0.999898 1.000038 

TMSB10 0.000019 0.000021 0.810586 0.367947 -0.000022 0.000059 1.000019 0.999978 1.000059 
IFI6 0.000084 0.000095 0.775994 0.378369 -0.000102 0.000269 1.000084 0.999898 1.000269 

CD74 0.000001 0.000002 0.731103 0.392526 -0.000002 0.000005 1.000001 0.999998 1.000005 
ACTB 0.000002 0.000002 0.693469 0.404987 -0.000003 0.000007 1.000002 0.999997 1.000007 
GBP4 0.000038 0.000051 0.556383 0.455721 -0.000062 0.000139 1.000038 0.999938 1.000139 

GAPDH -0.000003 0.000004 0.554421 0.456517 -0.000012 0.000005 0.999997 0.999988 1.000005 
RPL7 0.000022 0.000033 0.425881 0.514017 -0.000044 0.000087 1.000022 0.999956 1.000087 
GBP5 -0.000065 0.000108 0.364031 0.546276 -0.000278 0.000147 0.999935 0.999722 1.000147 
PLEK -0.000019 0.000032 0.358713 0.549222 -0.000082 0.000044 0.999981 0.999918 1.000044 
GBP1 0.000061 0.000107 0.318115 0.572743 -0.000150 0.000271 1.000061 0.999850 1.000271 

S100A11 0.000022 0.000040 0.304820 0.580876 -0.000057 0.000102 1.000022 0.999943 1.000102 
HLA-A -0.000007 0.000014 0.211551 0.645555 -0.000035 0.000022 0.999993 0.999965 1.000022 

HLA-DRA 0.000002 0.000004 0.141253 0.707038 -7E-06 0.00001 1.000002 0.999993 1.00001 
SRGN -0.000001 0.000002 0.112406 0.737422 -5E-06 0.000004 0.999999 0.999995 1.000004 
HLA-C 0.000005 0.000016 0.091857 0.761829 -0.000027 0.000037 1.000005 0.999973 1.000037 

CHCHD2 -0.000039 0.000131 0.089784 0.764452 -0.000297 0.000218 0.999961 0.999703 1.000218 
PABPC1 0.000001 0.000006 0.025565 0.872967 -0.000011 0.000013 1.000001 0.999989 1.000013 

WARS 0.000005 0.000032 0.022460 0.880870 -0.000059 0.000068 1.000005 0.999941 1.000068 
STAT1 -0.000005 0.000046 0.009938 0.920592 -0.000094 0.000085 0.999995 0.999906 1.000085 
HLA-B 0.000000 0.000008 0.001610 0.967999 -0.000016 0.000016 1.000000 0.999984 1.000016 

 



7.9  Table of results for CPH regression model on each list of candidates in order 5AzaC, IFNG and the 
IFNG & 5AzaC using forward selection method 

 

  Parameter estimates for each model 

 Target 
Parameter 
Estimate 

Standard 
Error 

Chi-
square 

P 
value 

95% 
Lower CL 

95% 
Upper CL 

Hazard 
Ratio 

95% Hazard Ratio 
Lower CL 

95% Hazard Ratio 
Upper CL 

5AzaC 
list 

BST2 0.00045 0.00015 9.71333 0.001
83 0.00017 0.00074 1.00045 1.00017 1.00074 

CALR -0.00002 0.00001 11.75729 0.000
61 -0.00004 -0.00001 0.99998 0.99996 0.99999 

 Target 
Parameter 
Estimate 

Standard 
Error 

Chi-
square 

P 
value 

95% 
Lower CL 

95% 
Upper CL 

Hazard 
Ratio 

95% Hazard Ratio 
Lower CL 

95% Hazard Ratio 
Upper CL 

IFNG 
list 

B2M -0.000039 0.000008 23.94877 0.000
001 -0.000054 -0.000023 0.999961 0.999946 0.999977 

GAPDH -0.000022 0.000006 11.41136 0.000
730 -0.000034 -0.000009 0.999978 0.999966 0.999991 

IFIT3 0.000334 0.000259 1.65957 0.197
662 -0.000174 0.000841 1.000334 0.999826 1.000842 

LY6E 0.000117 0.000053 4.89105 0.026
996 0.000013 0.000222 1.000117 1.000013 1.000222 

PIM1 0.000118 0.000048 5.99830 0.014
320 0.000024 0.000213 1.000118 1.000024 1.000213 

PSMB8 0.001244 0.000259 23.10665 0.000
002 0.000737 0.001751 1.001244 1.000737 1.001752 

SRGN 0.000007 0.000002 8.46569 0.003
619 0.000002 0.000011 1.000007 1.000002 1.000011 

TMSB10 0.000095 0.000027 11.91718 0.000
556 0.000041 0.000148 1.000095 1.000041 1.000148 

B2M -0.000039 0.000008 23.94877 0.000
001 -0.000054 -0.000023 0.999961 0.999946 0.999977 



 Target 
Parameter 
Estimate 

Standard 
Error 

Chi-
square 

P 
value 

95% 
Lower CL 

95% 
Upper CL 

Hazard 
Ratio 

95% Hazard Ratio 
Lower CL 

95% Hazard Ratio 
Upper CL 

IFNG 
& 

5AzaC 
list 

BST2 0.000470 0.000186 6.400533 0.011
409 

0.000106 0.000834 1.000470 1.000106 1.000834 

CALR -0.000011 0.000008 1.846817 0.174
154 

-0.000027 0.000005 0.999989 0.999973 1.000005 

CLEC11
A 

-0.000084 0.000029 8.269813 0.004
031 

-0.000142 -0.000027 0.999916 0.999858 0.999973 

LY6E 0.000114 0.000043 7.014869 0.008
084 

0.000030 0.000198 1.000114 1.000030 1.000198 

PIM1 0.000096 0.000046 4.434329 0.035
223 

0.000007 0.000186 1.000096 1.000007 1.000186 

 

  



7.10 Table for each patient data set used describing distribution of clinical features
Patient data sets 

 TCGA German AML CN-AML HOVON Beat AML 

Gene-expression platform 
RNA 

sequencing 

Affymetrix Human Genome 
U133 Plus 2.0, U133A/B 

Array 

Affymetrix Human Genome 
U133 Plus 2.0, U133A/B 

Array 

Affymetrix Human 
Genome U133 Plus 2.0 

Microarray 

RNA 
sequencing 

Patients, n 128 535 242 593 242 

Males/females split, n 70/58 N.A. 108/134 306/287 109/133 

Median follow-up, y 3.25 8.61 8.84 8.34 1.27 

Age group, n 

0-14 y 0 0 0 0 10 

15-39 y 25 93 33 188 36 

40-59 y 41 185 86 327 64 

≥60 y 60 257 123 78 132 

N.A. 2 0 0 0 0 

WHO category 
AML with minimal 

differentiation/without maturation 
41 N.A. N.A. 161 6 

AML with t(8;21)(q22;q22) 7 N.A. N.A. 46 9 

AML with inv(16)(p13;q22) 9 N.A. N.A. 49 17 
AML with biallelic mutations 

of CEBPA 
N.A. N.A. N.A. 28 17 

AML with mutated NPM1 N.A. N.A. N.A. 183 64 

AML with t(9;11)(p22;q23) 7 N.A. N.A. 21 8 
AML with 

inv(3)(q21q26)/t(3;3)(q21;q26) 
N.A. N.A. N.A. 15 4 

Acute myelomonocytic 18 N.A. N.A. 112 13 
Acute monoblastic/monocytic 

leukaemia 
13 N.A. N.A. 139 11 



Pure erythroid leukaemia N.A. N.A. N.A. 9 1 
AML with myelodysplasia-related 

changes 
N.A. N.A. N.A. N.A 45 

AML, not otherwise specified N.A. N.A. N.A. N.A 27 
Median presenting WBC count 

(range), ×109/L 
15 (1-224) N.A. N.A. N.A 24.2 (0.5-

427) Median percentage of BM blasts 
(range) 

72 (30-100) N.A. N.A. 73 (0-98) 71 (1-98) 

ELN cytogenetic risk group, n (%) 

Favourable 18 (14) N.A. 0 201 (34) 73 (30) 

Intermediate 76 (59) 223 242 263 (44) 80 (33) 

Adverse 32 (25) N.A. 0 126 (21) 89 (37) 

N.A. 2 (2) 0 0 3 (1) 0 

Patients with haematopoietic stem cell transplant, n 

Autologous 4 N.A. N.A. 95 0 

Allogeneic 55 N.A. N.A. 181 75 

 

  



7.11 Formulas for PI  
Where NT as a prefix to a transcript means min max normalised value of transcript stated, 
scores were multiplied by 10,000 for ease of use. 

5AzaC PI = ((0.00045 x NTBST2) + (-0.00002 x NTCALR)) x 10,000 

IFNG PI = ((-0.00004 x NTB2M) + (0.00057 x NTIFIT3) + (-0.00010 x NTNPM1) + (0.00015 x NTPIM1) 
+ (0.00012 x NTPRDX1) + (0.00135 x NTPSMB8) + (0.00015 x NTRPL7) + (-0.00004 x NTRPS2) + 
(0.00008 x NTTMSB10)) x 10,000 

IFNG5AzaC PI = ((0.00047 x NTBST2) + (-0.00001 x NTCALR) + (-0.00008 x NTCLEC11A) + 
(0.00011 x NTLY6E) + (0.00010 x NTPIM1)) x 10,000 

  



7.12 KM plots for each individual transcript in each PI using a median split for OS and EFS in the TCGA 
data set 

7.12.1 5AzaC PI transcripts KM Plots – Overall survival 
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7.12.2 IFNG PI transcripts KM Plots – Overall survival 
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7.12.3 IFNG PI transcripts KM Plots – Event free survival 
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7.12.4 IFNG5AzaC PI transcripts KM Plots – Overall survival 
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7.12.5 IFNG5AzaC PI transcripts KM Plots – Event free survival 
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7.13 Survival over timetables corresponding to KM plots  
 

7.13.1 5AzaC PI transcript survival tables for patients with each transcript expressed above and below median 
levels in the TCGA data set, left table OS, right table EFS 

 

 

 

 

 

  



7.13.2 IFNG PI transcript survival tables for patients with each transcript expressed above and below median 
levels in the TCGA data set, left table OS, right table EFS 

 

 

 

 

 Number at risk (EFS - median split) 

Transcript Months 0 20 40 60 80 100 120 

B2M 
<Median 85 24 11 5 1 0 0 

>Median 85 29 19 12 7 1 0 

GAPDH 
<Median 85 21 11 4 3 0 0 

>Median 85 32 19 13 5 1 0 

IFIT3 
<Median 85 35 22 12 5 0 0 

>Median 85 18 8 5 3 1 0 

LY6E 
<Median 85 25 18 9 4 0 0 

>Median 85 28 12 8 4 1 0 

PIM1 
<Median 85 34 19 13 7 1 0 

>Median 85 19 11 4 1 0 0 

PSMB8 
<Median 85 35 20 11 6 0 0 

>Median 85 18 10 6 2 1 0 

SRGN 
<Median 85 27 15 9 3 0 0 

>Median 85 26 15 8 5 1 0 

TMSB10 
<Median 85 26 11 5 2 0 0 

>Median 85 27 19 12 6 1 0 

 Number at risk (OS - median split) 

 Transcript Months 0 20 40 60 80 100 120 

B2M 
<Median 86 39 17 7 3 1 0 

>Median 86 42 27 14 7 1 0 

GAPDH 
<Median 86 40 17 6 4 1 0 

>Median 86 41 27 15 6 1 0 

IFIT3 
<Median 86 50 28 13 6 0 0 

>Median 86 31 16 8 4 2 0 

LY6E 
<Median 86 45 26 11 5 1 0 

>Median 86 36 18 10 5 1 0 

PIM1 
<Median 86 50 25 14 7 1 0 

>Median 86 31 19 7 3 1 0 

PSMB8 
<Median 86 51 30 14 8 1 0 

>Median 86 30 14 7 2 1 0 

SRGN 
<Median 86 39 20 10 3 0 0 

>Median 86 42 24 11 7 2 0 

TMSB10 
<Median 86 40 18 5 2 0 0 

>Median 86 41 26 16 8 2 0 



7.13.3 IFNG5AzaC PI transcript survival tables for patients with each transcript expressed above and below 
median levels in the TCGA data set, left table OS, right table EFS 

 

 
 Number at risk (OS - median split) 

Transcrip
t 

Months 0 20 40 60 80 100 120 

CALR <Median 86 31 14 6 2 0 0 
>Median 86 50 30 15 8 2 0 

LY6E <Median 86 45 26 11 5 1 0 
>Median 86 36 18 10 5 1 0 

PIM1 <Median 86 50 25 14 7 1 0 
>Median 86 31 19 7 3 1 0 

CLEC11A <Median 86 30 12 4 3 1 0 
>Median 86 51 32 17 7 1 0 

BST2 <Median 86 48 25 11 6 1 0 
>Median 86 33 19 10 4 1 0 

 Number at risk (EFS - median split) 
Transcript Months 0 20 40 60 80 100 120 

CALR <Median 85 18 9 5 2 0 0 
>Median 85 35 21 12 6 1 0 

LY6E <Median 85 25 18 9 4 0 0 
>Median 85 28 12 8 4 1 0 

PIM1 <Median 85 34 19 13 7 1 0 
>Median 85 19 11 4 1 0 0 

CLEC11A <Median 85 15 6 3 2 0 0 
>Median 85 38 24 14 6 1 0 

BST2 <Median 85 27 15 8 4 0 0 
>Median 85 26 15 9 4 1 0 



7.14 KM plots of PI scores in subsets of AML patients 

7.14.1 KM plots of all PI scores in HOVON patients with mutant NPM1 



7.14.2 KM plots of all PI scores in HOVON patients with Wild-type NPM1 

 



7.14.3 KM plots of all PI scores in Beat AML patients with mutated NPM1 and Wild-type NPM1 

 



7.14.4 KM plots of all PI scores in HOVON patients with FLT3-ITD (OS and EFS) 
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