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Abstract

Acute myeloid leukaemia (AML) is a haematological malignancy which inhibits the production
and maturation of functional immune cells. Patients are treated with induction chemotherapy
and haematopoietic stem cell transplant (HSCT). HSCT replaces the patients defunct immune
system using donor stem cells. Therefore, disruption via immune suppression is detrimental to
patient prognosis. At present, AML patient’s prognosis is predicted using cytogenetic
abnormalities and genetic mutations, however, 50-70% of AML patients are labelled as
‘intermediate’ risk. This group displays variation inresponse to frontline chemotherapy and HSCT,
indicating a need for improved stratification to assign patients tailored treatments. Prognostic
indicators (Pl) are crucial in guiding therapeutic decisions and improving outcomes for AML
patients. This work focuses on generating prognostic index scores based on methylation

modulated IFNG driven immune evasion in AML.

Pl scores were generated using AML cell lines (Kasumi-1 and KG-1) subjected to treatment with
IFNG, and demethylation agent 5AzaC. Pairwise linear regression identified significant treatment-
induced transcriptomic changes and a shortlist of candidate transcripts associated with IFNG
signalling and demethylation was created. Pl scores were computed using normalised
transcription data from IFNG, 5AzaC and IFNG5AzaC treated cell lines and B-values generated
using cox proportional hazards forward selection model. The study employed the TCGA patient
dataset for discovery and BeatAML, HOVON, German-AML, and CN-AML for validation. Pl score

performance was compared to established prognostic methods.

All Pl scores split adult patients in the European LeukemiaNet cytogenetic risk category into
subgroups with good and poor survival in the TCGA dataset, with the 5AzaC and IFNG Pl scores
association with OS validated in the CN-AML (intermediate risk group) data set (n = 242).
Comparing the area under the curve (AUC) for Pl scores (5AzaC Pl AUC = 0.599, IFNG Pl AUC =
0.637, and IFNG5AzaC PI AUC = 0.657), with established prognostic scores revealed comparable
performance to LSC17 score (AUC=0.65) and the ELN cytogenetic risk categories (AUC=0.66).
However, they were outperformed by other established scores. The study demonstrated the

potential of cell line-derived Pl scores to predict AML patient survival.



1 Introduction

1.1 Cancer

Cancer describes a group of diseases in which cells demonstrate abnormally increased growth,
invade local tissues, and spread to distant secondary sites by metastasis. The transition from a
normal cellto a cancerous one is achieved through an accumulation of mutations, which bestow
a growth advantage over normal cells (Hanahan and Weinberg 2000). Cancer has a majorimpact
on health worldwide and is a leading cause of morbidity and mortality. Consequently, a
significant amount of research and resources is dedicated to cancer research. The global effort
to investigate cancer has significantly advanced our understanding of the events that initiate and
drive its pathogenesis, leading to the development of better tools for diagnosis, prognosis, and
treatment. As cancer develops through mutation, it unsurprisingly becomes a highly
heterogeneous disease, exhibiting genomic and epigenetic differences both within and between
tumours. This heterogeneity means that biomarker signatures for prognosis and treatment
response vary in effectiveness among patients, even with the same cancer type. This inherent
variability also contributes to common issues such as treatment resistance and relapse.
Therefore, investigating individual cancers to characterise mechanisms of treatment resistance

is crucial for improving future patient outcomes.

1.2 Acute myeloid leukaemia

Acute myeloid leukaemia (AML) is a fast-developing haematological malignancy, characterised
by infiltration of the blood and bone marrow by immature myeloid cells. This occurs through the
accumulation of mutations in myeloid blasts and their progenitor myeloid stem cells, which
prevent differentiation into specialised blood cells (De Kouchkovsky and Abdul-Hay 2016). The
bone marrow consequently over produces immature non-functional monocytes and
granulocytes, eventually causing bone marrow failure and then death. In addition, the leukemic
cells enter the peripheral blood to disperse across the body, particularly to the lymph nodes,
spleen and in rare cases, the brain (Estey 2018). Symptoms arise as blood conditions, which are
caused by the loss of specific functional blood cells; they develop over a few weeks and quickly
become severe. For example, depletion of red blood cells causes anaemia, resulting in the
patient feeling fatigued. A reduced neutrophil count (Neutropenia) causes patients to suffer from

more infections, and a loss of platelets prevents blood clotting. AML patients also experience



breathlessness, fevers, weight loss, easy bruising, aches and are particularly vulnerable to

infection (National Health Service 2019).
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Figure 1: The transition of haematopoietic stem cells into AML blasts via mutations. The bone marrow produces
haematopoietic stem cells which can become a myeloid stem cell. These stem cells ordinarily will mature into either
red blood cells, platelets, or a range of white blood cells. In AML, due to accumulation of mutations, the myeloid stem
cell does not develop into these specialised cells, and instead usually becomes an immature white blood cell called
a myeloblast but can also become abnormal red blood cells or platelets, which are collectively termed leukaemia or
blasts. These abnormal cells ‘crowd out’ normal healthy cells, causing symptoms from lack of platelets, white blood

cells and red blood cells (De Kouchkovsky and Abdul-Hay 2016).



1.2.1 Incidence and mortality rate of AML in the UK

Acute Myeloid Leukaemia (AML) is a rare disease, accounting for less than 1% of all cancer cases

with approximately 3,200 people diagnosed in the UK every year (Cancer Research 2017b). It is

an age-related disease, as demonstrated by 42% new cases occurring in people aged 75 and over

(Cancer Research 2017b) A gender bias is also seen in older groups, with males having a

significantly higher incidence rate; most evident in the 75-79 age group where there is a 1.9-fold

increase compared to females (Cancer Research 2017b).
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Figure 2: Incidence and Mortality Rates of AML in the UK circa 2017. A) Incidence rate of AML diagnosis per 100,000 in
the UK circa 2017 (Cancer Research 2017b) across age groups and gender; Male (blue) and female (pink). B)

Mortality of AML diagnosis per 100,000 in the UK circa 2017 (Cancer Research 2017a) across age groups and

gender; Male (blue) and female (pink). C) Mortality rate of AML using European age-standardised mortality Rates per

100,000 Population in the UK circa 2017 (Cancer Research 2017a).



As depicted in Figure 2C) low mortality rate has observed for people below 50 and increased for
those above. Increases in mortality rate are most dramatic in the over 80s population, who are
more likely to have comorbidities, with mortality rates increased by 189% in 2017 compared to

1971 (Cancer Research 2017a).

1.3 Drivers of AML development and progression

AML is characterised by various mechanisms that allow the disease to proliferate, evade
destruction by the immune system and progress. As AML originates from hematopoietic stem
cells or myeloid progenitor cells, itinherently possesses self-renewal capabilities. Mutations and
environmental factors, such as increased bone marrow vascularisation and altered immune
environments, significantly contribute to disease progression and patient prognosis (Shih, T. T.,
et al. 2009, Hussong, Rodgers and Shami 2000, Trendowski 2015). AML evades cell death by
overexpressing anti-apoptotic genes such as BCL2 and through TP53 mutations, which increase
proliferation, leading to increased resistance to chemotherapy and poorer survival rates (Pfeffer
and Singh 2018, Bories, et al. 2020). Furthermore, AML cells often grow independently of external
growth signals by upregulating their own signal receptors or continuously activating intracellular

signalling pathways (Hyrien 2016, Bartek and Lukas 2003).

Immune evasion is a critical factor in AML progression, where leukaemic cells alter the immune
microenvironment to suppress immune responses. They achieve this by downregulating HLA
molecules, expressing immune checkpoint inhibitors, and releasing immunosuppressive
cytokines. These actions create a tolerant immune environment that favours regulatory T cells
over effector cells (Cornel, Mimpen and Nierkens 2020, Anderson, Stromnes and Greenberg
2017). These adaptations allow AML to persist and progress despite the host's immune defence

mechanisms.

1.4 AML evades the immune system by manipulating its immune
environment

Genomic instability, inflammation, and reprogramming of cellular metabolism all contribute to
the transformation of healthy cells into cancerous ones. Normally, the immune system detects
and destroys abnormal cells. Somatic cells present antigens via major histocompatibility
complexes (MHC) to immune cells. If the antigen is not recognised as self, it triggers a chain of
events leading to the elimination of the abnormal cells (Chen, D. and Mellman 2017, Chen, Daniel
S. and Mellman 2013). However, AML can circumvent this recognition process to escape
destruction and continue to grow (Houghton and Guevara-Patino 2004). AML uses various

mechanisms to causes a paradigm shift of the immune environment from a responsive



phenotype to a tolerant phenotype, which favours regulatory T-cells over effector cells, thereby
reducing immune function and preventing AML destruction (Anderson, Stromnes and Greenberg
2017). Furthermore, AML blasts downregulate the production of immune signalling molecules,
including MHC, and produce high levels of immune-suppressing cytokines, such as TGFB1, to
inhibit immune activity (Cornel, Mimpen and Nierkens 2020). As AML progresses, it employs
various mechanisms to evade the immune system's effector response and remodel the
leukaemic microenvironment, facilitating immune escape and resistance to therapies. AML

blasts use several strategies to avoid immune destruction, including:

1.4.1 AML downregulates HLAs to prevent antigen presentation to T-cells
and NK-cells

HLA-A, HLA-B and HLA-C are classic major histocompatibility complexes (MHC) that present
antigens for recognition by T-cells and NK-cells to identify and initiate destruction of unhealthy
cells (Cornel, Mimpen and Nierkens 2020). This resistance mechanism is particularly effective
against stem cell transplants, which are dependent on T and NK-cells being able to recognise
antigen-MHC complexes to AML cells (Jan, et al. 2019). AML blasts genetically delete HLAs and
downregulate them through epigenetic alterations. Additional methods of immunosuppression
include upregulating T-cell inhibitory ligands and release of immunosuppressive molecules such

as PDL-1 and IDO-1 (Christopher, et al. 2018).

1.4.2 AML induces T-cell exhaustion via immune check point inhibitors

Ordinarily, immune checkpoints maintain the immune system's balance and promote self-
tolerance. AML exploits these checkpoints to suppress effector cells in its immediate
environment. A well-studied checkpoint in AML is the programmed cell death protein 1 (PD-1),
expressed on the surface of T and B cells (Taghiloo and Asgarian-Omran 2021). AML cells express
the inhibitory ligand PDL1 on their surface, which can bind to PD-1 and transmit a co-inhibitory
signal causing T-cell exhaustion. Galectin-9 is also expressed on AML blasts, where it binds to T-
cellimmunoglobulin and mucin domain 3 (TIM-3) on effector T cells and NK cells. This interaction
promotes the self-renewal of AML blasts through stimulatory B-catenin and NFkB signalling,
while simultaneously inhibiting immune cells from releasing pro-inflammatory cytokines, thus
impairing their function (Silva, et al. 2017). Additionally, high mRNA levels of LAG-3, a ligand for
immune checkpoint cytotoxic T-lymphocyte associated protein 4 (CTLA-4), have been found to
be highly expressed in AML patients, and correlate with unfavourable prognosis (Radwan, et al.
2020). DNAM-1, a receptor on T-cells that binds to ligands CD115 and CD112 on cancer cells to
regulate cytotoxic activity, is expressed at low levels on T-cells in AML patients. Conversely, its

competitor, the inhibitory receptor T-cell immunoglobulin and ITIM domain (TIGIT), is



upregulated. The interaction between TIGIT and CD115/CD112 is theorised to be a mechanism
of immune evasion, supported by clinical studies linking high expression of CD115 and CD112
with poor outcomes (Wang, F., et al. 2022). Although immune checkpoint inhibitors are effective
in solid tumours, clinical trials are ongoing in haematological malignancies such as AML, and as

such are not currently approved for use.

1.4.3 AML blasts direct tumour-associated macrophages to
immunosuppressive M2 phenotype

Macrophages within the tumour microenvironment are known as tumour associated
macrophages (TAMs). AML blasts cause TAMs to change from the tumour resistant M1 phenotype
to the immunosuppressive M2 phenotype. M2 phenotype TAMs release immunosuppressive
cytokines such as TGF-B and IL-10, which promote leukaemic cell proliferation, inhibit T-cell
proliferation, and repress inflammation signalling while inducing tissue repair and angiogenesis
(Mantovani, et al. 2002, Al-Matary, et al. 2016, Mussai, et al. 2013). In AML patients, higher levels
of M2-type macrophages have been reported in the bone marrow and spleen compared to
healthy donors, suggesting their contribution to AML progression (Al-Matary, et al. 2016).
Furthermore, AML leukemic stem cells (AML LSCs) highly express CD47 on their surface, which
binds to Signal Regulatory Protein Alpha (SIRPa) on macrophages. This interaction inhibits M1
macrophages from carrying out phagocytosis, further suppressing cancer immunity (Zhang,

Wenting, et al. 2020).

1.4.4 AML sabotages T-cell activity by preventing the formation of
functionalimmune synapses

A study found AML patients had an increase in number of T-cells in their peripheral blood when

compared to age matched healthy donors. However, these T-cells formed faulty immune

synapses with AML blasts. Gene expression profiling of those T-cells revealed differential

expression of genes involved in actin cytoskeleton creation compared to the healthy group. While

the T-cells can form cell conjugates, the required downstream signalling to form the

immunological synapse are inhibited, preventing T-cell effector function (Le Dieu, et al. 2009).

1.4.5 AML blasts release soluble factors which polarise T-cells to a Treg
phenotype

In addition to preventing effector function, AML blasts also dysregulate cytokine signalling to

favour T-regulatory (Treg) cells over T-effector cells (Curti, et al. 2007). AML blasts release soluble

immune inhibitory factors such as IL-10, IL-35, transforming growth factor-beta (TGF-B), and

indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 is discussed in more detail in Chapter 3. Through



various mechanisms these factors encourage T-cells to polarise towards the T-reg phenotype,
creating an environment tolerant of the AML blasts and enabling disease progression (Platten, et
al. 2015, Folgiero, et al. 2014, Locafaro, et al. 2014, Cools, et al. 2008, Walker, M. R., et al. 2003).
AML patients are reported to have high numbers Tregs, with higher numbers correlating to poor
outcomes. Immunosuppressive Treg phenotype has been observed to be stronger the closer in
proximity to the bone marrow of the AML niche (Shenghui, et al. 2011). The disruption to cytokine
profiles by AML ultimately decreases inflammation signalling by downregulating IL-15 and

(Interferon gamma) IFNG, further pushing T-cells away from effector phenotypes.

1.4.6 AML deregulate cellular metabolism to fuel growth while suppressing
the immune response.
Arginase Il (ARG2) is a protein that catalyses the hydrolysis of the amino acid arginine into
ornithine and urea. Increased ARG2 expression has been observed in the plasma of AML patients,
where it inhibits T-cell proliferation and polarises macrophages to the M2 phenotype.
Additionally, ARG2, in combination with inducible nitric oxide synthase (iNOS), decreases the NK
cell population inthe AML blast environment (Jacamo, et al. 2017). Furthermore, this group found
the increase in the metabolism of arginine also reduced proliferation of hematopoietic progenitor
cells (Mussai, et al. 2013). The metabolism of fatty acids and lipolysis has emerged inrecentyears
as a mechanism AML uses to gain growth advantage. Adipocytes are common in the stroma of
bone marrow, and their population increases with age. As AML patients are generally in the older
population, this cell type Is abundant in the most vulnerable AML populations (Justesen, et al.
2001). In elderly patients, it has been found that AML remodels the BM niche to promote cell
survival through lipolysis of adipocytes. AML uses fatty acid oxidation (FAO) to make acetyl-CoA
from fatty acids provided by its adipocyte heavy environment, which then feeds into the
tricarboxylic acid cycle (TCA cycle) and to create additional ATP in the oxidatively stressed
environment of the AML BM (Beloribi-Djefaflia, Vasseur and Guillaumond 2016, Tabe, Konopleva

and Andreeff 2020).

1.4.7 AML evades NK cells by sabotaging activating receptor mechanisms.

NK cells express receptor NKG2D on their surface, which when bound to by its ligand (NKG2DL)
and other co-stimulatory factors such as MICA, ULBP1/2/3, activate NK cells. However, in AML
cells lines, high methylation of the promoter for NKG2DL silences its expression on AML cells,
allowing them to escape NK cells recognition (Baragano Raneros, et al. 2015). Additionally, AML
blasts release a soluble version of NKG2DL which decreases expression of NKG2D on nearby NK
cells, inhibiting cytotoxicity (Tettamanti, et al. 2022). Along the same lines, NK cells have another

activating receptor called DNAM-1 which activates cytotoxic activity through granulation. AML



blasts upregulate DNAM-1 ligands CD112 and CD155 on their surfaces, which in turn
downregulates DNAM-1 expression on NK cells. As with T-cells, AML blasts upregulate expression
of TIGIT on NK cells, inhibiting activity and IFNG secretion, this high expression has been
correlated with reduced NK cell population in BM of poor prognosis SCT (Stem Cell

Transplantation) treated AML patients (Hattori, et al. 2019).

1.4.8 T-cell tolerance through myeloid suppressor cells and tumour
associated macrophages

Myeloid derived suppressor cells (MDSCs) are immunosuppressive cells that induce T-cell
tolerance through expression of PD-L1, IDO1, Arginase Il, ROS production and
immunosuppressive cytokines such as TGFB and IL-10 (Yang, Y., et al. 2020). MDSCs numbers
are elevated in the peripheral blood and bone marrow of AML patients when compared to healthy
controls (Pyzer, et al. 2017). MUC-1 is an oncoprotein which is released by AML blasts in
extracellular vesicles (EVs). The MUC-1 containing EVs are absorbed by myeloid progenitor cells,

impairing differentiation, leading to expansion of MDSCs (Groth, et al. 2019, Pyzer, et al. 2017).

AML is a complex disease which utilises multiple mechanisms to promote self-renewal and
evade destruction by the immune system. Complexity in diagnosing and treating patients comes
from the many mutations that can occur in AML resulting in different phenotypes. Classification
of AML has changed over the years from morphological characterisation, to incorporate

molecular indicators such as chromosomal abnormalities and mutations.

1.5 AML subtypes

The two systems used to classify AML are the French American-British (FAB) classification and
the World Health Organisation (WHO) classification. The FAB classification was developed in the
1970s and assigns subtype to AML based on the cell of origin and its maturity. FAB subtypes are
identified based on the morphology of leukaemia cells when observed with a microscope. These
subtypes are summarised in the appendix (7.1), along with names, origin cells and an example
picture of their appearance. This method was developed in the 1980’s and has been since
replaced with genetic and cytogenetic markers by the world health organisation (WHO) and the

European LeukemiaNet (ELN) panel.

The WHO classification system builds further on the FAB system and is regularly updated with
consideration of genetics and other known factors that contribute towards prognosis. This is

summarised in Table 3.



Table 1:The categories of AML based on WHO classification criteria (American Cancer Society 2018).
Information gathered from elsewhere is referenced in the table.

Category name

Details

AML  with
abnormalities

certain  genetic
(gene or

chromosome changes)

AML: [1(8;21)]

AML: [t(16;16) or inv(16)]

APL with the PML-RARA fusion gene

AML: [1(9;11)]

AML: [1(6:9)]

AML: [t(83;3) orinv(3)]

AML (megakaryoblastic): [t(1:22)]

AML with the BCR-ABL1 (BCR-ABL) fusion gene
AML with mutated NPM1 gene

AML with dominant biallelic mutations of the CEBPA gene
AML with mutated RUNX1 gene

AML with myelodysplasia-related

A diagnosis requires more than or equal to 20% of bone marrow
cells are blasts and additionally either a history of myelodysplastic

changes syndrome (MDS), MDS cytogenetic abnormalities or multi lineage
dysplasia (Weinberg, et al. 2009).
. This is a therapy related AML that occurs following treatment with
AML related to previous

chemotherapy or radiation

chemotherapy or radiation therapy for a prior malignancy (Kayser,
etal. 2011).

AML not otherwise specified.
(AML that does not clearly fit into
the other groups and correlated
with FAB classification)

AML with minimal differentiation (FAB MO)

AML without maturation (FAB M1)

AML with maturation (FAB M2)

Acute myelomonocytic leukaemia (FAB M4)

Acute monoblastic/monocytic leukaemia (FAB M5)
Pure erythroid leukaemia (FAB M6)

Acute megakaryoblastic leukaemia (FAB M7)
Acute basophilic leukaemia

Acute panmyelosis with fibrosis

Myeloid sarcoma

Diagnosis for when there is a proliferation of myeloid lineage blasts
at extramedullary sites which disrupts the structure of the tissue it
is found in. Clinical representations are variable, it has been found
in soft tissues, lymph nodes and bones. It has also been called
‘Chloroma’ due to a distinctive green colour caused by high
expression of myeloperoxidase (Solh, et al. 2016, Avni and Koren-
Michowitz 2011).

Myeloid proliferations related to
Down syndrome

The group involved a spectrum of MDS which evolve in AML in
children with down syndrome (Trisomy 21). A subset of new-borns
with down syndrome are born with erythro-megakaryocytic
myeloproliferative disorder which can develop into acute
megakaryoblast leukaemia. It is also characterised by GATA-1
mutation as well as trisomy 21 and additional genetic events

(Cantor 2015).

Mixed phenotype acute

leukaemia (MPALSs)

Arare set of leukaemia that present with mixed lineage that express
myeloid and lymphoid antigens. It is characterised by therapy
resistance and adverse cytogenetics (Sharma, et al. 2017, Wolach
and Stone 2015).




1.5.1 Molecular markers for risk stratification of AML

A combination of morphology, cytogenetics and genetic mutations can be used to identify patient
disease. Correct identification of disease is essential for patient prognosis and assigning
treatments. Molecular markers are regularly reviewed for their impact on clinical risk, Table 21
shows the recent categorisation of markers determined by the European LeukemiaNet (ELN)
panel (Dohner, et al. 2017). Molecular cytogenetics spans techniques that study variations in
chromosome structure and function and genome variation. Some standard cytogenetic

techniques to study these features include but are not limited to:

e Karyotyping- examining an individual’s chromosome complement to reveal missing,
broken and rearranged chromosomes.

e Chromosome banding - different aspects of the chromosome can be stained for
visualisation, for example T-banding stains telomeres and C-banding for centromeres.

o Fluorescence activated cell sorting (FACS) -sorts and separates chromosomes based on
the intensity and size of fluorescent signals (Montazerinezhad, Emamjomeh and

Hajieghrari 2020).

There are other approaches which report more detailed differences in chromosomes and genes
such as PCR based methods, in-situ hybridisation methods and comparative genomic vectors

methods (Groth, et al. 2019, Pyzer, et al. 2017).

Table 2: Table of molecular markers for genetic risk classification of AML as determined by ELN (D6hner, et al.
2022).

Prognostic Genetic abnormality

Favourable -1(8;21)(g22;922.1)/RUNXT::RUNX1T1
-inv(16)(p13.1922) or t(16;16)(p13.1;922)/ CBFB::MYH11
-Mutated NPM1 without FLT3-ITD

-bZIP in-frame mutated CEBPA

Intermediate -Mutated NPM1 with FLT3-ITD

-Wild-type NPM1 with FLT3-ITD (without adverse-risk genetic lesions)
-t(9;11)(p21.3;923.3)/MLLT3::KMT2At,

-Cytogenetic and/or molecular abnormalities not classified as favourable or adverse
Unfavourable | -t(6;9)(p23.3;q34.1)/DEK::NUP214

-t(v;11923.3)/KMT2A-rearranged

-1(9;22)(q34.1;q11.2)/BCR::ABL1

-t(8;16)(p11.2;p13.3)/KAT6A::CREBBP

-inv(3)(g21.3926.2) or £(3;3)(921.3;926.2)/ GATA2, MECOM(EVI1)
-t(3926.2;v)/MECOM(EVI1)-rearranged

-—5ordel(5q); =7; -17/abn(17p)

-Complex karyotype monosomal karyotype

-Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and/or ZRSR2
-Mutated TP53a




1.5.2 Genetic heterogeneity in AML

As indicated by the molecular markers used for risk stratification in Table 2, genetic heterogeneity
takes many forms in AML from chromosomal abnormalities to molecular mutations. Risk factor
assessment based on cytogenetics must also consider the complex interactions that can take
place when the mutations co-occur, and how high and low allele ratios (NPM1 and FLT3-ITD as
an example) impact on disease. Mutations can be split into functional categories dependent on
their role in AML development. These mutations occur in receptor tyrosine kinase (RTK) family
members, transcription factors (TF), nucleophosmin, tumour suppressors and the spliceosome
complex (DiNardo and Cortes 2016). Emphasis has been placed on the role of RTK family
mutations and TF mutations which are thought to be key players in malighant transformation but
are not necessarily always present. RTK mutations such as FLT3, KIT, VRAS, KRAS, PTPN11, NF1
and NRAS, are present in approximately 66% of cases and promote the proliferation and survival
of cells (DiNardo and Cortes 2016). Mutations in TF such as RUNX1, CEPBA, GATA2 and RARA,
occur in between 5 and 25% of cases dependent on TF and prevent cell differentiation, aiding in
building an immature progenitor population (DiNardo and Cortes 2016, Li, Sheng, Mason and
Melnick 2016a). Additionally, concurrent mutations in RTK and TFs interact synergistically to
produce a new epigenetic and transcriptional profile, different to any produced by the individual

categories, further complicating evaluation (Shih, A. H., et al. 2015).

1.5.3 Epigenetic modifications contribute to AML pathogenesis and
progression

Epigenetics describes changes to chromatin structure through modification of histones by
methylation, acetylation, phosphorylation and more, which change how genes are expressed
(Itzykson, Kosmider and Fenaux 2013). It is thought that epigenetic mutations are key to inciting
leukaemogenesis and promoting clonal expansion but cannot initiate transformation without the
aid of additional mutational events in the population (DiNardo and Cortes 2016, Li, Sheng, Mason
and Melnick 2016a). Heterogeneity is especially prevalent in AML epigenetic profiles, with
phosphorylation, acetylation and methylation all recorded to contribute to pathogenesis (Dhall,
et al. 2019, Seo, et al. 2022, Shih, A. H., et al. 2015). Somatic mutation of epigenetic regulators
such as DNA methyltransferases (DNMT), Isocitrate dehydrogenase (IDH) and Ten-eleven
translocation methylcytosine dioxygenases (TET) are identified in over half of AML cases. Avariety
of cytosine methylation landscapes have been recorded (Figueroa, Abdel-Wahab, et al. 2010).
Mutations in enzymes DNMT3A, IDH1/2 and TET2 disturb haematopoiesis preventing
differentiation into specialised blood cells and is key in initiating and progressing AML (Yang, X.,

Wong and Ng 2019a).



1.5.3.1 Acetylation status disrupting mutations
One of the most frequent karyotypic abnormalities in AML is the t(8;21)(g22;922) translocation

which fuses RUNX1 to RUNX1T1 (Goldman, et al. 2019). The Leukaemogenesis ability of the
fusion product AML1-ETO, may be reliant on lysine acetylation. Murine models with lysine
acetyltransferase p300 knockdown display decreased AML1-ETO acetylation, which correlates
with an increase in mouse median survival. However, as p300 decreases acetylation on a broad
range of targets, it is unknown if the effect on survival is linked specifically to AML1-ETO (Link, et

al. 2016, Wang, L., et al. 2011).

1.5.8.2 Phosphorylation in AML is associated with drug resistance
Phosphorylation is the addition of a phosphate group to a protein at the serine (Ser), threonine

(Thr), or tyrosine (Tyr) residues by a protein kinase. The addition and removal of phosphate groups
(by phosphatases) regulate the function of the protein (Bachegowda, et al. 2016). The PI3K/AKT
signalling pathway is activated by phosphorylation and promotes cell growth and proliferation
while inhibiting apoptosis, and so is tightly regulated. Research has demonstrated that a
heterozygous deletion mutation in PTEN, a tumour suppressor gene, leads to increased AKT
phosphorylation in AML cell lines. This overactivation of the PISK/AKT pathway results in
uncontrolled cell growth. Additionally, AML patients with low PTEN levels experience higher
relapse rates within one year compared to those with normal PTEN levels (Chen, Ping, etal. 2016).
Not only can P-AKT phosphorylate direct downstream targets involved in drug resistance, but the
excessive signalling increases JNK-p38 MAPK pathways activity causing c-jun dependent
resistance (Roszak, Smok-Pienigzek and Stepnik 2017). Furthermore, overactivation of PISL/AKT
upregulates P-gp to transport drugs out of cell nuclei (Chen, Ping, et al. 2016), further

contributing to chemoresistance.

1.5.3.3 Mutations in methylation proteins contribute to AML pathogenesis
DNA methylation is an epigenetic modification where a methyl group is added to the 5th position

of the cytosine ring in DNA. It acts as an off switch for genes, and regulates many developmental
processes, including haematopoiesis, where haematopoietic stem cells differentiate into
specific blood cells. DNA methylation profiles vary considerably between AML cases with
patients presenting with hypermethylation, hypomethylation and intermediate methylation
profiles (Figueroa, Lugthart, et al. 2010). Studies have further investigated AML methylation to
understand the biological and functional implications of methylation status (Figueroa, Lugthart,
et al. 2010, Li, Sheng, Mason and Melnick 2016a). Mutations of genes involved in methylation,
such as DNMT3, TET2 and IDH1 prevent function and produce hypo and hyper methylation

profiles.



1.5.3.4 DNMT3A
DNMT3A is a de novo methylation enzyme and catalyses the addition of new methyl groups on

DNA molecules. This activity regulates HSC differentiation and self-renewal by epigenetic
methylation. Mutation in DNMT3A disrupt and impair this function, preventing DNA methylation
and causing a hypo methylated environment. In turn HSC proliferation increases and
differentiation into specialised blood cells is impaired. Mutation of DNMT3A commonly occurs
alongside NPM1, FLT3-ITD, and IDH1 mutations and correlates with relapse and chemotherapy

resistance (Mayle, et al. 2015).

1.5.3.5 IDH1/2
Mutations in IDH1 and IDHZ2 active sites at the R132 locus of IDH7 and the R140 or R172 locus of

IDH2 cause a loss-of-function. In the Kreb's cycle isocitrate is normally converted to alpha-
ketoglutarate (aKG), however, mutations in IDH1/2 reverse the reaction converting akG into 2-
hydroxyglutarate (2-HG) (Ward, et al. 2010). 2HG then competitively inhibits akKF dependent
enzymes involved in regulating chromatin structure and DNA repair systems including TET
enzymes and lysin demethylase (Moran-Crusio, etal. 2011, Figueroa, Abdel-Wahab, et al. 2010).
This causes a hypermethylated phenotype, silencing many genes including tumour suppressor
genes, inducing increased DNA damage and impaired myeloid differentiation. The prognosis of
AML with IDH mutations is poor with IDH1 mutations, but favourable with IDH2 mutations, when
patients are treated with standard intensive chemotherapy (Aslanyan, et al. 2014, Kroeze, et al.

2014, Ahn, et al. 2017).

1.5.3.6 TET2
TET2 along with a-KG as a cofactor, catalyses the conversion of 5-methylcytosine (5-mC) to 5-

hydroxymethylcytosine (5-hmC) which is a crucial component needed for DNA demethylation.
Mutations that disrupt TET2 activity therefore impair DNA demethylation, ultimately leading to
down-regulation of genes that promote myeloid differentiation and genes thatinhibit self-renewal
in HSCs (Chan and Majeti 2013). TET mutations can lead to hypermethylated DNA sighatures
which have been linked to poorer outcome (Shlush, et al. 2014). Another route for AML to

suppress immune cells in its local environment is through repurposing IFNG signalling.

1.6 The role of IFNG in general immunity

Interferon Gamma (IFNG) is a cytokine involved in both the innate and adaptive immune
responses to viral and bacterial infections. This cytokine is primarily produced during the innate
immune response by natural killer cells (NK) and natural killer T-cells (NKT cells). It is also
secreted after the development of adaptive immunity by CD4+ T Helper 1 (TH1) cells and CD8+
Cytotoxic T lymphocytes (CTL) effector cells (Rybka, Stephanou and Townsend 2009). IFNG



signals by binding to the IFNG receptor, which is expressed on various cell types. This cytokine
plays a central role in numerous biological processes, most notably in coordinating the immune
response. One of its earliest discovered functions is the upregulation of major histocompatibility
complex (MHC) molecules (Amaldi, et al. 1989) enabling increased antigen presentation (Minn

2015) and improved immune response.

IFNG acts as a key regulator of the immune system, influencing the activity of many immune cells
at the innate and adaptive immunity level (Figure 3). IFNG induces B-cells to favour producing
opsonising and complement fixing antibodies over IL-4 dependent isotypes such as IgE thereby
promoting inflammation and enabling phagocytes to clear more microbes and damaged cells
(Gonzales-van Horn and Farrar 2015). Working in tandem with the isotype switch, IFNG enhances
macrophage activity through 1) upregulating expression of FcyRI, enabling a larger uptake of
pathogens by the macrophage, 2) stimulating them to synthesise more reactive oxygen species
(ROS) and nitric oxide (NO) (Robinson, C. M., et al. 2010). These molecules are produced within
lysosomes of the macrophage which fuse with phagosomes that contain microbes, thereby
destroying the microbes (Thakur, Mikkelsen and Jungersen 2019). IFNG secretion causes a
paradigm shift from innate to adaptive immune response favouring cell mediated immunity;
inducing naive CD4" T-cells to favour differentiation into Ty1 effector cells over Ty2 helper cells.
This promotes specific cytotoxic immunity through upregulation of both MHC classes as well as
antigen processing, presentation, and costimulatory molecules, increasing pathogen peptide
presentation and T-cell — APC interactions. Furthermore, a positive feedback loop is formed by
Tu1 cells producing more IFNG and IL-12 while inhibiting IL-4 secreting Tu2 cells, creating an

environment which favours the Ty1 effector phenotype (Schroder, et al. 2004).
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Figure 3: The roles of IFNG in the immune response. IFNG is produced first by NKC and NK T-cells during the innate
response and CD4+ / CD8+ T-cells once antigen specific immunity has developed. IFNG is involved in many immune
response mechanisms, some illustrated above; left to right. Outer left: IFNG induces B-cells to produce IgG Ab
subclasses which protect against infectious pathogens. Inner left: IFNG activates macrophages to increase lysosomal
activity. Inner right: IFNG promotes differentiation of naive CD4+ T-cells into TH1 cells over TH2 effector cells, TH1 cell
also produce IFNG resulting in a positive feedback loop. Outer right: IFNG induces the expression of MHC class | and I/
expression on both APC and normal cells, allowing more expression of foreign antigen and bolstering immune response.



1.7 IFNG; a key cytokine for anti-cancer activity

IFNG is also involved in immune surveillance, inflammation and known for general anti-tumour
activity (Zaidi and Merlino 2011). IFNG inhibits proliferation of cancer cells (Kotredes and
Gamero 2013), induces dose dependent apoptosis (Cheon, Yang and Stark 2011), and the

blockage of angiogenesis resulting in tumour starvation (Sidky and Borden 1987).

In AML, it has been shown that the reduced ability of CD4+ T-cells to produce IFNG at the time of
diagnosis can be restored by the time of relapse following stem cell transplantation (Schnorfeil,
et al. 2015, Lamble and Lind 2018). Kornblau et al also observed reduced IFNG production by
CD4+ cells, identifying lower IFNG levels in the serum of untreated AML patients compared to
healthy controls (Kornblau, et al. 2010). AML appears to downregulate IFNG expression to prevent
a T-cell effector response and shift towards a Treg type. However, in some AML patients, IFNG-
related genes are highly expressed, which correlates with poor overall survival (Corradi, et al.

2022).

1.7.1 IFNG signalling upregulates immunosuppressive factors in AML

Although IFNG has direct anti-tumour activity, and in a functional environment, can prevent
cancers including AML from taking root, it can also enable cancer growth (Ribas 2015). Adaptive
immune resistance (AIR) is the process by which a cancer responds to immune surveillance by
changing its phenotype to evade the immune system. AML can use IFNG to upregulate escape
mechanisms, and cause immunosuppression to promote immune escape. Some of the methods

used by AML to evade immune cells were outlined in section 1.4.

IFNG upregulates numerous molecules in AML, including but not limited to PD-L1, IDO1, non-
classical HLA’s, and BST2. These molecules contribute to remodelling the bone marrow niche
and an immunosuppressive environment by inhibiting cytotoxic immune cell activity, polarising
T-cells towards tolerogenic phenotypes, inhibiting memory cell survival, reducing immune cell

protein synthesis, growth and HSC niche re-localisation.

In AML blasts, IFNG upregulates PD-L1 levels by various pathways including the STAT1/3 and
MAPK pathways. PD-L1 prevents AML blasts from being destroyed by cytotoxic T-cells by
transmitting an inhibitory signal (Berthon, et al. 2010, Moshofsky, et al. 2019). IFNG released from
various sources including NK cells has been found to upregulate IDO1 expression on AML blasts.
In short IDO1 catalyses the breakdown of the essential amino acid tryptophan (trp), which
creates Kynurenine (Kyn). The depletion of TRP is sensed by CD4+ T-cells, which respond by
reducing protein synthesis to inhibit cell growth. Furthermore, Kyn binds to the aryl hydrocarbon

receptor on T-cells and dendritic cells (DCs), inducing signalling that shifts naive CD4+ T-cells to



differentiate into Treg cells, and DCs to favour a tolerogenic phenotype (Folgiero, et al. 2014,
Platten, et al. 2015). AML patients with high IFNG expression have been associated with poorer
overall survival compared to those with lower IFNG expression. IFNG release by AML correlates
with elevated Treg levels in the bone marrow. Furthermore, transcriptomic analysis of
mesenchymal stromal cells (MSCs) co-cultured with IFNG-expressing cells showed an induction
of an IFNG-dependent program of Treg-related genes in the MSCs. This indicates that AML blasts
can use IFNG to upregulate immunosuppressive factors in themselves, such as IDO1 and PDL1,
and in the local bone marrow niche by activating Treg induction programs in MSCs (Folgiero, et

al. 2014, Platten, et al. 2015).

IFNG further contributes to a tolerant environment by upregulating the expression of nonclassical
HLA such as HLA-G and HLA-E in AML (Mizuno, et al. 2000, Nguyen, et al. 2009). Expression of
HLA-G promotes maternal tolerance of the foetus in pregnancy; however, AML and other cancers
utilise HLA-G expression on their surface to induce immune tolerance by binding to inhibitory
receptors on immune cells such as ILT-2, ILT-4 and KIR2DL4 (Kren, et al. 2010, Gallegos, et al.
2016). HLA-E interacts with NK and T-cells to regulate their activity, importantly, HLA-E can bind
to inhibitory receptor NKG2A on NK cells. In AML IFNG upregulation of HLA-E on AML blasts has
been found to use this mechanism to inhibit NK cells cytolysis activity in patients posts haplo-

mismatched Haematopoietic stem cell transplant (HSCT) (Nguyen, et al. 2009).

HSCs usually reside in the bone marrow in an inactive quiescent state, but can be activated in
response to injury or to restore blood cells through proliferation and differentiation (Loeffler and
Schroeder 2021). Long term IFNG signalling due to chronic infection has been shown to activate
HSC, causing IFNG dependent reduction in HSC in the bone marrow (Bogeska, et al. 2022). The
migration away from the bone marrow is hypothesised to be in part due to IFNG upregulation of
BST-2 on HSCs, and its binding to E-selectin activating HSCs. Ultimately this results in IFNG
dependent localisation of HSC from a quiescent and inactive niche to an E-selectin positive and
active niche, contributing towards AML progression. Increased BST2 expression has also been

associated with poor overall survival in AML patients (Matatall, et al. 2018, Florez, et al. 2020).

In summary AML uses IFNG to upregulate AML blast proliferation and upregulates a host of
immunosuppressive molecules to directly inhibit immune cells. Additionally, it induces immune
cells in its environment to shift to tolerant phenotypes, both through AML blast direct interaction,
and induction of immunosuppressive gene programmes in surrounding cells such as MSC. The
hijacking of inflammation signalling which usually would help to control cancer progression, adds

layers to how effective treatments can be via standard chemotherapy, and highlights the



importance in understanding the AML immune environment when developing new treatment and

prognostic strategies for AML.

1.8 Treatment strategies for AML

Therapeutic strategies for treating AML patients have made limited progress over the past 30
years, with intensive chemotherapy remaining the predominant treatment method (Dohner,
Weisdorf and Bloomfield 2015). AML is cured in 35 to 40% of adult patients, 70% of child patients
and, in only 5 to 15% of elderly patients (Dohner, Weisdorf and Bloomfield 2015). Elderly patients
are most at risk as they are unable to receive intensive chemotherapy due to endangering side
effects. Therefore, this category of patients can only receive low intensity therapies or symptom
management (Dohner, Weisdorf and Bloomfield 2015). AML accounts for approximately 25% of
childhood leukaemia (Lonetti, Pession and Masetti 2019). For children under the age of 15, overall
survival rates have plateaued at approximately 70% with intensive chemotherapy. In general,
younger patients respond better and have higher survival rates than older patients. However, the
median age of diagnosis is 68, in the age bracket with the lowest survivability. Therefore,
prioritising the development of alternative strategies for high-risk AML in older patients is high
priority (Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, RuhlJ, Tatalovich Z, Mariotto
A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). 2018). Treatment for AML takes many forms, in
addition to the classical chemotherapy regiment, there are also molecularly targeted therapies,

immune based treatments and epigenetic strategies.

1.8.1 7+3 induction chemotherapy

The front-line treatment for AML is the "7+3" chemotherapy regimen used to induce remission.
This regimen is comprised of 7 days of dosing with Cytarabine, followed by 3 days treatment with
an anthracycline antibiotic: Daunorubicin, Idarubicin or Mitoxantrone, depending on the patients

age and general health.

Cytarabine is a prodrug which is an analogue of the nucleoside cytidine; a pyrimidine that is
incorporated into nucleic acids (Rechkoblit, et al. 2018). Once Cytarabine is in the cell, it is
transformed into a triphosphate form which competes with cytidine to be incorporated into DNA.
The structure of cytarabine includes an arabinose sugar that causes steric hindering which
prevents DNA extension, inhibiting the S-phase of cell division (Rechkoblit, et al. 2018, National
Center for Biotechnology Information. 2020a). Additionally, Cytarabine also inhibits DNA
polymerase, causing a direct decrease in DNA replication and repair (Blair 2018). For this reason,
itis most effective in fast cycling cells, where the cell cycle has become dysregulated, which is a

hallmark of cancer.



Anthracyclines are a class of cytotoxic drugs able to enter the cell membrane to intercalate
between DNA base pairs and interact with topoisomerase Il. Examples of anthracyclines used in

combination with cytarabine include Doxorubicin, Daunorubicin, and Idarubicin.

Anthracyclines work by inhibiting mitosis and cell division through intercalation between DNA
base pairs. This causes the DNA helix to uncoil, inhibits topoisomerase Il activity, and leads to
both single and double strand breaks in the DNA, ultimately preventing DNA synthesis.
Additionally, daunorubicin can inhibit DNA polymerase, which disrupts gene expression and
causes free radical-induced DNA damage, resulting in cell death (Saleem and Kasi 2021, Blair
2018, National Center for Biotechnology Information. 2020b). Idarubicin is an analogue of
daunorubicin missing the methoxy group at position 4 which increases its lipophilicity compared
to Daunorubicin. This increases the rate of its uptake into cells and enables better DNA binding,
improving on the cytotoxicity of Doxorubicin and Daunorubicin (Assi, et al. 2016). In 2017, the
FDA approved CPX-351, a 100 nm bilamellar liposomal formulation of cytarabine and
daunorubicin, for the treatment of high-risk AML (Assi, et al. 2016). This formulation maintains a
5:1 drug ratio with higher bioavailability, resulting in more effective drug exposure to leukemic
cells compared to standard therapy. CPX-351 was found to be less toxic than standard delivery
methods and significantly improved median overall survival (OS) rates in high-risk elderly patients

from 2 months to 5.1 months (Assi, et al. 2016, Lin, T. L., et al. 2019).

1.8.1.1 Allogenic hematopoietic stem cell transplant (HSCT)
Allogenic HSCT provide the best chance of preventing AML reoccurrence, but also carry a greater

risk of treatment-related morbidity and mortality (TRM). HSCT may be administered in first or
second remission, depending on if the patients AML is assessed as favourable or unfavourable
(Assi, etal. 2016, Lin, T. L., et al. 2019, Koreth, et al. 2009, Cornelissen, et al. 2007). The incidence
of TRM occurring in elderly patients after HSCT has been reduced in recent years, using reduced
intensity conditioning (RIC). One study reported that patients over the age of 45 survived longer
when treated with RIC transplantation than those treated with chemotherapy (Russell, et al.
2015). Two further studies evidenced that RIC transplantation can be favourable in elderly
patients compared to conventional myeloablative conditioning (MAC) transplantation, which has
primarily found to be beneficial to younger patients (Passweg, et al. 2015, Cornelissen, et al.

2015).

1.8.2 Molecularly targeted treatments
Targeted therapies are designed to block the growth and spread of cancer by interfering with

specific proteins, pathways, or genes that are involved in the growth, progression, and spread of



cancer cells. By targeting the specific molecules or pathways that allow cancer to grow, targeted
therapies can be more effective than traditional chemotherapy, which often kills healthy cells

along with cancer cells.

1.8.2.1 FLT3 targeting therapies
Some therapies target specific mutations, such as Midostaurin and Gilteritinib for FLT-3 mutated

AML. Mutations in FLT3 are the most common type of mutation seen in AML, with it appearing in
approximately one third of patients. There are two categories of mutation in FLT3, internaltandem
duplicate (FLT3-ITD) and point mutation in the tyrosine kinase domain FLT3 (FMS-like tyrosine
kinase 3) is a receptor, which when bound to by the FLT3 ligand activates a signalling cascade
which results in inhibited apoptosis and differentiation. Both types of FLT3 mutation result in
constitutive activation of the receptor, and therefore inhibition of apoptosis and differentiation
occur, promoting cancer survival (Kennedy and Smith 2020). Midostaurin is an oncogenic FLT-3
inhibitor used to treat newly diagnosed patients, in combination with classic cytarabine and
daunorubicin treatment (Levis 2017). Gilteritinib is a dual FLT3-AXL tyrosine kinase inhibitor
which is approved for the treatment of relapsed and refractory FLT3™* AML (Lai, C., Doucette and
Norsworthy 2019). There is currently an ongoing trial (Trial number: NCT03836209) to compare
the efficacy of Midostaurin to Gilteritinib combined with induction and consolidation

chemotherapy (Luger 2020).

1.8.2.2 IDHT1 targeting therapies
Another identified drug target is isocitrate dehydrogenase type 1/2 (IDH1/2). Mutations in IDH1/2

cause overproduction of 2-hydroxyglutarate (2HG) which inhibits DNA and protein
demethylation. AML cases with IDH1/2™" display lack of differentiation ability, inhibiting IDH
mutants can restore differentiation ability (Schvartzman, et al. 2019). Two drugs which target this
molecule are Ivosidenib and Enasidenib mesylate, which are used to treat adult patients with
relapsed or refractory AML, who have specific mutations of IDH1 or IDH2 respectively (Kim, E. S.
2017). While Ivodidenib achieves a respectable CR rate of 28.6% alone and 57% in combination
with Azacytidine, differentiation syndrome (DS) was observed to occur as a common side effect

in 25% of patients (Lai, C., Doucette and Norsworthy 2019).

1.8.2.3 BCL2 targeting therapy
Venetoclax is an alternative therapy available for IDH1™* AML which inhibits B cell lymphoma 2

(BCL-2). BCL-2 suppresses apoptosis by controlling mitochondrial membrane permeability
which it achieves by sequestering pro-apoptotic BAX. Venetoclax is approved for use in
combination with azacytidine, decitabine or low dose cytarabine for novel AML in adults >75 or

with comorbidities that prevent intensive chemotherapy (Winer and Stone 2019). Clinical trials



have shown that Venetoclax benefits from combining with either demethylating agents or low
dose cytarabine, but currently demethylation is the favoured approach (Lai, C., Doucette and

Norsworthy 2019).

1.8.3 Immunotherapy based treatments
Immunotherapy uses the body’s immune system to fight cancer. Commonly used types of cancer
immunotherapy include Monoclonal antibodies (mAb, Chimeric antigen receptor (CAR) T-cell

therapy and vaccines.

1.8.3.17 Monoclonal antibodies (mAbs)
mAbs are manufactured proteins, designed to carry chemotherapy or other treatment and deliver

it to cancer cells. At present, Gemtuzumab ozogamicin (Mylotarg) is the only FDA approved
monoclonal antibody treatment for AML. Mylotarg consists of two parts. The first is an antibody
specific to CD33; which is expressed on leukemic blasts >90% in AML patients, but noton normal
haematopoietic stem cells and so will specifically target the malignant cells. The mAb is
covalently bonded to the cytotoxic N-acetyl gamma calicheamicin, which will come in close
contact with the AML cell and destroy it (Fostvedt, et al. 2019). Additional antibody targets under
investigation for AML specific delivery are CD123, CD13, CLL-1 and CD38 (Williams, et al. 2019).

1.8.3.2 Chimeric antigen receptor (CAR) T-cell therapy
CAR T-cell therapy involves modifying a patient's T cells to target cancer cells, expanding them in

a lab, and reinfusing them to attack the cancer (Boyiadzis, et al. 2018). While promising in early
trials for other leukaemia, its efficacy in AML remains unclear due to the challenge of identifying
suitable target antigens, as AML antigens often coincide with normal hematopoietic cells, leading
to potential hematotoxicity therapy (Hofmann, et al. 2019). CAR T-cell and bi-specific T-cell
therapies have shown some success in preclinical AML studies (Mardiros, Forman and Budde
2015). Although no CAR T-cell treatments for AML are FDA-approved, several clinical trials are
ongoing (NCT03766126). However, severe side effects, such as high fevers and very low blood

pressure, remain a significant concern (Brudno and Kochenderfer 2016).

1.8.3.3 Vaccines for treatment of AML
Another avenue being explored for the treatment of AML is vaccines. Dendritic cell and peptide

vaccines have been tested with the purpose of reinvigorating or priming the immune system
against leukaemia cells. Dendritic cells are trained in vitro to process and present specific
tumour antigens, so that when they are administered, they can successfully prime native T-cells
and restore their anti-leukaemia activity (Stanchina, et al. 2020). DCP-001 is an allogeneic DC

vaccine, meaning it consists of allogeneic DCs which present preselected tumour specific



antigens. In this case the antigens were WT-1, PRAME, MAGE-A3 and NY-ESO-1 (van de
Loosdrecht, et al. 2018). In this phase | study DCP-001 was found to be safe in elderly patients
and to generate improved immune responses, with much longer OS in patients where there were
no detectable blasts in circulation (van de Loosdrecht, et al. 2018). Other DC based vaccines
have seen success with improving induction of tumour associated antigen carrying CD8" T cells

and improving outcome (Trial number: NCT01686334 and NCT01096602) (Anguille, et al. 2017).

An additional method to target AML is through targeting epigenetic modifications, such as
methylation, which is used in AML to inhibit expression of tumour suppressor genes and other

anti- cancer molecules.

1.8.4 Epigenetic treatments for AML

Epigenetic dysregulation contributes to the pathogenesis and progression of AML. Due to the
reversible nature of epigenetic modifications, they make attractive targets for therapeutics. Those
therapies include histone deacetylase inhibitors (HDACI), histone demethylation inhibitors

(HDMi) and DNMTi.

1.8.4.1 HDMi
Histone methylation takes place the arginine and lysine amino acids in the histone tail,

depending on the residue and location, methylation can activate or repress transcription
(Ramadoss, Guo and Wang 2017, Margueron, Trojer and Reinberg 2005). HDM such as lysine
demethylase 1 (LSD1) demethylate histone-3 at the K4 residue, downregulating H3K4meg3, which
regulates gene transcription. In mixed lineage leukaemia (MLL) driven AML, inhibition of LSD1 by
drug or genetic deletion, induced differentiation of AML stem cells (Maiques-Diaz, et al. 2018).
Other HDMi such as tranylcypromine (TCP), NCD35 and NCD38 have been demonstrated to
induce expression of myeloid differentiation genes and inhibit leukaemia growth (Schenk, et al.
2012, Sugino, et al. 2017). HDACi Panobinostat has shown limited anti-leukaemia activity in
clinical trials for myeloid malignancy growth (Schenk, et al. 2012), but performs better when
combined with HDMi SP2509 in primary leukaemia and cell lines (Fiskus, et al. 2014).
Additionally, combination of HDMis GSK2879552 and IMG-7289, in combination with all-trans

retinoic acid therapy proved effective in vitro (Smitheman, et al. 2019).

1.8.4.2 HDACI

Histone acetylation (HAC) and deacetylation (HDAC) enzymes regulate gene expression by
adding and removing acetyl groups at lysine residues in the histone tail. Addition of the acetyl
group weakens the interaction between the histone and DNA, opening the DNA up for

transcriptions (Gujral, et al. 2020). HDAC inhibitors (HDACI) induce apoptosis and activate DNA



damage response pathways and anti-proliferation pathways in cancers (Insinga, et al. 2005,
Nebbioso, et al. 2005, Bali, et al. 2005). First generation HDACi (Vorinostat and Panobinostat)
have been approved by the FDA for cutaneous T cell lymphoma and multiple myeloma, while
second generation HDACi such as Givinostat have been investigated in vitro and in clinical trials
for relapsed AML (Finazzi, et al. 2013, Li, Ying, et al. 2016). Valproic acid (VPA) is another HDACi
under investigation, which performs hyperacetylation at H3 and H4 histone tails to inhibit activity
of class | HDACs. VPA treatment has been found to upregulate genes involved in cell cycle arrest,
DNA repair and apoptosis in AML patient blasts (Rucker, et al. 2016). Other HDACIi such as
omidepsin/depsipeptide, mocetinostat, and entinostat have been rested in clinical trials as
monotherapies, but in general work best in combination with other treatments (Gambacorta, et

al. 2019).

1.8.4.3 DNMTi
DNMT inhibitors (DNMTi), such as 5-Azacytidine (5AzaC) and decitabine have been found to

increase survival in elderly patients who are unsuitable for stem cell transplants or intensive
chemotherapy. DNMTi promote degradation of WT DNMT, facilitate DNA demethylation, and
induce cytotoxicity. Both 5AzaC and decitabine have been approved by the European Medicines

Agency as AML therapeutics in 2008 and 2012 respectively (Al-Ali, Jaekel and Niederwieser 2014).

Both drugs are analogues of the nucleoside cytidine, and upon entry into the cell are activated by
successive phosphorylation steps where they are incorporated into DNA and RNA (Diesch, et al.
2016). Decitabine becomes 5-aza-dCTP following modification in the cell, where it then
incorporates into DNA and impairs DNA methylation by irreversibly binding to DNMT1, causing it
to be degraded. At higher doses it also targets DNMT3A/B (Leonhardt, et al. 1992). Methylation is
then lost in subsequent rounds of DNA replication, altering the methylation profile (Liu, K., et al.
2003). Additionally, DNMT-5-aza-dCTP-DNA adducts induce apoptosis by activation of DNA
damage response pathways, upregulating and activation of DNA repair proteins CHK1/2 and
RAD-51 (Orta, et al. 2014). Low doses of DNMTi are reported to induce DNA hypomethylation of
tumour suppressor genes promoters, including CDKN2B (p15INK4B) and E-cadherin,
reactivating them. Unlike Decitabine, 5-Azacytidine is processed into 5-aza-CTP and
preferentially incorporated into RNA (80-90%), where it inhibits tRNA methylation inhibiting
production of functional messenger and transfer RNAs (mMRNA, tRNA) (Diesch, et al. 2016).
Inhibition of mMRNA and tRNA further inhibits production of proteins, triggering apoptosis
(Schaefer, et al. 2009).



A pooled analysis of five randomised clinical trials of AML patients showed significantly better
overall survival and remission in the DNMTi-treated cohorts than cohorts treated with 7+3
chemotherapy regiment. However, 50% of the AML patients developed resistance and/ or
relapsed (Yang, X., Wong and Ng 2019a). DNMTi are often co-administered with other treatments,
such as with low dose cytarabine in elderly patients, venetoclax or HDACi such as Vorinostat to
synergistically improve survival outcomes (Atalay and Atesoglu 2016, Laloi, et al. 2022,

Kirschbaum, et al. 2014).

Despite the large array of therapies used and under investigation for AML, all treatments face

challenges in overcoming resistance.

1.9 Mechanisms of drug Resistance in AML

Resistance to chemotherapy and other treatments is a common problem in the cancer research
field, often leading to relapse and poor prognosis. It is of relevance in AML, as even after more
than 30 years, the first line treatment for most patients is an induction chemotherapy

combination of cytarabine and an anthracycline (Déhner, Weisdorf and Bloomfield 2015).

There are two types of drug resistance: Primary and acquired. Primary drug resistance describes
tumour cells that are fundamentally not sensitive to chemotherapy drugs and resist the first
treatment. Acquired resistance refers to tumour cells which are initially sensitive to treatment but
develop resistance following induction therapy. Through either route, the resistant clone can
proliferate and further mutate to become the dominant clone, preventing the initial therapy being
a viable future treatment. Acquired resistance can occur through mutations, which develop via

genomic instability and external factors.

Mechanisms of drug resistance in AML include but are not limited to: 1) Drug resistance related
proteins and enzymes, 2) genetic alterations, 3) aberrant activation of drug-resistance related

pathways (Zhang, Jing, Gu and Chen 2019).

1.9.1 Resistance to chemotherapy drugs through efflux pumps
Resistance achieved through physical relocation of the drug away from the site of action can be
performed by p-glycoprotein (P-gp), multidrug resistance related protein 1 (MRP1) and lung

resistance protein (LRP) (Megias-Vericat, et al. 2015).

1.9.2 Glutathione S-transferases (GST)
Glutathione transferases are a family of isozymes that catalyse the conjugation of glutathione to
xenobiotic substrates for removal from the cell. One of the glutathione S-transferases (GST), GST

T is reported to be highly expressed in AML and thought to work synergistically with MRP1 to



promote drug resistance (Hatem, El Banna and Huang 2017). Its primary function is to catalyse
the conjugation of GSH to chemical drugs to reduce their cytotoxicity by: 1) facilitating them to
be transported out of the cell by efflux pumps and 2) inhibiting drug action by binding GSH to
electrophilic sites which would otherwise be used to attack DNA (Hatem, El Banna and Huang

2017, Li, Shuyi, et al. 2017).

1.9.3 MRP1

Multidrug resistance-related protein 1 (MRP1) is a GSH specific transporter that removes GSH
and its bound substrates, from the cell. It also confines drugs to perinuclear vesicles, preventing
their cytotoxic action, and is associated with poor prognosis (Paprocka, et al. 2017). Ji et al.
developed doxorubicin micelles that restored sensitivity in MRP1-overexpressing, doxorubicin-
resistant AML cell lines, with in vivo studies showing increased drug accumulation and improved
cytotoxicity. The micelles worked by depleting ATP to inhibit efflux pumps like MRP1 and
competitively binding with GSH to reduce drug efflux (Ji and Qiu 2016).

1.9.4 P-gp and PKC

P-glycoprotein (P-gp) is a cross-membrane ion pump associated with poor outcomes and shorter
overall survival (OS) in both novel and relapsed AML (Do, et al. 2007, Megias-Vericat, et al. 2015).
Drug-resistant AML cell lines, such as SKM-1 and MOLM-13, upregulate P-gp and downregulate
Bcl-2, but resistance can be reversed with P-gp inhibitors (Imrichova, et al. 2015). P-gp expression
is linked to NF-kB and PI3K/AKT/mTOR pathway activation. Inhibition of these pathways by
Balaglitazone decreases P-gp expression and restores sensitivity to doxorubicin (Yousefi, et al.
2017). Protein kinase C (PKC), a calcium phospholipid-dependent protein kinase, regulates drug
transporter protein expression, internalisation, and phosphorylation. PKC activation correlates

with P-gp phosphorylation and drug resistance (Robinson, Kianna and Tiriveedhi 2020).

1.9.5 LRP

LRP mediates resistance to chemotherapies by blocking nuclear pores to prevent drug entry to
the cell, and, transporting drugs out of the nucleus via exocytosis (Zhang, Jing, Gu and Chen
2019). The impact of LRP1 expression on prognosis is unclear, with conflicting studies: one found
high LRP expression in bone marrow improved prognhosis, while another reported that LRP
expression on leukemic blasts reduced the chances of achieving complete remission (Kulsoom,

Shamsi and Afsar 2019, Paprocka, et al. 2017).



1.9.6 Resistance to chemotherapy by replication of damaged cells

DNA topoisomerases, such as topoisomerase Il (Topo ll), facilitate DNA replication and
transcription. Anthracyclines inhibit Topo Il by stabilising the Topo [I-DNA complex, preventing
DNA replication and initiating tumour cell death (Michelson, et al. 2020). Topo Il is highly
expressed in AML, enabling replication of damaged cells despite drug presence. Mutations in
Topo ll, such as K798L and K798P, hinder drug binding, contributing to resistance (Zhang, Jing, Gu
and Chen 2019).

1.9.7 Resistance to chemotherapy and molecular targeting drugs through
gene mutations

Resistance can also be achieved by mutation of protooncogenes with roles in cell proliferation
and survival. FMS-like tyrosine kinase (FLT3) mutations play a critical role in AML, indicating
prognosis and treatment response. FLT3-ITD suggests poorer outcomes, while FLT3-TKD
mutations, especially with NPM1 mutations, suggest a better prognosis (Boddu, Prajwal, et al.
2017, Wakita, et al. 2013). FLT3-ITD inhibitors like midostaurin, gilteritinib, and quizartenib target
this mutation. Wilms tumour (WT1) mutations are associated with AML relapse, with high WT1
expression signalling poor prognosis (Quek, et al. 2016, Pospori, et al. 2011). Vaccine-based
strategies targeting WT1 mutations are currently under investigation. WT1 mutations also confer
resistance to imatinib by upregulating quinolinate phosphoribosyl transferase (QPRT) (Ullmark,
et al. 2017). RAS family mutations, particularly KRAS, drive constant cell proliferation signalling,
giving cancer cells a competitive advantage (Burgess, et al. 2017). In AML, RAS mutations,
including KRAS, correlate with decreased overall and event-free survival during induction

chemotherapy (Ball, et al. 2019).

Characterising AML patients by their mutations and immunosuppressive features is crucial for
determining the optimal treatment. Over the years, diagnostic methods, stratification into

treatment groups, and outcome prediction based on AML features have significantly improved.

1.10 Current methods for diagnosis and prognosis

Since mutations of genes and chromosomes are a driving factor for AML, cytogenetics is
commonly used for diagnosis. Cytogenetics is the examination of chromosomes, particularly
looking for changes to structure where parts or whole chromosomes may be deleted, broken,
rearranged, or duplicated. Observed changes to chromosomes can be used to diagnose patients
with a condition and assign appropriate treatments. A high percentage of patients who
accomplish CR still relapse, and, while CR can be achieved again, with each successive

treatment the period of successful remission shortens (Bryan and Jabbour 2015). Despite AML



being well characterised, no single biomarker can predict chemotherapy resistance or outcome
(Walter, et al. 2015), although it has been long observed that responders and non-responders
display different gene expression profiles (GEP) (Heuser, et al. 2005, Tagliafico, et al. 2006,
Raponi, et al. 2008, Visani, Giuseppe, et al. 2017, Visani, G., et al. 2014). Cytogenetics, copy
number alterations, driver gene mutational status, indels, SNVs, methylation status and
microRNA gene expression have also been noted to change between AML diagnosis and relapse
(Hackl, Astanina and Wieser 2017). ldentification of the patient subtype and cytogenetics is

crucial for assigning the correct treatment for the best outcome.

1.10.1 Stratification of patients into treatment groups

Patients are stratified for initial treatment by their age, cytogenetic profiles, and mutational
status. There is not a clear-cut method due to variability in cytogenetic risks being presented
together. For example, core binding factor (CBF) translocations in AML are associated with better
prognosis (Appelbaum, et al. 2006). However, if the patient also has FLT3-ITD; a driver of
mutation, it confers a poor prognosis. Consequently, assigning treatment becomes more
complicated. The European LeukemiaNet (ELN) panel (Dohner, et al. 2017) discussed in 1.5.1,
sorts patients into favourable, intermediate and unfavourable risk groups. The intermediate
group presents the most challenge in treating, as this group has unpredictable response to

treatment (Prada-Arismendy, Arroyave and Rothlisberger 2017).

1.10.2 Prediction of patient relapse by cytomorphology

Following the initial induction chemotherapy period, cytogenetics and mutational profiling are
also used to estimate the risk of relapse. Predictions are based on databases of large patient
cohort profiles and visual assessment of samples (Fey and Buske 2013). Remission is assessed
using cytomorphology and examination of bone marrow and peripheral blood samples. If more
than 5% of cells are found to be blasts in the bone marrow, and the build-up cannot be attributed
to another cause, the patient is defined as in relapse (Chen, Xueyan, et al. 2015). However, only
a small number of cells are examined using this method, and the reliability of the prognosis given
is dependent on the quality of the sample, as well as the pathologists experience (DeAngelo, Stein

and Ravandi 2016).

1.10.3 Prediction of patient relapse by Minimal residual disease
Alternatively, ‘minimal residual disease’ (MRD) markers could be used to predict relapse. MRD is
defined as the presence of leukemic cells which are below the level of traditional morphological

detection. Instead, more sensitive methods including multiparameter flow cytometry (MFC), RT



quantitative PCR (RT-gPCR) and next generation sequencing (NGS) are used to identify leukemic

cells in a sample population.

1.10.3.1 MFC to detect MRD
MFC is used to identify Leukaemia-associated immunophenotypes (LAIPS) which differ from

healthy haematopoietic cells. LAIP cells are identified through aberrant expression of antigens
(Ravandi, Walter and Freeman 2018). There are different categories for LAIP in AML. There is
‘antigen over-expression’ which has abnormally high expression of cd33 and cd34 on myeloid
blasts, and ‘lack of antigen expression’ such as reduced HLA-DR expression. Then ‘asynchronous
antigen expression’ refers to co-expression of antigens typically associated with specific and
different maturation stages, for example, expression of early markers suchas CD34 or CD117 and
later markers such as CD65 and CD14 on myeloid cells. Finally, there is ‘cross lineage antigen
expression’ which is the expression of antigens normally found on other lineage cells, for example
lymphoid markers, on myeloid blasts, examples include CD2, CD5 and CD56 (Ravandi, Walter
and Freeman 2018, Kern, et al. 2010). The panelfor LAIP can include progenitor, myelomonocytic,
erythro- megakaryocytic, lymphoid lineage and none-lineage markers indicative of cell
maturation, a full panel for detecting all abnormal LAIP could include up to 100 monoclonal

antibodies (Bewersdorf, et al. 2019, Ravandi, Walter and Freeman 2018).

1.10.3.2 RT-gPCR to detect MRD markers
RT-gPCR is used to identify some markers of MRD. Markers that can be detected with this method

include core-binding factor subunit B myosin heavy chain 11 (CBFB-MYH11), runt-related
transcription factor 1 (RUNX1)/RUNX1 translocated to 1 (RUNX1T1), and mutant NPM1. Markers
detected by RT-gPCR such as mutations in NRAS, KRAS and IDH2 are used for initial diagnosis
only and are not recommended to be used as single markers for MRD, but to be used in
combination with a second marker for prognostic significance (Schuurhuis, et al. 2018). While
PCR techniques are more sensitive to detecting lowly expressed markers, experiments for
individual markers need to be optimised and it can be time consuming to perform a panel,

compared to other approaches that identify multiple markers in one experiment, such as NGS.

1.10.3.3 NGS to detect MRD markers
NGS represents a step up from RT-qPCR as it can map out the development of malignant clones.

Either the genetic profile can be obtained by sequencing an organism’s DNA, or RNA can be
sequenced for insight into sequences being expressed by the organism at time of extraction. It
can monitor samples for treatment stratification purposes by detecting mutations such as FLT3-
ITD and IDH1/2 alongside relapse prognosis markers such as CEBPA and NPM1 (Bibault, et al.
2015, Debarri, et al. 2015, Dohner, et al. 2017). Routine NGS has lower sensitivity than PCR and



can miss detection of mutations, however the more recently developed ‘error corrected’ NGS
approach has made strides towards higher sensitivity detection of mutations. An advantage of
NGS over PCR is that multiple mutations can be identified and analysed in one experiment,
allowing a more comprehensive patient profile to be built, but it does also require additional

bioinformatic processing steps (Schuurhuis, et al. 2018).

1.10.3.4 MRD markers in the future
MRD is already used to assess and monitor patients with acute lymphoblastic leukaemia (ALL)

acute promyelocytic leukaemia (APL) and chronic myeloid leukaemia (CML)(van Dongen, et al.
2015, De Angelis and Breccia 2015, Paschka, et al. 2003). There is a drive to develop and refine
tests to be applicable to AML, as there is already evidence of its use for relapse prognosis
(Jongen-Lavrencic, et al. 2018). However, it is not part of routine clinical practice and there is no
standard protocol in methods or markers used, nor are there established cut off points for said
markers. The inherent heterogenous nature of AML adds complexity to creating a standard
protocol to assess MRD, and it may be a case of developing several protocols dependent on

patients known mutations, cytogenetics, and past treatments.

1.11 Prognostic signatures for AML

Biomarkers are measurable molecules that can distinguish between different stages and types
of cancer. A prognostic signature, which relates these biomarkers to patient outcomes, can
include gene, transcript, or protein expression, gene mutations, chromosomal abnormalities,
and epigenetic modifications. These signatures serve multiple purposes, including disease
diagnosis, prediction of treatment response, and monitoring of disease progression (Bensalah,
Montorsi and Shariat 2007). The ELN cytogenetic risk categories already mentioned are one way
to categorise patients but are unable to predict patients that will resist chemotherapy or predict
better or poorer outcomes in the CN-AML group. Many researchers are developing prognostic
signatures that work independently and in combination with current strategies to improve

assessing AML patients for survival, risks of relapse and response to treatments.

In the context of AML these signatures have been developed using transcriptomic, genetic,
methylation, and epigenetic profiles of patients, alongside survival data and clinical information.
Suitable predictors for survival are commonly selected through regression models, such as the
multivariate Cox regression hazard models, the least absolute shrinkage and selection operator
(LASSO) model, and, more recently, machine learning and advanced neural networks (ANN)
(Walker, C. J., et al. 2021, Lai, Y., et al. 2021, Wagner, et al. 2019, Awada, et al. 2021). For example,

the LSC17 stemness score, a 17-gene signature derived from leukaemia stem cells (LSCs) in AML



patients, was tested in five independent patient cohorts and found to predict prognosis for
chemotherapy and allogeneic stem cell transplantation (Ng, et al. 2016). Sha et al developed a 5
gene score using TCGA dataset via a multivariate logistic regression model (Sha, et al. 2021).
While Wagner et al created the ‘Parsimonious 3 gene score’ using an artificial neural network
trained on the HOVON data set and validated in various AML patient data sets (Wagner, et al.
2019).

1.11.1 Immune system-related signatures show promise for stratifying
AML patients

Recently, AML scores have been developed that consider the interactions between AML, the
immune system, and the bone marrow niche. Advances in immunogenomic analysis have
highlighted the significant role of the immune system in AML progression and relapse.
Furthermore, signatures linking AML survival to immune-related genes and immune activity
states have emerged and demonstrated similar or improved stratification of patients compared
to the ELN risk categories (Zhu, et al. 2020, Chen, Yongyu, Qiu and Liu 2024, Tang, et al. 2019,
Wang, J., et al. 2024). Recent research in AML has identified immune-infiltrated and immune-
depleted subtypes based on bone marrow transcriptomic profiles (Knaus, et al. 2019, Austin, et
al. 2023). An 'immune dysfunction signature' (IED), derived from patient transcriptional data, has
linked a transcriptional program associated with immune senescence to poorer outcomes for

patients receiving immunotherapy (Rutella, et al. 2022).

Another signature of interest in the IFN-related DNA damage resistance signature (IRDS). The
IRDS signature was originally developed to differentiate between breast cancer tumours that
were sensitive or resistant to adjuvant chemotherapy treatment (Weichselbaum, et al. 2008).
They demonstrated that cells with a high IRDS score (IRDS+) exhibited constitutive STAT1/IFN
signalling and postulated chronic IFNG activation may cause failure to transmit the cytotoxic
signal and instead promote cancer survival. Further to this, Weichselbaum et al found that knock
down of STAT1 decreased expression of IFIT1 and ISG15, which re-sensitised their IRDS (+) cell
line Nu61 to doxorubicin. Implying a connection between those genes and chemotherapy
resistance (Bernasconi and Borsani 2019). Other groups have found high expression of IRDS
genes associated with poorer outcome for chemotherapy and radiotherapy treated patients in
other cancers including glioblastoma (Duarte, et al. 2012), glioma, breast, and prostate cancers
(Tsai, et al. 2007) as well as head and neck cancers (Khodarev, N. N., et al. 2004)and melanoma
(Khodarev, Nikolai N., et al. 2009). In recent years, IRDS genes have been linked to immune-
infiltrated AML, and IFNG-related signatures has also been found to correlate with chemotherapy

resistance and poor survival in AML (Vadakekolathu, et al. 2020, Corradi, et al. 2022).



These new signatures highlight the critical relationship between the immune system and AML in
patient prognosis. IFNG, a key immune-regulating cytokine, enhances cellular immunity and
triggers anti-tumour responses. However, it also contributes to immune evasion and resistance
to chemotherapy (Mojic, Takeda and Hayakawa 2017, Vadakekolathu, Minden, et al. 2020). While
treatment post-hematopoietic stem cell transplant (HSCT) reportedly restores immune activity,
prolonged IFNG signalling is known to suppress immune responses, promote cancer growth, and
cause T-cell exhaustion (Qiu, et al. 2023). A recent study on newly diagnosed AML patients
identified a 47-gene IFNG-related signature that links IFNG signalling scores with immune
activation pathways and resistance to venetoclax treatment. Additionally, the study found that
IFNG scores varied significantly between FAB subclasses of AML, with late maturity AML (FAB
M4/M5) exhibiting the highest scores (Wang, B., et al. 2024).

The varying responses of AML patients to IFNG suggest distinct IFNG response phenotypes,
where IFNG can activate either supportive or suppressive immune pathways. This shift in IFNG
response might correlate with AML progression, activating immune programs in early AML
subtypes, while triggering immune suppressive pathways in mature AML subtypes. The role of
IFNG in cancer progression and immunotherapy response underscores the need to develop

prognostic signatures that focus on the interplay between IFNG, the immune system, and AML.

1.11.2 AML cell lines for generation of a novel signature associated
with IFNG signalling and demethylation status

The examples above were developed using various methods but commonly used clinical patient

samples to derive and validate their scores. In this thesis, a score was developed using both cell

lines and patient data, which was subsequently validated across multiple patient datasets. The

advantages and disadvantages of using cell lines over clinical patient samples are discussed

below.

Biomarkers are measurable indicators of normal or pathogenic biological processes, in addition,
they can be used to assess success of treatments for diseases. Prognostic scores summarise
how the expression of various biomarkers are associated with a potential outcome or biological
state. In cancer, a prognostic score could be associated with overall survival or response to
therapy and used to stratify patients into the correct treatment groups (Qian, et al. 2021). In many
cases, prognhostic scores are developed using patient samples, however, they can be developed
using cell lines as models. Prognostic scores incorporate biomarkers of disease (e.g. blood

pressure, cholesterol, proteins, mMRNA) to identify actionable targets to treat disease, define



outcomes, assign prognosis, and predict responses to treatments (Califf 2018, Prada-

Arismendy, Arroyave and Rothlisberger 2017).

In this thesis, a prognostic index score was developed using changes to transcriptomics profiles
induced by IFNG and demethylation agent 5AzaC. As RNA seq is expensive, only two cell lines
were studied with three repeats of each treatment (IFNG alone, 5AzaC alone and IFNG and 5AzaC
in combination). Therefore, cell lines response to both agents was first profiled using other
methods (chapter 3), before proceeding to a transcriptomic study (chapter 4). Cell lines as
models for cancer research have been discussed at length. A condensed, but not exhaustive,
summary of the strengths and shortcomings of cell lines as models for cancer research when
compared to primary human tissue samples are discussed below (Mirabelli, Coppola and

Salvatore 2019).

1.11.2.1 Advantages of Cell Lines versus human tissue samples for Cancer Research:
Cell lines are easy to purchase, and well regulated. Easy growth and maintenance of cell lines

enables low risk evaluation of how induced genetic mutations, epigenetics, exposure to
environment hazards can affect cancer cell behaviour (Ferreira, Adega and Chaves 2013,
Mirabelli, Coppola and Salvatore 2019). Cell lines are well characterised, and consistent,
allowing more reproducible research than tissue samples, which can vary enormously between
patients (Grizzle, Bell and Sexton 2011). Importantly, novel treatments can be evaluated more
freely than with primary tissues, due to limited supply, before continuing to animal models and

crucially, patients (Mirabelli, Coppola and Salvatore 2019).

In contrast, obtaining human primary tissue for cancer research can be difficult and expensive.
Primary tissue collection is a challenge to standardise, and the tissue may be of variable quality,
which can make it difficult to compare results across studies and rarely are specimens collected
and stored consistently, leading to variation (Grizzle, Bell and Sexton 2011). Furthermore,
maintenance of primary cells required more expertise and yields limited growth at larger costs
than the well-established protocols used for immortal cell lines. Additionally, there are ethical
and legal considerations when collecting tissue from living patients, leading to long waits before
samples are released for research, compared to cell lines, which are immediately available with

no ethical quandaries (Richter, et al. 2021).

1.11.2.2 Disadvantages of Cell Lines versus human tissue samples for Cancer Research:
While cell lines do enable study of mechanisms and signalling cascades, they are limited in their

biological relevance compared to primary tissues. Although isolated from primary cells at some

point, cell lines undergo genetic drift, accumulating many genetic aberrations to enable



unlimited proliferation and atypical cell (Miserocchi, et al. 2017). These aberrations only increase
with continued passages, leading to diminishing returns on biological relevance to the original
tumour tissue (Miserocchi, et al. 2017). Further, while heterogeneity is present between cell lines,
there are fewer differences between cells of the same cell line due to growth from a limited pool
of progenitors, which is not representative of the variation seen in a primary cancer tissue
(Miserocchi, etal. 2017). Additionally, cell lines do not accurately model the complex interactions
between the cancer and surrounding tissues or the immune system, as they are only a singular
component grown in isolation (Ali, et al. 2017). A counter to this is to grow cell lines in artificial
3D cultures, which use biomaterials to form scaffolds that imitate the cells natural environment;
however, these cultures can be complex and expensive, requiring careful experimental design

(Habanjar, et al. 2021).

In comparison, primary cells are of more biological relevance, with the original genome present,
preserving original cell behaviours and molecular properties. Human tissues are the most
biologically accurate representation of cancer in its environment, with high heterogeneity
between cells tissue (Miserocchi, et al. 2017). Primary tissue sample biopsies also remove
healthy cells, retaining interactions with the tumour microenvironment, and enabling study of the

cross talk between cancer and its environment.

1.11.2.3 AML is heterogenous and presents further challenges for cell line models
While cell lines provide an inexpensive and easily manageable model for studying cancers, they

do not accurately represent the subclonal architecture of AML. In AML, newly proliferated blasts
continually accumulate additional somatic mutations, evolving over time from the original cell.
This dynamic is not present in cell lines, where all cells are clonal. Additionally, AML is highly
heterogenous, as evidenced by the M1- through M7 FAB classification system and WHO
subdivision into even more groups. Heterogeneity is influenced by many factors, including but
not limited to, HSC cell of origin, mutational heterogeneity, epigenetic alterations and changes
due to treatments administered (Gu, Dickerson and Xu 2020, Horibata, et al. 2019, Li, Sheng,
Mason and Melnick 2016b). Heterogeneity is important to model for, patients with identical

genetic mutations may respond differently to the same drugs used to treat their tumours.

In this thesis, four cell lines were used, with a wide spread of cytogenetic characteristics taken at
different stages of development sources from bone marrow or peripheral blood, from young and
older patients. Ideally, more cell lines would be used to encompass a wider array of possible
variations, however time and resources available must also be accounted for. The molecular

descriptions, as well as age and sample source for each cell lines are presented in Table 3 below.



Table 3: Details of cell lines used in chapter 3 for studying response to IFNG and 5AzaC treatment, including molecular
description, the source of the original cells derived from and age of the patient donor.

Cellline Molecular description Sampled from Age

AML (FAB M2) 2" relapse following bone marrow
Kasumi-1 | transplant. RUNx1-RUNX1T1 (AML1-ETO) fusion gene; | Peripheral blood | 7
KIT mutation N822

Erythroleukemia that developed into AML following
KG-1 Bone marrow 59
relapse

SIG-M5 Monocytic AML (FAB M5a) at diagnosis Bone marrow 63

AML at relapse carries t (9;11) (p21;923) leading to
THP-1 Peripheral blood | 1
KMT2A-MLLT3 (MLL-MLLT3; MLL-AF9) fusion gene

With a limited number of cancer cell lines available, it is challenging to encompass the
heterogeneity of all genetic and epigenetic variations present in patients without primary ex vivo
samples (Richter, et al. 2021). For this reason, response to IFNG and 5AzaC treatment is also
highly heterogenous and cannot be generalised across all AML. Therefore, discoveries in the AML

cell line models may be limited.

The goal of this work was to develop a novel prognostic index using cell lines treated with IFNG
and demethylation agent 5-AzaC, that might represent patients with IFNG-related

immunosuppressive phenotypes and methylation profiles.

1.11.2.4 Rationale for IFNG treatment
IFNG is known to activate a suite of immunosuppressive molecules which upregulate immune

escape mechanisms and remodel the bone marrow niche to encourage T-cells to polarise to
tolerogenic phenotypes (Ribas 2015, Matatall, et al. 2018, Florez, et al. 2020). Immune escape
mechanisms such as these prevent immune cells recognising and destroying cancer cells, but
also reduce the efficacy of chemotherapy which works in conjunction with immune cells to be
most effective. When chemotherapy destroys AML cells, antigens are released which can be used
to train the immune cells to find and destroy the AML cells (Chen, D. and Mellman 2017). In AML
the immune system is already at a disadvantage due to the inhibited differentiation of blood cells
and bone marrow producing immature non-functional monocytes, creating a weak or none
functioning immune system, therefore chemotherapy cannot amplify the immune systems
effects (De Kouchkovsky and Abdul-Hay 2016). The rationale to treat AML cell lines with IFNG
and use the RNA seq data to generate a signature, was that the changes induced would be
representative of patients with IFNG inducible immunosuppressive AML and may predict patients

for favourable response to HSCT and reduced response to induction chemotherapy.



1.11.2.5 Rationale for demethylation treatment
DNA methylation patterns have been used to stratify acute myeloid leukaemia (AML) risk groups.

Previously a study in AML patients with CEBPA mutations revealed patients could be divided into
two clusters based on DNA methylation variations. A hypermethylated profile was observed in a
cluster made of exclusively CEBPA-double mutations and demonstrated improved prognosis
than patients deemed favourable by cytogenetic risk category (Figueroa, Lugthart, et al. 2010).
Similarly, the authors found NPM171-mutated patients can be categorised into four methylation
clusters, each associated with distinct clinical outcomes. In CN-AML patients without specific
features for stratification, five DNA methylation clusters were identified, highlighting the
prognostic potential for this group (Figueroa, Abdel-Wahab, et al. 2010). In paediatric patients
two DNA methylation signatures associated with cytogenetics were found to significantly
correlate with event free survival (Bolouri et al., 2018). Additionally, Luskin et al applied a
previously developed method for assessing DNA methylation status at 17 prognostic loci
simultaneously they dubbed the M-score (XMELP) (Wertheim, et al. 2014). Application of the M-
score to 166 de novo AML patients showed improvement on cytogenetics, FLT3-ITD status and
genetic lesions for predicting which patients would achieve complete remission (CR) from
induction chemotherapy (Luskin, et al. 2016). The validity of the M-score was confirmed in
multiple independent AML cohorts, underscoring its potential as a prognostic tool (Dinardo, et
al. 2017). Therefore, treatment of cell lines with 5AzaC could identify expression signatures
associated with hyper or hypo methylation, that have the potential to better stratify patients in

the CN-AML category.

1.12 Overview of study

IFNG signalling and demethylation has been associated with an immune-suppressing
environment in AML patients. Since AML impedes the generation of mature specialised immune
cells, it is commonly managed with a combination of chemotherapy and HSCT, therefore AML
exhibiting immune suppression is particularly unfavourable for patients' prospects. This work
aimed to test if AML cell lines demonstrating an IFNG-triggered immune-suppressing phenotype
could be used as models for constructing scores that effectively categorise the overall survival of
AML patients. Higher scores were expected to be associated with immune suppression and
correlate with worse overall survival. Moreover, the combination of IFNG signalling and
demethylation was hypothesised to be more detrimental to patient outcomes when occurring
together rather than individually. The signature generated here is known as a prognostic index
score (Pl score). APl score is a composite measure that predicts disease outcomes by integrating

multiple prognostic factors, each assigned a specific weight based on its relative contribution.



These weights are determined through statistical analysis, often using regression models, to
produce a robust prediction of patient outcomes. Examples of Pl scores include the Nottingham
Prognostic Index (NPI) for breast cancer and the International Prognostic Index for (IPI) non-
Hodgkin’s lymphoma (International Non-Hodgkin's Lymphoma Prognostic Factors Project 1993,
Galea, et al. 1992). Despite these scores being produced in the 1990’s, they are still relevant 30
years later; a testament to their predictive power and the methods used to generate them (Kerin,

et al. 2022, Maurer 2023).

In this study AML celllines (THP-1, KG-1, SIG-M5 and Kasumi-1) were treated with IFNG and 5AzaC
to induce changes in IFNG signalling and methylation profiles. The effect of this treatment on
expression of immunosuppressive molecules and chemotherapy efficacy were measured using
PCR, western blot, flow cytometry and SWATH-MS (Chapter 3). Two cell lines were chosen for
further study (Kasumi-1 & KG-1), where effects of IFNG and demethylation treatment were
characterised using RNA sequencing and ontology-based pathway analysis (Chapter 4). Finally,
the transcriptomic data set produced in chapter 4 was used to create a prognostic index based
on treatment induced changes in cell lines (Chapter 5). Transcriptomic data was analysed using
multiple pairwise linear regression to identify transcripts most differentially expressed in
response to IFNG and 5AzaC. Transcripts were shortlisted for scores based on frequency of
appearances in regression analysis and Pl scores finalised using a forward selection cox
proportional hazards regression model using overall survival (OS) data from the TCGA patient
data set, following method outlined by Wagner and Blamey (Blamey, et al. 2007, Wagner, et al.
2019). Pl scores were tested in the TCGA data set for stratification and correlation with survivalin
clinical subgroups and then validated in the Beat-AML, German-AML, CN-AML and HOVON data
sets. Finally, performance was evaluated against existing signatures (Chapter 5). Full details on

methods used for characterisation and generation of Pl score are described in chapter 2.



2 Methods

Lists of reagents and equipment used can be found in the appendix, see 7.2.

2.1 Cell culture

Ordinarily cells divide only a finite number of times before stopping growth completely. However,
transformation of cells can be induced or occur spontaneously causing cells to become
immortalised and divide indefinitely. Cell lines are useful tools in biology that can be used as
models to study pathology of diseases, screen drugs and test mutations. Cell lines used are

summarised in Table 4.

2.1.1 Routine cell culture of AML cell lines

This study utilised four AML suspension cell lines, full descriptions are detailed in Table 4. All cell
lines were grown at 37°C in a humidified atmosphere with 5% (v/v) CO,. Growing cells were
checked 3 times per week for growth and potential contamination. At ~70% confluency cells were
either split for further growth or used experimentally. To split cells, the suspension was
transferred to a 50 mL falcon tube and centrifuged at 300 x g for 5 minutes. Supernatant was then
removed, and the pellet resuspended in fresh medium. This newly prepared suspension was split

between flasks at a density of 0.5 x 10° cell/mL.

Table 4: Summary of the four AML cell lines used throughout the study. Details important characteristics, company
obtained from, growth conditions used and biological source of the cell line (PB = Peripheral blood and BM = Bone
Marrow).

Growth Cell
wii D ipti - A M/F
Cellline escription Company conditions source ge
nd
i 2 s
0,
Kasumi-1 | transplant. RUNx1-RUNX1T1 | ATCC E%QFCS V) | pg 7 M
(AML1-ETO) fusion gene; KIT .
. L-Glutamine
mutation N822
AML (FAB M6) which Iscove’s MDM
progressed into less 20 % FCS (v/v),
KG-1 differentiated AMLfollowing DSMz 2mM BM 59 | M
relapse L-Glutamine
Iscove’s MDM
i 0,
SIG-M5 IVI'onocyjclc AML (FAB Mb5a) at DSMZ 20 % FCS (v/v), BM 63 | M
diagnosis 2mM
L-Glutamine
AML'at relapse RPMI 1640
carries t (9;11) (p21;923) 20 % FCS (V/v)
THP-1 leading to KMT2A-MLLT3 | DSMZ 5 ml(\)/l " | PB 1 M
(MLL-MLLTS; MLL-AF9) .
. L-Glutamine
fusion gene




2.1.1.1 Trypan blue assay
Cells were counted using a haemocytometer and 0.4 % Trypan blue solution (93595, Sigma

Aldrich). Cells which took on the blue stain of Trypan blue were dead and therefore excluded from
the cell count. The volume for the desired number of cells was calculated according to the
experiment being performed. The calculated volume was either transferred to a flask for further

growth or used experimentally, this step was recorded as a passage.

2.1.1.2 Viability and cell count assay

Additionally, cells being used for flow cytometry experiments were counted using an automated
cell counter and Solution 18 AO.DAPI (910-3018, Chemometec). Solution 18 contains DAPI and
Acridine Orange. DAPI stains dead cells and Acridine orange counter stains both living and dead
cells. NucleoView™ software was used to visualise cells and calculate the concentration of

viable and none-viable cells in samples.

2.1.1.3 Generating cell stocks
Stocks were made at the earliest possible passage once cells had been established as healthy

and reached appropriate volume. The desired number of cells were centrifuged at 300 x g for 5
minutes, the cell pellet was then resuspended in DMSO (67-68-5, Santa Cruz Biotechnology) and
FCS (SH30073, GE Healthcare Hyclone) (10%). DMSO is vital to preventing the destruction of
cells through the formation of ice crystals, however, it is also toxic and therefore diluted in FCS.
The resulting suspension was distributed to cryogenic vials which were then transferred to a
CoolCell Freezing System for 24 hours; to control cell freezing and improve cell viability for

storage at -80°C.

2.1.1.4 Treatment with IFNG — Preliminary work characterising IFNG response
To characterise the AML cell lines response to IFNG; cells were seeded at 0.5 x 108 cells/mL and

suspended in medium containing 5 or 100 ng/mL IFNG for 48 hrs, before further experimental
work. Following treatment, cells were either used immediately for extracellular staining by FACs.
Or the cell pellet and supernatant were harvested for further downstream analysis by gRT-PCR,
colorimetric assay, or SWATH-MS (Sequential Window Activation of All Theoretical Mass

Spectra).

2.1.1.5 Cell pellet and supernatant collection

Samples were kept on ice where possible. Following the treatment described above, the cell
suspension was transferred to a 15 mL falcon and pelleted by centrifugation at 300 x g for 5
minutes. The cells were then washed with 5 mL PBS (BE17-512F, BioWhittaker), suspended in 1

mL PBS, and transferred to a 1 mL Eppendorf for centrifuging at 250 x g for 5 minutes. Medium



was removed and stored at -20°C for use in the kynurenine assay, and pellets stored at -80°C until

RNA extraction.

2.2 Molecular biology techniques

2.2.1 RNA-extraction for quantitative real-time PCR

Cells were grown and treated as described in 2.1and harvested as describedin 2.1.1.5. Cell pellet
RNA was extracted using the RNeasy Mini Kit (Qiagen) as per manufacturers direction. RLT buffer
was prepared by adding 10 ul of B-mercaptoethanol (M3148, Sigma) per 1 ml of Buffer RLT to
improve the quality of RNA extracted by denaturing RNases in the sample. RNA samples were

stored at -80 °C until further use.

2.2.2 Quantification and quality check of extracted RNA

Extracted RNA was checked for quantity and quality using the NanoDrop™ 8000
Spectrophotometer (Thermofisher Scientific). For RNA to pass the quality check; the A260/A280
value had to be above 1.8, and the A260/A230 value had to be between 1.8 and 2.2. The volume

of sample required for 1 ug was calculated for cDNA generation by reverse transcription.

2.2.3 Reverse transcription to generate cDNA

RNA was converted to cDNA using reverse transcription. For each sample, 1 pg RNA was
combined with 1puL oligo dT (C1101, Promega) and the total volume adjusted to 10 pL with
nuclease free water (NFH,O) (AM9930, Ambion). Mixtures were incubated at 70°C for 5 minutes
to promote primers annealing to single stranded RNA efficiently. Samples were then transferred
to ice immediately. After which, 5 ul 5x RT buffer (M531A, Promega) to maintain a favourable pH
for the reaction, 0.7 yl RNasin® (N2515, Promega) to prevent RNA degradation, 1 pyl M-MLV
Reverse Transcriptase (M1705, Promega), 1 ul dNTPs (U1511, Promega), and 7.3 pl NF H,O was
added to each sample. The samples were then incubated at 40 °C in a water bath for 1 hour,
following which, samples were heated to 95 °C for 5 minutes to deactivate the reaction and the

new cDNA stored at -20 °C.

2.2.4 Quantitative real-time PCR (QRTPCR)

Quantitative real-time PCR was used to measure the levels of mMRNA expression of a particular
target in samples. Per reaction, 1 pL of cDNA was combined with 5.75 pL of SYBR Green (172-
5124, Bio-Rad), 0.5 pL of forward and reverse primer to a concentration of 10 uM and 3.75 pL
NFH,O. Samples were analysed with three technical repeats using a Rotor-Gene Q real-time PCR
cycler (Qiagen), a minimum of three biological repeats were used for each primer. Denaturation

was carried out at 95 °C for 5 minutes followed by a 40-cycle program. Each cycle consisted of a



10 second denaturation (95°C), 20 seconds annealing (all genes were optimised to 58°C) and 20
seconds extension (72°C). Experiments were designed to comply with MIQE guidelines (Bustin,
et al. 2009). Samples had to pass melt curve analysis to confirm the amplification of the desired
gene had occurred and results seen were not caused by primer dimers. Samples were checked
for contamination by using NTCs (no template control) in each batch ran. Biological replicates
were used to ensure the differences in qPCR results were a consequence of treatment and not a

product of batch variation.

2.2.5 Primer efficiency testing

Primers were tested for efficiency prior to use. A test sample of cDNA was diluted 5-fold to create
a serial dilution. All primers were analysed using the method for qRT-PCR described above. A
standard curve was generated from the serial dilutions with the equationy = mx + b, where m (the
slope) indicates the primer efficiency. The m value -3.32 gives 100% efficiency and so a slope as
close to this value as possible is desirable. For primers to pass efficiency testing they had to

display between 90 and 110% efficiency. An example is given in Figure 4.
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Figure 4: Example of a standard curve generated to test for primer efficiency.

2.2.6 RNA extraction for Next Generation Sequencing (NGS)

Cells were grown until confluent and treated with either a single dose 5 ng/mL IFNG or 0.5 pM 5-
Azacytidine every 24 hrs, alone or in combination, over the course of 48 hrs. Cells were harvested
as described in 2.1.1.5. Cell pellet RNA was extracted using the RNeasy Mini Kit (Qiagen)
following the instruction manuals extraction process for cell line samples, with the addition of
the on column-DNase digestion step to eliminate DNA and ensure RNA purity. RLT buffer was
prepared by adding 10 pl of B-mercaptoethanol (M3148, Sigma) per 1 ml Buffer RLT to improve
quality of RNA extracted by denaturing RNases in the sample. DNase | stock solution was
prepared by dissolving the lyophilised DNase | in 550 uL RNAse free water provided in the kit using

a syringe. RNA samples were stored at -80 °C until further use.



2.2.7 Preparing RNA for sequencing by Novogene

Priorto sending the samples to Novogene for analysis they were assessed for quantity and quality.
First the samples were assessed using the NanoDrop™ 8000 Spectrophotometer, following
instructions of the manufacturer. This was to ensure that the sample concentration fell within the
range of 5-500 ng/uL required by the Agilent bioanalyser 2100 (Agilent). Samples were then
measured using the Bioanalyser 2100 with the RNA Agilent kit and RNA Nano chips following the
manufactures instructions, to ensure concentration was appropriate and RNA integrity number

(RIN) was the required minimum 6.8 or above.

2.3 Metabolic and Protein profiling assays

2.3.1 Kynurenine assay

A standard curve was generated by diluting a 50,000 pM L-Kynurenine (K8625, Sigma-Aldrich)
stock in medium corresponding to the cell line being tested, to make 14 standards ranging from
0 pM to 200 pM concentration. Cell medium without cells or kynurenine was used as a control.
Then, 150 puL 30% trichloroacetic acid (T6399, Sigma Aldrich) was added to 300 pL of each
standard, control, and sample, before vortexing and centrifuging at 8000 x g for 5 minutes at 4°C
and supernatant then removed. Ehrlich’s reagent was prepared by adding 20 mg p-
dimethylaminobenzaldehyde (156477, Sigma Aldrich) per 1 mL glacial acetic acid (A2683, Sigma
Aldrich). 75 pL of standard, control and samples were loaded onto 96 well plate in triplicate and
an equal volume of Ehrlich’s reagent added and mixed. Plates were read after 15 minutes
incubation at 492 nm, on a Tecan infinite m200 Pro plate reader. Sample absorbance at 492 nm
was compared to a standard curve of kynurenine concentrations, and sample concentrations

estimated usingy =mx + C.

2.3.2 Protein extraction for Western blot and mass spectrometry analysis

Cells were grown for 48 hrs with and without 100 ng/mL IFNG treatment, then harvested as
previously described in 2.1. To each sample, 300 pL of RIPA buffer (89900, Thermo Scientific),
spiked with 1 in 100 Halt protease and phosphatase inhibitor cocktail 100x (1861281, Thermo
Scientific) was added to prevent proteolysis and loss of phosphate groups. In addition, 0.5 M
EDTA Solution 100x (Thermo Scientific) was added to further inhibit proteases by eliminating free
divalent cations. Samples were left on ice for 30 minutes, passed through a 29G fine needle 10
times, sonicated for 5 minutes, and then centrifuged at 12,000 x g for 15 minutes at 4°C.

Supernatant were stored at -80°C until further use.



2.3.3 Measurement of protein concentration using Pierce assay

Protein concentration for SWATH-MS samples was measured using Pierce protein assay; a
colorimetric assay that exhibits less variation than dye binding methods. To prepare the reagent,
1g of lonic detergent compatibility reagent (22663, Thermo Scientific) was added per 20 mL
Pierce™ 660 nm protein assay reagent (22660, Thermo Scientific). A pre-diluted protein assay
standard BSA set (23208, Thermo Scientific) was used with the following concentrations: 0, 125,
250, 500, 750, 1000, 1500, 2000 pg/mL. Samples were prepared for the assay by diluting 1in 10
in DDH20 to eliminate background interference from the lysis buffer. RIPA lysis buffer was diluted
1in10in DDH20 to act as a background control. In addition, 10% 100x Triton (T8787, Sigma) was
added to each sample to a total concentration of 0.8% Triton to prevent RNA/DNA in the samples
forming a precipitate. 10 pL of each sample, standard and background control was added to a 96
well plate in triplicate. Then 150 pL of protein assay reagent was added to each well, the plate
was left to incubate for 5 minutes at room temperature and absorbance measured at 660 nm

using a Tecan infinite m200 Pro plate reader.

2.3.4 Measurement of protein concentration using Bio-Rad assay

Protein concentrations for use in western blot were measured using the Bio-Rad protein assay
dye reagent concentrate (5000006, Bio-Rad). The dye reagent was prepared by diluting dye
reagent concentrate with DDH20 water 1 in 5. Protein standards were generated by diluting the
1000 pg/mL protein assay standard from the BSA set (23208, Thermo Scientific) with DDH20
water to concentrations: 0, 50, 100, 200, 300, 400 and 500 pg/mL. Samples were diluted 1in 10
in DDH20 to eliminate background interference from the lysis buffer. RIPA lysis buffer was diluted
1in 10 in DDH20 to act as a background control. Then, 10 pL of each sample, standard and
background control was added to a 96 well plate in triplicate. To complete the reaction, 200 pL of
diluted dye reagent was added to each well and mixed using a multipipette. The plate was
incubated for 5 minutes at room temperature, before absorbance was measured at 595 nm using

a Tecan infinite m200 Pro plate reader.

2.3.5 SDS-PAGE
In preparation for detection of target proteins by western blot, 30 ug of cell lysates were separated
using SDS-PAGE and transferred to a nitrocellulose (NC) membrane for staining. First samples

were reduced for SDS-PAGE.

2.3.5.1 Reducing samples for SDS-PAGE
Denaturation of sample protein is necessary for efficient separation by SDS-PAGE. Laemmli

buffer is a reducing agent which reduces inter and intra-molecular disulphide bonds resulting in



protein denaturation and providing proteins with negative charge. Sample were prepared for
separation by molecular weight by adding samples at a 3to 1 ratio to 4 x Laemmli buffer (1610747,
Bio-Rad). Lysates were then incubated at 95°C for 10 minutes using a heating block, once cooled

to RT samples were immediately used.

2.3.5.1.1 Running SDS-PAGE
Premade gels 4-20% Mini-PROTEAN® TGX™ Precast Protein Gels (4561093, Bio-Rad) were

inserted into the appropriate running module and placed into the transfer tank. The tank was filled
with running buffer up to the line indicated by the apparatus being used. In each experiment, 30
pg of sample was loaded alongside 5 pL of Precision Plus Protein™ WesternC™ Standard
(1610385, Bio-Rad). To separate proteins the gel was run at 50 V for 5 minutes to check for even

running and then ran at a constant 100 v for 1 hr.

2.3.6 Western blot
Once proteins in samples were separated by SDS-PAGE they were probed for targets of interest

using western blot.

2.3.6.1 Transfer of proteins on to nitrocellulose membrane
Following separation by SDS-PAGE, proteins were transferred from the gel to a NC membrane.

For this process, a “sandwich” was constructed from sponge, filter paper, the gel and NC
membrane. All components were pre-soaked in transfer buffer prior to assembly and the order of
stacking is shown in Figure 5. As the proteins have a negative charge, they move out of the gel,

towards the positively charged anode, and on to the membrane during the transfer.
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Figure 5: A diagram showing the orientation of components for the “sandwich” used to transfer proteins from gel to
membrane.

The assembled sandwich was then placed in the transfer tank with electrodes matching the tanks

orientation to ensure current flows. Then, the sandwich was submerged in transfer buffer and a



current of 200 mA applied for 1 hour. To prevent sticking of the gel to the membrane due to heat

caused by the current, the tank was kept cold in a polystyrene boxed filled with ice.

2.3.6.2 Detection of target proteins on nitrocellulose membrane

Successful transfer of proteins was indicated by a visible ladder on the membrane. Following
transfer, the membrane was cut into sections according to the molecular weight of proteins of
interest (POI). Sections were incubated in blocking buffer for 1 hour at RT while shaking. For
standard proteins, blocking buffer was made up of 1 x TBST and 5 % fat free milk powder. For
phosphorylated protein, blocking buffer was made of 1 x TBST and 5 % BSA. The blocking step is
essential as it prevents none-specific binding of antibodies. After the blocking step, blocking
buffer was replaced with fresh blocking buffer combined with specific antibody for the POl added
at manufactures recommended concentration. Membranes were incubated with the primary

antibody overnight at 4°C on a shaker.

After overnight incubation, primary antibodies were drained off the membranes which were then
washed 3 times for 10 minutes with 1 x TBST at RT on a shaker to remove unbound antibody. Host
specific secondary antibody and conjugate for the molecular weight ladder were added to
blocking buffer at manufactures recommended concentration. The membranes were incubated
at RT on a shaker for 2 hours. Membranes were washed 3 times for 10 minutes with 1 x TBST at RT
again. Following the wash step, membranes were placed individually on a dark backing board and
clarity western ECL substrate (1705060, Bio-Rad) was added at a 1:1 ratio. Imaging of blots was

carried out on a Syngene G:Box with exposure time ranging from 30 seconds to 3 mins.

2.3.7 Flow cytometry

Flow cytometry is a technique which can be used to analyse expression of multiple protein targets
on large volumes of cells rapidly. Cells are ‘labelled’ with fluorochromes which bind to the POI.
Cells are injected into the flow cytometry instrument where they enter the flow chamber. Here,
hydrodynamic focusing occurs by laminar sheath flow facilitating cells to be positioned central
to the laser. When fluorochromes are hit by the laser they absorb its wavelength of light and emit
at a different wavelength in response. This sighal is used to quantify the target protein present on
the cell, and hundreds of cells can be analysed per second. The high quantities of data are

collected and processed by computer.

The phenotyping of cells for adaptive immune response (AIR) targets and IFNy response was
carried out using a Beckman Coulter Gallios™ flow cytometer instrument. The Gallios has a
capacity of 10 fluorescent channels; the laser wavelengths and filter details are shown in Table

5.



Table 5: A summary of Beckman Coulter GalliosTM laser wavelength and filters used.

Laser Excitation Channel Emission
wavelength wavelength
FL1 525/40
FL2 575/30
Blue 488 nm FL3 620/30
FL4 695/30
FL5 755 LP
FL6 660/20
Red 638 nm FL7 725/20
FL8 755 LP
Violet 410 nm FLS 450740
FL10 550/40

2.3.7.1 Extracellular staining by flow cytometry for cellimmunophenotyping
Prior to running samples, compensation was carried out per core facility guidance using cell

populations which were negative for the utilised fluorochromes. Each cell line was grown with
and without 100 ng/mL IFNG, 2 million cells were taken per treatment sample and split into 4
FACS tubes containing 0.5 million cells each. Samples were centrifuged at 400 x g for 5 minutes
at 4°C and medium decanted. Then washed with 2 mL cold pbs and centrifuged again and kept
on ice. 100 pL FACS buffer was added to all samples along with recommended volume of
antibodies according to manufacturer. For each treatment, 3 staining conditions were used,;
unstained control, L/D viability control and stained. Samples were vortexed and incubated with
labelling antibodies for 30 minutes at 4°C protected from light. 200 uL of Isoton was added to

each FACS tube and samples were analysed using a Gallios flow cytometer (Beckman Coulter).

2.3.7.2 Determining Daunorubicin EC50 for Kasumi-1
Cells were grown until confluent; centrifuged at 300 x g for 5 minutes and supernatant removed.

Cells were then suspended in fresh medium and seeded at 5 million cells per 10 mL medium in
T25 flasks. They were then dosed with Daunorubicin (30450, Sigma-Aldrich) at 0, 0.2, 0.4, 0.6, 0.8
and 1 pM. The flasks were incubated at 37°C for 48 hrs and viability determined by Gallios flow

cytometer (Beckman Coulter).

2.3.7.3 Testing cell line viability post exposure to IFNG, 5AzaC and Daunorubicin
Cells were grown until confluent; centrifuged at 300 x g for 5 minutes and supernatant removed.

Cells were then suspended either in fresh medium only, or fresh medium containing 0.5 ng/mL
IFNG or 0.5 uM 5-Azacytidine (A2385, Sigma Aldrich) and were seeded 5 million cells per 10 mL
medium in T25 flasks. They were then dosed with Daunorubicin (30450, Sigma-Aldrich) at 0, 0.1,



0.2, 0.4 and 2 uM. The flasks were incubated at 37°C for 48 hrs and viability determined by Gallios

flow cytometer (Beckman Coulter).

2.3.7.4 Annexin V staining
In live healthy cells phosphatidyl serine (PS) is located on the inner cytoplasmic layer of the

plasma membrane. When apoptosis occurs, the plasma membrane structurally shifts, and PS
translocates to the out layer of the membrane. Annexin V is a cellular protein which has high
affinity for PS and can be used to detect apoptosis. To act as a dye, Annexin V is conjugated to a
fluorescent or enzymatic label, where signal is proportional to number of PS bound. The
difference in signal produced between live and apoptotic cells is typically 100-fold, allowing for
easy distinction between populations during analysis. As compromised plasma membranes can
provide Annexin V passage into the inner leaflet of the cell, it is advised to use a live cell stain in

tandem to avoid false positives.

2.3.7.5 LIVE/DEAD staining
Using a live cell stain such as LIVE/DEAD fixable stain, in combination with Annexin V both

prevents false positive readings and provides more information to distinguish between cell
populations which are live, apoptotic, and dead. Annexin V alone runs the risk of staining the inner
leaflet PS in compromised cells, which may be necrotic rather than apoptotic. The LIVE/DEAD
stain is based on fluorescent reactive dye that detects amine groups on proteins. As this dye does
not penetrate intact live cell membranes, it only binds outer cell membranes producing a dim
signal for live cells. Dead cells have damaged membranes, allowing the stain access past the
membrane and bind to both exterior and interior proteins, causing a much brighter signal,
typically greater than 50-fold compared to live cells. Therefore, when used in combination, cells
testing as Annexin V positive, and LIVE/DEAD negative, can be more confidently assigned as
apoptotic. As it can be assumed the annexin staining is from the outer leaflet and the membrane

has been shown to be uncompromised by low LIVE/DEAD signal.

2.3.7.6 Viability staining by flow cytometry
For viability assays, 2 million cells were taken per sample type and split into 4 FACS tubes

containing 0.5 million cells each. For each treatment, 4 staining conditions were used; unstained
control, L/D viability control, annexin control and stained. Samples were centrifuged at 400 x g
for 5 minutes at 4°C and medium decanted. Then washed with 2 mL cold PBS and centrifuged
again and kept on ice. 100 pL FACS buffer was added to all samples, except for the annexin
control. Annexin Vis dependent on calcium for binding, therefore 100 pL of calcium free PBS was
added to ensure a correct baseline. Samples were vortexed and incubated for 30 minutes at 4°C

protected from light with 0.5 pyL L/D viability dye. After this, 2 mL PBS was added to all samples



SSINT

which were centrifuged again at 400 x g for 5 minutes at 4°C. Medium was removed and 200 pL of
cold Annexin v binding buffer (422201, BioLegend) was added to all samples except for the
annexin control, which was suspended in cold PBS. Samples were incubated at RT for 15 minutes

protected from light, then analysed using a Gallios flow cytometer (Beckman Coulter).

2.3.7.7 Gating Strategy for analysing extracellular staining
Flow cytometry data was analysed using Kaluza 2.0 (Beckman Coulter), the gating strategy is

outlined in Figure 6. The first step was to identify the live single cell population of interest. To
exclude debris, forward scatter (FS) was plotted against side scatter (SS) in step 1. Step 2 was to
plot FS height (FS TOF) against FS area (FS INT), to remove doublets from the analysis. This is
important as doublets are read as one event, when they are in fact two events, and this can skew
results. Live/dead stain (3) was used to further ensure the population gated was live, by excluding
the dead population, which auto-fluoresce. The cell viability dye used was an amine dye, which
fluoresces when it binds to amine groups on proteins. Live and dead populations were
distinguished by intensity of the signal. As live cells have their membranes intact, there are fewer
proteins to be bound by the dye therefore producing a lower signal. In contrast, dead cells
membranes are damaged and so the dye can permeate through and bind to more proteins inside,
resulting in a higher intensity signal. The low sighal intensity population (Live cells) was gated (3)

and other targets of interest were exclusively measured from this population (4).

3 1 LIVE/DEAD fixable yellow dead 4 APC/FIRE 750 HLA-A, B, C 755 LP
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Figure 6: Gating strategy for cell surface staining data obtained through flow cytometry. 1) Shows gate A being placed on
a FS/SS plot excluding dead cells and debris. 2) FS TOF plotted against FS INT and gate J placed to remove doublets in
data. 3) Live/dead viability dye was used to exclude dead cells from analysis and gate C placed. 4) Example of HLA-A,B,C
target MFl measured in gate C population

2.3.7.8 Gating Strategy for analysing living populations

The gating strategy for the annexin V and Live dead staining experiments was the same as above,
except for step 1, where all cells were gated in the FS vs SS plot. More detail on gating is shown in

chapter 3.



2.4 Mass Spectrometry

Correlation between transcriptome and proteome is not absolute, and can be influenced by
transcript and protein half-life, mMRNA degradation and post-translational modifications
(Chakraborty, et al. 2018). Proteins are the final functional product of the transcription to
translation mechanisms. As proteins control most cellular processes, it is important to
understand how they are disrupted in cancer cells. Proteomics is the identification and
quantification of proteins present at time of sampling and is key to understanding functional
changes in cell. Proteomics studies are commonly carried out by protein mass spectrometry,
which has advanced in recent years to accommodate identification of more than 12,000 proteins
and 10,000 PTM sides in a single sample. MS has been used to generate proteomes of cancer
patients, but the workflows required to do this are very specialised and unlikely to be clinical

routine for a long time (Doll, Gnad and Mann 2019).

Typically, the sample is vaporised, then ionised by bombardment with electrons, which causes
whole molecules to become charged or break into charged fragments. Samples are then
accelerated and exposed to an electronic or magnetic field. This causes separation, as
depending on the samples mass to charge ratio, they will be ‘deflected’ to different extents. lons
are detected by an electron multiplier and results are displayed as spectra. Components of the
sample can be identified by comparing masses obtained to masses of known molecule or known

fragmentation patterns.

The primary challenge of using mass spectrometry for proteomics, is that proteins usually exist
in complex mixtures within a biological medium. The first problem to be addressed is that the
ionisation techniques used for large molecules require equal amounts of each molecule present.
This is rarely the case in biological samples which can wildly differ in volumes of component
proteins present. If a mixture like this is ionised then proteins in higher abundance will supress
signals of low abundance proteins, leading to a loss of important data. The second problem is
that the mass spectra produced by protein samples is highly complex and therefore hard to
correctly interpret. To combat these problems high-performance liquid chromatography (HPLC)
is applied prior to MS. This technique separate mixtures into peaks, the contents of which can be

identified based on the mass spectrum they produce.



2.4.1 The advantages and limitations of the SWATH-MS approach to
proteomic profiling

Proteomic profiles were generated and compared between IFNG treated and untreated cell lines
using mass spectrometry (MS), specifically the SWATH-MS method. When a compound is
analysed by MS, the first step is for the compound to be transformed into gas phase ions, for
example by bombarding it with electrons. The ion produced then fragments into smaller charged
molecules such asions and radicals, which themselves can further fragment. This produces ions
of different sizes and charges, which can then be separated by their mass to charge ratio (m/z)
and detected according to their abundance (De Hoffmann and Stroobant 2007). There are three
approaches to generating proteomic profiles using mass spectrometry analysis, which have been
developed to meet different research needs (Domon and Aebersold 2010) These methods are
data-dependent acquisition (DDA), selected reaction monitoring (SRM) and data-independent
acquisition (DIA) (Liu, Y., et al. 2013). All these analysis types are performed using two MS in
tandem, designated MS1 and MS2. Samples are ionised and passed through MS1 for screening
and separation based on their m/z ratio, then ions of a particular m/z ratio are chosen for further
fragmentation. These fragments are fed to MS2 for further separation by their m/z ratio and
detected to produce a fragment ion spectrum which is matched to a premade library for

identification of peptides (De Hoffmann and Stroobant 2007).

The first approach is data dependent acquisition (DDA). This approach is suited to bias free
discovery research as it requires no prior knowledge on the analyte and selects proteins of
interest based on ions with the highest abundancy (Sidoli, et al. 2015). The main drawback of this
approach is that the most abundant ions can vary between samples, which leads to varied
quantitation and inconsistency in peptide detection alongside reduced reproducibility of results
(Wu, J. X, etal. 2016). In the event of too many peptides co eluting in a single MS1 screening, DDA
preferentially samples highly abundant peptides, and low abundancy peptides are left
unreported. A further drawback is that peptides are only sampled once or twice, preventing

precise quantification (Hu, Noble and Wolf-Yadlin 2016).

Some of the drawbacks of DDA are countered by the selected reaction monitoring (SRM) method,
which is sometimes referred to as targeted proteomics. SRM accurately and reproducibly
analyses samples multiple times compared to DDAs once or twice, to quantify a set of
preselected proteins (Hu, Noble and Wolf-Yadlin 2016, Liu, Y., et al. 2013). SRM can achieve a
higher sensitivity than DDA and detect low abundance proteins, with the caveat that analysis is

restricted by prior knowledge and detection is limited to a known predefined list of proteins. In



addition, SRM is limited to up to one hundred proteins per run, compared to DDA thousands (Hu,

Noble and Wolf-Yadlin 2016).

The data independent acquisition (DIA) method differs from the DDA and SRM methods. Firstly,
unlike DDA where precursor ions are chosen by MS1 scan to be detected by MS2, fragment ions
are continuously acquired without bias by MS2. Furthermore, unlike SRM, no prior knowledge of
peptide precursor m/z values is used, and is therefore based on targeted data extraction, as
opposed to SRM which is based on targeted MS acquisition (Ludwig, et al. 2018). In SWATH-MS,
the fragment ion spectra within a defined window of m/z are measured, this is repeated over
several cycles across the complete m/z range (Ludwig, et al. 2018). This method gives three
pieces of information for a fragment, which are retention time, m/z and abundance (Gillet, et al.
2012). Which can then be matched to a spectral library for identification. SWATH-MS allows for a
mid-ground between DDA and SRM, identifying large quantities of peptides with a higher

reproducibility than DDA, but not to the same sensitivity as SRM.

SWATH-MS peptide quantification is still three to ten-fold less sensitive than SRM methods, and
so is not the best option for any research seeking quantification of low abundance proteins
accurately (Gillet, et al. 2012). Furthermore, data analysis is more challenging than DDA. Peptide
query parameters (PQP) are set up using spectral libraries generated from previous experiments.
PQPs include chromatographic elution times of peptides, optimal peptides for a protein and most
intense fragment ions associated with target protein under applied fragment conditions (Ludwig,
et al. 2018). The parameters set allow for successful identification of peptides by peptide centric
scoring (PCS). PCS uses a pre-defined list of peptides and assess if those peptides are in the
acquired data and to what confidence. This method of analysis is used in SRM as well as DIA
methods such as SWATH-MS (Ludwig, et al. 2018). SWATH-MS was used to compare cell line
responses to IFNG based on their proteomic profiles and select cell lines for further study with

NGS.

2.4.2 Generating samples for cell line characterisation by SWATH-MS

Samples for all four AML cell lines were stimulated for 48 hrs with 100 ng/mL IFNG and harvested
and pellets were lysed. Protein concentrations of lysates were estimated using the pierce protein
assay, as described in section 2.3.3. Finally, the calculated volume for 50 pg of each sample was

distributed to eppendorfs in duplicate and stored at -20 °C until samples were analysed.



2.4.3 Sample analysis by SWATH-MS

Analysis of samples was performed using a SCIEX TRIPLE TOF® 6600 mass spectrometry
instrument linked to an Eksignent NanoLC 425 HPLC system following Lambert et als method
(Lambert, et al. 2013) by Dr Amanda Miles, Dr David Boocock and Dr Clare Coveney. Samples
were loaded into the LC system for fractionation by reverse phase HPLC. To do this 3 pL of each
sample was injected on a YMC (15 cm by 0.3 mm) Triaer-C18 column and ran using the microflow
setting (5 yL min). Independent Data Acquisition (IDA) was used to generate the spectral library.
This was then passed through targeted analysis by SWATH-MS data acquisition. Files generated
by IDA analysis of cell line lysates were searched, first separately, then pooled together using
Protein Pilot 5.0 (SCIEX) and the Human Swissprot database. The OneOmics assembler was used
to assemble data and generate fold change with confidence data for each protein change and
normalisation was carried out by Dr Amanda Miles according to method outlined by Jean-Phillipe

(Lambert, et al. 2013). A 1% False Discovery Rate (FDR) was used as a cut-off point.

2.5 Transcriptomics

Transcriptomics is a technique used to detect and quantify the complete set of coding and none-
coding RNA transcribed from the genome at a given time. The transcriptome is more complex and
transient in nature than the genome as it can be influenced by cellular, environmental, and
external stimuli (Chakraborty, et al. 2018). The first widely used technique to build transcriptomic
databases was the microarray, which uses a chip spotted with cDNA molecules that bind to
complimentary sequences present in the sample. However, microarrays are limited by the need
for prior knowledge of the transcriptome to design probes and can therefore produce bias results.
Consequently, microarrays were superseded by RNA sequencing (RNA-seq), which does not use
transcript specific probes and so is unbiased in its detection. Additionally, RNA-seq has a higher
specificity and sensitivity allowing it to detect low expression transcripts (Chakraborty, et al.
2018). The main application of this technology is to identify genes which exhibit differential

expression between cancer and non-cancer states and provide insight into the proteome.

2.5.1 RNA sequencing of cell line samples

The RNA sequencing was carried out by third party Novogene using their Illumina NovaSeq
platforms, which use a paired-end 150 bp sequencing strategy. The statistical analysis for
differential expression between samples and FDR correction were also carried out by Novogene

using the dseq2 analysis package.



2.6 In silico analysis of experimentally acquired and publicly
available data sets
In silico analysis was used to further investigate and compare the proteomic and transcriptomic

data sets generated from cell lines treated with and without IFNG.

2.6.1 Filtering of mass spectrometry analysis data

All proteins with a confidence above 60% were considered to have undergone a significant
change in expression. To further consolidate targets, only changes of two-fold or more were
further considered for proteins with confidence level between 60 and 75% confidence. Finally,

the resulting significant proteins were presented as a heat map.

2.6.2 Metascape analysis

Mass spectrometry data was uploaded to Metascape as a gene list. A ‘one click’ analysis was
used to assess enriched pathways per cell line. Biological processes associated with IFNG were
selected and presented as a heat maps and tables. NGS data was treated in the same way, with

statistically significant genes predetermined by Novogene analysis and uploaded to metascape.

2.6.3 Identification of a gene signature using cell line transcriptomic data
and patient data sets

Patient data sets are an excellent alternative resource to overcome limited availability of patient
samples. For the most part, patient data sets that are publicly available are derived from
transcriptomic or genomic experiments, it is rarer to find proteomic data bases. These data sets
provide quantified expression of target genes or mRNA, but also clinical data for the patients.
They provide an alternative no lab-based resource for validation of signatures, with clinical
parameters that can be used to study specific patient groups. In this study, cell lines treated with
IFNG, 5AzaC or both were used to generate a transcriptomic dataset, which was then applied to
the TCGA-AML data set to generate signatures associating the treatment to patient survival.
These signatures were further validated in the BeatAML, German-AML and CN-AML data sets for

clinical validation. Data sets were obtained from the cbioportal platform (Table 6).



Table 6: Table of patient data bases used for discovery and validation of prognostic index scores in chapter 5. Title is
given, along with number of samples, if the data set was used for discovery or validation and a link.

Title Number of Tra.lnlng or Link
samples validation set

Acute Myeloid . .

Leukaemia (TCGA, | 200 Training :;‘:S,;/ig"i‘l";"r‘l’q'lctzfzortjtorg/swdy/s”m

NEJM 2013) y: -tega_p

Beat AML 672 Validation https://www.cbmportal.org/study/sum
mary?id=aml_ohsu_2018

Acute myeloid

leukaemia samples . . .

=< 60yrs on HG- | 537 Validation h;c;zsc./clv:zvavz.cl'l:(l;ggén;ér]llh.gov/geo/quer

U133 plus 2 yrace.cgl:

(German series)

Prognostic gene

signature for s https://www.ncbi.nlm.nih.gov/geo/quer

normal karyotype 405 Validation y/acc.cgi?acc=GSE12417

AML (CN-AML)

E-MTAB-3444 oy https://www.ebi.ac.uk/biostudies/array

(HOVON) 662 Validation express/studies/E-MTAB-3444

2.6.4 Statistical analysis of omics data

There are three components to transcriptomic analysis of RNA seq, these are pre-processing of
data, statistical analysis and functional interpretation or application. Pre-processing of data
involves short read alignment and assembly, as well as artifact filtering (Fang, Martin and Wang
2012). For this thesis, pre-processing of data was performed by the company Novogene using
Dseqg2 and data was received as RNA-seq data set where transcript levels were reported as
discrete counts. For any data set there will be more than one type of statistical analysis that is
appropriate, each with their own strengths and limitations. The same data set analysed via
different techniques could produce similar or markedly different results. If the computing power,
expertise, and resources are available, it is recommended to use multiple methods and

investigate transcripts commonly reported (Mou, et al. 2020, Liu, X., et al. 2022).

2.6.5 Methods of statistical analysis used to assign significance to
variation between samples
2.6.5.1 T-Test

T-tests are commonly used statistical tests which evaluate if the mean of a variable is
significantly different between two sample datasets. Different T-tests are used depending on the

number of samples in each group, distribution and variance of the populations and relationships



between groups (Student 1908, Welch 1947, Kim, T. K. 2015). The null hypothesis is that the mean
is the same in both samples. In the case of this thesis, this was used to compare the differential
expression of a gene or protein between two samples. The T-test is a basic test, which is limited
by its capacity to only compare two data sets and is not appropriate for data with lots of variation
or noise, which is common in large omic data sets. Furthermore, if multiple variables are also
being tested and exceed the number of samples, as in the case of patient data sets with
thousands of variables to only a few hundred samples, then type 1 errors (false positives)
likelihood are increased (Korthauer, et al. 2019). When performing multiple comparisons,
posthoc tests such as the stringent Bonferroni procedure can be applied to limit false positives,
however this is at the cost of statistical power resulting in reduced detection of true positives

(Grandhi, Guo and Peddada 2016).

2.6.5.2 Wald test with Benjamini-Hochberg correction
Novogene provided statistical analysis of differential expression of transcripts using the Dseq?2

analysis package and Wald test. The Wald test is used for hypothesis testing to compare two
groups. First the parameters for the model are estimated. In this case the log fold change is the
coefficient for each parameter and is estimated by maximum likelihood. The log fold change is
divided by its standard error to produce the z-statistic. The z-statistic is then compared to a
standard normal distribution, where a p-value is calculated. The p-value is the probability of the
z-statistic being observed by random chance. The lower the p-value, the smaller the probability
of the z-statistic being obtained by chance is, and the more likely the change in expression levels
is significant. As the test is being carried out on >20,000 transcripts, and the Wald-test used a
significance cut-off of P<0.05, there is a 5% chance of false positives, resulting in thousands of
‘positives’ being by chance. DSeq2 applies the Benjamini -Hochberg (BH) correction to control
the false discovery rate (FDR), where transcripts were ranked by reported p-value and then

multiplied by n/rank, where n=total number of tests.

n

)

2.6.5.3 Holm-Sidak correction for multiple comparisons

BH correction=p X
p (rank

The Holm-Sidak method corrects multiple comparisons by adjusting the significance level for
each test to control the Type | error rate. It ranks p-values, progressively tightening significance
levels as comparisons are made. The most significant test is evaluated at the standard
significance level (e.g., 0.05), while the subsequent tests are evaluated at more conservative
levels to account for the multiple comparisons. If a test's p-value is lower than its adjusted

significance level, you can conclude that it's statistically significant. This method increases



chances of avoiding false positives when conducting multiple tests, enabling more reliable

inferences while maintaining controlled statistical significance (Holm 1979).

2.6.5.4 Principal component analysis (PCA)
In large data sets, such as in omics, where there are thousands of variables, interpretation is not

straight forward. Principle component analysis is a statistical technique which reduces the
number of variables of large-scale data, so that it is more interpretable, but the original variance
and information of the data is preserved (Jolliffe and Cadima 2016, Ringnér 2008). PCA uses the
original data set to produce new variables ‘Principal components’ (PC), which are linear functions
of groups of variables in the starting dataset. PCA identifies which variables explain the largest
variance in the data set, with PC1 being responsible for the most, and each subsequent PC
representing less variation. The top PCs can be plotted against one another to separate the
samples of the cohort. For example, separating healthy controls from a diseased group, or a
cohort who have received a treatment vs those who have received a placebo (Zhang, Ping, et al.
2019). Principal component analysis was used to analyse proteomics data to confirm treatment
with IFNG and 5AzaC had caused significant changes in protein expression profiles of cell lines

compare to untreated.

2.6.5.5 Pairwise linear regression
The relationship between data sets can be examined using pairwise linear regression. Pairwise

linear regression can offer more statistical power over the standard T-test, as it utilises multiple
comparisons, as opposed to one over all tests. Using the example of transcriptomics for this
thesis, the transcriptome expression counts of a treated cell line can be plotted as the dependent
variable against the transcriptome of an untreated cell line as the independent variable, example

given in Figure 7:
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Figure 7: Pairwise linear regression of Kasumi-1 5AzaC repeat 2 against Kasumi-1 untreated control sample 1.
Expression of each transcript is from each sample are plotted against each other as x,y coordinates, and a line of best
fitis drawn.

From this plot, a line of best fit described by Y=mx+b can be calculated, where m is the slope of
the line and b is the Y intercept where the line crosses the Y axis. The coefficient of determination,
R? indicates the percentage of variance in in the dependent variable (Y axis) that is predicted by
the independent variable (X axis). The residual output is then calculated for each observed
variable where Residual output= observed y value — predicted y value. Residuals measure the
difference between the predicted and observed value, with larger residuals indicating larger
deviations from the expected value. A residual can then be divided by the standard deviation of
all residuals in the data set to produce a standardised residual (Kim, H. Y. 2019). An observation
of 2-3 standardised residuals or more away from the predicted value indicate further investigation
warranted to determine if the difference is a result of causation or just chance. In the example
above, MPO is 73 standard residuals below predicted value, which could be caused by treatment
of cell line with 5AzaC. To further narrow down the list of variables of interest, the regression can
be performed multiple times with data generated from biological repeats. A cut off point can be
determined, for example the top 500 most deviating variables according to standard residual
output, or anything above 3 standard residuals depending on the data obtained. Variables in
these lists can be compared, and anything that is repeatedly reported above the cut-off point in
every single comparison can be shortlisted for further evaluation. This process is used in chapter

5.



2.6.5.6 Regression for survival analysis
Regression analysis can be used to establish if there is a relationship between a variable, for

example smoking, and an event, such as death. Two common types of regression are logistical
which deals with categorical variables, and linear, for continuous variables. Linear regression is
used for survival analysis, where a continuous variable, for example expression of a gene, can be
plotted against survival time. The residuals between the observed data and line of best fit, can

indicate how likely it is that the variable influences survival.

2.6.5.7 Cox proportional hazard regression model
The cox proportional hazard regression model (CPH), introduced in 1972, is a popular survival

analysis in the biomedical field (Cox 1972). Essentially, the model compares the length of time
between study start and an event, such as death, disease relapse or recovery, between two or
more groups of participants. The CPH is a semiparametric method that does not make
assumptions based on survival time distribution and does not assume covariates impact hazard
function, and therefore survival. The hazard function describes the probability that an event will
occur at a given time point, it is used to calculate the hazard ratio; which is the ratio of event
occurrences at a particular time between two groups. For example, in a drug trial, a hazard ratio
of 0.5 could indicate that half as many patients experience an event at any time point, than those

in the untreated group.

CPH is also able to assess impact of multiple covariates on outcome and, unlike Kaplan-Meier
and the log rank test, can handle censored data. Censoring occurs in survival data if a) the study
ends before all participants encounter the event being measured, b) A participant leaves the
study c) A participant dies of causes unrelated to the study (Schober and Vetter 2018). Censoring
ultimately means an event has not been observed during the duration of the study, and if the
patient were to experience the event, it would be to the right of where the patient is censored in
the timeline. This is the most common type of censor and is called right ‘censoring’. It is
accommodated in CPH by including the estimates of survival at time points prior to censoring,
and by excluding from analysis afterwards (Schober and Vetter 2018). Left censoring is when a
patient experiences the event being observed prior to the study, and therefore is not relevant

when death is the event.

Cox proportional hazard regression can be performed with one predictor, termed ‘univariate’, and
multiple predictors, often termed ‘multivariate’. Multiple regression is preferred as it gives
improved chance of evaluating impact of variables, while also testing interactions with other
variables. When performing multiple regression, acommon rule is that analysis should be limited

to 1 variable per 10-20 events, although other methods to determine the ratio have been



suggested (van Smeden, et al. 2019). Studies have reported that below 10 events per variable
caused bias, variability, and unpredictable confidence interval coverage (Vittinghoff and

McCulloch 2007).

Ergo, a logical method must be used to narrow down the pool of potential contributors to a CPH
model. This is often performed by statistical testing and selecting an acceptable cut off, for
example t-tests, P<0.05, or using pairwise linear regression to identify candidates by large
standard residuals. From here a model can be built, commonly using one of three entry methods

for selection (Smith 2018).

Forward selection: The model starts with no variables and adds them one by one based on which

is most statistically significant, until no more variables in the pool are statistically significant.

Reverse selection: The model includes all variables, and then eliminates the least statistically
significant variables one by one, only stopping when every remaining variable in the model is

statistically significant.

Stepwise selection: A combination of forward and reverse selection. As with forward selection
this method starts with no variables and adds the most significant variable to the model.
However, after every addition, the model re-evaluates the model, removing any variables that are

no longer significant.

2.6.5.8 Kaplan-Meier plots
Kaplan-Meier plots are graphical representations of survival table data, where time is plotted in

many small intervals, against survival of patients as a percentage (Kaplan and Meier 1958). Each
sample group is plotted as a line, and when a death occurs in the group, the line decreases,
creating a stairs effect. Kaplan-Meier is a parametric method, where the following assumptions
are made: 1) Censored patients have the same chance of survival as uncensored patients 2)
Probability of survival is the same for a patient regardless of time recruited into study, 3) Time of
event recorded is accurate (Goel, Khanna and Kishore 2010). At any timepoint, the probability of

survival (Sy) is calculated as:

Gt — Number of subjects alive at t0 — Number of subjects dead

Number of subjects alive at t0

Where 10 is the start of the study. The probability of survival until that time point is calculated by
multiplying the current timepoint survival probability by the survival probability of at all time

points prior to it (Goel, Khanna and Kishore 2010). In Kaplan-Meier, the null hypothesis is that



there is no statistically significant difference in the survival of the groups compared and is tested

by the log-rank test and cox proportional hazard test.

2.6.5.9 Logranktest
The Log rank test is used to compare survival data between different groups, testing the null

hypothesis that the probability of a death occurring at a given time point is the same between
those groups (Peto and Peto 1972). For all time points the sum of expected number of events in
a group (Ex) and observed number of events in each group (Oy) is compared (Goel, Khanna and
Kishore 2010).

Log-rank test statistic = (1 = E;)2 + (0, = E,)?

E, E>

Using the Chi-squared (X?) table, the value generated in the test, and the degrees of freedom, the
significance of the difference between the groups can be calculated. If the test statistic is greater
than the critical value in the X2 table for the desired p-value, then the null hypothesis can be
rejected (Goel, Khanna and Kishore 2010). As with CPH the Log-rank test accounts for the whole
time of survival, rather than a specific time point, however unlike CPH, it is limited by only being
able report significance between groups and not the size or trend of that difference. Plotting the
survival curve is beneficial for understanding the data, as the test may report no significance if

curves overlap.

2.6.5.10 Receiver operating characteristic analysis
Receiver operating characteristic (ROC) analysis is used to evaluate the accuracy of diagnostic

tests, which is defined by their sensitivity, ability to detect true positives, and their specificity,
ability to detect true negatives. To plot a ROC curve, sensitivity (Y axis) is plotted against 1-
specificity (X axis) across different cut off values of the diagnostic test. Where diagnostic tests
values reporting below or equal to the given cut off are classed as negative tests (Zou, O’Malley
and Mauri 2007). Potential ROC curves are presented in Figure 8. AUC is used to summarise a
diagnostics tests accuracy, with the aim to achieve as close to 1 as possible. In this manner, tests
can be compared to one another in their performance, by contrasting the AUC for each ROC, to

see which is more accurate.
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Figure 8: Three example ROC curves are shown. Line A shows the hypothetical ‘gold standard’ of accuracy where area
under curve (AUC) = 1 and hugs the upper left corner of the graph. Line B shows a typical ROC curve with AUC=0.85.
Line C is a straight diagonal line at a 450C angle, which shows what random chance looks like, AUC=0.5. Adapted from
Mauri et al.

2.7 Statistical analysis

All figures were generated using GraphPad prism V7. Error bars represent standard deviation
between repeats (p<0.05 = *, p<0.01 = **, p<0.001 = *** and p<0.0001 = ****), In most cases a
minimum of 3 biological repeats were used, with any deviations stated in the text of the

experiment. In figure legend, n = x refers to the number of biological replicates used.

2.7.1 Datavisualisation by heat map Clustering
Proteins deemed significant were uploaded to MORPHEUS

https://software.broadinstitute.org/morpheus/) to visualise results by heat maps. Hierarchal

clustering was performed for each cell line set of proteins, using Euclidean distance and

complete linkage. This clustering approached helped identification of outliers in repeats.

2.7.2 Online tools and databases

Table 7: Table of databases with online tool name, where it was applied and the link to visit.

Online tool Application Link

Metascape Identification of | https://metascape.org/gp/index.html#/main/step1
enriched biological
processes

MORPHEUS Generation of heatmaps | http://software.broadinstitute.org/morpheus/
and clustering

PCA online | Principal component | https://biit.cs.ut.ee/clustvis/
tool analysis



https://software.broadinstitute.org/morpheus/
about:blank#/main/step1

3 Investigation of immunophenotypes of AML cell
lines using IFNG and 5-Azacytidine

3.1 Introduction

Currently, patients under the age of 60 with AML are treated with induction chemotherapies. This
treatment involves a 7-day infusion of Cytarabine combined with an anthracycline, such as
Daunorubicin, administered on days 1 to 3 (National Comprehensive Cancer Network 2013). This
regimen leads to better outcomes in patients below the age of 60 (Boddu, Prajwal Chaitanya, et
al. 2017). Patients who achieve remission following chemotherapy then receive post-remission
treatments to prevent relapse, commonly including HSCT (de Latour, et al. 2012). The aim of
HSCT is to replace AML cells with healthy blood cells, which can repopulate the immune system
However, HSCT carries risks, including graft-versus-host disease and high transplant-related
mortality. Unfortunately, about half of HSCT patients relapse due to mechanisms that override
the antileukemic activity of the transplant, leading to a poor prognosis (Rautenberg, et al. 2019).
One potential reason for HSCT failure, is immune escape, which can be induced by multiple

pathways, including IFNG signalling.

AML utilises IFNG signalling to upregulate immunosuppressive factors, aiding in immune
evasion. This process includes the enhanced expression of molecules such as PD-L1, IDO1, non-
classical HLAs, and BST2, which inhibit cytotoxic immune cells and promote tolerogenic
phenotypes. Such adaptive immune resistance results in poorer overall survival for patients,
underscoring the importance of understanding the impact of IFNG signalling on patient
outcomes. AML cell lines with an IFNG-inducible immunosuppressive phenotype could serve as
models for developing a related prognostic score to stratify overall survival of patients. It was
expected that patients with higher IFNG Pl scores would have more immunosuppressive AML and
consequently have poorer outcomes. The roles of IFNG and 5AzaC are discussed in subsequent

sections.

3.2 IFNG is utilised by AML to escape the immune system

IFNG signalling is activated when the IFNG cytokine binds to its corresponding receptors on cell
surfaces. This binding causes the receptor subunits to dimerise and rearrange, leading to the
activation of receptor-associated JAKs, which auto-phosphorylate and subsequently

phosphorylate STAT proteins. The phosphorylated STAT proteins form homodimers, translocate



to the nucleus, and initiate the transcription of IFNG-stimulated genes (ISGs). These ISGs then

direct the IFNG signalling cascade as depicted and described in Figure 9.
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Figure 9: Diagram depicting the IFNG signalling process. IFNG signal transduction is initiated by the IFNG cytokine
binding to the IFNG receptor (IFNGR), causing a conformational change (1). Shape change of the receptor triggers the
Jak2 kinase to auto phosphorylate and subsequently phosphorylate Jak1 (2). Once activated, Jak1 creates two
adjacent docking sites for STAT1 on the IFNGR by phosphorylating tyrosines on each IFNGR1 chain. STAT1 then docks
here and is phosphorylated, it then forms a homodimer (3). The phosphorylated STAT1 homodimer undocks from the
receptor and relocates to the nucleus where it binds the ‘Gamma-interferon-activation sites’ (GAS) elements to initiate
the IFNG regulated transcription program, which produces genes such as IRF1, TRIM21, TRIM8 and PML (4). SOCS1/2
are proteins which bind to JAK1/2 to prevent STAT1 phosphorylation and thereby inhibit IFNG signalling (5). TRIM8 which
is also a product of the IFNG signalling pathways targets SOCS1 for degradation to control its repressive effects on
signalling (6). Finally, protein tyrosine phosphatases such as SHP1 and SHP2 disrupt IFNG signalling in the cytosol by
preventing STAT1 phosphorylation by dephosphorylating JAK1/2 and IFNGR1 (7). Additionally, PTPs in the nucleus
dephosphorylate incoming STAT1 homodimers and export them from the nucleus (8). Figure adapted from
(Schroder, et al. 2004, Toniato, et al. 2002), blue arrows show movement of phosphoryl groups between
proteins, black arrow indicates export and red flathead shows inhibitory effect.

AML manipulates IFNG signalling to upregulate escape mechanisms, creating an
immunosuppressive environment and promoting immune escape, a process termed 'adaptive
immune resistance (AIR).' These escape mechanisms contribute to drug resistance by disabling
the immune system and preventing aspects of the cancer immune cycle, such as T-cell
activation. For example, chemotherapy destroys AML cells and releases antigens, which the
immune system can use to target remaining AML cells. However, if T-cells primed with these

antigens are inhibited or unable to proliferate, many AML cells can escape, reducing the efficacy



of chemotherapy. Furthermore, the escaped AML cells may be adapted to evade the immune
system and proliferate, creating more chemotherapy-resistant AML cells (Chen, D. S. and

Mellman 2017).

Chronic IFNG signalling is known to induce immunosuppressive pathways in AML. This chapter
investigates three key mechanisms: the programmed cell death protein 1, programmed death-
ligand 1 (PD-1/PD-L1) pathway, Indoleamine 2,3-dioxygenase 1 (IDO1), and non-classical human

leukocyte antigen (HLA) class | molecules.

3.2.1 Programmed death ligand 1 (PD-L1) mediated immune escape

PD-1 is a well-studied negative checkpoint in cancer. PD-L1 expression is induced by IFNG
signalling when the STAT1 homodimer binds to the gamma interferon activate sites on DNA in the
nucleus to activate transcription of several genes (Figure 9). Among those is IRF1, which then
binds to the promoter of the PD-L1 gene, activating its transcription (Garcia-Diaz, et al. 2017).
This increases PD-L1 expression on the surface of AML cells which then bind to PD-1 on tumour-
specific T-cells. This interaction transmits an inhibitory signal that suppresses T-cell proliferation,
facilitating immune evasion (Ribas 2015). Modest constitutive PD-L1 expression has been
identified in most myeloid and lymphoid cell lines, excluding THP-1. Elevated PD-L1 levels have
been reported in AML patients with poor survival (Wang, F., et al. 2022). Furthermore, IFNG-
inducible PD-L1 expression has been shown to reduce CTL-mediated lysis and promote immune

escape (Berthon, et al. 2010).
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Figure 10: Diagram of Interferon mediated upregulation of PDL-1 . When T-cells bind via their TCR to the antigen
presenting MHC of the tumour cell (1), T-cells secrete IFNG (2), resulting in abnormal upregulation of PD-L1 on the
tumour cell (3). PD-L1 on tumour cells binds to the PD1 molecules expressed on T-cell (4). This initiates a signalling
cascade that inhibits the T-cell from functioning (5) and allows the tumour cell to escape T cell mediated cytotoxicity.



3.2.2 Indoleamine 2,3-dioxygenase-1 (IDO1) mediated immune escape

IFNG induces IDO1 expression primarily through the JAK/STAT pathway. JAK phosphorylates
STAT1, which then dimerises and moves to the nucleus to bind the GAS-2 and GAS-3 sites
upstream of the IDO1 gene, activating its expression (Huang, et al. 2022). Additionally, IFNG and
STAT1 indirectly boost IDO1 expression by inducing IRF-1 synthesis, which binds to the ISRE-1 and
ISRE-2 sites. Notably, IRF-1 has been found to be more impactful for inducing IDO1 expression
than STAT1 (Robinson, Cory M., Hale and Carlin 2005). IDO1 is an enzyme involved in the
kynurenine (Kyn) production pathway and is commonly expressed by solid tumours. Kynurenine
binds to the aryl hydrocarbon receptor on T-cells and dendritic cells, prompting naive CD4+ T-
cells to differentiate into regulatory T-cells and causing dendritic cells to adopt a tolerogenic
phenotype, thereby facilitating immune escape (Platten, et al. 2015). A study on cultured
leukemic blast cells from childhood AML found that IFNG induced IDO1 in approximately half of
the samples, which was associated with a poorer prognosis (Folgiero, et al. 2014)Additionally in
adult AML patients, a higher serum kynurenine/tryptophan (Kyn/Trp) ratio, indicative of elevated
IDO activity, has been linked to decreased survival (Corm, et al. 2009). IDO1 overexpression has

also been associated with regulatory T-cell phenotypes in CN-AML, correlating with poor

prognosis (Arandi, et al. 2018).
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Figure 11: Diagram showing how IDO1 expression on myeloid cells promotes an immune suppressive micro-
environment: IFNG induces the production of IDO/TDO in the tumour cell (1). IDO/TDO catalyse the first step in the
breakdown of Trp; producing Kynurenine (Kyn) (2). CD4+ T-cells react to decreased Trp by preventing protein synthesis
through increased GCN2 (3) and inhibiting cell growth by decreasing mTOR (4). CD4+ T-cells sense the Kyn increase
by its binding to AHR, and start inflammation signalling (5), triggering favoured differentiation into Treg cells over T-
effector cells (6). In addition, Kyn inhibits IL-2 signalling which inhibits survival of memory CD4 T-cells (7).



3.2.3 Non-classical HLA-G mediated immune escape

Classic major histocompatibility complexes (MHC) such as HLA-A, HLA-B and HLA-C present
antigens for recognition by T-cells to mount immune responses to pathogens or other threats.
Meanwhile, nonclassical MHC such as HLA-G and HLA-E are often overexpressed by AML to
prevent immune cells from killing them (Kochan, et al. 2013, Halenius, Gerke and Hengel 2015).
HLA-G inhibits CD8+ T-cells and NK cells, induces CD4+ immunosuppression, and triggers
apoptosis of activated CD8+ T-cells and NK cells (Lin, A. and Yan 2018). Its expression has been
linked to immune tolerance in AML patients, with significantly higher levels of shed HLA-G
reported in the serum of those with more advanced AML, particularly in the FAB-M4 and M5
subtypes (Gros, et al. 2006). Moreover, stimulating cells from FAB-M4 AML patients with IFNG
was observed to increase the secretion of HLA-G (Gros, et al. 2006). AML patients expressing
HLA-G have been found to also have significantly higher leukaemic blasts in bone marrow than
patients that were negative for HLA-G. Furthermore, the percentage of T cells is lower in HLA-G

positive patients, indicating a poorer prognosis (Yan, et al. 2008).

3.2.4 Non-classical HLA-E mediated immune escape in AML

Surface expression of HLA-E is induced by IFNG signalling via the JAK/STAT1 pathway and further
promoted by overactive proteosome processing (Zheng, et al. 2023). HLA-E promotes immune
suppression in AML by interacting with the inhibitory receptor NKG2A on NK cells, deactivating
them (Sullivan, et al. 2008). In healthy cells, HLA-E expression depends on HLA class | leader
peptides, and a decrease in HLA class | reduces HLA-E expression. However, in AML, HLA-E is
expressed even without HLA class I. Normally, NK cells detect HLA class | through HLA-E
expression, and a lack of HLA-E indicates reduced HLA class |, triggering NK cell-mediated lysis.
AML cells exploit this by downregulating HLA class | and upregulating HLA-E to evade NK cell-
mediated lysis (Nguyen, et al. 2009). Increased HLA-E expression has been observed on primary
blasts isolated from AML patients when exposed to IFNG producing NK cells (Nguyen, et al.
2009). Additionally, high IFNG pathway signalling in AML patients with the del7/7q mutation and
monocytic differentiation correlates with HLA-E expression, and these HLA-E expressing AML are

found closer to T cells than their HLA-E negative counterparts (Wang, B., et al. 2024).

3.2.5 Disruption of methylation is associated with AML development and
outcomes

Disruption of enzymes involved in DNA methylation pathways affects haematopoiesis and
contributes to initiation and progression of AML (Yang, X., Wong and Ng 2019b). Clonal

haematopoiesis refers to the presence of genetically distinct hematopoietic stem cells (HSCs)



within an individual, often harbouring somatic mutations. Specifically, enzymes involved in DNA
methylation, such as DNMT3A and TET2, are frequently mutated (Figueroa, Lugthart, et al. 2010,
Yang, X., Wong and Ng2019b). These mutations impair differentiation, enhance self-renewal, and
promote clonal expansion(Tadokoro, et al. 2007, Yang, X., Wong and Ng 2019b). Consequently,
mutated HSCs outcompete healthy HSCs, leading to clonal expansion and the emergence of pre-
leukemic clones. Over time, these pre-leukemic clones accumulate additional mutations,
including those affecting cellular signalling pathways (e.g., JAK2, TP53). The competitive
advantage of mutated HSCs allows them to persist, leading to the transformation into leukemic
stem cells (LSCs)(Yang, X., Wong and Ng 2019b). LSCs outcompete HSCs through multiple
strategies. They flourish in a pro-inflammatory environment by releasing TNF-a, which boosts NF-
KB activity, supporting their survival and growth (Kagoya, et al. 2014). They also evade the immune
system by increasing TIM3 expression, emitting chemokines, and, inducing inflammatory
secretome helping them avoid immune detection and enabling them to proliferate (Niu, Peng and
Liu 2022). Furthermore, LSCs manipulate the bone marrow niche by interacting with BMSCs
(Bone Marrow Stromal Cells) to enhance their survival and resistance to treatment, while
metabolic reprogramming enables them to efficiently utilise resources, promoting their growth
and resistance to therapy (Moschoi, et al. 2016, Chen, Wen-Lian, et al. 2014, Niu, Peng and Liu
2022). LSCs drive the production of leukemic blasts, ultimately culminating in AML(Yang, X.,
Wong and Ng 2019b).

5AzaC is an analogue of the nucleoside-based cytidine. It is a drug which, administered in low
doses, inhibits DNA methyltransferase 1 (DNMT1) and in high doses incorporates into DNA and
RNA, causing cell death (Frosig 2015). DNMT1 manages methylation during DNA replication, it
favours methylation of hemi-methylated sites and is known as the ‘maintenance’ enzyme as it
restores methylation sites post DNA replication (Ambrosi, Manzo and Baubec 2017). Although
DNMT1 is the highest expressed DNMT in dividing cells, DNMT3A and DNMT3B need to be
considered as they are not targeted by 5AzaC and play a more active role in methylation.
DNMT3A/B are de novo DNMTs, meaning they catalyse addition of methyl groups to
unmethylated DNA, as opposed to DNMT1, which maintains methylated sites. Therefore, while
treatment with 5AzaC prevent maintenance of already established methylation sites, DNMT3A/B
are still able to continue creating new methylation sites (Figure 12). Studies have shown that AML

methylation profiles are linked to patient outcomes (Yang, Wong and Ng 2019).
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Figure 12:A diagram of methylation status maintenance by DNMT1, DNMT3A and DNMT3B and TET1/2/3. Adapted from
Ambrosi et al paper (Ambrosi, Manzo and Baubec 2017). Methyl groups are added to the fifth carbon atom on cytosine
bases of DNA by DNMT3A and DNMT3B. Pre-established methylated sites are maintained by DNMTT1. In the absence
of DNMT1, methylated sites can be lost passively through cell division. TET enzymes actively remove methyl groups
through conversion to oxidised derivatives, which are consequently removed by DNA repair or lost passively.

To develop prognostic signatures, cell lines were treated with 5AzaC to inhibit methylation and
observe changes in mRNA expression. Cell lines were treated with 5AzaC alone and in
combination with IFNG to determine if demethylation affected the cell lines' responses to IFNG
at the transcript level. The expectation was that demethylation would induce further

inflammatory responses to IFNG treatment and could be related to poorer outcomes in patients.



3.3 Objectives of this thesis

Cytarabine and Daunorubicin are still the backbone of AML therapy after many decades (Blair
2018). Further research into how to improve patient outcome using these chemotherapies and to
identify patients who are most likely to respond is needed. IFNG is an essential component of the
anticancer response which could have negative interplay with chemotherapy in treating AML, as
well as the success of HSCT (Bernasconi and Borsani 2019, Kong, et al. 2016). Cell line models
provide an easily accessible way to study the relationship between AML, IFNG, chemotherapy

and HSCT.

This thesis seeks to generate prognostic signatures based on AML cell lines treated with IFNG and
5AzaC and test if ‘high’ IFNG scores are associated with poorer outcome in patients. To do this,
cell lines must first be selected that exhibit IFNG signalling and IFNG mediated
immunosuppressive phenotypes, before proceeding to RNA seq (chapter 4) and score generation

and testing (chapter 5).

In this chapter, four AML cell lines were treated with IFNG to induce IFNG signalling and
upregulate expression adaptive immune resistance (AIR) molecules. Cells were also treated with
5AzaC, a hypomethylating drug used to treat AML in combination with cytarabine for two reasons
(Huls 2015). Firstly, hypomethylating agents are used in standard clinic for AML and MDS
treatment, especially in older and less medically fit patients (Stomper, et al. 2021). Secondly, itis
known that the process used to immortalise cell lines induces significant DNA methylation, and
therefore silencing at gene promoters, causing global shifts in gene expression and divergence
from the original transcriptional state. The resultant changes in RNA and protein expression
measured post treatment, give insight into possible pathways activated by IFNG and 5AzaC
treatment, acting as a model for hypomethylation and inflammation within AML cells. The final
aim was to use AML cell lines models to derive a prognostic score to predict patient response to

induction therapy.



3.4 Results

3.4.1 IFNG and demethylation treatment validated prior to characterising
celllines

IFNG signalling and 5AzaC mediated demethylation were validated by western blot- prior to
further characterisations (Figure 13). Cells were seeded at 0.5 x 10° cells/mL and suspended in
media with either:

1. 5ng/mLIFNG and harvested after 30 minutes.

2. 0.5uMof5AzaC at0and 24 hours, and then harvested after 48 hours of 5AzaC treatment.

3. 0.5 uM of 5AzaC at 0 and 24 hours, followed by 5 ng/mL IFNG at 48 hours, and then

harvested 30 minutes later.

IFNG was expected to increase the expression of STAT1, indicating the activation of the IFNG
JAK/STAT1 signalling pathway. Treatment with 5AzaC was expected to reduce the expression of
DNMT1, demonstrating that the drug effectively degraded DNMT1. Results showed an increase
in STAT1 protein expression with IFNG treatments and decrease in DNMT1 expression with 5AzaC

treatment in both cell lines.
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Figure 13: Western blot showing IFNG induced STAT1 expression and 5AzaC dependent degradation of DNMT1 in AML cell
lines. Cell lysates were generated from Kasumi-1 and KG-1 cells both untreated and treated with 5 ng/ml IFNG, 0.5 pm
5AzaC at 0 and 24 hrs, or a combination of both. Expression of DNMT1 and STAT1 are shown alongside the loading control
GAPDH. Protein was loaded at 30 g per sample.



3.4.2 Analysis shows AML cell Lines express differential IFNG response
and immunosuppressive phenotypes

IFNG response and immunosuppressive phenotypes was assessed by measuring known IFNG
regulated molecules using various methods. This served to characterise the AML cell lines in the
context of an inflammatory IFNG producing environment and assess them as models forimmune
resistance concurrently. Molecules measured included the AIR molecules as well as a
downstream product of IDO1/TDO2, kynurenine. First cell lines were assessed for induction of
genes for IDO1 (/DO1), TDO2 (TDOZ2) and PDL1 (CD274) in response to treatment with 100ng/mL
IFNG using RT-PCR (Figure 14).
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Figure 14: Expression of IDO1, TDO2 and CD274 in AML cell lines after treatment with IFNG. Cell lines were treated
with IFNG (100 ng/mL) for 48 hrs. All genes were measured using the quantitative real-time PCR and 2-AAT method
(Schmittgen and Livak 2008). Gene expression was normalised against the housekeeping gene, GUSB. Grey = Control,
Red = IFNG treated samples. Statistical testing done by the Holm-Sidak multiple comparisons method, * = P< 0.05, **
=P<0.01, ***=P<0.001 and ****=P<0.0001, n=3-5. Error bars indicate Standard deviation.

All of the cell lines reported an IFNG induced upregulation of IDO1 (SIG-M5 Ctrl = 0.0030, IFNG =
0.2176 AACT, THP-1 Ctrl = 0.0044, IFNG = 0.0233 AACT, KAS-1 Ctrl = 0.0004, IFNG = 0.0027 AACT,
KG-1 Ctrl = 0.0018, IFNG = 0.0080 AACT). However, upregulation of IDO7 was only significant in
SIG-M5 and KG-1 cell lines (SIG-M5 P<0.01 and KG-1 P<0.001). The increase in IDO1 levels in the
SIG-M5 and KG-1 cell lines was confirmed by a significant rise in kynurenine production, a
downstream product of IDO1, in both lines (SIG-M5 Ctrl = 1.9 uM, IFNG = 37.46 pM ,P<0.01, and,
KG-1 Ctrl = 0.12 uM, IFNG = 1.07 pM, P<0.01) (Figure 15). TDO2 was significantly upregulated in



both SIG-M5, and THP-1 cell lines (SIG-M5 Ctrl = 0.0105 AACT, IFNG = 0.1068 AACT, P<0.001, and
THP-1 Ctrl =0.0018 AACT, IFNG = 0.0837 AACT, P<0.0001).
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Figure 15: Expression of Kynurenine (uM) in AML cell lines after treatment with IFNG. Cell lines were treated with 100
ng/mL IFNG for 48 hrs, measured by Ehrlich’s reagent, n=3. Kynurenine was extracted using 30% TCA, from samples,
controls, and standards. The concentration of Kynurenine samples was estimated using a standard curve of absorbance
values for set kynurenine concentrations. Grey = Control, Red = IFNG treated samples. Statistical testing done by the
Holm-Sidak multiple comparisons method, * = P< 0.05, ** = P< 0.01, *** = P<0.001 and **** = P<0.0001, n=3. Error bars

represent standard deviation.

A significant increase in expression of CD274 in response to IFNG treatment was observed in all
cell lines, see Figure 14 (SIG-M5 Ctrl = 0.0006 AACT, IFNG = 0.0321 AACT, P<0.05, THP-1 Ctrl =
0.0010 AACT, IFNG = 0.1310 AACT, P<0.0001, KAS-1 Ctrl = 0.0007 AACT, IFNG = 0.0438 AACT,
P<0.01, KG-1 Ctrl=0.0017 AACT, IFNG = 0.0287 AACT, P<0.0001). This change was also reported

by cell surface staining using flow cytometry, Figure 16.
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Figure 16: Expression of surface proteins HLA-A,B,C, HLA-E, HLA-G and PDL1 on AML cell lines before and after IFNG
treatment. Cell lines were treated with IFNG (100 ng/mL) for 48 hrs, expression was measured by cell surface staining
flow cytometry, n=3. Grey = Control, Red = IFNG treated samples. Statistical test: Holm-Sidak multiple comparisons
method, *=P<0.05, **=P<0.01, ***=P<0.0071 and ****=P<0.0001, n=3-4. Error bars represent standard deviation.

All cell lines significantly upregulated surface expression of the PD-L1 protein after IFNG
treatment (SIG-M5 Ctrl = 0.10 MFI, IFNG = 6.96 MFI, P<0.01, THP-1 Ctrl = 0.51 MFI, IFNG =19.70
MFI, P<0.001, Kasumi-1 Ctrl = 0.62 MFI, IFNG = 1.35 MFI, P<0.0001 and KG-1 Ctrl=0.77 MFI, IFNG

=1.04 MFI, P<0.05). In addition, highly significant upregulation of the classicalimmune response



MHC HLA-A, B and C was detected in all cell lines, indicating functional classic IFNG response
in all samples (SIG-M5 Ctrl = 158.11 MFI, IFNG = 270.10 MFI, P<0.001, THP-1 Ctrl = 61.03 MFI,
IFNG = 148.98 MFI, P<0.0001, Kasumi-1 Ctrl =11.20 MFI, IFNG = 120.97 ,P<0.0001 and KG-1 Ctrl
= 35.72 MFI, IFNG = 120.97, P<0.001). The largest increase was seen in the Kasumi-1 cell line,
with an approximate 10-fold increase. All celllines except for KG-1 significantly upregulated HLA-
E in response to IFNG (SIG-M5 Ctrl = 0.09 MFI, IFNG = 3.12 MFI, P<0.0001, THP-1 Ctrl = 0.46 MFI,
IFNG =1.40 MFI, P<0.01, Kasumi-1 Ctrl=1.62 MFI, IFNG =5.17 MFI, P<0.01) and HLA-G was only
significantly upregulated in the SIG-M5 cell line (SIG-M5 Ctrl = 1.24 MFI, IFNG = 26.53 MFI,
P<0.0001). These results show all cell lines displayed IFNG response, but with varying degrees of
induction of AIR targets. The gating strategy used to obtain this data can be found in the methods

section. Example of histogram results are shown in Figure 17.
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Figure 17: Examples of Histograms and Gating Strategy Used to Generate Data in Figure 19 . Gates were set on unstained samples as described in methods section. This figure

shows histograms for HLA-A,B,C (Kasumi-1), HLA-E (KG-1), HLA-G (SIG-M5) and PD-L1 (THP-1) in untreated control cells (top row) and cells treated with IFNG (100 ng/mL) for 48
hrs (bottom row). Antibodies, band pass filter and excitation wavelength used are displayed on the X-axis for each graph.



3.4.3 Global Proteomic profiles demonstrate varied response to IFNG
treatment

Assessment of immunosuppressive molecules upregulated by IFNG reported all cell lines to have
immunosuppressive AIR responses, with the SIG-M5 and THP-1 cell lines displaying similar
profiles. The SIG-M5 cell line was the only cell line to express all AIR molecules, suggesting a more
immunosuppressive IFNG induced phenotype than its counterparts. However, looking at only
specific molecules associated with a particular response paints a limited picture. To
complement this data and gain a broader and more detailed view of responses, proteomic
profiles of IFNG treated cell lines were compared to their untreated control counterparts, as well
as each other. Cell lines were treated with 100 ng/mL of IFNG, and harvested at 48 hrs to be

analysed by SWATH-MS.

Celllinesreported between 2,775 and 3,390 proteins differentially expressed in response to IFNG
treatment (Figure 18). The SIG-M5 and THP-1 cell lines showed the most proteins to be
differentially expressed between control and IFNG treated condition, with a similar number of
proteins up and down regulated. The Kasumi-1 cell line reported approximately 300 fewer
proteins differentially expressed than SIG-M5 and THP-1, followed by KG-1 with the smallest
breadth of response at approximately 600 less proteins expression changed than the leading

THP-1 cell line.

4000- 3 3 = Al
S : 8 o U
& 3000- & S = Up
QD
S E Down
= o
> 8 - © & 9
2§ 2000 g 8
= o g
c i
E v
g 1000+
£

0

SIG-M5  THP-1 Kasumi-1 KG-1

Figure 18: Differential protein expression in AML cell lines in response to IFNG treatment. Cell lines were treated with
IFNG (100 ng/mL) for 48 hrs and protein expression measured by SWATH-MS and compared to untreated controls.
Total number was also broken down into how many of those proteins are up or down regulated with IFNG treatment,
n=5/6.



3.4.3.1 Pearson correlation and principal component analysis of proteomics show variation
between cell lines and treatment

The normalised proteomic profiles reported for samples were assessed for correlation to
determine variability between cell line response to IFNG, as well as identify any replicate outliers.
The Pearson correlation coefficient was calculated in Graphpad Prism V using pairs of samples
and visualised as a heat map in Morpheus (Figure 19). The clustering groups cell lines together
based on if cells were untreated or treated with IFNG. All cell line and treatments clustered neatly

except for KG-1.
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Figure 19: Pairwise comparisons of Pearson correlation coefficients between proteomics profiles of untreated control
and IFNG treated AML cell lines. Coefficients were calculated in GraphPad prism V5, then visualised and clustered
using the Morpheus online tool https://software.broadinstitute.org/morpheus/). Clustering was performed with

Euclidean distance and complete linkage. Blue indicates low correlation and red indicates higher correlation between
groups.
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Proteomic data was also analysed by principal component analysis (PCA), see Figure 20.
Conversion of proteomics data to principle components (PCs) confirmed the grouping of cell

lines that were observed by the Pearson correlation heat map. Proteomic profile data was used



to generate a 2D PCA plot, where PC1 accounted for 23.2 % and PC2 for 17.3 % of variance in the
samples (Figure 20 A). The plot confirmed cell line replicate fidelity, where samples only
overlapped with samples from the same cell line. There was no overlap between SIG-M5 control
cells, and IFNG treated SIG-M5 cells, indicating they are different in their profiles. There was some
overlap of control and IFNG treated Kasumi-1 and KG-1, indicating while IFNG induced a change
in these cell lines, the change was not as large as SIG-M5, when measured as a function of PC1
and PC2. Lastly, IFNG treated THP-1 overlapped with its untreated control suggesting that
treatment with IFNG did not induce a large shift in its proteomic profile. However, PC1 and PC2
only represent 40.5% of variability in the whole data sample which includes 4 cell lines. PC1 and
PC2 may better demonstrate the variability between SIG-M5 and IFNG treated SIG-M5, than
between the other cell lines and their IFNG treated counterparts. When cell lines were compared
by PC3 and PC4 (Figure 20 B), then Kasumi-1, SIG-M5 and KG-1 control and IFNG treated profiles

were separated.
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Figure 20: Principle component analysis of proteomic profiles of untreated control and IFNG treated cell lines. A) 2D
Principle component analysis of cell line proteomic profiles performed using ClustVis (https://biit.cs.ut.ee/clustvis/).
A) Shows proteomic profiles as summarised by PC1 and PC2, which account for a total of 40.5% of the data variability.
B) Shows proteomic profiles summarised by PC3 and PC4, which represent a total of 15.9% of the data variability.
Prediction ellipses are 95% confident that any new observation from cell lines of this treatment, will fall within the

ellipse.



https://biit.cs.ut.ee/clustvis/

3.4.3.2 IFNG induced changes to all four AML cell lines proteomic profiles
All four cell lines tested (Kasumi-1, KG-1, SIG-M5 and THP-1) reported changes to proteomic

profiles in response to IFNG treatment, numbers of differentially expressed proteins are shown in
Figure 18. These proteins were assessed for fold change and ‘confidence’ of change. Methods
outlined by Lambert et al were used to determine significant proteins of interest using their
‘confidence’ cut off (Lambert, et al. 2013). Using this method, proteins with confidence above
75% were considered significant, but for the change in expression of a target to be considered
‘affected’ by IFNG treatment, a fold change >1.5 was required. Proteins between 60 and 75%
‘confidence’ were also be considered significant if they displayed a fold change of 2 or above.
Between all four cell lines, only 485 of the 3,744 proteins detected were significantly differentially
expressed according to confidence and fold change cut off. Expression of those proteins was
compared in a heat map in Figure 21. Normalised protein expression was Log2 transformed, and
z-score values were used to generate heat maps. Hierarchical clustering by Euclidean distance
of rows and columns was performed to produce Figure 21. Control and IFNG treated cell line
samples clearly cluster based on this selection of proteins. This data has also been presented
with row clustering to show each respective cell line control samples and IFNG treated samples
side by side, for ease of visual comparison (Figure 21 B). Side by side comparisons between
untreated and treated samples of the same cell line show a large breadth of changes in the SIG-
M5 and THP-1 cell lines post IFNG treatment. Comparatively, the Kasumi-1 and kg-1 cell lines
show fewer visually striking differences between IFNG treated and untreated samples. The four

cell lines demonstrate that there are different IFNG induced proteomic profiles present.
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Figure 21: Heat map comparison of differentially expressed proteins across untreated control and IFNG treated AML
celllines. A) Heat map comparing 485 proteins differentially expressed according to confidence and fold change cut
offs ( >60% confidence, 2-fold change, >75% confidence, 1.5-fold change), Cell lines were clustered by rows and
columns to show cell line and treatments successfully cluster, B) Proteomics data of the 485 proteins clustered only
on rows, to allow for easier visual comparison between untreated and IFNG treated samples of the same cell line
n=5/6. Key for heat maps shown top left for expression values. Heat maps generated in Morpheus
(https://software.broadinstitute.org/morpheus/). Blue indicates lower expression; red indicates higher expression.

The number of proteins uniquely differentially expressed in each cell line, as well as commonly
changed in multiple cell lines, is shown by Venn diagram in Figure 22. In all cell lines, more
proteins were significantly upregulated than downregulated in response to IFNG. The SIG-M5 cell
line had the largest number of significantly differentially expressed proteins, followed by SIG-M5,

Kasumi-1 and finally KG-1 (341, 141, 101 and 48 respectively). The Venn diagram of upregulated



proteins shown in Figure 22 A shows 177 of the 251 proteins upregulated in SIG-M5 are unique to
the cellline. The remaining 74 proteins were upregulated in other cell lines too. SIG-M5 and THP-
1 share the most in common upregulated proteins out of all cell line combinations (28 proteins),
suggesting they are more similar in response to IFNG, than the other combinations of cell lines.
Overall, there were only 13 proteins significantly upregulated in all IFNG treated cell lines,
demonstrating the AML cell lines to have unique IFNG response profiles. Far fewer proteins were
significantly downregulated in all cell lines, and even fewer shared. The most downregulated
proteins in common between cell lines was between SIG-M5 and THP-1, which have 4 proteins in
common. However, each cell line had a distinct set of uniquely regulated proteins, indicating their
unigue response patterns to interferon exposure. To further characterise these cell lines beyond
the number of proteins differentially expressed by IFNG treatments, lists of proteins significantly
upregulated and down regulated per cell line was subject to enrichment analysis by metascape

(https://metascape.org).

KG-1 SIG-MS

Kasumi-1 Kasumi-1

Upregulated Downregulated

Figure 22: Venn diagram depicting unique and common proteins significantly differentially expressed in response to
IFNG across all four cell lines. A) Shows upregulated proteins, while B) shows downregulated proteins.

3.4.3.3 Differentially expressed proteomics profiles were input to Metascape for pathway
enrichment analysis

Significantly differentially expressed proteins were converted to gene lists and input to
enrichment analysis by metascape to identify which biological pathways were most changed due
to IFNG treatment. The Metascape tool draws on multiple databases to perform its analysis

including: KEGG Pathway, GO Biological Processes, Reactome Gene Sets, Canonical Pathways,


https://metascape.org/

CORUM, TRRUST, DisGeNET, PaGenBase, Transcription Factor Targets, WikiPathways, and
PANTHER Pathway. Metascape uses the whole genome as background for enrichment (Zhou, et
al. 2019). To be considered significant, a process had to be reported from the input gene list a
minimum of 3 times, with a ratio of more than 1.5 times observed counts compared to counts by
chance. The processes that pass were grouped into clusters by similarities, and the most
statistically significant member was reported to represent the cluster. As too few significantly
differentially expressed proteins were unique in some cell lines to produce a meaningful analysis,
for example only 11 proteins were uniquely upregulated in KG-1, full lists of all proteins
significantly upregulated or downregulated regardless of commonalties were submitted to
metascape. The most significant processes in relation to input up or downregulated lists are

reported in Tables below:

Table 8: The topmost significantly enriched pathways in KG-1 treated with IFNG according to up and down regulated
protein lists, sorted by significance. Proteins were converted into gene IDs and so are represented by ‘gene’ lists.
Column ‘gene’ specifies the number of ‘genes’ differentially expressed in the data, from the corresponding pathway.

Upregulated Downregulated

Summary Description Log10(P) Gene Summary Description Log10(P) Gene

process ID process ID

G0:0002479  Antigen  processing | -17.78 10/75 G0:0043299 | Leukocyte -2.77 3/537
and presentation of degranulation

exogenous peptide
antigen via MHC class
|, tap-dependent

R-HSA- Cytokine signalling in  -17.73 17/715
1280215 immune system
G0:00719885  Antigen processing | -13.54 6/17

and presentation of
endogenous peptide
antigen via MHC class
|

R-HSA- Nicotinate -7.21 4/31

196807 metabolism

WP619 Type Il interferon | -4.88 3/37
signalling (IFNG)

G0:0008285  Negative regulation of -2.65 5/753
cell population

proliferation
G0:0046649 Lymphocyte -2.64 5/754
activation




Table 9: The topmost significantly enriched pathways in Kasumi-1 treated with IFNG according to up and down
regulated protein lists, sorted by significance post FDR. Proteins were converted into gene IDs and so are represented
by ‘gene’ lists. Column ‘gene’ specifies the number of ‘genes’ differentially expressed in the data, from the
corresponding pathway.

Upregulated Downregulated
Summary Description Log10(P) Gene Summary Description Log10(P) Gene
process ID process ID
R-HSA- Interferon signalling -38.17 27/199 R-HSA-72766 Translation -7.00 6/291
913531
G0:0034341  Response to interferon-gamma  -27.15 21/197 CORUM:324 39s ribosomal -5.10 3/48
subunit,
mitochondrial
GO0:0031347 Regulation of defence | -19.37 24/697 G0:0051640 Organelle -3.80 5/655
response localization
G0:00719883  Antigen processing and -16.75 9/26 WP4223 RAS signalling  -3.35 3/185
presentation of endogenous
antigen
G0:0001817  Regulation of cytokine | -13.59 20/782 G0:0007005 Mitochondrion | -2.01 3/548
production organization
WP619 Type ii interferon signalling -13.06 8/37
(IFNG)
R-HSA- Antiviral mechanism by IFN- | -11.93 9/80
1169410 stimulated genes

G0:0002683  Negative regulation of immune = -11.27 14/403
system process

WP5039 Sars-cov-2 innate immunity | -9.09 7/68
evasion and  cell-specific
immune response

G0:0002366  Leukocyte activation involved -8.96 15/720
inimmune response

R-HSA- OAS antiviral response -8.17 4/9

8983711

G0:0032612  Interleukin-1 production -7.19 7/127

G0:0009617 Response to bacterium -6.13 12/728

G0:0035456  Response to interferon-beta -5.79 4/31

G0:1903706  Regulation of hemopoiesis -5.63 9/417

G0:0051259  Protein complex -5.46 7/229
oligomerization

G0:0002718 Regulation of cytokine | -5.43 5/84
production involved in immune
response

G0:0008285 Negative regulation of cell -5.15 11/753
population proliferation

G0:0060759 Regulation of response to | -4.84 6/189

cytokine stimulus
G0:0035455 Response to interferon-alpha -4.58 3/21




Table 10: The topmost significantly enriched pathways in SIG-M5 treated with IFNG according to up and down regulated
protein lists, sorted by significance. Proteins were converted into gene IDs and so are represented by ‘gene’ lists.
Column ‘gene’ specifies the number of ‘genes’ differentially expressed in the data, from the corresponding pathway.

Upregulated Downregulated
Summary Description Log10(P) Gene Summary Description Log10(P) Gene
process ID process ID
GO0:004505 Regulated -39.03 61/780 | R-HSA-69190 | DNA strand | -17.34 10/32
5 exocytosis elongation
R-HSA- Cytokine -25.46 46/715 | R-HSA-69183  Processive synthesis -9.03 5/15
1280215 signalling in on the lagging strand
immune system
R-HSA- Adaptive immune | -19.74 41/763 | R-HSA-15869 | Metabolism of | -8.90 8/100
1280218 system nucleotides
hsa04145 Phagosome -18.76 22/168 | R-HSA- Metabolism of RNA -7.47 14/673
8953854
R-HSA- Interferon -17.15 22/199 | M66 Pid myc active | -6.65 6/79
913531 signalling pathway
GO0:005077 Positive regulation = -16.39 37/761 | GO:0034655 Nucleobase- -6.61 12/557
8 of immune containing
response compound catabolic
process
WpP3888 Vegfa-vegfr2 -14.45 27/439 | G0:0043484 Regulation of RNA | -6.33 7/145
signalling pathway splicing
hsa04142 Lysosome -12.48 15/123 | CORUM:115 Histone h3.3 -5.95 3/7
0 complex
R-HSA- Cellular -12.29 30/676 | GO:0071897 DNA biosynthetic | -5.43 7/198
2262752 responses to process
stress
WP619 Type ii interferon -12.14 10/37 M46 Pid atr pathway -5.11 4/39
signalling (IFNG)
G0:004211 T cell activation -11.90 25/475 | M195 Pid cmyb pathway -5.10 5/84
0
GO0:000181 Regulation of -11.42 31/782 | GO:0045930 Negative regulation -5.01 8/321
7 cytokine of mitotic cell cycle
production
R-HSA- Signalling by rho | -10.88 29/719 | G0O:0006412 Translation -4.70 11/717
9716542 GTPases, Miro
GTPases and
rhobtb3
G0:005134 Positive regulation | -10.75 30/779 | GO:0002366 Leukocyte activation -4.68 11/720
5 of hydrolase involved in immune
activity response
G0:000222 Pattern -10.06 16/212 | G0O:0009991 Response to | -4.61 9/477
1 recognition extracellular
receptor signalling stimulus
pathway
G0:004206 Wound healing -9.95 24/538 | WP2525 Trans-sulphuration -3.82 3/32
0 and one carbon
metabolism
G0:003002 Actin filament- | -9.86 29/794 | G0O:0140053 Mitochondrial gene | -3.70 5/165
9 based process expression
GO:000695 Inflammatory -9.39 28/778 | G0O:0033120 Positive regulation of -3.63 3/37
4 response RNA splicing
G0:006062 Regulation of | -8.76 22/518 | R-HSA- Rho GTPase cycle -3.60 3/38
7 vesicle-mediated 9013407
transport
G0O:004306 Positive regulation = -8.43 23/590 | M14 PID aurora b pathway -3.56 3/39
8 of  programmed
cell death




Table 11: The topmost significantly enriched pathways in THP-1 treated with IFNG according to up and down regulated
protein lists, sorted by significance. Proteins were converted into gene IDs and so are represented by ‘gene’ lists.
Column ‘gene’ specifies the number of ‘genes’ differentially expressed in the data, from the corresponding pathway.

Upregulated Downregulated
Summary Description Log10(P) Gene Summary process Description Log10(P) Gene
process ID ID
R-HSA- Interferon signalling | -28.88 25/199 | R-HSA-6798695 Neutrophil -6.43 6/48
913531 degranulation 0
G0:004800 Antigen processing -25.95 23/194 | hsa03050 Proteasome -5.51 3/45
2 and presentation of

peptide antigen
G0:004508 Regulation of innate | -17.11 20/315 | G0O:0090305 Nucleic acid | -3.04 3/30
8 immune response phosphodieste 6

r bond
hydrolysis

WP619 Type ii interferon -13.35 9/37 G0:0016049 Cell growth -2.50 3/47

signalling (IFNG) 3
G0:000236 Leukocyte activation | -13.19 23/720
6 involved in immune

response
GO0:005079 Regulation of viral -13.07 14/186
2 process
G0:000181 Regulation of | -12.45 23/782
7 cytokine production
R-HSA- Endosomal/vacuola -11.58 6/11
1236977 r pathway
hsa04621 Nod-like receptor | -9.66 11/170

signalling pathway
G0:005170 Biological process @ -8.47 11/220
1 involved in

interaction with host

G0:003806 Nik/NF-Kappa beta | -8.00 10/188
1 signalling
G0:003009 Myeloid cell  -7.41 13/421
9 differentiation
WP3937 Microglia pathogen | -6.09 5/40
phagocytosis
pathway
GO:199066 Vesicle fusion with = -5.80 3/6
8 endoplasmic

reticulum-Golgi
intermediate
compartment (ergic)

membrane
G0:005254 Regulation of | -5.56 11/429
8 endopeptidase
activity
WP4197 The human immune -5.56 4/23
response to
tuberculosis
G0O:000961 Response to | -5.47 14/728
7 bacterium
G0:000222 Pattern recognition -5.38 8/212
1 receptor signalling
pathway
R-HSA- Influenza infection -5.26 7/156
168255
G0:004563 Positive regulation = -5.23 6/103
9 of myeloid cell

differentiation




3.4.4 Metascape reports enrichment in IFNG related processes

Metascape reported enrichment in protein expression for processes associated with IFNG
response pathways, such as antigen processing, immune responses to viruses and bacteria,
lymphocyte activation, inflammatory response, and negative regulation of cell proliferation in all
cell lines. SIG-M5 reported upregulation of proteins in the positive regulation of cell death
pathways and exocytosis. No other cell lines showed enrichment for proteins involved in cell
death, however, expression of proteins part of cell growth and proliferation pathways such as
translation, organelle localisation, DNA synthesis and regulation of mitosis were downregulated
across cell lines. This could imply an anti-proliferative effect of IFNG; however, this was not
tested. Metascape analysis showed enrichment for IFNG regulated processes but did not report
enrichment for any pathways involved in response to chemotherapy. IFN-related DNA damage
resistance signature (IRDS) genes, which promote resistance to DNA damage base therapies
including chemotherapy, have been associated with poorer outcome across many cancer types
(Padariya, et al. 2021). IRDS at present have not been investigated for association with poor
outcome to front line chemotherapy in AML. Expression of protein products of the IRDS genes

were investigated in all four cell lines proteomics data.

3.4.4.1 Proteomic expression of the IRDS signature
AML cell lines exhibiting high and low IFNG signalling could be used to generate IFNG signalling

prognostic indexes, to investigate if overexpression of the IFNG pathway results in poorer
response to induction chemotherapy and HSCT and thus overall outcome. The purpose was to
investigate whether AML cell lines exhibit high expression of the IRDS signature, as seen in other
cancers where high IRDS expression has been associated with poorer outcomes. Therefore, the
protein products of the IRDS signature were compared across cell lines, using the proteomics
data as detected by SWATH-MS (Figure 23). IFI44 was not detected by SWATH-MS, and so not

included in further commentary.

Untreated control AML cell lines expressed comparable levels of IRDS protein products.
However, treatment with IFNG revealed varying IRDS protein profiles across the cell lines.
Surprisingly, although the SIG-M5 cell line exhibited the largest change in the number of
deregulated proteins in response to IFNG treatment, it did not upregulate IRDS protein products
as highly as the THP-1 or Kasumi-1 cell lines. Notably, the Kasumi-1 cell line was the only one to
significantly upregulate all IRDS proteins upon IFNG treatment, reaching much higher expression
levels than the other cell lines (MX1 Ctrl =97,079 NPA, IFNG =7,075,961 NPA, P<0.0001, OAS1
Ctrl = 32,495 NPA, IFNG =185,232 NPA, P< 0.0001, IRF7 Ctrl = 22,205 NPA, IFNG = 126,579 NPA,
P<0.0001, ISG15 Ctrl=58,738 NPA, IFNG = 2,952,021 NPA, P<0.0001, IFIT1 Ctrl = 2,952,021 NPA,



IFNG = 1,668,101 NPA, P<0.0001, IFITM1 Ctrl = 12,889 NPA, IFNG = 69,586 NPA, P<0.0001, STAT1
Ctrl = 125,437, IFNG = 1691790 NPA, P<0.001) (Figure 23). This data indicates that the IFNG-
treated Kasumi-1 cell line uniquely and disproportionately upregulated these IRDS proteins
compared to the other cell lines. The THP-1 cell line significantly upregulated four out of the seven
IRDS targets (MX1 Ctrl=73,612 NPA, IFNG = 147,022 NPA, P<0.001, IRF7 Ctrl=12,451 NPA, IFNG
= 18,277 NPA, P< 0.05, ISG15 Ctrl = 92,075 NPA, IFNG = 354,650 NPA, P<0.0001, STAT1 Ctrl =
169,530 NPA, IFNG = 1,302,040 NPA, P<0.0001) (Figure 23). Meanwhile, SIG-M5 and KG-1 only
significantly upregulated STAT1 (SIG-M5 Ctrl = 192,568 NPA, IFNG = 2,462,092 NPA, P< 0.0001,
KG-1 Ctrl =782,133 NPA, KG-1 IFNG = 2,033,763, P<0.05) and ISG15 (SIG-M5 Ctrl = 42,607 NPA,
IFNG = 98,182 NPA, P<0.001, KG-1 Ctrl = 55,085 NPA, IFNG = 186,602 NPA, P<0.001) (Figure 23).

STAT1 acts as a transducer for the IFNG signalling pathway. Therefore, higher expression of STAT1
could relate to a larger or more intense response to IFNG. However, all cell lines upregulated
STAT1 to similar levels, indicating that the disparity in IFNG response was not due to baseline or
inducible STAT1 levels. Another explanation could be that cell lines more responsive to IFNG
expressed higher levels of the IFNG receptor, thereby amplifying signalling. To test this, the
untreated control cell lines were stained for CD119 (IFNG receptor 1) cell surface expression
using flow cytometry (Figure 23B). Although SIG-M5 and THP-1 demonstrated the largest breadth
of response to IFNG, staining showed all cell lines to have similar receptor expression (SIG-M5 =
2.92 MFI, THP-1 = 2.72 MFI, KAS-1 = 1.63 MFI and KG-1 = 3.86 MFI). Surprisingly, even though KG-
1 had the smallest breadth of response to IFNG, as quantified by the number of differentially
expressed proteins and affected IRDS protein products, it expressed CD119 higher than all other
cell lines. CD119 expression was lowest in Kasumi-1. Therefore, differences in response to IFNG
could not be attributed to receptor expression or to baseline or IFNG-induced levels of STAT1.
Differences in IFNG signalling among cell lines were explored more thoroughly in chapter 4. IFNG
induced expression of IRDS has been linked to chemotherapy resistance in other cancer types.
IFNG-induced cells were tested for viability in the presence of chemotherapy to determine

whether the IFNG signalling pathways induced cell death or conferred resistance.
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Figure 23:Normalised peak area expression of protein products of IRDS genes: MX1, OAS1, IRF7, ISG15, IFIT1, IFITM1 and STAT1 across all four AML cell lines. Control compared to 48
hrs treatment 100 ng/mlIFNG (n=5-6). Grey = Control, Red = IFNG. B) Base line expression of CD119 (IFNG receptor 1) in all cell lines measured by cell surface staining flow cytometry,
n=38. Statistical test: Holm-Sidak multiple comparisons method, *=P<0.05, **=P< 0.01, ***=P<0.001 and ****= P<0.0001.



3.4.5 IFNG treatment drives cell death in Kasumi-1

The Kasumi-1 and KG-1 cell lines exhibited different responses to IFNG, as evidenced by their
varying expression levels of IRDS proteins. This indicates they may have different biological
responses to IFNG that could be explored further. The viability of cells when treated with IFNG

was compared to those without.

3.4.6 IFNG induced a cell death response to chemotherapy in the Kasumi-1
and KG-1 cell lines

Cells were assessed using flow cytometry by staining for Annexin V and an amine reactive dye
(LIVE/DEAD™) to determine if IFNG or 5AzaC exacerbated Daunorubicin-activated cell death.
Cells were pre-treated with IFNG, 5AzaC, or both before Daunorubicin administration, allowing
time for the treatments to alter signalling pathways and gene expression. The hypothesis was that
demethylation by 5AzaC could modify IFNG signalling and affect the cells' viability in response to
chemotherapy. To test this, cells received 5AzaC three times at 24-hour intervals to ensure DNMT
inhibition. This allowed multiple rounds of DNA replication to occur without active DNMT,
resulting in demethylated DNA. After three days of treatment, cells were exposed to IFNG,
Daunorubicin, or both to evaluate the impact of DNA demethylation on cell viability. As this was
a simple in vitro study with no co-culturing of immune cells, the expected result was for IFNG to

induce apoptosis of cell lines, and further activate Daunorubicin induced cell death.

Using the gating strategy described in chapter 2, an experiment was conducted to determine an
appropriate Daunorubicin concentration for a time course experiment. The IFNG and 5AzaC
dosing and schedule is described in Table 12. An initial experiment was run with 0, 0.2, 0.4 and
0.8 uM Daunorubicin after 48 hrs of treatment to choose the dose that would reduce live cell

population by approximately 50%.



Table 12: Outlines the dosing and measurement schedule used to assess cell viability of cell lines treated with IFNG,
5AzaC and Daunorubicin.

Day Treatment Cell viability mggsurement taken
after Daunorubicin dosing
0 Cells seeded, 5 ng/mL IFNG N/A
added, 0.5 yM 5AzaC added
0.5 pM 5, AzaC added,
1 Daunorubicin added N/A
2 0.5 pM 5AzaC added 24 hrs
3 None 48 hrs
4 None 72 hrs

The results (Figure 24) demonstrated the impact of increasing concentrations of Daunorubicin on
the number of cells in live, early apoptosis, necrotic, and dead states. At Daunorubicin
concentrations of 0.2 and 0.4 uM, a higher percentage of dead cells was observed on average in
the Kasumi-1 cell line compared to the KG-1 cell line (Kasumi-1: 34.29% and 60.29%; KG-1:
26.98% and 42.78%). Additionally, more cells in early apoptosis were seen in the Kasumi-1 cell
line than in the KG-1 cell line across all Daunorubicin doses. Both cell lines exhibited similar
percentages of necrotic cells at all chemotherapy doses used. Based on this data, a
concentration of 0.4 puM Daunorubicin was chosen, as it reduced the live cell populations in both
cell lines to approximately 50% of their untreated counterparts (Kasumi-1 live: untreated:

75.26%, 0.4 uM: 43.12%; KG-1 live: untreated 86.26%, 0.4 uM: 47.54%).

3.4.6.1 Flow cytometry time course experiment reveals different response phenotypes of cell
lines

Celllines were primed with IFNG and 5AzaC following the time course described in Table 12. After
priming, the cells were either left untreated or were treated with 0.4 pM Daunorubicin. The cells
were harvested 24, 48, and 72 hours post-Daunorubicin treatment, and cell viability was
measured by staining with Annexin V and LIVE/DEAD stain, allowing separation of dead cells from

cells in apoptosis or necrosis. The results are summarised in Figure 25.

IFNG treatment alone induced cell death Kasumi-1 cells, but did not affect KG-1 cells, this was
most prominently seen at the 72-hour time point (KAS-1 IFNG dead population = 40.99%, KG-1
IFNG dead population = 7.24%, Figure 26 and Figure 27). Staining with Annexin V and LIVE/DEAD
stain showed that priming Kasumi-1 with IFNG also increased the number of cells in early
apoptosis at 72 hours compared to the untreated control (14.61% vs 3.6%, averaged across 3
repeats). Priming Kasumi-1 with both IFNG and 5AzaC induced more cell death than IFNG alone
at 72 hours (Kas-1 IFNG5AzaC dead population =50.14%, IFNG dead population =39.98, P<0.01).

Furthermore, combining IFNG with Daunorubicin was significantly more effective at killing



Kasumi-1 cells than Daunorubicin alone at both 48 (Kas-1 IFNG Daunorubicin dead population =
57.02%, Daunorubicin dead population = 37.65%, P<0.05) and 72-hour time points (Kas-1 IFNG
Daunorubicin dead population = 80.07%, Daunorubicin dead population = 53.57%, P<0.001,
respectively). Priming with both 5AzaC and IFNG followed by Daunorubicin was no more effective

atinducing cell death than IFNG combined with Daunorubicin.

In KG-1 cells, treatment with IFNG or 5AzaC alone made no significant difference to the
percentage of cells in the ‘Live,’ ‘Early apoptosis, ‘Necrotic, or ‘Dead’ categories compared to the
untreated cells. Differences in behaviour based on priming were only visible once Daunorubicin
was added to the cells. In KG-1. Combining 5AzaC priming with Daunorubicinincreased the dead
cell population in KG-1 in comparison to cells treated with only Daunorubicin (KG-1 5AzaC
Daunorubicin dead population =62.03%, KG-1 Daunorubicin dead population =49.99%, P<0.01).
Similarly to Kasumi-1, combining IFNG priming with Daunorubicin was the most effective
condition for killing KG-1 cells. At 24, (KG-1 IFNG Daunorubicin dead cell population = 26.58%,
KG-1 Daunorubicin dead population = 15.19 %, P<0.01) 48, (KG-1 IFNG Daunorubicin dead cell
population =70.89% , KG-1 Daunorubicin dead population =43.04%, P<0.01) and 72 hours, (KG-
1 IFNG Daunorubicin dead cell population = 86.71%, KG-1 Daunorubicin dead population =
50.63, P<0.0001) the combination of IFNG and Daunorubicin induced significantly more cell
death compared to Daunorubicin alone. Combining IFNG with 5AzaC priming did not improve the

killing efficiency of Daunorubicin in KG-1 cells.

Representative scatter plots for cell viability for both cell lines exposed to all treatment types for

72 hours are shown in Figure 26 and Figure 27.
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Figure 24: The population of cells ‘Live’, in ‘Early apoptosis’, ‘Necrosis or ‘Dead’ in both cell lines after treatment with increasing doses of Daunorubicin for 48 hrs. Cell viability was
determined by staining with Annexin V and LIVE/DEAD stain, n=3-5. Error bars = standard deviation.
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Figure 26: Example scatter plots of Kasumi-1 cells after priming with IFNG and 5AzaC, and treatment Daunorubicin for 72 hrs. Cell viability was determined by
staining with Annexin V and LIVE/DEAD stain, Annexin V staining is plotted on the X axis labelled ‘FL6 INT’, and LIVE/DEAD stain is plotted on the Y-axis labelled
‘FL10 INT’. Scatters are from the n2 repeat of data. Top row shows Kasumi-1 cells without Daunorubicin and with IFNG, 5AzaC or both, bottom row are Kasumi-1
cells with 0.4 uM Daunorubicin and IFNG, 5AzaC or both.



Control IFNG 5AzaC IFNG + 5AzaC
. [C]FL6 INT / FL10 INT @ [C]FL6 INT / FL10 INT [C] FL6 INT / FL10 INT 5 [C] FL6 INT / FL10 INT
INecrosis/[Dead Necrosis|pead " INecrosis|[pead ""INecro...pead
1.09%
102 062% . ol 102 069%
g 1 : E ;
Z 10' : 724% 591% Z 04 ;
- 463% S 3 . . 5 2 11.86%
- Early apoptosis] ‘Early apoptosis —— e @ :
ST e J— g - 77 1.03%
| 0.65% 4 bl ) ~|" ‘|Early apoptosis - s .
- " Livel”
0.60 % 1 ——_ Early apoptosis
1-(') ' :'0’ l:)' IIF 10 1"(1:" 12? 13' 12)’ 10* ﬂy "13- ";'oz 10° 1—(1) ' l:f 1:)‘ |:)2 10°
FL6 INT FL6 INT FL6 INT FL6 INT
Control IFNG 5AzaC IFNG + 5AzaC
[C] FL6 INT / FL10 INT C] FL6 INT / FL10 INT [C] FL6 INT / FL10 INT [C] FL6 INT / FL10 INT
101 10 " Necro...Jpead
Necro...[Dead Necr...Dead] ecro...|Dea
354% 2.72% 481%
10 103 " 62.98 %
E to 4598 % E o 84.65% ; ’ E
s Fa 5 : R AL - fre
il (R i Early apoptosis . Early apoptosis e
Early apoptosis 2 33 0.82% et i g 2
- 3 . 322% .. e
31 SRR ]
104 41.17 % o 107490.85%4 “l617% yopp
-0.54
t') u'!’ 1(')' 15’ 10° (') u'f 12)' 131 10° tl) u'? 16' 1:)* 10° ¢'> 11? R)‘ ;)' 10

FL6 INT

FL6 INT

FL6 INT

FL6 INT

Figure 27: Example scatter plots of KG-1 cells after priming with IFNG and 5AzaC, and treatment Daunorubicin for 72 hrs. Cell viability was determined by
staining with Annexin V and LIVE/DEAD stain, Annexin V staining is plotted on the X axis, labelled ‘FL6 INT’, and LIVE/DEAD stain is plotted on the Y-axis labelled
‘FL10 INT’. Scatters are from the n2 repeat of data. Top row shows KG-1 cells without Daunorubicin and with IFNG, 5AzaC or both, bottom row are KG-1 cells
with 0.4 uM Daunorubicin and IFNG, 5AzaC or both.



3.5 Discussion

Cell lines were categorised based on their response to treatment with IFNG and chemotherapy.
Cell lines showed a spectrum of IFNG response as determined by known IFNG inducible AIR
molecules and by breadth of differentially expressed proteins identified by SWATH-MS. First,
expression of IFNG inducible molecules (/IDO1, TDO2, CD274, HLA-A,B,C, HLA-E, HLA-G, PD-L1
and Kynurenine) were measured by RT-PCR, flow cytometry and colourimetric assays as
appropriate to establish basic IFNG response and immunosuppressive phenotypes. SIG-M5 was
the only cell line to significantly upregulate all AIR molecules with IFNG treatment, while all other

cell lines upregulated five out of the eight AIR molecules (Summary in Table 13).

Measurement of kynurenine, a downstream product of IDO1/TDO2 signalling, allowed
assessment of whether the immunosuppressive IDO1/TDO2 pathway had increased activity
corresponding to IFNG induction of IDO1/TDQOZ2 genes. Out of the four AML cell lines, only SIG-
M5 and KG-1 have a functioning IDO immunosuppressive AIR response to IFNG, supported by
significantly upregulated /IDO1(SIG-M5 Ctrl = 0.0030, IFNG = 0.2176 AACT, P<0.01, KG-1 Ctrl =
0.0018, IFNG = 0.0080 AACT), P<0.01, Figure 14) and kynurenine (SIG-M5 Ctrl = 1.9 uM, IFNG =
37.46 uM ,P<0.01, and, KG-1 Ctrl=0.12 uM, IFNG =1.07 uM, P<0.01, Figure 15) expression in both
cell lines. However, the increase in kynurenine production by SIG-M5 was substantially larger
than by KG-1. Although TDO2 was upregulated in THP-1 (THP-1 Ctrl = 0.0018 AACT, IFNG = 0.0837
AACT, P<0.0001, Figure 14), kynurenine production did not increase with IFNG treatment,
suggesting impairment in the pathway. This result was in line with Hoffmann et al, who found a
combination of 100ng/mL IFNG and 1ug/mL LPS (lipopolysaccharides) induced a significant
increase in TDO2 expression, but a reduced kynurenine expression compared to THP-1 treated
with LPS alone. They hypothesised that the combined treatment of IFNG with LPS also highly
induced IDO1, which resulted in complete removal of tryptophan, which subsequently resulted
in signalling for degradation of IDO1 and TDO2 proteins. Hence, when samples were measured
after 2 days for kynurenine, the negative feedback had already occurred, causing reduced
kynurenine to be recorded (Hoffmann, et al. 2019). It is possible a similar negative feedback loop

occurred here.

Flow cytometry was used to measure expression of the surface proteins HLA-A,B,C, HLA-E, HLA-
G and PD-L1 . In all cell lines HLA-A,B,C was significantly upregulated by IFNG which was
expected (SIG-M5 Ctrl = 158.11 MFI, IFNG = 270.10 MFI, P<0.001, THP-1 Ctrl = 61.03 MFI, IFNG =
148.98 MFI, P<0.0001, Kasumi-1 Ctrl =11.20 MFI, IFNG = 120.97 ,P<0.0001 and KG-1 Ctrl = 35.72
MFI, IFNG = 120.97, P<0.001, Figure 16). HLA-E was expression was induced in all cell lines



except for KG-1 (SIG-M5 Ctrl = 0.09 MFI, IFNG = 3.12 MFI, P<0.0001, THP-1 Ctrl = 0.46 MFI, IFNG
= 1.40 MFI, P<0.01, Kasumi-1 Ctrl = 1.62 MFI, IFNG = 5.17 MFI, P<0.01, Figure 16), and HLA-G
was only IFNG inducible in SIG-M5 line (SIG-M5 Ctrl = 1.24 MFI, IFNG = 26.53 MFI, P<0.0001,
Figure 16). Finally, IFNG induced increased expression of PD-L1, the protein product of
IDO1/TDOZ2 in all cell lines (SIG-M5 Ctrl = 0.10 MFI, IFNG = 6.96 MFI, P<0.01, THP-1 Ctrl = 0.51
MFI, IFNG = 19.70 MFI, P<0.001, Kasumi-1 Ctrl = 0.62 MFI, IFNG = 1.35 MFI, P<0.0001 and KG-1
Ctrl=0.77 MFI, IFNG = 1.04 MFI, P<0.05, Figure 16). This data showed active expression of various

immunosuppressive proteins in all four cell lines.

Celllines were then treated with IFNG and analysed using SWATH-MS to further characterise their
IFNG responses. All cell lines reported close to 3,000 proteins differentially expressed. When
confidence and fold-change cut offs were applied, this decreased numbers of proteins of
interest. SIG-M5 reported the most differentially expressed proteins in response to IFNG (341),
while KG-1 reported the least (48). Table 13 summarises chapter 3 AIR and IFNG response
characterisation results below:

Table 13: Summary of characterisation data from chapter 3. Ticks represent significant upregulation of RNA or protein

by IFNG. Also lists the number of proteins including IRDS proteins significantly differentially expressed or upregulated
with IFNG treatment.

Proteins IRDS
significantly proteins
Do TDO2 CD274 | HLA-AB,C HLA-E HLA-G PD-11 Kynurenine | dysregulated | upregulated
SIG-M5 v v v v v v v v 341 3/7
THP-1 X v v v v X v X 141 5/7
Kasumi-1 | x X v v v X v v 101 7/7
KG-1 v X v v X X v v 48 247

Lists of ‘significantly’ upregulated and downregulated proteins were uploaded to metascape for
process enrichment. Enrichment analysis did not show upregulation of proteins involved in
immunosuppressive  pathways, contradicting the hypothesis that IFNG induces
immunosuppressive phenotypes in AML cell lines. However, SWATH-MS is 3-10 times less
sensitive than SRM, as discussed in Chapter 1, so low-abundance proteins might have been
missed. Additionally, this was an in vitro test where AML cell lines were treated with IFNG in
isolation from an immune microenvironment, which might have triggered immunosuppressive
responses if present. Moreover, this was a short-term assay, so the impact of chronic IFNG

exposure within a more complex immune microenvironment could not be determined.



Overall, the characterisation showed cell lines had developed varying degrees of IFNG induced
AIR, with SIG-M5 upregulating the most AIR molecules, while all other cell lines only upregulated
five out of the eight tested. Additionally, the SIG-M5 cell line reported the largest number of
differentially expressed proteins while KG-1 expressed the least. Suggesting there are differences
between the cell lines IFNG response mechanisms. This was corroborated by the pairwise
comparisons of Pearson correlation coefficients preformed on SWATH-MS proteomics profiles of
untreated control and IFNG treated AML cell lines. It was found that KG-1 untreated control and
IFNG samples overlapped during clustering (Figure 19), suggesting either noneffective IFNG
treatment, or a low and muted response to IFNG resulting in a similar expression profile to KG-1
control. This overlap of IFNG treated and untreated KG-1 was also seen in the PCA analysis (
Figure 20). In contrast, the SIG-M5, THP-1 and Kasumi-1 cell lines all clustered into defined
untreated control and IFNG treated groups. This suggested that IFNG was not activating a robust

signalling response in KG-1 as it was in the other cell lines.

To further characterise IFNG response, expression of IRDS gene protein products were examined
as they have been associated with chemotherapy and radiation resistance in other cancer types.
The SIG-M5 cell line reported only three of seven IRDS proteins as significantly altered, while the
Kasumi-1 cell line reported all. Furthermore, the expression of the IRDS proteins in IFNG treated
Kasumi-1 was higher than any other cell line by 10 to 100 times, suggesting an IFNG response
unique to this cell line, which might have been missed if only gauging IFNG response on AIR
induction or number of significantly deregulated proteins. For this reason, Kasumi-1 was carried
forward for analysis, along with KG-1 which showed a comparatively muted response to IFNG,
expressing the lowest number of differentially expressed proteins (48), and upregulation of only 2
IRDS proteins. Finally, to investigate how IFNG influenced cell lines response to chemotherapy,
cell line viability was tested in the presence of Daunorubicin, IFNG and 5AzaC treatments. IFNG
alone induced cell death in Kasumi-1 (40.99%) and KG-1 (7.24%) cell lines after 72 hrs (Figure 25).
Furthermore, IFNG combined with Daunorubicin induced further cell death after 72 hrs in both
cell lines (Kasumi-1=80.07%, KG-1= 86.71%) than treatment with just Daunorubicin (Kasumi-1 =
53.57%, KG-1 = 50.63%) (Figure 25). Combining IFNG with Daunorubicin was more effective at
killing both the AML cell lines than Daunorubicin alone. The effect of combining IFNG with
Daunorubicin also induced increased cell death in KG-1, even though IFNG itself did not induce

cell death in KG-1 as it did in Kasumi-1.

AlWLAML cell lines demonstrated IFNG induced upregulation of immunosuppressive mechanisms,
suggesting IFNG rich environments could contribute to poorer outcomes in AML patients. In

summary, this chapter investigated if IFNG treatment upregulated expression of adaptive



immune resistance molecules in AML cell lines and generated proteomic profiles of untreated
and IFNG treated AML cell lines. Cell lines exhibited different degrees of response to IFNG in
terms of intensity and breadth of proteins differentially expressed, as measured by flow
cytometry and SWATH-MS. It was found that cell lines upregulated immunosuppressive
molecules (IDO1, PDL1, HLA-E/HLA-G), in response to IFNG. These molecules are known to aid
immune escape and inhibit immune cells, indicating these cell lines could represent different
types of immunosuppressive AML. This study was limited by its in vitro nature. Therefore, when
cell lines Kasumi-1 and KG-1 were treated with IFNG and Daunorubicin, cell death was observed
as opposed to proliferation. The theory of IFNG induced AML resistance to chemotherapy is
dependent on an in vivo environment with immune cells present for immunosuppressive
molecules such as IDO1 to take effect. The next step was to generate transcriptional profiles of
cell lines in response to IFNG and 5AzaC treatment to analyse how influenced the AML
transcriptome. Furthermore, the profiles created were then used to generate prognostic scores
associated with each treatment and applied to patient databases to assess correlation with
patient survival and clinical categories such as cytogenetic risk. In chapter 4, AML cell lines
Kasumi-1 and KG-1 were treated with IFNG and 5AzaC, and transcriptional profiles were created

using RNAseq.



4 A comparative RNA sequencing analysis of
demethylation effects on IFNG induced changes
to immunosuppressive molecules in Kasumi-1
and KG-1 cell lines

4.1 Introduction

All the possible transcripts that an organism can express are encoded in its genome. Under
certain circumstances, these transcripts are transcribed into mRNA, which serves as an
intermediary molecule between the transcript and the protein product. Changes in transcript
expression can be quantified by measuring RNA transcript levels. Because transcriptomes are
dynamic and respond to various stimuli, measuring RNA expression provides a snapshot of the
genes being expressed in a cell at any given time. Thus, transcriptomics is a valuable tool for
analysing how stimuli affect transcript expression. In this case, it involves quantifying transcripts

to assess the effects of treatments such as IFNG or 5AzaC (Lowe, et al. 2017).

In Chapter 3, cell viability assays revealed that IFNG treatment increased cell death in response
to Daunorubicin in both cell lines. This Daunorubicin-induced cell death was further amplified
when IFNG was combined with 5AzaC, showing a synergistic effect that was more pronounced in
Kasumi-1 cells than in KG-1 cells. The differing responses of the two cell lines to IFNG and 5AzaC
treatments warrant further molecular-level investigation to uncover the underlying mechanisms.
To this end, next-generation RNA sequencing was performed on the cell lines after treatment with

IFNG, 5AzaC, or their combination, alongside a non-treated control.

0 hrs

* Cells treated with either Sng/mL IFNG, 0.5 pM 5AzaC, or a combination of both

24 hrs * Additional 0.5 pM 5AzaC added to cells

48 hrs *» Cells harvested and frozen

Figure 28:The Workflow and time points for treating cells prior to sending to Novogene for analysis.



4.2 Results

First, the transcriptomes of untreated Kasumi-1 and KG-1 cells were compared to determine their
similarity prior to treatment with IFNG or 5AzaC. Transcripts were reported in FPKM (Fragments
Per Kilobase of exon per Million mapped fragments), a metric which shares similarity with RPKM
(Reads Per Kilobase of exon per Million reads mapped) but specifically used in paired-end RNA-
seq investigations. After comparing the untreated cell lines, the impact of treatment with IFNG,
5AzaC, or acombination of both on transcript expression was examined. Only transcripts with an
initial expression of more than 1 FPKM and significant differential expression between treatments
and cell lines after FDR correction were selected for further investigation. The 1 FPKM cut-off was
used because relying solely on fold change can be misleading; it excludes baseline expression
levels, and significant fold changes might not reflect biologically meaningful differences if initial
expression is extremely low or zero. Statistical analysis and FDR correction were performed by
Novogene using the DESeq2 analysis package. Data were transformed using Log2(FPKM+1), and

Z score values were calculated to generate heat maps.

In addition to differential transcript expression, enrichment analysis was conducted to identify
the biological pathways most significantly associated with differentially expressed transcripts
(DETs). This analysis was also provided by Novogene. As in Chapter 3, lists of significant DETs
between selected treatment groups were applied to pathway analysis using Metascape (Zhou, et
al. 2019). NGS seq identified far more significantly altered transcripts, than SWATH MS detected

at the protein level.

4.2.1 Kasumi-1 and KG-1 transcriptomes indicate different AML
phenotypes

NGS revealed 47% of transcripts were significantly (Padj < 0.05) differentially expressed between

the cell lines (Figure 29). Results showed that 14,481 transcripts were differentially expressed

between the cell lines, with 6,979 and 7,502 upregulated and downregulated respectively in

Kasumi-1 compared to KG-1. The degree of differences in transcript expression between cell lines

lays the foundation for cell lines to function in biologically unique ways to one another and

showcases the heterogenous nature of AML.
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Figure 29: Volcano plot of differentially expressed transcripts (DET) between cell lines Kasumi-1 and KG-1. Upregulated
and down regulated transcripts are reported as red and green dots, respectively. Unchanged transcripts are
represented by blue dots. Padj threshold < 0.05.

Differences between cell lines were further evaluated by identifying the number of transcripts
expressed exclusively in each cell line. An FPKM > 1 cut-off was used for downstream analysis,
following the transcriptomic analysis method published by Mortazavi in Nature Methods
(Mortazavi, et al. 2008). Lists of expressed transcripts for both cell lines were filtered accordingly
and compared by Venn diagram (Figure 30). This comparison revealed that approximately 10% of

the transcripts were uniquely expressed in each cell line.



Kasumi-1 KG-1

1814

(13.3%)

Figure 30: Venn diagram showing number of transcripts expressed specifically the Kasumi-1 or KG-1 cell line or shared
between both.

The transcriptomic analysis revealed variations in the directionality of expression for shared
transcripts between the cell lines, as evidenced by the volcano plot, as well as in the expression
of transcripts exclusive to each individual cell line. The cell lines were derived from patients
exhibiting specific morphologic and genetic features, resulting in some of the divergence in
transcript expression observed. Consequently, these cell lines, as discussed in chapter 3, can
serve as models to represent different and specific populations of AML patients, with discoveries

in either model being clinically relevant.

4.2.1.1 Pearson correlation and principle component analysis of treated cell lines indicate no
outliers among samples and show IFNG and 5AzaC induced changes in transcription

The transcriptomes of samples were compared using Pearson correlation to assess variability
between treatments and cell lines, as well as to identify any replicate outliers. The Pearson
correlation coefficient was calculated between pairs of samples and visualised as a heat map
(Figure 31). Clustering clearly demonstrated that treatment with IFNG and 5AzaC resulted in
successful replicates with no obvious outliers. This perfunctory form of analysis also reported
global differences in treatment impact on transcriptomes between cell lines. Treatment of
Kasumi-1 with IFNG, or combination treatment, resulted in reduced correlation to its control (0.9
and 0.86 respectively) and 5AzaC treated counterparts (0.9 and 0.87 respectively). In contrast,
correlation coefficients of KG-1 differed very little between treatments and control. Coefficients
were high (0.97-1) indicating the KG-1 transcriptome was largely unaffected by IFNG or 5azaC
treatment. When cell lines were compared to one another, correlation stood at around 0.75,

regardless of treatments.
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Figure 31: Pairwise comparisons of Pearson correlation coefficients between untreated and IFNG/5AzaC treated cell
lines transcriptomic profiles. Left, Kasumi-1, Right, KG-1. Pearson coefficients were calculated by Novogene, and then
visualised and clustered using Morpheus online tool https://software.broadinstitute.org/morpheus/). Clustering was
performed with Euclidean distance and complete linkage. Blue indicates low correlation and red indicates higher
correlation between groups.

Principle component analysis (PCA) confirmed the expected grouping among cell lines and
treatment group replicates, when data was transformed to principal components (PC). A 3D PCA
plot was generated where PC1 accounts for 71.95 % of variance, PC2 for 19.04 % and PC3 for a
minor 1.50 % of variance. The plot further confirmed replicate fidelity whilst also showcasing

intergroup variance as a function of cell line and treatment received.
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transcriptomics expression data set.



4.2.1.2 Alltreatments induced differential expression of transcripts in both cell lines
The data revealed a range of expression changes after treatment with IFNG and 5AzaC in both cell

lines. The most pronounced upregulation was observed for GBP1 (Log2 FC =+18.81) in Kasumi-1
cells treated with a combination of IFNG and 5AzaC. Conversely, the largest decrease was noted
in OLFM4 (Log2 FC =-2.18) in Kasumi-1 cells treated with 5AzaC alone. Kasumi-1 exhibited the
most pronounced response to both treatments compared to KG-1, which showed a more
subdued response. Nonetheless, KG-1 still demonstrated significant upregulation in certain
transcripts, such as PNMA5 (Log2 FC = +11.68). A comparison of the number of significantly
differentially expressed transcripts between the two cell lines is illustrated as a bar chart (Figure
33). The Kasumi-1 cell line was consistently more responsive to each treatment than its KG-1
counterpart, with 2 to 4-fold difference in number of transcripts effected. For example, IFNG
treatment deregulated 11,377 transcripts in Kasumi-1 compared to 2,564 in KG-1. According to
this data, Kasumi-1 was more responsive to treatment with IFNG and 5AzaC compared to KG-1.
The NGS and proteomics data sets were used to investigate the IFNG signalling pathway in both

cell lines and identify the fundamental molecular differences.
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Figure 33: The number of transcripts significantly differentially expressed between treated and untreated Kasumi-1 and
KG-1 cell lines. KA = Kasumi-1, KG = KG-1, C = Untreated control, Y = IFNG, 5A = 5AzaC, and Y5A = IFNG and
5AzaCytidine treatment. Blue = Total number of transcripts significantly differentially expressed (Includes up and down
regulation), Purple = Number of transcripts which were significantly upregulated, and Pink = Number of transcripts
significantly down regulated.



4.2.2 IFNG induced four times more differentially expressed transcripts in
Kasumi-1 than KG-1

Kasumi-1 and KG-1 have shown different sensitivity to IFNG induction, with Kasumi-1 displaying
a hyper response and KG-1 a muted response. This deviation was further evident in the
transcriptomics data. Analysis of significantly differentially expressed transcripts between cell
lines and treatments revealed a total of 11,377 and 2,564 transcripts altered in Kasumi-1 and

KG-1 with IFNG treatment, respectively. These differences were visualised as a heat map (Figure

34).
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Hierarchical clustering of the significantly differentially expressed transcripts between untreated and IFNG treated cell
lines. Clustered using Euclidean distance and complete linkage (n = 3 per sample type). Key for heat maps shown top
left for expression values. Heat maps generated in Morpheus (https://software.broadinstitute.org/morpheus/). Blue
indicates lower expression; red indicates higher expression.

Transcript expression was transformed using Log2(FPKM+1) and Z values used, data was then
subject to hierarchical clustering using Euclidean distance and complete linkage. Distinct
clusters were assigned to treatment groups of cell lines, indicating consistent treatment across
samples. Kasumi-1 showed clear clusters where IFNG induced upregulation and downregulation
of transcripts compared to untreated control cells. In KG-1 these differences were harder to see

by heatmap as far fewer transcripts were differentially expressed in response to the treatments.



4.2.2.1 IFNG induced higher expression of first wave IFNG signalling transcripts in Kasumi-1
than KG-1

The IFNG signalling cascade was illustrated in chapter 3 (Figure 9). In short IFNG binds to the
IFNGR, which activates the Jak1 and Jak2 kinases to phosphorylate STAT1, which then
translocates to the nucleus to initiate IFNG regulated transcription. The NGS data was examined
for expression of early IFNG induced transcripts TRIM21, IRF1, IFR8 and PML in Kasumi-1 and KG-
1. These transcripts are induced early in IFNG signalling and TRIM21, IRF1 and IRF8 are required
to form the IRF1-IRF8 complex that initiates the next set of transcript expression in the IFNG
signalling cascade (Ozato, et al. 2008). Therefore, reduction in transcripts at this level could

explain the reduced IFNG response seen in KG-1.

In both cell lines, IFNG treatment significantly upregulated expression of TRIM21, (Kas-1, Ctrl =
14.53 FPKM, IFNG = 82.45 FPKM, KG-1, Ctrl = 15.60 FPKM, IFNG = 36.94 FPKM) IRF1, (Kas-1, Ctrl
= 3.47 FPKM, IFNG = 79.39 FPKM, KG-1, Ctrl = 6.24 FPKM, IFNG = 28.97 FPKM) and PML, (Kas-1,
Ctrl = 5.22 FPKM, IFNG = 35.83 FPKM, KG-1, Ctrl = 8.25 FPKM, IFNG = 12.18 FPKM) (Al

comparisons, Padj < 0.0001, Wald test- BH). Comparisons are shown as graphs in Figure 35.

IFNG induced expression of these transcripts was higher in Kasumi-1 than in KG-1. In Kasumi-1
combination of IFNG and 5AzaC induced increased expression of TRIM21 (Kas-1 IFNG5AzaC =
92.20 FPKM) and PML (Kas-1 IFNG5AzaC = 92.20 FPKM), than IFNG treatment on its own did
(Both, Padj < 0.0001, Wald test- BH). IRF8 was uniquely and significantly downregulated in
Kasumi-1 in response to IFNG and further significantly downregulated by combining IFNG with
5AzaC when compared to only IFNG treatment (Ctrl = 4.07 FPKM, IFNG = 2.49 FPKM, IFNG5AzaC
=1.59 FPKM, Both, Padj < 0.0001, Wald test- BH).

The disparity in transcript expression was present in the first wave of IFNG induced transcripts,
where IFNG induced expression of IRF1, TRIM21 and PML was much higher in Kasumi-1 than in
KG-1. Combined with low transcription of /RF8 in KG-1 (<1 FPKM), decreased transcription of
TRIM21 and IRF1 could have a knock-on effect that decreases transcription of downstream

targets such as PML compared to Kasumi-1.
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Figure 35: Expression TRIM21, IRF1, IRF8 and PML in Kasumi-1 and KG-1 in response to treatments. Data given as FPKM
(n=3). Grey = Control, Red = IFNG, Blue =5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test —
BH correction. * = Padj<0.05, ** = Padj< 0.01, ***= Padj< 0.001 and **** = Padj< 0.00017.

4.2.2.2 IFNG signalling docking components transcripts are upregulated in Kasumi-1 by IFNG
Consistent with the IFNGR1 protein expression observed via flow cytometry (Figure 23), IFNGR1

mRNA was significantly higher in KG-1 compared to Kasumi-1 (KG-1 Ctrl = 33.89 FPKM and Kas-1
Ctrl=33.89 FPKM, Padj<0.0001, Wald test- BH). KG-1 also showed elevated levels of JAKT mRNA
(KG-1 Ctrl = 38.99 FPKM) and JAK2 mRNA (KG-1 Ctrl = 7.04 FPKM) compared to Kasumi-1.
Treatment of Kasumi-1 with IFNG led to significantincreases in IFNGR1 (Kas-1 Ctrl = 33.89 FPKM,
IFNG = 14.13 FPKM, Padj < 0.05, Wald test-BH), IFNGR2 (Kas-1 Ctrl = 12.87 FPKM, IFNG = 16.11
FPKM, Padj < 0.0001), JAK1 (Kas-1 Ctrl = 11.92 FPKM, IFNG = 16.55 FPKM, Padj < 0.0001, Wald
test-BH), and JAK2 (Kas-1 Ctrl = 3.95 FPKM, IFNG = 25.62 FPKM, Padj < 0.0001, Wald test-BH).

IFNG treatment of Kasumi-1 and KG-1 induced changes in IFNG signalling transcripts involved in
creating the docking sites for STAT1, data is shown in Figure 36. In Kasumi-1, combination of IFNG
and 5AzaC significantly increased expression of JAK7 (IFNG5AzaC = 21.95 FPKM) and JAK2
(IFNG5AzaC = 31.28 FPKM) in comparison to IFNG only treatment (Both, Padj < 0.0001, Wald test-
BH). STAT1 transcript was expressed higher in KG-1 than Kasumi-1 (KG-1 Ctrl = 96.98 FPKM, Kas-



1 Ctrl = 19.62 FPKM, Padj < 0.0001, Wald test-BH) as was STAT1 protein expression (KG-1 Ctrl =
136,478 NPA, Kas-1 Ctrl = 547,440 NPA)(Figure 36). IFNG treatment induced significant
upregulation of STAT7 in both cell lines compared to untreated control (Kas-1 IFNG = 744.40
FPKM, KG-1 IFNG = 966.11 FPKM, both, Padj < 0.0001). The combination of IFNG and 5AzaC
reduced expression of STAT7 in comparison to IFNG only treatment in KG-1 at the transcript level
(KG-1 IFNG5AzaC = 897.92 FPKM, Padj < 0.05, Wald test-BH. In summary IFNG significantly
upregulated transcripts for IFNG signalling components STAT1, IFNGR1, IFNGR2, JAK1 and JAK2
in Kasumi-1, and minorly JAK2 in KG-1 (KG-1 Ctrl = 7.03 FPKM, IFNG = 7.91 FPKM, Padj < 0.05,
Wald test-BH). STAT1 protein was also significantly induced with IFNG in both cell lines as
determined by SWATH-MS in chapter 3 (Kas-1 Ctrl = 125,437 NPA, IFNG = 1,959,620 NPA, KG-1
Ctrl = 782,133 NPA, IFNG = 2,378,399 NPA, both, Padj <0.001, Holm-sidak). In summary, IFNG
treatment significantly upregulated key signalling molecules (IFNGR1, IFNGR2, JAK1, JAK2,
STAT1) in Kasumi-1 cells, but only JAK2 was significantly upregulated in the KG-1 cells. These
results aligh with the proteomics data in Chapter 3, which showed Kasumi-1 had a robust
response to IFNG, evidenced by 141 differentially expressed proteins and 7 upregulated IRDS

proteins, compared to 48 proteins and 2 IRDS proteins in KG-1
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Figure 36: Expression of IFNGR1, IFNG2, JAK1, JAK2 and STAT1 transcripts and STAT1 protein in Kasumi-1 and KG-1 in
response to treatments. Transcript data given as FPKM (n=3) and protein data as NPA (n=5/6). Grey = Control, Red =
IFNG, Blue =5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test — BH correction. Bottom right
(STAT1): Normalised peak area expression of STAT1 protein in cell lines, as measured by SWATH-MS, control
compared to 48 hrs treatment 100 ng/ml IFNG (n=5-6). Grey; Control, Red; IFNG. Holm-Sidak method was used to
calculate statistical significance between IFNG treated and untreated cells. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj<
0.001 and **** = Padj< 0.0001.

4.2.2.3 SOCST expression was upregulated by IFNG in both cell lines
As the differences in signalling intensity occur before the first wave of transcription, the disparity

in signalling must occur between signal transduction and the STAT1 homodimer binding to DNA.

SOCS1 is aprotein which reduces IFNG signalling by binding to Jak1/2 to prevent phosphorylation



of STAT1 (Schroder, et al. 2004). TRIMS8 is also an IFNG inducible protein whose interaction with
SOCS-1 has been shown to degrade it (Toniato, et al. 2002). Data gathered by NGS showed that
SOCS1 transcripts were expressed by KG-1 but not by Kasumi-1 (<1 FPKM). Figure 37 shows IFNG
induced SOCS1 expression significantly in both cell lines (Kas-1 Ctrl = 0.02 FPKM, IFNG = 15.93
FPKM, KG-1 Ctrl = 5.57 FPKM, IFNG = 20.01 FPKM, Padj < 0.0001, Wald-test BH). In Kasumi-1,
combining IFNG with 5AzaC further increased SOCS17 expression than IFNG alone (Kas-1
IFNG5AzaC =21.81 FPKM, Padj<0.0001, Wald-test BH). TRIM8 expression (Figure 37) was similar
between untreated cell lines and was decreased in response to IFNG in both cell lines to a similar
level (Kas-1 Ctrl = 8.09 FPKM, IFNG = 6.39 FPKM, Padj < 0.0001, Wald-test BH, KG-1 Ctrl = 8.21
FPKM, IFNG =7.01 FPKM, Padj<0.01, Wald-test BH). Treatment with 5AzaC uniquely upregulated
TRIM8 in Kasumi-1 (Kas-1 5AzaC = 10.82 FPKM, Padj < 0.0001, Wald-test BH). SOCS7 and TRIM8
were expressed at similar levels in the presence of IFNG in both cell lines. It is, therefore, unlikely
the large differences in IFNG signalling were SOCS1 dependent. However, transcript abundance
is not necessarily an indicator of protein abundance, as many factors such as RNA degradation
can prevent translation to protein. As SOCS1 and TRIM8 data were not present in the SWATH-MS

data, no conclusions could be drawn about what was happening in the cell lines at the protein

level.
SOCSs1 TRIMS
30 okokok okokok 15 ok ok
* % ok %k *k
% %k %
20+ 10—
= =
X 4
o o
(18 (18
10 54
0- 0-
Kasumi-1 KG-1 Kasumi-1 KG-1

Figure 37: Expression of SOCS1 and TRIM8 transcripts in Kasumi-1 and KG-1 in response to treatments. Data is given
as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene
Wald test - BH correction. * = Padj<0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.



4.2.2.4 High expression of SHP1 by KG-1 could inhibit IFNG signalling
Protein tyrosine phosphatases (PTPs) like SHP1 and SHP2, disrupt IFNG signalling by obstructing

STAT1 phosphorylation (Schroder, et al. 2004). PTPs in the cytosol can dephosphorylate Jak1/2
and IFNGR1, thereby disrupting the phosphorylation chain and preventing STAT1
phosphorylation, as shown in Figure 9. This reduces the number of STAT1 proteins successfully
phosphorylated, stopping homodimers forming to activate transcription. PTPs in the nucleus can
also directly dephosphorylate STAT1 homodimers, rendering them inactive and causing their

nuclear export (Schroder, et al. 2004).

NGS and proteomics data showed KG-1 expressed more SHP2 protein than Kasumi-1 (Kas-1 =
36,615 NPA, KG-1 =104,270 NPA, Padj <0.01, Holm-Sidak). However, expression of its transcript
PTPN11 was similar between the cell lines (Kas-1 = 39.45 FPKM, KG-1 = 39.71 FPKM, NS, Wald-
test, BH) (Figure 38). Expression of SHP1 differed between cell lines (Figure 38). Kasumi-1
expressed lower levels of SHP1 protein compared to KG-1 (Kas-1= 114,481 NPA and KG-1=
1,708,676 NPA, Padj < 0.0001, Holm-Sidak) along with its transcript PTPN6 (Kas-1= 5.09 FPKM
and KG-1= 68.59 FPKM, Padj < 0.0001, Wald-test, BH). It is possible high baseline levels of SHP1
in KG-1 could prevent IFNG signalling occurring to the same degree as Kasumi-1, which has low
baseline SHP1 expression. Furthermore, Kasumi-1 upregulated the PTPN6 transcript and
corresponding SHP1 protein (PTPN6 expression, Control = 5.09 FPKM, IFNG = 11.89 FPKM, Padj
< 0.0001, Wald-test, BH, SHP1 expression, Control = 114,481 NPA, IFNG = 297,412 NPA, Padj<
0.01, Holm-Sidak) in response to IFNG, thereby displaying a potential negative feedback loop for
IFNG signalling, indicative of a functional IFNG response. Meanwhile, IFNG significantly
downregulated PTPN6 in KG-1 (Control = 68.59 FPKM, IFNG = 60.14 FPKM, Padj < 0.001, Wald-
test, BH) and the protein product was decreased but not reported as significant in the SWATH-
MS data (Control = 1,708,676 NPA, IFNG = 1,581,148 NPA, NS, Holm-Sidak). High SHP1
expression could have allowed KG-1 to remain IFNG-resistant, while its low expression in Kasumi-
1 might have enabled a hyper-response to IFNG. According to SWATH-MS data from Chapter 3,
even with IFNG treatment, Kasumi-1 SHP1 levels remained below those in KG-1 and the other cell
lines (data presented in appendix 7.6), indicating a dampened negative feedback loop, which

could enable the more intense and prolonged IFNG response, displayed by Kasumi-1.
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Figure 38: Expression of PTPN6 and PTPN11 transcripts and matching SHP1 and SHPZ2 proteins in Kasumi-1 and KG-1
in response to treatments. Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG +
5AzaC. Statistical tests by Novogene Wald test - BH correction. B) Normalised peak area expression of SHP1 and SHP2
across all four cell lines, control compared to 48 hrs treatment 100 ng/ml IFNG (n=5-6). Holm-Sidak method was used
to calculate statistical significance between IFNG treated and untreated cells. * = Padj< 0.05, ** = Padj< 0.01, ** =
Padj< 0.001 and **** = Padj< 0.0001.

4.2.3 Metascape analysis showed IFNG induced a unique biological
response in each cell line

The IFNG signalling pathway was operating differently between cell lines, possibly due to

differential expression of SHP1. The intensity of signalling was distinct between cell lines. To

investigate how the divergent IFNG signalling intensity effected biological response to IFNG, a

comparison of differentially expressed transcripts was performed using Metascape.

Transcript lists for each cell line were filtered for differential expression Padj < 0.05 and a fold
change of 1.5 or more, then separated into two lists of increased (up-regulated) or decreased
(down-regulated) expression. Venn diagrams were drawn comparing the lists of increased and
decreased transcripts between each cell line in Figure 39 A and B, respectively. The large gap in
IFNG signalling intensity had a subsequentimpact on breadth of IFNG response, illustrated when

comparing the number of transcripts differentially expressed following IFNG treatment between



cell lines. Venn diagrams clearly show IFNG treatment more significantly impacted transcript
expression in Kasumi-1 than KG-1, with thousands of transcripts differentially expressed

compared to KG-1’s hundreds.

Kasumi- KG-1 B) Kasumi- KG-1

3569 68

(89.4%) (1.7%)

Upregulated Downregulated

Figure 39: Venn diagrams comparing transcript lists of differentially expressed transcripts of Kasumi-1 and KG-1
treated with IFNG. Differential expression was defined as a change of 1.5-fold or more that was also statistically
significant (Padj < 0.0.5). Comparison of up-regulated transcripts depicted in A, and down regulated transcripts
displayed in B.

Transcript lists unique to each cell line, as defined by Venn diagram, were uploaded to Metascape
for pathway enrichment. The top 10 significantly enriched pathways according to the increased
and decreased transcript lists are displayed for Kasumi-1 and KG-1 in Figure 40, top row and
bottom row respectively. The Metascape tool used various databases, including KEGG Pathway,
GO Biological Processes, Reactome Gene Sets, Canonical Pathways, CORUM, TRRUST,
DisGeNET, PaGenBase, Transcription Factor Targets, WikiPathways, and PANTHER Pathway, to
conduct its analysis. The tool employed the entire genome as the background for its enrichment.
For a process to be considered significant, it had to be identified in the input gene list at least
three times, with a ratio of observed counts to chance counts being greater than 1.5 times. The
identified processes meeting these criteria were then grouped into clusters based on similarities,

and the most statistically significant member was selected to represent the cluster.
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Figure 40: The top 10 most significantly enriched pathways in Kasumi-1 and KG-1 treated with IFNG. Enriched pathways were identified by the ‘unique’ up and down regulated transcript
lists and sorted by significance post FDR. See appendix for table summary process id’s and number of transcripts significantly changed in each pathway.



Pathway analysis showed that changes in Kasumi-1 induced by IFNG were more robust with large
numbers of transcripts in pathways being altered, for example as many as 252 out of 673
transcripts for metabolism of RNA. As opposed to in KG-1 where a maximum of 21 out of 644
transcripts were significantly deregulated in the chemotaxis process. Cell lines shared some
similarities in responses, both upregulating IFNG viral and immune defence mechanisms.
Enriched pathways reported for Kasumi-1 included immune response-based processes, mostly
for mobilisation and activation of immune cells, as well as cytokine signalling and inflammation

response (Figure 40).

4.2.4 Investigation of IFNG Induced apoptosis marker transcripts in AML
celllines

This section of work focuses on the analysis of the Kasumi-1 cell line's response to IFNG
treatment and its potential role in inducing apoptosis as well as an immunosuppressive
phenotype. The hypothesis for this work is that IFNG induces expression of immunosuppressive
molecules in AML. In Chapter 3, it was observed that IFNG induced immunosuppressive
molecules in both cell lines. However, IFNG also triggered cell death specifically in Kasumi-1
cells. In this study, cells were treated with 5 ng/mL of IFNG, and the expression of transcripts
involved in apoptosis was analysed. The chosen IFNG dose of 5 ng/mL was based on a dose
selection study, which showed no increase in cell death in Kasumi-1 cells when treated with
concentrations higher than 5 ng/mL. To characterise IFNG induced apoptosis, the expression of
stress sensors ATF3 and BMF, as well as transcripts of genes involved in the P53 pathway for
growth arrest, such as CDKN1A and GADD45, were analysed. Additionally, IFIT-mediated
apoptosis pathway transcripts were also investigated. Dose experimental data is presented in

graphs in the appendix (see 7.4).

4.2.4.1 Treatmentwith IFNG induced transcription of stress sensors exclusively in Kasumi-1
ATF3 is a stress responding transcription factor which regulates transcripts in response to DNA

damage, furthermore it has been found to co-localise with p53 influencing its DNA damage
transcriptional program (Zhao, et al. 2016). BMF has been described as a ‘sentinel’, that upon
detecting cytoskeletal damage, initiates apoptosis via cytochrome C release from the
mitochondria (Hausmann, et al. 2011). In Kasumi-1, IFNG caused a significant increase in
expression of stress sensors ATF3 and BMF (ATF3, Ctrl=1.05 FPKM, IFNG =12.07 FPKM, and BMF,
Ctrl = 1.55 FPKM, IFNG = 12.62 FPKM, both, Padj < 0.0001, Wald-test BH). Combination of IFNG
with 5AzaC proved to be synergistic, causing a further significant increase compared to IFNG
treatment alone in Kasumi-1 (ATF3, IFNG5AzaC = 21.25 FPKM, BMF, IFNG5AzaC = 17.68 FPKM,
both, Padj < 0.0001, Wald test- BH) (Figure 41).
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Figure 41: Transcript expression changes of ATF3 and BMF inKasumi-1 and KG-1 in response to treatments. Data given
as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene
Wald test — BH correction. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.

4.2.4.2 IFNG induced expression of transcripts involved in p53 mediated growth arrest in
Kasumi-1

P53 stops cell division by activating transcript programs for cell cycle arrest and apoptosis. Key
transcripts transactivated by p53 for cell cycle arrest include CDKN71A, SFN and the GADD45
transcripts (Benchimol 2001). Transcriptomics data showed (Figure 42) significant upregulation
of CDKN1A with IFNG (Kas-1 Ctrl = 0.34 FPKM, IFNG = 11.39 FPKM, Padj < 0.0001, Wald test- BH),
which was further increased by combination with 5zaC treatment in Kasumi-1 (Kas-1 IFNG5AzaC
=16.69 FPKM, Padj < 0.0001, Wald test- BH), but not KG-1. Expression of SFN is not presented as
it remained low under all conditions (< 1 FPKM) in both cell lines and was unaffected by
treatments. In Kasumi-1 IFNG induced significant increased expression of GADD45A (Kas-1 Ctrl
=12.78 FPKM, IFNG = 18.68 FPKM, Padj < 0.0001, Wald test- BH), GADD45B (Kas-1 Ctrl = 10.95
FPKM, IFNG = 30.48 FPKM, Padj < 0.0001, Wald test- BH) and GADD45G (Kas-1 Ctrl = 0.05 FPKM,
IFNG = 1.19 FPKM, Padj < 0.0001, Wald test- BH). Combining IFNG with 5AzaC appeared to
neutralise the inducing effects of IFNG for GADD45A in Kasumi-1, returning expression to a
similar level to untreated cells (Kas-1 IFNG5AzaC = 13.08 FPKM). In Kasumi-1, GADD45GIP1
expression was significantly decreased by IFNG treatment and 5AzaC treatment (Kas-1 IFNG =
30.16 FPKM, 5AzaC = 43.43 FPKM, both, Padj < 0.0001, Wald test- BH), but there was no
synergistic effect when both treatments were combined (Kas-1 IFNG5AzaC = 30.27 FPKM). IFNG
decreased expression of GADD45B in KG-1 IFNG (Padj < 0.0001, Wald test- BH).
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Figure 42: Expression changes of p53 regulated cell cycle arrest transcripts in Kasumi-1 and KG-1 cell lines in response
to treatments. Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC.
Statistical tests by Novogene Wald test — BH correction. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** =
Padj< 0.0001.

Given the significant IFNG-inducible expression of transcripts CDKN1A, GADD45A, GADD45B,
GADD45G, and GADD45GIP1 in the Kasumi-1 cell line, the SWATH-MS proteomic data from
Chapter 3was revisited to examine the expression of related proteins. This analysis revealed that,
among these transcripts, protein products were detected only for CDKN1A (P21) and
GADD45GIP1 (G45IP), as shown in Figure 43. This aligns with the previous FACS data in chapter
3, which reported no cell cycle arrest. No significant increase in P21 protein expression was
observed in either cell line due to high variation between results, which could be attributed to
several reasons outlined in chapter 2. Conversely, while IFNG induced reduction of
GADD45GIP1, its protein counterpart, G45IP, was increased in the SWATH MS data (Kas-1 Ctrl =
137,417 NPA, IFNG = 1,164,951 NPA, KG-1 Ctrl =8,073,761 NPA, IFNG = 8,811,154 NPA). This
discrepancy could be due to differences in IFNG doses causing varied responses or differences

at the translation stage.
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Figure 43: Expression of CDKN1A and GADD45GIP1 proteins in untreated and IFNG treated Kasumi-1 and KG-1.
Untreated control was compared to IFNG treated samples 48 hrs after treatment with 100 ng/ml IFNG (n=5-6). Grey =
Control, Red = IFNG. Holm-Sidak method was used to calculate statistical significance between IFNG treated aned
untreated cells. * = Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.

These results suggested that low doses of IFNG might induce a p53 DNA damage response in
Kasumi-1, resulting in cell cycle arrest, despite its mutational status. Transcript expression for
TP53 was reported in the NGS data to be higher for Kasumi-1 than in KG-1, which is unsurprising
as KG-1 is a p53 null cell line (Figure 44 B). The average expression of the p53 protein was higher
in KG-1 than in Kasumi-1 according to SWATH data (Figure 44 C). However, greater variation was
observed, likely due to SWATH-MS's struggle to accurately report low abundance proteins,
suggesting a possible false reading for KG-1 (See 7.6). Furthermore, the SWATH-MS data set was
generated by treating cells with 100 ng/ml IFNG, in contrast to the NGS data set, which used a
low dose of 5 ng/ml. Expression was also tested by western blot using the same treatment
concentrations and schedules as those used to generate the NGS data. Results clearly showed
that p53 protein was expressed in Kasumi-1, while only faint bands were visible in KG-1 (Figure
44). All three techniques indicated that treatment with IFNG had no impact on p53 expression at

either the genetic or protein level.
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Figure 44: Expression of TP53 transcript and P53 protein by both cell lines following IFNG and 5AzaC treatments A)
Western blots comparing p53 protein expression after 48 hrs of 5AzaC treatment and 30 minutes of IFNG, with GAPDH
as an internal control (n=2). IFNG; 5ng/ml at for 30 minutes after 48 hrs of 5AzaC, 5AzaC; 0.5 ym at 0 and 24 hrs,
combined; treatments together as stated. B) Expression of TP53 in both cell lines under all treatment conditions (n=3),
data given as FPKM. C) Quantification of protein abundance of p53 as per western blot conditions stated in A. Grey =
Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. B) Quantitative densitometry of P53 expression for
western blots shown in A).

4.2.4.3 Investigation of p53 dependent apoptosis in response to IFNG in Kasumi-1
Several downstream mediators of apoptosis contain p53 response elements and are transcribed

by p53 upon stress detection. These transcripts can be categorised based on the localisation of
their protein products: cell membrane (FAS, PERP, TNFRSF10B), cytosolic (PIDD1, ElI24), and
mitochondrial (BAX, PMAIP1, BBC3, TP53AIP1) (Benchimol 2001).

4.2.4.4 P53 death receptors may be activated independent of p53 in Kasumi-1
IFNG induced an up regulation of the death domain receptor FAS in Kasumi-1 (Ctrl = 0.05 FPKM,

IFNG = 10.33 FPKM, Padj < 0.0001, Wald test- BH) but decreased expression in KG-1 (Ctrl = 4.14
FPKM, IFNG = 2.45 FPKM, Padj < 0.0001, Wald test- BH), while PERP (FPKM < 1) was unaffected
and therefore was not presented here. TNFRSF10B was slightly downregulated in Kasumi-1 when
treated with IFNG (Ctrl = 7.53 FPKM, IFNG = 6.47 FPKM, Padj < 0.05, Wald test- BH), but
upregulated by 5AzaC (5AzaC =9.99 Padj < 0.0001, Wald test- BH). Meanwhile, TNFSF10 the p53
independent TNFRSF10B ligand, was highly upregulated in Kasumi-1 by IFNG, and even higher
when combined with 5AzaC (Ctrl = 0.70 FPKM, IFNG = 138.95 FPKM, IFNG5AzaC = 191.18 FPKM,
both Padj < 0.0001, Wald test- BH). TNFSF10 was upregulated in KG-1 upon IFNG treatment,



though not to the extent observed in Kasumi-1 (Ctrl = 19.02 FPKM, IFNG = 26.99 FPKM, Padj <
0.05, Wald test- BH). The increase in TNFSF10 from no mRNA (<0 FPKM) to over 140 FPKM, if
reflected in protein expression, may induce activation of apoptosis by death domain TNFRSF10B,
independent of p53 transcription. Further evidence this may be the case in Kasumi-1 is the
significant increase in induction of CASP3 (Ctrl =23.42 FPKM, IFNG = 30.14 FPKM, Padj < 0.0001,
Wald test- BH) and CASP8 (Ctrl = 7.12 FPKM, IFNG = 14.40 FPKM, Padj < 0.0001, Wald test- BH)
indicating apoptosis induction. Meanwhile FADD, ligand to FAS, was unaffected by IFNG
treatment (Ctrl =9.08 FPKM, IFNG = 9.27 FPKM, Padj < 0.05, Wald test- BH) (Figure 45).
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Figure 45: Expression of TNFSF10, TNFRSF10B, FAS, CASP3, CASP8 and FADD in Kasumi-1 and KG-1 under all
treatment conditions. Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue =5AzaC, and Green = IFNG + 5AzaC.
Statistical tests by Novogene Wald test - BH correction. * = Padj<0.05, ** = Padj< 0.01, ***= Padj< 0.007 and **** = Padj<
0.0001.

4.2.4.5
PIDD1 and EI24 overexpression has been linked to cell cycle arrest and induced apoptosis

IFNG highly upregulated expression of pro-apoptosis molecule PMAIP1 in Kasumi-1

(Benchimol 2001). PIDD1 expression was unaffected by treatments in both cell lines, while IFNG
downregulated E/24 in Kasumi-1 only (Ctrl =33.05 FPKM, IFNG = 16.78 FPKM, Padj < 0.0001, Wald
test-BH). In addition, the transcripts for mitochondrial proteins BBC3 and TP53AIP1 (<1FPKM)
were very lowly expressed in both cell lines (Figure 46). Treatment with IFNG increased expression
of BBC3 (Ctrl = 0.39 FPKM, IFNG = 1.08 FPKM, Padj < 0.05, Wald test-BH) and combination
treatment further increased its expression in Kasumi-1 (IFNG5AzaC = 1.98 FPKM, Padj < 0.0001,
Wald test- BH). PMAIP1, which is a proapoptotic molecule (Janus, et al. 2020), was significantly
induced by IFNG in Kasumi-1 and even further upregulated by combined IFNG with 5AzaC



treatment (Ctrl=15.04 FPKM, IFNG = 49.77 FPKM, IFNG5AzaC = 72.44 FPKM, both, Padj<0.0001,
Wald test- BH). Meanwhile, IFNG downregulated PMAIP1in KG-1 (Ctrl=18.53 FPKM, IFNG = 13.26
FPKM, Padj < 0.01, Wald test-BH) (Figure 46). The overexpression of PMAIP1 has been linked to
apoptosis in other cancer cell lines, via induction of APAF1 (Kuroda, J., et al. 2010). Despite
induction of PMAIP1 (Padj < 0.0001, Wald test- BH), APAF1 was only minorly induced in Kasumi-
1 (Ctrl = Padj < 0.05, Wald test- BH). Conversely, despite IFNG downregulating PMAIP1 in KG-1,
APAF1 was upregulated with IFNG treatment in KG-1 (Both, Padj < 0.01, Wald test- BH).
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Figure 46: Expression of PIDD1, EI24, BBC3, PMAIP1 and APAF1 in Kausmi-1 and KG-1 under all treatment conditions.
Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by
Novogene Wald test - BH correction. * = Padj<0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.



4.2.4.6 Kasumi-1 apoptosis could be mediated through IFNG induced expression of IFIT
proteins

Kasumi-1 displayed extremely high induction of all three IFIT transcripts and proteins in response
to IFNG (Figure 47). IFIT1 and IFIT2 have been identified as IFNG inducible proteins which bind to
MITA (mediator of IRF3 activation) to initiate apoptosis via the mitochondrial pathway
(Stawowczyk, et al. 2011, Ohsugi, et al. 2017). Furthermore, apoptosis can occur even in the

presence of non-functional p53 via these mechanisms (Stawowczyk, et al. 2011).
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Figure 47: Transcript expression of IFIT1/2/3 transcripts and proteins in Kasumi-1 and KG-1 under all treatment
conditions. Data given as FPKM (n=3). Grey = Control, Red = IFNG, Blue =5AzaC, and Green =IFNG + 5AzaC. Statistical
tests by Novogene Wald test — BH correction. B) Normalised peak area expression of IFIT1/2/3 protein in cell lines,
control compared to 48 hrs treatment 100 ng/ml IFNG (n=5-6). Holm-Sidak method was used to calculate statistical
significance between IFNG treated and untreated cells. *= Padj< 0.05, **= Padj< 0.01, ***= Padj< 0.001 and **** = Padj<
0.0001.

IFIT2 forms complexes with IFIT1 and IFIT3, the latter of which significantly reduces the ability of
IFIT2 to induce apoptosis (Kotredes and Gamero 2013). Expression of /FIT1, (Kas-1 ctrl = 4.73
FPKM, IFNG = 371.42 FPKM, KG-1 ctrl = 1.47 FPKM, IFNG = 3.88 FPKM) IFIT2 (Kas-1 ctrl = 6.53
FPKM, IFNG = 520.63 FPKM, KG-1 ctrl = 3.68 FPKM, IFNG = 13.46 FPKM) and /FIT3 (Kas-1 ctrl =
12.98 FPKM, IFNG = 970.06 FPKM, KG-1 ctrl = 7.25 FPKM, IFNG = 54.62 FPKM) was significantly
upregulated in both celllines with IFNG treatment, but to a lower extent in KG-1 (All, Padj<0.0001,
Wald test- BH). The combination of IFNG and 5AzaC further increased expression of IFIT1/2/3 in
Kasumi-1 compared to IFNG treatment alone (Kas-1 IFNG5AzaC /FIT1 = 531.83 FPKM, IFIT2 =
814.07 FPKM, IFIT3 = 1233.68 FPKM, Padj < 0.0001, Wald test- BH). The SWATH-MS data from
chapter 3 was searched for expression of the protein counterparts. IFIT proteins were also highly
upregulated in Kasumi-1 (IFIT1 Ctrl =82,613 NPA, IFNG = 1.89 x 10°NPA, IFIT2 Ctrl = 56,064 NPA,
IFNG =1.72x 10°NPA, IFIT3 Ctrl = 120,500 NPA, IFNG = 3.02 x 105, all, Padj< 0.0001, Holm Sidak),



and IFIT3 was significantly increased in KG-1 (Ctrl = 150,940 NPA, IFNG = 326,124 NPA, Padj<0.05,
Holm Sidak) when treated with IFNG. As IFIT3 was also highly significantly upregulated with IFNG
in Kasumi-1, there is a chance that some IFIT2 was trapped in IFIT2/3 complexes. Although IFIT3
also binds with IFIT1, it has not been reported if this decreases its ability to induce apoptosis,
although it has been found to increase IFIT1 half-life and regulate its antiviral response (Johnson,

etal. 2018).

4.2.4.7 IFNG induced Annexin 1 expression could promote apoptosis of Kasumi-1 via IFIT1
Annexin A1 (ANXA1) is a protein which binds to phospholipids in a Ca* dependent manner and

has been identified to playroles in cell proliferation, apoptosis and inflammation when expressed
by immune cells (Shao, et al. 2019, Sheikh and Solito 2018, Biaoxue, Xiguang and Shuanying
2014). As cell lines are not immune cells their expression of ANXA1 likely helps to resolve
inflammation by constitutively activating caspase 3 activity to promote apoptosis of themselves.
Additionally, ANXA1 may be translocated to the cell surface of apoptotic cells to act as an ‘eat

me’ signal for removal by macrophages (Sheikh and Solito 2018).
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Figure 48: Expression of ANXA1 transcript and protein in Kasumi-1 and KG-1 under stated treatment conditions.
Transcript data given as FPKM (n=3) and protein data was given in NPA (n=3). Grey = Control, Red = IFNG, Blue =5AzaC,
and Green = IFNG + 5AzaC. Statistical tests by Novogene Wald test — BH correction. B) Normalised peak area
expression of ANXA1 protein in cell lines, control compared to 48 hrs treatment 100 ng/mlIFNG (n=5-6). Grey; Control,
Red; IFNG. Holm-Sidak method was used to calculate statistical significance between IFNG treated and untreated
cells. *=Padj< 0.05, ** = Padj< 0.01, *** = Padj< 0.001 and **** = Padj< 0.0001.

Transcriptomics and proteomics data showed high baseline expression of ANXA7T mRNA (Kas-1
Ctrl=1.30 FPKM, KG-1 Ctrl = 75.82 FPKM) and protein (Kas-1 Ctrl = 137,417 NPA, KG-1 Ctrl = 8.07
x 108 NPA) in KG-1 compared to Kasumi-1 (Both Padj < 0.0001, Wald-test BH and Holm Sidak
respectively)(Figure 48). This high expression of ANXA1 prior to treatment is unique to KG-1, as
SWATH-MS data generated in chapter 3 showed it was lowly expressed in SIG-M5 and THP-1 too
(Appendix 7.6). Expression of ANXAT mRNA and protein was significantly upregulated by IFNG
treatment in Kasumi-1 (mMRNA, Kas-1 IFNG = 47.04 FPKM, Padj < 0.0001, Wald-test BH, and,
protein, Kas-1 IFNG = 1.16 x 10° NPA, Padj< 0.0001, Holm-Sidak) and combining IFNG and 5AzaC



further upregulated ANXA7 in Kasumi-1 compared to IFNG alone (Kas-1 IFNG5AzaC = 84.20
FPKM, Padj < 0.0001 Wald-test BH). ANXA1 expression has been associated with increased RIG-
1 protein (DDX58) expression in lung epithelial cells. RIG-1 activation was observed to induce cell
death via IFIT1, and reduced ANXA1 expression resulted in decreased IFIT1 expression, thereby
reducing cell death (Yap, et al. 2020). IFNG induced upregulation of DDX58 in both cell lines (Kas-
1 Ctrl=1.41 FPKM, IFNG = 113.56 FPKM, KG-1 Ctrl = 3.28 FPKM, IFNG = 7.18 FPKM, Both, Padj <
0.0001, Wald-test BH), combining IFNG with 5AzaC further significantly upregulated DDX58
expression in Kasumi-1 compared to IFNG alone (Figure 54, Kas-1 IFNG 5AzaC = 132.00 FPKM,
Padj < 0.0001, Wald-test BH). The DDX58 protein product RIG-1 was only upregulated in Kasumi-
1 in response to IFNG (Kas-1 Ctrl = 20,193 NPA, Kas-1 IFNG = 333,485 NPA, Padj< 0.0001). In
Kasumi-1, IFNG induced the expression of ANXA1, IFIT1 and RIG-1 transcripts and proteins, and

subsequently could initiate apoptosis via this route.
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Figure 49: Transcript expression of DDX58 transcript and protein in Kasumi-1 and KG-1 under all treatment conditions.
Transcript data given as FPKM (n=3) and protein data as NPA (n=5/6). Grey = Control, Red = IFNG, Blue = 5AzaC, and
Green =IFNG + 5AzaC. Statistical tests by Novogene Wald test — BH correction. B) Normalised peak area expression
of RIG-1 protein in cell lines, control compared to 48 hrs treatment 100 ng/ml IFNG (n=5-6). Grey; Control, Red; IFNG.
Holm-Sidak method was used to calculate statistical significance between IFNG treated and untreated cells. * = Padj<
0.05, ** = Padj< 0.01, ***=Padj< 0.007 and **** = Padj< 0.0001.



4.2.5 IFNG induction of Immune Evasion Mechanisms in AML cell lines

The following section explores the expression of immune-related molecules and their potential
implications in IFNG mediated immunosuppression and immune evasion within AML cell lines.
Here, expression of known immune resistance molecules such as CD274 (PD-L1) and HLA-E
were investigated in the transcriptomics data generated in this chapter, and proteomics data
generated in chapter 3. Other immune evasion molecules, including TNFSF10 (TRAIL), NCR3,
LGALS9, HAVCR2, PVR, and SIRPa, were also explored to understand their impact on immune
response regulation. Kasumi-1 was vulnerable to IFNG induced cell death through several
potential mechanisms. To survive immune response-mediated cell death, cells must employ
adaptive resistance mechanisms to evade it. Further investigation focused on transcripts

associated with immune resistance, comparing their expression across different cell lines.

4.2.5.1 AIR molecules CD274 and HLA-E reported as IFNG inducible by transcriptomics data
Adaptive immune resistance, discussed in Chapter 3, involves the expression of immune escape

and resistance molecules. Examination of the transcriptomics data revealed that IFNG treatment
of Kasumi-1 activated the transcription of certain adaptive immune resistance transcripts and
unveiled additional mechanisms of immune resistance. Out of the transcripts discussed in
chapter 3 for adaptive immune resistance, only CD274 (PD-L1) and HLA-E were detected above
1 FPKM in both cell lines (CD274 Kas-1 Ctrl = 0.01 FPKM, KG-1 Ctrl=0.10 FPKM, HLA-E Kas-1 Ctrl
= 90.63 FPKM, KG-1 Ctrl = 131.32 FPKM) (Figure 50). Both CD274 (Kas-1 IFNG = 7.42 FPKM, KG-1
IFNG = 1.67 FPKM) and HLA-E (Kas-1 IFNG = 821.15 FPKM, KG-1 IFNG = 468.07 FPKM) were
significantly upregulated with IFNG (both, Padj<0.0001, Wald test- BH). In Kasumi-1 combination
of IFNG with 5AzaC further upregulated HLA-E expression in comparison to IFNG only (Kas-1
IFNG5AzaC = 936.71 FPKM, Padj < 0.0001, Wald-test BH). Transcript expression levels of both

targets agreed with the protein expression trends detected by flow cytometry in Figure 16.
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Figure 50: Expression of CD274 and HLA-E transcripts in Kasumi-1 and KG-1 under all treatment conditions. Data given
as FPKM (n=3). Grey = Control, Red = IFNG, Blue = 5AzaC, and Green = IFNG + 5AzaC. Statistical tests by Novogene
Wald test - BH correction, * = Padj< 0.05, ** = Padj< 0.01, ***= Padj< 0.001 and **** = Padj< 0.0001.

4.2.5.2 The immunosuppressive molecule TRAIL (TNFSF10) was significantly upregulated in
Kasumi-1 cells following IFNG treatment

TNFSF10 (TRAIL) binds to death receptors DR4 and DR5 (TNFRSF10A/TNFRSF10B), which have
death domains, and induce apoptosis via caspases. TRAIL is expressed by NK cells and cytotoxic
T cells of the immune system. As TRAIL selectively induces apoptosis in tumour cells over normal
cells, recombinant TRAIL is a favourable anti-tumour treatment (Beyer, et al. 2019). TNFSF10 was
significantly highly upregulated by IFNG in Kasumi-1 when treated with IFNG (Kas-1 Ctrl = 0.70
FPKM, IFNG = 138.95 FPKM, Padj < 0.0001, Wald test- BH), and even further when treated with
both IFNG and 5AzaC (Kas-1 IFNG5AzaC = 191.18 FPKM, Padj < 0.0001, Wald test- BH) (Figure
51). In comparison, KG-1 baseline expression of TNFSF10 was higher, but IFNG only slightly
upregulated expression (KG-1 Ctrl = 19.02 FPKM, KG-1 IFNG = 26.99 FPKM, Padj < 0.05), with no
further increase seen whe