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Abstract: It is evident that skew polynomials offer promising direction for developing cryptographic 1

schemes. This paper focuses on exploring skew polynomials and studying their properties, with 2

the aim of exploring their potential applications in fields such as cryptography and combinatorics. 3

We begin by deriving the concept of resultant for bivariate skew polynomials. Then, we employ 4

the derived resultant to incrementally eliminate indeterminates in skew polynomial systems, util- 5

ising both direct and modular approaches. Finally, we discuss some applications of the derived 6

resultant including cryptographic schemes (such as Diffie–Hellman) and combinatorial identities 7

(such as Pascal’s identity). We start by considering a bivariate skew polynomial system with two 8

indeterminates, our intention is to isolate and eliminate one of the indeterminates to reduce the 9

system to a simpler form (that is relying only on one indeterminate in this case). The methodology 10

is composed of two main techniques; in the first technique, we apply our definition of (bivariate) 11

resultant via a Sylvester style matrix directly from the polynomials’ coefficients, while the second is 12

based on modular methods where we compute the resultant by using evaluation and interpolation 13

approaches. The idea of this second technique is that instead of computing the resultant directly 14

from the coefficients, we propose to evaluate the polynomials at a set of valid points to compute its 15

corresponding set of partial resultants first, then we can deduce the original resultant by combining 16

all these partial resultants using an interpolation technique by utilising a theorem we have established. 17

18

Keywords: Ore algebra, skew polynomials, elimination, resultant, symbolic computation, modular 19

method, noncommutative algebra. 20

1. Introduction 21

Naturally, computations with polynomials in multivariate (commutative or noncom- 22

mutative) polynomial rings are essential in computer algebra and have broad applications 23

in both computer science and mathematics, just to name some areas of interest such as 24

cryptography, combinatorics, and coding theory. 25

Skew polynomials represent a generalisation of ordinary polynomials, characterised 26

by a (not necessarily commutative) multiplication rule. 27

This study focuses on bivariate skew polynomials and explores the feasibility of a 28

novel resultant of multivariate skew polynomials, with the aim of exploring their potential 29

applications in fields such as cryptography. Given the ongoing research in this field, it is 30

evident (e.g., [1]) that skew polynomials offer a promising direction for developing new 31

cryptographic schemes due to the increased complexity of computations involving skew 32

polynomials as well as the limited availability of tools and techniques in noncommutative 33

algebras that could be used by attackers to recover or decrypt the information. 34

Skew polynomials (or Ore polynomials) were first introduced by Ore in 1933 [2]. 35

Chyzak and Salvy studied elimination through Gröbner bases in noncommutative algebra 36

in 1996 [3]. Collins, in 1967 [4], used the Sylvester matrix to compute the determinant 37

in the commutative case. The resultant of univariate skew polynomials was studied by 38

Li in 1998 [5] and by Vesnik and Eric in 2008 [6]. Modular methods from commutative 39
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algebra were used for solving nonlinear polynomial systems through resultant by Rasheed 40

in 2007 [7]. Evaluation and interpolation techniques for skew polynomial multiplication 41

were considered by Caruso and Le Borgne in 2017 [8] and by Giesbrecht, Huang, and 42

Schost in 2020 [9]. Fairly recently, Rasheed described resultant-based methods for skew 43

elimination in 2021 [10]. Expanding upon the foundation established in [10], this study 44

offers a comprehensive understanding of the entire process, including the new part of 45

interpolation stage which was not addressed in the earlier work [10], along with some 46

potential applications enhancing the study’s applicability to relevant use cases. 47

At its core, this paper presents novel elimination methods for multivariate (initially 48

bivariate) skew polynomial systems, transforming them to another (simpler) than the 49

originals. 50

Working with skew polynomials (in noncommutative algebra) poses various chal- 51

lenges. Not only does the noncommutative nature of the algebra introduce its own chal- 52

lenges, but also essential tools for elimination (such as resultant) is not available for multi- 53

variate skew polynomials (not even for the bivariate case) until fairly recently, as described 54

in [10]. Additionally, the evaluation map is not common in the noncommutative algebra 55

as it does not preserve multiplication. Determinant is another challenge that does not 56

have a standard formulation for computing a unique determinant. We need to discuss 57

noncommutative analogs of these components to address the gaps. Sections 4.2 and 4.3 58

will explore these challenges, as well as any additional ones encountered, along with the 59

techniques we used to overcome each one. 60

What is new: In comparison to the previous study [10], the main improvements and 61

additions in this new version are: 62

First, the study derives the resultant formula and establishes a theorem (along with 63

its proof) stating that the resultant of two operator polynomials annihilates any common 64

solution of those polynomials. 65

Second, the interpolation part, which was briefly mentioned in the previous study [10] 66

and left for future work, is now thoroughly examined by addressing and overcoming the 67

challenges associated with it, this step is illustrated by examples. 68

Third, the feasibility of this research approach is studied and applied to some applica- 69

tions. An example is the use of one of the established theorems to identify new identities 70

with fewer indeterminates, as demonstrated in a provided example. Furthermore, the 71

techniques developed in this study can be used to establish a Diffie-Hellman key exchange 72

between two users, a widely recognized cryptographic protocol for secure key exchange 73

over a public channel. 74

2. Background 75

This part provides background information for this paper. 76

2.1. Ore polynomial rings 77

The use of Ore polynomial rings is a convenient way of unifying some classes of 78

(noncommutative) polynomial rings, for example it can analogously be applied to linear 79

differential equations, linear difference equations, and other similar substances. A benefit 80

of this model is that all the operations can be studied and implemented once, then they can 81

suitably be applied to all the substances. The following is the definition of Ore polynomial 82

ring [2]. 83

Definition 2.1.1 (Ore polynomial ring). Let σ be a ring automorphism of a (skew) field F and δ 84

be a σ-derivation of F . The Ore polynomial ring F [θ; σ, δ] is the set of polynomials in indeterminate 85

θ over F with the usual polynomial addition and noncommutative multiplication defined as 86

θa = σ(a)θ + δ(a), ∀a ∈ F . (1)
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Elements of F [θ; σ, δ] are called (univariate) Ore polynomials or Ore operators. 87

Table 1 contains some examples of Ore operators with their commutation rules of θt over a 88

(skew) field F , for more of such examples please see [11]. 89

F Operator σ(a(t)) δ(a(t)) Commutation rule of θt

Differential a(t) a′(t) = d
dt (a(t)) tθ + 1

K(t) Difference a(t + 1) a(t + 1)− a(t) (t + 1)θ + 1

Shift a(t + 1) 0 (t + 1)θ

Eulerian a(t) ta′(t) tθ + t

K(q, t) q-differential a(qt) a(qt)−a(t)
(q−1)t qtθ + 1

q ∈ Q\{0, 1,−1} q-difference a(qt) a(qt)− a(t) qtθ + (q − 1)t

q-shift a(qt) 0 qtθ

Table 1. Some examples of Ore operators in K(t)[θ; σ, δ], for some field K.

Remark 2.1.2. The case when δ = 0 in Definition 2.1.1 is called skew polynomial ring* 90

and denoted by F [θ, σ]. The ordinary commutative polynomial ring is a special case of Ore 91

polynomial ring when σ is an identity map of a commutative ring F in addition to δ = 0, which 92

means the results in this study can be applied to the commutative case as well. 93

We can construct a bivariate Ore polynomial ring by iterating the univariate case of 94

Definition 2.1.1 to have a ring of Ore polynomials in two indeterminates with coefficients in 95

the univariate Ore polynomial ring. This process can be extended to have multivariate Ore 96

polynomials in general as defined below for the case when δ = 0, the specific case under 97

consideration in this paper. The following definition is used in [10, Definition 2]; similar 98

definitions can be found in [12, Definition 46.13.1, p. 85] and [13, Note 3.16, p. 28]. 99

Definition 2.1.3. A multivariate skew polynomial ring over F is the iterated skew polynomial ring 100

S = F [θ1; σ1][θ2; σ2] · · · [θn; σn] with commuting indeterminates θi, and automorphisms σi of F 101

that satisfy the following relations; 102

σj(θi) = θi (i ̸= j), σjσi = σiσj and θi a = σi(a) θi, f or all 1 ≤ i, j ≤ n and a ∈ F . (2)

Note that a skew polynomial ring F [θ1; σ1][θ2; σ2] · · · [θn; σn] is sometimes written in 103

a recursive form such that, for all i = 1, . . . , n, Si = (Si−1)[θi; σi, δi] where S0 = F . For 104

example, we may write (F [θ1; σ1])[θ2; σ2] instead of F [θ1; σ1][θ2; σ2], which is our primary 105

initial focus. We assume that F [θ1; σ1] is a domain, unless noted otherwise. 106

Also, in this study all Ore polynomials are left Ore polynomials which are in the form 107

f = ∑n
i=0 aiθ

i in F [θ; σ]. Let S = F [θ; σ] and consider V to be an S-module. Any pseudo 108

linear map φ : V → V can create an action operation (denoted by • ) on a member u in V as 109

follows: 110

• :

F [θ; σ]× V → V

f (θ) • u = (
n

∑
i=0

aiθ
i) • u 7→ f (φ)(u) =

n

∑
i=0

aiφ
i(u).

(3)

Sometimes the dot • is omitted for simplicity. If f (φ)(a) = 0 for some a ∈ F then we 111

say u = a is a solution of f (φ)(u) = 0. Similarly, for the bivariate case, when we have the 112

*The term skew polynomial ring may refer to a different ring in some references.
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map f (θ1, θ2) • u 7→ f (φ1,φ2)(u), for some pseudo linear maps φ1 and φ2, then u = a is a 113

solution of f if f (φ1,φ2)(u) = 0. 114

2.2. Euclidean domain 115

In this section, we review the definition of a Euclidean domain and illustrate that 116

bivariate skew polynomials along with their multivariate extensions (involving two or 117

more indeterminates) do not satisfy the properties of a Euclidean domain. 118

Definition 2.2.1. A (not necessarily commutative) domain R, endowed with a map 119

N : R\{0} → N0 ,

is a right Euclidean domain with respect to N if the following properties hold for all f , g ̸= 0 ∈ R 120

(i) there exist q, r ∈ R such that 121

f = g q + r , where r = 0 or N(r) < N(g) , (4)

(ii) N( f ) ≤ N( f g). 122

The elements q and r in (4) are called right quotient (denoted by rquo) and right remainder 123

(denoted by rrem), respectfully, of the right division of f by g. If r = 0 then g is called a 124

right divisor of f in R. The left Euclidean domain uses analogous conventions and notations. 125

A ring that is both left and right Euclidean domain is called a Euclidean domain. 126

In the context of a skew polynomial ring R = F [θ; σ], where N denotes the degree 127

deg, if f and g are elements of F [θ; σ], we can obtain a quotient q and a remainder r using 128

the Euclidean division algorithm, which depends on the presence of invertible elements 129

in F . However, if the underlying ring of coefficients is not a division ring, the Euclidean 130

division algorithm cannot be applied as illustrate in the follow example. 131

Example 2.2.2. Let R = (F [θ1; σ1])[θ2; σ2] be a bivariate skew polynomial ring. Consider the 132

attempt to divide f = θ2 by g = θ1, where we seek q, r ∈ R such that θ2 = θ1q + r and 133

degθ2
(r) < degθ2

(θ1) = 0. Since degθ2
(θ2) = 1 and degθ2

(θ1) = 0, the condition degθ2
(r) < 0 134

is impossible even if F is a field. Therefore, no such q and r exist, indicating that R is not a 135

Euclidean domain. 136

Section 3.2 further examines this issue and presents a method for a key property 137

related to relation (8). 138

3. Elimination 139

Many models of mathematical physics and engineering can be described in terms 140

of extra indeterminates (or extra parameters) which are present usually in mixed forms, 141

then it becomes helpful to eliminate one or more of these extra indeterminates through an 142

elimination method. 143

In this section we will study how our approaches can be used to eliminate such extra 144

indeterminates in a system of bivariate skew polynomial equations while retaining the 145

original model’s behaviour, i.e. retaining the way the system acts. Furthermore, we show 146

how to use a Euclidean relation to derive a formula that can compute the resultant directly 147

from the polynomial’s coefficients, generalising the commutative case of the Sylvester’s 148

determinant and the noncommutative univariate case of [6], then we describe elimination 149

methods of bivariate skew polynomials based on our resultant computations. Consequently, 150

a suitable noncommutative formulation of determinant is needed and for this we use the 151

Dieudonné determinant. 152
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3.1. Dieudonné determinant of matrices with skew polynomial entries 153

From the perspective of normal forms of matrices, one can think of diagonalising (or 154

triangularising) an invertible n × n matrix A over F [θ; σ] to obtain 155

D = UAV = diag(d1, · · · , dn), (5)

where U and V are unimodular matrices, D is a diagonal matrix with diagonal entries 156

di ∈ F (θ; σ), i = 1, . . . , n. Knowing that the Dieudonné determinant of a diagonal (or a 157

triangular matrix) is the product of the diagonal entries (see for example, [14] p. 822 or [15] 158

p. 3 Example 2), we can obtain the Dieudonné determinant of D as 159

det(D) = [∏ di] . (6)

Please note that in general, the entries di may become rational functions in F (θ; σ) 160

rather than remaining polynomials in F [θ; σ]. However, for the purpose of this study, we 161

need to perform the computations in such a way that the entries remain polynomials, espe- 162

cially the diagonal entries di. This ensures that their product ∏ di, which is the determinant, 163

also remains a polynomial in F [θ; σ], and this can be achieved according to the following 164

lemma (from [10, Lemma 11]). 165

Lemma 3.1.1. Dieudonné determinant of a matrix A ∈ F [θ; σ]n×n can be represented by a unique 166

skew polynomial (modulo commutators). 167

Remark 3.1.2. To compute the Dieudonné determinant in Lemma 3.1.1, one approach is to use 168

elementary row operations by using Ore condition in order to transform the matrix into a diagonal 169

(or a triangular) form. Thus, the determinant can be computed by simply multiplying the elements 170

on the main diagonal. For more details please see [10]. 171

Another useful property of the Dieudonné determinant is that it does not depend on 172

the choice of elementary row operations, neither on the order in the product of diagonal 173

entries of the matrix, despite the noncommutative nature of the entries (see for example, [14] 174

p. 822). Furthermore, an important feature of Dieudonné determinant is that it preserves 175

multiplication; that is 176

det(AB) = det(A)det(B), (7)

for any two invertible matrices A, B over F [θ; σ]. 177

3.2. Deriving a resultant formula for bivariate skew polynomials 178

It is evident that we can employ the extended Euclidean algorithm in its skew version 179

(see Algorithm 1) to find the greatest common right divisor, denoted by gcrd. Additionally, 180

the same algorithm, can be used (by permitting ri−1 = 0 in the algorithm) to derive the 181

following relation for any two skew polynomials f and g in F [θ; σ]; 182

u f = v g, (8)

for some non zeros u, v ∈ F [θ; σ] such that degrees of u and v are less than the degrees of g 183

and f respectively. 184
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Algorithm 1: Skew extended euclidean algorithm

Input: f , g ∈ F [θ; σ], where F is a (skew) field
Output: d ∈ F [θ; σ], where d is a gcrd of f and g together with s, t ∈ F [θ; σ] such

that s f + t g = d
1 r0 := f ; s0 := 1; t0 := 0
2 r1 := g; s1 := 0; t1 := 1
3 i := 2
4 while ri−1 ̸= 0 repeat
5 qi := ri−2 rquo ri−1 // rquo is the right quotient
6 ri := ri−2 rrem ri−1 // rrem is the right remainder
7 si := si−2 − qi si−1
8 ti := ti−2 − qi ti−1
9 i := i + 1

10 return(ri−2, si−2, ti−2)

185

While effective for univariate cases, the algorithm fails for the bivariate cases in 186

F [θ1; σ1][θ2; σ2] due to the domain not being a Euclidean domain anymore. 187

Now, let’s examine the relation (8) more closely in the bivariate case F [θ1; σ1][θ2; σ2] as 188

f = ∑n
j=0 ajθ

j
2, g = ∑m

j=0 bjθ
j
2, u = ∑m−1

i=0 uiθ
i
2, and v = ∑n−1

i=0 viθ
i
2, 189

with polynomial coefficients aj, bj, ui, and vi in F [θ1; σ1], which then the relation u f = v g 190

becomes 191
m−1

∑
i=0

n

∑
j=0

uiσ
i(aj)θ

i+j
2 =

n−1

∑
i=0

m

∑
j=0

viσ
i(bj)θ

i+j
2 . (9)

Thus, by comparing the coefficients on both sides of (9), we can obtain a system of n + m 192

equations for the unknowns ui (i = 0, . . . , m − 1) and −vi (i = 0, . . . , n − 1) as follows: 193



um−1 a[m-1]
n = vn−1 b[n-1]

m

um−1 a[m-1]
n−1 + um−2 a[m-2]

n = vn−1 b[n-1]
m−1 + vn−2 b[n-2]

m

um−1 a[m-1]
n−2 + um−2 a[m-2]

n−1 + um−3 a[m-3]
n = vn−1 b[n-1]

m−2 + vn−2 b[n-2]
m−1 + vn−3 b[n-3]

m

...
...

...
...

u1 a[1]
0 +u0 a[0]

1 = v1 b[1]
0 + v0 b[0]

1

u0 a[0]
0 = v0 b[0]

0

(10)

where, for each i = 1, . . . , m, the sequence a[m-i]
j (j = n, . . . , 0) represents the coefficients 194

of the multiplication θm−i
2 f , while for each i = 1, . . . , n, the sequence b[n-i]

j (j = m, . . . , 0) 195

represents the coefficients of the multiplication θn−i
2 g. It is worth noting that they are free 196

of the indeterminate θ2. Accordingly, an associate determinant for the system (10) can be 197

formulated as follows: 198
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a[m-1]
n a[m-1]

n−1 · · · · · · a[m-1]
0

a[m-2]
n a[m-2]

n−1 · · · · · · a[m-2]
0

. . .

a[0]
n a[0]

n−1 · · · · · · a[0]
0

b[n-1]
m b[n-1]

m−1 · · · b[n-1]
0

b[n-2]
m b[n-2]

m−1 · · · b[n-2]
0
. . .

b[1]
m b[1]

m−1 · · · b[1]
0

b[0]
m b[0]

m−1 · · · b[0]
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This is a determinant of a matrix whose entries are univariate skew polynomials of θ1 199

that are noncommutative in F [θ1; σ1], and for this we use the Dieudonné determinant. 200

Remark 3.2.1. In order to have a nontrivial solution for the above system, we need to ensure that 201

the determinant is equal to zero. 202

We now have a definition of resultant [10] for bivariate skew polynomials based on 203

the Dieudonné determinant as formally described below. 204

Definition 3.2.2. Consider two bivariate skew polynomials f = ∑n
i=0 ai(θ1) θi

2 and g = 205

∑m
j=0 bj(θ1) θ2

j in (F [θ1; σ1])[θ2; σ2] where ai(θ1), bj(θ1) ∈ F [θ1; σ1] ⊂ F (θ1; σ1). We de- 206

fine the resultant of f and g with respect to θ2 over F (θ1; σ1) (denoted by res θ2( f , g)), by the 207

following Dieudonné determinant 208

res θ2( f , g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θm−1
2 f a[m-1]

n (θ1) a[m-1]
n−1(θ1) · · · · · · a[m-1]

0 (θ1)

θm−2
2 f a[m-2]

n (θ1) a[m-2]
n−1(θ1) · · · · · · a[m-2]

0 (θ1)

...
. . .

f a[0]
n (θ1) a[0]

n−1(θ1) · · · · · · a[0]
0 (θ1)

θn−1
2 g b[n-1]

m (θ1) b[n-1]
m−1(θ1) · · · b[n-1]

0 (θ1)

θn−2
2 g b[n-2]

m (θ1) b[n-2]
m−1(θ1) · · · b[n-2]

0 (θ1)

...
. . .

θ2 g b[1]
m (θ1) b[1]

m−1(θ1) · · · b[1]
0 (θ1)

g b[0]
m (θ1) b[0]

m−1(θ1) · · · b[0]
0 (θ1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the i-th row (i = 1, . . . , m) contains the coefficient sequence of the multiplication θm−i
2 f , the 209

coefficients of this multiplication are denoted by a[m-i]
j (θ1) (j = n, . . . , 0). Similarly, the (m + i)-th 210

row (i = 1, . . . , n), contains the coefficients of θn−i
2 g, these coefficients are denoted by b[n-i]

j (θ1) 211

(j = m, . . . , 0). Thus, for notational simplicity, we can write the resultant res θ2( f , g) in the form 212

res θ2( f , g) = det(θm−1
2 f , . . . , θ2 f , f , θn−1

2 g, . . . , θ2g, g). (11)
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Recall that the indeterminates θ1 and θ2 do not commute with the coefficients but 213

rather act according to the ring automorphisms σ1 and σ2 such that for each a ∈ F , 214

θ1a = σ1(a)θ1 and θ2a = σ2(a)θ2, (12)

which means the noncommutative properties in the determinants’ entries are properly 215

performed as the rows are multiplied on the left by θ2 to some power. 216

The difference between this definition (Definition 3.2.2) and the definition used in [6] 217

is that we consider the case of bivariate skew polynomials with two commuting indeterminates 218

which is particularly suitable for Ore algebra (the framework of this research). This is a 219

new combination from [6] that allows elimination of indeterminates in the general case 220

(with n > 1 indeterminates) including an elimination method using an operator evaluation 221

map, which is the aim of this study. 222

Remark 3.2.3. The determinant described in Definition 3.2.2 requires entries to be in a (skew) 223

field, this can be obtained by embedding F [θ1, σ1] in a (skew) field [16, Corollary 0.7.2], written as 224

F (θ1, σ1), and its elements can be in the form of g−1 f where f , g ∈ F , in which case the degree is 225

defined as 226

deg(g−1 f ) = deg( f )− deg(g). (13)

While the Dieudonné determinant is only unique up to a multiple of some commu- 227

tators, its degree is well defined and is always the same value, this was pointed out by 228

Taelman [17] as the degree is always zero on commutators. 229

Note that the involvement of commutator factors will be encountered when dealing 230

with the elimination process in the noncommutative case only. Let’s illustrate this phe- 231

nomenon with the following simple system of two polynomial equations of the first degree 232

with respect to the indeterminate θ as: 233{
a1θ + a0 = 0
b1θ + b0 = 0

(14)

where a0, a1, b0, and b1 are elements in a (skew) field that they do not commute with θ. 234

Assume a1, b1 ̸= 0 (otherwise the case is straightforward). 235

Now, multiply the first equation by −b1a−1
1 and add it to the second equation to obtain 236

b0 − b1a−1
1 a0 = 0,

multiply by a1 ̸= 0; 237

a1(b0 − b1a−1
1 a0) = 0. (15)

Similarly, multiply the second equation of system (14) by −a1b−1
1 and add it to the 238

first equation to obtain 239

a0 − a1b−1
1 b0 = 0,

which can be written as 240

b1(a1b−1
1 b0 − a0) = 0, b1 ̸= 0. (16)

In the following we show that the left sides of the two obtained equations (15) and (16) 241

are different by a factor of type commutators, i.e. they become the same mod commutators, 242

denoted by mod C. 243

l.s. o f equation (16) = b1a1b−1
1 b0 − b1a0

= b1a1b−1
1 a−1

1 a1b0 − b1a0

= c−1(a1b0 − cb1a0), where c = a1b1a−1
1 b−1

1

= a1b0 − c b1a0 (mod C)
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= a1b0 − a1b1a−1
1 b−1

1 b1a0 (mod C)

= a1b0 − a1b1a−1
1 a0 (mod C)

= a1(b0 − b1a−1
1 a0) (mod C)

= l.s. o f equation (15) (mod C).

This is also true for the general n × n case. Note that in the commutative case, the commuta- 244

tor factor c = a1b1a−1
1 b−1

1 is always 1 and hence in the commutative case there is no need to 245

involve commutators. Essentially, a similar phenomenon happens for the determinant used 246

in this study (Dieudonné determinant) which is unique up to commutators (as mentioned). 247

In the following section, we consider computations in almost commutative rings where 248

the Dieudonné determinant becomes well-defined (i.e., it becomes unique). 249

3.3. Uniqueness of the resultant 250

As noted, our resultant relies on the Dieudonné determinant and as we have seen the 251

Dieudonné determinant can be computed by multiplying its diagonal entries in any order, 252

which is only unique up to an undesirable factor of products of commutators. However, in some 253

rings, this factor does not change its effect on the determinant value. 254

In the context of graded rings (which will be described shortly), we show that a 255

computation that satisfies a property within the graded ring can be sufficient to prove that 256

the same computation holds that property in the original ring. In the following, we discuss 257

a suitable graded ring to obtain a well defined determinant (i.e. to assign a unique value to 258

it), and for this, we need the following two definitions. 259

Definition 3.3.1. A not necessarily commutative ring S is called filtered if for an indexed family 260

of additive subgroups Si we have 261⋃
i
Si = S , Si ⊆ Si+1, Si Sj ⊆ Si+j, and 1 ∈ S0,

for any i, j ∈ Z, or its special case i, j ∈ Z≥0 when S−1 = 0. 262

Definition 3.3.2. Let S =
⋃
i
Si be a filtered ring. The associated graded ring is denoted by 263

gr(S) and defined as 264⊕
i
Si / Si−1,

such that for all r ∈ Si and s ∈ Sj, 265

(r + Si−1)(s + Sj−1) = (rs + Si+j−1).

For each r ∈ Si, let us denote the image of r in Si / Si−1 by σ̃i(r), or simply by σ̃(r) 266

when r ∈ Si\Si−1 (i.e. if r is in Si but not in Si−1) also when it is clear from the context. 267

Note that if σ̃(r)σ̃(s) ̸= 0 then 268

σ̃(rs) = σ̃(r)σ̃(s), ∀r, s ∈ S . (17)

For details about filtration and graded rings, see for example [18, Chapter 1, §6]). In 269

the following two subsections, we discuss the uniqueness of our resultant. 270

3.3.1. Almost commutative rings 271

Following a similar concept in terms of differential operators, we call a not necessarily 272

commutative ring S an almost commutative ring if the associated graded ring gr(S) is 273

commutative (see for example [19, §3.3]). Under this assumption we will have a rather 274

well defined representation for the resultant of a matrix M with entries in S by considering 275
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computations in gr(S) [10], assuming that gr(S) is a unique factorization domain and S 276

can be embedded in a (skew) field. 277

Essentially, we compute the resultant as before, by transforming its matrix, let’s call 278

it M, to a diagonal (or a triangular) form then multiplying the diagonal elements (in any 279

order) and fix the obtained value by denoting it as d̃et(M). Note that, multiplying these 280

elements in any other order will result in a value that is only differ by a multiplication 281

of a factor of the type f g f−1g−1 ( f , g ∈ S \{0}) but since S is assumed to be almost 282

commutative, all those other values will be the same when written as σ̃(d̃et(M)). Hence, 283

in this case, the determinant has a well defined value, which in turn means that σ̃(d̃et(M)) 284

has equivalent properties to the corresponding one of the usual commutative case. By 285

applying this concept to our resultant, we can observe that all the values of the resultant 286

are the same in almost commutative rings. 287

Considering computations in associated graded rings is particularly useful for homo- 288

geneous polynomials or with polynomials when their highest-degree components are the 289

only important parts (similar to the use of the principal symbol in the context of differential 290

operators). 291

3.3.2. Hermite form 292

The Hermite form for invertible matrices is a canonical matrix representation whose 293

entries reside within either commutative or noncommutative rings [20]. It satisfies the 294

following properties; 295

(i) it is an upper triangular matrix, serving as a normal form of the original matrix,

(ii) the diagonal entries are monic, that is the leading coefficient is 1 for each of them,

(iii) the degrees of the off-diagonal entries are strictly less than the corresponding

degree of the diagonal entry in the same column.

This normal form offers two main advantages; it provides a unique representation for the 296

original matrix, and it can be computed efficiently [20]. The uniqueness property of this 297

form is particularly valuable for our purpose, as it ensures a unique representation of a 298

Sylvester matrix upon transformation, thus ensuring a consistent value for our resultant. 299

Next, we turn our attention towards operator elimination techniques using our pro- 300

posed resultant. 301

3.4. Operator elimination 302

The focus of this section is to study a process that will allow us to reduce an operator 303

system to a more manageable and tractable alternative to the original system, that is to 304

exclude selected indeterminates that perhaps deemed irrelevant, while retaining those that 305

are of interest. Let us illustrate what we mean by looking at the following well known 306

parametric families of functions called orthogonal polynomials [21], such as Chebyshev and 307

Legendre polynomials. 308

Example 3.4.1. Consider the Chebyshev polynomial 309

Tn(t) =
⌊ n

2 ⌋
∑
k=0

(
n
2k

)(
t2 − 1

)k
tn−2k,

with variable t and parameters n and k, which satisfy the relations: 310

(1 − t2)T′
n+1(t)− (n + 1)tTn+1(t)− (n + 1)Tn(t) = 0,

Tn+2(t)− 2tTn+1(t) + Tn(t) = 0,

(1 − t2)T′′
n (t)− tT′

n(t) + n2Tn(t) = 0,
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they can be translated to the operators language of differential (Dt) and difference (Sn) 311

in Q[n, t][Dt; 1, Dt][Sn; Sn, 0] as following 312

(i) with a mix of differential and difference operators

(1 − t2)DtSn − (n + 1)tSn − (n + 1), (18)

(ii) with difference operator only

S2
n − 2tSn + 1, (19)

(iii) with differential operator only

(1 − t2)D2
t − tDt + n2, (20)

where each of the above relations (18), (19), and (20) annihilate Tn(t) assuming 313

Dt(Tn(t)) = T′
n(t),

Sn(Tn(t)) = Tn+1(t).

Let us consider only (18) and (19) as the following operator system: 314{
F = (1 − t2)DtSn − (n + 1)tSn − (n + 1)
G = S2

n − 2tSn + 1.
(21)

Now, it will be convenient to have a method to eliminate the indeterminate Sn from F and 315

G in order to obtain the relation (20), that is to have a relation with a pure operator of Dt. 316

Additionally, if we have a system consisting of the operator relations (18) and (20) 317

then we can think of eliminating Dt in order to have a relation with only Sn. 318

In a similar manner, other orthogonal polynomials can also be expressed in the lan- 319

guage of (mixed) operators, for example, the Legendre polynomial 320

Pn(t) =
1
2n

n

∑
k=0

(
n
k

)2

(t − 1)n−k(t + 1)k,

satisfies the following different forms of operator relations: 321

(1 − t2)Dt + (n + 1)Sn − (n + 1)t,

(n + 2)S2
n − (2n + 3)tSn + (n + 1),

(t2 − 1)D2
t + 2tDt − n(n + 1).

In other instances, they may appear as multiple parameters with the same operator 322

type as we will see in Example 3.4.5. (for more details on the orthogonal polynomials and 323

other types of special polynomials with their relations see for example [21]). 324

Therefore, a method that would allow us to simplify an operator system by excluding 325

unwanted indeterminates would be beneficial. The next theorem will look at how the 326

resultant (Definition 3.2.2) can help with this, where our resultant can annihilate the same 327

solution that one can obtain from solving the operator system, in general. 328

Before we can state and prove the theorem, we need to establish a property that relates 329

the resultant to the original polynomials. In the commutative case, such a property exists, 330

where the resultant of two polynomials can be expressed as the sum of the products of the 331

original polynomials each multiplied by a suitable polynomial. The conventional method 332

(e.g. [22,23]) for proving this property involves rewriting the original polynomials in terms 333

of matrix representations, this allows the utilisation of determinant computations using 334

Cramer’s rule where the proof proceeds by expanding the determinant along a selected row 335

(or column) of the matrix. Unfortunately, the Dieudonné determinant can not be expanded 336

by cofactors. For instance, consider a 2 × 2 matrix
(

a b
c d

)
, over a skew field, where the 337

matrix elements do not commute. In this scenario, an attempt to obtain the determinant 338
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by cofactor expansion would be a det(d)− b det(c), that is ad − bc. However, we know 339

that the Dieudonné determinant of the same matrix is ad − aca−1b, and the two results are 340

not the same in general. Another option is that some authors use a permutation-based 341

method, where the determinant is given by the alternating sum of products along all the 342

possible permutations. Unfortunately, the same example can also be used to show that 343

the permutation-based method to compute Dieudonné determinant does not make sense, 344

because the order of the factors becomes crucial when computing the products, and thus 345

this method can’t be utilised here either. Instead, we adopt a distinct method, presented 346

in [24, Proposition 5, p. 164]. While this different method was also used for the commutative 347

case, it does not rely on cofactor expansions or permutations; rather, it involves applying 348

a specific equation and subsequently using Cramer’s rule with performing a coefficient 349

comparison. This method turns out to be applicable for the noncommutative setting as well, 350

with some modifications, namely, the computation need to follow the commutation rule and 351

to be performed modulo commutators when determining the Dieudonné determinant, in 352

addition of using the result which states that the Dieudonné determinant can be represented 353

by a polynomial (Lemma 3.1.1), as shown in the proof of the following proposition. 354

Proposition 3.4.2. Let f = ∑n
i=0 ai(θ1)θ

i
2 and g = ∑m

j=0 bj(θ1)θ2
j be two bivariate skew polyno- 355

mials in S = F [θ1; σ1][θ2; σ2] of positive degrees, where ai(θ1), bj(θ1) ∈ F [θ1; σ1] ⊂ F (θ1; σ1). 356

Then there exist two polynomials p and q in S with polynomial coefficients (mod C) in F [θ1; σ1] 357

such that 358

p f + q g = res θ2( f , g). (22)

Proof. To initiate the proof, first we aim to identify two polynomials u = ∑m−1
i=0 ui θi

2 and 359

v = ∑n−1
j=0 vj θ

j
2 satisfying 360

u f + v g = 1. (23)

Similar to equations (10), we can express the equation (23) as: 361



um−1 a[m-1]
n + vn−1 b[n-1]

m = 0

um−1 a[m-1]
n−1 + um−2 a[m-2]

n + vn−1 b[n-1]
m−1+vn−2 b[n-2]

m = 0

um−1 a[m-1]
n−2 + um−2 a[m-2]

n−1+um−3 a[m-3]
n + vn−1 b[n-1]

m−2+vn−2 b[n-2]
m−1+vn−3 b[n-3]

m = 0
...

...
...

...

u1 a[1]
0 +u0 a[0]

1 + v1 b[1]
0 +v0 b[0]

1 = 0

u0 a[0]
0 + v0 b[0]

0 = 1

and this can be rewritten as follows: 362

(
um−1, · · · , u0, vn−1, · · · , v0

)



a[m-1]
n (θ1) · · · a[m-1]

0 (θ1)
a[m-2]

n (θ1) · · · a[m-2]
0 (θ1)

. . .
a[0]

n (θ1) · · · a[0]
0 (θ1)

b[n-1]
m (θ1) · · · b[n-1]

0 (θ1)
b[n-2]

m (θ1) · · · b[n-2]
0 (θ1)

. . .
b[1]

m (θ1) · · · b[1]
0 (θ1)

b[0]
m (θ1) · · · b[0]

0 (θ1)


=

(
0, · · · , 0, 1

)
.

Note that the Dieudonné determinant of the middle matrix is the resultant res θ2( f , g) 363

whose entries are independent of θ2. 364
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Assuming res θ2( f , g) ̸= 0, otherwise the formula (22) is immediately satisfied by 365

p = q = 0, we can use Cramer’s rule (the row version) to obtain all the ui’s and vj’s, for 366

instance v0 can be written as: 367

v0 · res θ2( f , g) = det



a[m-1]
n (θ1) · · · a[m-1]

0 (θ1)
a[m-2]

n (θ1) · · · a[m-2]
0 (θ1)

. . .
a[0]

n (θ1) · · · a[0]
0 (θ1)

b[n-1]
m (θ1) · · · b[n-1]

0 (θ1)
b[n-2]

m (θ1) · · · b[n-2]
0 (θ1)

. . .
b[1]

m (θ1) · · · b[1]
0 (θ1)

0 · · · 0 1


. (24)

It is worth noting that the Dieudonné determinant value v0 commutes with the other 368

Dieudonné determinant value res θ2( f , g), that is 369

v0 · res θ2( f , g) = res θ2( f , g) · v0,

this follows from the fact that Dieudonné determinants commute with each other (see, 370

for example, [10, Definition 7]). By Lemma 3.1.1, the determinant on the right side of 371

relation (24) can be expressed as a polynomial q0 in F [θ1; σ1]. Additionally, for all j we have 372

vj = (res θ2( f , g))−1 · qj , for some polynomial qj ∈ F [θ1; σ1].

Similarly; 373

ui = (res θ2( f , g))−1 · pi , for some polynomial pi ∈ F [θ1; σ1].

Therefore, v = ∑n−1
j=0 vj θ

j
2 can be written in the form 374

v = (res θ2( f , g))−1 · q, where q =
n−1

∑
j=0

qj θ
j
2 ∈ F [θ1; σ1][θ2; σ2].

Similarly; 375

u = (res θ2( f , g))−1 · p, where p =
m−1

∑
i=0

pi θi
2 ∈ F [θ1; σ1][θ2; σ2].

Substituting these expressions into equation (23), we obtain 376

p f + q g = res θ2( f , g).

2 377

Before introducing and proving the theorem that we will shortly discuss, it is helpful 378

to review the following definition of the annihilating ideal of a polynomial, which will be 379

mentioned in the proof of the theorem. 380

Definition 3.4.3. Let V be an algebra of functions with u be an element in V . Additionally, let S 381

be a skew polynomial ring. The annihilating ideal of u (denoted by Ann u) consists of all skew 382

polynomials f in S that annihilate u, that is 383

Ann u = { f ∈ S | f • u = 0}. (25)
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Now we are ready to prove the following theorem regarding the belonging of resultant 384

to the annihilating ideal Ann u, when u is annihilated by the resultant’s input polynomials. 385

Theorem 3.4.4. The resultant of a system of two bivariate skew polynomials annihilates the solution 386

of the system. 387

Proof. Let r = res θ2( f , g) be the resultant of bivariate skew polynomials f and g in a skew 388

polynomial ring S . From Proposition 3.4.2 we now know that there are polynomials p and 389

q in S such that 390

p f + q g = r. (26)

Let u be the solution of the system, that is f • u = 0 and g • u = 0. When applying this to 391

the Equation (26) yields 392

r • u = (p f + q g) • u

= (p f ) • u + (q g) • u

= p • ( f • u) + q • (g • u)

= p • 0 + q • 0

= 0.

Therefore, r = res θ2( f , g) belongs to Ann u. 393

2 394

The following example illustrates the theorem. 395

Example 3.4.5. Consider the binomial coefficient 396

C(n, k) =
(

n
k

)
which satisfies the Pascal identity 397

(
n + 1
k + 1

)
−

(
n

k + 1

)
−

(
n
k

)
= 0, (27)

in addition to 398

(k + 1)
(

n
k + 1

)
− (n − k)

(
n
k

)
= 0. (28)

The above relations (27) and (28) can be rewritten in the shift operator notations Sn and Sk to form 399

the following operator system: 400{
F = SnSk − Sk − 1
G = (k + 1)Sk − (n − k).

(29)

Now, to obtain another relation relying on just Sn, we can employ our resultant (Defini- 401

tion 3.2.2) to eliminate Sk from the system (29), and to achieve that we can view the system as a 402

bivariate skew polynomial system in Q(α, β)[θ1; σ1][θ2; σ2] as follows 403{
f = θ1θ2 − θ2 − 1
g = (β + 1)θ2 − (α − β),

(30)

where σ1 and σ2 are the shift operators Sn and Sk, respectively. Also, θ1, θ2, α and β are Sn, Sk, n and 404

k, respectively. Accordingly, we can use the resultant method through the Dieudonné determinant 405

to compute res θ2( f , g) as following 406
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res θ2( f , g) =

∣∣∣∣∣∣ θ1 − 1 −1

β + 1 −(α − β)

∣∣∣∣∣∣
407

row1⇆ row2−−−−−−→
∣∣∣∣ β + 1 −(α − β)

θ1 − 1 −1

∣∣∣∣
408

−(θ1−1)(β+1)−1row1+row2−−−−−−−−−−−−−−−−→
∣∣∣∣∣ β + 1 −(α − β)

0 (θ1 − 1)(β + 1)−1(α − β)− 1

∣∣∣∣∣
409

=

∣∣∣∣ β + 1 −(α − β)
0 (θ1(β + 1)−1 − (β + 1)−1)(α − β)− 1

∣∣∣∣
410

=

∣∣∣∣ β + 1 −(α − β)
0 (σ1((β + 1)−1)θ1 − (β + 1)−1)(α − β)− 1

∣∣∣∣
411

=

∣∣∣∣ β + 1 −(α − β)
0 ((β + 1)−1θ1 − (β + 1)−1)(α − β)− 1

∣∣∣∣
412

=

∣∣∣∣ β + 1 −(α − β)
0 (β + 1)−1(θ1 − 1)(α − β)− 1

∣∣∣∣
413

= [(β + 1)((β + 1)−1(θ1 − 1)(α − β)− 1)]

= [(θ1 − 1)(α − β)− (β + 1)]

= [θ1(α − β)− (α − β)− (β + 1)]

= [θ1α − θ1β − α − 1]

= [σ1(α)θ1 − σ1(β)θ1 − α − 1]

= [(α + 1)θ1 − βθ1 − α − 1]

= [(α − β + 1)θ1 − (α + 1)]. (31)

Finally, we can substitute back for the chosen quantities in (31) to obtain 414

(n − k + 1)Sn − (n + 1), (32)

and this is another desired operator relation, relying only on the operator Sn, annihilating C(n, k), 415

in which its validity can easily be confirmed by applying it to the binomial coefficient (n
k). 416

Therefore the Theorem 3.4.4 enables us to identify a new relation, which is the resul- 417

tant, annihilating the same function that is annihilated by the original input polynomials. 418

Our primary focus, thus far, has been on the bivariate case of finding resultants of skew 419

polynomials. However, moving forward to the trivariate case, and ultimately generalising 420

to the multivariate case with n indeterminants, things become more complicated. This is 421

because the coefficient matrix will contain polynomials with two indeterminants (or more 422

for multivariate case) which means the matrix entries are no longer over a field, and thus 423

we can’t use the direct technique we used for the previous case. To overcome this difficulty, 424

we introduce an alternative method by utilising a suitable noncommutative evaluation 425

and interpolation technique. This proposed method not only enables elimination for the 426

multivariate case but also improves the processing speed of the algorithms, as detailed in 427

the following section. 428

4. Efficient computing through evaluation and interpolation 429

In this section, we describe another method to compute the resultant of matrices 430

with skew polynomial entries by using evaluation and interpolation techniques. First, 431

we need to identify a suitable evaluation map from the available valid noncommutative 432
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versions of evaluation maps that best suits our purpose. Second, we state a theorem 433

that shows how bivariate resultants and evaluation maps are connected, then we will 434

demonstrate the crucial role this theorem plays in the elimination process. Consequently, 435

we will describe our evaluation and interpolation method, generalising the commutative 436

case presented in [7]. However, both of the evaluation and interpolation processes present 437

several challenges, arising from the significant differences in evaluation maps between skew 438

and ordinary polynomials, and from the need to maintain the noncommutative product 439

rule during the computations. Recall from the previous methods in the commutative 440

case [7] that the resultant’s input polynomials were evaluated at some scalar values for the 441

evaluation stage where the computations proceeded consistently and smoothly. However, 442

the direct scalar evaluation for skew polynomials leads to inconsistency here, for example, 443

consider θt for θ be a derivative operator D with respect to t, which in this case, it is 444

equivalent to tθ + 1* and an attempt to evaluate tθ + 1 with θ set to a scalar value say 445

2 results in t2 + 1 = 2t + 1, while an attempt to evaluate the original θt with the same 446

value of θ = 2 yields 2t and the two obtained results are not the same. This inconsistency 447

illustrates the need for a valid evaluation map from several available formulations of 448

noncommutative evaluation maps in the literature (e.g. remainder theorem [25], product 449

formula [25, Lemma 8.6.4], operator evaluation [26], recursive relation formula [27, §2], 450

etc.), the choice of evaluation method is crucial and depends on the specific study at hand 451

where we will discuss this in more details in the following section. 452

4.1. Skew polynomial evaluation 453

When it comes to evaluations in noncommutative rings, one of the main differences 454

compared to the commutative case (where one can simply substitute values for the vari- 455

ables) is that the noncommutative evaluation maps generally do not preserve the products, 456

as observed in the previous example. 457

In this section, we are searching for a suitable evaluation map that not only preserves 458

the product rule, but also be a ring homomorphism. 459

Here, we are working with skew polynomials in F [θ1; σ1][θ2; σ2] and a key aspect of 460

this algebra is the presence of operators, such as σ1 or σ2. In fact, all the elements of Ore 461

polynomial rings can be viewed as operators, which naturally suggests considering an 462

evaluation map that deals with evaluating at operators. Thus, an interesting option would 463

be evaluating at σ1 or σ2, especially if we know that, in our study, these maps are ring 464

homomorphisms, and this property will be a significant desired factor in the evaluation 465

process. Therefore, we adapt the operator evaluation [26] with some adjustments in order to 466

make it compatible with the bivariate case. 467

Applying the operator evaluation techniques can also improve the efficiency of the 468

polynomial multiplications during the computation of the resultant as shown in [8,9], but 469

we proceed slightly differently as we are working in F [θ1; σ1][θ2; σ2], we consider one of 470

the operators, namely σ1 itself as an element of the base field F in a valid manner, that is 471

ensuring its compatibility with the field F . For convenience, we introduce the notion F̃ to 472

denote the field of rational maps of operators F (σ1, ◦) [10, Remark 14], this approach of 473

considering σ1 in F̃ offers a more efficient and convenient way to process our elimination 474

technique which is the main focus of this study. 475

Next we discuss the definition of operator evaluation for bivariate skew polynomials 476

(which will be a ring homomorphism) as in [10]. 477

Definition 4.1.1. Let F̃ [θ1; σ1][θ2; σ2] be a bivariate skew polynomial ring. Since we have com- 478

muting indeterminates θ1 and θ2, we can consider S = E[θ1; σ1] where E = F̃ [θ2; σ2], that is, 479

*The derivative operator D satisfies Du = uD + d
dt u, for any function u with respect to t. Thus, we have

Dt = tD + 1, when u = t.
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polynomials are regarded with respect to θ1. Then for each polynomial f = ∑n
i=0 αiθ

i
1, αi ∈ E, we 480

define the evaluation map eval(θ1-σ1)
( f ) as 481

eval(θ1-σ1)
:

E[θ1; σ1] → E

f =
n

∑
i=0

αiθ
i
1 7→ f (θ2, σ1) =

n

∑
i=0

αiσ
i
1.

The following Lemma [10, Lemma 16] shows that the map eval(θ1-σ1)
is a ring homo- 482

morphism for bivariate Ore polynomials. 483

Lemma 4.1.2. The map eval(θ1-σ1)
is a ring homomorphism. 484

In the following, we define the evaluation map when the polynomials are regarded as 485

modulo commutators [10]. 486

Definition 4.1.3. Let F̃ (θ; σ) be a (skew) field and let F̃×(θ; σ) denote multiplicative group of 487

F̃ (θ; σ) containing nonzero elements of F̃ (θ; σ). Let f = g−1 f be an element in 488

F̃×(θ; σ)/[F̃×(θ; σ), F̃×(θ; σ)].

The modular evaluation map eval(θ-σ)( f ) is defined as: 489

eval(θ-σ) :
F̃×(θ; σ)/[F̃×(θ; σ), F̃×(θ; σ)] → F̃×/[F̃×, F̃×]

f = g−1 f mod C 7→ f (σ) = (g(σ))−1 f (σ) mod C ′, g(σ) ̸= 0.

In particular, if f = ∑n
i=0 aiθ

i is an Ore polynomial in F̃×(θ; σ)/[F̃×(θ; σ), F̃×(θ; σ)] then 490

eval(θ-σ) : f = ∑n
i=0 aiθ

i mod C 7→ f (σ) = ∑n
i=0 aiσ

i mod C ′.

Remark 4.1.4. Note that in this study, we assume the evaluation map eval becomes modular (by 491

default) as in Definition 4.1.3 when the input argument computed modulo commutators. 492

We can now describe the behaviour of resultant under specializations from applying 493

eval to polynomials with indeterminate coefficients [10]. 494

Theorem 4.1.5. Let S = F̃ [θ1; σ1][θ2; σ2]. For all polynomials f , g ∈ S , if degθ2
( f ) = 495

degθ2
(eval(θ1-σ1)

( f )) and degθ2
(g) = degθ2

(eval(θ1-σ1)
(g)) then the following formula holds: 496

eval(θ1-σ1)
(res θ2( f , g)) = res θ2(eval(θ1-σ1)

( f ), eval(θ1-σ1)
(g)). (33)

By Theorem 4.1.5, we can conclude the two methods eval(θ1-σ1)
(res θ2( f , g)) and 497

res θ2(eval(θ1-σ1)
( f ), eval(θ1-σ1)

(g)) are the same (viewed as operators). Thus, for all a in F 498

we have: 499

eval(θ1-σ1)
(res θ2( f , g))(a) = res θ2(eval(θ1-σ1)

( f ), eval(θ1-σ1)
(g))(a). (34)

The left side of equation (34) describes the operator evaluation of direct resultant of 500

two bivariate skew polynomials f and g at a value a in F , while the right side provides a 501

way on how to obtain the resultant through operator evaluation of its entries which follows 502

by applying evaluation at a. This ultimately means reducing the computation of resultant 503

to the base ring which then can efficiently and more easily be computed. 504

Remark 4.1.6. An advantage of using Dieudonné determinant in Theorem 4.1.5 is that the case 505

can be reduced to a triangular determinant with diagonal entries of polynomials d′i(θ1) (i = 506
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1, . . . , k; k = n + m) for the direct method of the left side of equation (34), while the right side will 507

be in the form di(σ1) (i = 1, . . . , k; k = n + m) which can be computed by the following product: 508

res θ2(eval(θ1-σ1)
( f ), eval(θ1-σ1)

(g))(a) = (
k

∏
i=1

di(σ1))(a)

= (d1(σ1)d2(σ1) · · · dk(σ1))(a)

= d∗1(d
∗
2(· · · d∗k (a))), (35)

where d∗i = di(σ1) for all i = 1, . . . , k. 509

Our method of evaluation and interpolation offers the benefit of enabling elimination 510

for multivariate skew polynomials, which would have been difficult to process otherwise. 511

Additionally, our prior observations show that evaluation and interpolation techniques 512

offer a significant asymptotic advantage over the direct method in the commutative case [7]. 513

We have also observed substantial speed improvements in computing skew polynomial 514

products using the evaluation and interpolation method, as applied over finite fields [8,9]. 515

Consequently, we can expect an asymptotic improvement in the computational speed 516

of computing the product in (35) using evaluation and interpolation techniques. Thus, 517

the resultant can be computed more efficiently, and it obtains the same result as directly 518

computing the resultant. In the bivariate case, for instance, it achieves the same result as 519

directly computing the resultant of two bivariate skew polynomials, f (θ1, θ2) and g(θ1, θ2), 520

with respect to θ2. 521

While achieving more efficient computation is highly desirable, it often comes with 522

challenges that requires investigation and resolutions. The following sections will detail 523

the main steps used in our study and the challenges encountered during its development. 524

4.2. Efficiency steps and challenges encountered 525

The efficiency of this method is achieved by breaking down the computation into three 526

main stages, as proven by Theorem 4.1.5; 527

(i) Evaluation: Choose distinct values ai (i = 1, . . . , k), then compute the evaluation of 528

f and g at ai with respect to θ1. These become univariate polynomials in θ2. 529

(ii) Partial resultants: Obtain the partial resultants of these evaluated polynomials f and 530

g (step i) with respect to θ2. 531

(iii) Interpolation: Combine these partial resultants using a suitable interpolation tech- 532

nique to recover the complete resultant of the original f and g. 533

However, applying these steps to skew polynomials presents several challenges com- 534

pared to the commutative case. These challenges include: 535

(i) Evaluation values: Since there are several evaluation maps to choose from, evaluat- 536

ing a polynomial using a specific evaluation map (in this case operator evaluation 537

at σ1 then applying it to a value a) may not be the actual evaluation value that 538

is expected by the chosen interpolation method (such as a Lagrange or Newton 539

interpolation technique). A suitable interpolation method should be used to match 540

the chosen evaluation map. 541

(ii) Validity of the evaluation map: The evaluation map needs to be a ring homomor- 542

phism to preserve the product. 543

(iii) Distinct conjugacy classes: All chosen evaluation values must belong to pairwise 544

distinct conjugacy classes for the evaluation and interpolation techniques to func- 545

tion correctly. We can achieve this by choosing primitive elements in which they 546

inherently belong to different conjugacy classes. 547

(iv) Unlucky evaluations: To avoid unlucky evaluations, where a chosen value eliminates 548

the leading coefficient and alters the original polynomial’s degree, we need to 549

identify and exclude such unconstructive values. This can be determined by 550
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examining the leading term status at the time of evaluation, if it is unlucky then 551

skip to the next value, and continue only if the evaluation is valid/lucky. 552

(v) Insufficient evaluation values: In some cases, we may not have enough valid values 553

for the evaluation stage. To address this, we can extend the domain by including 554

additional valid values. Then, these new values can be utilised by the evaluation 555

map as long as they belong to distinct conjugacy classes (as in (iii)). 556

The following sections address these challenges in more details and illustrate potential 557

solutions with examples. 558

4.3. Skew polynomial interpolation 559

This part describes the interpolation stage on a normal basis. The first subsection is 560

definitions and notations then we provide some technical details on how to compute the 561

resultant of bivariate skew polynomials through evaluation and interpolation techniques 562

including how to overcome the challenges encountered, followed by an example to illustrate 563

the idea. 564

4.3.1. Galois theory (finite and infinite field extensions) 565

For clarity and convenience, we recall some definitions and notations used in the 566

remainder of this study regarding Galois field extensions for both finite and infinite field 567

extensions. 568

Recall, a field F is a field extension of a field K if K ⊂ F , denoted by F/K. In this 569

study, F is always a field extension of K, unless otherwise specified. In Section 4.3.3 we 570

study a particular case when K = Q the field of rational numbers and F = C the field of 571

complex numbers, or F maybe a subfield of C. 572

Let X ⊂ F , we type K(X) for the smallest subfield generated by X in F (that is the 573

smallest subfield of F that contains both K and X). A field extension F/K is called finitely 574

generated if there is a finite set X ⊂ F such that F = K(X); furthermore it is called simple if 575

there exists a single element α ∈ F such that F = K(α), it is common to write K(α) instead 576

of K({α}). 577

An element α ∈ F is called an algebraic over K if there exists a non-zero polynomial 578

mα over K such that mα(α) = 0. The minimal polynomial of an algebraic element α ∈ F over 579

K is a monic irreducible polynomial mα over K such that mα(α) = 0; furthermore, if α is 580

a root of any other polynomial m′
α over K then mα divides m′

α (that is mα is of minimal 581

degree). 582

Viewing F as a vector space over K, the dimension of F over K is the degree of the 583

extension F/K and is denoted by [F : K]. We say F is finite extension or finite dimensional if 584

[F : K] < ∞, and in this case we denote the dimension by dimK(F ) = [F : K]. 585

Consider the finite extension K(α)/K for an algebraic element α over K defined as: 586

F = K(α) =

{
r−1

∑
i=0

aiα
i : ai ∈ K

}
, (36)

where r = deg(mα) for some minimal polynomial mα over K. That is the set of all the finite 587

linear combinations of basis elements {1, α, α2, . . . , αr−1} over K. Let σ be an automorphism 588

of F that fixes K (called K-automorphism) which satisfies σ(∑r−1
i=0 aiα

i) = ∑r−1
i=0 aiσ(α)

i. 589

Note that σ is determined by the image σ(α), where σ(α) represents a root of mα which 590

yields a one-to-one correspondence between the K-automorphisms of K(α) and the roots of 591

mα (since these automorphisms send a root to another root of the same minimal polynomial 592

mα). Moreover, this also yields an isomorphism between K(α) and K(σ(α)). 593

We call a monic irreducible polynomial over K separable if it has no double roots in any 594

field extension of K (i.e. all its roots are distinct). An extension F/K is separable if for every 595

element α ∈ F , its minimal polynomial mα over K is separable. A well known theorem 596

(primitive element theorem) states that any separable finite field extension is simple. 597
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An extension F/K is called normal if every irreducible polynomial over K that has at 598

least one root in F has all its roots in F (i.e. the polynomial splits completely in F ). 599

A finite extension F/K is called Galois extension if it is both separable and normal. Ad- 600

ditionally, the Galois group of a Galois extension is defined as the group (under composition) 601

of all the automorphisms σ of F that fix K, and this group is denoted by Gal (F/K). 602

The Fundamental Theorem of Galois Theory establishes a fundamental relation between 603

the structure of a Galois field extension and its Galois group. It states that there is a 604

one-to-one correspondence between the intermediate subfields of F containing K and the 605

subgroups of Gal (F/K). 606

Extending Galois theory to the case of infinite field extensions, where the Galois group 607

Gal (F/K) can be infinite, the fundamental theorem requires a more careful examination. 608

While the concepts of separability and normality remain relevant for infinite extensions, 609

the one-to-one correspondence between subgroups and subfields, as established in the 610

finite case, no longer holds [28]. To address this issue, we can define a topology, known 611

as the Krull topology [28], on the Galois group Gal (F/K). While the precise definition 612

of this topology and the corresponding closed subgroups is not essential for our current 613

study, it is important to recognize that this topological structure enables us to restrict our 614

consideration to the closed subgroups of Gal (F/K). This restriction approach effectively 615

resolves the issue at hand, where the fundamental theorem can be restated as there is a 616

one-to-one correspondence between intermediate subfields and closed subgroups of the 617

Galois group Gal (F/K). Readers interested in more details on Krull topology can refer, 618

for example, to [28]. 619

A number field is a field extension of Q which is finite dimensional when viewed 620

as a vector space over Q. An algebraic number that has its minimal polynomial with 621

integer coefficients is called algebraic integer. An interesting fact is that any number field is 622

generated by a single algebraic integer (for example see Theorem 2.2 and Corollary 2.12 623

in [29]). 624

Next, we briefly describe normal basis [30] which is a particular basis for finite Galois 625

extensions when viewed as a vector space over the base field. It has also been described for 626

the infinite case [31], as we will discuss in the following subsection. 627

4.3.2. Normal basis (finite and infinite cases) 628

σ0(α)

σ1(α)

σ2(α)

σ3(α)

σ4(α)

σ5(α)

σ6(α)

Figure 2. Single Gal (F/K)-orbit
of an element α ∈ F when [F :
K] = 7

Let F/K be a finite Galois extension. The Galois K- 629

conjugates of an element α ∈ F is the set of all elements 630

σ(α) ∈ F where σ ∈ Gal (F/K), this set represents the 631

action of the Galois group on the element α, which is 632

the reason it is sometimes denoted by Gal (F/K) • α or 633

simply by G • α where G = Gal (F/K). 634

An element α ∈ F is called normal if the Galois con- 635

jugates set G • α = {σ(α) | σ ∈ Gal (F/K)} forms a ba- 636

sis for F when viewed as a vector space over K, which 637

is characterised by the group action that forms a single 638

orbit, that is its elements lie on the same Gal (F/K)- 639

orbit (see Figure 2). Such a basis is called normal [30] as 640

defined below. 641

Definition 4.3.1. Let F/K be a finite Galois extension of degree n with the Galois group 642

Gal (F/K) = {σ0, σ1, . . . , σn−1}. A basis that consists of all the K-conjugate elements 643

G • α = {σ0(α), σ1(α), . . . , σn−1(α)}

is called normal basis and denoted by N (α). 644
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One of the simplest examples of constructing normal basis for finite Galois extensions 645

is when we have the field extension Q(i) over Q with its Galois group Gal (Q(i)/Q) = 646

{σ0, σ1} defined as 647

σ0(i) = i and σ1(i) = −i.

A normal basis can be defined by the Galois group action on the element α = 1 + i ∈ Q(i) 648

as 649

σ0(α) = 1 + i and σ1(α) = 1 − i.

Thus, the normal basis in this case is N (α) = {1 + i, 1 − i}. 650

Note that, although the field extension is in the form Q(i)/Q, the element α = i does 651

not consturnct a normal basis since the set of its conjugates {σ0(i), σ1(i)} = {i,−i} is not 652

linearly independent. 653

In the case of an infinite Galois extension F/K, the original definition of a normal 654

basis (as in Definition 4.3.1) does not make sense anymore. This is because the set of 655

K-conjugates of an element in F remains finite in which it can not be a K- basis when F/K 656

is infinite. To address this limitation, Lenstra [31] described a reformulation of the normal 657

basis definition that allows the concept to be applicable in the infinite case as well, the idea 658

is based on the compression between F and C(G,K) the set of all continuous maps from 659

the Galois group G to the field K, assuming that G is equipped with the Krull topology and 660

K has the discrete topology. This reformulated definition of the normal basis reduces to the 661

original one when the Galois extension F/K is finite. 662

Other, more sophisticated examples of normal basis can be consturcted by adjoining 663

roots of unity to a number field as we will see in the following section. 664

4.3.3. Cyclotomic extension 665

Cyclotomic fields are essential for various applications involving roots of unity, such 666

as representation theory, Kummer theory, and the discrete Fourier transform. In the area of 667

cryptography, certain elliptic curves defined over cyclotomic fields are utilised in modern 668

cryptography. 669

In this section, we provide a quick overview of the cyclotomic field extension which 670

will be needed in the next subsection. 671

It is easy to check that the polynomial θn − 1 is a separable polynomial over K (since 672

θn − 1 is relatively prime to its derivative which is the non-zero polynomial nθn−1), where 673

θn − 1 has n distinct roots in its splitting field over K. In C, the set of these roots is in the 674

form 675

µn = {e2πik/n | k = 0, . . . , n − 1} = (α), where α = e2πi/n,

which is a multiplicative cyclic group of order n generated by α. In general, this α is not 676

the only generator for µn . Any element of the cyclic group µn which generates µn is called 677

primitive n-th roots of unity. The term cyclotomic refers to circle-cutting where n-th roots 678

of unity divide a circle into n equal parts on the complex plane (see Figure 3 when n = 7). 679

For any integer k, primitive n-th roots of unity can be identified through gcd(k, n) since we 680

know that the order of αk in µn is n/gcd(n, k) which means any αk is a primitive n-th root 681

of unity iff gcd(k, n) = 1. 682

Re1-1

Im

i

-i

O α6= e2πi·7/n

α0= e2πi/n
α1= e2πi·2/n

α2= e2πi·3/n

α3= e2πi·4/n

α4= e2πi·5/n
α5= e2πi·6/n

2π

n

Figure 3. Roots of unity when n = 7

As µn is a cyclic group, the mapping 683

α 7→ αk sends a generator to another 684

generator iff gcd(k, n) = 1, and as 685

a consequence; this mapping is auto- 686

morphism iff gcd(k, n) = 1. 687

Note that the primitive elements 688

in µn are powers of each others, there- 689

fore the extension K(α) is irrelevant to 690

the choice of α in µn. In the case when 691

K = Q is the field of rational numbers 692

then the field extension K(α) is called 693
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cyclotomic field of n-th roots of unity, 694

for a positive integer n. In particular 695

if n = p is a prime then a basis can be 696

constructed which acts as a normal basis (compare Figure 2 and Figure 3) by simply taking 697

the basis that starts with α0 = e2πi/n. 698

An advantage of utilising cyclotomic extensions is that it works for any arbitrary base 699

field by simply adjoining the n-th roots of unity for a fixed integer n ̸= 0 in K (i.e. if K 700

is not of characteristic 0 then n should not be divisible by the characteristic of the field 701

K). For the modular algorithms we can choose a large prime number p for the value n in 702

the examples. This is to make sure we can generate enough values to be available for the 703

interpolation stage which is the topic of the next subsection. 704

4.3.4. Interpolation 705

In this subsection, we apply our theorem to obtain an evaluation and interpolation 706

method for computing the resultant of bivariate skew polynomials over number fields, in 707

particular over Q(α) where α is a complex root of unity, followed by examples to illustrate 708

the idea. 709

Recall that in the theorem, we use operator evaluation to evaluate the polynomials, 710

which then applied to selected evaluation values. However, the properties of this evaluation 711

are different from the other evaluation maps for noncommutative polynomials. For instance 712

when using operator evaluation eval(θ-σ)(a) for evaluating f = θ2 in a skew polynomial 713

ring F [θ; σ] for a value a ∈ F we first obtain σ2 and then applying it to the value a to find 714

σ2(a), this image is not an actual evaluation at the value a in the typical noncommutative 715

evaluation manner which should be σ(a)a; neither is it an evaluation of the form (σ(a))2
716

because (σ(a))2 = σ(a2) which is different than σ2(a), and it is certainly not a naive 717

substitution in the form a2. So the main question from an interpolation point of view would 718

be at which specific value is the indeterminate of the original polynomial evaluated? For 719

this, we need a suitable interpolation method in order to be able to properly recover the 720

original polynomial, which is the topic of the following subsection. 721

4.4. Evaluation and interpolation technique 722

In this section we describe a modular method that can compute the resultant through 723

an evaluation and interpolation technique by applying our resultant formula in the Theo- 724

rem 4.1.5. 725

The method uses coefficient compression, that is by equating the coefficients (of both 726

sides of the formula) at enough evaluation values, and then solving its corresponding linear 727

system. A similar method is also used in [9] and [8] for multiplication of univariate skew 728

polynomials. 729

Let F/K be a finite Galois extension of degree r. We consider the computation of the 730

resultant of two bivariate skew polynomials f and g in F [θ1; σ1][θ2; σ2]. The particular case 731

we have in mind is that when K = Q and F = Q(α) for some fixed choice of a complex 732

root of unity α. 733

Let N be the normal basis of F/K given as 734

N = {α0, α1, . . . , αr−1}

such that αi = σi
1(α0) for i = 0, . . . , r − 1. 735

As with any modular setup, the method requires a bound s for the number of needed 736

evaluation values for the interpolation stage. For this we can use the total sum of the 737

degrees of the factors plus one, which is the degree of the product plus one as in the 738

commutative case (since in Ore algebra, deg( f g) = deg( f ) + deg(g) for any two Ore 739

polynomials f and g), we may encounter a case where we do not have enough distinct 740

evaluation values (i.e. enough elements in the base field belonging to different conjugacy 741

classes). In this case, we can extend the base field to include additional elements as needed. 742
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However, for our purposes, we can typically select a sufficiently large value that ensures 743

there are enough elements for the evaluation map. 744

Recall that our resultant formula for two bivariate skew polynomials f and g in 745

F [θ1; σ1][θ2; σ2] of degrees n and m respectively, is in the form 746

eval(θ1-σ1)
(res θ2( f , g)) = res θ2(eval(θ1-σ1)

( f ), eval(θ1-σ1)
(g)). (37)

Let us assume that the original resultant R is in the generic form with coefficients ci as 747

R =
s−1

∑
i=0

ciθ
i
1, (38)

then our aim is to find these unknown coefficients ci of R. 748

We fix the normal element α0 and evaluate the right side of (37) at the values α
j
0 749

(j = 0, 1, . . . , s − 1) as in 750

res θ2(eval(θ1-σ1)
( f ), eval(θ1-σ1)

(g))(αj
0) = (

k

∏
i=1

di(σ1))(α
j
0)

= (d1(σ1)d2(σ1) · · · dk(σ1))(α
j
0)

= d∗1(d
∗
2(· · · d∗k (α

j
0))). (39)

Note that computing (39) provides a single value for each evaluation point α
j
0; let us 751

denote this value by R∗(α
j
0). 752

On the other hand, if we evaluate the generic resultant R at the same values α
j
0 753

(j = 0, 1, . . . , s − 1) in the operator evaluation manner as 754

eval
(θ1-σ1)(α

j
0)
(R) = R∗(α

j
0) =

s−1

∑
i=0

ciσ
i
1(α

j
0)

=
s−1

∑
i=0

ciα
j
i , since αi = σi

1(α0). (40)

Equalities (39) and (40) allow us to solve the following system for unknowns ci as: 755
1 1 · · · 1
α0 α1 · · · αs−1
...

...
. . .

...
αs−1

0 αs−1
1 · · · αs−1

s−1




c0
c1
...

cs−1

 =


R∗(α0

0)
R∗(α1

0)
...

R∗(αs−1
0 )

 (41)

Thus, we have found the formula (38) that we were looking for. 756

4.5. Examples 757

In the following example we compute the resultant of two bivariate skew polynomials 758

over a number field Q(α) using both methods; the direct as well as the evaluation and 759

interpolation methods as described in the previous sections. 760

Example 4.5.1. Let Q(α)[θ1; σ1][θ2; σ2] be a bivariate skew polynomial ring where α = e2πi/p and 761

p = 101, endowed with two Q-automorphisms σ1, σ2 of Q(α) such that: 762

σ1(α) = α2, σ2(α) = α3.

Consider the problem of computing the resultant of the following two bivariate skew polynomi- 763

als over Q(α) w.r.t. θ2 : 764
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{
f = αθ1θ2

2 + αθ1 − 1

g = α2θ2
1θ2 − α

(42)

Let the matrix M = Sylvθ2
( f , g) be the Sylvester matrix of f and g in its general form 765

as following 766

det(M) = det(Sylvθ2
( f , g)) =

f

θ2g
g

∣∣∣∣∣∣∣
a[0]

2 a[0]
1 a[0]

0

b[1]
1 b[1]

0

b[0]
1 b[0]

0

∣∣∣∣∣∣∣

767

=

∣∣∣∣∣∣∣∣∣∣
a2 a1 a0

σ2(b1) σ2(b0)

b1 b0

∣∣∣∣∣∣∣∣∣∣
,

applying it to our example it becomes 768

=

∣∣∣∣∣∣∣∣∣∣
αθ1 0 αθ1 − 1

α6θ2
1 −α3

α2θ2
1 −α

∣∣∣∣∣∣∣∣∣∣
.

Now, we can use row operations to transform the above matrix to an upper triangular 769

form (following Lemma 3.1.1 and Remark 3.1.2); 770

det(M) =

∣∣∣∣∣∣∣∣∣∣
αθ1 0 αθ1 − 1

0 −α3 −α6θ2
1 + α4θ1

0 0 −α14θ4
1 + α6θ3

1 − α

∣∣∣∣∣∣∣∣∣∣
.

Thus, the direct resultant can be computed by multiplying the diagonal elements di 771

det(M) = ∏3
i=1 di = αθ1 (−α3)(−α14θ4

1 + α6θ3
1 − α) (43)

= αθ1 (α
17θ4

1 − α9θ3
1 + α4)

= α35θ5
1 − α19θ4

1 + α9θ1. (44)

Next, we use another method to compute (43) through an evaluation and interpolation 772

method (by applying Theorem 4.1.5) as following: 773

1. From the right side of the resultant formula (37) we compute the composition prod- 774

uct (39) 775

d∗1(d
∗
2(d

∗
3(w))) (45)
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for some p-th roots of unity w (in this example, w can be α to any integer power greater 776

than 0 and less than the prime p). Let us first compute d∗3(w) as 777

d∗3(w) = (−α14σ4
1 + α6σ3

1 − α)(w)

= −α14σ4
1 (w) + α6σ3

1 (w)− αw

= −α14w16 + α6w8 − αw,

then applying it to (45); 778

d∗1(d
∗
2(d

∗
3(w))) = α σ1(−α3(−α14w16 + α6w8 − αw))

= α σ1(α
17w16 − α9w8 + α4w)

= α σ1(α
17w16)− α σ1(α

9w8) + α σ1(α
4w)

= α35w32 − α19w16 + α9w2.

We call this result the evaluated resultant polynomial (denoted by R(w)) which in this 779

case is 780

R(w) = α35w32 − α19w16 + α9w2. (46)

2. We select evaluation values from the following normal basis that starts with the 781

normal element α: 782

N = {σi
1(α) | i = 0, . . . , p − 1}.

3. To perform our actual evaluations, we need a bound on the number of evaluations 783

required to recover the original resultant which is the sum of the degrees of di plus 784

one (that is 6). Therefore, we compute (46) at the first 6 values in the normal basis N 785

as 786

wi = σi
1(α), i = 0, . . . , 5

which are the values w0 = α, w1 = α2, w2 = α4, w3 = α8, w4 = α16 and w5 = α32
787

(since σ1(α) = α2). Note that these values satisfy wi+1 = σ1(wi) for i = 0, . . . , p − 1. 788

4. Let V be a vector whose entries are given by the actual evaluation of the evaluated 789

resultant polynomial (46) at the corresponding values wi as mentioned in the previous 790

step. For example, the first evaluation 791

R(w0) = R(α) = α67 − α35 + α11,

stored in the vector’s first entry, and so on for the other evaluations R(wi) for i = 792

0, . . . , 5. 793

5. For the left side of the resultant formula (37), let us assume that the original resultant 794

R is in the generic form as in (38) 795

R = c5θ5 + c4θ4 + c3θ3 + c2θ2 + c1θ + c0 (47)

and our aim is to find those coefficients ci, i = 0, . . . , 5. By applying our theorem, each 796

evaluation R∗(wi) is the same as the corresponding values that we have obtained in 797

the previous step (i.e. the entries in V). For example, the evaluation R∗(wi) at the first 798

value w0 = α is 799

R∗(α) = c5σ5
1 (α) + c4σ4

1 (α) + c3σ3
1 (α) + c2σ2

1 (α) + c1σ1(α) + c0α

which is equal to the first entry in the vector V, and so on for the other evaluations. 800

This will allow us to solve a linear system (e.g. by using a software such as Maple) in 801

the form 802

Mx = V, (48)
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where x is a vector of the unknowns ci and M is a matrix of the form: 803

α α2 α4 α8 α16 α32

α2 α4 α8 α16 α32 α64

α4 α8 α16 α32 α64 α27

α8 α16 α32 α64 α27 α54

α16 α32 α64 α27 α54 α7

α32 α64 α27 α54 α7 α14


.

From solving the linear system (48) we obtain all the coefficients ci of the original resul- 804

tant (47) as following: 805

0
α9

0
0

−α19

α35

,

which is the same as the polynomial obtained by the direct method (44). 806

Note that as variables are eliminated, we have reduced the computations to computing 807

only with the elements (numbers) in the base field Q(α), which is the key idea behind the 808

method of evaluation and interpolation to improve the efficiency of the method. 809

Now, let us describe an example for the infinite dimensional case. For this, we can 810

consider 811

F =
⋃

n≥1

Q(αn),

where αn is a primitive pn for a fixed (odd) prime p, this is the union of all p-th power 812

cyclotomic extensions of Q where each of Q(αn) is of finite extension. Meaning its Galois 813

extension G = Gal (F/K), where K = Q, is a composite of finite Galois extensions. An 814

element in G can be determined by indicating how it acts on each Q(αn). In finite Galois 815

theory, we know an automorphism σn in G is acting by 816

σn(αn) = αan
n , (49)

for some integer an mod pn where (an, p) = 1 [28, Example 3.7], with the property α
p
n+1 = 817

αn and 818

σn|Q(αn−1)
= σn−1,

which enables an extension of σn to an automorphism, say σ∗, of F in G. Let us specify, for 819

instance an = 2 such that 820

σ∗(αn) = α2
n.

Let mn be the order of σn, that is 821

σmn
n (αn) = 1,

then, combined with the definition of σn (formula (49)) and with an = 2, we can conclude 822

σmn
n (αn) = αd

n, where d = 2mn ,

and d = 1 mod pn, since mn is the order of σn. 823

Consequently, as n approaches to infinity the order mn is also approaches to infinity, 824

meaning our automorphism σ∗ is of infinite order. In the following, we consider our 825

example with two infinite order automorphisms σ∗
1 and σ∗

2 . 826
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Example 4.5.2. Consider the problem of eliminating an indeterminant, namely θ1, from the algebra 827

F [θ1; σ∗
1 ][θ2; σ∗

2 ]. 828

In the literature, Hachenberger’s work [32], in the field of number theory, provides 829

explicit formulation for constructing normal elements (including those that are completely 830

normal, meaning the element is simultaneously normal over every intermediate field 831

extension [32]) within cyclotomic fields of prime power order over the rational field. 832

Consequently, we can now follow similar steps as in Example 4.5.1 to derive the 833

elimination process for Example 4.5.2 . Note that for the evaluation and interpolation stage, 834

it is convenient to fix a (large) n and work in a sub-algebra over F ′, where F ′ is a finite 835

extension of K, then the rest will follow in the same manner as in the previous example. 836

5. Conclusion and future work 837

In this study, we have successfully derived the concept of the resultant for bivariate 838

skew polynomials and applied it to eliminate indeterminates in skew polynomial systems. 839

Our methodology covers two primary techniques; the first utilises a Sylvester-style matrix 840

constructed from the coefficients of the polynomials, allowing for direct computation of the 841

resultant. The second technique introduces a modular approach that utilises evaluation 842

and interpolation methods to derive partial resultants, which are then combined to yield 843

the original resultant. 844

The study’s focus on the bivariate case is essential due to its role in a recursive 845

evaluation and interpolation technique in which this technique enables the reduction of a 846

general n × n system to an (n − 1)× (n − 1) system by evaluating one indeterminate. This 847

recursive process can be repeated until a bivariate system is reached. Subsequently, the 848

study’s specialized bivariate techniques can be applied to solve the original system. 849

The contributions of this research extend beyond theoretical exploration. We have 850

demonstrated the practical applicability of the derived resultant in combinatorial contexts, 851

proving (or deriving) combinatorial identities, simplifying skew polynomial systems, and 852

determining the existence of solutions by assessing the vanishing of the resultant. Our 853

work not only contributes to the existing literature but also opens new avenues for future 854

research in both algebraic and computational fields. 855

In future work, we aim to explore applications related to cryptographic schemes, in- 856

cluding the Diffie–Hellman protocol and secret sharing among any number of participants. 857

Prior research has already examined the use of skew polynomials, and our upcoming 858

research intends to build on this by leveraging the resultant introduced in this paper and 859

by properties of the Dieudonné determinant. Moreover, additional optimisation techniques 860

can be employed, particularly by leveraging the properties of roots of unity during the 861

evaluation stage. This approach presents opportunities for parallel computation and incor- 862

porates established techniques for handling this type of data, resulting in more efficient 863

resource utilisation. 864

The techniques developed in this study provide a promising framework for tackling 865

multivariate skew polynomial systems, thus opening avenues for further innovations in 866

related applications. 867
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