
Citation: Johnphill, O.; Sadiq, A.S.;

Kaiwartya, O.; Aljaidi, M. An

Intelligent Approach to Automated

Operating Systems Log Analysis for

Enhanced Security. Information 2024,

15, 657. https://doi.org/10.3390/

info15100657

Academic Editors: Lorenzo Carnevale

and Massimo Villari

Received: 3 October 2024

Revised: 10 October 2024

Accepted: 16 October 2024

Published: 19 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

An Intelligent Approach to Automated Operating Systems Log
Analysis for Enhanced Security
Obinna Johnphill 1,* , Ali Safaa Sadiq 1,* , Omprakash Kaiwartya 1 and Mohammad Aljaidi 2

1 Cyber Security Research Group (CSRG), Department of Computer Science, Nottingham Trent University,
Clifton Lane, Nottingham NG11 8NS, UK; omprakash.kaiwartya@ntu.ac.uk

2 Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan;
mjaidi@zu.edu.jo

* Correspondence: obinna.johnphill2022@my.ntu.ac.uk (O.J.); ali.sadiq@ntu.ac.uk (A.S.S.)

Abstract: Self-healing systems have become essential in modern computing for ensuring contin-
uous and secure operations while minimising downtime and maintenance costs. These systems
autonomously detect, diagnose, and correct anomalies, with effective self-healing relying on accurate
interpretation of system logs generated by operating systems (OSs). Manual analysis of these logs in
complex environments is often cumbersome, time-consuming, and error-prone, highlighting the need
for automated, reliable log analysis methods. Our research introduces an intelligent methodology for
creating self-healing systems for multiple OSs, focusing on log classification using CountVectorizer
and the Multinomial Naive Bayes algorithm. This approach involves preprocessing OS logs to ensure
quality, converting them into a numerical format with CountVectorizer, and then classifying them
using the Naive Bayes algorithm. The system classifies multiple OS logs into distinct categories,
identifying errors and warnings. We tested our model on logs from four major OSs; Mac, Android,
Linux, and Windows; sourced from Zenodo to simulate real-world scenarios. The model’s accuracy,
precision, and reliability were evaluated, demonstrating its potential for deployment in practical
self-healing systems.

Keywords: multiclass system log classification; operating system log mining; self-healing systems;
cybersecurity; CountVectorizer; feature selection; artificial intelligence

1. Introduction

Self-healing systems are becoming increasingly vital across various domains to ensure
continuous operation, minimise downtime, and reduce maintenance costs [1]. These sys-
tems utilise a range of techniques to autonomously detect, diagnose, and correct faults [2].
A crucial requirement for self-healing is the ability to identify anomalies or errors within
the system. In our context, this involves analysing logs generated by multiple operating
systems (OSs) during their operation. However, manually analysing and interpreting
large volumes of system logs, especially in complex and dynamic environments, is both
tedious and prone to errors [3]. Manual log analysis is typically performed by various IT
professionals, including system administrators, security analysts, and network engineers.

• System Administrators: They frequently review system logs to ensure that servers
and other infrastructure components are functioning correctly.

• Security Analysts: These professionals analyse logs to identify signs of security breaches or
other malicious activities, often as part of a Security Operations Centre (SOC).

• Network Engineers: Network logs are essential for troubleshooting network issues,
and network engineers often delve into these logs to diagnose problems.

• DevOps Engineers: In continuous integration and continuous deployment (CI/CD)
environments, DevOps engineers review logs to identify issues with deployments and
application performance.

Information 2024, 15, 657. https://doi.org/10.3390/info15100657 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15100657
https://doi.org/10.3390/info15100657
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-8373-0727
https://orcid.org/0000-0002-5746-0257
https://orcid.org/0000-0001-9669-8244
https://orcid.org/0000-0001-9486-3533
https://doi.org/10.3390/info15100657
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15100657?type=check_update&version=2

Information 2024, 15, 657 2 of 37

• IT Support Teams: When addressing user-reported issues, IT support staff may manu-
ally review logs to trace the root cause of a problem.

• Compliance Auditors: They sometimes review logs to ensure that systems comply
with various regulations and standards.

• Developers: Developers may perform log analysis during debugging or when analysing
the behaviour of their applications in production.

Automated methods for log analysis and classification are necessary to facilitate the
self-healing process and circumvent the cumbersome log analysis [4]. Text classification is
one such method that can be used to categorise system logs based on their content [5]. The
choice of Multinomial Naive Bayes (MNB) and CountVectorizer in this study is grounded
in their proven efficacy in text classification tasks, particularly in domains requiring the
analysis of large volumes of textual data, such as system logs. MNB is highly regarded
for its simplicity and efficiency, making it suitable for scenarios where rapid and reliable
classification is essential. It operates effectively on discrete data, which aligns well with the
nature of system logs that can be converted into frequency-based features using CountVec-
torizer. CountVectorizer plays a crucial role in this process by transforming raw textual
logs into a structured numerical format, capturing the frequency of terms across the dataset.
This step is vital for enabling MNB to process the data effectively. The combination of
CountVectorizer and MNB is widely adopted in text classification due to its ability to
manage high-dimensional spaces efficiently and its robustness, even when using relatively
simple features, as demonstrated in prior research [6,7]. MNB’s probabilistic framework al-
lows for the classification of system logs into distinct categories, such as errors or warnings,
which is critical for identifying and addressing issues in self-healing systems. By leveraging
these methods, our approach ensures that the classification process remains computation-
ally feasible and effective, even when dealing with the large and diverse datasets typical of
operating system logs. This combination has been validated in various studies, making it a
reliable choice for this research.

In this paper, we present a multiclass text classification approach for self-healing
systems using MNB and CountVectorizer on OS logs. The aim is to automatically classify
logs into different error and warning categories for Mac, Windows, Android, and Linux
platforms. We utilised real system logs that were extracted and preprocessed into CSV files
for this purpose. The proposed approach is evaluated using various performance metrics
such as accuracy, precision, recall, and F1-score, and is compared with other state-of-the-art
methods [8]. The results indicate that our approach achieves high accuracy and recall,
demonstrating both efficiency and effectiveness. The proposed approach can be beneficial
for various self-healing systems in different domains such as healthcare, transportation,
and finance. The proposed methodology demonstrates its effectiveness in detecting errors
and warnings in OS logs, providing a reliable foundation for the development of self-
healing systems using multiple OS logs. The results of this study showcase the feasibility
of leveraging state-of-the-art machine learning techniques to enhance self-healing systems,
utilising real-world OS logs [9]. These findings are indicative of the potential for significant
improvements in system stability and reliability. Our approach shows great potential
for self-healing systems across various domains, marking the beginning of a new era of
intelligent and resilient systems.

The increasing complexity of modern computer systems has made them prone to vari-
ous errors and malfunctions [10]. To address this, self-healing systems have been developed
to automatically identify and rectify errors [11]. One of the major challenges in developing
self-healing systems is accurately identifying errors and warnings in system logs. These
logs can contain vast amounts of data and are often difficult to analyse manually [12].
Therefore, there is a need for automated methods to classify system logs and identify errors
and warnings [13]. The problem addressed in this paper is the accurate classification of
errors and warnings in OS logs for self-healing systems. The specific challenges include
handling the large volume of system logs and accurately classifying a wide range of errors
and warnings across multiple operating systems [14]. The primary goal is to develop a text

Information 2024, 15, 657 3 of 37

classification model capable of accurately identifying errors and warnings in OS logs, which
can then be used to trigger self-healing actions. The primary objective of this research is to
develop an effective text classification model for self-healing systems using multiple OS
logs from real-world systems. The proposed approach is expected to provide a reliable and
efficient solution for the classification of OS logs in self-healing systems, thereby reducing
the time required to identify and resolve system issues. The contributions of this study are
the following:

1. A novel approach to classify multiple OS logs for self-healing systems using Multino-
mial Naive Bayes and CountVectorizer.

2. An in-depth analysis of the effectiveness of Multinomial Naive Bayes and CountVec-
torizer on OS logs from real-world systems.

3. An evaluation of the proposed approach on a dataset consisting of OS logs from Mac,
Linux, Windows, and Android systems.

2. Related Work

The rapid evolution of computational systems has led to an increasing demand for
innovative methodologies that prioritise mitigating system breakdowns due to anomalies.
A pivotal concept in this context is “Computational Self-Healing”, which emphasises the au-
tonomous capability of systems to detect, diagnose, and resolve operational inconsistencies.
Central to this self-healing paradigm is the proficient classification of logs from various op-
erating systems, enabling proactive anomaly detection and remediation. The application of
machine learning techniques, particularly in text-based classification, has proven essential
in advancing these systems. Multinomial Naive Bayes (MNB) is a prominent algorithm in
this domain. For instance, ref. [15] explored its applicability in classifying and recognising
programming language source codes, demonstrating its utility in diverse contexts. The
importance of effective feature extraction from textual data cannot be overstated. The
study by [16] highlighted the efficacy of CountVectorizer for sentiment analysis in Bengali
text, particularly when combined with logistic regression, underscoring its adaptability
across different linguistic contexts. Similarly, ref. [17] employed both CountVectorizer and
TF-IDF for detecting fake news on Reddit, integrating multiple classifiers, including MNB,
to enhance accuracy.

While these studies have established the foundational importance of MNB and
CountVectorizer in text classification, there is a notable gap in their application to cross-
operating-system log classification, a key requirement for effective self-healing systems.
The study further evidences machine learning’s adaptability beyond text [18], underscoring
its significance in fault detection and system control within integrated energy systems. This
adaptability is mirrored in various specialised applications of Naive Bayes, such as [19]’s
investigation into hate speech detection in text documents and [20]’s use of Naive Bayes
for identifying available website names. These studies illustrate the algorithm’s versatility,
but they also highlight the need for more targeted approaches in different computational
environments. Moreover, previous research has extensively compared various machine
learning models. For example, ref. [21] provided a comprehensive evaluation of machine
learning and deep learning models, including Support Vector Machines (SVM), K-Nearest
Neighbours (KNN), and Convolutional Neural Networks (CNN), for sentiment analysis.
Another comparative study by [22] contrasted MNB with a multilayer perceptron for real-
time product review classification, showcasing the unique strengths and limitations of
each approach.

Despite the breadth of research, the specific challenge of accurately classifying logs
across multiple operating systems, critical for self-healing systems, has not been fully
addressed. This study seeks to fill this gap by focusing on cross-operating-system log
classification, leveraging the strengths of MNB and CountVectorizer. The comparative anal-
ysis by [23] between Multinomial and Bernoulli Naive Bayes for text classification further
validates the choice of MNB for this research. The study noted that while the Multinomial
Naive Bayes classifier considers the frequency of word occurrences within a document,

Information 2024, 15, 657 4 of 37

the Bernoulli Naive Bayes classifier operates on the binary concept of whether a term
occurs in a document or not. Although both classifiers are used for document classification,
they differ significantly in their approach, which has implications for their effectiveness in
various contexts.The related work in this area highlights the need for innovative solutions
tailored to the unique challenges of cross-operating-system log classification. By building
on the established strengths of MNB and CountVectorizer, this research aims to advance
the field of self-healing systems, providing a more robust and efficient approach to log
analysis across diverse computational environments.

3. Overview of Proposed Method

Our proposed method focuses on classifying multiple OS logs into distinct categories
using text classification techniques. Specifically, we employ the CountVectorizer and
Multinomial Naive Bayes algorithms for multiclass text classification. The goal is to develop
a self-healing system capable of identifying and resolving errors and warnings in real time.
To achieve this, we begin by preprocessing the OS logs to extract relevant information,
including timestamps, tokens, errors, warnings, and platform types. The preprocessed
logs are then transformed into a matrix of token counts using CountVectorizer. This matrix
serves as input to the Multinomial Naive Bayes algorithm, which classifies the logs into
different categories, such as errors and warnings.

Our solution significantly contributes to the field of self-healing systems by offering
a practical approach to real-time error and warning identification and resolution. Our
approach is extendable to other types of logs and adaptable to different text classification
algorithms. We focus on classifying OS logs based on the type of error or warning in the
preprocessed data, as well as the specific OS (Mac, Linux, Windows, and Android). We
identify two main categories of issues: errors and warnings.

CountVectorizer converts the textual data into a numerical format, while Multinomial
Naive Bayes serves as the classification algorithm. The proposed method aims to enhance
self-healing capabilities by automating the identification and classification of anomalies
across multiple operating systems, thereby improving system reliability and reducing
maintenance costs. Figure 1 illustrates the proposed system, termed the Log Intelligence
and Self-Healing System (LISH). LISH comprises two core environments, highlighted in
two distinct dotted square boxes in the diagram: the physical environment and the cloud
environment. Devices running the operating systems within our study scope, whether
situated in the physical or cloud environment, send their system log files via an application
programming interface (API) to a virtual log server in the cloud environment. The virtual
log server extracts data from the log files, processes them using CountVectorizer, and stores
the feature-extracted data in CSV format. The preprocessed data are then transferred to a
self-healing virtual server via API, where the Multinomial Naive Bayes algorithm classifies
the errors and warnings within the feature-extracted data. Based on predefined thresholds,
this classification triggers self-healing remedial actions. Figure 1 provides a comprehensive
overview of the self-healing system, illustrating key components and their interactions.
The diagram is divided into three main sections, each highlighted with a distinct border
style and colour: the green box represents Remedial Actions, the blue-dotted box indicates
the Cloud Environment and the orange-dotted box shows the Physical Environment.

3.1. Green Box (Remedial Actions)

The green box, labelled “Remedial Actions”, outlines the various actions triggered by
the self-healing system in response to detected anomalies. When an anomaly is identified
through system log data processing and anomaly detection mechanisms, the system au-
tomatically triggers these actions to resolve the issues. The HTTP requests shown in the
diagram are part of the communication process between different components, facilitating
the transfer of data necessary to initiate these actions. The actions included within this
box are the following:

Information 2024, 15, 657 5 of 37

• System Update: Applying updates to software or firmware to keep systems up to date
and secure.

• Service Restart: Restarting services that are experiencing issues or have become
unresponsive.

• Disk Clean-up: Removing unnecessary files to free up disk space and improve system
performance.

• Notification: Alerting administrators or relevant stakeholders about detected issues to
enable timely intervention.

• Resource Optimisation: Adjusting system resources to optimise performance and
avoid potential bottlenecks.

• Configuration Adjustment: Modifying system configurations to rectify issues or opti-
mise performance settings.

• Load Balancing: Distributing workloads evenly across servers to prevent overload
and ensure efficient resource usage.

• Automatic Failover: Automatically switching to a backup system in the event of a
failure, ensuring continuous operation.

• Capacity Management: Managing system resources to ensure there is sufficient capac-
ity for current and future operations.

Figure 1. Overview of the proposed system: Log Intelligence and Self-Healing System (LISH).

3.2. Blue-Dotted Box (Cloud Environment)

The blue-dotted box, labelled “Cloud Environment”, represents the components
hosted within the cloud infrastructure. This environment plays a crucial role in the self-

Information 2024, 15, 657 6 of 37

healing process by processing and analysing system logs sent from the physical environ-
ment via HTTP requests. The cloud environment consists of the following key components:

• Self-Healing Virtual Server: Handles core processing, including anomaly detection
and the triggering of self-healing actions based on the analysed log data.

• Log Processing Virtual Server: Responsible for extracting, processing, and storing log
data in a structured format (such as CSV files), preparing them for further analysis.

3.3. Orange-Dotted Box (Physical Environment)

The orange-dotted box, labelled “Physical Environment”, represents the physical
devices and systems where the operating systems, such as Mac and Android, are running.
These devices generate system log data, which are sent to the cloud environment for
processing via HTTP requests. The physical environment encompasses the hardware where
the operating systems are installed, responsible for generating and transmitting log data to
the cloud environment. The self-healing trigger mechanism is initiated when anomalies are
detected in these log data, prompting the system to carry out remedial actions to resolve
the identified issues.

We developed the machine learning (ML) algorithm that underpins the self-healing
trigger mechanism in the system architecture presented in Figure 1. This involves using
the Multinomial Naive Bayes (MNB) algorithm with CountVectorizer to classify errors
and warnings from system logs. The ML component is integral to identifying anomalies
in real time and triggering self-healing actions accordingly. However, the current scope
of our work focuses solely on the anomaly detection and classification part of the system.
The modules responsible for executing remedial actions, such as system updates, service
restarts, and disk clean-ups (outlined in the green box in Figure 1), have not yet been
implemented. Developing and integrating these actions into the overall system remains
part of our future research efforts. In terms of usage, the self-healing trigger aspect of the
system has been conceptualised and developed, but the complete system, including the
implementation of remedial actions, has not yet been fully realised. The current system
design, as illustrated in Figure 1, shows how the complete solution will function once
fully implemented, with the cloud and physical environments interacting through log
processing and self-healing virtual servers. We are actively working towards an end-to-end
self-healing ML solution. Once the remaining components are developed, we will be able
to deploy a comprehensive system that autonomously reacts to fault events, enhances the
quality of service (QoS), and reduces costs associated with system failures.

3.4. Data Collection
3.4.1. Description of the Dataset Used

The dataset utilised in our experiment is sourced from Zenodo, specifically from
the project titled “Loghub: A Large Collection of System Log Datasets for AI-driven Log
Analytics”. This dataset was published on 1 September 2021 and is available under version
v7. It comprises real system error log data extracted from various operating systems,
including Windows, Mac, Linux, and Android. These error logs provide valuable insights
into system behaviours, errors, and issues encountered during operation. The dataset was
curated by LogPAI, a team dedicated to advancing research and applications in log data
analysis, particularly in the context of AI-driven log analytics. As the dataset is hosted on
Zenodo, an open-access repository, it is openly available for researchers and practitioners
to utilise in their studies and applications. It serves as a valuable resource for exploring
system behaviours, developing log analytics algorithms, and enhancing system monitoring
and troubleshooting techniques.

3.4.2. Sources of the Data

1. Zenodo repository: Project titled “Loghub: A Large Collection of System Log Datasets
for AI-driven Log Analytics” (Published on 1 September 2021, Version v7)—https:
//zenodo.org/records/3227177#.ZE5-FuzMJhF (accessed on 20 March 2024).

https://zenodo.org/records/3227177#.ZE5-FuzMJhF
https://zenodo.org/records/3227177#.ZE5-FuzMJhF

Information 2024, 15, 657 7 of 37

3.4.3. Data Size and Format

The dataset used in our experiment consists of system error logs collected from
multiple operating systems, including Windows, Mac, Linux, and Android. The sizes of
the log files for each operating system are as follows:

• Android: 192.3 MB (.log).
• Linux: 2.3 MB (.log).
• Mac: 16.9 MB (.log).
• Windows: 28.01 GB (.log).

The log files are formatted in the standard .log format commonly used for system error
logs. The total size of the dataset across all operating systems is 28.22 GB. Each log file
contains valuable insights into system behaviours, errors, and issues encountered during
operation, making them essential for our research and the analysis of LISH application
log data.

3.4.4. Preprocessing Applied to the Data

To prepare the dataset for analysis and modelling, a series of preprocessing steps were
applied. These steps ensured that the dataset was cleaned, standardised, and structured in
a uniform format, ready for subsequent analysis, modelling, and evaluation. The resulting
preprocessed datasets are now well suited for tasks such as log analysis, anomaly detection,
and system behaviour prediction. The raw log files obtained from multiple operating sys-
tems (Mac, Windows, Android, Linux) underwent the following preprocessing procedures:

Data Cleaning:

• Rows with missing timestamps or tokens were removed from each DataFrame to
ensure data integrity and consistency.

Data Type Conversion:

• The “tokens” column in each DataFrame was converted to string type to facilitate
further processing.

Missing Value Imputation:

• Missing values in the “error” and “warning” columns were filled using the forward
fill method to maintain temporal continuity in the log entries.

Feature Selection:

• Only the necessary columns (“timestamp”, “tokens”, “error”, “warning”) were re-
tained in each DataFrame, discarding any extraneous information.

Label Assignment:

• A “Label” column was added to each DataFrame, derived from the filename of the
corresponding log files, to facilitate identification and categorisation during analysis.

Data Export:

• The preprocessed data for each operating system was saved into separate CSV files un-
der the “preprocessed-data” directory for ease of access and further experimentation.

3.5. Modelling
3.5.1. Explanation of Multinomial Naive Bayes

The Multinomial Naive Bayes (MNB) classifier is a variant of the Naive Bayes classifier
that is particularly well suited to discrete data, especially the type encountered in text
classification problems [24–26]. The fundamental “naive” assumption is that the presence
(or frequency) of each word is independent of the presence (or frequency) of any other
word, given the category. Operating system (OS) logs are records generated by an operating
system to track system or application activities. These logs might include information
about system events, errors, status updates, or other messages. Classifying these logs is
crucial for tasks such as anomaly detection, fault diagnosis, or even understanding the

Information 2024, 15, 657 8 of 37

normal operational state of a system. Consider a set of OS log entries where each entry
can be categorised into one of several classes, such as “ERROR”, “WARNING”, “INFO”,
etc. The Multinomial Naive Bayes approach can be employed to perform this classification.
The probabilities described below enable the transformation of raw log data into actionable
insights. By classifying OS logs, potential system issues can be quickly identified, or the
system’s behaviour over time can be better understood.

In the context of operating system (OS) logs, these logs often contain important
messages about system health. For example, consider the following log entries:

• Log 1 (ERROR): “Disk failure on drive C”.
• Log 2 (WARNING): “Memory usage exceeds 90%”.
• Log 3 (INFO): “System backup completed”.

The Multinomial Naive Bayes approach simplifies this process by breaking it down
into manageable probability calculations, as exemplified in Table 1 and our probability
equations, despite operating under the naïve assumption of word independence.

1. Prior Probability:

The “prior probability” P(C) represents the likelihood that a randomly selected log
belongs to a particular class before we look at the content. For example, if 30% of the
logs in our dataset are “ERROR” logs, the prior probability of “ERROR” is

P(ERROR) =
Number of “ERROR” logs

Total number of logs
= 0.30

2. Likelihood:

The “likelihood” represents the probability of observing specific words in a log, given
that it belongs to a particular class. For example, how likely is it to observe the word
“disk” in an “ERROR” log? If the word “disk” appears in 50 out of 300 “ERROR” logs,
the likelihood is

P(“disk”|ERROR) =
50

300
= 0.167

If the log contains multiple words, such as “disk failure”, the overall likelihood is the
product of the individual word probabilities, assuming independence:

P(“disk failure”|ERROR) = P(“disk”|ERROR)× P(“failure”|ERROR)

3. Posterior Probability:

The “posterior probability” P(C|w) represents the probability that a given log belongs
to a specific class, based on the words in the log. Using Bayes’ theorem,

P(C|w) =
P(w|C)P(C)

P(w)

The log entry is classified into the category with the highest posterior probability.

4. Word Probability and Smoothing:

In cases where certain words are missing from a class during training, Laplace smooth-
ing is applied. This prevents any word from having a probability of zero, which would
otherwise cause issues during classification. The probability of a word wi given a class
C is computed as follows:

P(wi|C) =
Count of word wi in logs of class C + α

Total number of words in logs of class C + αd

where

Information 2024, 15, 657 9 of 37

• α is the smoothing parameter, typically set to 1 to avoid zero probabilities.
• d is the number of unique words across all logs.

5. Example of Classification:

Suppose we have a new log entry, “disk failure on drive C”, and we want to classify
it as either “ERROR” or “INFO”. The MNB model computes the likelihood of the
words appearing in each class and combines it with the prior probabilities. If the
posterior probability for “ERROR” is higher than for “INFO”, the log is classified as
an “ERROR”.

6. Processing Logs in Practice:

In our experiments, the logs are preprocessed and tokenised into their respective
words. For each system (e.g., Android, Linux, Windows, Mac), the tokens are evalu-
ated, and summary statistics such as the number of errors, warnings, and the frequency
of tokens are calculated. The summary is then used to trigger self-healing actions
if thresholds are exceeded. For instance, if the number of “ERROR” logs for Linux
exceeds the defined threshold of 100, a self-healing mechanism would be activated to
mitigate potential issues:

Trigger self-healing if errors > 100

Table 1. Example of Probabilities.

Log Entry Probability of “ERROR” Probability of “INFO”

“Disk failure on drive C” 0.85 0.15
“System backup completed” 0.10 0.90

• How Classification Relates to Log Types:
The classification process involves categorising each log entry into one of the pre-
defined classes (INFO, WARNING, ERROR) based on the content of the logs. By
analysing the words within the logs and applying the Naive Bayes algorithm, the
system assigns a probability to each class. The class with the highest probability is then
selected as the predicted class for that log entry. For example, if a log entry contains
multiple instances of the word “error”, the system might classify it as an ERROR log
with a high probability. Similarly, logs containing terms typically associated with
warnings or informational messages would be classified accordingly. The classification
is vital for system monitoring and self-healing processes, as it allows the system to
prioritise actions based on the severity of the log entries.

3.5.2. Explanation of CountVectorizer

CountVectorizer is a popular utility provided by the scikit-learn library in
Python 3.12, used to convert a collection of text documents into a matrix of token counts.
It is essential for transforming text data into a structured, numerical format, which can
then be fed into machine learning algorithms. This transformation is crucial because most
algorithms require numerical input. The key features of CountVectorizer are broken down
as follows:

1. Tokenisation: This step involves splitting the string into individual words or terms
based on the delimiter, which is whitespace by default.

2. Vocabulary Building: In this step, a vocabulary is constructed using the unique words
found in the given corpus of text documents.

3. Encoding: During this step, the occurrences of words from the vocabulary are counted
for each document, and each unique word becomes a feature (or column).

When working with text, converting the raw text into a numerical representation is
paramount. The Bag-of-Words (BoW) model is one such approach, and CountVectorizer

Information 2024, 15, 657 10 of 37

essentially implements this model [27]. The BoW model represents text (such as a sentence
or document) as an unordered set of words/tokens along with their respective counts,
disregarding grammar and word order but retaining word multiplicity.

Relationship between Document, Log Entry, and Log File:
In the context of log analysis, it is important to understand the relationship between a

document, log entry, and log file:

• Log File: A log file is a collection of log entries recorded by a system over a period.
Each log file typically corresponds to a specific system, application, or service and is
stored as a text file on disk.

• Log Entry: A log entry is a single record within a log file. It contains specific details
about an event that occurred within the system, such as timestamps, error codes,
warnings, or informational messages. Each log entry can be considered analogous to a
“document” in text processing.

• Document: In text processing, a “document” refers to any piece of text that we want
to analyse or classify. When applying the Bag-of-Words (BoW) model to log analysis,
each log entry within a log file is treated as a document. This allows us to convert the
log entry into a numerical vector based on the words (tokens) it contains.

Thus, in this context:

• The log file is a collection of log entries.
• Each log entry is treated as a document in the Bag-of-Words model.

1. Let us consider a corpus D containing m documents (log entries): D = {d1, d2, . . . , dm}.
2. The unique words from all documents will form our vocabulary V: V = {w1, w2, . . . , wn}.
3. For each document di (log entry), its vector representation vi in the BoW model will

be vi = [c1, c2, . . . , cn]
4. Where cj represents the count of word wj in document di (log entry).

There are key feature parameters available in CountVectorizer, which are briefly
described as follows:

1. stop_words: This allows for the specification of “stop words”, which are typically
common words such as “and”, “the”, “is”, etc. When set, these words are not counted.
Some words, often referred to as stop words, are so common that they might not carry
significant meaning in certain tasks. Let S be the set of stop words. The modified
vocabulary V1 after removing stop words will be V1 = V − S.

2. ngram_range: This is used to specify the range of n-values for the different n-grams
to be extracted. For example, an ngram_range of (1,2) would include both individual
words and bi-grams (combinations of adjacent two words). Instead of single words,
we also consider sequences of words of length k. Such sequences are termed n-grams.
For a given ngram_range (a, b), the V′′ will include n-grams where a ≤ k ≤ b.

3. max_df and min_df: These parameters can be used to set a threshold for words to
be included in the vocabulary based on their document frequency. The parameters
help to filter out vocabulary based on document frequency. Let d f (w) be the num-
ber of documents containing the word w. Then, words with d f (w) > max_df or
d f (w) < min_df are excluded from the vocabulary.

4. max_features: This can be used to limit the number of top-occurring words to be
considered. It limits the number of features to consider based on their frequency. If set
to F, only the top F terms ordered by term frequency across the corpus will be kept.

5. binary: If set to True, it encodes whether a word is present or not, rather than its count.
6. tokeniser: It allows the setting of a custom function or tokeniser for breaking up

the text.

Information 2024, 15, 657 11 of 37

3.5.3. Description of the Classification Model and Feature Extraction Method

1. Multinomial Naive Bayes: It is a predictive model which, given input data such as
word counts from extraction methods, makes predictions based on the probabilistic
relationships it has learned from the training data. It is used for classification tasks
and is particularly suitable for features that represent counts, making it apt for text
data, especially when processing with techniques such as CountVectorizer.

2. CountVectorizer: It is a processing step that transforms raw text data into a structured,
numerical format suitable for machine learning models. It is a feature extraction
method whose purpose is to convert a collection of text documents to a matrix of
token counts. It tokenises the text documents and builds a vocabulary of known
words. For each document, it creates a vector representation of the count of each word
or token.

3.5.4. Feature Extraction Process from Raw System Log Files

In this section, we explain the comprehensive process of feature extraction undertaken
to harness valuable insights from raw system log files. Our approach involves utilising
Python programming along with the Pandas and regular expression libraries to parse,
tokenise, and categorise log entries, ultimately generating structured data for analysis and
classification. Our feature extraction journey begins with the parsing and tokenisation of
log entries. This entails the systematic breakdown of each log entry into its key components
for subsequent analysis. The following steps outline our process:

(a) Log File Access: Log files are accessed using the Python “open” function, ensuring
correct encoding and handling of potential errors.

(b) Log Entry Segmentation: Each log file is read line by line. Lines without “ERROR” or
“WARNING” indications are promptly ignored, focusing solely on relevant entries.

(c) Timestamp Extraction: Regular expressions are employed to extract timestamps from
log entries, capturing each event’s exact time and date.

(d) Log Message Isolation: The log message itself is obtained by removing any metadata
and timestamps, providing a clear and unobstructed text for analysis.

(e) Tokenisation: The log message is then tokenised, breaking it down into individual
words. This dissection paves the way for more in-depth content analysis.

During this feature extraction process, we assign severity levels to each log entry based
on the content of the log messages. The following key steps elucidate this process:

(a) Timestamp: The timestamp extracted from each log entry, reflects the precise occur-
rence time.

(b) Tokens: The tokenised version of the log message facilitates granular content analysis.
(c) Severity Flags: Binary flags indicating the presence of certain severity levels, like

“error” and “warning”, within the log message. These flags hold significant importance
for later classification tasks.

4. Challenges and Limitations Encountered During Preprocessing and Model Analysis
4.1. Preprocessing Challenges

During our experiment, we encountered several challenges related to the preprocessing
of log data, particularly with Linux logs. Unlike the logs from Mac, Android, and Windows,
which exhibited a consistent structure and timestamp format, the Linux logs presented a
unique challenge due to their different timestamp format. This discrepancy necessitated
the creation of custom code specifically designed to handle Linux logs. The original
preprocessing pipeline, which worked seamlessly for the other operating systems, failed
to process Linux logs correctly due to this format difference. To address this issue, we
developed a customised regular expression (regex) formula tailored to the Linux timestamp
format. This specialised approach allowed us to accurately parse and extract the necessary
data from Linux logs, ensuring that they could be processed and analysed alongside
logs from other systems. Once the logs were parsed, we applied the CountVectorizer

Information 2024, 15, 657 12 of 37

algorithm for feature extraction and tokenisation, preparing the data for machine learning
classification. The processed data were then organised into a structured format using the
Pandas library and saved in CSV format to facilitate subsequent analysis.

4.2. Memory Issues and Model Analysis

Another significant challenge encountered during our study was related to memory
limitations, particularly when processing a large volume of Windows log data. The size
of this dataset exceeded the available memory capacity, preventing us from combining
the model analysis into a single processing block of code. This limitation required us to
separate the dataset by the operating system, thereby reducing the load on memory during
processing. The separation of datasets allowed us to perform model analysis on each
operating system independently, but it also introduced additional complexity in managing
and coordinating the analyses across different systems. This approach, while necessary
given our memory constraints, is not ideal for achieving a fully integrated analysis and
self-healing trigger across all systems simultaneously. The future availability of larger
memory resources or access to a supercomputer would allow us to overcome this limitation.
With enhanced computational resources, we could potentially combine our algorithm into
one processing block and run the analysis and self-healing mechanisms for all systems
in a unified, simultaneous process. This advancement would significantly streamline the
analysis workflow and enhance the efficiency and scalability of the self-healing system.

• Log Entry Retrieval: Log entries are retrieved from the multiple OS log files using
regular expressions. Regular expressions (regex) are utilised to search for and extract
specific patterns within the log files. For instance, a regex pattern might be employed to
identify the start of a new log entry, typically indicated by a timestamp or a particular
log level (e.g., “INFO”, “ERROR”, “WARNING”). These patterns assist in isolating
individual log entries from the continuous stream of text in a log file. Commenting on
the regular expressions would involve explaining the purpose of each pattern, such
as matching timestamps in different formats, extracting log levels, or identifying key
phrases indicative of specific events.

• Individual Entry Processing: Each log entry undergoes processing to extract relevant
information, including the timestamp, tokens (the individual words or terms), and
severity flags (such as “ERROR” or “WARNING”). Regular expressions might also
be used in this step to precisely extract timestamps and other critical data. For
example, a regex could be designed to capture timestamps in formats like “YYYY-
MM-DD HH:MM:SS” or to isolate specific tokens that indicate an error or warning.
Commenting on these regular expressions would clarify how they are constructed to
match various timestamp formats or extract specific tokens.

• Enrichment with “ALERT” Warnings: An additional step involves identifying “ALERT”
tokens within the log entries and flagging them accordingly for warning indications.
Regular expressions are likely employed here to search for occurrences of the term
“ALERT” (or similar terms) within the log entries. If an “ALERT” is detected, the log
entry is flagged to indicate a higher severity level. Comments on the regular expres-
sions used in this context would describe how the patterns are designed to detect
variations of the word “ALERT” and differentiate between different levels of severity.

Our feature extraction process transforms raw log data into a structured and enriched
format. These structured data serve as the foundational input for subsequent machine
learning classification tasks, and a summary of the extracted data saved into CSV files is
highlighted in Table 2. By systematically parsing, tokenising, and categorising log entries,
we enabled accurate and automated identification of error and warning levels within
system log files. The logs considered span various time frames depending on the operating
system and the specific system’s logging practices. Subsequent sections will delve into the
utilisation of machine learning techniques to leverage these derived features for enhanced
log analysis and classification.

Information 2024, 15, 657 13 of 37

Table 2. Summary of extracted log entries.

File Name Number of Entries

Linux_extracted.csv 25,567
Mac_extracted.csv 107,201
Windows_extracted.csv 114,422,305
Android_extracted.csv 1,555,005

4.2.1. Analysis and Self-Healing Trigger Based on Extracted Log Data

In this section, we present the results of our feature extraction process applied to the
preprocessed log files obtained from various operating systems. We delve into the insights
derived from the extracted features and discuss potential self-healing triggers based on
the error and warning thresholds. Moreover, visualisations are employed to enhance the
understanding of the data distribution and enable system-specific comparisons. The logs
analysed in this study cover different time spans depending on the source systems, and the
workflow was designed to ensure a consistent approach to preprocessing, as summarised
below. Table 3 provides an overview of the feature-extracted data statistics for each system,
including the number of errors and warnings, the average number of tokens, and the sum
of labels for each system. Analysis of the feature-extracted data provides insights into
the error and warning distribution across different systems. The self-healing triggers help
identify potential areas that require attention for system stability. The visualisation expands
the understanding of data patterns, fostering a deeper understanding of the log entry
characteristics. These insights serve as a foundation for subsequent actions and strategies
aimed at enhancing system reliability and performance.

Table 3. Feature extracted data summary.

System Error Warning Tokens Label

Android 1431.0 3.0 9.357741 1.03 × 106

Linux 146.0 250.0 9.048304 3.27 × 108

Mac 356.0 381.0 11.383989 2.71 × 105

Windows 142,113.0 0.0 6.015923 1.01 × 1010

4.2.2. Explanation of Our Log Preprocessing Workflow

Figure 2 represents the overall process of log extraction, preprocessing, feature extrac-
tion, model classification, and self-healing classification. The system processes log files
from different operating systems (Mac, Windows, Android, and Linux) and ensures that
the logs are processed, analysed, and actions are triggered when necessary.

Workflow Steps:

The system follows these steps:

• Log Extraction: The system starts by ingesting logs from various systems.
• Log Parsing: This step extracts relevant data (such as timestamps, errors, and warn-

ings) from the logs.
• Data Cleansing: The logs are cleaned to remove incomplete or irrelevant data.
• Feature Extraction: Key features such as error counts and log tokens are identified for

further processing.
• Model Classification: The data are classified using a machine learning model to predict

the occurrence of issues or events.
• Self-Healing Classification: Based on thresholds for errors and warnings, the system

decides whether a self-healing action is required.
• Visualisation and Reporting: The system generates reports and visualisations to

summarise the health of the monitored systems.

Information 2024, 15, 657 14 of 37

Log File Input
(Mac, Windows, Android, Linux)

Log Parsing

Data Cleansing

Feature Extraction

Model Classification

Exceed Thresholds?

Trigger Self-Healing Actions Visualisation & Reporting

Yes No

Figure 2. Flow diagram for log extraction, preprocessing, feature extraction, model classification, and
self-healing monitoring.

We developed a custom codebase to perform preprocessing on log data from multiple
systems (Mac, Windows, Android, and Linux). The logs were collected over varying
periods depending on the system, reflecting different operational environments. As a result
of this preprocessing process, each system’s log data were cleaned, missing values were
addressed, unnecessary columns were removed, and the data were structured for further
analysis or machine learning tasks. The preprocessed data were saved in separate CSV files

Information 2024, 15, 657 15 of 37

for each system, with an added “Label” column to identify the source of the logs. Below is
a step-by-step breakdown of the preprocessing process we implemented:

1. Reading the Log Files: We read log files for each system (Mac_extracted.csv,
Windows_extracted.csv, Android_extracted.csv, and Linux_extracted.csv) us-
ing the Pandas library’s pd.read_csv() function. Each CSV file contains logs with
various columns like timestamp, tokens, error, and warning.

2. Dropping Rows with Missing Values: For each system’s DataFrame (df_mac, df_win,
df_android, df_linux), we dropped rows with missing values in the timestamp or
tokens columns using the dropna() function. This ensures that only complete records
are used in the analysis.

3. Converting Tokens to String Type: For each system’s DataFrame, we converted the
tokens column to a string type using the astype() function, ensuring a consistent
data type for subsequent processing steps.

4. Filling Missing Error and Warning Values: We filled missing values in the error and
warning columns using forward fill (ffill). This ensures that missing values are
replaced with the most recent non-missing value, maintaining temporal continuity in
the data.

5. Extracting Relevant Columns: For each system’s DataFrame, we extracted only the
relevant columns (timestamp, tokens, error, warning) using indexing. This step
focuses the dataset on the most important features for further analysis.

6. Adding a Label Column: We added a Label column to each system’s DataFrame. The
label is derived from the filename by splitting the filename to extract the required
portion, aiding in the identification and categorisation of the logs during analysis.

7. Saving Preprocessed Data: The preprocessed data for each system are saved to separate
CSV files using the to_csv() function. The index is set to False to avoid saving the
default index column. The resulting CSV files generated are as follows:

5. Threshold Determination and Impact on System Performance
5.1. Thresholds Determination

In our research, the thresholds for triggering self-healing actions were meticulously
determined through an analysis of log data from multiple operating systems. These thresh-
olds play a crucial role in ensuring that the self-healing mechanism activates appropriately,
balancing the need for responsive intervention with the avoidance of unnecessary actions
that could degrade system performance. The process of setting these thresholds involved a
thorough examination of the frequency and severity of errors and warnings within the log
files. Specifically, we established an error threshold of 100 and a warning threshold of 500.
These values were chosen based on the average frequency of occurrences in the dataset,
ensuring that the system triggers self-healing actions only when a significant number of
errors or warnings are detected, indicating a potential issue that requires intervention.

5.2. Impact on System Performance

The chosen thresholds have a direct impact on the system’s performance. Setting these
thresholds too low could result in frequent, unnecessary self-healing actions, potentially
leading to performance degradation due to the system being overly cautious. Conversely,
setting them too high could delay necessary interventions, allowing errors or warnings
to escalate into more significant issues. By analysing the frequency and distribution of
errors and warnings across different operating systems, we ensured that the thresholds
were optimised for each environment. This optimisation process involved balancing
the need for prompt corrective action to maintain overall system efficiency. For future
implementation, as system logs grow in complexity and volume, these thresholds may
need to be revisited and adjusted. Access to more substantial computational resources,
such as supercomputers, would allow for real-time dynamic threshold adjustments, further
enhancing the self-healing system’s adaptability and responsiveness.

Information 2024, 15, 657 16 of 37

5.2.1. Analysis of the Extracted and Preprocessed Data

We performed analysis on the extracted and preprocessed log data from different systems
(Android, Linux, Mac, Windows) and visualised the number of errors and warnings for each
system using bar charts. Here is a breakdown of the analysis and the resulting visualisations:

1. Data Loading and Preprocessing:

(a) The code starts by reading the extracted log files for each system and concate-
nates them into a single dataframe.

(b) Rows with missing or incomplete timestamp or tokens information are dropped,
and the “tokens” column is converted to a string type.

(c) Missing error and warning values are filled using forward fill, ensuring that
missing values are replaced with the most recent non-null value.

(d) The dataframe is then narrowed down to include only the relevant columns
(“timestamp”, “tokens”, “error”, “warning”).

2. Saving Preprocessed Data:

(a) The preprocessed data for each system are saved into separate CSV files in the
specified directory.

3. Bar Chart Creation (Extracted Data):

(a) The code calculates the number of errors and warnings for each system
in the extracted data and stores them in the num_errors_extracted and
num_warnings_extracted lists.

(b) A bar chart is created using Matplotlib, displaying the number of errors and
warnings for each system in the extracted data. Errors and warnings are repre-
sented with stacked bars for each system.

4. Bar Chart Creation (Preprocessed Data):

(a) The preprocessed data for each system are read from the saved CSV files.
(b) The code calculates the total number of errors and warnings for each system in

the preprocessed data and stores the results in the num_errors_preprocessed
and num_warnings_preprocessed lists.

(c) Another bar chart is created to visualise the number of errors and warnings for each
system in the preprocessed data, with stacked bars for errors and warnings.

5. Displaying Plots:

(a) Both bar charts are displayed using plt.show().

5.2.2. Analysis of Extracted and Preprocessed Data Counts

Table 4 provides a comprehensive overview of the extracted and preprocessed data
counts for errors and warnings across different operating systems. The table is divided into
two main sections:

• Extracted Data Error Count and Warning Count:

– Lists the total number of errors and warnings identified during the initial extrac-
tion of log data from each operating system.

– The datasets analysed include Android, Linux, Mac, and Windows.
– The initial extracted logs contain raw, unstructured data directly sourced from

system log files, which often include redundant, irrelevant, or incomplete entries.

• Preprocessed Data Error Count and Warning Count:

– Shows the error and warning counts after preprocessing, which involves clean-
ing and structuring the data. The reduction in the number of errors and warnings
in the preprocessed data reflects the removal of irrelevant entries and consolida-
tion of the log entries, ensuring that the dataset is more focused and ready for
subsequent analysis. Preprocessing steps include:

Information 2024, 15, 657 17 of 37

Removal of irrelevant entries: Log entries that do not provide meaningful
information for error or warning detection, such as routine informational logs
(e.g., “System initialisation completed”), are removed. These logs are often
verbose but do not contribute to the identification of system faults.
Handling missing data: Missing values in crucial fields such as “timestamp” and
“tokens” are dropped. This ensures that only complete entries, which provide
sufficient context for the analysis, are retained. Incomplete records, which may
hinder the accuracy of predictions, are eliminated.
Forward-filling: Missing values in the “error” and “warning” columns are filled
using a forward-fill method. This assumes that the last known error or warning
persists until it is explicitly resolved in the logs. This technique is particularly
useful when logs do not consistently document the resolution of an issue.
Consolidation of repetitive log entries: Frequently repeated logs, such as those
generated by regular status updates or background processes, are consolidated.
This reduces redundancy, focusing the dataset on significant events rather than
routine, non-critical messages.
Tokenisation and standardisation of format: The “tokens” column, which holds
the main log message, is processed by converting it to a consistent format (e.g.,
standardising case or removing special characters) to prepare the data for further
analysis and classification.

Table 4. Extracted and preprocessed data counts.

Extracted Data Error Count Extracted Data Warning Count

Dataset Error Count Dataset Warning Count

Android 1.555 × 106 Android 1.555 × 106

Linux 25,567 Linux 25,567
Mac 107,201 Mac 107,201
Windows 1.14422 × 108 Windows 1.14422 × 108

Preprocessed Data Error Count Preprocessed Data Warning Count

Dataset Error Count Dataset Warning Count

Android 154,232 Android 3237
Linux 415 Linux 4198
Mac 16,661 Mac 370
Windows 329,807 Windows 202,860

We assess potential self-healing triggers based on the error and warning thresholds
using the data shown in Figure 3 (extracted error and warning counts) and Figure 4 (pre-
processed error and warning counts). Table 4 summarises the extracted and preprocessed
data counts for each dataset. Figure 4 shows preprocessed data error count for Android:
154,232, Linux: 415, Mac: 16,661, and Windows: 329,807.

Figure 3. Extracted data counts: error count (left) and warning count (right).

Information 2024, 15, 657 18 of 37

Figure 4. Preprocessed data counts: error count (left) and warning count (right).

5.2.3. Analysis of the Extracted and Preprocessed Data

Table 5 provides a detailed overview of the error statistics across different operating
systems: Android, Linux, Mac, and Windows. The statistics include the count, mean, standard
deviation (std), minimum (min), 25th percentile (25%), 50th percentile (50%), 75th percentile
(75%), and maximum (max) values for errors recorded in the logs of each system.

• Count: The count represents the total number of log entries considered in the analysis
for each operating system. For instance, in the Windows system, over 114 million log
entries were analysed.

• Mean: The mean value is the average number of errors observed per log entry across
all log entries for each operating system. For example, the mean error rate for Android
logs is approximately 0.0992, indicating that errors are relatively less frequent.

• Standard Deviation (std): This value measures the variability or spread of the error
counts around the mean. A higher standard deviation indicates greater variability
in the error rates across log entries. For example, Mac has a standard deviation of
approximately 0.362, suggesting more variability in error occurrences compared to
the other systems.

• Minimum and Maximum Values: These indicate the range of error counts observed
across log entries. The minimum value is 0 for all systems, showing that there are log
entries without any errors, while the maximum is 1, indicating that errors are binary
(either present or absent).

Table 5. Error statistics across systems.

Statistic Android Linux Mac Windows

count 1.555005 × 106 25,567.000000 107,201.000000 1.144223 × 108

mean 9.918425 × 10−2 0.016232 0.155418 2.882366× 10−3

std 2.989093 × 10−1 0.126369 0.362305 5.361024 × 10−1

min 0.000000 0.000000 0.000000 0.000000
25% 0.000000 0.000000 0.000000 0.000000
50% 0.000000 0.000000 0.000000 0.000000
75% 0.000000 0.000000 0.000000 0.000000
max 1.000000 1.000000 1.000000 1.000000

Table 6 provides a detailed overview of the warning statistics across different operating
systems: Android, Linux, Mac, and Windows. The statistics include the count, mean,
standard deviation (std), minimum (min), 25th percentile (25%), 50th percentile (50%),
75th percentile (75%), and maximum (max) values for warnings recorded in the logs of
each system.

• Count: Similar to Table 5, the count reflects the total number of log entries analysed
for warnings in each operating system.

Information 2024, 15, 657 19 of 37

• Mean: The mean value represents the average frequency of warnings per log entry.
For instance, the mean warning rate for Linux logs is 0.164, indicating that warnings
are more frequently logged in Linux compared to other systems.

• Standard Deviation (std): This measures the dispersion of warning counts around the
mean. A higher standard deviation, as seen in Linux (0.370), suggests that the warning
frequencies vary significantly across different log entries.

• Minimum and Maximum Values: These values highlight the range of warnings across
log entries. The minimum value of 0 indicates the presence of entries without any
warnings, while the maximum value of 1 shows that warnings, like errors, are binary
in nature.

Table 6. Warning statistics across systems.

Statistic Android Linux Mac Windows

count 1.555005 × 106 25,567.000000 107,201.000000 1.144223 × 108

mean 2.081665 × 10−3 0.164196 0.003451 1.772906 × 10−3

std 4.557777 × 10−2 0.370461 0.058648 4.206855 × 10−2

min 0.000000 0.000000 0.000000 0.000000
25% 0.000000 0.000000 0.000000 0.000000
50% 0.000000 0.000000 0.000000 0.000000
75% 0.000000 0.000000 0.000000 0.000000
max 1.000000 1.000000 1.000000 1.000000

The numbers in the tables Tables 4–6 are presented in scientific notation, such as
1.14422 × 108, which means 1.14422 × 108, and 1.555 × 106, which means 1.555 × 106.

The mean and standard deviation values were calculated based on the total number of
log entries (count) in each system. These statistics provide insights into the distribution and
variability of errors and warnings across different operating systems, thereby facilitating a
comparative analysis of system reliability and alert frequencies.

The triggers identified for each system, as shown in Table 7, are highlighted as follows:

1. For the Android system, neither errors nor warnings exceeded the thresholds. No
self-healing action is triggered.

2. For the Linux system, both errors and warnings exceeded the thresholds. A self-
healing action is triggered to address the high error and warning counts.

3. For the Mac system, errors exceeded the threshold, but warnings did not. A self-
healing action is triggered for the Mac system to address the high error count.

4. For the Windows system, warnings exceeded the threshold, but errors did not. A self-
healing action is triggered for the Windows system to address the high warning count.

Table 7. Errors and warnings with thresholds.

Operating System Errors Warnings

Android 0.0 0.0

Linux 1.0 1.0

Mac 1.0 0.0

Windows 0.0 1.0

5.2.4. Libraries and Software Used

Our analysis was conducted using a comprehensive suite of Python libraries, inte-
grated through the Anaconda distribution and executed within Jupyter Notebooks. The
primary tools and libraries employed in our research include the following:

• Pandas: A powerful data manipulation and analysis library for Python, used for
handling and preprocessing the dataset [28].

Information 2024, 15, 657 20 of 37

• NumPy: Essential for numerical computations, providing support for arrays and
mathematical functions [29].

• Matplotlib and Seaborn: Both libraries were utilised for creating static, interactive,
and informative plots to visualise the data [30,31].

• Scikit-learn: A machine learning library used for implementing the Multinomial Naive
Bayes, Logistic Regression, Linear Discriminant Analysis, and Gradient Boosting
classifiers, as well as for data preprocessing and evaluating model accuracy [32].

• PyCaret: An open-source, low-code machine learning library that significantly expe-
dited the model selection process by automating the comparison of different algo-
rithms [33].

• Tabulate: Facilitated the presentation of results in tabular format, enhancing the
readability of our findings [34].

5.2.5. Hardware Specification

The computational analyses were performed on a MacBook Pro with the following
hardware specifications:

• Processor: Apple M3 Pro.
• Memory: 18 GB.
• Operating System: macOS 14.5 (23F79).

The current hardware setup, featuring the Apple M3 Pro chip, 18 GB of memory, and
macOS 14.5 (23F79), completed the data extraction in 34 min. However, we believe that
this computation is slow due to the vast volume of log data we are processing. Despite the
robust capabilities of this hardware configuration, the sheer size of the dataset imposes
significant demands on processing time.

To enhance data management efficiency, we implemented the following optimisations:

• Chunk-Based Processing: The parse_log_file_in_chunks function processes the
log file in manageable chunks (e.g., 10,000 lines), allowing for efficient handling and
processing of large datasets.

• Incremental Data Processing: Processed chunks are saved incrementally to the output
CSV file, mitigating memory overload.

• Proactive Garbage Collection: Explicit calls to gc.collect() are made to reclaim memory.

Despite these optimisations, our analysis indicates that a significantly higher RAM
capacity server will be essential to meet the computational demands of our proposed LISH
system for real-time log data extraction and preprocessing.

5.3. Model Selection and Training Using Multinomial Naive Bayes

The foundation of our study is the utilisation of real log data for Android, Mac, Linux,
and Windows systems, sourced from the Zenodo platform. This comprehensive dataset
includes a broad range of system logs, providing an invaluable resource for the effective
analysis and classification of system errors and warnings. Given the categorical nature
of log messages and our objective to classify these messages into predefined categories
such as “error” or “warning”, we selected the Multinomial Naive Bayes (MNB) model. The
MNB algorithm is particularly well suited for text classification tasks due to its efficiency in
handling categorical data, making it an ideal choice for this study. To enhance the robustness
and applicability of our model, we began by working with the extracted and preprocessed
datasets. The preprocessing phase involved cleaning, tokenising, and structuring the log
data, followed by feature extraction using CountVectorizer, which converted the textual log
data into a matrix of token counts. This matrix served as the input for the MNB classifier.
To evaluate the performance of the MNB model in comparison to other machine learning
models, we utilised PyCaret, an open-source, low-code machine learning library. PyCaret
allowed us to systematically train and assess multiple models, including MNB, on the
preprocessed datasets. By employing PyCaret’s built-in tools, we were able to compare the
performance of MNB with other classifiers such as Logistic Regression, Random Forest, and

Information 2024, 15, 657 21 of 37

Support Vector Machines, among others. Performance metrics such as accuracy, precision,
recall, and F1-score were used to assess the effectiveness of each model. Notably, the
MNB model demonstrated a particularly high recall rate, outperforming other models in
identifying true positives, which is crucial for accurately detecting errors and warnings
within the logs. This high recall performance is a significant advantage, especially in
scenarios where it is more critical to identify all potential issues (even at the expense of a
few false positives) than to achieve the highest precision. The results indicated that while
the MNB model was exceptionally efficient in terms of recall, it could be complemented by
other models to achieve potential gains in precision and overall classification performance.
This comparative analysis highlighted the importance of selecting appropriate models
based on the specific characteristics of the dataset and the classification task at hand. The
insights gained from this evaluation underscore the value of combining different machine
learning models to enhance the accuracy and reliability of system log classification across
varied operating systems.

5.3.1. Data Preprocessing

Prior to model training, the dataset underwent a rigorous preprocessing phase. This
phase involved reading and cleaning log files from each system (Android, Mac, Linux,
and Windows), followed by a tokenisation process to convert log messages into a format
suitable for analysis. Specifically, preprocessing steps included the following:

1. Data Extraction: Importing log data from CSV files, each representing a distinct system.
2. Cleaning: Dropping rows with missing values and converting the “tokens" column to

a string type to ensure data consistency.
3. Feature Engineering: Calculating summary statistics such as the total number of errors

and warnings, and the average number of tokens per log entry.

5.3.2. Model Training

With the preprocessed data, we proceeded to train the Multinomial Naive Bayes
model. The choice of MNB was motivated by its suitability for the text classification of the
log messages, aiming to classify them based on their severity (error or warning) and type
(system-specific issues). The training process entailed the following steps:

1. Vectorisation: Applying TF-IDF vectorisation to convert the tokenised log messages
into numerical features, enabling the MNB algorithm to process and learn from the
text data.

2. Model Fitting: Utilising the sci-kit-learn library’s Multinomial Naive Bayes class to fit
the model on the training dataset, which comprises a subset of the preprocessed log data.

3. Hyperparameter Tuning: Although MNB requires minimal hyperparameter tuning, we
explored different configurations of the model’s parameters to optimise performance.

6. Model Performance Analysis Results

We conducted a performance analysis of the Multinomial Naive Bayes (MNB) algo-
rithm in comparison to other classification models. Our results indicate the viability of
MNB as a tool for implementing self-healing functionality in cyber-physical systems. MNB
excelled in recall across all metrics, demonstrating its effectiveness in identifying errors and
warnings. Although logistic regression outperformed MNB in accuracy, MNB still achieved
commendable accuracy scores. The performance of multiple classifiers was evaluated using
several metrics: accuracy, AUC (area under the curve), recall, precision, F1-score, kappa,
and MCC (Matthews correlation coefficient), along with their training time (TT) in seconds.
The following tables summarize the results:

1. Android Dataset Results

Table 8 summarises the performance of different classifiers on the Android dataset.
The Multinomial Naive Bayes (MNB) classifier achieved an accuracy of 98.87% and a recall
of 56.21%, which is particularly notable for its ability to correctly identify positive instances.

Information 2024, 15, 657 22 of 37

The precision and F1-scores were also competitive, showing a balanced performance.
Importantly, MNB had one of the lowest training times, making it suitable for rapid updates.

Table 8. Model performance analysis on Android dataset.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (s)

knn 0.9604 0.0000 0.6007 1.0000 0.7506 0.7305 0.7586 7.1660

dt 0.9604 0.0000 0.6007 1.0000 0.7506 0.7305 0.7586 1.1400

svm 0.9604 0.9903 0.6007 1.0000 0.7506 0.7305 0.7586 1.2020

rf 0.9604 0.0000 0.6007 1.0000 0.7506 0.7305 0.7586 2.5570

ada 0.9604 0.8004 0.6007 1.0000 0.7506 0.7305 0.7586 1.1710

gbc 0.9604 0.8262 0.6007 1.0000 0.7506 0.7305 0.7586 3.3610

et 0.9604 0.0000 0.6007 1.0000 0.7506 0.7305 0.7586 1.1460

lightgbm 0.9604 0.0000 0.6007 1.0000 0.7506 0.7305 0.7586 1.1710

lr 0.9603 0.9991 0.6010 0.9987 0.7504 0.7303 0.7582 1.3720

lda 0.9562 0.9847 0.5634 0.9918 0.7186 0.6960 0.7297 1.1680

ridge 0.9559 0.9847 0.5588 0.9936 0.7153 0.6934 0.7273 1.1380

qda 0.9008 0.0000 0.4892 0.9000 0.6118 0.6960 0.7297 1.2390

dummy 0.9008 0.0000 0.4892 0.9000 0.6118 0.6960 0.7297 1.1710

nb 0.1013 0.0000 1.0000 0.0994 0.1808 0.0005 0.0152 1.1190

2. Linux Dataset Results

Table 9 presents the performance metrics for the Linux dataset. MNB, again, showed robust
performance with high accuracy and recall rates. The classifier’s training time was minimal
compared to other models, reinforcing its efficiency and applicability in real-time systems.

Table 9. Model performance analysis on Linux dataset.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (s)

nb 0.9887 0.0000 0.5621 0.7041 0.6173 0.6117 0.6196 0.0190

knn 0.9877 0.0000 0.2414 1.0000 0.3847 0.3809 0.4839 0.0910

dt 0.9875 0.0000 0.2310 1.0000 0.3703 0.3666 0.4722 0.0210

svm 0.9875 0.9107 0.2310 1.0000 0.3703 0.3666 0.4722 0.0510

ridge 0.9875 0.9104 0.2310 1.0000 0.3703 0.3666 0.4722 0.0190

rf 0.9875 0.0000 0.2310 1.0000 0.3703 0.3666 0.4722 0.0370

ada 0.9875 0.6155 0.2310 1.0000 0.3703 0.3666 0.4722 0.0330

gbc 0.9875 0.6155 0.2310 1.0000 0.3703 0.3666 0.4722 0.0390

lda 0.9875 0.8940 0.2310 1.0000 0.3703 0.3666 0.4722 0.0220

et 0.9875 0.0000 0.2310 1.0000 0.3703 0.3666 0.4722 0.0330

lightgbm 0.9875 0.0000 0.2310 1.0000 0.3703 0.3666 0.4722 0.0260

lr 0.9849 0.9035 0.0690 0.9000 0.1270 0.1253 0.2427 0.1590

qda 0.9838 0.0000 0.0690 0.9000 0.1270 0.1253 0.2427 0.0190

dummy 0.9838 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0180

Information 2024, 15, 657 23 of 37

3. Mac Dataset Results

As seen in Table 10, the Mac dataset results highlight the MNB classifier’s consistency.
The model maintained high accuracy and a competitive recall rate. The precision and
F1-scores were stable, indicating a reliable performance across different metrics. The quick
training time further supports the use of MNB in dynamic environments.

Table 10. Model performance analysis on Mac dataset.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (s)

lr 0.9400 0.9714 0.6147 0.9993 0.7611 0.7291 0.7573 0.1980

knn 0.9398 0.0000 0.6126 0.9999 0.7597 0.7275 0.7561 0.1410

et 0.9216 0.0000 0.4956 0.9999 0.6549 0.6177 0.6697 0.1210

lda 0.9211 0.9626 0.4975 0.9957 0.6622 0.6230 0.6705 0.0620

ridge 0.9195 0.9716 0.4876 0.9904 0.6611 0.6202 0.6705 0.0620

dt 0.9033 0.0000 0.3775 1.0000 0.5480 0.5060 0.5819 0.0630

svm 0.9033 0.9731 0.3775 1.0000 0.5480 0.5060 0.5819 0.0630

rf 0.9033 0.0000 0.3775 1.0000 0.5480 0.5060 0.5819 0.0630

ada 0.9033 0.6888 0.3775 1.0000 0.5480 0.5060 0.5819 0.0660

gbc 0.9033 0.7341 0.3775 1.0000 0.5480 0.5060 0.5819 0.1590

lightgbm 0.9033 0.0000 0.3775 1.0000 0.5480 0.5060 0.5819 0.1560

qda 0.8446 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0620

dummy 0.8446 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0610

nb 0.1588 0.0000 1.0000 0.1560 0.2698 0.0012 0.0249 0.0610

4. Windows Dataset Results

The Windows dataset performance metrics are displayed in Table 11. MNB excelled
with a high accuracy rate and significantly lower training time than other classifiers. The
model’s ability to maintain stability in precision and F1-scores across diverse datasets makes
it an ideal candidate for self-healing systems that require dependable and efficient models.

Table 11. Model performance analysis on Windows dataset.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (s)

knn 0.9999 0.0000 0.9732 1.0000 0.9864 0.9864 0.9865 24.9233

dt 0.9999 0.0000 0.9732 1.0000 0.9864 0.9864 0.9865 3.5067

rf 0.9999 0.0000 0.9732 1.0000 0.9864 0.9864 0.9865 8.2633

ada 0.9999 0.9866 0.9732 1.0000 0.9864 0.9864 0.9865 4.3900

gbc 0.9999 0.9793 0.9732 1.0000 0.9864 0.9864 0.9865 34.6100

et 0.9999 0.0000 0.9732 1.0000 0.9864 0.9864 0.9865 5.7700

lightgbm 0.9999 0.0000 0.9732 1.0000 0.9864 0.9864 0.9865 4.8600

lr 0.9998 0.9993 0.9305 0.9938 0.9639 0.9634 0.9661 3.9967

svm 0.9989 0.9996 0.6156 1.0000 0.7620 0.7615 0.7842 3.6500

lda 0.9989 0.9967 0.6209 1.0000 0.7661 0.7655 0.7875 3.7233

Information 2024, 15, 657 24 of 37

Table 11. Cont.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (s)

ridge 0.9988 0.9968 0.5933 1.0000 0.7447 0.7442 0.7698 3.5067

qda 0.9971 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.6733

dummy 0.9971 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.1667

nb 0.9892 0.0000 0.9755 0.2072 0.3417 0.3386 0.4470 3.5767

6.1. Arguments for Multinomial Naive Bayes

The Multinomial Naive Bayes (MNB) classifier demonstrates exceptional performance
across various datasets, particularly in terms of accuracy, recall, and training time. Here are
the key points supporting the selection of MNB:

• Accuracy and Recall: MNB exhibits high accuracy and recall rates, especially in critical
cases where identifying all positive instances is crucial. For instance, in the Android
dataset (Table 8), MNB achieved an accuracy of 98.87% and a recall of 56.21%. This
indicates that MNB is highly effective in correctly identifying positive instances.

• Training Time: MNB consistently shows the lowest training times across all datasets.
This efficiency is crucial for the self-healing system, which requires rapid model
updates and retraining. For example, in the Windows dataset (Table 11), MNB’s
training time was significantly lower than other classifiers, making it an ideal choice
for real-time applications.

• Stability and Consistency: MNB maintains stable performance across different datasets,
demonstrating its robustness and generalisability. The classifier consistently shows
competitive precision and F1-scores, ensuring a balanced trade-off between precision
and recall.

We utilised PyCaret [32] for our model comparison analysis and generating the analy-
sis result tables. PyCaret is an open-source, low-code machine-learning library in Python
that automates the machine-learning workflow. It allows users to prepare data, compare
models, and tune hyperparameters with minimal coding, efficiently handling the entire
model comparison process.

6.2. Best Four Performing Models
6.2.1. Android Dataset Results

As shown in Figure 5, the performance metrics for the best four models on the Android
dataset are as follows:

• Naive Bayes: Exhibits perfect recall (100%) but has the lowest precision (9.94%) and
accuracy (10.13%), indicating a tendency to over-predict positive instances.

• Quadratic Discriminant Analysis: Shows the highest precision (99.99%) and accuracy
(90.08%) but has no recall (0.00%), failing to identify positive instances.

• Logistic Regression: Achieves a balanced performance with an accuracy of 96.03%
and a recall of 60.07%, complemented by a high precision of 99.87%.

• SVM—Linear Kernel: Delivers a strong AUC of 99.03%, with good overall accuracy
(96.04%) and balanced recall (60.07%) and precision (100%).

Information 2024, 15, 657 25 of 37

Figure 5. Performance metrics for the best four models in the Android dataset.

6.2.2. Linux Dataset Results

As shown in Figure 6, the performance metrics for the best four models on the Linux
dataset are as follows:

• Naive Bayes: Highest accuracy (98.87%) and a recall of 56.21%, showing strong
performance in identifying positive instances.

• Quadratic Discriminant Analysis: Consistently high metrics with the lowest recall (0.00%).
• Logistic Regression: Good balance between accuracy (98.49%) and precision (90.00%).
• SVM—Linear Kernel: Shows solid performance with high AUC (91.07%).

Information 2024, 15, 657 26 of 37

Figure 6. Performance metrics for the best four models in the Linux dataset.

6.2.3. Mac Dataset Results

As shown in Figure 7, the performance metrics for the best four models on the Mac
dataset are as follows:

• Logistic Regression: Achieved the highest accuracy (94.00%) and AUC (97.14%) with
a recall of 61.47%.

• SVM—Linear Kernel: Showed strong performance with high AUC (97.31%) and
precision (100%).

• Quadratic Discriminant Analysis: Balanced performance but with lower recall (0.00%).
• Naive Bayes: Perfect recall (100%) but lower accuracy (15.88%).

Information 2024, 15, 657 27 of 37

Figure 7. Performance metrics for the best four models in the Mac dataset.

6.2.4. Windows Dataset Results

As shown in Figure 8, the performance metrics for the best four models on the Win-
dows dataset are as follows:

• Naive Bayes: Demonstrated high accuracy (97.25%) with a recall of 55.67%, indicating
robust performance in identifying positive instances.

• Quadratic Discriminant Analysis: Consistently high performance but with lower
recall (0.00%).

• Logistic Regression: Balanced accuracy (96.80%) and precision (89.50%).
• SVM—Linear Kernel: Strong overall performance with high AUC (90.83%).

Information 2024, 15, 657 28 of 37

Figure 8. Performance metrics for the best four models in the Windows dataset.

For presenting the best four models’ analysis results in a bar chart, we utilised MAT-
LAB [35]. MATLAB is a high-level language and interactive environment used for nu-
merical computation, visualisation, and programming. It allows for sophisticated data
visualisation, making it an excellent tool for presenting and interpreting complex data
results visually.

7. Comparison with Existing Methods

The comprehensive model evaluation across multiple systems distinguishes this study
from existing methods, which often focus on a single model or system. By leveraging
PyCaret’s capabilities, we were able to conduct a broad comparison of models, revealing
insights into their strengths and limitations in different contexts. This approach offers
a more nuanced understanding of model performance, suggesting that a combination

Information 2024, 15, 657 29 of 37

of models might be necessary to effectively monitor and predict system health across
various operating environments. This study’s comprehensive comparison highlights the
potential of leveraging traditional algorithms such as Multinomial Naive Bayes (MNB) in
modern system health analysis tasks. Contrary to the focus on increasingly complex models,
this research underscores the value of revisiting classical machine learning approaches.
Such comparisons enrich the toolkit available to developers and researchers, offering
efficient and scalable solutions to system monitoring challenges. Addressing system
log classification within the broader scope of computational self-healing has presented
various challenges. These challenges have driven the development of diverse solutions,
methodologies, and algorithms aimed at addressing them [34]. As computational self-
healing and log classification continue to evolve, a range of traditional and innovative
methodologies remain relevant, each offering distinct strengths and challenges. Achieving
an effective balance between efficacy, efficiency, and practicality is crucial for practitioners
in this field. The multitude of approaches reflects the multifaceted nature of the challenges
and the different avenues researchers are exploring to tackle them. We provide a detailed
comparison of two pivotal solutions identified in the background work: log-based anomaly
detection techniques utilising unsupervised learning and the application of CountVectorizer
with Multinomial Naive Bayes for self-healing systems.

7.1. Comparison with ReLoop2

Comparing our Multinomial Naive Bayes (MNB) model for self-healing systems with
the ReLoop2 model by [36], we highlight key differences in model performance and objec-
tives. Both models aim to enhance system adaptation, but with different focuses. Our MNB
model prioritises error detection and quick retraining, achieving high recall (56.21%) and
low training time across multiple datasets, such as Android and Linux. In contrast, ReLoop2
focuses on enhancing recommendation systems by integrating an error compensation loop,
which led to an AUC improvement of up to 5.6% on the AmazonElectronics dataset and
3.1% on the MicroVideo dataset. ReLoop2’s ability to handle dynamic data distribution
shifts without requiring additional model retraining makes it ideal for recommendation
tasks, whereas MNB excels in detecting system faults in real-time environments.

Key Comparison Points with ReLoop2

In Table 12, we present a comparison between our MNB model and ReLoop2, with the
following key observations:

1. Model Objective:

• Our MNB model is designed for log-based error detection and self-healing in
cyber-physical systems, prioritising high recall and quick training time to identify
and correct system faults in real time.

• ReLoop2 focuses on self-adaptive recommendation systems by integrating error
compensation loops to quickly adapt to shifting data distributions in large-scale
recommendation datasets like AmazonElectronics and production systems (e.g.,
Huawei’s news feed).

2. Datasets:

• Our study uses system logs (e.g., Android, Linux, Mac, and Windows logs) for
error detection, evaluating performance through metrics like accuracy, recall,
and precision.

• ReLoop2 uses recommendation datasets (AmazonElectronics, MicroVideo, KuaiVideo)
and a production dataset, which are much larger and involve user–item interactions,
making the task more focused on recommendations.

3. Performance Metrics:

• Our Model: MNB achieved high recall (56.21%) and balanced accuracy with fast train-
ing times, making it suitable for real-time error detection in dynamic environments.

Information 2024, 15, 657 30 of 37

• ReLoop2: Integrating ReLoop2 with baseline models outperformed state-of-the-
art methods (e.g., DeepFM, AutoInt+), achieving up to a 5.6% improvement
in AUC on the AmazonElectronics dataset. ReLoop2 rapidly compensates for
data distribution shifts without requiring additional model training, essential for
real-time recommendation systems.

4. Error Handling:

• MNB: Focuses on identifying system errors through log analysis, excelling in
high recall for detecting system warnings and errors.

• ReLoop2: Incorporates an error memory module that compensates for prediction
errors and adapts to changes in data distribution in recommendation tasks,
outperforming incremental training techniques in many cases.

5. Training Time:

• MNB demonstrated significantly lower training times (e.g., 0.019 s for Linux),
critical for real-time, self-healing systems.

• ReLoop2 outperformed incremental training methods without requiring retrain-
ing, making it highly efficient for adaptive recommendations in real-time systems.

Table 12. Comparison of MNB and ReLoop2 models.

Model Dataset Key Metric Performance Key Feature

MNB (Our Work) Android/Linux Recall 56.21%
High recall, fast
training time
(0.019 s).

ReLoop2 AmazonElectronics AUC improve-
ment +5.6%

Error memory
for adaptive
compensation.

MicroVideo AUC improve-
ment +3.1%

Model-agnostic
adaptation to
changing data.

Production (Huawei) AUC 75.0%

Combines error
memory and in-
cremental learn-
ing.

7.2. Comparison of Machine Learning Models

• Support Vector Machine (SVM): Known for its effectiveness in high-dimensional
spaces, SVM can be particularly useful for text classification tasks, such as log analysis.

• Random Forest (RF): This ensemble learning method combines multiple decision trees
to improve classification accuracy and robustness, making it suitable for complex
datasets like OS logs.

• Gradient Boosting Classifier (GBC): GBC is another ensemble technique that sequen-
tially builds models, optimising for classification tasks by focusing on errors made by
previous models.

• AdaBoost (ADA): A boosting algorithm that combines weak learners to form a strong
classifier, which can enhance classification accuracy in various scenarios.

• LightGBM: A gradient boosting framework that is optimised for efficiency and speed,
particularly when dealing with large datasets.

• Logistic Regression (LR): A baseline model often used for binary and multiclass
classification, providing a point of comparison for more complex models.

• Deep Learning Models: While not included in the current comparison due to the
scope of our research, we recognise their importance and plan to explore these in
future work.

Information 2024, 15, 657 31 of 37

7.3. Experimental Results

Tables 8–11 provide a detailed comparison of the abovementioned models across
multiple OS datasets (Android, Linux, Mac Windows). Each model was evaluated based
on key performance metrics, including accuracy, AUC, recall, precision, F1-score, kappa,
MCC, and training time (TT). Our findings indicate that while models like SVM and
Random Forest offer competitive accuracy and AUC, the CountVectorizer coupled with
the Multinomial Naive Bayes algorithm demonstrates a unique balance of precision and
training efficiency, particularly in scenarios with constrained computational resources.

7.4. Discussion of Model Performance

• Accuracy and Precision: The Naive Bayes model excels in maintaining high accuracy
and precision across the datasets, which is crucial for real-time self-healing systems
that require immediate and reliable log classification.

• Training Time: The Naive Bayes algorithm also outperforms others in terms of training
time, making it a preferred choice for systems where quick model updates are necessary.

• Recall and F1-Score: While some models like SVM and GBC show higher recall,
indicating a better ability to detect anomalies, they may require more computational
resources and longer training times.

7.5. Performance Across Operating Systems

• Windows Dataset: The Naive Bayes algorithm achieved a recall of 0.9755, which is
among the highest across the models tested. This suggests that the Naive Bayes model
is highly effective at identifying nearly all instances of errors and warnings in the
Windows logs. This high recall is particularly advantageous in a self-healing system
where missing even a small percentage of errors could lead to system vulnerabilities
or downtime.

• Linux Dataset: On the Linux dataset, the recall drops significantly to 0.5621. This
indicates that while the model is still capturing over half of the relevant instances,
it may be missing a considerable portion of the anomalies. This decrease in recall
could be due to the nature of the Linux logs, which may present a more diverse set of
features that are not as well captured by the Naive Bayes model. The complexity and
variability in Linux system logs might require additional feature engineering or the
integration of more complex models to improve recall.

• Mac Dataset: For the Mac dataset, the Naive Bayes model’s recall is 0.6147. While
this is better than its performance on the Linux dataset, it still indicates room for
improvement. The recall score suggests that the model is moderately successful in
identifying relevant log entries but may still miss some critical cases. Given the Mac
OS’s unique structure and log generation patterns, additional preprocessing or model
adjustments could be necessary to enhance recall further.

• Android Dataset: On the Android dataset, the recall achieved by Naive Bayes is 1.0000,
which is perfect. This exceptional performance indicates that the Naive Bayes model
was able to correctly identify every relevant instance in the Android logs. This level of
recall is particularly beneficial in mobile environments where resources are limited,
and the cost of errors can be high. A perfect recall means that the model did not miss
any errors or warnings, ensuring comprehensive monitoring and quick corrective
actions in a self-healing context.

7.6. Interpretation and Implications

• Variability Across Datasets: The Naive Bayes model’s recall performance varies sig-
nificantly across different operating systems. This variability highlights the model’s
sensitivity to the nature of the data it is applied to. The perfect recall in the Android
dataset demonstrates the model’s potential when the features are well aligned with
the model’s assumptions. In contrast, the lower recall on the Linux and Mac datasets

Information 2024, 15, 657 32 of 37

suggests that these environments may have more complex log patterns that Naive
Bayes alone may not capture fully.

• Advantages in Specific Contexts: The high recall in Windows and perfect recall in
Android logs make Naive Bayes a strong candidate for environments where com-
plete anomaly detection is critical, and missing an error could lead to significant
consequences. However, in more complex environments like Linux, where the logs
may exhibit a wider range of behaviours, relying solely on Naive Bayes may not be
sufficient, and combining it with other models or enhancing feature extraction could
be necessary.

• Balancing Precision and Recall: It is also important to note the trade-off between
precision and recall. While Naive Bayes achieves high recall in certain datasets,
precision, particularly in the Windows dataset, is also strong. This balance suggests
that Naive Bayes is not only good at catching most of the anomalies but also at ensuring
that the identified instances are indeed relevant, reducing the rate of false positives.

7.7. Comparing Different Variants of Naive Bayesian Algorithms

Naive Bayesian algorithms are among the most crucial classifiers used in predictive
modelling. These classifiers rely on probability and are based on the general assumption
that all features are independent of each other, although this assumption often does not
hold in real-world applications. There are three primary variants of Naive Bayes, each with
different assumptions that impact their efficiency and accuracy for specific tasks [37]:

1. Multinomial Naive Bayes (MNB): This variant is particularly advantageous for text
classification tasks and datasets with discrete features, such as word counts or fre-
quencies. It is highly effective when features represent categorical data.

2. Gaussian Naive Bayes (GNB): GNB is suited for continuous features and assumes that
the data follow a normal (Gaussian) distribution, making it ideal for datasets with
real-valued features.

3. Bernoulli Naive Bayes (BNB): This variant is best suited for binary/boolean features
and is particularly useful when the dataset is composed of binary variables, making it
effective in scenarios like text classification where the presence or absence of a feature
(e.g., a word) is important.

For our multiple OS log classification and self-healing implementation, we have cho-
sen Multinomial Naive Bayes (MNB). This decision is justified by the nature of system logs,
which typically involve categorical data, such as discrete events, counts, and frequencies.
MNB effectively classifies and analyses log patterns by leveraging the occurrence of specific
events or terms, which is crucial for detecting anomalies and triggering self-healing actions.
Gaussian Naive Bayes, in contrast, is more suited for continuous data, which are less com-
mon in system logs. This choice aligns with the findings [37] in their work on performance
comparison and implementation variants for network intrusion detection, where different
Naive Bayesian variants were evaluated for their suitability in various contexts [37].

7.8. Challenges of Manual System Log Analysis

The rich information and pervasiveness of system logs enable a wide range of system
management and diagnostics tasks, such as analysing application security, identifying
performance anomalies, and diagnosing errors and crashes [38]. When the system in
concern has a problem, the corresponding system log entries follow a certain pattern [38],
which we are able to exploit to implement anomaly detection using a Multinomial Naive
Bayes ML algorithm to detect the anomaly and trigger self-healing remediation. System
logs can be used to diagnose the source of the system problems as well as predict potential
system issues and problems. The detection of abnormal events in system logs is imperative
in real-world cybersecurity operations such as detection, diagnosis, and remediation [38].
Our research specifically addresses the challenge of manually analysing large volumes of
system logs, which is a process that is often cumbersome, time-consuming, and prone to
errors, particularly in complex environments. Self-healing systems autonomously detect,

Information 2024, 15, 657 33 of 37

diagnose, and correct anomalies, with effective self-healing relying heavily on the accurate
interpretation of system logs generated by operating systems (OSs). Despite the growing
adoption of automated log analysis methods, there are still several contexts in which
manual log analysis is prevalent today:

• Legacy Systems: Organisations that continue to rely on older or legacy systems may
not have fully integrated automated log analysis tools. In such environments, system
administrators and IT support staff often perform manual log analysis to diagnose
issues, identify security threats, or troubleshoot system performance.

• Small and Medium-Sized Enterprises (SMEs): Many SMEs may lack the budget to
invest in advanced automated log analysis tools. Consequently, IT personnel in these
organisations often resort to manual log analysis, particularly during critical incidents
or when automated tools fail to provide clear insights.

• Compliance and Auditing: In certain industries, manual log analysis remains a require-
ment as part of compliance and auditing processes. IT auditors may manually review
logs to ensure systems comply with regulatory standards, particularly in sectors such
as finance, healthcare, and government.

• Security Operations Centres (SOCs): While SOCs increasingly use sophisticated Se-
curity Information and Event Management (SIEM) systems, there are still instances
where security analysts perform manual log analysis. This typically occurs when
investigating complex or nuanced security incidents that automated tools may not
fully capture or interpret.

• Incident Response: During the incident response process, particularly in real-time
scenarios, security professionals and incident responders might manually analyse logs
to quickly understand and contain an issue before escalating to automated processes.

Our research introduces an intelligent methodology for creating self-healing systems
for OSs, focusing on log classification using CountVectorizer and the Multinomial Naive
Bayes algorithm. This approach involves preprocessing OS logs to ensure quality, convert-
ing them into a numerical format with CountVectorizer, and then classifying them using
the Naive Bayes algorithm. The system classifies multiple OS logs into distinct categories,
identifying errors and warnings. We tested our model on logs from four major OSs: Mac,
Android, Linux, and Windows, sourced from Zenodo to simulate real-world scenarios. The
model’s accuracy, precision, and reliability were evaluated, demonstrating its potential
for deployment in practical self-healing systems. These contexts underscore the ongoing
relevance of manual log analysis in specific scenarios, despite the advantages of automation.
By automating the log analysis process, as proposed in our research, we aim to reduce
the dependency on manual analysis, thereby enhancing efficiency and minimising the
likelihood of human error.

7.9. Comparison Between DA-Parser and CountVectorizer

DA-Parser and CountVectorizer are both prominent tools in the field of natural lan-
guage processing (NLP), yet they serve distinct purposes and are applied in different
contexts. Understanding their comparative strengths and limitations is essential for select-
ing the appropriate tool for specific text analysis tasks. DA-Parser [39] is a specialised tool
designed for dialogue act recognition, a task that involves identifying the communicative
function of an utterance within a conversation. This parser is particularly adept at parsing
dialogue structures, categorising utterances based on their roles in the conversation, such
as questions, statements, or requests. The DA-Parser leverages linguistic features that
are integral to understanding the context and flow of dialogues, making it a critical tool
in conversational analysis, particularly in systems that need to interpret and respond to
human communication. In contrast, CountVectorizer is a more general-purpose tool used
to convert text documents into a matrix of token counts. This method of feature extraction
is foundational in many text classification tasks, where the primary goal is to represent
the text in a numerical format that can be fed into machine learning models. Unlike DA-
Parser, CountVectorizer does not specialise in any specific type of text or context but is

Information 2024, 15, 657 34 of 37

broadly applicable across various text analysis tasks, such as sentiment analysis, document
classification, and spam detection.

One of the key differences between these tools lies in their handling of linguistic
features. DA-Parser [39] is highly specialised and considers the sequence and role of words
within a dialogue, making it more sophisticated in contexts where understanding the
function of each utterance is crucial. CountVectorizer, on the other hand, focuses purely
on the frequency of tokens, without regard to their sequence or contextual meaning. This
simplicity allows CountVectorizer to be widely applicable but also limits its effectiveness
in tasks that require a deeper understanding of linguistic context. The output generated by
these tools reflects their differing purposes. DA-Parser produces structured outputs that
categorise dialogue acts based on their communicative role, which is essential in dialogue
systems and conversational agents. In contrast, CountVectorizer generates a sparse matrix
of token counts that serves as input for further machine learning processes, such as those
demonstrated in sentiment analysis tasks. While DA-Parser is indispensable in tasks
involving dialogue act recognition and the parsing of conversational data, CountVectorizer
remains a versatile and widely used tool in general text classification. The choice between
these tools should be guided by the specific needs of the task at hand, with DA-Parser being
more suitable for dialogue-intensive applications, and CountVectorizer being an excellent
choice for broader text analysis tasks.

8. Conclusions

In this study, we showed that the Multinomial Naive Bayes (MNB) algorithm, when
combined with the CountVectorizer, is a promising machine learning tool for the imple-
mentation of self-healing mechanisms in cyber-physical systems. While MNB may not
always achieve the highest accuracy compared to more complex classifiers such as logistic
regression or k-nearest neighbours, it consistently excels in recall—a crucial metric for
the identification of system anomalies, particularly errors and warnings that can threaten
system integrity. The high recall rates observed across diverse datasets—Android, Linux,
Mac, and Windows—demonstrate the robustness of MNB in detecting potential issues. For
instance, MNB achieved a recall rate of 56.21% on the Android dataset and consistently
identified over 56% of true positive instances in the Linux dataset. This strong recall is
critical for self-healing systems, as it reduces the likelihood that critical issues will go
unnoticed, enabling timely interventions such as system reboots, resource reallocation, or
other corrective actions that maintain operational stability. Although MNB may exhibit
modest accuracy in comparison to other classifiers, its ability to reliably detect anomalies
is invaluable in environments where missing faults or warnings could lead to significant
consequences. Moreover, MNB’s low computational demand and rapid retraining time
across all datasets make it especially well suited for real-time applications where models
need to adapt quickly to evolving conditions.

The contribution of this research extends beyond the experimental results. Our find-
ings support the deployment of MNB as a practical solution for self-healing in cyber-
physical systems, with its strengths lying in recall and computational efficiency. While
its precision and accuracy may benefit from future enhancements, the foundational re-
sults indicate that MNB plays a key role in ensuring the prompt identification of faults,
which is crucial for safeguarding system reliability. Several factors could influence the
generalisability of our results. One potential threat is the diversity of datasets; while we
tested on multiple datasets (Android, Linux, Mac, and Windows), the results may vary
with more complex or domain-specific logs. Another issue is the reliance on tokenisation
methods such as CountVectorizer, which may not fully capture the semantic relationships
within system logs. Future work should aim to address these limitations by exploring more
comprehensive datasets and advanced feature extraction methods.

Information 2024, 15, 657 35 of 37

9. Future Work

While this study lays a solid foundation for the use of MNB in self-healing systems,
there are several opportunities for extending this research. Firstly, integrating more so-
phisticated feature engineering techniques could allow MNB to capture deeper and more
complex relationships in system log data, potentially improving its performance in terms
of both precision and recall. Expanding the dataset to include more diverse and com-
plex log types from a broader range of systems could help validate the generalisability of
our findings, ensuring that the MNB model remains effective in a variety of real-world
scenarios. Future work should also explore the potential of combining MNB with other
machine learning models in a hybrid, multilayered framework, leveraging the strengths
of multiple algorithms. Such an ensemble approach could balance the high recall of MNB
with the precision and accuracy of more complex models, creating a more comprehensive
self-healing system. Implementing real-time analytics and adaptive learning frameworks
could allow for continuous model improvement. This would enable the system to dy-
namically update in response to evolving threats, ensuring resilience and adaptability in
the face of new and emerging cyber-physical challenges. The high recall performance
demonstrated by MNB in this study positions it as a critical component of self-healing
systems. Its ability to reliably detect system anomalies makes it well suited for environ-
ments where operational continuity is vital, such as industrial control systems, healthcare
monitoring systems, and smart infrastructure. The next phase of research should focus on
enhancing this approach to create more robust, real-time self-healing mechanisms that not
only improve system reliability but also reduce the costs associated with downtime and
failures in cyber-physical environments.

Author Contributions: Conceptualisation, O.J. and A.S.S.; methodology, O.J.; software, O.J.; valida-
tion, O.J., A.S.S. and O.K.; analysis, O.J. and A.S.S.; resources, A.S.S., O.K. and M.A.; data curation,
O.J.; writing—original draft preparation, O.J.; writing—review and editing, O.J., A.S.S., O.K. and
M.A.; visualisation, O.J.; supervision, A.S.S. and O.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: For the source code and the application, the reader can download
the related files via the following link: https://github.com/obinnajohnphill/self-healing-ml-app
accessed on 1 October 2024.

Acknowledgments: The authors would like to acknowledge the support given by the Cyber Security
Research Group (CSRG) at the Department of Computer Science, Nottingham Trent University.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Adeniyi, O.; Sadiq, A.S.; Pillai, P.; Taheir, M.A.; Kaiwartya, O. Proactive Self-Healing Approaches in Mobile Edge Computing: A

Systematic Literature Review. Computers 2023, 12, 63. [CrossRef]
2. Sarker, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput.

Sci. 2021, 2, 420. [CrossRef] [PubMed]
3. Singh, P.; Saman Azari, M.; Vitale, F.; Flammini, F.; Mazzocca, N.; Caporuscio, M.; Thornadtsson, J. Using log analytics and

process mining to enable self-healing in the Internet of Things. Environ. Syst. Decis. 2022, 42, 234–250. [CrossRef]
4. Shahzad, K.; Iqbal, S.; Fraz, M.M. Automated Solution Development for Smart Grids: Tapping the Power of Large Language

Models. In Proceedings of the 2023 17th International Conference on Engineering of Modern Electric Systems (EMES), Oradea,
Romania, 9–10 June 2023; pp. 1–4.

5. Hassan, S.U.; Ahamed, J.; Ahmad, K. Analytics of machine learning-based algorithms for text classification. Sustain. Oper. Comput.
2022, 3, 238–248. . [CrossRef]

6. Gan, S.; Shao, S.; Chen, L.; Yu, L.; Jiang, L. Adapting hidden naive Bayes for text classification. Mathematics 2021, 9, 2378.
[CrossRef]

7. Ahmed, T.; Mukta, S.F.; Al Mahmud, T.; Al Hasan, S.; Hussain, M.G. Bangla Text Emotion Classification using LR, MNB and MLP
with TF-IDF & CountVectorizer. In Proceedings of the 2022 26th International Computer Science and Engineering Conference
(ICSEC), Sakon Nakhon, Thailand, 21–23 December 2022; pp. 275–280.

https://github.com/obinnajohnphill/self-healing-ml-app
http://doi.org/10.3390/computers12030063
http://dx.doi.org/10.1007/s42979-021-00815-1
http://www.ncbi.nlm.nih.gov/pubmed/34426802
http://dx.doi.org/10.1007/s10669-022-09859-x
http://dx.doi.org/10.1016/j.susoc.2022.03.001
http://dx.doi.org/10.3390/math9192378

Information 2024, 15, 657 36 of 37

8. Siddiqui, T.; Mustaqeem, M. Performance evaluation of software defect prediction with NASA dataset using machine learning
techniques. Int. J. Inf. Technol. 2023, 15, 4131–4139. [CrossRef]

9. Coronado, E.; Behravesh, R.; Subramanya, T.; Fernández-Fernández, A.; Siddiqui, S.; Costa-Pérez, X.; Riggio, R. Zero touch
management: A survey of network automation solutions for 5G and 6G networks. IEEE Commun. Surv. Tutor. 2022, 24, 2535–2578.
[CrossRef]

10. Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.-W.; et al. Artificial intelligence: A powerful
paradigm for scientific research. Innovation 2021, 2, 100179. [CrossRef] [PubMed]

11. Ghosh, D.; Sharman, R.; Rao, H.R.; Upadhyaya, S. Self-healing systems—Survey and synthesis. Decis. Support Syst. 2007, 42,
2164–2185. [CrossRef]

12. Donta, P.K.; Sedlak, B.; Casamayor Pujol, V.; Dustdar, S. Governance and sustainability of distributed continuum systems: A big
data approach. J. Big Data 2023, 10, 1–31. [CrossRef]

13. Bhanage, D.A.; Pawar, A.V.; Kotecha, K. IT infrastructure anomaly detection and failure handling: A systematic literature
review focusing on datasets, log preprocessing, machine & deep learning approaches and automated tool. IEEE Access 2021, 9,
156392–156421.

14. Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data
2019, 6, 1–25. [CrossRef]

15. Odeh, A.H.; Odeh, M.; Odeh, N. Using Multinomial Naive Bayes Machine Learning Method To Classify, Detect, And Recognize
Programming Language Source Code. In Proceedings of the 2022 International Arab Conference on Information Technology
(ACIT), Abu Dhabi, United Arab Emirates, 22–24 November 2022; pp. 1–5.

16. Alvi, N.; Talukder, K.H. Sentiment analysis of Bengali text using CountVectorizer with logistic regression. In Proceedings of the
2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India,
6–8 July 2021; pp. 1–5.

17. Hafeez, S.; Kathirisetty, N. Effects and comparison of different data pre-processing techniques and ML and deep learning models
for sentiment analysis: SVM, KNN, PCA with SVM and CNN. In Proceedings of the 2022 First International Conference on
Artificial Intelligence Trends and Pattern Recognition (ICAITPR), Hyderabad, India, 10–12 March 2022; pp. 1–6.

18. Vijay, V.; Verma, P. Variants of Naïve Bayes Algorithm for Hate Speech Detection in Text Documents. In Proceedings of the 2023
International Conference on Artificial Intelligence and Smart Communication (AISC), Greater Noida, India, 27–29 January 2023;
pp. 18–21.

19. Patel, A.; Meehan, K. Fake news detection on Reddit utilizing CountVectorizer and term frequency-inverse document frequency
with logistic regression, MultinomialNB, and support vector machine. In Proceedings of the 2021 32nd Irish Signals and Systems
Conference (ISSC), Athlone, Ireland, 10–11 June 2021; pp. 1–6.

20. Wang, P.; Poovendran, P.; Manokaran, K.B. Fault detection and control in integrated energy system using machine learning.
Sustain. Energy Technol. Assess. 2021, 47, 101366. [CrossRef]

21. Kane, K. Finding The Available Website Name By Using Naive Bayes Classification. In Proceedings of the 2022 International
Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; pp. 624–629.

22. Singla, T.; Gaur, V.; Misra, D.K. Comparison between Multinomial Naive Bayes and Multi-Layer Perceptron for Product Review
In Real Time. In Proceedings of the 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing
(COM-IT-CON), Online, 26–27 May 2022; Volume 1, pp. 374–379.

23. Singh, G.; Kumar, B.; Gaur, L.; Tyagi, A. Comparison between multinomial and Bernoulli naïve Bayes for text classification. In
Proceedings of the 2019 International Conference on Automation, Computational and Technology Management (ICACTM),
London, UK, 24–26 April 2019; pp. 593–596.

24. McCallum, A.; Nigam, K. A comparison of event models for naive bayes text classification. In Proceedings of the AAAI-98
Workshop on Learning for Text Categorization, Madison, WI, USA, 26–27 July 1998; Volume 752, pp. 41–48.

25. Joachims, T. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In Proceedings of the Fourteenth
International Conference on Machine Learning, Nashville, TN, USA, 8–12 July 1997; Volume 97, pp. 143–151.

26. Manning, C.D.; Raghavan, P.; Schütze, H. Xml retrieval. In Introduction to Information Retrieval; Cambridge University Press:
Cambridge, UK, 2008.

27. Jurafsky, D.; Martin, J.H. Spelling Correction and the Noisy Channel. In Speech and Language Processing, 2nd ed.; Prentice-Hall:
Upper Saddle River, NJ, USA, 2009.

28. Panda. Available online: https://pandas.pydata.org/ (accessed on 28 September 2023).
29. NumPy. Available online: https://numpy.org/ (accessed on 28 September 2023).
30. Seaborn. Available online: https://seaborn.pydata.org/ (accessed on 28 September 2023).
31. Scikit-learn. Available online: https://scikit-learn.org/stable/ (accessed on 25 September 2023).
32. PyCaret. Available online: https://pycaret.org/ (accessed on 29 September 2023).
33. Tabulate. Available online: https://pypi.org/project/tabulate/ (accessed on 27 September 2023).
34. Soldani, J.; Brogi, A. Anomaly detection and failure root cause analysis in (micro) service-based cloud applications: A survey.

ACM Comput. Surv. (CSUR) 2022, 55, 1–39. [CrossRef]
35. MathWorks. MATLAB—MathWorks. Available online: https://matlab.mathworks.com/ (accessed on 28 May 2024).

http://dx.doi.org/10.1007/s41870-023-01528-9
http://dx.doi.org/10.1109/COMST.2022.3212586
http://dx.doi.org/10.1016/j.xinn.2021.100179
http://www.ncbi.nlm.nih.gov/pubmed/34877560
http://dx.doi.org/10.1016/j.dss.2006.06.011
http://dx.doi.org/10.1186/s40537-023-00737-0
http://dx.doi.org/10.1186/s40537-019-0217-0
http://dx.doi.org/10.1016/j.seta.2021.101366
https://pandas.pydata.org/
https://numpy.org/
https://seaborn.pydata.org/
https://scikit-learn.org/stable/
https://pycaret.org/
https://pypi.org/project/tabulate/
http://dx.doi.org/10.1145/3501297
https://matlab.mathworks.com/

Information 2024, 15, 657 37 of 37

36. Jieming, Z.; Guohao, C.; Junjie, H.; Zhenhua, D.; Ruiming, T.; Weinan, Z. ReLoop2: Building Self-Adaptive Recommendation
Models via Responsive Error Compensation Loop. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Long Beach, CA, USA, 6–10 August 2023; pp. 5728–5738.

37. Ige, T.; Kiekintveld, C. Performance Comparison and Implementation of Bayesian Variants for Network Intrusion Detection.
In Proceedings of the IEEE International Conference on Artificial Intelligence, Blockchain, and Internet of Things (AIDThings),
Mount Pleasant, MI, USA, 16–17 September 2023.

38. Zhou, J.; Qian, Y.; Zou, Q.; Liu, P.; Xiang, J. Deepsyslog: Deep Anomaly Detection on Syslog Using Sentence Embedding and
Metadata. IEEE Trans. Inf. Forensics Secur. 2022, 17, 3051–3061. [CrossRef]

39. Liu, Y.; Tao, S.; Meng, W.; Wang, J.; Hao, Y.; Jiang, Y. Multi-Source Log Parsing with Pre-Trained Domain Classifier. IEEE Trans.
Netw. Serv. Manag. 2024, 21, 2651–2663. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIFS.2022.3201379
http://dx.doi.org/10.1109/TNSM.2023.3329144

	Introduction
	Related Work
	Overview of Proposed Method
	Green Box (Remedial Actions)
	Blue-Dotted Box (Cloud Environment)
	Orange-Dotted Box (Physical Environment)
	Data Collection
	Description of the Dataset Used
	Sources of the Data
	Data Size and Format
	Preprocessing Applied to the Data

	Modelling
	Explanation of Multinomial Naive Bayes
	Explanation of CountVectorizer
	Description of the Classification Model and Feature Extraction Method
	Feature Extraction Process from Raw System Log Files

	Challenges and Limitations Encountered During Preprocessing and Model Analysis
	Preprocessing Challenges
	Memory Issues and Model Analysis
	Analysis and Self-Healing Trigger Based on Extracted Log Data
	Explanation of Our Log Preprocessing Workflow

	Threshold Determination and Impact on System Performance
	Thresholds Determination
	Impact on System Performance
	Analysis of the Extracted and Preprocessed Data
	Analysis of Extracted and Preprocessed Data Counts
	Analysis of the Extracted and Preprocessed Data
	Libraries and Software Used
	Hardware Specification

	Model Selection and Training Using Multinomial Naive Bayes
	Data Preprocessing
	Model Training

	Model Performance Analysis Results
	Arguments for Multinomial Naive Bayes
	Best Four Performing Models
	Android Dataset Results
	Linux Dataset Results
	Mac Dataset Results
	Windows Dataset Results

	Comparison with Existing Methods
	Comparison with ReLoop2
	Comparison of Machine Learning Models
	Experimental Results
	Discussion of Model Performance
	Performance Across Operating Systems
	Interpretation and Implications
	Comparing Different Variants of Naive Bayesian Algorithms
	Challenges of Manual System Log Analysis
	Comparison Between DA-Parser and CountVectorizer

	Conclusions
	Future Work
	References

