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Abstract: Human–robot collaboration (HRC) has become increasingly prevalent due to innovative
advancements in the automation industry, especially in manufacturing setups. Although HRC
increases productivity and efficacy, it exposes human workers to psychological stress while inter-
facing with collaborative robotic systems as robots may not provide visual or auditory cues. It is
crucial to comprehend how HRC impacts mental stress in order to enhance occupational safety
and well-being. Though academics and industrial interest in HRC is expanding, safety and mental
stress problems are still not adequately studied. In particular, human coworkers’ cognitive strain
during HRC has not been explored well, although being fundamental to sustaining a secure and
constructive workplace environment. This study, therefore, aims to monitor the mental stress of
factory workers during HRC using behavioural, physiological and subjective measures. Physiological
measures, being objective and more authentic, have the potential to replace conventional measures
i.e., behavioural and subjective measures, if they demonstrate a good correlation with traditional
measures. Two neuroimaging modalities including electroencephalography (EEG) and functional
near-infrared spectroscopy (fNIRS) have been used as physiological measures to track neuronal and
hemodynamic activity of the brain, respectively. Here, the correlation between physiological data
and behavioural and subjective measurements has been ascertained through the implementation
of seven different machine learning algorithms. The results imply that the EEG and fNIRS features
combined produced the best results for most of the targets. For subjective measures being the target,
linear regression has outperformed all other models, whereas tree and ensemble performed the best
for predicting the behavioural measures. The outcomes indicate that physiological measures have
the potential to be more informative and often substitute other skewed metrics.

Keywords: machine learning; human–robot collaboration (HRC); mental stress analysis; occupational
safety and wellbeing; neuroimaging; EEG; fNIRS

1. Introduction

In today’s continually developing world, there has been a significant surge in the
demand for bespoke products. Customisable and autonomous roles employing orthodox
resources are not possible with a traditional factory (TF) setup [1]. Personalised and
small-lot items cannot be manufactured economically and efficiently by conventional
manufacturing as it is unable to monitor and regulate automated and complex operations.
Consequently, the challenges posed by rapidly evolving technologies are beyond the reach
of conventional manufacturing [2]. The advent of Industry 4.0 has completely transformed
the paradigm of the industrial sector by bring automation and digitization in smart factories
to attention. A fundamental component of smart factories is the integration of cutting-edge
technology, such as big data analytics, digital information and predictive analytics, which
provides opportunities for improved production and operational efficiency [3].
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Robots have historically been employed for industrial processes to carry out laborious,
precise and repetitive tasks. However, as technology has advanced, researchers have
begun to discover ways to merge human skills, decision-making and critical thinking with
the strength, repeatability and accuracy of robots to achieve intelligent systems able to
execute complex tasks [4]. There exists a requirement for robots to coexist with humans to
achieve desired levels of efficiency, quality and customisation as automation technologies
are used in industrial setups progressively [5]. A practical solution for fulfilling these
goals is human–robot collaboration (HRC), where humans and robots collaborate, and their
respective capabilities can be merged to maximise productivity and achieve the required
level of automation. The conventional method of using primitive robots is therefore
being altered by the inclusion of HRC in manufacturing setups [6]. To adapt to variable
consumer needs and requirement for bespoke products, manufacturers are upgrading their
workplaces. HRC strategies with adaptable solutions can substantially boost productivity
and efficiency in smart manufacturing setups [7].

Cobots, or collaborative robotic systems, are made to operate safely alongside human
workers in collaborative workspaces [8]. In contrast to conventional robots, cobots use
advanced sensors, intelligent algorithms and safety features to avoid collisions and enable
safe interaction. Their versatility, ease of programming and adaptability to variable tasks
make them appropriate for a wide range of applications in sectors like manufacturing,
healthcare and logistics [9].

Even though HRC is one of the emerging fields among researchers, there is still a lack
of knowledge about the psycho-physical impact of close interaction of humans with cobots
on human workers’ efficiency and productivity [10]. There can be several causes of HRC
leading to cognitive stress and ergonomic issues. Psychological stress and compromised
performance of human workers while working in close proximity to cobots can be a
consequence of cobots’ inability to give cues and respond to unforeseen circumstances [11],
however, cobots may become capable of giving audio and visual reactions as technology
is advancing. The inability to immediately control the undesired rapid movement of
robots may be overwhelming for human employees. Enhancing human productivity and
occupational safety in the context of HRC requires digging deep to understand these
stressors and proposing ways to mitigate them.

Mental stress assessment has been done by many researchers using traditional mea-
sures which include subjective and behavioural measures. Behavioural measures focus on
observable actions such as changes in task performance and physical actions like speech
patterns, facial expressions and gaze variables, indicating how mental stress manifests
physically [12–14]. In 2017, Aylward, J. and Robinson, O. J. have used behavioural measures
like accuracy and target response time to analyse the threat-intensified performance on
an inhibitory control task [15]. Assessments of psychological domains related to attention,
execution and psychomotor speed are often conducted using reaction time (RT) as the
behavioural assessment method. Auditory and visual reaction times have been examined
by Khode, V. et al. to assess the mental state of hypertensive and non-hypertensive par-
ticipants using mini-mental state examination (MMSE) as the task [16]. In a study done
in 2016, Huang, M., et al. explored the impact of mental stress on the gaze-click pattern
by investigating the trends in gaze data, as a behavioural parameter, during a mouse-click
task [17]. On the other hand, subjective measures depend on self-reported information from
individuals administering tools such as questionnaires, interviews, surveys, self-report
diaries, rating scales and psychological evaluations to gauge their degree of cognitive
stress [18]. Perceived stress and mental workload are frequently measured using tools like
the Perceived Stress Scale (PSS) [19] and the NASA Task Load Index (NASA-TLX) ques-
tionnaire [20]. A 14-item PSS self-report questionnaire, to gauge respondents’ feelings of
overload, unpredictability and uncontrollability, has been used by Lesage, F. X., and Berjot,
S. to validate visual analogue scale (VAS) for stress assessment in clinical occupational
health setups [19,21]. Instantaneous Self-Assessment (ISA) is another subjective assessment
tool for mental workload, validated by Leggatt, A., et al. in 2023 [22]. To investigate
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how human behaviour towards other humans can be translated into robot behaviour, Jost,
J., et al. administered the user experience questionnaire (UEQ) [23], the negative attitude
towards robots scale (NARS) [24] and the godspeed questionnaire [25] in 2019 [26]. To
analyse versatility and validity, the state-trait anxiety inventory (STAI) has been used by
Legler, F., et al. in a virtual-reality (VR) experiment, creating a human–robot collaborative
environment, to compare the outcome to a real-world experiment [27]. Using the tech-
nology acceptance model (TAM) and NASA-TLX, which measure a user’s acceptance of
technology and cognitive task load, respectively, Rossato et al. compared the subjective
experiences of senior and younger employees in HRC [28].

While subjective and behavioural assessments provide genuine insights into cognitive
stress, physiological measures are a more objective way to monitor mental stress by tracking
physical changes in the human body. Since the last decade, researchers have been using ei-
ther physiological measures or multimodal approaches to combine conventional measures
with physiological measures to achieve a comprehensive understanding of the mental state
of humans [29,30]. Heart rate variability (HRV) is one of the physiological measures that is
usually reduced due to cognitive stress, indicating reduced parasympathetic activity [31].
Cortisol levels, the stress hormone elevate as a result of mental stress and can be measured
through saliva, blood or urine [32]. Other physiological measures include electrodermal ac-
tivity (EDA), gaze variables, body temperature etc. [33,34]. In 2021, ECG signals have been
administered for real-time stress monitoring using deep learning methods including convo-
lutional neural networks (CNN) and bidirectional long short-term memory (BiLSTM) [35].
In another study of 2022, ECG, voice and facial expressions have been employed for acute
stress detection using a real-time deep learning framework, where stress-related features
are extracted using ResNet50 and I3D and the temporal attention module highlighting the
differentiating temporal representation for facial expressions about stress [36]. Brain signals
are one of the most important physiological indicators for evaluating mental stress, offer-
ing insights into the neurological processes involved in mental stress responses. Several
techniques including electroencephalography (EEG) [37], functional magnetic resonance
imaging (fMRI) [38] and functional near-infrared spectroscopy (fNIRS) [39], can be used to
monitor the electrical and hemodynamic activity of the brain.

The assessment of mental stress has been a long-standing challenge in the field of
psychology and healthcare. As stated earlier, traditional measures can produce inaccurate
results due to problems such as issues of recall, attention, falsification and fabrication,
specifically in case of subjective measures [40]. The participant has full control over his
responses when filling out a subjective assessment questionnaire as well as his actions
during behavioural assessment. While using the behavioural measures, results can come
out to be inaccurate as a consequence of biased behaviour and intentional false performance
of the participant [41]. As subjective and behavioural measures lack the ability to provide
real-time assessment of the perceptual state of a person, the need for physiological measures
arises there. The aim of this analysis is to determine whether physiological measures are
powerful enough to replace the conventional measures for monitoring the cognitive stress
of factory workers. If physiological measures (neuroimaging variables) have the potential
to quantify cognitive stress, they can circumvent the limitations of using conventional
measures. To explore this potential of neuroimaging, a correlation study is required for
physiological measures and conventional measures. Therefore, the main goal of this study
is to predict subjective and behavioural measures using physiological variables. There
are 3 categories of data-driven decision models including rule-based (using a set of rules
or a decision tree), shallow statistical (shallow models like linear regression) and deep
learning models (several-layered classification, regression and reinforcement models) [42].
Rule-based and shallow statistical models are often outperformed in performance by
deep learning models, but the implementation of deep learning techniques requires big
datasets [42]. For this research the dataset is not large enough to get the desired results using
deep learning models, therefore rule-based and shallow statistical models are selected [42].
In our previous study, the correlation between physiological measures and conventional
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measures was found using only 2 machine learning algorithms including linear regression
and artificial neural networks (ANN) [43]. Regression proved to be the better one for most
of the targets but there was still a requirement to test multiple machine learning models and
deploy the best one for each target [43]. Therefore, this research intends to find a correlation
between physiological (EEG and fNIRS) and traditional measures (i.e., behavioural and
subjective measures) using rule-based and shallow statistical models and learn the impact
of using individual EEG and fNIRS features and combinations of EEG and fNIRS features
on the prediction of targets. As per the authors’ knowledge, this is the first study to explore
and compare all these machine-learning techniques, especially for multimodal brain data.
Another novelty of this analysis is that a unique and personalised model has been chosen
for each target instead of using a single model for predicting all targets. The strengths of
the chosen machine learning algorithms for predicting different targets are also evident
from this research.

2. Methodology

The experiment for this research has been designed to simulate a factory worker’s
experience in an automated industrial setup using cobots. Throughout the experiment,
physiological signals, i.e., EEG and fNIRS brain signals, have been recorded to obtain
neural and hemodynamic activity in the brain. Subjective and behavioural data have
also been collected during the task execution for validation of results obtained through
physiological measures.

2.1. Experimental Paradigm

A pick-and-place task that requires decision-making by the human worker has been
selected for this study. The setup of the experiment is such that a human operator works
in collaboration with a cobot, adjusting their performance speed to correspond with the
cobot’s. Participants in the experiment are required to do two tasks simultaneously, po-
tentially causing cognitive stress. The selection criteria for participants include healthy
adults, male or female, between the ages of 18 and 55, with no history of neurological
conditions, head trauma or head injuries. Since children’s and older adults’ brains are
different from typical adult brains, age has been selected as a criterion. Due to the bimanual
nature of the motor activity during the task, participants with any motor disabilities, i.e.,
those affecting upper or lower limbs, were excluded from the experiment. Thirteen partici-
pants contributed to this study, including university students and PepsiCo International
Limited employees; however, due to quality concerns, only the data from 9 of them was
utilised for further analysis. Data for 1 of the 4 participants was rejected because of the
poor connectivity of EEG electrodes on the scalp whereas the systematic/device noise was
introduced to the EEG data, resulting in very noisy data of poor quality, for the remaining
3 participants. The technical know-how of the participants was such that 4 of them had
prior experience interacting with the robots, 11 had social media experience and all of
them had used smartphones. Each participant attended a session of approximately 60 min.
The main task in the experiment is the Stroop task, which is a commonly used measure
of cognitive control [44]. Forty cubic boxes are used in the experiment. On each box, an
equation and a colour name (green, blue or red) in a different ink colour, are printed. For
example, “green” might be printed on the box with blue ink. The Stroop task, performed in
a human–robot collaborative setup, is depicted in Figure 1 and has been chosen as the pri-
mary task of this study. Participants have to classify the boxes according to the correctness
of the equations. If correct, the colour of the text otherwise, the written name of the colour,
is considered for the categorisation of the boxes. The role of the cobot in the experiment is
to pick a cubic box from a corner where all of the boxes are initially placed and hand it to
the human participant. Each box must be taken by the participant to put it in the designated
location on the workstation following the aforementioned rule [45]. If participants do not
pace themselves in line with the cobot, they may still be laying a block when the cobot
drops the subsequent one. This temporal inconsistency is seen as a human error that might
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degrade performance as a consequence of delayed decision-making. Every participant has
to complete the task under eight distinct experimental conditions, or episodes, which are
based on varying combinations of the cobot’s movement speeds, task complexities and
payload capacities.
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Figure 1. (a) Cobot–Stroop Task [46] (b) A demonstration of coworking with a cobot while doing
cobot Stroop task [45].

The cobot–Stroop task is accompanied by a basic secondary task to mimic an industrial
environment where employees must multitask while making decisions. Alongside the
main cobot–Stroop task, this secondary task is introduced to increase the task complexity
from low to high in different task episodes. This additional task must be present in the
episodes requiring high complexity. In the secondary task, participants are instructed to
respond by pressing a foot pedal in response to beeps that are played at intervals of 300 to
10,000 milliseconds with durations ranging from 500 to 1000 milliseconds. The number of
beeps missed is a measure of human error. Behavioural measures for this study include the
beep response rates and reaction times of the participants [43].

The experiment involves collecting the participant’s brain data along with behavioural
and subjective data continuously for a duration of 60 min. At the onset of the experiment,
written consent is taken from the participant and instructions about the complete experi-
ment are given to the participant followed by a complete setup of hardware devices and
softwares. As a baseline, only the secondary foot-pedalling task is carried out for two
minutes. Afterwards, for four minutes, episode 1 of the cobot–Stroop job is executed, char-
acterised by low levels of task complexity, payload capacity and task speed. Subsequently,
the subject is required to sit in a relaxed state for two minutes and then complete the NASA-
TLX form after a rest episode. The participant is required to complete the NASA-TLX form
following each experiment episode, which serves as a subjective measure. The experiment
then proceeds as depicted in Figure 2. The process parameters are set to either low or high
in each episode as shown in Table 1. The high and low values for cobot’s speed correspond
to 1 m/s and 0.6 m/s, respectively. For this research, two robots (universal robots) with
distinct payload capacities of 3 kg (low) and 5 kg (high) are used. A low task complexity
episode contains just the primary task whereas the high task complexity episodes comprise
both the primary task and the supplementary task.

2.2. Data Acquisition

In this study, EEG and fNIRS signals are recorded to acquire the electrical and haemo-
dynamic activity of the brain. The TMSi Mobita wireless data acquisition system is utilised
to acquire EEG signals at a 2000 Hz sampling frequency [47]. Data from 19 EEG electrodes
positioned on the scalp following the Internation 10–20 system have been recorded. fNIRS
data has been acquired by employing 8 channels with Artinis Octamon at the sample rate
of 10 Hz [48]. The transmitter-receiver pairs are separated by a distance of 20–30 mm. The
left frontal region between FP1-F3-F7 and a corresponding frontal region on the right are
both covered by the chosen 8 channels.
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Table 1. Eight distinct episodes can be seen ranging from high (H) to low (L) levels and vice versa for
performance metrics, such as the task complexity, payload complexity and cobot’s motion speed [43].

Episode No. Cobot’s Speed Payload Capacity Task Complexity

1 L L L

2 L H H

3 H L H

4 H H L

5 L L H

6 L H L

7 H L L

8 H H H

Three behavioural parameters are measured during the experiment including Stroop
task error rate, missed beeps and reaction time. Since the Stroop task error rate did not
significantly vary between episodes, it is not used for this analysis. Reaction time and
missed beeps are the ones utilised as the behavioural data. Reaction time is measured
during high-complexity episodes including secondary tasks for each beep the subject heard
when pressing the pedal. Every episode has a record of these values. Additionally, if a
participant misses a beep, it is logged and the total number of missed beeps is counted for
every participant as each episode is completed. The importance of reaction time stems from
its ability to indicate stress, particularly in high-complexity episodes involving secondary
tasks, as it reflects delayed response time caused due to cognitive stress. Throughout these
high-complexity episodes, missed beeps are also recorded. An increase in missed beeps
indicates a rise in cognitive effort since it makes it difficult for participants to respond to
the beeps when they are mentally occupied with the primary activity. The Stroop task error,
calculated for the entire experiment, would highlight heightened mental stress if there is a
rise in erroneous categorisations. However, as Stroop task error did not yield informative
results, they are excluded from this study.

A multidimensional standard scale used to evaluate stress, exhaustion, alertness and
other mental workload factors is NASA-TLX [49]. The participant’s weighted average of
the six factors, as rated at the end of each episode, determines the final cognitive workload
score. These factors include mental, physical and temporal demands, performance, effort
and amount of frustration [50]. The participant has to assign a score for each factor on a
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scale from 0 to 100 with steps of 5 [51]. The NASA-TLX score has been employed in this
study for subjective assessment, requiring each subject to mark each element on the form
towards the end of each episode. Finally, the total score for each participant is determined
by averaging the score of six elements.

2.3. Data Pre-Processing

Pre-processing is done for both the EEG and fNIRS data to yield clean signals for
feature extraction. Non-brain signals and artefacts are eliminated from the raw EEG
data using an ICA-based technique [52]. To minimise the effects of EEG drift and high-
frequency artefacts, a zero-phase Hamming windowed sinc FIR filter, i.e., a band-pass
filter with a frequency range of 0.16–40 Hz, has been applied to the data. Furthermore, the
sampling rate for all channels’ EEG signals has been reduced from 2000 Hz to 200 Hz. Delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–28 Hz) and gamma (28–50 Hz) are
among the several frequency bands that make up an EEG [53]. The beta band has been used
as 4 distinct frequency bands including, b1 (12–16 Hz), b2 (16–20 Hz), b3 (20–24 Hz) and b4
(24–28 Hz). The anticipated behavioural states of deep sleep, deep meditation, awake but
relaxed, cognitive thinking and unifying awareness are correlated with delta, theta, alpha,
beta and lower gamma bands, respectively [54]. Figure 3 displays the results of the analysis
of frequency band power (FBP) for these five bands.
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Similarly, a variety of biological and technical artefacts might distort fNIRS signals [55].
Different optode calibration and coupling can result in variations in the average channel
amplitudes, which may remain constant throughout the recording, as one of the technical
artefacts. Head motions are an example of biological artefacts resulting in abrupt distor-
tions because of the disturbed optode coupling [45]. Then there is muscular oxygenation
which occurs specifically near the temporalis muscle producing a large amplitude, pro-
longed peak [56]. The participant’s upper body movement results in transient substantial
deflections due to differences in blood perfusions. Biological artefacts include blood flow in
superficial (non-cerebral) tissue, the Mayer waves artefact at a frequency of around 0.1 Hz
and the systemic heartbeat at about 1 Hz [45].

To yield accurate and artefact-free data, each channel’s signal is first processed with
a band-pass filter spanning from 0.15 Hz to 0.5 Hz, which reduces cardiac heartbeat
activity and some slow components. The filtered signals are then subjected to the Beer-
Lambert law, converting those into oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR)
concentrations [46]. Bandpass filtering cannot be used to reduce Mayer waves as their
time scales overlap with those of cerebral activity. Mayer waves are not task-driven and
participant waves are asynchronised, therefore, their effects are not probable to have an
impact on our study and instead tend to cancel out in group averages [57,58]. Outliers
in all channels’ recordings were detected and removed based on the criterion that if it is
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more than three scaled median absolute deviations (MAD) distant from the median, it is
considered to be a high peaked artefact induced by movement or muscles [45].By dividing
the haemoglobin concentration signals by the standard deviation (SD) of the subsequent
rest time, the amplitude differences between channels are reduced which may be attributed
to a specific subject or optical coupling. The first episode’s signals are normalised using
the initial rest interval. To reduce systematic elements that may manifest over the entire
recording, the complete signal for every channel has been divided by its mean [45]. By
using the aforementioned measures, the artefacts listed can be eliminated from the data and
an increase in the accuracy of the data, indicating only cerebral activity, can be achieved.
Figure 3 shows the full feature extraction and artefact reduction procedure for EEG and
fNIRS data.

A difference in the raw and processed signals for EEG and fNIRS is shown in Figures 4
and 5, respectively. Figure 4a illustrates the raw EEG signals across all 19 channels, while
Figure 4b shows the artifact-free EEG signals. The raw fNIRS data is shown in Figure 5a,
and the oxygenated haemoglobin concentration changes for channels 1–8 during subject
8’s second episode are shown in Figure 5b, with a y-offset for clarity. Grey shaded region
indicates signal segments that are considered artefacts and removed from further analysis.
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2.4. Use of Machine Learning for Prediction of Traditional Measures Using Physiological Measures

Machine learning is an area of artificial intelligence (AI) that focuses on developing
models and algorithms that let computers learn from their surroundings and make pre-
dictions or judgements without explicit programming [59]. Machine learning techniques
can be effectively used to find the correlation between physiological data and conventional
measures (subjective and behavioural measures). To employ machine learning techniques,
the steps required to be followed, as shown in Figure 6, include data acquisition, feature
extraction, model selection, training and testing, prediction and deployment of the best
model. For this study, seven machine learning algorithms including linear regression, tree,
support vector machine (SVM), ensemble, gaussian process regression, neural networks
and kernel have been tested with the extracted features.
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For applying these techniques, a set of EEG and fNIRS features has been used to predict
the targets (NASA-TLX score, missed beeps, reaction time). EEG features include frequency
band powers of 5 EEG bands for each episode. Standard deviations and time derivatives
calculated amplitude time series, time series normalized with respect to standard deviation
of rest and time series normalised by subtracting channel average at each instant, have been
used as fNIRS features. For Missed beeps and reaction time as targets the total number of
samples is 36 and for each participant features for episodes 2, 3, 5 and 8 are considered
(9 × 4 = 36). The reason behind using the features for just these 4 episodes for each
participant is that only these episodes are high-complexity episodes with the secondary
task where missed beeps and reaction time are recorded. For NASA-TLX as the target, the
total number of samples is 72. For each participant features for all episodes are considered
(9 × 8 = 72) as this is recorded in all episodes. For all targets, 70% of the overall data is
kept for training and 30% for testing. A 5-fold cross-validation method has been used for
all targets. All the above-listed algorithms have been applied for multiple combinations
of features. Various combinations of features, including EEG features individually, fNIRS
features individually and different combinations of EEG and fNIRS features, have been
tested. To evaluate the performance of different models, root mean square error (RMSE) has
been used as a metric, which presents the distance between the predicted values and the
actual values for each model. Low RMSE values depict that the model has more accurate
predictions and fits the data well. On the contrary, higher values indicate a higher error
value and less accurate predictions. The best model with minimum error has been selected
for each feature combination. Moreover, the best feature combination among all is selected
for each target.

3. Results and Discussion

Multiple machine-learning techniques have been used in this analysis to find the
correlation between traditional measures and physiological measures, in order to test the
potential of neural measures to evaluate cognitive stress. For using this approach multiple
sets of EEG and fNIRS features have been used as predictors for behavioural (missed beeps
and reaction time) and subjective measures (NASA-TLX score) as targets. Initially, EEG
and fNIRS features are separately tested followed by the combination of both for all targets.
Results for all targets and feature combinations are discussed below.
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3.1. Target: NASA-TLX

With the NASA-TLX score as the target, for all participants and episodes, four combi-
nations of EEG features have been initially used. For each combination, all seven machine
learning techniques have been applied and the best-performing model has been mentioned
in Table 2. For instance, for all frequency band powers of EEG bands as features, all seven
machine learning techniques have been applied. Minimum validation RMSE has been
acquired for linear regression (9.5017) for which test RMSE has come out to be 16.873.
Similarly, results for all combinations are listed in Table 2.

Table 2. Target: NASA-TLX, predictors: EEG features only.

Sr. No. EEG Features Only Best Performing Machine Learning
Technique RMSE (Validation) RMSE (Test)

1 All Fbps Linear Regression 9.5017 16.873

2 Theta, alpha, b1 Linear Regression 9.767 15.252

3 Alpha, b1, b2 Linear Regression 9.2019 16.073

4 Theta, alpha, b1, b2 Linear Regression 8.8958 14.482

Likewise, using the same procedure, results have been mentioned for only fNIRS
features (HbO and HbR) in Table 3. Finally results for combinations of EEG and fNIRS
features have been stated in Table 4.

Table 3. Target: NASA-TLX, predictors: fNIRS features only.

Sr. No. fNIRS Features Only Best Performing Machine Learning
Technique RMSE (Validation) RMSE (Test)

1 HbO, HbR SVM 10.967 15.394

2 HbO SVM 9.9592 22.394

3 HbR SVM 9.8869 16.204

Table 4. Target: NASA-TLX, predictors: EEG and fNIRS features. The best result for NASA_TLX as
target is highlighted in red colour.

Sr. No. EEG-fNIRS Features Best Performing Machine
Learning Technique RMSE (Validation) RMSE (Test)

1 All Fbps, HbO, HbR SVM 9.4347 16.2

2 Theta, alpha, b1, HbO Linear Regression 9.1149 12.764

3 Theta, alpha, b1, HbO, HbR SVM 10.677 15.327

4 Theta, alpha, b1, HbR Linear Regression 9.0637 12.895

5 Theta, alpha, b1, b2, HbO, HbR Gaussian Process Regression 9.1328 16.096

By looking at Figure 7a, representing the results using only EEG features, in a chart
format, it can be observed that the second and fourth combination of EEG features produced
better results indicating the importance of the theta band. Test RMSE for all EEG features’
combinations remained between 14 and 17 NASA-TLX scores. Furthermore, the best result
has been produced by fourth combination, with linear regression as the best-performing
model. For fNIRS features, the combination of HbO and HbR features has performed the
best with the support vector machine (SVM) as the best-fitting algorithm, as shown in
Figure 7b. Test RMSE for all combinations of HbO and HbR remained between 15 and
23 NASA-TLX scores.
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Figure 7c demonstrates the performance by using combinations of EEG and fNIRS
features. The second and fourth combinations have yielded better results, showing the
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importance of theta band, HbO and HbR concentrations. Here the test RMSE has been
found to be between 12 and 17 NASA-TLX scores. The range for NASA-TLX score is
between 0 to 100 and by looking at Figure 7a–c, the overall best performance, among all
combinations of features, has been presented by theta, alpha, b1 and HbO using the linear
regression model with minimum test RMSE of 12.764 (highlighted in red color in Table 4
and Figure 7c). This validates the strength of the linear regression model performing the
best with a relatively smaller dataset. Linear regression is an easy-to-understand and less
complex machine-learning model [60].

3.2. Target: Missed Beeps

Similarly, for missed beeps as a target, EEG features alone have been initially consid-
ered predictors. After applying all aforementioned machine learning techniques to each
combination, the best model has been selected based on minimum validation RMSE value
and has been presented in Table 5. Following similar steps, the best models have been
reported for all considered combinations of fNIRS features only in Table 6. Eventually,
multiple combinations of EEG and fNIRS features have been considered and best-fitting
models are stated in Table 7.

Table 5. Target: missed Beeps; predictors: EEG features only.

Sr. No. EEG Features Only Best performing Machine Learning
Technique RMSE (Validation) RMSE (Test)

1 All Fbps SVM 1.8848 7.7047

2 Theta, alpha, b1 SVM 1.8039 8.4108

3 Alpha, b1, b2 SVM 1.604 8.4906

4 Theta, alpha, b1, b2 SVM 1.5541 8.3504

Table 6. Target: missed beeps; predictors: fNIRS features only.

Sr. No. fNIRS Features Only Best Performing Machine Learning
Technique RMSE (Validation) RMSE (Test)

1 HbO, HbR Tree 1.5329 8.7363

2 HbO SVM 1.6436 8.6522

3 HbR SVM 1.9593 8.3124

Table 7. Target: missed beeps; predictors: EEG and fNIRS features. The best result for missed beeps
is highlighted in red colour.

Sr. No. EEG-fNIRS Features Best Performing Machine
Learning Technique RMSE (Validation) RMSE (Test)

1 All Fbps, HbO, HbR SVM 1.7741 8.0968

2 Theta, alpha, b1, HbO Gaussian Process Regression 1.62887 8.3144

3 Theta, alpha, b1, HbO, HbR Ensemble 1.8084 6.4269

4 Theta, alpha, b1, HbR SVM 2.007 8.2621

5 Theta, alpha, b1, b2, HbO, HbR Ensemble 1.8394 8.4269

Figure 8a demonstrates that the best performance among all combinations of EEG
features only, has been achieved by first set using SVM as the finest model, indicating the
importance of information in all EEG bands. Test RMSE for all sets of EEG features only,
lie in between 7–9 missed beeps. By observing Figure 8b, the minimum error can be seen
by employing only HbR features to apply SVM, proving it to be an information-carrying
feature. Here, the test RMSE resides between 8 and 9 missed beeps.
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Among all combinations, the third set of EEG and fNIRS features combined (theta,
alpha, b1, HbO and HbR), as shown in Figure 8c by the red bar, has outperformed. This
shows the significance of initial EEG frequency bands and HbO and HbR features. The total
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number of beeps played in every episode is different between a range of 24 to 80 depending
on the intervals between them. The best machine learning algorithm among all for missed
beeps as the target is ensemble with a minimum test RMSE of 6.4269 beeps (highlighted in
red color in Table 7 and Figure 8c), as it improves the performance and prediction accuracy
by sequentially adding new models. This powerful machine-learning technique helps
reduce overfitting, variance and bias [61].

3.3. Target: Reaction Time

When reaction time has been used as a target, again similar procedure has been
followed. In the beginning, EEG predictors are considered followed by fNIRS predictors.
Eventually, various combinations of both are administered to analyse which set is the best
one to predict the reaction time as the target. Tables 8–10 present the results achieved
for EEG predictors only, fNIRS predictors only and EEG-fNIRS predictors, respectively,
indicating the best-performing algorithm, validation RMSE and test RMSE for each set
of features.

Table 8. Target: reaction time; predictors: EEG features only. The best result for reaction time as the
target is highlighted in red colour.

Sr. No. EEG Features Only Best Performing Machine Learning
Technique RMSE (Validation) RMSE (Test)

1 All Fbps SVM 219.24 299.14

2 Theta, alpha, b1 Tree 205.98 166.9

3 Alpha, b1, b2 Ensemble 217.96 224.16

4 Theta, alpha, b1, b2 SVM 206.45 280.84

Table 9. Target: reaction time; predictors: fNIRS features only.

Sr. No. fNIRS Features Only Best Performing Machine Learning
Technique RMSE (Validation) RMSE (Test)

1 HbO, HbR SVM 224.29 382.36

2 HbO Tree 207.47 303.69

3 HbR Tree 213.76 309.08

Table 10. Target: reaction time; predictors: EEG and fNIRS features.

Sr. No. EEG-fNIRS Features Best Performing Machine
Learning Technique RMSE (Validation) RMSE (Test)

1 All Fbps, HbO, HbR Tree 195.75 251.9

2 Theta, alpha, b1, HbO Ensemble 219.49 254.29

3 Theta, alpha, b1, HbO, HbR Tree 219.85 336.06

4 Theta, alpha, b1, HbR Tree 193.47 272.97

5 Theta, alpha, b1, b2, HbO, HbR Tree 192.01 251.9

Figure 9a shows the performance of multiple predictor combinations made by EEG
features only. The second combination of EEG features (Theta, alpha and b1) has outper-
formed all other predictor combinations (highlighted in red color in Table 8 and Figure 9a).
Here, the tree has produced the minimum RMSE of 166.9 ms where the interval between
two consecutive beeps ranges from 300 to 10,000 milliseconds. Test RMSE by considering
EEG features only, lies between 166 and 300. Figure 9b illustrates the outcomes of using
fNIRS features only. The finest results among these combinations of fNIRS predictors are
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achieved by employing HbO features for tree, as a well-suited algorithm. Here, test RMSE
can be observed to be between 303 and 383. In the end, the impact of using combinations of
both, EEG and fNIRS features, can be seen in Figure 9c. The first and fifth sets of predictors
have performed better, highlighting the importance of initial EEG bands, HbO and HbR
features. Tree has again performed the best for reaction time as target and combinations
of EEG and fNIRS as predictors. Test RMSE for these five combinations can be seen to
be between 251 and 337. This shows the strengths of using tree, especially with numer-
ical and categorical data by producing the best results. It is an easy-to-understand and
comprehendible machine learning algorithm [62].

One of the shortcomings of our previous work was that it only compared 2 machine
learning techniques to find the correlation between physiological and conventional mea-
sures which restricted the results to be among 2 techniques [43]. As stated in our previous
study [43], linear regression worked better than ANN for most of the targets, our results
are also in line with these statements as linear regression has worked better for NASA-TLX
as the target but for behavioural measures (missed beeps and reaction time) as targets,
ensemble and tree have outperformed, serving the purpose of this study by showing the
comparison of testing multiple machine-learning algorithms and selecting the best ones for
all targets. As verified from the outcomes of the earlier research [43], the hybrid approach of
using EEG and fNIRS features produced the best results for most of the cases in this analysis
as well. This is due to the fact EEG has lower spatial resolution but higher temporal reso-
lution whereas fNIRS has higher spatial resolution but lower temporal resolution. When
these are combined to create a hybrid model, the best results are yielded [63]. Conversely,
for reaction time EEG features alone produced the best results compared to multimodal
(EEG-fNIRS) features. The hybrid approach did not work the best here as reaction time
was proved to be a weak target as compared to missed beeps and NASA-TLX score in the
previous study [43]. Overall, the observations of this research are in line with the previous
work, but a more comprehensive comparison has been made here to provide individualised
machine learning models for all targets.

This research has a few limitations. As mentioned in the methodology section, the
number of participants was initially 13, but the data for only 9 of them could be used
for this analysis due to quality concerns of data. Therefore, the size of the dataset was
reduced making it a constraint to accurately reflect a larger population. A small dataset
can also be prone to overfitting, but a 5-fold cross-validation method has been used in
this analysis to mitigate the potential risk of overfitting. A limited set of features has been
used for both EEG and fNIRS data. The results of this study show that a combination
of physiological parameters can improve the accuracy of cognitive stress assessment and
these indicators can reliably predict behavioural and subjective measures. The significance
of taking into account extra physiological factors when assessing cognitive workload is
emphasised by the outcomes of this study. Future research on the mental workload could
benefit from the incorporation of more physiological, subjective and behavioural markers,
such as galvanic skin response (GSR), gaze and facial expression monitoring etc. To get
more persuasive results, larger datasets can be used. Feature sets for both neuroimaging
modalities can be expanded or different features can be compared to highlight the best
ones. Model optimisation using hyperparameter tuning can also be done as the next step
of this study. Furthermore, this research can be extended to the localisation of cognitive
stress on the brain regions. This study could represent a step forward in the investigation
of cognitive stress in real time, with the feature of feedback for workers performing in
stressful work environments.
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4. Conclusions

Human–robot collaboration (HRC) is an essential focal point in the field of smart
manufacturing. To discover the potential of neuroimaging techniques to reflect the cognitive
state of human workers performing in a human–robot collaborative environment, an
experiment has been conducted where subjective, objective and behavioural measures have
been observed. To find the correlation between physiological and conventional measures,
seven machine learning algorithms have been employed with multiple sets of features.
EEG and fNIRS features, alone and in combination, have been used as predictors whereas
NASA-TLX score, missed beeps and reaction time have been chosen as the targets. The
results indicate that the combination of EEG-fNIRS features resulted in better correlation
value than individual EEG and fNIRS features for NASA-TLX score and missed beeps
whereas for reaction time, using EEG features only (theta, alpha and b1 band powers)
proved to be better for selecting and training the model with the best correlation results
among all others. A combination of EEG and fNIRS might not have performed well for
reaction time because it is known to be a weak target as concluded from previous research.
Overall best-performing EEG features include Theta, alpha and b1 bands whereas in case
of fNIRS features, HbO and HbR combined have produced the best results. Among the
machine learning models tested, the best performing ones with the lowest error rates
are linear regression, ensemble and tree for NASA-TLX, missed beeps and reaction time,
respectively. The study concludes that the physiological parameters have the tendency to
predict cognitive stress and replace traditional measures. This research provides a step
forward in improving the human workers’ experience while interfacing with the robots,
especially in smart manufacturing setups.
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