
A Non-Iterative Quantum Computation for
Karnik-Mendel Algorithms

Amir Pourabdollah
School of Science and Technology

Nottingham Trent University
Nottingham, UK

amir.pourabdollah@ntu.ac.uk

Jerry M. Mendel
Life Fellow, IEEE

University of Southern California
Los Angeles, CA 90089-2564, USA

jmmprof@me.com

Abstract—Karnik-Mendel method (KM) is widely known for
type-reduction of interval type-2 fuzzy sets. The original and
enhanced solutions of KM use various forms of iteration to con-
verge onto the result, leading to different levels of computational
complexities. Based on the algorithmic advancements in quantum
computing, this paper proposes a non-iterative quantum comput-
ing solution to KM. We map the KM problem to the problem
of minimising an objective function in the form of a binary
constrained quadratic model (CQM) which can then be solved
in a single run using ”quantum annealing”. The algorithms used
in each step, together with a numerical example and the results
from real quantum computer are provided. Quantum technology
permitting in the future, the proposed solution can potentially
remove the known defuzzification bottleneck of designing type-2
fuzzy systems.

Index Terms—quantum computing, Karnik-Mendel, type-2
fuzzy.

I. INTRODUCTION

In designing Interval Type-2 Fuzzy Sets (IT2-FSs) [1],
Karnik-Mendel (KM) method [2] is well-known for type-
reduction and defuzzification. This is implemented as various
iterative algorithms with proven convergence, and there are
some modifications and enhancements of the original KM
method in order to reduce its computational complexities (e.g.,
in [3]–[5]), all of which being iterative and/or approximative.

In this paper we propose a fundamentally different, non-
classical approach to implement the KM type-reduction
method, which does not involve any iteration, but rather by
solving it using a class of quantum computation known as
quantum annealing.

Thanks to its built-in massive parallelism, quantum comput-
ing is increasingly becoming a useful non-classical approach
for the improvement of computational intelligence algorithms.
However, only in recent years has quantum computation
started to be limitedly applied in the context of fuzzy logic
(e.g., [6]–[10]). The main direction of research has been on
the development of quantum fuzzy inference systems, so that
the complex fuzzy rule-based systems in the future can take
advantage of quantum computing for speeding up the process.
This would be especially significant for those with large rule-
bases or for the higher-order systems such as type-2 and non-
singleton. However, to the best of our knowledge, no previous
work has focused on quantum algorithms for type-2 systems.

We aim at formalising the KM method as a quantum-ready
problem, and developing/testing an algorithm for solving it
with a real quantum annealer. The proposed algorithm has a
potential to addressing a computationally intensive bottleneck
[11], [12] towards wide-spreading the development of type-2
fuzzy systems in the future.

The limiting factor, as the case for many other quantum
computing algorithms, is the scalability of the current quantum
hardware technology. This includes the hardware limitations
in maintaining large quantum computers, and the existence
of noise and imperfections in such physical systems. It is
therefore important to notice that the majority of current
research works in quantum algorithms in different domains,
including this paper, are still at the proof-of-concept level,
rather than showcasing an advantage in real-world appli-
cations. Therefore, in this paper, no space/time complexity
measure is given to compare our proposed algorithm with the
previous approaches.

In the following sections, we first provide some background
information. Then, we will review the underlying concepts in
both KM method and quantum annealing. We will then provide
the details of our algorithm, followed by testing the algorithm
for a numerical example.

II. BACKGROUND

In quantum computing [13], the underlying idea is that
instead of considering the binary variables as classical 0/1
bits, they are represented by the superpositioned and entangled
quantum bits (qubits) in which each qubit can simultaneously
take values 0 or 1, with different probabilities. This theo-
retically allows massive computation parallelism, particularly
useful for solving problems with large search spaces.

Through a quantum computing algorithm, the state of an
initiated system of qubits is evolved through time. By tuning
the physical state of the qubits, the system is evolved in a
way that the final measurement probabilities of the qubits
collectively represent a desired computation [14]. Currently,
two quantum computing paradigms are available: the first,
being the mainstream, is the quantum circuital model [15],
and the second is the quantum annealing (or adiabatic) model
[16].

In the circuit model, the qubits are evolved through a se-
quence of quantum ’gates’, i.e., unitary linear operations [15].
Due to its design flexibility, the circuit model can undertake
a wider range of computations, including those required in
fuzzy logic. For example, a Quantum Fuzzy Inference Engine
(QFIE) has been developed in [6], [7] based on the quantum
circuit model, which is able to achieve an exponential speed-
up in computing fuzzy rules over classical methods.

On the other hand, quantum annealing is a more simplified
and more scalable approach [17], [18], but its limitation is
that it is specialised for optimising only a certain form of
objective functions, i.e., being in quadratic polynomials with
binary variables (Binary Quadratic Model - BQM [19], [20]).

Briefly, through the quantum annealing process, the qubits’
system evolve adiabatically in a controlled way that the
observed binary values of the measured qubits at the final
state (minimum energy) correspond to the optimum solution
to the BQM. This is due to the fact that the linear terms are
in fact the qubits’ local field magnitudes, and the quadratic
terms are their coupling strengths, roughly corresponding to
the qubits’ superposition and entanglement attributes.

The primary challenge of applying quantum annealing for
an optimisation problem is converting the problem to the
required form of BQM. This challenge for fuzzy logic system
would mean mapping different required fuzzy logic operations
into BQM optimisation problems. In our previous works, we
started to make this link between fuzzy logic systems and
quantum annealing: In [8] we introduced BQM representations
of the fuzzy operators, such as fuzzy union, fuzzy intersection,
alpha-cut and maximum. This is then followed in [9] by imple-
menting the centroid defuzzification as a quantum annealing
algorithm. Finally, in [10] it is shown how a whole fuzzy rule-
based system with Mamdani inference can be implemented on
quantum annealers.

For the case of the KM algorithm, Kumbasadar in [21]
has already formulated the KM problem to a binary linear
fractional programming (LFP), then to linear programming
(LP), then solved it using iterative processes. For our purpose
in this paper, we will partly reuse and simplify his results, in
order to arrive in a quantum-ready BQM.

III. UNDERLYING CONCEPTS

In this section, before introducing the quantum algorithm
solution for the KM problem, it is necessary to mathematically
introduce the basic underpinning concepts, in terms of two
problems (A) and (B). In the next section, we will link these
concepts to develop our solution.

A. Karnik-Mendel (KM) Defuzzification Method

Without going into details, we directly provide the core of
the KM problem for type-reduction of an IT2-FS [5]. Notably,
the equivalent problems also appear in other subject domains,
as reviewed in [3], [22].

Given an IT2-FS defined by its Lower Membership Function
(LMF) and its Upper Membership Function (UMF), the foot-
print of uncertainty between LMF and UMF contains many

embedded type-1 fuzzy sets. If all of these embedded sets
could be defuzzified, say by centroid defuzzification, two
extreme sets would result in the minimum and maximum
centroids. The average of these two centroids is considered
as the centroid of the IT2-FS.

The key point in solving the problem is that the two extreme
sets are either on LMF or on UMF with a single switch-over
point, as proven in [23]. Therefore, the general aim in KM
algorithms is to find the two switch-over points along the x-
axis.

Problem (A): For a fuzzy set discretised in n intervals along
the x-axis (x1...xn), find an integer k that minimises/maximises
f(k) defined as:

f(k) =

∑k
i=1 xiui +

∑n
i=k+1 xili∑k

i=1 ui +
∑n

i=k+1 li
(1)

where ui is the ith upper-membership grade (UMF) and li is
the ith lower-membership grade (LMF).

We focus on the minimising problem and will see that the
maximising problem is quite similar. The aim is to convert the
above problem from its fractional form to a binary quadratic
form, and to minimise it.

B. Binary Quadratic Model (BQM) Problem

The adiabatic model of quantum computing is able to
solve the optimisation problems expressed in the form BQM
minimisation, as:

Problem (B): Given n binary (0/1) bits y1, ..., yn, find
assignments of the bits that minimise an objective function
f(y) defined as:

f(y) =

n∑
i=1

(piyi) +

n−1∑
i=1

n∑
j=i+1

(pijyiyj) (2)

where pi and pij are configurable (linear and quadratic)
coefficients. More details can be found in [19].

C. Constrained Quadratic Model (CQM) Problem

Many real-world optimisation problems can be converted
to optimising an objective function that must also satisfy a
set of constraints. In these cases, it is common to convert
the constraint(s) to extra linear and/or quadratic terms (known
as penalty terms), that are weightedly added to the original
objective function. The result would be considered as a single
unconstrained objective function.

Similarly, the unconstrained problem (B) might be the result
of adding some penalty terms to an original constrained BQM
(known as Constrained Quadratic Model - CQM). Therefore,
it is possible to redefine problem (B) as:

Problem (B)-redefined as CQM: Given n binary (0/1) bits
y1, ..., yn, find assignments of the bits that minimise an objec-
tive function f(y) defined as (2) having a set of constraints,
each in the form of:

n∑
i=1

(qiyi) +

n−1∑
i=1

n∑
j=i+1

(qijyiyj) operator c (3)

where pi, pij , qi and qij are configurable linear/quadratic
coefficients, operator is one of {” < ”, ” > ”, ” <= ”, ” >=
”, ” = ”}, and c is a constant.

IV. THE ALGORITHM

In this section, we first show how to reformulate the problem
A (KM) into problem B (CQM) defined in the previous
section, then will explain how to find the answers of the
formulated CQM on a quantum annealer.

A. Converting KM to Binary Linear Fractional Form

For this conversion, we follow the method proposed in
[21]. The notations, however, are slightly different. Consider
Problem A (1). First, let us define binary values yi that act as
a binary switch between UMF and LMF:

yi =

{
1 if i < k

0 otherwise
yi ∈ {0, 1}, i ∈ {0, ..., n} (4)

We define a binary matrix Y in the form of:

Y = [y1, ..., yn]
T = [1 1 ... 1 0 0 ... 0]T (5)

As shown in [5], the KM problem can be reformulated from
minimising (1) to minimising f(Y) in:

f(Y) =

∑n
i=1 xiuiyi +

∑n
i=1 xili(1− yi)∑n

i=1 uiyi +
∑n

i=1 li(1− yi)
(6)

or:

f(Y) =

∑n
i=1 xiyi(ui − li) +

∑n
i=1 xili∑n

i=1 yi(ui − li) +
∑n

i=1 li
(7)

If we define:

X = [xi; i = 1...n]T (8)

U = [ui; i = 1...n] (9)

L = [li; i = 1...n] (10)

A = [xi(ui − li); i = 1...n] (11)

B = [ui − li; i = 1...n] (12)

α = LX , β =

n∑
i=1

li (13)

then f(Y) can be rewritten as:

f(Y) =
AY + α

BY + β
(14)

Minimising f(Y) in (14) is in the form of an unconstrained
Linear Fractional Programming (LFP) problem with binary
variable.

B. Converting LFP to LP

Using the Charnes Cooper Transformation (introduced in
[24], also formulated in [25] and [21]), a constrained LFP
problem can be transformed to an equivalent Linear Program-
ming (LP) problem with transformed variables and constraints.
Without reviewing the transformation details, the LFP problem
(14) can be transformed as follows:

The variable matrix Y is transformed to a new variable
matrix Z = [z1, ..., zn]

T , so that the transformed problem
is now finding Z that can minimise a linear function g(Z),
defined as:

g(Z) = CZ + γ (15)

where:
C = A− α

β
B (16)

γ =
α

β
(17)

and;

Z =
1

BY + β
Y ; or Y =

β

1−BZ
Z (18)

Notice that the constant γ in (15) can be ignored for
minimising of the objective function. Therefore, the problem
is reduced to a linear programming in the form of:

g(Z) = CZ (19)

Fortunately, once the LP is solved, we do not need to
transform any result back to LFP. The reason being that the
ultimate goal is to find the switch-over position, which is, as
will be shown in the next subsection, same for the LP and the
LFP.

C. Defining Constraints

Since the LFP (14) has no explicit constraint, the LFP
transformation also does not provide an explicit constraint.
However, the Charnes Cooper Transformation is for general
variable type and does not consider the implications of binary
variables. Importantly here, (18) implies a constraint: Y is
binary but Z is not, therefore the only acceptable Z is the
one that corresponds to a binary Y (according to (18)).

It is also noticeable that since Y is in a specific form
of [1 1 ... 1 0 0 ... 0]T with a single switch-over position, Z
becomes in the following specific form with the same single
switch-over position:

Z = zY = [z z ... z 0 0 ... 0]T (20)

where z is a single non-negative decimal number, defined in
(18), as:

z =
1

BY + β
(21)

Accordingly, we add a constraint that implies the strong
dependency between Z and Y . Based on (21), this constraint
can be formulated as:

z(BY + β)− 1 = 0 (22)

Practically, the above equality cannot always hold. This is
due to different imperfections such as discretisation errors,
errors in decimal number operations, and the noise existing
on the quantum annealer hardware. Therefore, we define a
precision threshold p that is to be tuned when the algorithm
is tested. The constraint is then to be redefined as:

z(BY + β)− 1 ≤ p (23)

Finally, there is another constraint, for which there should be
a single switch-over point in Z. However, this constraint is au-
tomatically satisfied when the objective function is minimised.
It is shown in [23] that minimising/maximising the centroid
necessarily guarantees a single switch-over point between
UMF and LMF. Therefore, we do not need to separately
formulate this constraint.

D. Reformulating the KM Problem

Although Z is the variable for the LP problem (15), the
existing constraint makes a circular relationship between Y of
the LFP and Z of the LP. To get around this, we merge Y and
Z to become the variable vector of a new merged LP, so that
both Y and Z can be found simultaneously through a single
CQM optimisation algorithm.

In making the marged variable vector for the new LP
problem, we notice that Z members are either z or 0, and that
the zero members of Z match those of Y (see the previous
subsection). Therefore,

zi = zyi ; i = 1...n (24)

In other words, all information needed from Z in the new
problem is a single decimal variable z, and that the new
variable vector can be reduced from [y1, ..., yn, z1, ..., zn] to a
more simplified form of [y1, ..., yn, z].

However, this vector consists of a mix of binary and decimal
variables. If the quantum annealer works on binary variables
only, it will be necessary to expand z to its binary format with
m bits, in which case the variable vector will have n+m binary
values. Some quantum annealers, however, provide libraries
for internal variable type conversion, so that the decimal
variable z can still be kept as a single variable in the new
variable vector.

Given (25), the new LP problem can now be defined as
a CQM with mixed variable types, and with the following
quadratic polynomial objective function:

g(Z) = CZ = C.(zY) = z.(CY) = z(c1y1 + ...+ cnyn)
(25)

It is important to note that since z is dependent on Y , we
do not consider z as a constant in (25) - otherwise it would
have been ignored for minimising g(Z).

Finally, given (23), the new CQM has a quadratic polyno-
mial constraint, defined as:

z(b1y1 + ...+ bnyn + β)− 1 ≤ p (26)

E. Summary

In summary, our non-iterative algorithm is proposed as:

Step 1 Calculate B, C, α, β according to (13,14,17)
Step 2 Define a variable vector in the form of

[y1, y2, ..., yn, z] with binary yi and decimal z.
Step 3 Define a CQM objective function in the form

of: g(Z) = z(c1y1 + ...+ cnyn)
Step 4 Define the CQM’s constraint in the form of:

z(b1y1 + ...+ bnyn + β)− 1 ≤ p
Step 5 Run quantum annealing for the defined CQM
Step 6 Find the 0/1 switch-over position in the result
Step 7 Replace g(Z) with −g(Z) and rerun Steps 5-6

V. IMPLEMENTATION AND TEST

The numerical example that we consider is an IT2-FS with
a non-symmetrical Gaussian UMF and a non-symmetrical
triangular LMF, as defined below. This example is repeatedly
used in the literature (e.g. in [23], [26], [27]).

UMF =

{
exp

(
1
2 (

x−2
5)2) x ∈ [−5, 7]

exp
(
1
2 (

x−9
1.75)

2) x ∈ [8, 14]
(27)

LMF =

{
0.6(x+4)

19 x ∈ [−5, 2]
0.4(14−x)

19 x ∈ [3, 14]
(28)

in which −5 ≤ x ≤ 14 with n=20 discretisation levels. The
graphs of the defined UMF and LMF are shown in Fig. 1.

It can be numerically shown that the two switch-over points
between the UMF and the LMF are between x = 0 and x = 1
(for the minimum centroid) and between x = 7 and x = 8
(for the maximum centroid). The switch-over points are also
shown in Fig. 1. The aim is to develop a non-iterative quantum
algorithm to determine these two points.

The implementation is based on D-Wave System
(https://docs.dwavesys.com), a cloud-based real quantum
computing platform. D-Wave also provides some Python
libraries for programming using web-based and desktop IDEs
that connect to the same platform.

Fig. 1. LMF, UMF and the two switch-over points of the numerical example

Listing 1. Python program for quantum KM algorithm

from dimod import Integer, ConstrainedQuadraticModel
from dwave.system import LeapHybridCQMSampler

x and LMF/UMF grades in an example IT2 FLS
x = [-5.0000 ,-4.0000 ,-3.0000 ,-2.0000 ,-1.0000 , 0.0000 , 1.0000 , 2.0000 , 3.0000 , 4.0000,

5.0000 , 6.0000 , 7.0000 , 8.0000 , 9.0000 ,10.0000 ,11.0000 ,12.0000 ,13.0000 ,14.0000]
lmf= [0.0000 , 0.0316 , 0.0632 , 0.0947 , 0.1263 , 0.1579 , 0.1895 , 0.2211 , 0.2316 , 0.2105,

0.1895 , 0.1684 , 0.1474 , 0.1263 , 0.1053 , 0.0842 , 0.0632 , 0.0421 , 0.0211 , 0.0000]
umf= [0.3753 , 0.4868 , 0.6065 , 0.7261 , 0.8353 , 0.9231 , 0.9802 , 1.0000 , 0.9802 , 0.9231,

0.8353 , 0.7261 , 0.6065 , 0.8494 , 1.0000 , 0.8494 , 0.5205 , 0.2301 , 0.0734 , 0.0169]
n=len(x)
prec=10000

Step 1: Calculate the required values/vectors - A, B, C, alpha, beta
beta =sum(lmf)
alpha=sum(x[i]*lmf[i] for i in range(n))
b =[umf[i]-lmf[i] for i in range(n)]
a =[x[i]*b[i] for i in range(n)]
c =[a[i]-alpha/beta*b[i] for i in range(n)]
c =[c[i]/prec for i in range(n)] #to compensate integer conversion

Step 2: Initialise a variable vector consisting Y (binary) and z (integer)
y=[Integer(’y’+ str(i).zfill(2), upper_bound=1) for i in range(n)]
z=Integer(’z’, upper_bound=prec)

Step 3: Define a CQM objective function
cqm=ConstrainedQuadraticModel()
for i in range(n): cqm.set_objective(cqm.objective+z*c[i]*y[i]) #to get the maximum, change +z to -z

Step 4: Define a constraint to relate integer z to binary Y
lhs=[(’z’, ’y’+str(i).zfill(2), b[i]) for i in range(n)]
lhs.append((’z’, beta))
cqm.add_constraint(lhs, ’<=’, rhs=prec)

Step 5: Run the CQM on the cloud-based quantum annealer to find the solution of the variable vector
sampleset = LeapHybridCQMSampler().sample_cqm(cqm)

Step 6: Print the first feasible result (minimum energy) and find the single switch-over point
answer=sampleset.filter((lambda d: d.is_feasible)).first[0]
for key, value in answer.items(): print(f"{key:3}{int(value):10}")
for i in range(1,n):
if answer.get(’y’+str(i).zfill(2))!=answer.get(’y’+str(i-1).zfill(2)):

print (’Switch-over found at position’,i)

The steps listed in section IV-E are implemented as the
Python program shown in Listing 1. In reference to this
Listing, after importing the required D-Wave libraries for
CQM, the vectors X , LMF and UMF are enumerated in the
code - based on (27) and (28), till 4 decimal points. In Step
1, the vectors and scalar values for A, B, C, α and β are
calculated, according to (11), (12), (17), (13). Also, a constant
for precision is defined for the following reason:

The DWave’s CQM library currently supports binary and
integer variables but is yet to support decimal variables. To
keep z in the variable vector, given that its value is in [0, 1],
we scale up z to an integer between 0 and a prec factor (here,
prec=10000 for 4 decimal point precision). To compensate
this, we scale-down the values in the C vector by the same
factor in order to cancel each other out in the objective function
g(Z) = CZ. The imported CQM library supports floating
point precision, therefore scaling down C should not have a
significant effect on the results. prec is also used for defining
the constraint between Y and z (see section IV-C).

In Step 2, a variable vector is defined consisting of n=20
qubits for the binary variables y1...y20 and some additional
qubits for the integer variable z (the number of which would
be internally set based on the upper bound of z). In Step 3, the
CQM objective function c1y1z+...+c20y20z is encoded in the
CQM library’s required format. Also in Step 4, the constraint
b1y1z + ... + b20y20z + βz − 1 ≤ p is encoded (see (23)).
The left hand side of the constraint is a quadratic polynomial
in itself. Fortunately, the D-Wave’s CQM library internally
converts the constraints to some linear and quadratic penalty
terms with adjusted weights, all to be added to the objective
function in order to make a final unconstrained BQM.

Having all CQM attributes set, Step 5 is where the program
calls the quantum computing service on the cloud with the
CQM object. The cloud returns the answer through a ’sample
set’, which is the final states of the variable vector after
quantum annealing. The first answer would be the state with
the lowest energy - corresponding to the minimum value of
the objective function that satisfies the given constraint.

Fig. 2. The outputs of the program in Listing 1: The switch over point for
minimising (left) and maximising (right) the objective function are determined.

Finally, the returned solution is to be analysed. The first 20
items of the solution are binary (0/1) values which should have
a single switch-over point, the position of which is determined
by the program in the final step.

If the sign of the objective function is reversed in step 3,
the algorithm would find the maximum value of the objective
function, and another switch-over point is determined. The
outputs of the program for both tasks are shown in Fig. 2.

Fig. 2 shows that the switch-over points are at positions 6
(of the UMF) and 13 (of the LMF) - matching to the numerical
calculation. Using (1), it can be shown that the left-most and
the right-most centroids of the IT2-FS are at x =0.2609 and
x=7.1663, and that their average (x=3.7136) would be the
centroid of the IT2-FS.

VI. CONCLUSION AND FUTURE DIRECTION

We approached the KM problem from a novel non-classical
angle, and developed a quantum annealing algorithm to solve
it non-iteratively. The main advantage of our approach in
comparison to all other KM implementation is the non-iterative
nature of the algorithm, thanks to the built-in parallelism
of quantum computing. The proposed algorithm includes a
number of steps to map the KM problem to a quantum-ready
objective function. A quantum cloud service (D-Wave Sys-
tems) has then been used to test the algorithm for defuzzifying
IT2-FSs.

The current limitation is the scalability of the algorithm
to finer discretisation intervals, due to the limited number of
controllable low-noise qubits in the current quantum annealers.
However, this technological issue for the current era of Noisy
Intermediate-Scale Quantum (NISQ), which is yet to be re-
solved in the future, should not stop the research on developing
potentially-advantageous algorithms for the future real-world
applications. Accordingly, a future direction of this research
is to develop quantum algorithms for other complex elements
of developing type-2 and non-singleton fuzzy rule-based sys-
tems. This particularly includes defuzzification/type-reduction
of general-type-2 fuzzy systems (GTFSs) - as suggested in [3].

REFERENCES

[1] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: theory
and design,” IEEE Transactions on Fuzzy systems, vol. 8, no. 5, pp. 535–
550, 2000.

[2] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,”
information SCiences, vol. 132, no. 1-4, pp. 195–220, 2001.

[3] J. M. Mendel, “On km algorithms for solving type-2 fuzzy set problems,”
IEEE Transactions on Fuzzy Systems, vol. 21, no. 3, pp. 426–446, 2013.

[4] D. Wu, “Approaches for reducing the computational cost of interval type-
2 fuzzy logic systems: overview and comparisons,” IEEE Transactions
on Fuzzy Systems, vol. 21, no. 1, pp. 80–99, 2012.

[5] J. M. Mendel, Uncertain rule-based fuzzy systems: introduction and new
directions, 2nd ed. Springer, Cham, Switzerland, 2017.

[6] G. Acampora, R. Schiattarella, and A. Vitiello, “On the implementation
of fuzzy inference engines on quantum computers,” IEEE Transactions
on Fuzzy Systems, 2022.

[7] G. Acampora, A. Massa, R. Schiattarella, and A. Vitiello, “Distributing
fuzzy inference engines on quantum computers,” in 2023 IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ). IEEE, 2023, pp. 1–6.

[8] A. Pourabdollah, G. Acampora, and R. Schiattarella, “Fuzzy logic on
quantum annealers,” IEEE Transactions on Fuzzy Systems, 2021.

[9] ——, “Implementing defuzzification operators on quantum annealers,”
in 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
IEEE, 2022, pp. 1–6.

[10] A. Pourabdollah, C. Wilmott, R. Schiattarella, and G. Acampora, “Fuzzy
inference on quantum annealers,” in 2023 IEEE International Confer-
ence on Fuzzy Systems (FUZZ). IEEE, 2023, pp. 1–6.

[11] S. Greenfield, “Type-2 fuzzy logic: Circumventing the defuzzification
bottleneck,” 2012.

[12] S. Greenfield and F. Chiclana, “Accuracy and complexity evaluation of
defuzzification strategies for the discretised interval type-2 fuzzy set,”
International Journal of Approximate Reasoning, vol. 54, no. 8, pp.
1013–1033, 2013.

[13] D. McMahon, Quantum computing explained. John Wiley & Sons,
2007.

[14] A. O. Pittenger, An introduction to quantum computing algorithms.
Springer Science & Business Media, 2012, vol. 19.

[15] F. Tacchino, A. Chiesa, S. Carretta, and D. Gerace, “Quantum comput-
ers as universal quantum simulators: state-of-the-art and perspectives,”
Advanced Quantum Technologies, vol. 3, no. 3, p. 1900052, 2020.

[16] T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Reviews
of Modern Physics, vol. 90, no. 1, p. 015002, 2018.

[17] D. Aharonov, W. van Dam, J. Kempe, and Landau, “Adiabatic quantum
computation is equivalent to standard quantum computation,” in IEEE
Symp. on Found. of Comp. Sci. IEEE, 2004, pp. 42–51.

[18] A. Das and B. K. Chakrabarti, Quantum annealing related optimization
methods. Springer Science & Business Media, 2005, vol. 679.

[19] M. Lewis and F. Glover, “Quadratic unconstrained binary optimiza-
tion problem preprocessing: Theory and empirical analysis,” Networks,
vol. 70, no. 2, pp. 79–97, 2017.

[20] C. C. McGeoch, “Adiabatic quantum computation and quantum anneal-
ing: Theory and practice,” Synthesis Lectures on Quantum Computing,
vol. 5, no. 2, pp. 1–93, 2014.

[21] T. Kumbasar, “Revisiting karnik–mendel algorithms in the framework
of linear fractional programming,” International Journal of Approximate
Reasoning, vol. 82, pp. 1–21, 2017.

[22] D. Wu and J. M. Mendel, “Enhanced karnik–mendel algorithms,” IEEE
transactions on fuzzy systems, vol. 17, no. 4, pp. 923–934, 2008.

[23] J. M. Mendel and F. Liu, “Super-exponential convergence of the karnik–
mendel algorithms for computing the centroid of an interval type-2 fuzzy
set,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 2, pp. 309–320,
2007.

[24] A. Charnes and W. W. Cooper, “Programming with linear fractional
functionals,” Naval Research logistics quarterly, vol. 9, no. 3-4, pp.
181–186, 1962.

[25] M. B. Hasan and S. Acharjee, “Solving lfp by converting it into a single
lp,” 2010.

[26] X. Liu and J. M. Mendel, “Connect karnik-mendel algorithms to root-
finding for computing the centroid of an interval type-2 fuzzy set,” IEEE
Transactions on Fuzzy Systems, vol. 19, no. 4, pp. 652–665, 2011.

[27] J. M. Mendel and X. Liu, “Simplified interval type-2 fuzzy logic
systems,” IEEE transactions on fuzzy systems, vol. 21, no. 6, pp. 1056–
1069, 2013.

