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ABSTRACT
A simulation model of the University Hospital of Wales (UHW) Critical Care (CC) Department is 
presented. This is the first CC model that considers the impact of future demand on capacity, 
supporting planning decisions to build a new hospital. A combination of long-term demand 
trajectories and Discrete Event Simulation (DES) are used. The results suggest the unit will need 
at least 66 Intensive Care beds and 19 Post-Anaesthesia Care beds to fulfil predicted demand in 
2040 while being at capacity less than 5% of the time. Non-critical care ward beds impact 
patient flow in CC, thus must be considered when planning a new hospital. This study’s 
findings directly impact on decision making at UHW, having informed capacity planning of 
the planned unit. This paper contributes by presenting an infrastructure planning project using 
simulation as a decision-making tool, with transferable insights applicable to the planning of 
other CC units.
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1. Introduction

1.1. Background

Critical Care (CC) provides organ support and mon
itoring to patients who have potentially reversible dis
ease and who are at a high risk of dying or sustaining 
long-term morbidity. In Wales, CC beds are sparse, 
with an average of 3.2 beds per 100,000 people. This is 
lower than the average of 4 in England and visibly 
below the European average of 11 (All-Wales 
Implementation Group, 2014).

At the University Hospital of Wales (UHW), within 
Cardiff and Vale University Health Board (CAVUHB), 
the CC Department is split into two units with 
a protected space for elective patients. Generally, emer
gency demand is seen in the Intensive Care Unit (ICU) 
and elective demand in the Post-Anaesthesia Care Unit 
(PACU) with a small number of elective patients being 
transferred from PACU to ICU.

A full unit in CC with no capacity to admit more 
patients leads to CC patients being denied access or 
offered delayed care. In turn, this leads to patient harm 
and downstream system disruption, providing sub- 
optimal CC in sub-optimal locations. At UHW, this 
risk of denied patient access is compounded as the 
hospital is a Tertiary Centre where its CC capacity 
supports time critical services, such as Major Trauma 
and Neurosurgery, which currently cannot be pro
vided in any other hospital in Wales.

CAVUHB have plans to build a new hospital 
(“UHW2”) to offer, amongst other care services, CC 
in order to provide the facilities and space required to 
create a fit-for-purpose right-sized service (Cardiff 
and Vale UHB, 2019). The insights generated from 
this project are being used to inform the specification 
for CC in the business case for a UHW replacement. 
Timelines for this development initially suggested that 
the move from UHW to UHW2 would happen in 
2030. Therefore, the two key time points for evalua
tion were 2030 and 2040 to ensure infrastructure in 
the new unit is adequate to support the service 10 years 
later. CAVUHB require the CC unit in UHW2 to be at 
capacity at most 5% of the time.

CC beds are costly, require specialist staff with 
extensive training and have complex infrastructure 
and equipment needs. Therefore, it is key to under
stand the demand trends and capacity requirements to 
effectively meet the current and future demand of the 
population. CC and health care in general have a high 
degree of variance over time, and therefore the level of 
detail captured in discrete-event simulation (DES) 
lends itself well to application in healthcare settings 
(Chahal et al., 2013).

DES is a suitable tool to model the flow of services 
in CC, whereby patients are dynamically represented 
to flow through a series of queues and activities within 
the CC system over time, governed by the availability 
of resources such as beds (Brailsford et al., 2009). 
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Existing studies of CC use simulation to support plan
ning of resources within existing ICU resources 
(Rodrigues et al., 2018; Williams et al., 2020). Some 
studies recommend creating capacity for emergency 
patients by a more effective scheduling of elective 
patient admissions or bed utilisation across other 
wards in the hospital floor, but to our knowledge, so 
far, there are no studies that focus on capacity plan
ning of a new CC department incorporating interac
tion with the wider hospital bed base.

DES has already been used by analysts in NHS 
Wales as an appropriate method for modelling CC 
(Williams et al., 2020). This study differs from 
Williams et al. (2020) by capturing ICU and PACU, 
alongside the dependency on the rest of the hospital.

The aim of this paper is to report on the simulation 
model that combines long-range demand trajectories 
via judgemental forecasting and DES to support the 
demand and capacity of the CC Department over the 
next 20 years to ultimately determine the future phy
sical combined number of emergency ICU beds and 
elective PACU beds and to ensure there is adequate 
infrastructure to support the service. The separation 
and specialisation of PACU is unusual in the UK and 
reduces the likelihood of elective surgeries being dis
rupted by surges in emergency activity. However, due 
to the specialisation of care in PACU, it is highly 
important that ICU is adequately resourced to stand 
alone.

The focus of this study is on the number of beds in 
the CC Department and related physical space require
ments, rather than the scheduling of resources. The 
model incorporates projected changes in emergency 
and elective demand on CC services,looking at demand 
in the wider hospital setting and how this impacts the 
utilisation and performance of CC. This modelling does 
not include the Long-Term Ventilation (LTV) Service; 
this is a protected bed base within CC with no interac
tion effect with the rest of CC.

1.2. The rest of the paper is structured as follows

The next section provides a review of existing litera
ture on the use of simulation to support capacity 
planning in ICU. This is followed by an overview of 
the materials and methods used to develop the simula
tion model. Next, the model results are presented 
followed by a discussion of the findings and practical 
implications for the hospital and ICU department, 
ending with conclusions.

2. Literature review of simulation modelling 
in critical care

A number of studies have examined demand and 
capacity planning in CC and/or intensive care. An 

overview of the studies found in the academic litera
ture is presented in this section.

The main operational research methods used to 
support ICU management problems include exact 
mathematical, heuristics, and stochastic methods. In 
their review, Bai et al. (2018) found that the majority 
of studies, 80% of the 52 papers they included, con
sisted of stochastic methods comprising queuing the
ory, Markov Chains/MDP, and simulation, with the 
latter being used in 56% of the studies included. The 
higher take-up of simulation, as opposed to mathema
tical models and other stochastic methods (queuing 
theory and Markov Chains/MDP), can be explained 
due to the more flexible approach to modelling in 
simulation, which does not make restrictive assump
tions about the particular types of arrival processes 
and Length of Stay (LOS) (Bai et al., 2018).

Several DES studies have examined demand and 
capacity planning in CC and/or ICUs, some examples 
include (Akkerman & Knip, 2004; Hasan et al., 2020; 
Williams et al., 2020; Zhong et al., 2022), while fewer 
system dynamics models have been found in the lit
erature. For example, Demir et al. (2013) model the 
flow of patient pathways in the neonatal system to 
evaluate the impact of different policies related to 
reduction of LOS, such as the introduction of a new 
treatment procedure on unit performance. As 
a stochastic modelling approach, DES is well posi
tioned to model the complexity inherent in ICU sys
tems, representing patient flows, the capacity, and 
availability of expensive resources, such as beds and 
staff, to achieve optimal utilisation rates.

Of the studies found in the literature, some papers 
model specific ICUs in the hospital, such as the cardiac 
ICU (Akkerman & Knip, 2004; Yang et al., 2013), the 
neonatal/paediatric ICU (Adeyemi et al., 2010; 
Cochran & Roche, 2008; Demir et al., 2013), the sur
gical ICU (Troy & Rosenburg, 2009), or multidisci
plinary ICU (Barado et al., 2012; Kolker, 2009; 
McManus et al., 2004) and others study a mixture of 
different ICUs (Lowery, 1992, 1993). The current 
study considers a multidisciplinary CC unit consisting 
of a variety of specialities with a protected area for 
PACU to be housed in the new hospital.

Many simulation studies consider ICU capacity 
problems by testing the impact of introducing differ
ent policies to CC, including management of patients 
flows, bed capacity management, patient triage and 
discharge policies, and LOS. We next consider the 
studies found by the type of problem studied.

Considering changes to the management of patient 
flows, studies consider the impact of overflow of 
intensive care patients (Litvak et al., 2008; Masterson 
et al., 2004), ICU admission, and discharge processes 
(Kim et al., 1999, 2000) For example, Williams et al. 
(2020) investigate the effects of increasing the ICU 
capacity, an increase in demand, and a reduction of 
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delayed transfers of care (DTOC) on occupancy levels 
at an ICU and found that increasing the number of 
beds had less influence on the reduction of occupancy 
levels; however, reducing the number of patients with 
DTOC had the biggest effect on occupancy rates and 
average bed utilization, even when the demand is at its 
highest.

Introducing policies that reduce the time patients 
spend in the ICU could significantly improve capacity 
utilization rates (Griffiths et al., 2006), however rele
vant policies available and their effects can vary. For 
example, in a study of a neonatal unit, Demir et al. 
(2013) found that the introduction of policies related 
to reduction of LOS do not necessarily lead to sub
stantial improvements in performance. While it may 
lead to an increase in the number of patients dis
charged home, the number transferred to other units 
or in the same hospital, they found that the numbers 
are the same whether LOS is reduced by 1 or 3 days. In 
addition, the study found that reducing LOS by 3 days 
for high dependency care patients leads to an increase 
in the number of patients refused entry to the unit, as 
the reduction in LOS after treatment means that 
patients’ health worsens and they require further 
care, which is a counterintuitive effect of the beha
viour of the system.

Studies on bed capacity management consider the 
efficient use of bed resources. The ultimate aim of all 
these models is to balance bed availability and occu
pancy levels, while minimizing the number of rejec
tions from ICU admission. For example, Mohamed & 
Hussein (2021) developed a DES model to optimise 
bed capacity in an intensive care unit (ICU) in order to 
achieve target admission and utilisation levels. It is 
noted, however, that this study did not account for 
the natural growth in the population or the rise in the 
number of patients visiting the emergency depart
ment. Other examples include models that assess bed 
occupancy and patient transfers to other ICU facilities 
due to resource shortages (Steins & Walther, 2013); 
changes in patient flows by directing patients from 
ICU to intermediate care wards (Marmor et al., 2013; 
Rodrigues et al., 2018), to other hospital wards 
(Akkerman & Knip, 2004); the introduction of step- 
down beds as a less expensive alternative to ICU beds 
to deal with bed capacity issues (Rodrigues et al.,  
2018); improvement of bed management by distin
guishing between emergency and elective surgery 
patients (Griffiths et al., 2013), or through effective 
scheduling of elective patient admissions to create 
capacity for emergency patients (Kolker, 2009; Ridge 
et al., 1998).

Admission and discharge policies can significantly 
affect occupancy levels in the ICU (Hasan et al., 2020). 
In real life, clinicians operating in a congested ICU are 
faced with the ethical dilemma of turning away a new 
patient in need of CC and admitting them. When all 

ICU beds are occupied, the clinician would need to 
make a bed available by prematurely discharging an 
existing patient occupying a bed, also known as the 
“last bed problem” (Azcarate et al., 2020; Teres, 1993). 
In practice, clinicians make patient discharge deci
sions considering aspects such as the upcoming surgi
cal schedule for the day and ICU bed availability 
(Anderson et al., 2011).

Early simulation models, for example in Kim et al. 
(1999), model admissions as a first come first serve 
process, where the possibility of early discharge is 
checked first and then the decision to cancel 
a surgery is considered. Similarly Hagen et al. (2013); 
Lowery (1993); Shahani et al. (2008) incorporate early 
discharge in their simulation models. The latter found 
that prioritizing admissions could considerably reduce 
delays for critical cases while increasing the average 
waiting time for all patients. In addition, authors find 
that early discharges can raise readmission and mor
tality rates (Anderson et al., 2012; Hagen et al., 2013).

Azcarate et al. (2020) develop a simulation model 
that aims to accurately represent patient discharge 
decisions similar to real-life practice followed by clin
icians by incorporating factors that influence patient 
discharge decisions. They model patient discharge as 
a function of the patients’ current health status, the 
bed occupancy level, and the number of planned arri
vals from elective surgery in the next days. The differ
ent patient states are represented in a phased-type 
distribution of patient LOS. Their model generates 
an optimal discharge policy that aims to balance 
patient rejections and LOS reduction as opposed to 
other studies that consider only the triage of the last 
bed. It is, however, noted that the model presented in 
the current paper does not incorporate the practice of 
the “last bed problem”. Instead, a scheduled (elective) 
patient is delayed and not admitted if PACU beds are 
unavailable and patient LOS is not moderated based 
on the system business. The objective of the model 
presented in the current paper is to help with identify
ing the optimal number of beds required to support 
their forward planning. Moderating LOS is not 
a desirable operational practice, and the UHWCC 
team was not willing to have the system operating at 
full capacity for large periods of time, instead they 
wanted the model to reflect safe working practices 
for CC. The UHW CC team’s focus was on under
standing the probability that a bed would not be avail
able for a patient to be admitted to CC, maintaining 
appropriate patient LOS.

Considering the review of studies above, it can be 
concluded that DES can be effectively used to model 
ICU capacity over time. Most studies found in the 
literature focus primarily on creating capacity for 
emergency patients primarily by developing more 
effective scheduling of elective patient admissions, 
bed utilisation policies in ICU or across other wards 
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in the hospital floor, and patient admission and dis
charge policies. However, these studies do not con
sider the long-term demand and capacity for ICU beds 
by incorporating changes in population trends and the 
impact on patient demand for ICU services over time, 
as presented in the current study.

3. Materials and methods

This section provides details of the analytical work 
carried out to develop the simulation model. In 
order to help evaluate the required bed numbers for 
ICU and PACU in a new hospital department, 
a combination of potential long-term demand trajec
tories and DES were used. We next explain the data 
sources used and analysis carried out in preparation 
for use in the simulation model, the method used to 
calculate the demand trajectories for CC in Wales, and 
then the simulation model development.

The model development process was guided by best 
practices as presented in (Tako, 2015), with the focus 
switching between modelling topics as the project 
evolved. These topics included problem structuring, 
conceptual modelling, model coding, data inputs, 
model results and experimentation, implementation, 
verification, and validation. The model, data, and 
demand trajectories evolved through an iterative pro
cess of regular meetings with the UHW CC team to 
discuss all aspects of the modelling process and ensure 
that the model and outputs met the needs of 
CAVUHB. Additionally, ad hoc meetings with 
a subject matter expert on the data from CAVUHB 
took place to provide expert advice on specific data 
queries. Figure 1 is an illustration of the process 

undertaken, including the iterative cycles needed to 
ensure a robust simulation model was built.

3.1. Data

CAVUHB granted permission to use data from their 
WardWatcher database, which included CC admis
sion level data and census care level data. The data 
spanned from April 2018 to November 2021. Due to 
the COVID-19 pandemic and changes to demand and 
working practices including new surge capacity, new 
“Nightingale”1 hospitals, and cancelled elective sur
gery, the latest data for CC had to be treated differently 
from this study. After various stages of data cleansing, 
the dataset contained information for 2770 admis
sions. Figure 2 shows the time series of admissions to 
CC over this period with the notable impact of the 
COVID-19 pandemic.

1A temporary hospital located in Cardiff to help deal 
with the impact of the COVID-19 pandemic in Wales.

The WardWatcher data shared was a set of three 
tables and contained the following key information for 
this work. This list is not exhaustive of all the data 
items included.

● Patient’s workstream, i.e., reason for admission.
● Date patient admitted to hospital.
● Date patient discharged from hospital.
● Date/Time patient admitted to CC.
● Date/Time patient ready for discharge from CC.
● Date/Time patient discharged from CC.
● Maximum care level of patient each day.
● Discharge location, e.g., death, ward, repatriation 

to local hospital.

Figure 1. Flowchart outlining the iterative process followed in this study.
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● Patient demographics data (sex, age, Lower Super 
Output Area Welsh Index of Multiple 
Deprivation rank).

Additional data were shared by the Intensive Care 
National Audit and Research Centre (ICNARC) to 
provide a comparison with similar UK CC units in 
terms of demand and patient mix to help with bench
marking and quantifying the assumed unmet level 2 
care demand.

The WardWatcher data was only able to give 
insight into patient stays within CC, and therefore 
the nationally available NHS Wales Admitted Patient 
Care dataset was required to add in the dependency 
between CC and the wider hospital.

In addition to the current activity seen at UHW CC, 
there is an understanding that services developments 
will be undertaken by the department in the future 
introducing new workstreams, and therefore addi
tional ad-hoc data and insights were provided by 
domain experts to quantify the expected impact of 
these service developments.

A staged process was taken to generate a subset of 
the data provided that was then used in all analysis 
undertaken in this study. For example, this included 
the removal of a small number of patient records, 
which were incomplete due to changes in the level of 
data recorded. In some cases, data were manually 
overwritten when the clinicians consulted were aware 
of data entry issues. There were seven duplicated 
entries, which were removed along with seven addi
tional patients who were assumed to have incorrectly 

recorded admission dates into PACU based on the 
unit’s operational hours. Eight records were missing 
their “Hospital admission date”, which was replaced 
with their “Unit admission date”.

The “Admission delay” field is known to not be 
entirely reliable, but corrections could not be made 
due to a lack of information.

The decision was made to create two new work
streams, “Elective Other” and “Emergency Other”, to 
avoid using very small volumes of patients in the 
modelling to ensure that the characteristics demon
strated were representative of the workstream and not 
specific to an individual patient. This grouping pre
vented the need to omit patients from the data.

4. Methods

4.1. Demand trajectories

This project required an understanding of projected 
hospital admissions for CC up to and including 
the year 2040 (i.e., a 19-year trajectory) and the 
use of forecasting with simulation as a hybrid 
approach has been used in healthcare as 
a decision support tool (Ordu et al., 2021) As this 
is a long-range demand trajectory, there is inevita
bly going to be a level of uncertainty in the num
bers returned by this process (Granger & Jeon,  
2007). This uncertainty needs to be considered 
when making further key decisions.

There were many constraints with the available CC 
data. These limitations included the following:

Figure 2. Weekly admissions to critical care.
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● The length of the data supplied did not provide 
an adequate training and test set to produce a 19- 
year long prediction.

● Various changes in both hospital and govern
ment policy relating to COVID-19 impacted the 
reliability of a large proportion of the demand 
data.

● Finally, the data supplied observed CC activity 
data and therefore does not capture historical 
“unmet demand”, made up of patients who 
should have been admitted to CC but could not 
be admitted.

Time-series methods such as Prophet were 
explored but not successful in producing an accu
rate forecast. The prophet method, developed by 
Facebook (now Meta), is typically effective for time 
series that exhibit strong multiple seasonal pat
terns, such as day-of-the-week and yearly effects, 
which are prominent in Facebook traffic data 
(Taylor & Letham, 2017). However, its perfor
mance may decline in scenarios where these seaso
nal features are weak, particularly over long-term 
forecasting horizons, which is the case in our 
paper. Regarding the impact of COVID-19 on fore
casting, although several strategies have been pro
posed (Hyndman & Rostami-Tabar, 2024) to 
address time series data influenced by the pan
demic, it was decided that, given the described 
combination of data limitations, judgmental fore
casting, which relies on the expertise of key per
sonnel, was the most appropriate approach to 
adopt.

The main advantage of adopting a judgmental 
approach in our study was the ability to include useful 
information into the trajectories that cannot be 
derived from time series methods (Hyndman & 
Athanasopoulos, 2021) i.e. the new service changes 
and the reconciliation of the unmet demand. 
Incorporation of domain knowledge meant that the 
judgemental trajectories could take account of the 
following changes in future demand:

● There is some “unmet demand” from patients 
with lower care needs who are not admitted to 
CC.

● A range of new service developments which will 
impact the volume of patients requiring CC are 
due be introduced at various points over the 
modelled time period.

● The trend trajectories for increased demand for 
CC, based on expertise and analysis of historic 
demand including demographic and population, 
changes over the last 20 years (Jones et al., 2020).

Informed by Jones et al. (2020) and their own 
practical knowledge, the UHW CC teamconsidered 

that growth would be unlikely to be less than 3%, 
which is in line with their locally held data. 
Therefore, this figure was decided as the basis of the 
growth distribution.

Annual growth was sampled from the distribution 
N 0:05; 0:025ð Þ þ 0:03 and considers knowledge of the 
CC department in CAVUHB, service developments 
impact on growth, and knowledge of other growth 
trends in similar UK CC departments. When the 
resulting growth was calculated at less than 3%, it 
was resampled to ensure a realistic level of demand 
growth each year. Demand for new workstreams was 
sought from business case proposals as well as liaising 
with wider colleagues in CAVUHB with specialised 
knowledge on the new services i.e., stroke specialists. 
During the iterative meeting cycles demonstrated in 
Figure 1, various demand trajectories were produced 
and validated with the CC team, who also dissemi
nated the information amongst colleagues for a wider 
assessment and comment, which was brought back 
and incorporated.

The derivation of the projected demand did not 
explicitly incorporate population projections and are 
assumed to be captured in the trend proportion of the 
calculation. The CC department mainly treats 
CAVUHB patients, but due to UHW’s position as 
a tertiary centre, it accepts patients from other loca
tions in Wales with the clinical decision to transfer 
into or out of UHW being variable and complex. 
Therefore, the overall population served which 
would need to be included in analysis is complex and 
varies over time based on clinical need. This project 
did not analyse or include CC departments in other 
hospitals across Wales. Additionally, the population 
that the CC department is serving will change over 
time as service developments are incorporated (spe
cialist services are provided by CAVUHB to health 
boards beyond CAVUHB), equally some services are 
provided for CAVUHB population at other hospitals 
in the health board.

The demand trajectories were created using 
a simulation approach, comprising of 1000 simula
tions (runs).

The output is a range of total admissions for 
each year per workstream between 2022 and 2040 
and can be seen in Figure 3. Work was required to 
disaggregate the admissions down to accommodate 
the simulation requirements; first, to a weekly level 
and then down to three-hour periods based on the 
previous admission patterns identified in 
WardWatcher data. Any new workstreams imple
mented as part of a service development follow 
a uniform pattern from week to week with the 
three-hour proportions based on the workstream’s 
elective or emergency status. The final demand trajec
tories that were used in the simulation model were 
discussed and approved by the CC team.
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The projected demand for CC is an input into the 
simulation model showing what the implications on 
CC beds are if the CC arrival demand is at a particular 
level. The demand figure can be changed and alter
native scenarios run to explore capacity requirements 
at different demand levels.

4.2. Introduction to the critical care simulation 
model

Here we describe a DES model of the CC department 
in UHW developed to help with the planning of pro
visions through to 2040. The simulation model is 
described in the following sections using the STRESS 
guidelines (Monks et al., 2019
Purpose of the model: To study the performance of 
the CC department assuming demand levels for var
ious years. Due to the margin of error that comes with 
long-range trajectories, this is a modelling tool for use 
by the health board in the future as more accurate 
demand data and forecasts emerge.
Model outputs: patient level data and hourly census 
data capturing patient LOS, a count of admission 
delays over 4 hours, and the number of hours at 
capacity.
Experimentation aims: To calculate the expected bed 
requirements and provide details on how varying bed 
numbers and changes to service decisions can impact 
patient spells, based on the demand levels calculated in 
the trajectories for the years 2030 and 2040.

4.3 Model logic

The model captures the flow of patients during 
their entire hospital spell both within and outside 
of CC. The model captures the CC department 

broken down into an ICU and a PACU where 
patients spend time either receiving level 2 (L2) 
or level 3 (L3) care.

Due to the complex nature and variation in patients 
within CC, the demand is considered in workstreams, 
where each workstream corresponds to either an elec
tive or emergency grouping. For context, Emergency 
General Medicine, Elective General Surgery, and 
Emergency Neurosurgery are some of the larger work
streams seen in the CC department. These work
streams therefore comprise of patients with similar 
characteristics and, for cases when patient admissions 
in a workstream are rare, workstreams with similar 
characteristics have been combined based on clinical 
judgement.

4.3.1 Base model logic
The model is a flow, Figure 4, capturing the journey 
into, out of, and within CC (split into ICU and 
PACU) for a single workstream. This structure is 
repeated in the model for each workstream opera
tional in the scenario.
Patients are admitted into the CC unit for either an 
elective or emergency stay. They transition around 
units/beds as their care needs change. Patients may 
have a delayed admission if an appropriate bed is not 
available. For patients with a bed already assigned, any 
delay time spent waiting to transfer to another unit 
will be spent in their current bed. Patients may face 
a delay between being registered fit for discharge and 
the process of being discharged in order to follow the 
current discharge pattern where no discharges happen 
overnight. PACU stays are generally short due to their 
elective nature; however, any patients who require 
more than 72 hours of critical care are transferred to 
ICU for care.

Figure 3. Visualisation of the calculated admission numbers through to 2040.
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4.3.2 Scenario logic
In the base model, PACU is shut from Saturday noon 
to Monday noon with any patients still requiring care 
being transferred to ICU. In the future scenarios for 
2030 and 2040, the operating hours for PACU are 
changed to be open seven days a week. The future 
scenarios involve PACU running at a lower capacity 
over the weekend, retaining the equivalent admission 
pattern of Monday to Friday but with an additional 
few admissions on the weekend, meaning that any 
patients who would have traditionally been transferred 
to ICU on a Saturday now continue their stay in 
PACU.

The impact of discharge times on occupancy was an 
additional point of interest during the work. Two 
scenarios were developed looking at adjusting the like
lihood of being discharged. In the first scenario, the 
probability profile used for discharge by hour was 
inflated from the baseline scenario while retaining 
the same shape; however, for the second scenario, 
discharge was equally likely across all daytime hours.

4.4 Algorithms

4.4.1 Patient flow
The movement of a patient through CC is determined 
by a transition matrix outlining each state a patient 
may be in: admission, ICU L2, ICU L3, PACU L2, 
PACU L3, or discharge. A matrix has been defined for 
each workstream to encompass the typical treatment 
received by a patient of that specialty (Table 1).

Typically, elective patients stay in PACU with 
a small number of transfers to ICU, while emergency 
patients will exclusively stay in ICU. Once a patient 

has finished their stay in their current state, the matrix 
is used to determine their next destination.

If a patient is to move from one unit to another, and 
no bed is available, they will continue receiving care in 
their current bed/unit and will be moved as soon as 
a bed is available.

4.4.2 Discharge
How and where a patient is discharged to varies from 
workstream to workstream, and this has been cap
tured using different distribution parameters per 
workstream (example shown in Table 2) The model 
splits up discharges into three methods, discharged to 
ward in UHW, discharged to home/another medical 
facility, or deceased. This method of discharge is 
sampled when the entity is first initialised in the 
model.

The unit tries to maintain the practice of only dis
charging patients during the day, and therefore the 
model has been parameterised to model a varying 
likelihood of being discharged in daytime hours and 
a 0% chance of being discharged at night in order to 
replicate the working practice. Patient deaths can hap
pen at any time.

Figure 4. Model flow diagram.

Table 1. Percentage of patients transitioning between activ
ities when ready to leave an activity - example from one 
workstream.

Elective General 
Surgery ICU_2 ICU_3 PACU_2 PACU_3 Discharge

Arrivals 0.0 0.4 98.9 0.7 0.0
ICU_2 0.0 10.0 0.0 0.0 90.0
ICU_3 66.7 0.0 0.0 0.0 33.3
PACU_2 1.8 1.1 0.0 0.0 97.1
PACU_3 50.0 50.0 0.0 0.0 0.0
Discharge 0.0 0.0 0.0 0.0 0.0
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4.5 Model components

4.5.1 Entities
Entities in the model represent individual patient 
spells in UHW and are either categorised as CC 
patients and non-CC patients. A CC patient is defined 
as a patient who spends the entirety or some of their 
hospital spell in CC whereas, non-CC patients do not 
enter CC during their spell.

4.5.2 Activities
The activities in the model can be thought of in three 
groups: assign bed activities, stay activities, and dis
charge activities.

In the assign bed activities, a bed resource of the 
required type is assigned to the entity. The patient 
retains the bed until they are discharged or are trans
ferred to another unit.

The stay activities are where entities spend their 
intended time in a hospital bed; an example of one 
workstreams intended stay is in Table 3.

The activities represent either L2 or L3 care 
received in ICU or PACU or care received in a ward 
bed outside of the CC units.

There are additional “dummy” activities in the 
model used to implement model logic including sam
pling distributions for entities.

4.5.3 Resources
The model contains three different bed resources, 
ICU beds, PACU beds and Ward beds for use in 
their respective parts of the model. The bed 
resources were constrained to varying levels across 
the scenarios to mimic the finite pool of beds avail
able or were set to very high levels to test an uncon
strained environment.

Within the model, staff and resources were not 
directly modelled, and therefore no patients 
experience a delay when changing care level. 
Staffing resources are assumed to match the num
ber and type of bed; thus, they were not simulated 
and can be directly calculated as a result of the 
modelling.

4.5.4 Queues
Entities are subject to queuing when a bed resource is 
not available. This delay time is captured in the model 
outputs.

4.5.5 Entry/Exit points
Entities enter the simulation at an entry point relevant 
to their specialty workstream, and their patient cate
gorisation is a CC patient or a non-CC patient.

Entities exit the model once they have completed 
a full hospital spell. For each workstream, there are 
a set of exit points that represent the discharge type, 
i.e., discharged from ward and discharged from PACU 
to home.

4.6 Data

4.6.1 Data sources
The model logic and input parameters are informed by 
the WardWatcher CC data, demand projections, and 
domain knowledge from the project implementation 
team. As discussed in the Data Section, the data 
spanned from April 2018 to November 2021. In 
total, full records for 2770 admissions were used to 
inform the model input parameters.

4.6.2 Input parameters
The model input parameters are unique to each work
stream and are laid out in the model input file. 
(Summarised in Table 4 and 5). The input parameters 
have been developed using past data, which spans 
from 2018 to 2019 for emergency admissions and 
the year 2021 for elective admissions. It has been 
assumed that over the modelling period, there are no 
changes to individual patient activity, and therefore 
for example the likelihood of an Elective Vascular 
Surgery patient being discharged to ward is the same 
in 2021 and it is in 2030.

4.6.3 Pre-processing
Details of the pre-processing required to shape the 
model inputs can be found in the Data section.

4.6.4 Assumptions
The data used to populate the model is from past 
patient spells and therefore it is assumed that previous 
patient behaviour will be representative of future 
patient behaviour, i.e., there will be no changes in 
patient LOS, or levels of care received over time. As 
mentioned above, the data used to build these char
acteristics spanned from 2018 to 2019 for emergency 
admissions and the year 2021 for elective admissions.

The profile used for determining discharge has 
been built off the current patterns on discharge seen 
across the day and therefore the model assumes that 
there are no changes in practice and/or policy that will 
change patient discharge times and release of a bed.

4.7 Experimentation

A number of scenarios were run as part of this study to 
ascertain the capacity levels required in CC based on 

Table 2. Percentage of patients to discharge destinations - 
Example for two workstreams.

Workstream Ward
Other 

hospital
Home/Non- 

medical Died

Elective General Surgery 93.9 4.3 0.4 1.4
Emergency General 

Surgery
83.1 1.7 1.4 13.8
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the demand trajectories discussed in the demand tra
jectories Section. The scenarios are listed below and 
assesses the impact that bed availability has on patient 
waiting times, ICU, and PACU utilisation and how 
often ICU and PACU run at capacity. These run under 
three different constraint levels: all beds uncon
strained, CC beds constrained, and all beds con
strained. This was used as an approximation of the 
cancellation/postponement of surgeries as elective 
patients were unable to reserve a ward bed in advance 
of their surgery. Two further scenarios tested the 
adoption of two different discharge profiles, the 
observed discharge profile displayed in Figure 5, and 
a proposed uniform profile of discharging between 
08:00 and 22:00 (Figure 6).

Scenarios:

● Baseline;
● 2030;
● 2040;
● Discharge profile 1 (using 2030 input 

parameters);
● Discharge profile 2 (using 2030 input 

parameters).

Results of each scenario were analysed and visua
lised before being discussed with the project imple
mentation team for review.

4.8 Model validation

During the model building phase, the model structure 
and outputs were regularly discussed with the project 
implementation team to ensure their expert judge
ment informed the logic implemented in the model. 
In addition, where a set of indicators derived from the 
model were monitored and analysed to evaluate the 
performance of the unit in comparison to real-world 
activities and behaviours that can be pulled out from 
the past WardWatcher data.

For validation purposes, the model was run for 
a historic period, April 2 2018 to April 7 2019, which 
is the most recent 1-year period not impacted by the 
COVID-19 pandemic. This allowed for the model 
results to be compared against the real patient-level 

data captured in the WardWatcher dataset. The model 
was run for 100 runs to account for the variability in 
the system. The model mean LOS was 133 hours com
pared to the 127 hours seen in the actual data, suggest
ing that the model provides an accurate representation 
of reality (See Table 6). Figure 7 and 8 show that the 
model tracks occupancy across the year in line with 
the actual data points.

A fundamental part of the validation was to 
fine-tune the profile used for discharges to ensure 
they mimic the working practices of the depart
ment. The UHW CC team was consulted with the 
results during the validation process to ensure the 
model behaviour, and the results were in line with 
their expectations and experiences.

5. Results

Modelling was performed assuming a desired propor
tion of time spent at maximum capacity of 5%, as 
agreed with CAVUHB.

The demand for CC is an input scenario into the 
model showing the implications on CC beds if CC 
arrival demand is at a particular level. Evaluating the 
performance in 2030 with the current physical capa
city of 48 ICU beds and 12 PACU beds available to be 
commissioned, when using the projected level of 
demand as an input, the model suggests that the 
department is expected to be at capacity 9% of the 
time. An additional 3 ICU beds would need to be 
added in order to facilitate a service where bed capa
city is not reached more than 5% of the time (Table 7).

Table 3. Activity timing per workstream example.
workstream Activity Distribution Parameter1

Elective General 
Surgery

ICU_2 NEG_EXP 0.785972222

Elective General 
Surgery

ICU_3 NEG_EXP 4.689236111

Elective General 
Surgery

PACU_2 NEG_EXP 0.952860809

Elective General 
Surgery

PACU_3 NEG_EXP 1.213541667

Elective General 
Surgery

Ward_Stay_For_CC FIXED 0

Elective General 
Surgery

Ward_Stay_For_Disch NEG_EXP 9.287923177

Table 4. Input parameters.
Input Parameter Description

Entity Arrival Distributions Due to the variation is arrivals across the day, the inter-arrival distributions are reparametrised every 3 hours. Since 
they are non-stationary, the distributions are set to match the busiest period while for quieter periods a proportion 
of the arrivals are removed from the model, using the simplification method of thinning (Lewis & Shedler, 1979)

Activity Timings The intended LOS for each unit/care level stay is sampled from the respective distribution every time an entity enters 
a stay activity.

Discharge Method Distributions Patients can be discharged in a number of ways. The method is set for an entity just after it has been generated in 
a dummy activity. The likelihood of each discharge method is specific to each workstream.

Transitions The routing between care levels and unit is informed via a transition matrix for each workstream i.e., from a L3 bed in 
PACU, there is a 25% chance a patient moves to a L3 bed in ICU.

Number of Critical Care Stays 
Distributions

Since each entity represents a patients hospital stay, an entity can route through the CC activities more than once. In 
general, for over 96% of admissions patients only have one episode in CC.
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With the expectation of a new department being 
commissioned prior to 2040, there were no constraints 
on the number of beds to initially test in the 2040 
scenario, and therefore runs of the model were used 
to determine reasonable levels of ICU and PACU beds. 
With the projected level of demand in 2040, constrain
ing at 70 ICU and 19 PACU beds resulted in the 
expectation of being at capacity only 1% of the time. 
Through consultation with the UHW CC team and 
further model runs an alternative, less generous 

capacity of 66 ICU and 19 PACU beds is suggested 
to achieve maximum occupancy approximately 5% of 
the time (Table 7).

The impact of the hospital ward beds outside of 
CC becomes obvious when the 2030 demand is run 
through a scenario with ward bed capacity set to 
typical level of occupancy seen in the baseline sce
nario. With ward beds capacity not increasing in 
line with either the increased number of admissions 
of CC and non-CC patients, or the increased capa
city in CC, a growing level of unmet demand that 
never recovers can be observed (see Figure 9). The 
prioritisation of critical care patients in the model 
ensures flow is maintained in the department; how
ever, access for non-CC patients is challenging.

Adjusting the discharge profile proved to have an 
effect on the proportion of occupancy lost to DTOC. 
With the current discharge profile, the outputs 
showed that occupancy lost to DTOC on average was 

Table 5. Yearly input parameter Summary.
Baseline 2030 2040

Demand Synthetic arrival profile (based on elective year 
2021, emergency years 2018-2019)

Predicted 2030 arrival profile including 
proposed service developments

Predicted 2040 arrival profile including 
proposed service developments

Workstreams 20 workstreams (8 Elective, 12 Emergency) 29 workstreams
● (11 Elective, 18 Emergency)

29 workstreams
● (11 Elective, 18 Emergency)

PACU hours PACU open 5 days PACU open 7 days, 4 elective arrivals 
per weekend

PACU open 7 days, 4 elective arrivals per 
weekend

Table 6. Validation results summary (mean and standard 
deviation)

Modelled 
Output

Wardwatcher 
Data

Average Number of Patients Seen in CC 
(SD)

1910 (46.2) 1816

Average LOS hours (SD) 133 (4.4) 127 (233.4)
Average Daily Beds Occupied in ICU (SD) 30 (5.9) 28 (2.8)
Average Daily Beds Occupied in PACU 

(includes days when unit closed) (SD)
2 (2) 3 (1.7)

Table 7. 2030 and 2040 CC department constrained results summary (mean and 95% confidence intervals).
2030 2040

ICU: 48 
PACU: 12

ICU: 51 
PACU: 12

ICU: 66 
PACU: 19

ICU: 70 
PACU: 19

Mean number of patients waiting over 4hrs to 
access Critical Care (95% CI)

18.2 (12.1–24.3) 3.3 (2.0–4.5) 5.6 (4.1–7.2) 0.9 (0.3–1.4)

Mean number of days at capacity in ICU (95% CI) 28.4 (25.6–31.2) 10.4 (9.1–11.7) 13.4 (11.6–15.2) 3.5 (2.9–4.1)
Mean number of days at 

capacity in PACU (95% CI)
14.1 (13.5–14.8) 15.2 (14.4–16.0) 1.8 (1.6–2.0) 1.9 (1.7–2.0)

Mean ICU utilisation (95% CI) 78.2% (77.7% − 78.6%) 73.5% (73.1% − 73.9%) 76.4% (76.1% − 76.8%) 72.1% (71.8% − 72.4%)
Mean PACU utilisation (95% CI) 48.5% (48.2% − 48.8%) 48.8% (48.4% − 49.1%) 40% (39.8% − 40.3%) 40.2% (40.0% − 40.5%)

Figure 5. Inflated discharge profile, mimicking shape of profile used in baseline version of model.
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8%. However, when we inflate the likelihood of dis
charge equally across the daytime hours, leaving the 
overall shape of the model’s inputted discharge profile 
to follow its original pattern, there is an improvement 
of only 5% of the occupancy being delayed. When the 
likelihood of discharge is flat and equally highly likely 

across the day, the percentage of occupancy lost to 
DTOC improved further to only 3%. Despite these 
improvements, the delays observed did not follow 
the same pattern. Our results show that the delays 
experienced by patients waiting to access CC were 
lower when the discharge profile follows its current 

Figure 6. Consistent discharge profile across daytime hours.

Figure 7. Daily maximum ICU occupancy from 18/19 actual data compared to the average from model runs note model warming 
up for approximately 3 months to hit a steady state.

Figure 8. Daily maximum PACU occupancy from 18/19 actual data compared to the average from model runs.
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shape but with an increased likelihood of discharge. 
This highlights the key relationship between admis
sion and discharge times and the need to get patients 
discharged earlier in the day in advance of the peak 
admissions (Figures 10 and 11).

6. Discussion

This study has provided CAVUHB with a flexible DES 
model that can be re-run with different calculated 
demand profiles when service decisions are made in 
order to ascertain the optimal capacity for the func
tioning of the CC department and to increase the 
robustness of future plans. The current simulation 
model is different to other CC models presented in 

the literature (Williams et al., 2020), in that a high- 
level CC model is presented, capturing bed require
ment capacity separately at ICU and PACU, alongside 
that for the rest of the hospital as the key factor to 
ascertain optimal capacity levels for the CC 
department.

The model offers a wider picture of the impact 
different bed capacity levels have on the demand for 
hospital beds faced from ICU patients. In addition, 
similarly to the Ordu et al. (2021) study, our model 
incorporates expected long-range demand to generate 
expected demand. Capturing expected trends in 
patient growth is important in order to generate sui
table patient demand for beds which can inform hos
pital’s capacity planning strategy. The demand takes 

Figure 9. Outputs from a single extreme scenario run showing the escalation of unmet demand if ward beds are not increased in 
accordance with critical care growth.

Figure 10. Frequency of admissions and discharges in CC department by hour based on the discharge profile seen in Figures 5. 
Note, the peak in discharges in this figure is more extreme than seen in Figure 11.
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into account trends in the future using long-range 
trajectories and subject matter expertise of demand 
to represent patient need in the form of patient 
inter-arrivals.

The simulation model presented in this paper 
shows that there is a need for an increased number 
of beds for both ICU and PACU in UHW for 2030 
in order to meet the expected demand generated 
from the projections. CAVUHB have been pro
vided with the simulation model and logic used 
to form the demand trajectories and, therefore are 
in the position to update the modelling and 
improve conclusions with any changes made to 
the planned services developments and general 
CC trends.

Based on the demand trajectories calculated for 2040, 
the recommendation is to commission 66 ICU beds and 
19 PACU beds to effectively manage the service and 
ensure patients are seen in a timely manner.

This work shows that increased demand on CC will 
cause capacity issues across the hospital if ward bed 
numbers are not adjusted accordingly. The discharge 
scenarios have shown that, on average, with arrivals 
peaking late afternoon, enough discharges need to 
have occurred in advance to allow free flowing admis
sions to CC. To conclude, the relationship between 
admissions and discharges are key to maintaining flow 
in CC, and this relationship needs to be considered 
within all decision making as changing one will affect 
the other.

The model results, as presented in the previous 
section, show that additional beds are needed for 
UHW to fulfil future capacity requirements.

Furthermore, the model shows that by 2030, the 
current physical infrastructure of UHW’s current CC 
Department will be outmatched by the calculated 
demand trajectory, leading to the maximum occu
pancy being reached 9% of the time. This finding is 
concerning since the opening date of UHW2 has been 
moved, and as stated before, the CC Department at 
UHW provides crucial services that are unavailable 
elsewhere in Wales.

The new CC Department in UHW2 will need to be 
approximately 42% bigger than the existing one to 
satisfy predicted requirements in 2040 (from 48 to 66 
ICU beds and from 12 to 19 PACU beds).

Modelling was also done by varying other levels of 
desired time spent at capacity, showing that, in 2040, 
1% time at maximum occupancy can be achieved with 
an additional 4 ICU beds over the number needed for 
5% (for a total of 70 beds).

The effects of DTOC were also investigated, and it 
was found that simply reducing the DTOC may not be 
enough to reduce delays accessing critical care; how
ever, the key consideration is the dependency across 
the day between discharges and admissions.

7. Practical implications, impact and 
limitations

The work presented in this paper has practical impli
cations for the hospital CC unit and their decision 
making. The results and insights drawn from the 
model have been considered by the senior leadership 
teams at CAVUHB in order to inform their business 
case for the new UHW2 CC department. The work has 

Figure 11. Frequency of admissions and discharges in CC department by hour based on the discharge profile seen in Figure 6.
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been presented as an industrial case study talk at the 
OR Society Simulation workshop (Lentle & Sachser,  
2023) and been shared by the CC consultant to both 
medical peers and at strategic meetings within 
CAVUHB to inform their strategic planning.

The UHW CC team can now be supported by the 
modelling team to continue updating the model 
assumptions and parameters and use it to make 
more informed decisions regarding CC capacity in 
the future.
There are a number of limitations that affected the way 
the model was developed and the analysis undertaken. 
This concern primarily the data available to develop 
both the model and the demand forecasts generate. 
The data available only explains what happened to 
patients receiving CC and not what should have hap
pened as those who were denied a CC bed are not 
captured in the data.

The model developed focuses on the use of bed-related 
resources, and it was agreed that staff resources would not 
be included as staff numbers can be derived from bed 
numbers using well established ratios set at a national 
level (The Faculty of Intensive Care Medine, 2022).

Predicting the long-term changes in demand and 
other input parameter inherently comes with a high 
level of uncertainty. The work presented in this 
paper assumes that input parameters described in 
Table 4 such as LOS remain unchanged in 2040. 
The input variable of demand is calculated using 
experienced historical trend patterns and includes 
a level of unmet demand, service knowledge, policy 
decisions, and advancements in technologies and 
treatments. The data and knowledge around the 
facilitation of new workstreams is generally quite 
poor in comparison to the richness of the data we 
have for the existing larger workstreams. Population 
changes were considered a lesser driver to changes 
in demand compared to the local and UK wide 
trends in admission service developments, and the 
unmet demand population change is assumed to be 
incorporated in the trend patterns. Capturing the 
changes in the population demographic is made 
more complicated by the fact that UHW is 
a tertiary centre and causes variability over time in 
the base population.

8. Conclusions

This paper presents a case study of an ICU department 
in Wales that illustrates how simulation modelling was 
used as a decision-making tool to help inform the size 
of the CC department within a new hospital in South 
Wales. Ensuring the physical size of the CC depart
ment is suitable at the new site is crucial due to the 
challenges of expanding the department size when 
physical space is limited.

Data provided by CAVUHB, including admis
sions, discharges, and transitions between units 
and ward, was used to simulate patient flow within 
the CC department and interactions of these 
patients with the wider hospital. The model incor
porated a variety of behaviours observed in the CC 
department rather than an idealised scenario, e.g., 
discharge patterns.

The simulation outputs show that additional ICU 
and PACU beds will be needed for UHW2 to fulfil 
demand and capacity requirements. Different levels of 
“risk appetite” were considered, reflected in the 
requirement to adhere to 5% and 1% of time spent at 
maximum capacity.

A concerning finding was that, due to the delay in 
building the new UHW2 hospital, the existing hos
pital will be unable to maintain the desired maxi
mum time spent at occupancy of 5%. The interaction 
between the CC department and other wards is a key 
relationship that must be considered in future deci
sion making as insufficient ward beds directly 
impacts CC.

Simulation modelling provides a useful tool in the 
planning of healthcare services. It provides amechan
ism to test varying capacities and conditions to under
stand the impact on patients without causing harm or 
disruption to flow. The work presented in this indus
trial case study paper has had real-life impact in the 
health care domain, informing a key element of an 
infrastructure planning project using simulation as 
a decision-making tool, with transferable insights 
applicable to the planning of other future CC units.
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