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ABSTRACT The increasing deployment of Internet of Things devices has introduced significant cyber
security challenges, creating a need for robust intrusion detection systems. This research focuses on improv-
ing anomaly detection in industrial Internet of Things networks through feature reduction and selection.
Experiments were performed to compare the effectiveness of Minimum Redundancy Maximum Relevance
for feature selection with Principal Component Analysis for feature reduction. Six machine learning
algorithms—Decision Trees, k-nearest neighbors, Gaussian Support Vector Machine, Neural Network,
Support Vector Machines kernel, and Logistic Regression Kernel—were evaluated for both binary and
multi-class classification using feature sets of 4, 12, 23, 50, and 79 features. The results reveal that Minimum
Redundancy Maximum Relevance is superior to Principal Component Analysis in identifying crucial
features. Notably, Minimum Redundancy Maximum Relevance achieves high accuracy with just 12 features,
where the Decision Tree classifier reached an outstanding 99.9% accuracy in binary classification, and
k-nearest neighbors achieved 99% accuracy in multi-class classification. The article emphasizes the critical
role of feature engineering, with a specific focus on feature selection and reduction, and elaborates on
applying MRMR and PCA algorithms to various feature sets. By comparing these methods, it showcases
their influence on both model performance and complexity, leading to the development of more efficient
and precise intrusion detection systems for Industrial IoT networks. What sets this study apart from previous
ones is its novel demonstration of how these techniques significantly reduce training time and model
complexity while maintaining or even improving performance, confirming the effectiveness of strategic
feature utilization in strengthening Industrial IoT security by balancing accuracy, speed, and model size.

INDEX TERMS Intrusion detection system, Industrial Internet of Things, feature selection, feature reduc-
tion, minimum redundancy maximum relevance, principal component analysis.

I. INTRODUCTION

The integration of Internet of Things (IoT) devices into Infor-
mation Technology (IT) and Operational Technology (OT)
domains has resulted in significant technological advance-
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ments. However, this integration also introduces considerable
cybersecurity challenges that threaten the foundational prin-
ciples of safety, efficiency, mobility, and security within
operational ecosystems. The rise of IoT has created a unique
environment where smart devices and cloud services con-
verge, transforming industrial settings [1]. Currently, there
are 17 billion connected devices globally, doubling the
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world’s population, making IoT a crucial component of our
interconnected society [2], [3], [4]. Cyberattacks are now
a pervasive threat, affecting online privacy, social media,
businesses, and critical infrastructure [5].

Agile and adaptable strategies are essential for navigating
the dynamic IoT ecosystem. IoT continuously transforms
the security and risk landscape of interconnected automated
systems. The number of cybersecurity threats has surged,
from 50 million cyberattacks in 2010 to 900 million in
2019. The annual cost of security breaches is projected to
exceed $10.5 trillion US dollars by 2025, highlighting the
urgent need for flexible security measures [6]. This research
explores the complex field of IloT networks, where the inte-
gration of smart devices and cloud platforms necessitates
advanced security measures.

The interconnected nature of IoT devices facilitates the
exchange of sensitive data and efficient communication.
Cloud-based systems are fundamental to IoT, enabling
remote control, data processing, and the application of
sophisticated artificial intelligence algorithms [7]. How-
ever, this interconnectivity also exposes IloT devices to
various cybersecurity threats, necessitating robust security
protocols.

IDS act as vigilant protectors, using a mix of administra-
tive, legal, and technological controls to enhance security,
privacy, and confidentiality against unauthorized access [8],
[9]. IDSs employing anomaly detection are effective in iden-
tifying zero-day attacks, addressing gaps left by traditional
signature-based methods [10], [11]. In this context, an intru-
sion refers to any unexpected activities, that compromise the
CIA triad (Confidentiality, Integrity, Availability) [12]. Net-
work traffic, identified by packet header fields, is crucial for
anomaly detection. Extracting relevant features from packets
helps identify abnormal behaviors indicative of unauthorized
usage, reinforcing the CIA principles.

Recent advancements in intrusion detection for IoT envi-
ronments have integrate of ML. methodologies [13]. However,
the assumption that IoT devices have uniform feature pat-
terns and packet structures is challenged by the inherent
diversity in hardware specifications, functionalities, compu-
tational capabilities, and feature generation capacities [14].
Feature dispersion during data aggregation, where attributes
often have zero or null values, further complicates the chal-
lenge, hindering data modeling accuracy and efficiency.
Consequently, feature selection is critical in ML-based intru-
sion detection solutions to improve detection accuracy and
training efficiency. Various techniques, such as Modified
Mutual Information Feature Selection (MMIFS) combined
with SVM, Flexible Mutual Information Feature Selection
(FMIFS), and SVM integrated with NN, have been proposed
to enhance the identification of behavioral variables [15],
[16].

Despite these efforts, achieving accuracy in anomaly detec-
tion remains a significant challenge in the ever-evolving
IoT landscape [17]. This paper presents a novel approach
to feature selection for ML-based IDS, aiming to improve
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adaptability and efficiency in the diverse IoT environment.
In IIoT networks, characterized by the extensive integration
of smart devices and cloud services, the demand for robust
security measures is heightened. Traditional defenses, such
as firewalls and signature-based IDSs, struggle to cope with
the dynamic nature of I1oT, leading to the exploration of inno-
vative methodologies, particularly those leveraging artificial
intelligence and ML.

This research utilizes the IOTID20 dataset, capturing
complexities in both binary and multi-class classification
within IIoT networks. It emphasizes the importance of
feature selection algorithms and data processing, focus-
ing on pre-processing and feature extraction. New param-
eters important to IloT systems, previously unexplored,
were introduced. The study provides an in-depth analy-
sis of feature selection using the IOTID20 dataset and
strategic implementation of MRMR (a supervised tech-
nique) and PCA (an unsupervised technique). It offers a
detailed comparison of their performance, showing that
supervised techniques are generally preferred. The feature
selection process includes scenarios managing 4, 12, 23, and
50 columns, applied to six ML algorithms: DT, KNN, Gaus-
sian SVM, NN, SVM KERNEL, and Logistic Regression
Kernel.

This dual approach skillfully navigates the complex secu-
rity landscape of industrial 10T, addressing challenges in
both binary and multi- class classifications. By applying
advanced feature selection and reduction techniques along-
side various ML algorithms, the study provides clear insights
and solutions for securing advanced industrial IoT networks.
The results show superior performance compared to previous
studies. Six high-performance ML models are presented for
a range of applications, offering a high-performance model
with reduced complexity.

The next sections are organized as follows: the Research
Goals section defines the aims of this study, the Related
Works section surveys previous studies connected to this
research, the Methodology section details the methods
employed, the Experiment and Results Discussion section
covers the experimental design, results, and discussion, and
finally, the Conclusion section summarizes the main findings
and contributions of the paper.

Il. RESEARCH GOALS
A. MAIN OBJECTIVE

The main objectives of this research are as follows:

a) Evaluating the effectiveness of feature selection (MRMR)
and feature reduction (PCA) in enhancing anomaly detec-
tion within IloT networks.

b) Reducing computational complexity while maintaining
high detection accuracy across multiple machine learning
models.

¢) Demonstrating the scalability of the proposed dual-feature
selection approach in IloT environments, addressing both
binary and multi-class classifications.
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B. MAIN CONTRIBUTIONS
Figure 1 illustrates the approach used in our study. This study
makes several key contributions:

a) Introduction of a dual feature selection approach combin-
ing MRMR and PCA, specifically tailored for anomaly
detection in Industrial IoT (IIoT) networks.

b) Comprehensive evaluation of machine learning algo-
rithms for both binary and multi-class classification using
the IOTID20 dataset.

¢) Demonstrated reduction in computational complexity
while maintaining high detection accuracy, making the
approach more suitable for real-time IloT environments.

d) Exploration of new security parameters within the
IOTID20 dataset that were previously unexplored, offer-
ing valuable insights for improving the performance of
intrusion detection systems (IDS).

e) Comparative analysis showing the advantages of MRMR
over PCA in maintaining model accuracy and efficiency
across various classification tasks.

( Start: Read Data (I0TID20 Dataset) )

v

[ Data Preprocessing (Cleaning, Encoding, Normalization) ]

v

Feature Engineering )
Feature Selection Feature Reduction

MRMR PCA
] v
[ Machine Learning Algorithm ]

FIGURE 1. Comparative approach flow chart.

lll. RELATED WORKS
In the domain of intrusion detection within IIoT networks,
identifying intrusions is a crucial function of IDS. This
section reviews and analyzes significant works in this field,
covering a range of methodologies, algorithms, and datasets.
Alkahtani et al. introduced a deep learning-based framework
for intrusion detection in IoT networks, using advanced algo-
rithms like CNN, LSTM, and a hybrid CNN-LSTM model.
They also employed PSO for feature selection and integrated
deep models to enhance anomaly detection efficiency [18].
Indrasiri et al. proposed a real-time detection approach for
malicious traffic in both IoT and local networks, emphasizing
network-based intrusion detection. Their study combined two
publicly available datasets: UNSW-NB15 for local network
traffic and IoTID20 for IoT traffic, creating a comprehensive
multi-domain dataset with 142,332 records. PCA was used
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to reduce features to 30 in each dataset for their fusion.
Various ML models, including RF and logistic regression,
were evaluated. While tree-based models performed well
individually, their efficiency decreased when applied to the
merged dataset. To address this, the authors developed a
stacked ensemble model called Extra Boosting Forest (EBF),
combining an extra tree classifier, gradient boosting, and RF.
This model achieved 98.5% accuracy for binary classification
and 98.4% for multi-class classification, surpassing current
state-of-the-art methods. Rigorous statistical tests confirmed
the significant performance improvement of EBF over other
models [19].

Furqgan and Anca Delia Jurcut introduced a novel
dataset generation approach, combining traffic data from
Software-Defined Networking (SDN), IoT, and traditional
IP networks to reflect real-world complexities. The creation
of relevant datasets is vital for training robust Al sys-
tems. To address class imbalance and overfitting risks, they
proposed an innovative Synthetic Data Augmentation Tech-
nique (S-DATE), emphasizing smart data augmentation for
model generalization. They also developed a Particle Swarm
Optimization-based Diverse Self Ensemble Model (PSO-D-
SEM) to introduce diversity within the ensemble architecture,
highlighting the importance of dataset diversity in improving
classification accuracy [20]. This method involves three key
stages [21]:

A. INITIAL DATA PROCESSING STAGE

Data preprocessing steps aimed at improving classification
outcomes by eliminating duplicate instances, handling miss-
ing values, converting non-numeric data to numeric, and
standardizing values.

B. DIMENSIONALITY REDUCTION (FEATURE SELECTION)
STAGE

This stage is divided into two sub-stages:

a) Feature Ranking using IG and GR Metrics: Features are
ranked using Information Gain (IG) and Gain Ratio (GR)
filter-based approaches, resulting in top-ranked feature
sets for the IoTID20 dataset and the NSL-KDD dataset.

b) Development of Hybrid Feature Selection Method: A
hybrid approach uses intersection and union rules to refine
feature sets by removing redundant features.

C. MODEL TRAINING AND CLASSIFICATION STAGE

Five ML algorithms (ANN, C4.5, Bagging, KNN, and
Ensemble) classify the generated traffic feature sets into
normal or intrusive categories for binary classification and
multiple categories [22], [23]. Hussein et al. proposed an IDS
tailored for IoT embedded environments, using the Meerkat
Clan algorithm for feature selection and the RF algorithm for
classification. Using the IoTID20 dataset, with identifiable
attributes removed, they created a dataset with 79 features
in three classes: normal or exploitative activity, type of
exploitation, and detailed exploitation descriptions. The opti-
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mal number of trees in the RF classifier for both binary and
multiclass classification was determined through systematic
experimental procedures [24]. Alsulami et al. introduced an
intelligent system for intrusion detection and network traffic
classification in IoT systems. Using directed ML algorithms
such as SNN, DT, BT, SVM, and KNN, the system integrated
feature engineering and data preprocessing to improve model
performance.

The MRMR algorithm was employed for feature selection,
prioritizing essential features. Rigorous evaluation using the
[0TID20 dataset, focusing on IoT-specific internet attacks,
demonstrated the robustness of intrusion detection and classi-
fication models. Feature engineering and data preprocessing
were crucial to the high- performance of these models, with
the MRMR algorithm playing a key role in identifying and
prioritizing features [25].

Ullah et al. conducted a study to enhance intrusion
detection within IoT networks using interconnected NN,
addressing computational complexities. Using the IoTID20
dataset, their sophisticated model, based on a Deep Convo-
lutional Neural Network (DCNN) optimized with algorithms
like Adam and Nadam, showed superior performance across
binary-class, multi-class, and subclass detection tasks. The
NN outperformed traditional deep learning and ML algo-
rithms, demonstrating reduced computational requirements
and efficiency in bolstering IoT network security. Feature
selection, facilitated by the Extra Tree Classifier (ETC),
meticulously selected 62 impactful features from the original
dataset, refining and optimizing the IDS [26]. Sarwar et al.
introduced the Improved Dynamic Sticky Binary Particle
Swarm Optimization (IDSBPSO) approach for feature selec-
tion in anomaly-based IDS for IoT networks. This ap-
proach enhances sticky binary PSO by incorporating dynamic
search space reduction and parameter modification. Using
IoT network datasets (IoTID20 and UNSW-NB15), the IDS
employing IDSBPSO for feature selection showed notable
performance improvements, often surpassing other PSO tech-
niques in accuracy, even with fewer features. The application
of IDSBPSO on resource-constrained IoT devices presents
a promising solution, significantly reducing processing costs
and prediction timeframes [27]. Bhavsar et al. developed
an anomaly-based IDS using a deep learning model called
Pearson-Correlation Coefficient Convolutional Neural Net-
work (PCC-CNN) for detecting network anomalies and
cyber-attacks within IoT systems. They evaluated three public
datasets: NSL-KDD, CICIDS2017, and I0TID20, covering
various network attacks like DDoS, scanning, and spoof-
ing. The PCC-CNN model employed Pearson Correlation
Co- efficient for feature selection, reducing dimensional-
ity and selecting relevant features, which were then fed
into a CNN architecture for classification. Experiments
included both binary classification (normal vs. anomaly) and
multi-class classification (specific attack types), with com-
parative evaluation against five traditional ML models. The
PCC-CNN model demonstrated high accuracy of 99% for
binary classification and 0.91% for multi-class classifica-
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tion, outperforming traditional ML models across various
metrics like precision, recall, and Fl-score. Additionally,
the model efficiently handled imbalanced data and detected
anomalies/attacks with limited training samples, exhibiting a
low false alarm rate, suitable for real-time intrusion detec-
tion [28].

Pawar et al. proposed a model integrating an XGBoost clas-
sifier and a modified ANN for IDS using the IoTID20 dataset,
comprising network traffic data from smart home devices.
Their hybrid deep learning model achieved an accuracy of
90.43%, surpassing other models. Using the Shapiro-Wilk
approach for feature ranking, top-ranked features, with over
70% obtaining a ranking higher than 0.50 on the scale, were
integrated into cognition models and algorithms, significantly
enhancing overall performance [29]. Sarwar et al. [27] aimed
to develop an advanced IDS specifically for IoT networks.
Their approach used a multimodal methodology encom-
passing feature selection/reduction, classification, and data
preparation techniques. Using RF, XGBoost, and PSO meth-
ods, their experiments on the IoTID20 dataset demonstrated
98% accuracy in binary classification and 83% accuracy
in multiclass classification [30]. Reflecting on the previous
works and methodologies outlined, certain limitations are
apparent. These include the use of complex algorithms and
models for feature selection without providing comprehen-
sive insights into the significance of each feature, potentially
hindering performance across all dataset categories. Addi-
tionally, effective IDS design requires well-prepared datasets
with appropriate resolution of data-related issues. Reducing
high-dimensional datasets through feature selection meth-
ods and a deep understanding of these features are crucial
for the success of an IDS model. In light of these obser-
vations, most studies employ various techniques to select
optimal features, including ensemble, filtered, metaheuristic,
and unsupervised models. Consequently, in our research,
we leveraged strengths and addressed potential weaknesses
identified in other studies to achieve superior results.

IV. METHODOLOGY

This study utilizes the IoTID20 dataset [31]. The following
outlines the datasets used and details our proposed method
for detecting malicious traffic. Figure 2 illustrates our model.
Before deploying the IDS in the cloud and applying artificial
intelligence algorithms, it is essential to meticulously prepro-
cess the training datasets. Ensuring the integrity of the data,
free from errors or missing values, is crucial as it directly
affects the accuracy of the outcomes. Given the extensive size
and diverse nature of these datasets, which include a wide
array of attacks and extraneous information, our initial steps
involve configuring and refining the dataset. Subsequently,
we identify and select the most relevant features, which form
the basis for training the classifier. This classifier will distin-
guish benign packets from various types of attacks. Thus, our
workflow begins with gaining a thorough understanding of
the dataset, which is followed by data preparation and feature
engineering, and concludes with the training of the classifier.
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FIGURE 2. Proposed model.

A. OVERVIEW OF THE DATASET IOTID20

The simulated IoT environment used to create the IoTID20
dataset involved an EZVIZ Wi-Fi camera and SKTNGU,
a smart home device connected to a Wi-Fi router, reflecting
current practices as seen in Figure 3 [25]. Features were
extracted from Pcap data using the CIC flowmeter to create
related CSV files. The dataset comprises 625,785 records
and 86 characteristics, totaling approximately 300MB. The
dataset is organized into three categorization categories:

1) Label (Binary categorization): The goal of this catego-
rization style is to distinguish abnormal behavior from
typical behavior.

2) Cat (Multi-Classification - 5 sorts of Classification):
This category offers a thorough analysis of the dataset
by classifying attacks into five different categories.

3) Sub_Cat (Multi-Classification - 9 sorts of Classifica-
tion): This classification provides a detailed examination
of the dataset by further classifying attacks into nine
subtypes.

Table 1 provides a comprehensive analysis of the sample
distribution across each classification category, highlighting
the dataset’s composition [31]. Table 2 details the network
flow features of the [oTID20 dataset, offering insights into its
intricate structure and composition. This dataset is valuable
for investigating and understanding security issues in IloT
devices.

B. PRE-PROCESSING STEPS

This phase involves preparing the dataset through three criti-
cal steps: Data Cleaning, Encoding, and Normalization.

1) DATA CLEANING

The initial step involves identifying and correcting any incon-
sistencies, errors, or missing values in the dataset to ensure
its accuracy and completeness [32]. Nominal features were
initially removed, resulting in a final dataset with 79 features.
Columns 21 and 22 (Flow_Byts/s, Flow_Pkts/s) containing
infinite values were adjusted by substituting them with the
next non-infinite value. Post-cleaning, the column order is as
follows: the first column is Src_Port, the second is Dst_Port,
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TABLE 1. Sample count within the 10TID20 dataset.

Classification type Classification Count
Statistics

Label (Binary Classification) Anomaly 585,710
Normal 40,073

Cat (multi-classification-5type of DoS 59,391
Classification) MITM ARP Spoofing 35,377
Mirai 415,680

Normal 40,073

Scan 75,265

Sub_Cat (Multi-Classification-9 type of ~ DoS-Synflooding 59,391

Classification) MITM ARP Spoofing 35,377

Mirai-Ackflooding 55,124
Mirai-HTTP Flooding 55,818
Mirai-Hostbruteforceg 121,180

Mirai-UDP Flooding 183,550

Normal 40,073
Scan Hostport 22,192
Scan Port OS 53,073

the third is Protocol, and the fourth is Flow_Duration, con-
tinuing up to column 79 (Idle_Min). Columns 8 to 83 from
the original dataset now correspond to columns 4 to 79 after
cleaning, with the initial three new columns post-cleaning
corresponding to columns 3, 5, and 6 of the original datasets.

2) ENCODING

Following data cleaning, the next step involves encoding,
where categorical variables are converted into numerical rep-
resentations to enhance ML algorithms’ interpretability and
analysis capabilities [33].

3) NORMALIZATION

Normalization scales the numerical features to a standard
range, ensuring uniformity in the data and preventing certain
features from dominating others, thus promoting fair and
accurate model training [34]. Common normalizing tech-
niques include:

o Z-score normalization (standardization): Scales features
to have a mean of zero and a standard deviation of one,
useful for features with varying scales or units.
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TABLE 2. Network flow features 10TID20 dataset.

Colum_Number Field Colum_Number
1 Flow_ID 30
2 Src_IP 31
3 Src_Port 32
4 Dst_IP 33
5 Dst_Port 34
6 Protocol 35
7 Timestamp 36
8 Flow_Duration 37
9 Tot Fwd Pkts 38
10 Tot Bwd Pkts 39
11 TotLen Fwd_ Pkts 40
12 TotLen_Bwd_Pkts 41
13 Fwd Pkt Len Max 42
14 Fwd Pkt Len Min 43
15 Fwd Pkt Len Mean 44
16 Fwd Pkt Len Std 45
17 Bwd Pkt Len Max 46
18 Bwd Pkt Len Min 47
19 Bwd_Pkt Len_Mean 48

20 Bwd_Pkt Len_Std 49
21 Flow_Byts/s 50
22 Flow_Pkts/s 51
23 Flow IAT Mean 52
24 Flow IAT Std 53
25 Flow IAT Max 54
26 Flow_IAT_Min 55
27 Fwd_IAT_Tot 56
28 Fwd_IAT_Mean 57
29 Fwd_IAT_Std 58

Field Colum_Number Field
Fwd _IAT Max 59 Pkt Size Avg
Fwd IAT Min 60 Fwd Seg Size Avg
Bwd IAT Tot 61 Bwd Seg Size Avg
Bwd IAT Mean 62 Fwd Byts/b_Avg
Bwd_IAT_Std 63 Fwd_Pkts/b_Avg
Bwd IAT Max 64 Fwd_Blk Rate Avg
Bwd IAT Min 65 Bwd_Byts/b Avg
Fwd_PSH Flags 66 Bwd_Pkts/b_Avg
Bwd _PSH Flags 67 Bwd_Blk Rate Avg
Fwd_URG_Flags 68 Subflow Fwd_Pkts
Bwd _URG_Flags 69 Subflow Fwd Byts
Fwd_Header Len 70 Subflow_Bwd_Pkts
Bwd Header Len 71 Subflow Bwd Byts
Fwd_Pkts/s 72 Init Fwd Win_Byts
Bwd_Pkts/s 73 Init Bwd Win_Byts
Pkt Len Min 74 Fwd_Act Data Pkts
Pkt Len Max 75 Fwd_Seg Size Min
Pkt Len_Mean 76 Active_Mean
Pkt Len_Std 77 Active_Std
Pkt Len_Var 78 Active_Max
FIN_Flag_Cnt 79 Active_Min
SYN Flag Cnt 80 Idle Mean
RST Flag Cnt 81 Idle Std
PSH_Flag Cnt 82 Idle Max
ACK Flag Cnt 83 Idle Min
URG Flag Cnt 84 Label
CWE Flag Count 85 Cat
ECE_Flag Cnt 86 Sub_Cat

Down/Up_Ratio - -

o Robust normalization: Less susceptible to outliers,
scales features using the interquartile range (IQR).

o Log transformation: Applies logarithms to feature val-
ues, particularly useful for handling long-tailed or
skewed distributions.

o Min-Max normalization: Scales features within a speci-
fied range, typically O to 1.

o Min-Max normalization was chosen for its simplicity
and effectiveness, ensuring all features influence the
analysis and modeling process equally.

o Log transformation: Applies logarithms to feature val-
ues, particularly useful for handling long-tailed or
skewed distributions.

o Min-Max normalization: Scales features within a speci-
fied range, typically O to 1.

o Min-Max normalization was chosen for its simplicity
and effectiveness, ensuring all features influence the
analysis and modeling process equally.

This technique standardizes the scale of input data, enhancing
ML algorithms’ performance sensitivity to feature magnitude
variations.

The formula for Min-Max normalization is:

, vV — ming ) )
Vi = ————— (new_max, — new_ming) + new_ming
max, — ming
(1)
o V”: This represents the normalized value of the original

feature V.
o v :This is the original (raw) value of the feature that you
want to normalize.
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o miny : Represents the minimum value of feature A in the

dataset.

o maxy : Denotes the maximum value of feature A in the
dataset.

o new_miny : This is the desired minimum value after
normalization.

o new_max, - This is the desired maximum value after
normalization

These preprocessing steps create a robust framework for a
well-structured and refined dataset, providing a solid founda-
tion for subsequent analysis and modeling.

C. FEATURE ENGINEERING

Feature engineering involves selecting and reducing the num-
ber of features in a dataset to enhance model performance and
efficiency [35]. Feature selection identifies the most relevant
features contributing significantly to the model’s predic-
tive ability, thus improving its accuracy and interpretability.
A common algorithm for this purpose is MRMR. On the
other hand, feature reduction techniques reduce the dataset’s
dimensionality by transforming or combining features, sim-
plifying the model while preserving essential information.
Common methods include PCA for linear dimensionality
reduction and T-distributed Stochastic Neighbor Embedding
(t-SNE) for nonlinear dimensionality reduction [35].

1) FEATURE REDUCTION
To understand how PCA works, let’s explain the fundamental
steps and associated equations:
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The initial step involves computing the covariance matrix
of the dataset.

o Given a data matrix X with dimensions (m, N), where
m is the number of samples, and N is the number of
features, the covariance matrix is calculated as follows:

C=0/m*X" X )

Here, X7 is the transpose of matrix X. [36]

Eigenvalues and Eigenvectors: The computation involves
determining the eigenvalues and eigenvectors of the covari-
ance matrix C. Each eigenvalue represents the magnitude
of variance present in the data, while eigenvectors denote
the directions capturing the maximum variance within the
dataset.

To calculate the eigenvalues in PCA, the following
equation can be utilized:

Cxv=Ax%v 3)

where:

C is the Covariance Matrix.

A is the Eigenvalue of the Covariance Matrix.

v is the Eigenvector associated with the Eigenvalue A.

The process of calculating Eigenvalues is a mathematical
operation that relies on solving the above equation. Here’s
how this process can be done:

a. Iteration Methods: Techniques like Power Iteration or
Inverse Iteration can be used to estimate the first Eigen-
value.

b. Start with a Random Vector: A random vector is chosen to
start the computation.

c. Refine the Estimate: The estimate for the first Eigenvalue
A1 and the associated Eigenvector v; is refined through
iterations. The goal is to obtain an approximate value for
the first Eigenvalue A; and the Eigenvector v;.

d. Estimate Other Eigenvalues: After obtaining the first
Eigenvalue, similar processes can be used to calculate
other Eigenvalues sequentially.

e. Iteration Continues: The process can be repeated to com-
pute more Eigenvalues and Eigenvectors.

In this way, PCA reduces the dimensionality while retaining
the maximum amount of information and variance in the
data. The new dimensions are a combination of the origi-
nal variables, with high eigenvalues gradually decreasing in
importance [37]. In this study, the PCA algorithm was applied
to the IOTID20 dataset, as shown in Figure 4, highlighting
the significance of each column. Columns are arranged in
descending order, and our analysis focused on the following
cases: 4 columns representing 88.74%, 12 columns represent-
ing 99.12%, 23 columns representing 99.9%, and 50 columns
representing 99.99% of importance.

2) FEATURE SELECTION

MRMR is an iterative process that aims to balance the
trade-off between relevance and redundancy to identify a sub-
set of features that collectively provide valuable information
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for predicting the target variable while avoiding information
duplication. Widely employed in feature selection, this super-
vised method enhances the efficiency and interpretability of
ML models. MRMR involves a series of steps to calculate
relevance and redundancy scores for each feature. The gen-
eral idea is to maximize the relevance of features to the target
variable while minimizing redundancy among the selected
features [38], [39].

The MRMR algorithm typically involves the following
steps:

1) Relevance Calculation: We compute relevance scores
for each feature with respect to the target variable.
This could involve calculating mutual information, cor-
relation, or other statistical measures that quantify the
relationship between each feature and the target.

e For each feature X;, calculate the relevance with
the target variable C wusing mutual information:
Relevance(X;, C) = 1(X;;C)

e Mutual Information /(X;;C) measures the amount of
information that the presence or absence of one feature
(X;) and contributes to the presence or absence of the
target variable (C).

2) Redundancy Calculation: We calculate redundancy
scores among features. This often involves considering
pairwise relationships between features, measuring how
much information about one feature is already captured
by another.

o For each pair of features X; and Xj, calculate the redun-
dancy using mutual information: Redundancy(X;, X;) =
I(X;:X;)

Mutual Information, (/(X;;X;)), measures the amount of
information shared between two features (X; and Xj).

a. Calculation MRMR score:
For each feature X;, we calculate the MRMR score using
the formula:

MRMR (X;) =[I (X;, C ! I(X;, X;
X)) =1 (X ©) = 7 D (X0, X))

This score reflects the balance between the relevance of
the feature to the target variable (/ (X;, C)) and the aver-
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TABLE 3. Feature importance scores are sorted using the MRMR algorithm for binary classification.

Number Feature Column  Feature Scores ~ Number Feature Column  Feature Scores Number Feature Column  Feature Scores
1 column_2 0.1736 28 column_76 0.0090 54 column_73 0.0047
2 column_53 0.1631 29 column_37 0.0088 55 column_72 0.0047
3 column_12 0.0410 30 column_14 0.0085 56 column_34 0.0036
4 column_30 0.0372 31 column_24 0.0084 57 column_49 0.0036
5 column_4 0.0193 32 column_55 0.0083 58 column_48 0.0032
6 column_1 0.0160 33 column_19 0.0083 59 column_66 0.0029
7 column_45 0.0154 34 column_57 0.0079 60 column_6 0.0029
8 column_50 0.0154 35 column_79 0.0079 61 column_51 0.0027
9 column_69 0.0138 36 column_15 0.0079 62 column_17 0.0022
10 column_77 0.0134 37 column_26 0.0078 63 column 9 0.0021
11 column_10 0.0133 38 column_40 0.0077 64 column_70 0.0017
12 column_78 0.0132 39 column_43 0.0075 65 column_5 0.0016
13 column_44 0.0127 40 column_42 0.0072 66 column_64 0.0016
14 column_65 0.0120 41 column_25 0.0070 67 column_54 0.0013
15 column_28 0.0120 42 column_13 0.0066 68 column_52 0.0012
16 column_67 0.0117 43 column_22 0.0065 69 column_46 3.6140e-04
17 column_23 0.0117 44 column_41 0.0060 70 column_33 0

18 column_21 0.0116 45 column_27 0.0057 71 column_35 0

19 column_56 0.0116 46 column_36 0.0055 72 column_58 0

20 column_3 0.0116 47 column_75 0.0055 73 column_59 0

21 column_8 0.0113 48 column_32 0.0054 74 column_60 0

22 column_18 0.0112 49 column_16 0.0054 75 column_61 0

23 column_11 0.0103 50 column_47 0.0052 76 column_62 0

24 column_7 0.0103 51 column_74 0.0052 77 column_63 0

25 column 38 0.0095 52 column_39 0.0051 78 column_ 68 0

26 column_31 0.0092 53 column_29 0.0049 79 column_71 0

27 column_20 0.0092

TABLE 4. Feature importance scores are sorted using the MRMR algorithm for multi-classification.

Number  Feature Column  Feature Scores  Number  Feature Column  Feature Scores Number  Feature Column  Feature Scores

1 column_1 0.8321 28 column_15
2 column_47 0.7923 29 column_66
3 column 4 0.5447 30 column 43
4 column_69 0.5363 31 column_78
5 column_12 0.5185 32 column_57
6 column_52 0.5117 33 column_10
7 column_2 0.4879 34 column_19
8 column 6 0.4693 35 column_ 8

9 column_31 0.4693 36 column_54
10 column_75 0.4543 37 column_72
11 column_50 0.4344 38 column_67
12 column_3 0.4256 39 column_22
13 column_32 0.4152 40 column_37
14 column_77 0.4150 41 column_55
15 column_14 0.4094 42 column_40
16 column_53 0.4054 43 column_56
17 column_21 0.3866 44 column_20
18 column 38 0.3863 45 column_76
19 column_42 0.3749 46 column_11
20 column 28 0.3735 47 column 45
21 column_41 0.3576 48 column_65
22 column 29 0.3536 49 column 23
23 column_74 0.3501 50 column_7

24 column_70 0.3468 51 column_30
25 column_79 0.3399 52 column 44
26 column 13 0.3377 53 column 25
27 column 18 0.3364

0.3360 54 column_9 0.2289
0.3360 55 column_16 0.2190
0.3205 56 column_17 0.2176
0.3178 57 column_26 0.2176
0.3005 58 column_64 0.2141
0.2992 59 column_39 0.2141
0.2980 60 column_5 0.2130
0.2972 61 column_24 0.2092
0.2972 62 column_27 0.1961
0.2948 63 column_73 0.1720
0.2931 64 column_49 0.1520
0.2919 65 column_34 0.1520
0.2901 66 column_36 0.1365
0.2870 67 column_48 0.1365
0.2851 68 column_51 0.0968
0.2846 69 column_46 0.0714
0.2846 70 column_33 0
0.2835 71 column_35 0
0.2810 72 column_58 0
0.2659 73 column_59 0
0.2659 74 column_60 0
0.2659 75 column_61 0
0.2624 76 column_62 0
0.2550 77 column_63 0
0.2538 78 column_68 0
0.2309 79 column_71 0

age redundancy of the feature with the features already
selected (ﬁ 2 xes I(Xi, X))).
The subtraction term ensures that features with high
redundancy with the already selected features are penal-
ized.

b. Feature selection: We select the top-ranked features
according to the specified criteria (maximum relevance,
minimum redundancy).
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c. Iteration (if needed): Depending on the specific MRMR
variant, the process might involve iterative steps to refine
the selected features.

The MRMR algorithm has been implemented on the

IOTID20 dataset, yielding two tables. Table 3 delineates

column significance for binary classification, while Table 4

illustrates column significance for multi-class classification,

ordered in descending order. Employing a similar analytical
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TABLE 5. Comprehensive analysis of binary-classification algorithms: Comparative performance across various feature sets (all features, PCA, MRMR).

ACC

Features Algorithm (Validationy ~ AUC
DT 99.9% 0.9923

KNN 99.8% 0.9952

All

Features Gaussian SVM 99.5% 0.9848
(79/79) NN 99.7%  0.9982
SVM Kernel 99.3 0.9833

Logistic Regression Kernel 99.3 0.9941

DT 99.2% 0.9481
KNN 99.8% 0.9944

PCA Gaussian SVM 99.7% 0.995
(50/79) NN 99.7% 0.9975
SVM Kernel 99.3% 0.9821
Logistic Regression Kernel 99.1% 0.9906

DT 99% 0.9592
KNN 99.8% 0.9954

PCA Gaussian SVM 99.7% 0.9942
(23/79) NN 99.7% 0.9982
SVM Kernel 99.4% 0.981

Logistic Regression Kernel 99.3% 0.9861

DT 99.1% 0.9749

KNN 99.9% 0.9961

PCA Gaussian SVM 99.8% 0.9962
(12/79) NN 99.6% 0.9976
SVM Kernel 99.3% 0.9676
Logistic Regression Kernel 98.9% 0.9886

DT 99.1% 0.9859

KNN 99.8% 0.9953
PCA Gaussian SVM 95.3% 0.9156
(4/79) NN 97.9% 0.9658
SVM Kernel 98.2% 0.9242
Logistic Regression Kernel 98.2% 0.9556

DT 99.9% 0.9957

KNN 99.8% 0.9949

MRMR Gaussian SVM 99.4% 0.985
(50/79) NN 99.7% 0.9983
SVM Kernel 99.4% 0.9853

Logistic Regression Kernel 99.3% 0.9928
DT 99.9% 0.9986
KNN 99.8% 0.9954

MRMR Gaussian SVM 99.4% 0.9868
(23/79) NN 99.7% 0.9982
SVM Kernel 99.3% 0.9854

Logistic Regression Kernel 99.2% 0.9928

DT 99.9% 0.9987

KNN 99.9% 0.9962

MRMR Gaussian SVM 99.5% 0.9847
(12/79) NN 99.7% 0.9974
SVM Kernel 99.3% 0.9701
Logistic Regression Kernel 99.4% 0.9916
DT 99.1% 0.9814
KNN 99.1% 0.9676

MRMR Gaussian SVM 98.4% 0.9151
(4/79) NN 98.4% 0.9112
SVM Kernel 98% 0.8515
Logistic Regression Kernel 98.5% 0.9716

Total Cost Prediction Training Model Size

(Validation) Speed (obs/sec)  Time (Sec) (Compact)
263 ~190000 296.43 ~40 KB
327 ~58 11536 ~387 KB
986 -570 11091 -11 MB
543 94000 4083.9 33 KB
1251 ~19000 53574 81 KB
1239 6300 39845 66 KB
1495 ~79000 290.14 ~37KB
364 ~97 5891.5 ~249 MB
606 ~3400 7541.8 ~6 MB
475 ~100000 2518.2 23 KB
1240 37000 30480 <71 KB
1689 ~16000 18749 44 KB
1874 ~110000 116.78 ~33KB
311 ~130 3723 ~120 MB
573 ~12000 4972.6 ~3 MB
501 ~120000 2291.5 ~14 KB
1154 74000 12171 <70 KB
1381 21000 6428.8 30 KB
1769 ~130000 76.124 ~32 KB
275 ~360 2073.4 ~67 MB
448 ~28000 2242.7 ~1018 KB
693 ~140000 1808.5 ~10 KB
1286 44000 1432.1 ~14 KB
1976 33000 1769.8 ~14 KB
1717 ~110000 55.352 ~30 KB
364 ~55000 58.781 ~40 MB
8796 ~6800 2254.9 ~3 MB
3864 240000 1041.7 <1 KB
3319 99000 326.93 ~10 KB
3466 95000 156.47 ~10 KB
249 ~260000 201.53 ~36 KB
337 ~82 5766.9 ~249 MB
1077 ~2300 4285.8 ~6 MB
502 210000 2635.2 23 KB
1144 39000 29760 <70 KB
1392 20000 14975 42 KB
219 ~300000 81.415 ~33 KB
316 ~220 2860 ~120 MB
1099 ~5100 2214.7 ~3 MB
559 ~270000 2000.4 ~14 KB
1273 ~81000 10555 ~62 KB
1432 ~53000 6095.3 ~31 KB
189 ~330000 45.028 ~30 KB
281 ~330 1831.4 ~67 MB
1011 ~5000 1490.6 ~1 MB
612 380000 1694.8 ~10 KB
1381 38000 807.58 ~14 KB
1219 47000 1050.2 ~14 KB
1701 ~270000 26.286 ~25KB
1708 ~1300 443.75 ~40 MB
3031 ~13000 1131.5 ~1 MB
2933 ~400000 812.42 <7 KB
3808 ~120000 177.98 ~10 KB
2850 ~120000 279.69 ~10 KB

approach as in PCA, we examined cases with 4 columns,
12 columns, 23 columns, and 50 columns. This comprehen-
sive examination of feature engineering, involving feature
selection using MRMR and feature reduction through PCA,
reveals that the MRMR algorithm provided profound insights
into the dataset by highlighting the significance of each col-
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umn in both binary and multi-class classification. In contrast,
PCA conceals the identity of columns through mathematical
transformations and emphasizes their importance in descend-
ing order. As a result, our approach to feature reduction
distinguishes our study by providing a comprehensive view
of the selected features, unlike previous research that did
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TABLE 6. Comprehensive analysis of multi-classification algorithms: Comparative performance across various feature sets (all features, PCA, MRMR).

Features Algorithm ACC AUC
(Validation)

All DT 97.6% 0.99638
Features KNN 98.5% 0.99732
(79/79) Gaussian SVM 91.8% 0.97946
NN 91.6% 0.98794
SVM Kernel 87.8% 0.96944
Logistic Regression Kernel 90.8% 0.97314
PCA DT 93% 0.97932
(50/79) KNN 98.4% 0.9972
Gaussian SVM 93% 0.98986
NN 93.5% 0.98944
SVM Kernel 90.9% 0.98086
Logistic Regression Kernel 92.2% 0.98238

PCA DT 93% 0.9793
(23/79) KNN 98.6% 0.99778
Gaussian SVM 93.4% 0.99006

NN 93.4% 0.989
SVM Kernel 92.4% 0.98344

Logistic Regression Kernel 92.3% 0.9831
PCA DT 92.8% 0.97422
(12/79) KNN 98.9% 0.99834
Gaussian SVM 96% 0.99226
NN 92.9% 0.98632
SVM Kernel 93.4% 0.98316
Logistic Regression Kernel 93.8% 0.98346
PCA DT 89.7% 0.97224
(4/79) KNN 98.9% 0.99794
Gaussian SVM 81.1% 0.91746

NN 84.3% 0.9429

SVM Kernel 92.5% 0.9629

Logistic Regression Kernel 92.2% 0.969
MRMR DT 97.4% 0.99532
(50/79) KNN 98.6% 0.99754
Gaussian SVM 91.8% 0.9789
NN 91.8% 0.98728
SVM Kernel 91% 0.97674
Logistic Regression Kernel 90.5% 0.97366

MRMR DT 97.6% 0.9965
(23/79) KNN 98.8% 0.98094
Gaussian SVM 91.8% 0.9965

NN 93.2% 0.9877

SVM Kernel 92.1% 0.9792
Logistic Regression Kernel 91.1% 0.97664
MRMR DT 97.6% 0.99666
(12/79) KNN 99% 0.99786
Gaussian SVM 91.7% 0.98416
Neural Network 91.5% 0.98656
SVM Kernel 92.1% 0.98272

Logistic Regression Kernel 92.1% 0.9823
MRMR DT 94.3% 0.98924
(4/79) KNN 96.6% 0.99502
Gaussian SVM 88% 0.93168
NN 87.8% 0.96288
SVM Kernel 82.3% 0.92232
Logistic Regression Kernel 85% 0.92896

Total Cost Prediction Training Model Size
(Validation)  Speed (obs/sec)  Time (Sec) (Compact)
4506 ~190000 171.55 ~49 KB
2886 ~52 10586 ~387 MB
15384 ~170 69248 ~120 MB
15806 ~130000 3485.9 34 KB
22836 ~1800 1.5962¢+05 85 KB
17343 910 72159 560 KB
13150 ~110000 169.26 ~46 KB
3002 ~87 6478 ~249 MB
13152 ~230 42604 ~66 MB
12118 ~100000 3117.7 25KB
17126 3000 53140 395 KB
14596 ~1900 44683 370 KB
13148 ~140000 74.943 ~43 KB
2561 ~130 4058.3 ~120 MB
12327 ~1300 15686 ~29 MB
12337 ~110000 24421 ~15KB
14235 8000 16553 264 KB
14506 3900 7763.8 214 KB
13601 ~140000 64.82 ~41 KB
2118 ~250 2117.8 ~67 Mb
7551 ~2900 5560.5 ~13 MB
13384 ~150000 2228.3 ~11 KB
12453 ~13000 5011.4 ~143 KB
11622 8800 3414.9 ~143 KB
19276 ~98000 60.465 ~38 KB
2037 ~44000 73.244 ~40 Mb
35429 ~890 5467.1 ~16 MB
29563 ~120000 1401.5 8 KB
14037 40000 1545.1 ~100 KB
14570 26000 514.15 ~100 KB
4919 ~220000 142.65 ~45 KB
2699 ~84 6807.7 ~249 MB
15481 ~510 38427 ~74 MB
15353 ~170000 3384.2 24 KB
16954 3900 97569 533
17797 ~1700 34237 334 KB
4514 ~330000 43.782 ~41 KB
2305 ~200 3171.7 ~120 MB
15359 ~1000 13001 ~32 MB
12845 260000 2297.7 15 KB
14780 8100 13531 253 KB
16630 3200 4716.2 ~199 KB
4508 ~390000 28.883 ~40 KB
1887 ~310 1829.1 ~67 MB
15505 ~1800 5653.4 ~18 MB
15900 300000 2009.8 -1 KB
14904 ~15000 4487.4 ~141 KB
14817 ~12000 3058.4 ~142 KB
10754 ~310000 22.971 ~37KB
6463 ~24000 630.54 ~40 MB
22559 ~1400 4846 ~11 MB
23128 470000 1238.5 ‘KB
33273 ~48000 743.9 99 KB
28234 39000 628.6 99 KB

not offer a thorough perspective on features. Additionally,
we present practical application examples using the method-
ology employed in applying ML algorithms.

D. ML ALGORITHM

Machine Learning (ML) relies on several key algorithms,
such as Gaussian SVM, KNN, DT, NN, SVM Kernel, and
Logistic Regression Kernel, each of which offers distinct
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advantages for classification tasks. Decision Tree (DT) mod-
els are widely used across various domains, including image
processing, pattern recognition, and classification [40], [41].
For the DT model, the maximum number of splits was set to
100, with Gini’s Diversity Index used as the split criterion,
and surrogate decision splits were disabled. KNN, another
popular classification method, categorizes data points based
on their proximity to existing data points [40]. The algorithm
determines the class of a new item by calculating distances
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FIGURE 5. ROC curve for MRMR (12/79 features) binary classification. (a) DT; (b) KNN; (c) Gaussian SVM; (d) NN; (e) SVM kernel; (f) Logistic regression
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NN; (e) PCA-based SVM kernel; (f) PCA-based logistic regression kernel.

and assigning a class based on the majority of the closest
neighbors. For the KNN algorithm, 10 neighbors were used,
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ation. (a) MRMR-based DT; (b) MRMR-based KNN; (c) PCA-based Gaussian SVM; (d) PCA-based

with the Euclidean distance metric and squared inverse dis-
tance weighting. Data was standardized before training [42].
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TABLE 7. Multi-modal vs our model-feature engineering and classification metrics comparison table.

Study Classification Features Number of Algorithm ACC Training Time (Sec)
Engineer features selected
Binary Multi Binary Multi Binary Multi
[19] Binary Extra Trees 20 PSO-based 0.989 --
Classifier diverse-self
(EXTC) ensemble
model (PSO-
D-SEM) with
S-DATE
[23] Binary, Multi- Meerkat Clan Not specified RF 0.999 0.965 340.7 540.46
class Algorithm
(MCA)
[25] Binary, Multi- Extra Tree 62 DCNN 0.9984 0.9812
class Classifier (ETC)
[26] Binary, Multi- IDSBPSO 30 RF 0.998 0.784 266 360
class
[27] Binary, Multi- Pearson- 15 25 PCC-CNN 0.99 0.91 233.17 235.98
class Correlation
Coefficient
(PCC)
[48] Multi-class Shapiro-Wilk 12 Hybrid model 0.9043 -
Technique utilizing
modified
ANN and
XGBoost
classifier.
[29] Binary, Multi- PSO 17 RF, XGBoost
class 0.98 0.83
DT 0.999 45.028
Proposed Binary MRMR 12 KNN 0.999 1831.4
Model Gaussian 0.995 1490.6
SVM
NN 0.997 1694.8
SVM Kernal 0.993 807.58
Logistic 0.994 1050.2
Regression
Kernal
DT 0.976 28.883
Proposed MRMR 12 KNN 0.99 1829.1
Model Multi-class PCA Gaussian 0.96 5560.5
SVM
NN 0.929 2228.3
SVM Kernal 0.934 5011.4
Logistic 0.938 3414.9
Regression
Kernal

SVMs are versatile tools for addressing classification,
regression, and linear/non-linear problems. Gaussian SVM
utilizes hyperplanes to classify data, and the model param-
eters, including kernel scale and box constraint, were opti-
mized to define the decision boundary that best separates the
data into classes [43]. The Gaussian SVM model employed a
Gaussian kernel with a kernel scale of 2.2 and a box constraint
level of 1. The multiclass coding method was One-Vs-One,
and the data was standardized. NN models, inspired by the
human brain, are extensively used for tasks requiring the
identification of complex patterns, such as image recognition
and sentiment analysis. In this NN model, a fully connected
architecture with one hidden layer of 25 neurons and the
ReLU activation function was implemented. The iteration
limit was set to 1000, and no regularization was applied
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(Lambda = 0). The data was standardized before being input
into the network.

SVM with kernel functions enhances the ability to han-
dle non-linear decision boundaries. The kernelized approach
transforms the input space through various kernel func-
tions, enabling effective classification in complex feature
spaces [44]. For the SVM Kernel model, the learner was set
to SVM with automatic selection of expansion dimensions,
regularization strength, and kernel scale. The multiclass cod-
ing method was One-Vs-One, and the data was standardized.
The iteration limit was set to 1000.

Kernel Logistic Regression extends traditional logistic
regression by addressing non-linear relationships between
features using kernel functions, making it suitable for binary
classification tasks [45]. For the Logistic Regression Kernel
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model, the learner was set to logistic regression with auto-
matic selection of expansion dimensions, regularization
strength, and kernel scale. The multiclass coding was One-
Vs-One, and the data was standardized, with an iteration limit
of 1000.

The classification process involves several steps, includ-
ing 1D data classification, demonstrating the fitted sig-
moidal function and the threshold value. In 2D clas-
sification, the boundary obtained for classification in a
two-dimensional space is highlighted. In higher-dimensional
space, the complex boundary is achieved after mapping
to a higher-dimensional feature space. The regularization
parameter (A) plays a critical role in defining the optimal
boundary, with different values leading to biased or overfitted
cases. Finally, the multi-class classification strategy employs
a one-vs-all approach, where each binary logistic regression
hypothesis function equals 0.5, and each colored region indi-
cates the respective decision region.

V. EXPERIMENT AND RESULTS DISCUSSION

This section provides a detailed account of the experimen-
tal setup, selected evaluation metrics, methodologies used
for measurements, and an in-depth discussion of the results
obtained from the evaluation of the proposed model.

A. EXPERIMENTAL SETUP

The proposed model’s performance assessment was carried
out using an ASUS TUF Gaming F15 laptop running Win-
dows 10 Home Single Language. The laptop is equipped
with an Intel(R) Core (TM) i5-10300H CPU, operating at
2.50GHz, and it contains 16.0 GB of RAM, with 15.8 GB
usable, and GPU NVIDIA GeForce GTX 1650Ti @ 4 GB.
For simulation and analysis tasks, MATLAB 2023b was
utilized to perform various experiments. This environment
provided a robust platform for the creation and evaluation of
feature selection and classification algorithms.

B. EVALUATION METRICS

To assess the performance of our proposed model, we com-
pared it against traditional studies using core performance
metrics, including accuracy, recall, precision, F-measure, and
False Alarm Rate (FAR) [46], [47]. These metrics, crucial for
evaluating IDS, are computed based on the confusion matrix:

o True Positive (TP): Instances where an intrusion is accu-
rately identified as an attack.

o True Negative (TN): Instances where normal traffic is
correctly identified as normal.

o False Positive (FP): Instances where normal traffic is
erroneously classified as an intrusion.

o False Negative (FN): Instances where an intrusion is
incorrectly classified as normal traffic.

o ACC: This metric denotes the proportion of correctly
identified instances out of the total.

TP + TN
Accuracy (ACC) = 4
TP+ TN + FP+ FN
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« Precision (p): Evaluates the ACC of attack predictions
relative to the total predicted attacks.

. TP
Precision(P) = ———— &)
TP + FP
o Recall: This metric delineates the ratio of correctly iden-

tified attack instances to the total actual attacks.

Recall (R) = Detection Rate (DR) = Sensitivity (S)

TP
= True Positive Rate (TPR) = ——— (6)
TP + FN

Accuracy For Each Model - Binary Classification

LR Kernel
SVM Kernel
NN

Gaussian SVM
KNN

DT

Models

1291
1271
1261
[251

[23]

0.975 0.980 0.985 0.990 0.995 1.000 1.005
Accuracy

FIGURE 7. Multi-modal vs proposed model-binary classification (ACC).

Accuracy For Each Model - Multi Classification
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(48]
[27]
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[25]
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FIGURE 8. Multi-modal vs proposed model-multi classification (ACC).

o F-measure: A composite measure considering both R
and precision for system proficiency.
2

1 1
Precision + Recall

)

o False Alarm Rate: This metric quantifies the percentage
of incorrectly predicted attack instances among all actual
normal instances.

Fl—score = F — measure (F) =

FP
FAR = False Positive Rate (FPR) = ——— (8)
FP+ TN

The ACC, DR, and FAR serve as pivotal metrics for distin-
guishing between various IDS and assessing their effective-
ness. Moreover, we integrate the ROC curve, which compares
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TABLE 8. List of abbreviations.

Abbreviation Full Form
IDS Intrusion Detection System
IIoT Industrial Internet of Things
IoT Internet of Things
ML Machine Learning
MRMR Minimum Redundancy Maximum Relevance
PCA Principal Component Analysis
DT Decision Trees
KNN K-Nearest Neighbors
Gaussian SVM Gaussian Support Vector Machine
SVM Support Vector Machine
SVM Kernel Support Vector Machine with Kernel
NN Neural Network
CNN Convolutional Neural Networks
LSTM Long Short-Term Memory
SNN Shallow Neural Networks
BT Bagging Trees
ACC Accuracy
P Precision
FPR False Positive Rate
TPR True Positive Rate
ANN Artificial Neural Networks
RF Random Forest
PSO Particle Swarm Optimization
TP True Positive
TN True Negative
FP False Positive
FN False Negative
R Recall
FAR False Alarm Rate
ROC Receiver Operating Characteristic

the FPR and TPR of the model. While ROC curves con-
ventionally apply to binary classification models, we extend
their utility to the realm of multi-class classification [65,66].
In our research, we assess the effectiveness of our work using
several criteria: ACC, Precision (P), R, F1-Score, False FPR,
Total Cost (Validation), Prediction Speed (obs/sec), Training
Time (Sec), Model Size (Compact), and area under the ROC
curve (AUC). We also consider training times. To mitigate
overfitting and develop a generalizable IDS, we followed the
steps below:

« Split the data into 70% for training and 30% for testing
to allow the system to learn patterns from the training set
and evaluate its generalization ability using the test set.

o Concurrently applied feature engineering algorithms
PCA (for feature reduction) and MRMR (for feature
selection). This approach aims to provide a comprehen-
sive understanding of features and the values derived
from each configuration, minimizing noise and improv-
ing efficiency. From a total of 79 features, sets of 4, 12,
23, and 50 were selected for further analysis, with each
feature having 625,785 corresponding records. Subse-
quently, ML algorithms (DT, KNN, Gaussian SVM,
NN, SVM Kernel, and Logistic Regression Kernel) were
applied to both PCA and MRMR feature sets.

Next, we compared the best results obtained from each
feature set with those from previous studies. Furthermore,
we introduced new parameters, such as model size, training
time, and ML model hyperparameter, which have not been
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explicitly addressed in prior research. Consequently, our goal
is to provide insights into possible applications based on the
obtained results.

Tables 5-6, along with those in APPENDIX B, provide
comprehensive analyses, including confusion matrices for
both binary and multi-class classification simulations across
the chosen ML models. These tables compare the outcomes
based on PCA and MRMR applications, each with feature
subsets of 4, 12, 23, and 50 features.

C. FINDINGS AND ANALYSIS

The selected model was chosen for its high accuracy (ACC),
efficient training time, and compact model size. Compared
to previous studies, it performed better with fewer fea-
tures, particularly in binary classification. Using the MRMR
method with 12 features across six ML algorithms (DT, KNN,
Gaussian SVM, NN, SVM Kernel, and Logistic Regression
Kernel), the DT model achieved the best results, with a
training time of 45.028 seconds, a model size of approxi-
mately 30 KB, and an ACC of 99.9%.

For multi-class classification, the MRMR method with
12 features also delivered strong results, especially with the
DT algorithm, achieving an ACC of 97.6%, a training time of
28.883 seconds, and a model size of around 40 KB. KNN
performed well, with an ACC of 99%, though it required
a longer training time of 1829.1 seconds, and the model
size was 67 KB. The other algorithms (Gaussian SVM, NN,
SVM Kernel, and Logistic Regression Kernel) performed
better using PCA with 12 features instead of MRMR. Gaus-
sian SVM achieved an ACC of 96% with a training time
of 5560.5 seconds, while NN, SVM Kernel, and Logistic
Regression Kernel reached accuracies of 92.9%, 93.4%, and
93.8% respectively, with varying training times.

Table 7 compares the proposed models to previous studies
in terms of ACC and training time. The DT model stood
out in both binary and multi-class classification for its high
accuracy, fast training time, and small model size. Although
KNN had the highest ACC, it required significantly more time
to train. Figures 5 and 6 show the ROC curves, providing
insights into the models’ performance in both binary and
multi-class classifications.

In summary, the use of 12 features—fewer than in previous
studies—Iled to improved or equivalent performance, faster
training, smaller model sizes, and lower energy consumption.
This is especially important for security systems in IoT envi-
ronments, where high ACC, quick response times, and effi-
cient energy use are critical. Based on the IDS training results:

The DT model excels in scenarios where high ACC is crit-
ical, and computational demands are low, making it ideal for
real-time intrusion detection in IoT devices like smart home
security or automated industrial controls, where swift threat
detection is essential. KNN, on the other hand, suits applica-
tions prioritizing ACC over computational efficiency, such as
cloud-based security solutions handling large datasets or net-
work traffic analysis to detect sophisticated threats. Gaussian
SVM strikes a balance between accuracy and resource use,
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TABLE 9. Confusion matrix for each outcome for binary classification and performance metrics for different algorithms.
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Features

All Features
(79/79)

PCA
(50/79)

PCA
(23/79)

PCA
(12/79)

PCA
(4/79)

MRMR
(50/79)

MRMR
(23/79)

MRMR
(12/79)

MRMR
(4/79)

Algorithm

DT
KNN
Gaussian SVM
NN
SVM Kernel

Logistic Regression Kernel
DT
KNN
Gaussian SVM
NN
SVM Kernel

Logistic Regression Kernel

DT
KNN
Gaussian SVM
NN
SVM Kermnel
Logistic Regression Kernel

DT

KNN
Gaussian SVM
NN
SVM Kernel

Logistic Regression Kernel
DT

KNN
Gaussian SVM
NN
SVM Kernel
Logistic Regression Kernel
DT
KNN
Gaussian SVM
NN
SVM Kernel

Logistic Regression Kernel

DT
KNN
Gaussian SVM
NN
SVM Kernel

Logistic Regression Kernel

DT
KNN
Gaussian SVM
NN
SVM Kernel

Logistic Regression Kernel
DT
KNN
Gaussian SVM
NN
SVM Kernel
Logistic Regression Kernel

Confusion Matrix

[175697, 16; 247, 11774]
[175644, 69; 258, 11763]
[175636, 77; 909, 11112]
(175640, 73; 470, 11551]
[175607, 106; 1160,
10876]
[175634, 79; 1145, 10861]
[175646, 67; 1428, 10593]
[175632, 81; 283, 11738]
[175673, 40; 566, 11455]
(175614, 99; 376, 11645]

[175551, 162; 1078
10943]
[175560, 153; 1536,
10485]

[175635, 78; 1796, 10255]
[175629, 84; 227, 11794]
[175684, 29; 544, 11477]
[175575, 138; 363, 11658]
[175501, 212; 942, 11079]
[175612, 101; 1280,
10741]

[175464, 249
10501]
[175629, 84; 191, 11830]
[175681, 32; 416, 11605]
[175591, 122; 571, 11450]

1520,

[175554,  159; 1127,
10894]
[175446, 267; 1709,
10312]
[175296, 417; 1300,
10721]

[175575, 138; 226, 11795]
(174839, 874; 7922, 4099]
[174925, 788; 3076, 8945]
[175032, 681; 2638, 9383]
[174771, 942; 2524, 9497]
[175698, 15; 234, 11787]
[175661, 52; 285, 11736]
[175599, 114; 963, 11058]
[175630, 83; 419, 11602]

[175575, 138; 1006,
11015]
[175606, 107; 1285,
10736]

[175686, 27; 192, 11829]
[175657, 56; 260, 11761]
[175605, 108; 991, 11030]
[175624, 89; 470, 11551]

[175549,  164; 1109,
10912]
[175511,  202; 1230,
10791]

[175703, 10; 179, 11842]
[175661, 52; 229, 11792]
[175643, 70; 941, 11080]
[175661, 52; 560, 11461]
(175432, 281; 1100,
10921]
[175470, 243; 976, 11045]
[175680, 33; 1668, 10353]
[175625, 88; 1620, 10401]
[175064, 649; 2382, 9639]
[175141, 572; 2361, 9660]
[175709, 4; 3804, 8217]
[175262, 451; 2399, 9622]

P

0.999

0.999

0.995
0.9996
0.9994

0.9996
0.992
0.998
0.997

0.9994

0.9991

0.9991

0.99
0.999
0.997

0.9992
0.9988
0.9994

0.991

0.999
0.998
0.9895
0.9856

0.9748

0.993

0.999
0.957
0.9190
0.9323
0.9098
0.999
0.998
0.995
0.9929
0.9876

0.9901

0.999

0.999

0.995
0.9924
0.9852

0.9816

0.999

0.999

0.995
0.9955
0.9749

0.9785
0.991
0.991
0.987
0.9441
0.9995
0.9552

R

0.999
0.999
0.9241
0.9973
0.9934

0.9935
0.999
0.999
0.999

0.9979

0.9939

0.9913

0.999

0.999

0.999
0.9979
0.9947
0.9928

0.999

0.999
0.999
0.9525
0.9062

0.8578

0.998

0.999
0.995
0.7441
0.7806
0.79
0.999
0.999
0.999
0.9651
0.9163

0.8931

0.999

0.999

0.999
0.9609
0.9077

0.8977

0.999
0.999
0.999
0.9534
0.9085

0.9188
0.999
0.999
0.996

0.8036

0.6836

0.8004

F1-
score
0.999
0.999

0.9573
0.9985
0.9964

0.9965
0.996
0.999
0.998

0.9986

0.9965

0.9952

0.995

0.999

0.998
0.9986
0.9967
0.9961

0.995

0.999
0.999
0.9706
0.9443

0.9126

0.995

0.999
0.975
0.8224
0.8497
0.8457
0.999
0.999
0.997
0.9788
0.9506

0.9391

0.999

0.999

0.997
0.9764
0.9449

0.9378

0.999

0.999

0.997
0.9740
0.9405

0.9477
0.995
0.995
0.991

0.8682

0.8119

0.8710

FPR

0.00009

0.00039

0.00044
0.0063
0.0097

0.0072
0.00038
0.00046
0.00023

0.0084

0.0146

0.0144

0.00044

0.00048

0.00017
0.0117
0.0188
0.0093

0.00142

0.00048
0.00018
0.0007
0.0009

0.0015

0.00237

0.00079
0.00497
0.0045
0.0039
0.0054
0.00009
0.0003
0.00065
0.0005
0.0008

0.0006

0.00015

0.00032

0.00061
0.0005
0.0009

0.0011

0.00006
0.0003
0.0004
0.0003
0.0016

0.0014
0.00019
0.0005
0.0037
0.0033
0.00002
0.0026
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TABLE 10. Confusion matrix for each outcome for multi classification and performance metrics for different algorithms.

Features Algorithm Confusion Matrix P R F1 - score FPR
DT [17789, 0,24, 2, 2; 0, 8523, 2021, 54, 15; 0, 744, 123896, 29, 35;  0.999  0.998 0.999 0
All 0, 6,254, 11759, 2; 1, 250, 1053, 14, 21261]
Features KNN [17787,5,21,4,0;3,9687, 766, 20, 137; 4, 502, 123729, 23,446;  0.999  0.998 0.999 0.00028
(79/79) 1, 53,194, 11752, 21; 1, 175, 501, 9, 21893]
Gaussian SVM [17778, 0, 38, 1, 0; 3, 2422, 4520, 40, 3628; 12, 320, 119585, 18,  0.998  0.999 0.998 0
4769; 8, 13, 499, 11289, 212; 6, 149, 1133, 15, 21276]
NN [17770, 1, 33, 10, 3; 0, 2020, 8275, 49, 269; 13,382, 119377, 122,  0.999  0.997 0.998 0.000056
4810; 10, 5, 468, 11391, 147; 1, 45, 1143, 20, 21370]
SVM Kernel [17751, 0, 66, 0, 0; 0, 3061, 4128, 8, 3416; 14, 773, 114054, 60,  0.999  0.996 0.997 0
9803; 6, 21, 760, 9991, 1243; 4, 140, 2352, 42, 20041]
Logistic [17727,0, 89, 1, 0; 0, 3401, 3647, 1, 3564; 15, 986, 118573, 113,  0.998  0.995 0.996 0
Regression Kernel ~ 5017; 10, 13, 812, 9697, 1507; 7, 184, 1323, 54, 21011]
PCA DT [17610, 25, 119, 16, 47; 0, 6983, 3217, 42, 371; 4, 2618, 119423,  0.999  0.988 0.994 0.00142
(50/79) 106, 2553; 6, 47, 1349, 10207, 412; 1, 454, 1746, 17, 20361]
KNN [17779,5,25,8,0; 1,9644, 790, 25, 153; 3, 526, 123681, 24,470;  0.999  0.998 0.999 0.00028
2,56,222,11719,22; 2,168,487, 13, 21909]
Gaussian SVM [17358, 3, 456, 0, 0; 0, 5066, 5343, 8, 196; 1, 1821, 119236, 10, 0.999  0.974 0.987 0.00017
3636; 0,47, 513, 11454, 7; 0, 251, 852, 8, 21468]
NN [17793, 1, 17, 6, 0; 1, 3906, 6566, 43, 97; 7, 1793, 121085, 140,  0.999  0.999 0.999 0.000056
1679; 7,24, 361, 11540, 89; 1, 178, 1069, 39, 21292]
SVM Kernel [17562, 0,249, 6, 0; 2, 1818, 7929, 49, 815; 19, 178, 119076, 111,  0.997  0.986 0.991 0
5320; 18, 6, 658, 11105, 234; 7, 22, 1483, 20, 21047]
Logistic [17372, 0, 440, 5, 0; 1, 4868, 3357, 31, 2356; 18, 1048, 118816, 0.998  0.975 0.986 0
Regression Kernel 117, 4705; 4, 17, 857, 10884, 259; 5, 193, 1159, 24, 21198]
PCA DT [17615, 24, 119, 11, 48; 0, 6946, 3294, 10, 363; 1, 2617, 119503,  0.999  0.989 0.994 0.00136
(23/79) 53,2530; 1, 50, 1443, 10113, 414; 2, 448, 1709, 11, 20409]
KNN [17770, 5, 35,6, 1;2,9798, 653,23, 137; 3,421, 123849, 24,407;  0.999  0.997 0.998 0.00028
5,54, 156, 11785, 21; 1, 152, 436, 19, 21971]
Gaussian SVM [17476,7,332,2,0;1,5167,5390, 6,49; 0, 1857, 119801, 6,3040;  0.999  0.981 0.99 0.0004
1, 60, 486, 11469, 5; 0, 235, 842, 8, 21494]
NN [17747,9, 49, 10, 2; 1, 3856, 6548, 59, 149; 0, 1758, 121162, 168,  0.999  0.996 0.999 0.0005
1616; 4, 32,470, 11461, 54; 0, 157, 1213, 38, 21171]
SVM Kernel [17582, 2,227, 6,0; 1, 4800, 5575, 21, 216; 11, 1260, 118589, 90,  0.998  0.987 0.992 0.00011
4754; 14, 38, 654, 11298, 17; 4, 196, 1128, 21, 21230]
Logistic [17451, 2, 360, 3, 1; 0, 4929, 3348, 51, 2285; 2, 1079, 118714, 0.999  0.979 0.989 0.00011
Regression Kernel 112, 4797; 7, 34, 839, 10949, 192; 3, 192, 1167, 32, 21185]
PCA DT [17499, 5, 198, 37, 78; 11, 6500, 3438, 20, 644; 7, 2031, 118866, 0.998  0.982 0.99 0.00028
(12/79) 148, 3652; 6, 40, 848, 10104, 923; 3, 163, 1222, 27, 21164]
KNN [177751, 7, 45, 13, 1; 2, 9919, 563, 21, 108; 7, 346, 124039, 24,  0.999  0.999 0.999 0.00004
288; 5, 54, 121, 11822, 19; 2, 121, 346, 25, 22085]
Gaussian SVM [17596, 24, 195, 2, 0; 0, 7476, 3088, 22, 27; 1, 883, 121946, 11,  0.999  0.988 0.994 0.00136
1863; 0, 89, 313, 11608, 11; 0, 243, 772, 7, 21557]
NN [17644, 25, 113, 27, 8; 3, 3734, 6546, 80, 250; 27, 941, 120572,  0.997 0.99 0.994 0.00141
281, 2883; 5, 53, 799, 11146, 18; 8, 85, 1184, 48, 21254]
SVM Kernel [17616,23,170,7,1; 0, 6892,3698, 11, 12; 11, 1349, 118558,90,  0.999  0.989 0.994 0.0013
4696; 1, 56,948, 11001, 15; 3, 188, 1140, 34, 21214]
Logistic [17541, 23, 238, 10, 5; 0, 7477, 2941, 16, 179; 3, 873, 118976, 60,  0.999  0.984 0.992 0.0013

Regression Kernel

4792; 0, 52,961, 10969, 39; 2, 182, 1222, 24, 21149]

making it effective for high-stakes environments like finan-
cial transaction monitoring or smart grid security, where both
precision and efficiency are key. NN models are useful for
recognizing complex patterns and are suitable for advanced
malware detection or behavior analysis in enterprise net-
works. SVM Kernel, offering good accuracy with moderate
resource requirements, is commonly applied in healthcare
IoT security to protect medical devices or wearable health
monitors from data breaches. Lastly, Logistic Regression
Kernel works well for simpler classification tasks with low to
moderate computational demands, such as phishing detection
in emails or spam filtering, where fast, reliable classification
of benign versus malicious content is necessary without using
heavy resources.
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These methods present diverse options for different secu-
rity challenges, ensuring optimal performance while man-
aging resource constraints. Figures 7 and 8 illustrate the
enhanced performance of this method compared to previous
studies, showing either higher or comparable accuracy in both
binary and multi-class classifications. This was achieved with
fewer features, resulting in models that are not only more
accurate but also smaller in size and quicker in response time.

VI. CONCLUSION

The limited computational resources in IoT systems and net-
works can make it difficult to train, validate, and implement
attack classification models for cybersecurity. To address
these challenges, reducing the number of features is important
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TABLE 10. (Continued.) Confusion matrix for each outcome for multi classification and performance metrics for different algorithms.

PCA DT [17367, 18,330, 102, 0; 0, 3936, 6538, 96, 43; 0, 146, 121322, 1878, 0.999  0.975 0.987 0.00104
(4/79) 1358; 0, 33, 2877, 9093, 18; 2, 51,4192, 1594, 16740]
KNN [17712, 3,78, 19, 5; 5, 9970, 509, 28, 101; 6, 309, 124102, 45, 242;  0.999  0.975 0.987 0.00104
7,56,145,11798, 15; 3, 113, 315, 33, 22115]
Gaussian SVM [17501, 27, 247, 26, 16; 1, 1714, 6403, 52, 2443; 45, 197, 116086, 0.997  0.982 0.989 0.00154
1335,7041; 1, 18, 5244, 6041, 717; 11, 13, 9983, 1609, 10963]
NN [17438, 30, 240, 32, 77; 0, 1755, 6178, 81, 2599; 31, 213, 119285, 0.996  0.979 0.987 0.00171
1550, 3625; 29, 31, 2206, 8970, 785; 6, 16, 8553, 3281, 10723]
SVM Kernel [17360, 41, 392, 9, 15; 0, 6365, 4102, 12, 134; 4, 735, 119003, 143, 0.999  0.974 0.987 0.00235
4819; 0, 61, 1719, 10104, 137; 0, 56, 1552, 106, 20865]
Logistic [17349, 30, 393, 35, 10; 0, 6424, 3940, 32,217, 0,810, 118998, 184, 0.999  0.974 0.986 0.00172
Regression Kernel ~ 4712; 1, 51, 2121, 9645, 203; 3, 118, 1616, 94, 20748]
MRMR DT [17778, 2, 30, 7, 0; 0, 8576, 1950, 75, 13; 0, 813, 123803, 46, 41; 1, 0.999  0.998 0.999 0.00011
(50/79) 16,279, 11725, 0; 1, 290, 1332, 23, 20933]
KNN [17781,2,23,9,2;2,9764, 700, 28, 120; 2, 476, 123778, 31,416, 0, 0.999  0.998 0.999 0.00011
56,178, 11775, 12; 0, 171, 461, 10, 21937]
Gaussian SVM [17766,1,48,2,0;0,1979,4931, 36,3668; 8, 118, 119849, 24,4704; 0.999  0.997 0.998 0.00006
6, 11,449, 11331, 224, 0, 84, 1146, 21, 21328]
NN [17765, 3, 30, 13, 6; 1, 2590, 7042, 18, 963; 6, 968, 119349, 166, 0.999  0.997 0.998 0.00016
4214; 11, 15,429, 11291, 275; 0, 128, 1040, 25, 21386]
SVM Kernel [17754, 1, 56, 6, 0; 0, 2884, 4087, 12, 3631; 6, 602, 118575, 100, 0.999  0.996 0.998 0.000056
5420; 0, 12, 559, 10412, 1038; 0, 114, 1278, 32, 21155]
Logistic [17743,1,67,6,0;0,3022,4079, 4, 3509; 8, 847, 118689, 105, 5054;  0.999  0.996 0.997 0. 000056
Regression Kernel 3, 6, 818, 9736, 1458; 2, 134, 1621, 75, 20747]
MRMR DT [17783,2,19,13,0; 0, 8388, 2136, 75, 15; 0, 582, 124045, 46, 30; 3, 0.999  0.998 0.999 0.00011
(23/79) 19,279, 11719, 1; 0, 272, 1000, 22, 21285]
KNN [17779, 2, 22, 13, 1; 2, 9900, 573, 25, 114; 2, 382, 123916, 29, 374; 0.999  0.998 0.999 0.00011
3,55,151, 11805, 7; 1, 151, 391, 7, 22029]
Gaussian SVM [17762,2,42,9,2;0,2220,4704, 15,3675; 2,330, 119626, 24,4721;  0.999  0.997 0.999 0.00011
2,6,418,11374,221;0, 77, 1094, 15, 21393]
NN [17771,1,37,8,0;0,3324,7152,43,95;0,1662, 121132, 155, 1754;  0.999  0.997 0.998 0.000056
10, 26, 469, 11299, 217, 0, 164, 1025, 27, 21363]
SVM Kernel [17750, 2, 48, 15, 2; 0, 3457, 4275, 12, 2870; 8, 626, 119278, 74, 0.999  0.996 0.998 0.00011
4717, 0, 14,491, 11227, 289; 0, 127, 1172, 38, 21242]
Logistic [17716,0, 81, 20, 0; 0, 3036, 3938, 5,3635; 7, 889, 119099, 90,4618;  0.999  0.994 0.997 0
Regression Kernel 3, 12, 726, 10194, 1086; 2, 178, 1286, 54, 21059]
MRMR DT [17787,0,17,13,0; 0, 8588, 1932, 78, 16; 1, 855, 123768, 50,29; 3, 0.999  0.998 0.999 0
(12/79) 9,279, 11730, 0; 0, 295, 909, 22, 21353]
KNN [17779, 3, 18, 15, 2; 2, 10071, 438, 14, 89; 2, 404, 123994, 29, 274;  0.999  0.998 0.999 0.00017
5,49, 110, 11855, 2; 0, 128, 296, 7, 22148]
Gaussian SVM [17754, 1, 49, 11, 2; 1, 2762, 4060, 11, 3780; 4, 765, 118953, 87, 0.999  0.996 0.998 0.00006
4894; 3,9, 378, 11490, 141; 5, 147, 1122, 8, 21270]
NN [17769, 1, 36,9, 2; 0, 2654, 7838, 31, 91; 2, 916, 118960, 408, 4417,  0.999  0.997 0.998 0.000056
11,24, 745, 11148, 93; 0, 172, 1080, 24, 21303]
SVM Kernel [17729, 0, 67, 19, 2; 0, 3513, 6010, 14, 1077; 1, 652, 118880, 256, 0.999  0.995 0.997 0
4914; 2, 6,459, 11463, 91; 1, 90, 1232, 11, 21245]
Logistic [17701, 2, 85, 26, 3; 0, 4365, 4364, 11, 1874, 4, 785, 118663, 217, 0.999  0.993 0.996 0.00011
Regression Kernel ~ 5034; 6, 17, 679, 11109, 210; 2, 181, 1304, 13,21079]
MRMR DT [17771,1, 30, 14, 15 0, 6550, 3985, 41, 38; 0, 359, 121272, 51,3021; 0.999  0.997 0.999 0.00006
(4/79) 5, 16,435, 10200, 13655 1, 181, 1160, 50, 21187]
KNN [17774,4,26,12,151,9962,497,45,109; 1,404, 122312,305,1681; 0.999  0.998 0.999 0.00023
4,49, 576, 10832, 5605 1, 127, 1763, 297, 20391]
Gaussian SVM [17756, 0, 43, 18, 0; 0, 1710, 4940, 40, 3924; 5, 258, 119363, 128, 0.999  0.997 0.998 0
4949; 3, 1, 2055, 9772, 1905 0, 7, 5989, 9, 16574]
NN [17762, 3, 32, 12, 8; 0, 1980, 5254, 22, 3358; 0, 558, 117961, 372, 0.999  0.997 0.998 0.00016
5812; 17,10, 1977, 9779, 238; 0, 177, 5233, 45, 17124]
SVM Kernel [17706, 1, 109, 1, 0; 0, 57, 9442, 0, 1115; 3, 22, 119412, 3, 5263; 2, 0.999  0.994 0.997 0.000056
1, 11818, 0, 200; 0, 8, 5285, 0, 17286]
Logistic [17610, 0, 194, 10, 3; 7, 1557, 8224, 90, 736; 29, 87, 120281, 565, 0.998  0.988 0.993 0

Regression Kernel

3741; 4,7, 5475, 6524, 11; 2, 3, 9018, 28, 13528]

to create lightweight and efficient models. This study focused
on reducing the number of features by evaluating feature
selection and extraction techniques. A detailed evaluation of
feature selection methods was conducted, setting this work
apart from previous research by emphasizing data preparation
and classifier training. The analysis showed that selecting
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12 out of 79 features accounted for 99% of their significance.
This selection, combined with six ML algorithms, produced
results equal to or better than prior studies. In binary classi-
fication, the DT algorithm achieved 99.9% accuracy with a
training time of 45.028 seconds. KNN also reached 99.9%
accuracy with a model size of 30 KB. Other algorithms,
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such as Gaussian SVM, NN, SVM Kernel, and Logistic
Regression Kernel, achieved accuracy rates between 99.3%
and 99.7%. For multi-class classification using the MRMR
method, DT achieved 97.6% accuracy, KNN reached 99%,
and other algorithms showed accuracy between 92.9% and
96%. This study successfully reduced model complexity
while improving accuracy using MRMR and PCA tech-
niques. It demonstrated that these methods are scalable and
flexible for industrial IIoT applications by identifying impor-
tant features with minimal computational effort. However,
there were limitations, such as longer training times for KNN
and Gaussian SVM. Additionally, parameters like model size
and prediction speed were evaluated, but direct comparisons
to other studies were difficult. Applying these findings to
more complex datasets or real-world scenarios may present
challenges, and future work will focus on using deep learn-
ing techniques and testing with the latest datasets to further
improve performance.

APPENDIX A

Table 8 lists the abbreviations employed in the manuscript,
which have not been expanded upon within the document.
These abbreviations are presented in the sequence of their
initial occurrence.

APPENDIX B

Tables 9 and 10 display the confusion matrices and perfor-
mance metrics for various ML algorithms applied in both
binary and multi-class classification tasks.
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