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Abstract 

 

In this project, the British Library’s maritime Southeast Asian (SEA) illuminated manuscript 

collection was analysed via data visualisation and machine learning techniques to complement 

the holistic multimodal large-scale identification of artistic materials using visible to near-infrared 

(VNIR) reflectance spectral imaging (SI) and other complementary analysis techniques. Other 

techniques used included X-Ray fluorescence, external reflection-Fourier transform infrared, 

ultraviolet-visible-short wave infrared and Raman spectroscopies, all of which have shown to 

perform well for material identification when used together. 

To condense large-scale spectral imaging data into manageable datasets, a new automated 

clustering and pigment identification informed grouping method was developed to reduce billions 

of VNIR spectra collected during large-scale SI surveys into smaller sets of unique spectral 

groups. Using this methodology meant that most artistic materials throughout the collection could 

be characterised and have their distributions mapped in less than 200 groups, where each group 

possessed a unique pigment mixture used within 18th-19th century maritime SEA. By using 

pigment mixture maps produced after grouping, 43 different unique pigment mixtures could be 

mapped and detected within 50 different manuscripts. One of the main findings showed an 

increasing European influence in the region as years progressed, but a tendency to mainly use 

traditional materials as late as the early-mid-19th century, e.g. With a new detection of bone ash 

white being common in early Javanese manuscripts. The results offered by this study provided 

great insight into the use of artistic materials during this period and can be used now as a 

fundamental base for future research into maritime SEA and by extension the maritime silk road. 

Additionally, a novel holistic multimodal clustering technique was also developed which allowed 

for the automated clustering of SI data created via different complementary techniques. And in 

addition to this, a new classification method was proposed which would allow for future large-

scale SI data analysis and material identification to be performed as part of a hybrid clustering 

and classification approach. 
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Chapter 1  

Introduction 

 

1.1 Background & Motivations 

Maritime Southeast Asia is a region split between many islands, cultures, and religions, and has 

seen many interactions both within the archipelago and beyond throughout its history, each of 

which has led to many evolutions within the region towards how it exists today. While maritime 

Southeast Asia has its own long-standing and rich traditions throughout many different islands 

and cultures, many outside influences have contributed to the development of the region, 

including those from India, China, Europe, and the Islamic world (Tarling, 1992, 2008), which 

had such influence that Islam remains the primary religion linking most of the archipelago even 

to this day. With the many cultural influences brought by these external civilisations came further 

developments in many writing traditions, resulting in the adoption and adaptation of manuscript 

styles including manuscript illumination. Most surviving illuminated manuscripts found in the 

modern day from maritime Southeast Asia can be dated to the 17th-19th centuries, a time which 

saw many developments in the uses of artistic materials in different parts of the world. Many of 

the examples found today are finely illuminated, with many different artistic schools with 

different histories and cultures creating numerous manuscripts in many styles. However, little is 

known of the pigments and other artistic materials implemented during this period within the 

region and by extension, the use and trade of artistic materials between different regions within 

the Malay-Indonesian archipelago is also enigmatic. Unfortunately, by the late-19th century, many 

illuminated manuscript traditions had begun to fall into decline in the region, primarily due to the 

increasing popularity of printing in an industrialising world (A. Kumar & McGlynn, 1996). This 

means that today, the number of well-illuminated maritime Southeast Asian manuscripts is 

limited, and as such, very few studies have been performed to understand the types of artistic 

materials used in their preparation and production. 

In the last hundred years or so, numerous organisations within Great Britain have sought to collect 

many of these manuscripts, and at the time of writing this thesis, the British Library currently 

holds one such collection containing a sizeable number of well-illuminated manuscripts. The 

collection, mainly derived from two major historic collections originally compiled by the British 

Museum and India Office Library, includes many different items from numerous islands within 

18th-19th century maritime Southeast Asia. Such a collection is uncommon amongst many 

museums and libraries and therefore offers a unique opportunity to gain a greater understanding 

of the artistic practises used in maritime Southeast Asia, however, due to there being very little 

study into the materials used across the collection and the number of well-studied illuminated 
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manuscripts being limited over most of the world, this is a task which cannot be performed 

through observational and comparative studies alone. This, therefore, indicates a profound need 

for scientific methods to be employed which have shown in many past studies to allow for the 

identification of artistic materials, in turn providing the insight needed to draw conclusions about 

the evolution of trade, cultural exchanges and use of artistic materials between regions and along 

maritime trade routes over time. 

Scientific Study of Artistic Materials 

The technical study and scientific analysis of artistic materials is well-established and 

commonplace within the cultural heritage research community. In fact, it is now commonly 

accepted that scientific methods are crucial to the analysis, characterisation, and conservation of 

artworks. This is because using scientific techniques to perform material identification on 

manuscripts is the only reliable way to acquire information regarding the inks, paper, pigments, 

binders, and other materials, which are useful for giving insights into the artistic practises of 

different cultures and regions throughout history. As the materials used in the preparation and 

production of maritime Southeast Asian illuminated manuscripts have been studied very rarely, 

the scientific examination of the British Library’s collection, which has only been performed once 

before by Burgio et al. (1999), offers the ability to build a fundamental basis for cultural and 

historical research into the use of pigments and other materials within the archipelago throughout 

the 18th-19th centuries. Therefore, throughout this thesis different scientific data collection and 

analytical techniques are implemented to study the use of pigments and other materials in 

numerous maritime Southeast Asian manuscripts.  

To acquire the data necessary for informing the use of artistic materials, the normal practise is to 

perform a holistic multimodal study, where many different techniques are employed together 

towards a combined goal. This is typically necessary because there is no one technique that can 

characterise every property required to identify materials, which implies that techniques must be 

used which best complement each other. In modern studies, many different techniques such as 

fibre optic reflectance spectroscopy, X-Ray fluorescence, Raman spectroscopy, and others, have 

all been implemented in the pursuit of performing material analysis on cultural heritage objects. 

As technology has progressed in more recent decades, most techniques have now developed to be 

able to collect spectral image-based scientific data non-invasively, meaning that millions of 

datapoints useful for characterising materials can be recorded at the same time while avoiding 

any potential damage to objects. Furthermore, modern systems can also perform data collection 

in-situ, meaning that for large-scale scientific studies of manuscripts, different instruments can be 

brought to collections instead of having to transfer potentially fragile items across cities, countries 

or continents.  These factors not only make the analysis of a collection safer, but also mean that a 

greater number of items can be analysed more efficiently as there are very few logistical problems 

that may occur on account of moving many manuscripts to perform large-scale analysis. 
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Artificial Intelligence and Machine Learning Necessity 

When performing heritage studies covering vast geographical regions, large volumes of data are 

required to make statistically reliable conclusions about the use of artistic materials. This way if 

any trends in the implementation of materials or styles can be found in certain regions, it can be 

assumed that these artistic practises may be the norm. However, performing scientific data 

collection at such a large scale to acquire this information introduces new problems where data 

becomes too large or complex to analyse efficiently. Therefore, the need for computational 

techniques that can aid in improving the efficiency of analysis become increasingly necessary. In 

recent years, machine learning technologies have demonstrated their capability to aid in this 

pursuit within cultural heritage research, and for the problems encountered within this thesis, they 

can offer unique ways to allow for the analysis of ‘big data’, which will only grow to become 

even bigger as more data is collected over time and in greater abundance. Machine learning covers 

a swath of computational techniques that focus on performing data analysis by imitating how we, 

as humans, learn, and is largely considered to fall under the umbrella of artificial intelligence (AI). 

While machine learning was originally conceived in the 1940s (McCulloch & Pitts, 1943), 

advances in memory storage and processing power over the last few decades have made machine 

learning widely available, and as more powerful computers are now more accessible than ever, 

machine learning can be seen used in many aspects of modern life, anywhere from Google’s 

search engines to Tesla’s self-driving cars. In fact, in 2021 a McKinsey global survey which 

monitored the working practices in 1,843 different companies worldwide found that 56% of 

respondents had adopted and were using AI in at least one function (McKinsey Global Institute, 

2021). With machine learning becoming more popular in various industries and applications, 

there are now many processes which can be implemented into different scenarios to solve large 

and complex data analysis problems, including dimensionality reduction for computer vision and 

visualisation, reinforcement learning for robotics, or predictive modelling for stock market 

forecasting. However, for the task of performing the large-scale scientific data analysis required 

for this thesis, the most useful machine learning-based techniques to use are unsupervised 

clustering and supervised classification, both of which can be implemented to reduce the size of 

large datasets and or perform automated material analysis. As such, the use of both techniques 

will be presented throughout this thesis in pursuit of performing large-scale data analysis for 

manuscript collections and paper-based paintings (with both being discussed further in sections 

1.3 and 1.4 of this chapter). In most chapters of this thesis, however, the focus is on the use of 

clustering applied to spectral imaging data, due to its capabilities of simplifying complex datasets 

into more easily interpretable information.  
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1.2 Holistic Scientific Study of Illuminated Manuscripts 

The study of artistic materials used within illuminated manuscripts or artworks normally requires 

the collection of different types of data so that conclusive material analysis can be performed. 

This approach is normally taken as the implementation of different complementary techniques 

can be proven to not only provide the data necessary for the identification of materials (Delaney 

et al., 2014; Kogou et al., 2015; Miliani et al., 2010), but they can also be used to guide the 

interpretation of results as well, as one technique can provide information to inform others, 

improving the overall accuracy of the study (Kogou, 2017). For the studies of manuscripts and 

other paper-based paintings performed throughout this thesis, there are several non-invasive and 

non-destructive techniques which can be used to provide the information to determine artistic 

materials, therefore the analysis techniques used in this thesis are discussed in the following 

sections. 

 

1.2.1 Visible-Near Infrared (VNIR) Reflectance Spectroscopy 

One of the most widely used and accessible techniques for analysing artistic materials is visible-

to-near-infrared (VNIR) reflectance spectroscopy. When visible incident light meets a solid 

object, it will normally be split into different components, where it can either be absorbed or 

reflected, transmitted, or scattered (see Fig. 1.1). 

 

Fig.1.1 Basic diagram illustrating the reflection and transmission of incident light in VNIR reflectance spectroscopy. 

 

The proportion of light belonging to any one of these components in the VNIR range, which 

covers roughly 400-1000nm in wavelength, is based on many different factors including colour, 

transparency, particle size, molecular structure, or surface topography. By monitoring the amount 

of diffuse light reflected from an object, properties unique to specific materials, or mixtures of 

materials, can be inferred and compared against references to identify pigments, inks, dyes, etc. 
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These measurements of the reflected light from a material are known as reflectance, and are 

wavelength dependent, implying a variation in responses for different unique materials at different 

wavelengths of light. In general, VNIR reflectance is calculated by comparing the reflected light 

from an object against a reference target with a known response at different wavelengths, thereby 

producing a relative reflectance 𝑅(𝜆) with values between 0 and 1, which can be used for analysis 

as different materials will reflect light in characteristic ways. VNIR reflectance has proven to be 

a powerful tool and has shown to be pivotal in the identification of many different materials in a 

large variety of studies covering the analysis of statues, paintings, and illuminated manuscripts, 

and has been used in many other aspects of art history and conservation research such as 

monitoring laser cleaning, bronze disease, and more. Typically, the technique commonly utilised 

in heritage studies is fibre optic reflectance spectroscopy, but there are other methods which can 

be implemented. 

Fibre Optic Reflectance Spectroscopy (FORS) 

Fibre Optics reflectance spectroscopy (FORS) is a powerful tool used for material analysis in 

cultural heritage with an extensive history of use for multiple decades in the study and 

examination of artworks (Leona & Winter, 2001). It utilises basic equipment and works from a 

simple concept: to direct a source of light onto a small point using a fibre optic probe and monitor 

the reflected light using a spectrometer to produce a reflectance spectrum. A basic diagram 

illustrating the setup of a FORS system can be seen in Fig. 1.2. 

 

 

Fig.1.2 Diagram showing the basic setup for performing fibre optic reflectance spectroscopy. 

 

FORS has demonstrated the ability to identify inorganic and organic pigments, dyes, and mixtures 

making it a great candidate for the analysis of manuscripts as it can provide reflectance spectra 

which can detect fine absorption features, such as those seen in red dyes. FORS has already seen 

use in multiple studies of pigments and illuminated manuscripts and is therefore clearly useful for 

the identification of materials in this study, it can however be a technique that is not efficient for 
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data collection over large collections, which is one of the main goals of this thesis. Therefore, 

spectral imaging-based alternatives were used to gather large amounts of data first, where FORS 

was then implemented strategically to identify specific materials where required. 

 

1.2.2 VNIR Reflectance Spectral Imaging 

Spectroscopy can provide useful information in the study of artworks and manuscripts, but when 

considering the examination of complex large-scale datasets, both data collection and analysis 

may become a colossal task to perform if research questions require spectroscopy point 

measurements to be performed over thousands of different locations, therefore, alternative time 

and work efficient methods are desirable. In more recent years, developments in optical and other 

scanning techniques have led to the more common use of spectral imaging systems which can 

collect large amounts of data efficiently (Liang, 2012). Frequently used in heritage science, 

spectral imaging provides an increased volume of data by combining imaging with spectroscopy, 

allowing for the creation of three-dimensional volumetric data cubes (or image cubes), where 

every pixel within the two-dimensional spatial profile of an object also contains a spectrum unique 

to the materials present at the pixel location. Not only does this allow for the collection of 

thousands, or millions of spectra simultaneously, but it also provides information that can 

eventually allow for the large-scale identification and mapping of artistic materials on an artwork 

or a manuscript. Furthermore, with the correct processing in the VNIR, the true colour information 

of an object can also be produced by using this reflectance information, allowing for spectral 

imaging to provide colour-accurate digital images in addition to scientific data analysis. When 

performing spectral imaging in cultural heritage, the properties of collected spectra are heavily 

affected and defined by the instruments used, and in VNIR spectral imaging, many different non-

invasive approaches can be implemented. These include but are not limited to techniques which 

use filtered illumination, certain instrumental optical filters, and specific gratings (Cucci et al., 

2016; Liggins et al., 2022) which can exploit the diffraction of broadband light into its different 

constituent wavelengths. In this thesis, spectral imaging systems using filtered illumination and 

optical filters are both used to collect data for different paintings and are therefore the only 

techniques discussed in greater detail in this section. 

Wavelength Scanning - Filtered Illumination 

One of the most basic and convenient forms of performing spectral imaging in the VNIR regime 

is to synchronise image capture with controlled illumination for several wavelengths of light. In 

some disciplines, filtered illumination techniques are normally used to visualise the individual 

spectral bands one at a time as each can provide clues as to what materials have been used on a 

manuscript, or can reveal objects hidden to the eye in ordinary lighting conditions. For example, 

recording a single image when illuminating a manuscript page with UV light can allow for the 



7 

 

capture of UV fluorescence from inks, where fluorescence can indicate the use of materials like 

iron gall. Additionally, using individual infrared bands allows for penetration through layers of 

paint or dirt, providing images which can often show clear underdrawings or other substrate 

features (Duffy, 2018; McGillivray & Duffy, 2017). The difficulty with these studies however is 

that the techniques do not always offer the ability to acquire spectra images, meaning that the 

identification of other materials is not possible. However, while many studies will only use 

scientific imaging in this way, with ideal controlled conditions during data collection followed by 

applying appropriate processing techniques, the acquisition of accurate reflectance spectral 

information can still be performed and therefore spectral imaging data cubes can be produced for 

use in material identification. 

Wavelength Scanning – Filtered Optics System 

Reflectance spectral imaging data can also be acquired by placing different optical filters into a 

system so that only certain frequencies of light are permitted to travel through an optical system 

and into a detector. By scanning the same object through multiple different filters, different image 

channels can be generated representing the reflectance for different wavelengths of light. When 

combined, the channels can be sorted into a spectral imaging data cube. There are multiple ways 

in which this can be performed, but the most common approaches normally involve a mechanical 

way of swapping between filters. For example, in Liang et al., (2014), the same spectral imaging 

system used throughout this thesis (PRISMS) was implemented, where data is recorded by placing 

an electronically controlled filter wheel between the object of interest and the detector optics so 

that ten filters with regular bandwidths can be used to generate spectral imaging data in the VNIR 

regime under controlled illumination. Filtered optics systems are normally of a lower spectral 

resolution than some other techniques (e.g. grating-based line scanning approaches) commonly 

referred to as “hyperspectral”, however, they have still seen much use in cultural heritage studies 

and are well documented to provide reflectance spectra which can be used to identify common 

pigments in paintings, as most pigments have broad spectral features, making the technique an 

excellent candidate for the analysis of manuscripts. The only situations in which higher spectral 

resolution would be required are to identify materials with fine absorption features, for which the 

most implemented approach taken in this thesis was to perform point measurements using FORS 

in specific areas of interest after spectral imaging was performed, as the same information could 

be acquired for pigment identification without having to implement higher spectral resolution 

imaging. 

Colour Image Production using Reflectance Spectral Data 

Spectral imaging in the VNIR range can also be used to produce colour accurate images of objects 

under different lighting conditions by deriving a set of device-independent tri-stimulus values 
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from the spectral reflectance (McLaren & Rigg, 1976). This can be achieved by first converting 

to XYZ colour space through the following equations: 

 

𝑋 =
𝑘

𝑁
 ∫ 𝑅(𝜆)𝐼(𝜆)�̅�(𝜆)𝑑𝜆

∞

0

 

𝑌 =
𝑘

𝑁
 ∫ 𝑅(𝜆)𝐼(𝜆)�̅�(𝜆)𝑑𝜆

∞

0

 

𝑍 =
𝑘

𝑁
 ∫ 𝑅(𝜆)𝐼(𝜆)𝑧̅(𝜆)𝑑𝜆

∞

0

 

𝑘

𝑁
=

100

∫ 𝐼(𝜆)�̅�(𝜆)𝑑𝜆
∞

0

 

 

Where 𝑅 is the spectral reflectance of any material recorded by the system, 𝐼 is the emission 

spectrum of the illumination, 𝑘 is the scaling factor, and �̅�, �̅�, 𝑧̅ are the colour-matching functions 

describing the response of the CIE 1931 2° standard observer (Cie, 2004). Once calculated, 𝑋𝑌𝑍 

tri-stimulus values are typically then converted into CIELAB (McLaren & Rigg, 1976) colour 

space as it enables the accurate measurement and comparison of colours where numerical 

differences roughly correspond to how humans perceive changes in colour. It does this by defining 

colour not by three channels of different colours, but instead by modelling its channels around the 

unique perception of colours in human vision, which consists of measurements for the perceptual 

lightness or Luminance (𝐿∗), red/green response (𝑎∗), and blue/yellow response (𝑏∗). The 

conversion from 𝑋𝑌𝑍 to CIELAB (or 𝐿∗𝑎∗𝑏∗) can be achieved by using the following: 

 

𝐿∗ = 116𝑓 (
𝑌

𝑌𝑛
) − 16 

𝑎∗ = 500 (𝑓 (
𝑋

𝑋𝑛
) − 𝑓 (

𝑌

𝑌𝑛
)) 

𝑏∗ = 200 (𝑓 (
𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
)) 

𝑓(𝑥) = {
√𝑡       
3

, 𝑖𝑓 𝑡 >  𝛿3

𝑡

3𝛿2
+

4

29
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where 𝛿 =
6

29
,  𝑋, 𝑌, 𝑍 are the tri-stimulus values of a material and 𝑋𝑛, 𝑌𝑛, 𝑍𝑛 are the values for a 

white reference illuminant, normally the standard D65 illuminant. This conversion will work for 
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a single reflectance spectrum, however when applied to spectral data cubes can be used to 

generate entire colour images. From CIELAB colour space, different other colour spaces can be 

achieved, such as the more common sRGB (IEC, 1999), with colours able to be simulated for 

different lighting conditions if the emission of the light source during data capture of spectral data 

is known. Throughout this thesis, colour is used in different ways to aid in the analysis of different 

paintings and is central to a novel machine learning-based clustering method developed for the 

analysis of the maritime Southeast Asian manuscript collection, where CIELAB is used directly 

with spectral reflectance. 

 

1.2.3 X-Ray Fluorescence (XRF) Spectroscopy 

Another exploited phenomenon used within cultural heritage is X-Ray Fluorescence (XRF). XRF 

is a non-invasive technique commonly used to determine the elemental composition of different 

materials through the identification of characteristic ‘peaks’, guassian features in an energy 

spectrum which correspond to different elements. In heritage studies, many different pigments, 

inks, substrates, or other materials often possess characteristic elemental composition and 

therefore can be identified using XRF. It functions by directing X-rays (known as primary X-

rays) to an object and reading back fluorescent X-rays (secondary X-rays) caused by the incident 

primary X-ray’s interaction with matter at the atomic level.  

More specifically, it occurs when the electrons in different orbitals of an atom transition from 

higher to lower energy states, usually caused by electron bombardment from the primary X-rays 

or photon absorption from gamma rays. The basic premise is that if an electron is ejected from 

the innermost (K) orbital to an outer shell, the atom enters a higher energy excited state, leaving 

an electron vacancy in the K shell which needs to be filled to return the atom to its normal state. 

To return the ionised atom to its stable state, another electron from one of the outer shells must 

transition to fill this K shell, where, for example, in a K-L (Kα) transition, this involves an electron 

moving from the L to K shells. When the higher energy electron cascades down to a lower shell, 

energy equivalent to the binding energy required to move from K to L is released from the atom 

in the form of a secondary fluorescent X-ray (Kα line). The process of filling an electron vacancy 

in the K shell in turn creates more vacancies in higher orbitals, which also require filling to 

maintain the stability of the atom. The full process, therefore, results in many transitions which 

together release secondary x-rays with energies characteristic of specific chemical elements, 

allowing for the identification of elements in a material. In some cases, K-L transitions are not 

the only permitted transitions. For example, for atoms with large numbers of electrons, the K shell 

vacancy may instead be filled by an electron transitioning from the M orbital, a K-M transition, 

which causes the emission of the Kβ line. Many transitions are also permitted including those 

from the L, M, N, shells etc. Some of the common transitions seen in XRF analysis with their 
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associated Siegbahn and IUPAC notation is included in Fig. 1.3, which describe specific energy 

transitions for different chemical elements. 

 

Fig.1.3 Left: Diagram showing typical K, L, M shells with some transitions included as arrows. Right: A table 

covering some of the main characteristic X-ray transitions and their notation. 

 

XRF Energy Range Detection 

In standard use of most portable XRF systems (seen implemented in this thesis) the detectable 

range for chemical elements normally spreads from Z=14 (Silicon) to Z=92 (Uranium). As the 

materials in cultural heritage are not likely to lay above Uranium in the period table of elements, 

the upper limit on the detectable range is not a huge problem. However, there are many materials 

in cultural heritage which may contain elements with Z<14, which would not be identifiable due 

to the absorption of characteristic x-rays by the air at lower energy ranges. To address this, most 

modern XRF analysis instruments can perform a Helium purge, where the air around a material 

being analysed is replaced with Helium gas, permitting the detection of elements down to Z=11 

(sodium). Even with the implementation of a Helium purge, however, there are still many lighter 

elements that are typically not detectable using portable XRF systems. These include elements 

which typically correspond to organic pigments such as Carbon, Nitrogen and Oxygen. 

Bremsstrahlung/Background Continuum  

Performing XRF measurements always results in the creation of bremsstrahlung radiation from 

either the XRF system or the surrounding environment. Bremsstrahlung primarily presents itself 

as the background continuum in an XRF energy spectrum, and its profile can change between 

systems and with the voltage supplied to the XRF ray tube and therefore the energy of the emitted 

X-Rays. For most of the thesis the bremsstrahlung continuum had minimal effect on the 

identification of elements, however, there were some scenarios where the signal representing 

certain elements was weak enough that the background can be seen to dominate most of an XRF 
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spectrum, requiring continuum subtraction algorithms to be applied to the data prior to analysis, 

as demonstrated in chapter 4. 

Rayleigh and Compton Scattering 

During the process of performing XRF, Rayleigh and Compton scattering can occur as a side 

effect of photons interacting with matter and are usually presented as a set of peaks in the XRF 

spectrum. In Rayleigh scattering, this involves the elastic scattering of a primary photon, meaning 

that it does not lose energy and therefore can be detected as a set of peaks with energies equal to 

the material used in an X-ray tube (typically rhodium, tungsten, or silver). In Compton scattering, 

inelastic scattering occurs within the sample being analysed, meaning that a primary photon 

released from an XRF system will interact with matter, resulting in scattering where the photon 

returns to the detector with a lower energy. Therefore, the result of Compton scattering is that a 

lower energy photon than the incident X-Ray beam will be detected therefore visible on any XRF 

spectrum as peaks which are positioned at slightly lower energies (keV) than those for Rayleigh 

Peaks. 

Sum Peaks 

Normally occurring in scenarios where a single element dominates the entire XRF spectrum, it is 

possible for multiple secondary photons to enter an XRF detector simultaneously, producing a 

signal with energy equivalent to the sum of the different secondary X-rays. Due to the higher 

occurrence of their associated electron transitions, sum peaks most often occur because of Kα/Kα, 

Kα/Kβ, Kβ/Kβ pairs entering the detector at the same time, but any combination of simultaneous 

readings can happen. If this phenomenon happens repeatedly over a full XRF measurement, a 

new, but often small, “sum peak” may be detected which can cause problems when attempting to 

identify characteristic XRF lines of certain trace elements.  

Escape Peaks 

In many circumstances, very strong energy peaks can be detected in an XRF spectrum, resulting 

in the formation of other artefacts such as escape peaks. Escape peaks are produced because of 

XRF fluorescence photons passing through the detector crystal with significant enough energy to 

cause further x-ray emission. Released X-rays are normally reabsorbed by the detector and a 

spectrum produced as normal; however, it is also possible for these photons to escape the crystal. 

As most modern detectors are made from silicon, the x-rays normally released during this process 

are Si-Kα. So when this occurs in modern systems, the energy of the photons collected by the 

detector is equivalent to the energy of the original fluorescent photon minus the energy of the Si-

Kα photon which has escaped from the system, where total energy collected: 𝐸𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 =

 𝐸𝐼𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐸𝑆𝑖−𝐾𝛼. In an XRF spectrum, this means that we would expect to see two distinct peaks 

approximately 1.74keV apart (as 𝐸𝑆𝑖−𝐾𝛼≈1.74keV) for chemical elements that have extremely 

high counts in the spectrum. 
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Other Instrumental Peaks 

In addition to those previously mentioned, it is common for an XRF spectrum to possess peaks 

for chemical elements which can be found in the air or X-ray tube used to produce X-Rays. For 

example, a common material to use for the anode is Rhodium (Rh), which means that if XRF 

spectra are produced, there will always be a Rhodium peak present at both the lower and higher 

energy levels. Likewise, in air, Argon (Ar) is the third most abundant element, so when 

performing XRF it is not uncommon for Argon to exist as a large peak in the XRF energy 

spectrum (which is why helium purge is often used in environments where the Argon peak may 

cause difficulties in analysing materials). 

 

1.2.4 XRF Mapping 

XRF mapping has become more common in the last few decades due to the improvements in 

computational power and increased number of systems available commercially. XRF Mapping is 

typically performed by performing variations of single-point scanning but also be performed with 

on-the-fly techniques (Alberti et al., 2017) which can result in much faster data acquisition. 

Regardless, most mobile systems used in studies such as those seen in this thesis collect data by 

moving the head of the XRF system (containing the X-Ray tube) to cover an area over a painting 

or manuscript, therefore, allowing for convenient non-invasive scanning without having to move 

the object. XRF mapping can result in data which is similar in structure to any other form of 

spectral imaging, where the 2D image plane is made up of individual pixels, with each containing 

its own XRF spectrum. The main difference however is that with other techniques, units of 

frequency or wavelength are used to cover continuous features over many different regimes of 

the electromagnetic spectrum, but with XRF, sharp peak-like structures covering different 

energies will be observed. Because of this, many applications using XRF can be satisfied by 

extracting the pixels at specific peaks, to generate elemental composition maps and illustrate 

where certain materials may exist with the use of different post-processing and data visualisation 

techniques. In cultural heritage studies, these elemental composition maps can provide important 

qualitative information about the spread of artistic materials used over an artwork. Such maps can 

illustrate where there may be different inorganic pigments or different layers of paints on a 

painting, providing not only material identification but also insight into the artistic methods used 

by artists in the past (Mazzinghi et al., 2021; Romano et al., 2017). Furthermore, as X-Rays can 

penetrate to much greater depths than some reflectance-based techniques commonly used in 

cultural heritage, XRF can provide information for materials present underneath the surface. 
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1.2.5 Fourier Transform Infrared (FTIR) Spectroscopy 

Like VNIR reflectance spectroscopy, FTIR spectroscopy can also be used to perform the chemical 

characterisation of materials, making it a valuable tool for cultural heritage studies (Galeotti et 

al., 2009; G. L. Liu & Kazarian, 2022). FTIR functions on the principle that most vibrational 

interactions within molecules occur with fundamental vibration frequencies characteristic of 

specific chemical bonds in organic or inorganic materials. Many molecular vibrational 

interactions most commonly occur in the mid-infrared (MIR) region of the electromagnetic 

spectrum, which expands from 4000-500cm-1, but the full range of a typical FTIR spectrum can 

often also include the near-infrared depending on the spectrometer/system being used. FTIR 

spectroscopy typically involves using an interferometer to acquire the infrared spectrum of a 

material. This is typically performed using setups such as the Michelson interferometer (see Fig. 

1.4), whereby an interferogram is produced from interference between reflected infrared light 

after interacting with a material. The interferogram is further subjected to a Fourier Transform 

which can produce the transmission or absorption spectrum of a material if the infrared light has 

interacted with an object. To identify materials in use in cultural heritage, FTIR results can be 

compared with databases of known materials, allowing FTIR to perform material identification if 

produced spectra possess matching features to standard references. 

 

Fig.1.4 Basic example of a Michelson interferometer commonly used to perform FTIR spectroscopy. 

 

There are however still limitations of the technique which mean that FTIR must be used in 

conjunction with other methods. For example, in many scenarios FTIR spectra can be difficult to 

analyse for complex chemical matrices, where multiple absorption bands caused by constituent 

compounds within a material may overlap one another, resulting in indiscernible spectral features 

which cannot be properly compared with references to identify materials. Furthermore, certain 

materials will also be indistinguishable using FTIR alone if they possess similar chemical 
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structures, as this will result in spectra with absorption bands in the same positions. FTIR is 

normally performed using either transmission or reflection. In many cases however, such as in 

the non-destructive analysis of manuscripts, using FTIR in its ‘reflection mode’ is the only way 

that analysis be performed in a completely non-destructive way, in contrast to transmission which 

typically requires a small, microscopic sample to be taken from an object. FTIR in its ‘reflection 

mode’ can be performed in different ways, either using Diffuse Reflection (DRIFT), Attenuated 

Total Reflection (FITR-ATR), or Specular Reflection (also referred to as ER-FTIR), each of 

which can be implemented in different applications/scenarios and offer different advantages and 

disadvantages depending on their usage. Throughout this study, FTIR is only used in its external 

reflection mode, where it was positioned over numerous areas of manuscript illumination to aid 

in the identification of pigments. 

External Reflection FTIR (ER-FTIR) 

ER-FTIR is a fully non-invasive method which gathers spectral information through the 

monitoring of specular reflection. It does not require sampling or any direct contact with 

materials, as is the case with other techniques such as FTIR-ATR, making it a powerful tool for 

the in-situ analysis of illuminated manuscripts. However, even though ER-FTIR is the most useful 

technique for analysing materials non-invasively in cultural heritage, it is not without its own 

difficulties. ER-FTIR-produced spectra are well known to suffer from increased complexity due 

to band distortions, in the form of S-shaped distortions, band inversion and changes in intensity 

ratios, leading to increased intensity of weaker bands (such as combination bands or overtones). 

These changes can occur due to differences in particle size, surface roughness, absorption, or 

refractive index of artistic materials and their substrates or binding media; each of these can affect 

the penetration of incident infrared light, which in turn alters spectral features. This means that 

spectra may appear differently in various parts of the infrared range in comparison to reference 

spectra, affected by unique conditions in which the material was prepared or applied. 

Consequently, ER-FTIR spectra must be carefully compared against material reference databases 

from other techniques such as FTIR-ATR, and in many cases may not have entirely matching 

spectra, making pigment identification a complex process. Regardless, ER-FTIR is the best FTIR-

based candidate for performing material analysis of illuminated manuscripts as the positives of 

being able to perform data collection non-invasively far outweigh the difficulties of interpreting 

the collected spectra. As a result, throughout this thesis, ER-FTIR was implemented in many 

different circumstances to produce spectra for the purposes of pigment identification and can be 

seen in use in chapters 3 and 4. 
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1.2.6 ER-FTIR Mapping (FTIR Spectral Imaging) 

In more recent years, FTIR mapping techniques have become more prevalent in material analysis 

studies and are proving to be even more useful than performing single measurements due to their 

ability to generate maps which can illustrate the distribution of different compounds on an object's 

surface. In many modern FTIR systems, ER-FTIR mapping can be used to non-invasively produce 

FTIR spectral images which share a structure like that of reflectance and XRF spectral imaging, 

meaning that a data cube would possess a two-dimensional array of pixels where every pixel 

possesses its own FTIR spectrum.  

Typically, ER-FTIR mapping is performed via point scanning, where individual pixels are 

recorded one at a time and recombined after data collection to produce a spectral data cube. While 

this is a powerful technique for performing material analysis, the process of collecting an entire 

ER-FTIR map pixel by pixel can be time-consuming, implying that it would be unwise to attempt 

to use it for more than just small, controlled areas. In addition, the mapping can be sensitive to 

surface topography changes, as for ER-FTIR it is important that the materials being investigated 

are always positioned at the correct focal point from the system. If this is not the case certain 

spectra collected from different positions in a map may not be true to their actual location and 

may also result in the creation of artefacts during the recording of spectra, making the spectral 

comparison with material references difficult. In this thesis, ER-FTIR mapping is used in chapter 

4 to perform focussed pigment identification with other techniques on a Chinese Export painting. 

 

1.2.7 Raman Spectroscopy 

Raman spectroscopy is another technique proven to be useful for identifying artistic materials in 

cultural heritage (Casadio et al., 2016; Galeotti et al., 2009; McCreery, 2000), and similarly to 

FTIR can provide information on the molecular vibration and chemical bonds of different 

materials. More specifically, Raman spectroscopy exploits the effects of inelastic scattering of a 

monochromatic light source (normally a laser in the visible, near-infrared, or near-ultraviolet 

range). When monochromatic light of a specific wavelength is incident on a material, it can 

sometimes be scattered at the same frequency. This scattering, known as Rayleigh scattering 

(briefly mentioned in 1.2.3 for XRF), occurs if both; the particle size within the material is smaller 

than the wavelength of incident light, and the electrons return to their ground state after 

temporarily transitioning to a virtual state. In addition to Rayleigh scattering, molecular vibrations 

can also occur due to the transfer of energy from incident photons. When both Rayleigh scattering 

and these molecular vibrations occur simultaneously, the two can result in different transitions 

which include the vibrational state. These different transitions are known as Raman scattering and 

take the form of two transitions, namely stokes and anti-stokes, where the energy is lower or 
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higher than Rayleigh Scattering depending on if the energy transition cascades to the vibrational 

state or ground state, a diagram illustrating these transitions can be seen in Fig. 1.5. 

 

Fig.1.5 Diagram showing some of the energy transitions between different states for Rayleigh and Raman scattering. 

Both Stokes and Anti-stokes are included in this example. 

 

Raman scattering can be monitored using a spectrometer to identify a Raman Spectrum, with 

emission occurring at different wavenumbers from the incident light, commonly referred to as 

Raman shift, where: 

 

𝑅𝑎𝑚𝑎𝑛 𝑆ℎ𝑖𝑓𝑡 (𝑐𝑚−1) =  𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑐𝑚−1) − 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑟𝑎𝑚𝑎𝑛 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑(𝑐𝑚−1) 

 

Emission at certain Raman shifts is characteristic of specific molecules and therefore can be used 

to identify materials by comparing the Raman spectra with reference databases. In cultural 

heritage, Raman spectroscopy has been performed in multiple ways, including micro-Raman 

(Caggiani & Colomban, 2018), and remote Raman (Li et al., 2019). In this thesis, Raman 

spectroscopy is used multiple times to aid in the identification of certain pigments and was 

essential in confirming the presence of certain pigments within different mixtures where 

constituent mixture components were ambiguous.  
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1.2.8 Kubelka-Munk (KM) Model for Pigment Identification  

When attempting to identify paint mixtures during the analysis of VNIR reflectance spectra, it 

can be difficult to ascertain the constituent pigments used to create certain hues and shades. As 

such, different mathematical models can be used to estimate which materials may be used together 

to create certain mixtures. The technique used within this thesis is the Kubelka-Munk (KM) model 

(Kubelka, 1948; Kubelka & Munk, 1931), which can be used to model different mixtures by 

combining sets of VNIR reflectance reference spectra with varying concentrations. KM theory, 

in its most basic form in diffuse spectroscopy applications, can be used to monitor the reflectance 

and scattering of light in an infinitely thick coating by modelling the coating as an infinite number 

of infinitesimally small paint layers. In this scenario, KM theory can be described by a single 

equation: 

𝐾

𝑆
=

(1 − 𝑅∞)2

2𝑅∞
 

 

Where 𝑅∞ is the spectral reflectance for a paint layer with infinite thickness, 𝐾 is the wavelength-

dependent effective absorption, and 𝑆 is the wavelength-dependent scattering coefficient. To 

identify manuscript pigments or other material properties in this thesis, KM theory can be used to 

determine potential mixtures by virtually mixing reference spectra and comparing the outcomes 

with VNIR spectra extracted directly from reflectance spectral imaging data or FORS. By 

changing the concentrations for known pure pigments and using them as free parameters in the 

KM model, simulated mixtures can be compared against unknown collected spectra and fitted 

using a non-negative least squared fitting algorithm (Liang, 2012). If a simulated spectrum has a 

good fit, it will have a high cross-correlation score with the unknown mixture as this will define 

closely matching spectral features.   

With the combination of multiple complementary techniques in use with KM theory, it is likely 

that most mixtures could be identified within an illuminated manuscript. However, it is important 

to note that in some circumstances this may still not be evidence enough to perform confident 

pigment identification, as KM theory works off the assumption that the paint mixtures are highly 

scattering, homogenous and have particle sizes much smaller than the thickness of the paint layer, 

which is not always the case in practise. In many scenarios, variations can occur in paint layers 

which can affect the spectral reflectance and validity of applying KM, however, even in some 

scenarios where KM theory does not provide an exact representation of the mixture, it may still 

provide a “best fit” which may contain similar spectral features which can still allow for some 

identification when used with other techniques, so long as the analysed materials are not too 

highly absorbing or transparent. 
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1.3 Unsupervised Clustering Techniques in Machine Learning 

To accelerate the process of data analysis after performing large-scale scanning of cultural 

heritage objects, unsupervised clustering methods can be implemented to automatically reduce 

billions of collected reflectance spectra into smaller numbers of distinct spectral groups. While 

there are numerous clustering techniques which can be used to assign data into highly controlled 

groups, many of the methods which may at first demonstrate good potential for analysing spectral 

data may in fact not be viable options for large-scale studies due to their heavy computational 

requirements. When performing clustering for larger datasets, it is important that both accuracy 

and time efficiency are well balanced, however many unsupervised techniques often require 

significant parameterisation and optimisation before clustering can be implemented, and even 

then, the algorithm may take days to complete. If a general clustering algorithm is to be designed 

to allow for the accurate and efficient grouping of reflectance spectra for entire illuminated 

manuscript collections, it would be wise to use a clustering approach that requires very few or no 

parameters and can perform clustering in a time-efficient manner. Because of this, in the 

following sections, only three clustering techniques used in various parts of the thesis are explored 

in detail, as these offered the ability to perform clustering for specific purposes both efficiently 

and accurately while requiring very little optimisation and normally only a single input parameter 

once the most optimal settings had been computed. 

 

1.3.1 K-Means Clustering 

Probably the most well-used procedure for performing unsupervised clustering is the k-means 

algorithm. K-means clustering can group data into a fixed number of clusters by identifying a 

certain number of cluster centroids in feature space, the N-dimensional space where datapoints 

exist, which best describe all unique groups of similar data points. K-means works by initially 

positioning the centroids at randomly selected data points and then iteratively updating the 

position of these centroids by monitoring and optimising the cluster sum of squares error (SSE) 

as new data points are assigned to clusters, where SSE is calculated by:  

𝑆𝑆𝐸 =  ∑(𝑥𝑖 − �̅�𝑘)2

 

𝑖∈𝑘

 

 

Where 𝑥𝑖 is a datapoint belonging to a cluster 𝑘 and �̅� is the mean value of the cluster calculated 

from all datapoints in 𝑘. Centroids are continuously updated until either a user-defined number 

of iterations is reached, or the positions of the cluster centroids relative to their associated data 

points no longer change, a point known as convergence. Multiple versions of k-means clustering 

have been designed since its original conception, and the three most widely used implementations 
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are Lloyd’s/Forgy’s (Forgy, 1965; Lloyd, 1982), Hartigan-Wong (Hartigan & Wong, 1979), and 

MacQueen’s (MacQueen, 1967) algorithm.  

Lloyd-Forgy Algorithm 

Lloyd’s, or Forgy’s, clustering approach is the most well-known of the different k-means 

algorithms and is the simplest in its implementation. It works by first initialising a user-defined 

set of random data points which will act as the cluster centroids, the central positions of a cluster 

of datapoints. Next, all datapoints are assigned to their closest centroid and all centroid positions 

are updated to become the mean of all the datapoints belonging to it. This process is then 

repeatedly performed until a certain number of iterations or convergence is reached and results in 

the centroids slowly moving into the centres of different groups, or clouds, of data. A basic 

pseudocode of the algorithm can be seen in Algorithm 1.1. 

 

While Lloyd’s/Forgy’s algorithm can perform clustering in an efficient manner, a common 

problem with the approach is that the final cluster centroids are heavily influenced by the 

initialisation, and often results in clusters which are not well optimised to represent global 

structures within the data, instead focussing on smaller regions in feature space. To address these 

issues, other variations of the k-means algorithm can be used. 

MacQueen’s Algorithm 

MacQueen’s algorithm shows improvements over Lloyd/Forgy’s approach by better modelling 

the global structure of data in feature space by updating the cluster centroids every time a new 

datapoint is assigned, instead of recalculating only at the end of all assignments. The algorithm is 

largely identical to the Lloyd/Forgy approach except for this change, which is implemented by 

iterating over every datapoint instead of over every centroid (see Algorithm 1.2). Because the 

mean of each centroid is updated every time a new datapoint is added to the feature space, 

MacQueen’s algorithm is more computationally and time expensive than Lloyd’s approach. It 

does however offer increased clustering accuracy by relying less on the initial cluster centroid 

positions, although it still is common for the MacQueen’s algorithm to underrepresent the 
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distribution of global structures in the data, thereby suffering from the same problems as the 

Lloyd/Forgy approach. 

 

Hartigan-Wong Algorithm 

To lessen the problems with cluster optimisation that exist due to the initialisation of the cluster 

centroids, the Hartigan-Wong algorithm was developed which allows for better representations 

of the global structure of data. This algorithm differs from the other two previously mentioned 

techniques, insomuch that it initialises the cluster centroids by randomly assigning all datapoints 

in the whole dataset to each cluster. Each datapoint is then reintroduced to each centroid and is 

assigned to the centroid with the smallest sum squared Euclidean distance. Once all the datapoints 

have been assigned, the centroids are recalculated and the process repeats until, like with 

MacQueen’s and Lloyd/Forgy’s algorithms, either a set number of iterations or convergence is 

reached, a representation of the algorithm can be seen in Algorithm 1.3. The Hartigan-Wong 

algorithm is the most computationally expensive method of performing k-means of the three 

mentioned in this thesis but can assign datapoints to cluster centroids more accurately than the 

others as the entire dataset is considered for every centroid in each iteration. 
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1.3.2 Self-Organising Maps 

Self-organising maps have already been shown to be able to successfully cluster a large set of 

spectral imaging reflectance data in a previous study performed by Kogou et al. (2020). One of 

the main outcomes of this thesis is to develop a clustering approach that can improve upon the 

previous implementation of the algorithm and find a general use for clustering techniques to be 

used on spectral imaging data of different types. Therefore, it is important that SOM is covered 

in detail here so that new implementations of the algorithm can be evaluated later for their 

application on other datasets (see chapter 2 for a detailed analysis of SOM). 

The Self-Organising Map (Kohonen, 1990, 2001) is an artificial neural network-based clustering 

method based on the self-organisational characteristics of the cerebral cortex within the human 

brain. It is capable of learning directly from input data and functions through a ‘competitive 

learning’ process, where the neurons in the network directly compete with one another to 

represent specific parts of the data. While there are many types of neural networks that can 

implement competitive learning, SOM is unique in that it can represent groups of 

multidimensional data as clusters in topologically structured two-dimensional maps, whose 

structure is created through the relationships between codebook vectors, which are the vectors 

associated with each neuron. In the context of spectral imaging, the codebook vectors belonging 

to each neuron would be the mean cluster spectra belonging to each cluster and are calculated by 

taking a mean over all the individual constituent pixel spectra. Oftentimes in applications of SOM, 

the two-dimensional topographical neural maps can be used to aid in the visualisation and analysis 

of data, however, in the studies carried out throughout this thesis these maps are largely 

considered redundant, with more informative analysis instead being carried out directly on 

pigment maps of real spectral images, constituent cluster spectra, and mean cluster spectra 

grouped and produced by SOM respectively. Regardless, in all implementations of SOM, a neural 

network is initialised in either a rectangular or hexagonal grid or map, where each neuron will act 

as the centroid of a cluster to eventually create an organised map. Within the neural network map, 

each neuron has a weight associated with it which changes as data is introduced, with the neuron 

and weight being initialised by either: sampling individual data points from the input data, which 

can often lead to premature convergence similarly to the earlier mentioned k-means approaches 

such as the Lloyd/Forgy or MacQueen algorithms; or assigning random values to each weight, 

which can increased training times (as convergence can take longer to reach). After the weights 

and neural network have been initialised and built, unsupervised SOM is typically implemented 

in one of two ways, either in an ‘online’ mode or a ‘batch’ mode, which both correspond to 

different ways in which SOM assembles itself into a map and learns from the input data to create 

different clusters. 
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Online SOM 

In unsupervised clustering applications, ‘online’ typically refers to the process whereby a model 

learns the best predictors for performing clustering by sequentially using a single datum at a time.  

In the context of SOM, this online approach involves a stochastic process of updating weights in 

the map every time a new datapoint is introduced into the network and assigned to its closest 

neuron, which is also known as the best matching unit (BMU). Typically, the BMU is found by 

calculating the smallest Euclidean distance between the input datapoint and each neuron, with the 

neuron possessing the smallest distance becoming the BMU. One of the unique characteristics of 

SOM is that when a neuron is updated, others within its local neighbourhood will also be changed 

depending on a neighbourhood function, allowing for the self-assembly, or organisation of the 

hexagonal or rectangular neural map. Where the neighbourhood function affecting the neurons 

around each BMU cab be described by:  

ℎ𝑚𝑛,𝑘𝑗  (𝑡)  =  ℎ(||𝑐𝑚𝑛  −  𝑐𝑘𝑗  ||2
2, 𝑡) = 𝜂(𝑡)𝑒

−
||𝑐𝑚𝑛 − 𝑐𝑘𝑗 ||2

2

2𝜎2(𝑡)    

 

In this neighbourhood function, 𝑐𝑚𝑛 and 𝑐𝑘𝑗 are the coordinates of the winning neuron at position 

𝑚, 𝑛 and another neuron at position 𝑘, 𝑗 in the map respectively. 𝜂(𝑡) and 𝜎(𝑡)are the learning 

rate and width of the kernel respectively, and both decrease over the number of iterations, 𝑡.  The 

neighbourhood function follows a gaussian shape and gradually reduces as the position 𝑘, 𝑗 

increases, until ℎ𝑚𝑛,𝑘𝑗 → 0 at a sufficient distance away. It is with this neighbourhood function 

that the topological ordered nature of the map can be created over many iterations, as it is used to 

update the weights of each neuron where every update can be described by the following equation: 

 

𝑤𝑘𝑗(𝑡 + 1) =  𝑤𝑘𝑗(𝑡) + ℎ𝑚𝑛,𝑘𝑗(𝑡)[𝑧𝑝 − 𝑤𝑘𝑗(𝑡)] 

 

Where 𝑤𝑘𝑗 is the weight of a neuron at position 𝑘, 𝑗, and 𝑧𝑝 is the datapoint being shown to the 

neural network at iteration 𝑡. Iterations are continuously increased until a good, stable organised 

map is found, normally determined by a small quantisation error, which is the sum of all Euclidean 

distances between the cluster centroid neurons and their constituent data points. Typically, when 

this quantisation error remains small and does not change significantly as iterations increase, it is 

considered that the algorithm has reached convergence. The online SOM process can be seen in 

Algorithm 1.4. As it updates weights and assigns data to clusters sequentially, online SOM can 

be less time efficient than its batch counterpart, making it less desirable for large-scale studies. 

However, due to its stochastic nature, the online implementation is often proposed to be the more 
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stable of the two SOM modes (Cottrell et al., 2018), and therefore could outperform the batch 

method in terms of accuracy if the initialisation of the neural network has too much of an effect 

on the final clustering outcomes. 

 

Batch SOM 

As the online version of the SOM algorithm can be computationally expensive and result in 

slightly different outcomes due to its stochastic nature, a more deterministic batch version of the 

SOM algorithm was developed by Kohonen to allow for reproducible results when parameters 

are fixed. In this batch algorithm, clustering is not performed by updating weights after each data 

point is matched up to its BMU and is instead completed by updating all weights simultaneously 

after passing all datapoints into the neural network. The basic algorithm for this can be seen in 

Algorithm 1.5. 

 

The Batch algorithm offers many computational advantages to online SOM and has been proven 

to work successfully in many scenarios, however it is more sensitive to initial parameters much 

like k-means and can suffer many of the same problems where clusters may converge towards 

local structure instead of fitting for global features. In fact, when the neighbourhood function is 

set so that the BMU will not interact with any other neurons, effectively having a 

neighbourhood=0, batch SOM reduces to the same process as the Lloyd-Forgy k-means clustering 

algorithm (Cottrell et al., 2018). 
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Online & Batch SOM for spectral imaging data 

While the previous algorithm used for spectral imaging showed success in using online SOM, 

there are many arguments that support Batch SOM to be the better performer for clustering large-

scale datasets. Not only is it deterministic and repeatable, but it is also more time efficient due to 

having no requirement to update weights after each datapoint is introduced to the network. On the 

other hand, the online implementation is potentially more stable and less likely to result in 

suboptimal clustering results caused by neuron initialisation that will be seen more commonly in 

the batch mode. As it cannot be certain which of the two modes would perform better for the 

spectral reflectance data, it seems appropriate for each technique to be evaluated in greater detail. 

These evaluations are performed in detail in chapter 3, where the two different modes are tested 

alongside different distance calculations using the spectral imaging data recorded for the maritime 

Southeast Asian manuscript collection at the British Library. 

 

1.3.3 Hierarchical Clustering 

Another common deterministic clustering technique implemented in many disciplines is 

hierarchical clustering. The typical approach is to perform a process known as agglomerative 

hierarchical clustering which merges singletons (single data points) and cluster datapoints by 

monitoring a distance relationship between them. In this approach, datapoints are individually 

treated as their own cluster at the beginning of the process and then are iteratively merged, 

recalculating new distances after each merging, and repeating until all clusters become one. The 

sequence with which datapoints are grouped can be illustrated as a hierarchy of merges and is 

often represented as a dendrogram, acting as a hierarchy tree, which can then be cut in different 

ways to gather a final group of clusters. Alternatively, a divisive clustering method can also be 

performed which follows the opposite path to the agglomerative approach by beginning with all 

datapoints placed into a single group before iteratively separating the most different datapoints 

until every individual datapoint is its own cluster. A basic representation of the agglomerative 

clustering process can be seen in Algorithm 1.6. 
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Linkage Criteria  

When calculating distances during any form of hierarchical clustering, individual singleton 

datapoints can be compared by simply computing the distance between the two points. However, 

it is important that when singleton or cluster datapoints are grouped with other clusters, the data 

used during comparison can be controlled for different purposes. In hierarchical clustering, these 

positions can be defined by selecting different linkage criteria which change the part of the cluster 

which is compared. There are many different linkage criteria that can be selected, but the most 

common include: 

• Single Linkage, where the closest constituent data points within different clusters are 

compared.  

• Complete Linkage, where the furthest constituent data points within different clusters are 

compared.  

• Average linkage, where the average distance is computed from the distances between all 

data points within different clusters before being compared.  

• Centroid linkage, where cluster centroid positions are computed and compared for 

different clusters.  

• Ward’s Linkage, where the two clusters to be merged will be those with the minimum 

between cluster sum of squares distance. 

No single approach is more advantageous over all applications, therefore when choosing an 

appropriate linkage method, the main goal of the clustering and its theoretical justifications should 

be considered, though for most applications which use hierarchical clustering purely to create 

groups of similar 1D data, Ward’s linkage tends to be used most, such as in (Gumansalangi et al., 

2023; Hashemi-Nasab & Parastar, 2022; R. Kumar & Sharma, 2017; Moros et al., 2008) 

Dendrogram Trees 

The output dendrograms showing the hierarchical structure of the clustering process can be 

visualised and cut to acquire different numbers of clusters from the data. Typically, clustering 

dendrograms will be represented as column graphs, illustrating the order with which different 

datapoints and clusters merge and representing the distances between clusters as heights. 

Therefore, the more similar the two clusters are, the smaller their heights will be in the 

dendrogram. The dendrogram can be cut to acquire clusters at different stages of the hierarchy, 

where cutting at a specific global height, ℎ, will produce 𝑘 clusters, one for each intersection 

between a “tree branch” and the height. An example of a basic dendrogram can be seen in Fig. 

1.6, with lines illustrating the cutting positions at different heights and the number of clusters 

produced as a result. 
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Fig.1.6 Example of a dendrogram tree commonly encountered in hierarchical clustering applications. Notice that 

cutting the tree at different heights will produce varying numbers of clusters, k. 

 

Hierarchical Clustering of Spectral Imaging Data 

Hierarchical Clustering can offer many useful advantages over other clustering techniques when 

applied to clustering spectral imaging data, such as its ability to easily implement different linkage 

types when computing the similarity between datapoints or clusters. It also offers a convenient 

way of visualising how clusters with high dimensionality relate to each other through the creation 

of dendrograms. However, hierarchical clustering is computationally expensive when dealing 

with large amounts of data, as the storage requirements for performing hierarchical clustering 

increase exponentially as the number of datapoints increases; a result of having to create large 

dissimilarity matrices to identify the relationships between different datapoints.  

In large collections, performing hierarchical clustering on entire sets of spectral imaging data 

would require huge amounts of computer memory and storage, making the application of 

hierarchical clustering impractical for real studies. For example, when performing hierarchical 

clustering of spectral imaging data cube containing 1 million spectra, a dissimilarity matrix with 

a total size of 7.28 terabytes would be required for double precision data, which most computers 

would not be able to access or use efficiently, even if the data is stored externally and not held in 

RAM. Therefore, if hierarchical clustering is to be used, it would be more advantageous to use it 

for more precise and deterministic clustering after other techniques, such as k-means or SOM, 

have been used to reduce the size of the dataset in need of clustering. 

 

1.3.4 Clustering Evaluation 

To understand whether one method of clustering is better to use than another for a set of new data, 

it is important that some form of cluster validation can be performed to properly monitor the 

accuracy and stability of the technique. Cluster validation is performed either internally, where 

internal evaluation uses the input data alone and is useful for unsupervised clustering approaches, 
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or externally, where external evaluation uses outside information such as the ground truth or 

labelled data to determine the validity of the results. As the clustering techniques to be used 

throughout this thesis are all unsupervised and no labelled data exists until after the analysis of a 

very large collection is complete, internal validation techniques should be considered the better 

option to use to monitor the accuracy of different approaches on new spectral imaging datasets. 

For internal validation, clustering techniques are always evaluated by monitoring two main 

components, their cohesion and separation. Cohesion evaluates the distances between clustered 

input data points and their associated cluster centroids. Conversely, separation evaluates the 

distances between the clusters themselves. Typically, a clustering result is considered good if its 

cohesion and separation are high, such that the intra-cluster distance (between data points and 

cluster centroids) is low, and the inter-cluster distance (between other clusters) is high. Cohesion 

and separation of clusters can be measured by using the sum of squared errors (SSE) and the 

between group sum of squares (SSB), which both lend themselves to algorithms such as k-means 

and SOM well as these commonly use SSE during the clustering procedure to optimise the clusters 

themselves. Furthermore, the SSE and SSB can be collated to gather the global cohesion and 

separation amongst all clusters and across all variables for an entire data set, alternatively known 

as the total sum of squared errors (TSSE) and total between group sum of squares (TSSB) 

respectively. 

For monitoring the accuracy of clustering approaches using spectral reflectance data, the TSSE 

can be calculated by using the following equation: 

𝑇𝑆𝑆𝐸 = ∑ ∑ ∑(𝑅𝑖,𝜆 − �̅�𝑘,𝜆)2

 

𝑖∈𝑘

𝑘𝑚𝑎𝑥
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𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

 

where �̅�𝑘,𝜆 and 𝑅𝑖,𝜆 are respective the mean reflectance spectrum and 𝑖𝑡ℎ reflectance spectrum for 

different wavelengths, λ, and for each cluster 𝑘. And similarly, the TSSB can be calculated using: 

𝑇𝑆𝑆𝐵 = ∑ ∑ ∑ (�̅�𝑘𝑖,𝜆 − �̅�𝑘𝑗,𝜆)2
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where �̅�𝑘𝑖,𝜆 and �̅�𝑘𝑗,𝜆are the mean cluster spectra for the 𝑘𝑖
𝑡ℎ

and 𝑘𝑗
𝑡ℎ

 clusters. Using the TSSE 

and TSSB as separate metrics for evaluating each clustering technique allows for a basic 

understanding of which approach is best; if a value has a low TSSE and high TSSB, then it can 

be considered better than that which has a high TSSE and low TSSB. Due to its simplicity and 

simple interpretation, a comparative study using TSSE and TSSB can be convenient enough to 

test between different clustering algorithms, however, there are many techniques which can go a 

step further to unify the two metrics and allow for the evaluation of clusters using a single value, 

though these are not implemented in this thesis. 
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1.4 Supervised Classification Techniques in Machine Learning 

In contrast to the previously mentioned clustering techniques which can be implemented to 

accelerate the process of performing large-scale spectral imaging data analysis, other supervised 

machine learning techniques can often be implemented to perform identification of data which 

has already been encountered during previous scientific studies. These techniques are normally 

referred to as classification techniques, and unlike unsupervised methods do not learn directly 

from the data provided to them. Instead, these supervised classification techniques function by 

learning ways to represent labelled data as a set of classes, where the goal is to create classes, or 

groups of data, which are known to correctly represent the ground truth for different datapoints 

or observations. Typically, once a representation of these labelled datasets has been learned by a 

model, normally referred to as training, the trained classification technique can be used to 

automatically assign new unseen datapoints into the created classes. This is basically performed 

by comparing the trained classes with these new observations and calculating which class is the 

most similar and therefore the class to which the new observation should belong.  

In the context of this thesis, this implies that one may use a classification method to learn a 

representation of a dataset with known artistic materials so that new unseen and uncharacterised 

datasets can be automatically classified. This could apply to many different materials so that 

representations of specific paper, inks, pigments, or pigment mixtures, could be learned and then 

used to classify illuminated manuscripts. If the studies performed throughout this thesis can 

provide brand new ground truth data for materials via the large-scale holistic study of pigments 

in maritime Southeast Asian manuscripts, then newly collected data in the future may be able to 

be automatically classified into previously identified pigment classes. Many different 

classification techniques have been developed in the past and used to attain certain research goals 

in different studies, however, the number of classification algorithms available today is vast and 

so their implementation for the goals in this research is not clear. In chapter 5 of this thesis, a 

handful of these different classification models are evaluated for their use in automatically 

identifying different materials and pigment mixtures for studies of illuminated manuscripts. The 

techniques implemented are therefore covered in greater detail here for a better understanding of 

the different models. 

 

1.4.1 Supervised Self-Organising Maps (SOMs) 

While self-organising maps were covered in detail in the previous section for their use in 

unsupervised clustering, SOMs can also be used in supervised ways (Kohonen, 1990, 2001), a 

method that was previously used as part of the original ISAAC lab’s clustering code developed 

by Kogou et al., (2020). This supervised application however also means that in addition to 

clustering, SOM can also be used for classification purposes, where a self-organising map can be 
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used as a trained model by using a set of labelled data. For SOM, this specifically involves using 

the unsupervised method to train the neural network to learn a representation of the input 

(training) data which creates an organised map of neurons which can be used for classification. 

In a perfectly trained network, each individual neuron would correspond to a specific class of 

labelled data, with the individual neurons being arranged in the map with more similar classes 

positioned closely together, however, there are many applications where networks larger than the 

number of classes are used to uncover underlying structure in the labelled data and improve the 

accuracy of fitting new data, such as in Wong et al., (2019) where a massive SOM is used to 

improve classification accuracy. During classification, each neuron in the SOM will be associated 

with a single value or vector, normally the codebook vector, which is used to compare against 

new input data to find similarities and perform classification, in much the same way that the BMU 

is used during the unsupervised approach. As supervised SOM has already demonstrated its use 

in VNIR studies with data like that seen in this thesis, it makes sense that performing classification 

using it would be recommended in this research project.  

 

1.4.2 Spectral Angle Mapper (SAM) 

Another commonly implemented classification technique is the spectral angle mapper (SAM) 

(Kruse et al., 1993). The SAM typically performs classification by comparing reference spectra, 

also commonly referred to as “endmembers”, with new unseen data. This is performed in SAM 

by calculating a spectral angle-based similarity in feature space between the reference spectrum 

and the target spectrum being classified. This angle is typically calculated for every class within 

a model, where the reference with the smallest angular distance from the target will dictate the 

class to which the new spectrum belongs. Like with supervised SOM and other classification 

techniques, the SAM requires training data to be able to function and has shown to perform well 

in classifying spectral imaging data of different kinds.  

In the cultural heritage community, SAM is regularly used to perform pigment identification by 

using known pigment endmember spectra to map the distribution of pigments in a spectral image 

(Grabowski et al., 2018). This makes the technique potentially very useful for further analysis 

performed after identifying materials in the research within this thesis, however, the stability and 

accuracy of the technique is not known for all spectral imaging instruments and types. 

Furthermore, there are very few applications of the SAM which highlight its use over thousands 

of spectral images in a single study. As it is therefore not completely known how well it may 

perform in the context of this thesis, the technique is tested in chapter 5 along with other 

classification models. 
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1.4.3 K-Nearest Neighbours (k-NN) & Nearest Centroids 

Another commonly implemented classification technique, k-Nearest Neighbours (Cover & Hart, 

1967; Fix & Hodges, 1951) is one of the simplest classification models and is often used in many 

different applications, though less so due to the rise in use of other classification techniques. It 

primarily works off the understanding that most similar datapoints or vectors, in this case, spectra, 

can normally be found nearby to one another within feature space, with the most alike being 

considered neighbours.  k-NN effectively performs classification by placing a target datapoint 

into feature space which has already been trained on an initial set of data. Because the datapoints 

within the training dataset have known classes, the target can be associated with a set of nearest 

neighbour datapoints in feature space that have their own class values. A free parameter, k, can 

be used to define the number of neighbours typically used to identify a class, however, regardless 

of the number of neighbours a class is always picked via a majority vote. This implies that the 

most common class found amongst the nearest neighbours of the target datapoint will be the class 

to which the target is assigned.  

Nearest centroids is a similar algorithm to k-NN, however instead of dealing with individual data 

points in feature space and performing a majority vote to perform class assignment, distances are 

instead computed between target datapoints and a cluster centroid. The cluster centroid is 

normally computed by calculating the mean of all the datapoints belonging to the class in feature 

space and is similar in nature to a typical k-means clustering algorithm insomuch that target data 

is assigned to the cluster centroid (and therefore class) which is the smallest distance away. 

 

1.4.4 Multilayer Perceptron 

The multilayer perceptron (MLP) is a feed-forward neural network-based method which normally 

consists of an input layer, output layer, and one or more hidden layers, where each layer is a set 

of neurons connected to the next. MLPs perform classification by sending training data through 

the input layers with known outputs. During training, the hidden layers contain weights that adjust 

through backpropagation (Rojas, 1996) to learn a representation of the data which can classify 

new unseen target datapoints. Their use in classification is well documented in different fields, 

but in the cultural heritage community MLPs have seen limited use introducing the question of 

whether they will be useful for the research carried out in this thesis. Some examples of their use 

in other applications, however, can be seen in Grabowski et al., (2018), Lin et al., (2019), Babić, 

(2022). 
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1.4.5 Support Vector Machines (SVM) 

The support vector machine (Cortes & Vapnik, 1995), or SVM, is another supervised learning 

technique which can be used to perform classification on different types of multidimensional data 

and has been shown to perform well in classifying spectral imaging data for artworks and 

pigments in cultural heritage studies. Furthermore, in many comparative studies, SVM is 

regularly shown to outperform other techniques such as supervised SOM (Chaplot et al., 2006; 

Salouan et al., 2014) and k-Nearest Neighbours (Thanh Noi & Kappas, 2017). The basic idea 

behind the support vector machine is to use labelled data to train vectors which can be used ‘cut’ 

feature space into different sectors where each sector roughly represents a single class. More 

specifically, these vectors, known as hyperplanes, essentially act as the decision boundaries 

between different class areas and can be produced because of any function (or kernel), with some 

common implementations involving linear, polynomial, and radial-basis function kernels, all of 

which can result in different classification accuracy and outcomes. Because of the use of these 

different kernels, SVM has shown a propensity to solve nonlinear problems, often making it more 

beneficial than other techniques. In studies using spectral imaging data, SVMs have shown to be 

effective in performing classification, some examples of which can be seen in (Polak et al., 2017), 

(Gao et al., 2023). 

 

1.4.6 Decision Trees & Random Forest 

Decision trees are a branch of non-parametric machine learning methods which can also be used 

for performing classification tasks and have demonstrated their use in classifying pigments in the 

past (Fan et al., 2018). Like the previously covered techniques, they also function using 

supervised learning, but instead perform classification by attempting to segregate data into basic 

decision rules. This implies that a decision tree classifier can essentially be broken down into a 

large collection of binary choices which spreads from an initial origin, creating a “tree” of 

decisions after training which can be used to assign new data into classes. A common problem 

encountered with decision tree classification however is that they are vulnerable to overfitting. 

In response to the overfitting problems, the random forest was developed as a unique approach to 

using decision trees, where instead of using only a single tree to assign data into classes, many 

different random decision trees, assembled into a “forest” can be used. Random forests have been 

shown to provide increased accuracy in many classification applications, and therefore show 

promise when performing classification of spectral imaging data. 
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1.5 Thesis Structure 

The interdisciplinary nature of the research carried out in this thesis means that there is a spread 

of different topics explored throughout the different chapters, though the overarching theme 

remains with how machine learning and spectral imaging can be used for studies in cultural 

heritage. 

Chapter 2 begins by first performing an evaluation of unsupervised clustering techniques on 

reflectance spectral imaging data, where the previously discussed k-means and SOM are 

investigated in detail. The chapter then continues to discuss some of the difficulties with 

performing clustering in the VNIR and how implementing both spectral and colour information 

directly into a novel clustering method can improve accuracy when clustering any dataset. This 

new methodology is subsequently used to automatically cluster the British Library’s maritime 

Southeast Asian illuminated manuscript collection, after which a new software-driven grouping 

procedure is then introduced and demonstrated on a sample of the collection, where the highly 

accurate clustering results can be further grouped based on different research questions. Chapter 

3 follows almost directly from chapter 2 and delves into the holistic multimodal analysis of the 

British Library’s maritime Southeast Asian illuminated manuscript collection. The chapter begins 

with a brief overview of the collection and is proceeded by the analysis of artistic materials, 

namely pigments and inks, used in many different manuscripts. Throughout the chapter, grouped 

pigment and pigment mixture maps are created alongside spectroscopic analysis to illustrate the 

distribution of pigments and mixtures so that confidence can be gained in pigment maps being 

accurate representations of the ground truth. As pigment mixtures are identified and artistic 

practises uncovered, discussions into the likely trade connections between maritime Southeast 

Asia and the rest of the world are considered. The clustering and grouping approach is then 

discussed once more with some further pitfalls being demonstrated before a final collection-wide 

discussion is made to summarise the findings of the chapter. 

As mentioned, chapter 4 introduces a novel methodology for performing multimodal clustering 

in numerous spectral domains. It begins first with demonstrating how the clustering method 

developed in chapter 2 can be used for clustering XRF mapping data after implementing a pre-

processing procedure. Following this, a common theme when performing clustering becomes 

apparent across both XRF and VNIR: that clustering in only one spectral domain at a time 

fundamentally limits the accuracy of performing holistic studies of artistic materials. In response, 

the clustering method introduced in chapter 2 is adapted so that multimodal clustering can be 

extended to allow for any number of techniques to be used. The developed method is subsequently 

used on Peruvian and Chinese export paintings to investigate the use of their materials using 

VNIR, XRF and ER-FTIR mapping, where it is found that this new holistic multimodal clustering 

not only improves accuracy but can also reveal new information about paint layering.  
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Chapter 5 evaluates the uses of classification techniques for performing automated pigment 

mapping using results found in chapter 3. In this chapter, many different commonly implemented 

classification techniques are tested, after which the best performing approach is implemented on 

the British Library’s maritime Southeast Asian collection to investigate the validity of using 

clustering to train classification models.  

Then finally, chapter 6 briefly discusses a new spectral imaging and machine learning-based 

analysis software application, known as Guisi, used throughout this thesis and in multiple other 

studies for the visualisation and interrogation of complex spectral imaging data and machine 

learning clustering results. 
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Chapter 2  

Automated Clustering & Grouping of Large Spectral 

Imaging Surveys 

 

2.1 Introduction 

To collect large amounts of data useful for identifying artistic materials over entire collections, 

spectral imaging in the visible-near infrared (VNIR) is often implemented as it can efficiently 

provide vast amounts of detailed chemical information about the use of pigments and materials 

present at different regions on an object. When performing a study which is both large in volume 

and variety, it is important to collect data for a large enough number of items in a collection so 

that statistically reliable conclusions can be made about the types of materials used. However, as 

the amount of data being accumulated grows it becomes more difficult to analyse in traditional 

ways, which has necessitated the active development and use of automated techniques to aid in 

the processing and analysis of large amounts of spectral imaging data. Today, most of the 

techniques often implemented to aid in the automation of spectral imaging data analysis are 

centred around the implementation of statistical or machine learning algorithms, such as PCA 

(Rodarmel & Shan, 2002), t-SNE (Alfeld et al., 2018; Melit Devassy et al., 2020; Melit Devassy 

& George, 2020), k-means clustering, and others (Fiorucci et al., 2020; L. Liu et al., 2023). 

However, at the time of writing this thesis, there are very few well-functioning approaches which 

utilise these techniques in a general and automated way for tackling the difficulties involved with 

analysing whole large collections. Instead, most implementations are normally focussed on 

specific problems, require significant human parameterisation, transformation into different 

feature spaces or supervision, or need a priori knowledge about the data to be performed 

efficiently. Therefore, there is a desire for the development of a general clustering algorithm 

designed to be implemented for large spectral imaging surveys for collections in cultural heritage.  

There only clear prior study for performing clustering in this way can be found in Kogou et al., 

(2020) which was able to achieve unsupervised clustering for many spectral data cubes on wall 

paintings, which functioned well for their project at the time. However, it was found that when 

expanded to new datasets, problems were encountered with this approach where misclustering of 

data became common for materials with similar spectra or high absorption, even if the colour was 

noticeably dissimilar which typically implies a material difference. This thesis, therefore, seeks 

to redevelop and improve upon this previous approach, to rectify the problems and create new, 

more precise clusters in an automated way. This chapter evaluates machine learning approaches 

in their use on spectral imaging data collected in the VNIR and introduces a novel method of 

performing clustering for large collections based on the combined use of both colour and 
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reflectance. Furthermore, a novel grouping methodology is then also presented which allows for 

the merging of highly precise clusters into different levels of complexity based on what the desired 

research questions of any large-scale study may be. 

 

2.2 Instruments & Data Collection 

The bulk of the data collection for the study of the maritime southeast Asian collection was 

performed using VNIR reflectance spectral imaging so that large amounts of data could be 

captured for performing material and pigment identification. Throughout the study, two different 

spectral imaging systems were used, PRISMS (Liang et al., 2014) and MegaVision EV (Duffy, 

2018; MegaVision, 2023), however, most data collection was performed using the former, and 

this was the only system which was fully evaluated using the clustering techniques outlined in 

this chapter. 

PRISMS Reflectance Spectral Imaging 

The PRISMS spectral imaging system has a well-documented history of use in cultural heritage 

studies and has demonstrated its usefulness for large-scale data collection where it has been used 

for the study of wall paintings (Kogou et al., 2020). More importantly for this thesis however, it 

has also demonstrated usefulness in performing pigment identification studies of paintings on 

paper (Kogou et al., 2015, 2016), and due to its ability to perform this data collection in a largely 

automated way, it stands to reason that PRISMS would be an excellent candidate for the large-

scale study of an illuminated manuscript collection.  

In the setup for collecting data in the VNIR, PRISMS utilises a basic filter wheel system, where 

reflected light from an object is passed through a lens and then directed through a wheel with 10 

different optical filters, before being captured by a CCD detector. For all the data collected with 

PRISMS in this thesis, the 10 optical filters used ranged from 400nm to 850nm, with regular steps 

of 50nm and with each filter possessing a bandwidth of 40nm. The output of PRISMs after 

processing is therefore a 10-channel deep spectral reflectance data cube where each pixel in the 

2D image plane possesses a spectrum ranging from 400-850nm, as demonstrated in Fig. 2.1. For 

each spectral data cube, a colour image is normally also produced and is created directly from the 

reflectance information, allowing for pixel-perfect colour-spectral comparisons to be performed 

during analysis. 

Most of the data capture for PRISMS is automated and the system can be run in a scanning mode 

so that entire paintings or manuscripts can be recorded from a fixed position. The images 

produced by the system are 1360x1024 pixels in size and can achieve a spatial resolution of less 

than 100µm at distances of less than approximately 3-3.5 metres. The multiple images can be 
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mosaiced in post-processing to combine scanned images into a large single mosaic (see Fig. 2.2), 

also making PRISMS a useful tool for large-scale data visualisation. 

 

 

Fig.2.1 A basic representation of a PRISMS spectral imaging data cube with wavelength 400-850nm. An extracted 

spectrum for a single pixel can be seen on the left-hand side. 

 

 

Fig.2.2 Example of a mosaiced PRISMS scan, where 16 different images from manuscript MSS Jav 24, folio f2v, of 

the British Library's collection are combined to create a single larger image. 

 

PRISMS can be used to record large amounts of data quickly, as it can take only a few seconds 

to record a single spectral imaging data cube and with most of the process being fully automated, 

large amounts of data can therefore be collected quickly, however, this comes at the cost of lower 

spectral resolution compared with other methods such as diffraction grating based techniques. 

This lower spectral resolution could be considered a cause for concern when identifying certain 

materials, however, as most pigments in the VNIR range normally only possess broad spectral 
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features, a higher spectral resolution is not always needed (Liang, 2012). Furthermore, PRISMS 

is still normally able to distinguish some pigments with these fine absorption features regardless, 

such as in the identification of red dyes, though in these scenarios the specific type of dye used 

may remain ambiguous. The system is therefore useful for providing large-scale surveys of 

different materials, allowing for many different pigments to be distinguished apart from one 

another quickly, and even when more conclusive identification of certain materials is required 

using alternative techniques or higher spectral resolution, there is still an advantage provided as 

analysis can be guided more clearly by PRISMS. 

Data Collection at the British Library  

Spectral imaging data for the British Library’s maritime Southeast Asian manuscript collection 

was recorded on-site in illumination-controlled conditions with two halogen lights illuminating 

the manuscripts and calibration targets from approximately 1 metre away. Manuscripts were 

placed to ensure that the plane of imaging was as perpendicular to the optical axis of PRISMS as 

could be made possible, ensuring that the entire FOV of an image would remain in focus during 

scanning. In total, spectral reflectance data was recorded for 50 illuminated manuscripts and 

involved the capture of 1515 data cubes, resulting in almost two billion spectra after processing.  

In typical studies, these two billion spectra may be quickly interrogated to investigate whether the 

material composition is roughly the same for different colours throughout an entire spectral data 

cube or manuscript. However, when dealing with many spectrally complex items and over a 

thousand spectral data cubes, the assumptions made in analysing data in this way become more 

error-prone, as many important features could be missed by monitoring data only by eye. This 

therefore clearly highlights the need for automation using machine learning techniques when 

analysing materials throughout the entirety of the British Library’s maritime Southeast Asian 

manuscript collection. 

 

2.3 Clustering Tests for PRISMS Spectral Reflectance Data 

With PRISMS producing such large amounts of spectral imaging data, computational methods of 

dealing with such large datasets had to be investigated, to ensure that analysis could be performed 

in a timely and realistic way. To that end, machine learning offered the ability to reduce the 

volume of data down to a more manageable dataset using clustering. At the beginning of this 

research, one clustering approach for analysing large amounts of spectral imaging data using 

PRISMS had already been developed for the analysis of wall paintings, as seen in Kogou et al., 

2020). The clustering approach outlined in this previous investigation had performed well for the 

research questions proposed, however when expanding the method to alternative datasets the 

algorithm suffered from multiple difficulties where misclustered spectral data, meaning spectra 

which were incorrectly clustered into non-representative groups, became a common issue for 
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highly absorbing materials and spectra with similar shapes and intensity. Furthermore, due to the 

implementation of supervised self-organising maps (SOMs), the procedure could become very 

computationally expensive and time-consuming. To address these problems a wholly 

unsupervised clustering technique which could be used for multiple different large and complex 

datasets, like the manuscript collection involved in this study, was therefore required. 

 

2.3.1 Preliminary k-Means and SOM Testing 

To develop a new clustering approach for large-scale data analysis, a preliminary investigation 

into the capability of different clustering techniques had to first be performed. Two techniques 

were chosen for testing on PRISMS data, namely k-means and unsupervised SOM. These were 

chosen as they offered the least computationally expensive approaches to performing clustering 

for large-scale datasets. In addition, they also can be run with little parameterisation other than 

the number of clusters, making them simple to use. However, to understand the best setups for 

comparing each technique, different algorithms, which had not been previously tested, were 

evaluated prior to comparing k-means and SOM for large collections. 

Test Spectral Imaging Data 

A spectral imaging cube taken from folio f104v of manuscript MSS Jav 24 from the British 

Library was selected to act as the test dataset for the different algorithms, which after processing 

measured 1292x962 pixels spatially, meaning that the total number of pixels to be clustered is 

1,242,904 where each possesses a 10-band reflectance spectrum ranging from 400-850nm. 

 

 

Fig.2.3 Representation of the PRISMS test data set used for comparing different clustering algorithms. Each 

greyscale image depicts a single wavelength band from 400-850nm. 
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k-Means Algorithm tests 

As mentioned in chapter 1, k-means clustering has three main algorithms that are commonly 

implemented to perform clustering: Lloyd/Forgy’s Algorithm, MacQueen’s Algorithm, and the 

Hartigan-Wong algorithm. To conclude which would perform the best with PRISMS spectral 

reflectance data cubes, each algorithm was used to perform clustering on the test data. A total 

number of clusters ranging from 1-1000 were produced, with the mean total sum of squares error 

(TSSE) being calculated across different clusters to provide an insight into the accuracy of each 

approach. As k-means clustering can be sensitive to the initial cluster centroid positions with 

which each cluster begins, the test was run over 100 randomly generated seeds, so that any 

randomly under or overperforming runs would have a minimal effect on the mean TSSE. The 100 

different seeds were randomly generated based on the date and time and were then fixed for all 

setups to be used to initialise the cluster centroids. For each technique, the number of maximum 

iterations was set at 100 so that the clustering would eventually halt if convergence was not 

reached. The results of the cluster validation, through monitoring TSSE, clearly show that the 

Hartigan-Wong (KM-HW) algorithm outperforms both the Lloyd/Forgy (KM-L) and MacQueen 

(KM-MQ) algorithms, as demonstrated in Fig. 2.4. This can be seen from both the table and graph 

which shows that while all three k-means approaches do eventually reach a position of 

convergence, the KM-HW approach performs with a lower mean TSSE than every other 

algorithm. 

 

 

Fig.2.4 Table and a graph showing how the TSSE changes for k-means clustering algorithms as the number of 

clusters is increased, where K-Means with the Hartigan-Wong algorithm shows the best performance. 
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SOM Algorithm Tests 

SOM algorithms were also investigated by evaluating the online and batch modes, where the 

neural map learns either iteratively over every datapoint or as a batch over the entire dataset 

respectively. To do this, the two different algorithms were compared using the same test used for 

evaluating the k-means approach, but instead, the online and batch SOM were used to perform 

clustering from 1-1000 clusters, under the 100 random seeds. The results of this preliminary test 

can be seen in Fig. 2.5. Like the results seen for the k-means test in the previous section, the SOM 

test shows that as the number of clusters is increased, both techniques move towards points of 

convergence. However, it can be noted for the SOM tests that the Batch SOM approach 

outperforms the Online SOM method, suggesting that if SOM is used for the clustering of large 

collections, the batch approach is preferable. 

 

 

Fig.2.5 Table and a graph showing how the TSSE changes for different SOM algorithms as the number of clusters is 

increased, where the best performing technique was found to be the batch algorithm. 

 

k-means (Hartigan-Wong) vs SOM (Batch)  

With the best algorithm being determined for each clustering method, a further investigation was 

then performed comparing batch SOM and Hartigan-Wong k-means. To ensure the widest variety 

of data, the two methods were compared using the entire collection of 1515 PRISMS spectral 

imaging data cubes recorded at the British Library. The TSSE was subsequently recorded for each 

cube to determine which approach would have the smallest overall inter-cluster distance, and 

therefore the highest accuracy. The distribution of different TSSE values for the two approaches 

can be seen in a histogram shown in Fig. 2.6. Though the two distributions in the histogram are 

similar, the peak of the curve for Batch SOM has a slightly smaller TSSE than the k-means 

approach using the Hartigan Wong algorithm, suggesting that most Batch-SOM clustered data 

cubes perform better than the k-means due to them having lower TSSE values. In addition to this, 

the total TSSE across all spectral data cubes, calculated by adding together all TSSE values across 
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all cubes, is noticeably smaller for the Batch SOM and there appear to be fewer clustering outliers 

where the TSSE is greater than ~15000, suggesting both higher accuracy and greater stability in 

using SOM instead of k-means. With this result in mind, it would be appropriate to assume that 

the best approach to use for PRISMS spectral imaging data would be the Batch SOM algorithm 

so long as convergence on local features does not occur during clustering, though there is little 

evidence to suggest that this does occur. 

 

Fig.2.6 Histogram showing the performance of the Hartigan-Wong k-means (Red) and Batch SOM (Blue) algorithms 

on all 1515 PRISMS spectral imaging data cubes. On average, the k-means performs worse with a larger TSSE, with 

the total TSSE across all 1515 data cubes also being much higher than for SOM. 

 

2.3.2 Investigation into Misclustered Spectra 

When performing the previous clustering tests on PRISMS spectral imaging data, it was noticed 

that misclustering can occur when the number of clusters is too small, if the data possesses highly 

absorbing spectra (low SNR), or if differences in spectral features are small and therefore difficult 

to distinguish automatically. This can be easily demonstrated in the test spectral imaging dataset 

where two separate colours, a dark green and blue, are often clustered together due to their 

similarity in spectral reflectance, even though they possess a small deviation in intensity around 

400-450nm (see Fig. 2.7). Both regions have a large absorption feature indicative of indigo from 

approximately 650-850nm and possess similar spectral shapes from 500-650nm. The only 

significant difference between the two spectra is a minor difference at around 400-450nm, where 

the intensity of the spectrum extracted from the green region is slightly lower than that of the 

blue, due to the additional absorption caused by the presence of a yellow pigment to create green. 

These small spectral changes do not appear to be significant enough differences to avoid 
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misclustering problems at varying numbers of clusters, however, several routes can be followed 

to address the issue and minimise the number of incorrectly clustered pixels. One approach would 

be to produce an even larger number of clusters to allow for a separation between the two regions. 

This could result in a huge number of clusters for other areas without fully solving the blue-green 

misclustering however. Furthermore, even if the number of clusters is increased there can be no 

guarantee that different colours with similar spectra would be fully separated over many different 

spectral cubes in the collection, as there is no way to easily direct the clustering to achieve the 

desired result using spectral reflectance alone. 

 

Fig.2.7 Representation of misclustered blue and green colours within the test data cube for varying numbers of 

clusters. A comparison of their colour and spectra can be seen on the bottom left. Shown on the right are blue and 

green spectra with similar features, indicating why clustering places the different colours together. 

 

For small spectral changes such as between the blue and green mixtures, visual inspection of 

clusters is often performed by eye, where colours are monitored to test if spectral features are the 

same. Instead of performing this manually, the use of this check prompted the development of a 

method which can include colour information in the clustering approach itself, allowing for a 

separation between the blue and green areas. If using colour, many different colour spaces (e.g. 

sRGB, RGB16, CIELAB) could be used to resolve the issue of misclustering, however, to 

understand which may perform better, a comparison of SOM’s performance on different colour 

spaces was first necessary. Two colour spaces were investigated as candidates to improve 

clustering results: sRGB and CIELAB: 

• sRGB: is well represented in colour images which can be visually inspected in any digital 

format. Furthermore, the information required to form a separation between blue and 

green materials is split into two of three overall channels, increasing both signal-to-noise 

and total variance in comparison to spectral reflectance. 
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• CIELAB: also provides improved signal-to-noise and greater variance between indigo 

and indigo-yellow green mixtures in comparison to spectral reflectance. But in addition, 

CIELAB is the international standard colour space and is more perceptually uniform than 

sRGB. Furthermore, it also has a well-defined colour difference metric, ∆𝐸𝑎𝑏
∗ , which can 

be used to define material differences based on the human perception of colour. If we 

consider CIE76 as a good enough estimation of colour when used alongside reflectance, 

∆𝐸𝑎𝑏
∗  can be used directly for clustering because it is calculated from the Euclidean 

distance between two CIELAB colour vectors. Therefore, SOM, when used on CIELAB 

data, is effectively performing clustering in ∆𝐸𝑎𝑏
∗  feature space. 

Both colour spaces can be produced directly from the reflectance spectral data, and each can offer 

a different interpretation of colour, each with its own advantages, making it unclear which would 

be better to use in the clustering procedure. To conclude which colour space would be the best to 

incorporate into the process, regions of interest for the blue and green areas on the test data cube, 

illustrated by the white selected areas in Fig. 2.8, were selected so that the number of pixels shared 

between the two regions could be monitored under different clustering parameters. 

SOM was performed 20 times on the sRGB, CIELAB, and PRISMS spectral imaging data cubes, 

iteratively increasing the number of clusters from 10 to 200. For each of the 20 clustering results, 

cluster pixels appearing in the green area which belonged to clusters in the blue region of interest 

were counted to qualitatively monitor the accuracy of the clustering. This way, the number of 

incorrectly clustered pixels could be monitored as the number of clusters increased for each data 

type. For all data cubes, the number of incorrectly clustered pixels reduced as the number of 

clusters increased as illustrated in Fig. 2.9. 

For clustering PRISMS reflectance data there were still 21621 pixels incorrectly clustered after 

200 clusters were found, whereas, both colour spaces were successfully able to separate the two 

regions more clearly by this point. CIELAB was able to reduce the number of incorrect pixels to 

zero by 110 clusters and sRGB was able to reduce the total number of incorrect pixels down to as 

low as 64 by 200 clusters. Both clearly show a massive improvement over the use of spectral 

reflectance, however, CIELAB has much better performance due to its reduction of incorrect 

pixels to lower numbers in a smaller number of clusters than sRGB. These results imply that the 

best course of action when performing clustering on spectral imaging data would be to use the 

CIELAB data, however, there are also many other situations in which the colour of two different 

materials may be the same, but the spectral reflectance is different. Therefore, to maintain both 

the colour and spectral information it is desirable for there to be an approach which can use both 

CIELAB and spectral reflectance simultaneously in a complementary way. 
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Fig.2.8 Illustration of the two areas (in white) selected for comparing the number of incorrectly clustered pixels. 

 

 

Fig.2.9 Graphs showing the decrease in the number of incorrectly clustered pixels as the number of clusters 

increased. CIELAB demonstrates the most accurate clustering for these tests. 

 

 

Reflectance 
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2.3.3 Combined CIELAB & Spectral Reflectance Multimodal Clustering 

When performing clustering for material identification at a large scale, it is important that the 

spectral reflectance information is not disregarded, as many materials with similar colours but 

clear differences in spectra may also exist, therefore, a method of performing clustering using 

both colour and reflectance was designed. A convenient advantage to using PRISMS spectral 

imaging data for this combined approach is that the colour information is derived directly from 

the spectral reflectance. This means that straight after processing, clustering can be performed on 

CIELAB and spectral reflectance together without requiring any image registration or other data 

treatments. Three potential methods for implementing CIELAB into the clustering process for 

PRISMS spectral imaging could be used: an appending approach, a map overlay approach, and a 

re-clustering approach. In the following sections, the map overlay, and re-clustering techniques 

are explored further, but a brief description of their design is given in this section. 

Appending Approach 

The most basic way of performing clustering on both spectral reflectance and colour data together 

would be to append the colour data cube onto the PRISMS spectral imaging data cube. This would 

generate a single 13-channel data cube where each pixel corresponds to the reflectance spectrum 

followed directly by the CIELAB data which can be used for clustering. However, there are 

problems which need to be considered when performing clustering in this way. The first challenge 

to consider is that each reflectance channel in the spectral data cube is effectively normalised 

between 0 and 1 whereas CIELAB is scaled differently and so should be normalised before 

performing clustering so that the differences in CIELAB do not dominate when distances between 

clusters and datapoints are calculated in Euclidean space. The second problem, which cannot be 

easily solved, is that CIELAB has only three channels whereas PRISMS reflectance has ten. The 

difference in channels means that clustering will be weighted more towards the reflectance, as 

any calculated Euclidean distances between separate datapoints and their closest SOM neurons 

will be dominated by differences in the spectral reflectance channels. Due to these difficulties in 

weighting data properly for clustering, the method of simply appending CIELAB data onto the 

end of the spectral reflectance was disregarded, however, in future, there may be some 

circumstances where such a method could be used effectively. 

Map Overlay Approach 

The next method of performing multimodal clustering, which will be referred to as the “Map 

Overlay” approach, performs unsupervised SOM two separate times to generate a pair of different 

reflectance and colour cluster maps where the pixel intensities correspond to the cluster number. 

By overlaying the two maps, a unique combination of clusters can be found which will have an 

equal weighting between the two approaches, avoiding the problems which would be encountered 

in the appending approach. A convenient example illustration of this can be seen in Fig. 2.10, 
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where two cluster maps are created each with two distinct clusters, which when overlayed create 

4 unique clusters found across both datasets which can be illustrated on a single map.  

Re-clustering Approach 

The second approach, referred to as the “re-clustering” approach, would perform an initial step 

of unsupervised SOM on the colour information, grouping regions by their visible colour. Then, 

the pixels belonging to each colour-clustered group would be re-clustered at a second level by 

their reflectance spectrum. As a reflectance spectrum is more informative than CIELAB due to 

its increased number of channels (10 instead of 3) one would expect to see more finely clustered 

groups appear when re-clustering by reflectance within the CIELAB group. A simple graphical 

example of this approach can be seen in Fig. 2.11, where the 6 CIELAB groups have been found 

from the input data and then within the central group, defined by the green area, there are a further 

set of subclusters.  

 

Fig.2.10 Basic diagram illustrating how map overlay clustering performs for multimodal clustering 

 

Fig.2.11 Basic diagram illustrating how re-clustering performs for multimodal clustering 
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2.4 SOM Based Algorithm for the Automated Clustering of Large Collections 

To perform clustering on large collections, a fully scalable unsupervised clustering method that 

could be used for data of small to large sizes was required so that the ≈2 billion reflectance spectra 

in the British Library’s maritime Southeast Asian collection could be reduced to a smaller number 

of unique spectral groups for further analysis. The designed method involved multiple stages 

where SOM re-clustering, SOM map overlay clustering, and a variation on hierarchical clustering, 

are implemented to perform the automated clustering of large collections in four steps: data 

reduction; repeated clustering; filtering; and merging. Though in addition there is another 

supplementary stage, referred to as the grouping stage, which is useful to further reduce the 

workload when performing analysis depending on the research questions being investigated. 

 

2.4.1 Data Reduction 

Due to the large amount of spectral reflectance data within the British Library collection, 

performing clustering for the entire dataset would be computationally expensive and time-

consuming. To avoid such problems, the first step in performing clustering must be to involve a 

data reduction stage applied to each of the 1515 spectral data cubes which can group the ≈2 billion 

spectra into a reduced set of data. Many groups (or clusters) are expected at this stage so that each 

reduced spectral data cube possesses the same variation as the original data with no misclustering 

from requesting too small a number of clusters, however, any marked reduction in the total 

number of spectra will still be useful for speed improvements and automation. The idea then is 

that after data reduction is complete, a more complex clustering approach could then be 

implemented onto the reduced dataset (which will be referred to as the “reduced spectral groups”) 

that would provide reliable and accurate clusters in a convenient amount of time for the entire 

collection.  

For performing these operations, it can be common practise to perform dimensionality reduction 

techniques, such as PCA. For the clustering of spectral imaging data, techniques such as these 

tend to be used to reduce the number of channels in a data cube or to summarise data variation 

for faster processing. However, in the case of creating an automated solution to clustering spectra 

in large collections, this is not preferred, as precise control over specific wavelength channels or 

CIELAB colour bands is needed to generate accurate clusters. Furthermore, in the case of some 

statistical procedures such as PCA, using the technique for the entire collection does not guarantee 

that individual spectral cubes can be accurately compared as the principal components are 

dynamically computed in individual data cubes separately. It is also important to note that in a 

basic preliminary study, using PCA as a step prior to performing SOM did not provide any 

significant improvements to accuracy or speed during this reduction stage. 
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2.4.1.1 Comparison between re-clustering and map overlay for Data Reduction 

To perform data reduction, both the re-clustering and map overlay approaches described briefly 

in 2.3.3 could be used, as each method results in a set of equally weighted clusters which are a 

product of both colour and reflectance, however, it is not clear which approach would be best at 

this point. To investigate this, different numbers of clusters were produced via the two 

implementations using the same spectral imaging test data from MSS Jav 24 f104v seen in section 

2.3.3. In this investigation, clustering was performed on the data cube with the TSSE and the 

number of incorrectly clustered pixels being recorded as the number of clusters increased for both 

the re-clustering and map overlay techniques. 

For the map overlay approach, the number of clusters produced for each map was steadily 

increased from 10 to 110, as in CIELAB, it was shown in section 3 that the minimum number of 

clusters required to fully separate the incorrectly clustered blue and green regions was 110. In 

total, the number of clusters ranged from 68 to 2358 after overlaying the CIELAB and reflectance 

clusters, with 2358 clusters being the position at which incorrect cluster pixels would no longer 

appear in the green test region of MSS Jav 24 f104v. For the re-clustering approach, the number 

of clusters produced ranged from 100-2100, to roughly match the same number of clusters as the 

map overlay approach. This involved 21 iterations where the number of CIELAB clusters asked 

for was increased from 10-210 in increments of 10. In each set of CIELAB clusters, the 

constituent cluster pixel reflectance spectra were then re-clustered into 10 groups. For example, 

In the final iteration, 210 CIELAB clusters were found using SOM, and then 10 spectral 

reflectance clusters were found within each of the 210, resulting in a total of 2100 clusters.  

The changes in TSSE can be seen in Fig. 2.12, where the results for the two methods clearly show 

the expected steady decrease towards convergence, where acquiring extra clusters no longer 

significantly improved the accuracy of the clustering. Though both techniques are seemingly 

heading to the same position of convergence, Fig. 2.12 clearly shows that the re-clustering 

approach offers much greater accuracy than the map overlay approach for data reduction, where 

re-clustering converges at a smaller number of clusters and with a smaller TSSE. Furthermore, 

when monitoring how increasing the number of clusters affects the number of incorrect cluster 

pixels appearing in the green region of the spectral data cube, re-clustering is also shown to 

outperform the map overlay approach (see Fig. 2.13). 

As expected, the graph shows that as the number of clusters increases, the number of incorrect 

cluster pixels decreases for both techniques. When comparing the two techniques, however, the 

re-clustering approach reaches a point of convergence far before the map overlay approach, which 

is expected considering the result seen for the TSSE. While the map overlay approach reaches 

zero incorrectly clustered pixels after 2358 clusters, the re-clustering method can reach the same 

position at only 1000 total reduced spectral groups. 
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Fig.2.12 Graph showing how the TSSE changes for the map overlay and re-clustering techniques as the number of 

clusters increases during data reduction. 

 

Fig.2.13 Graph showing how the number of incorrectly assigned pixels changes as the number of clusters increases 

during data reduction. 

 

This is not only less than half the number of clusters required to separate the two regions in the 

map overlay method but also shows minor improvements as 110 CIELAB clusters were not 

required to perform the separation. These results suggest that the re-clustering results are also an 

improvement over the use of either colour information or spectral information alone, whereas the 

map overlay method simply combines the two with no complementary improvements above the 

information already available separately. It is therefore suggested by these results that re-

clustering is the better approach to take when performing multimodal clustering for data reduction 

on spectral imaging data cubes captured by PRISMS, however in the cases of more precise 

clustering to be carried out at the later stages, it is not known if re-clustering will remain the most 

accurate approach. For this, further tests were required, as shown in 2.4.2. 
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2.4.1.2 Data Reduction Procedure 

With the results seen in 2.4.1.1 showing re-clustering to be the better method for use directly on 

spectral data cubes, the final process performed for data reduction implemented this approach to 

acquire a set of reduced spectral groups for every data cube in the collection. This allowed for the 

size of the dataset for the entire collection to be reduced by a factor of 1000, which could then be 

used to undergo more precise clustering in a computationally efficient and realistic way. For a 

typical PRISMS spectral reflectance data cube, the data reduction process was found to take 

approximately 2-5 minutes depending on the speed of the CPU processor being used. However, 

for data reduction of the entire collection, the code developed can be run in parallel and in a loop 

to allow batches of multiple spectral data cubes to be clustered simultaneously. This allowed for 

significant improvements in the total time spent during data reduction and meant that large 

datasets can be reduced into a smaller number of reduced spectral groups in reasonable amounts 

of time. The process is covered in detail within the flowchart in appendix A.1. 

 

2.4.2 Repeated Clustering 

After performing data reduction, a more careful method of clustering was required to ensure that 

a set of precise clusters could be produced which would accurately cluster together spectra with 

the same reflectance and colour, whilst minimising any common misclustering mistakes such as 

those seen between the blue and green spectra seen previously. As this approach intends to be 

able to perform clustering without having priori knowledge of the complexity of the spectral data, 

it is difficult to gauge how many clusters should be produced for every dataset which may be 

encountered. Therefore, a second clustering approach was developed which transitions away from 

requiring user inputs such as the number of clusters, k, and replacing it instead with an approach 

which can automatically identify any misclustering and ensure clustering is performed correctly 

by using alternative parameters which hold more true meaning to spectral reflectance data. To 

that end, two parameters could be used to define whether a datapoint belonged to its parent cluster, 

and can be described as follows: 

• 𝜎𝑉𝑁𝐼𝑅, a standard deviation coefficient which defines the maximum number of standard 

deviations about the cluster mean reflectance with which any channel of a constituent 

spectrum can lay before it is labelled as a misclustered spectrum. 

• ∆𝐸𝑎𝑏
∗ , a colour difference threshold which defines the maximum Euclidean distance that 

a constituent CIELAB datapoint can have from the mean cluster CIELAB vector before 

being labelled as a misclustered datapoint. 

The developed clustering approach uses these parameters in an iterative process in which 

clustering is repeatedly performed and misclustered pixels are simultaneously identified, 
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removed, and placed into new ‘pools’ to be clustered again. This process repeats until everything 

is placed into a cluster where all limits, set by the two input parameters, are satisfied. For example, 

if parameters of 𝜎𝑉𝑁𝐼𝑅=2, and  ∆𝐸𝑎𝑏
∗ =10 are used, then reduced spectral groups will be repeatedly 

clustered until every cluster only has constituent member reflectance spectra and CIELAB vectors 

which lay within 2 standard deviations of the mean and have a colour difference of less than 10 

respectively.  

The full process can be seen given by the flowchart in appendix A.2, and each of the steps is 

explained in greater detail in some of the following sections of this chapter. However, prior to 

this, it is important to first discuss the method chosen to cluster the reduced spectral groups. While 

it seems reasonable to assume that the re-clustering approach should be used for the entire set of 

reduced spectral groups due to it performing better than the map overlay approach in the previous 

tests, it was not completely obvious if the results shown for a single data cube should be extended 

to a more complex dataset which contains information representing unique spectra spread over 

the entire manuscript collection. In response, the two techniques were once again investigated. 

 

2.4.2.1 Comparison between re-clustering and map-overlay for repeated clustering. 

To investigate whether the map-overlay or re-clustering approach was more accurate for 

performing the entire clustering process, the two methods were used to perform repeated 

clustering on the same reduced spectral groups followed by filtering (see 2.4.3) and then merging 

(see 2.4.4), as this is the procedure which would be performed to produce a final set of results for 

the manuscript collection. Unlike in the previous sections where the number of clusters was varied 

to monitor the accuracy of the techniques, an investigation was instead performed into how the 

TSSE changed for the reflectance data as the 𝜎𝑉𝑁𝐼𝑅 changed, as this parameter serves a more 

‘real’ purpose for setting limits on how precise the clusters should be. Therefore, for this 

investigation, the ∆𝐸𝑎𝑏
∗  was fixed to a value of 5, and the standard deviation was changed in steps 

of 0.5 from 5 down to 2, as a value of 2 was the minimum value which was used in any clustering 

performance on this data. This in turn produced two curves which when compared showed how 

the two methods affect the accuracy of the final clustering results, as seen in Fig. 2.14. 

The graph in Fig. 2.14 clearly shows that for both techniques the TSSE decreases as the standard 

deviation coefficient becomes smaller, which is expected. However, what is interesting is that for 

most values of 𝜎𝑉𝑁𝐼𝑅, the map overlay approach outperforms the re-clustering method for the 

more complex data, which shows that re-clustering may not be useful outside of performing data 

reduction. One potential reason for this is likely that when performing clustering on spectrally 

complex data, the re-clustering approach is more prone to mistakes if the number of clusters being 

produced in the second level is too small. 
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Fig.2.14 Graph showing how the TSSE for the entire collection changed as the standard deviation coefficient 

parameter was altered. The Map overlay method performs better than the re-clustering approach in all cases except 

for 𝜎𝑉𝑁𝐼𝑅= 3.5 and 𝜎𝑉𝑖𝑠−𝑁𝐼𝑅=3, as indicated by the lower TSSE. 

 

This is because if a lesser number of clusters is produced by SOM than is necessary to properly 

separate the different spectral groups, the standard deviation for a cluster will become larger, 

which in turn may result in fewer misclustered spectra being removed. The map overlay method 

would not suffer from this problem as the two prior stages of clustering are treated independently 

from one another, therefore the identification of misclustered reflectance spectra would never 

suffer on account of the CIELAB clustering underrepresenting the true number of clusters in the 

collection.  

While a potential fix for this problem would be easy to implement for the collection by increasing 

the number of reflectance clusters created at the second level of re-clustering, it is not ideal to 

have to adapt the number of clusters for every new dataset. This is especially true if this clustering 

method is to be made general enough to use across multiple collections in the future. Furthermore, 

there is no guarantee that increasing the number of reflectance clusters at the second level of re-

clustering would marginally improve the results anyway, and it is likely that a prior understanding 

of the dataset would have to exist to properly optimise the re-clustering technique, which is often 

not the case for these large studies. Due to the results found here, the map overlay approach was 

used for the more precise repeated clustering, as it provides more accurate clustering for this 

dataset and allows for a more general methodology which can be expanded to multiple datasets. 
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2.4.2.2 Estimation of the Optimal Number of Clusters 

Even though the method proposed for the clustering of large collections uses the 𝜎𝑉𝑁𝐼𝑅 and ∆𝐸𝑎𝑏
∗  

parameters during the repeated clustering stage, due to the nature of using SOM to perform the 

clustering on each type of data, a certain number of clusters is still required as an input. To avoid 

requiring priori knowledge of the data and to determine the optimal number of clusters 

automatically, a process was developed similar to the “Kneedle” method (Satopaa et al., 2011) to 

computationally estimate the elbow point of a convergence graph. To do this, the map overlay 

clustering method is carried out multiple times to acquire TSSE data for an increasing number of 

clusters ranging from 1 to √𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑔𝑟𝑜𝑢𝑝𝑠.  In the resulting graph, a 

straight line is then fitted between the maximum and minimum TSSE values, and the absolute 

difference between the elbow plot and this straight line is computed. This produces a graph where 

the maximum roughly corresponds to the optimal number of clusters, which can then be used as 

an input for clustering (see Fig. 2.15). By performing this process prior to every repeated 

clustering iteration, the optimal number of clusters can be dynamically adapted to each set of 

original reduced spectral groups, thereby allowing for the automated accurate clustering of 

datasets with different sizes and spectral or colour complexity. 

 

 

Fig.2.15 Graphs showing the process of automatically finding the optimal number of clusters. From Left: Calculate 

the TSSE for different cluster numbers; fit a straight line to the extremes of the TSSE plot; subtract the data from the 

line and find the maximum (where max = optimal clusters). 

 

2.4.2.3 Repeated Clustering Procedure 

Every time an iteration of clustering is performed, the optimal number of clusters is first 

estimated. Following this, the map overlay clustering on the reduced spectral groups is carried 

out to find a set of new ‘parent clusters’, which are then checked to investigate whether any 

misclustering has occurred within them. Identifying misclustered data is done in two parts, the 

first checks whether every reflectance channel for a constituent reduced spectral group spectrum 

lays within a certain number of standard deviations around its new parent cluster mean. The 
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second is performed by checking that each constituent cluster member has a ∆𝐸𝑎𝑏
∗  colour 

difference smaller than the user-defined parameter. Any reduced spectral groups whose 

reflectance or ∆𝐸𝑎𝑏
∗  lays outside the user-defined parameters are removed from their parent 

clusters and added to a pool to be clustered once again. Each time a reduced spectral group is 

removed, the parent cluster means, and standard deviation are recalculated so that the updated 

clusters can be checked repeatedly until there are no further misclusterings. The process is then 

repeated on outputted pools of previously removed groups and continues until all reduced spectral 

groups from the data reduction stage belong to a new cluster with no misclustered spectra. 

 

2.4.3 Binary Cluster Filtering 

From implementing colour information and reflectance spectra together, it is common for cluster 

maps to highlight many unique “redundant” clusters which only represent information that is not 

important for any kind of material identification. These often present themselves in two ways, the 

first is as outlines around differently coloured areas, as this is where there is normally a multiple-

pixel thick boundary layer between regions which is a combination of the nearby colours or 

reflectance spectra. Secondly, they may appear as random single pixels due to dead or hot pixels 

in the CCD detector, and thirdly they can commonly occur as a result of specular reflection 

(commonly encountered in the collection studied in this thesis). These redundant clusters can be 

very high in number but are often either low in their pixel population or are very sparsely 

distributed random pixels throughout the image. To remove many of these redundant clusters so 

that the final number of clusters is a more informative and manageable set for analysis, a binary 

median filtering process is applied to the cluster maps directly, allowing for the removal of 

clusters if they only possess sparse or low population features.  

The binary median filtering involves two main stages: 

1. The first involves removing any clusters where the number of spectra does not exceed 

five in any spectral imaging data cube across the collection. For example, a cluster may 

have 1515 pixels but only one pixel per cube, suggesting that this is a redundant cluster. 

2. Any clusters are removed if the number of cluster pixels is not greater than 5 in any 

spectral data cube after performing 3x3 median filtering to the binary mask which 

represents the distribution of cluster pixels in the 2D image (see Appendix A.3 for a 

flowchart). 

This filtering approach ensures that the clustering results and output maps are not saturated with 

clusters that possess no information useful for material identification purposes. It therefore instead 

allows for a greater focus on regions which are more likely to hold interesting contributions for 

pigment identification. However, in the event that these redundant clusters may be required for 

specific research questions, the information is not completely lost in the process of filtering, as 



55 

 

any removed clusters are given a cluster label of zero and can therefore still be accessed. Filtering 

can be performed before or after the following merging stage and in general, should be used 

appropriately to remove the highest number of redundant clusters without losing important fine 

features. In the research for this thesis where clustering is performed on the British Library’s 

maritime southeast Asian manuscript collection, the filtering was performed before the merging, 

as this offered the greatest removal of redundant clusters without losing any significant 

information. 

 

2.4.4 Hierarchical Merging 

The final stage, which as mentioned can be swapped with filtering depending on circumstance, 

involves the merging of clusters if their mean cluster reflectance spectra and CIELAB vectors 

match under user-defined control parameters, where for a match to exist, the CIELAB vectors of 

two clusters must lay within a certain ∆𝐸𝑎𝑏
∗  and simultaneously every spectral reflectance channel 

across both clusters must mutually lay within a certain number of standard deviations around the 

mean. To do this an iterative hierarchical clustering approach was designed using single-linkage 

criteria to allow for the fast merging of the closest matching pairs of clusters produced from the 

repeated SOM and or filtering stages. 

This Merging process (as shown in Appendix A.4) involves: 

1. Identifying the clusters which mutually overlap and producing a binary matrix where 

matching clusters are represented as 1, and non-matching clusters are represented as 0.  

2. Producing a dissimilarity matrix computed using Euclidean distance for all clusters and 

normalising the matrix so that distances scale from 0 to 1. 

3. Dividing the dissimilarity matrix by the binary matching matrix to produce valid 

normalised distances for matching cluster pairs and infinite distances for non-matching 

pairs.  

4. Performing agglomerative clustering executed from the R stats (3.6.2) (R Core Team, 

2022) package using the stats::hclust algorithm with single linkage. 

5. Finding valid pairwise merging clusters in the hierarchical dendrogram and updating the 

mean cluster spectra, standard deviations and ∆𝐸𝑎𝑏
∗  for the new clusters. 

6. Repeating steps 1-5 until no more matches exist in step 1.  

Performing these stages ensures that the multiple control parameters are kept in effect during the 

full clustering process. Computing and combining the binary matching and dissimilarity matrices 

in steps 1-3 ensures that the dendrogram produced by agglomerative clustering only joins single 

clusters which match and possess a normalised Euclidean distance of 1 or less. To find the final 

clusters at step 5, the dendrogram tree is not cut by height in the traditional manner. Instead, to 

ensure that only matching mean cluster spectra are included in each iteration of clustering, only 
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the first pairwise mergings are grouped, ignoring any clustering involving hierarchically clustered 

groups. The result after merging will therefore consist of a set of clusters which have unique 

colour and reflectance which are representative of numerous individual spectra present 

throughout the entire collection. Each cluster will not have any potential ‘copies’ where two 

clusters with identical colour and spectra would be separated, as the merging will have placed 

these together, and therefore every cluster in the collection will be completely unique based both 

on pigment constituent, concentration, or mixture etc. 

 

Pixel accurate calculation of statistical data 

Before covering the final output data produced at the end of the clustering procedure, it is 

important to note that for the final merging stage, though it is used in previous stages also, 

calculations of mean spectra and other statistical information had to remain true to the actual 

clustered pixels throughout the entire collection as the data continued through multiple steps of 

clustering. This meant that the means or standard deviations calculated directly from all pixels in 

all spectral data cubes should be equal to the value produced in clustering, which is not true by 

default if SOM codebook vectors are used at each stage or if the mean spectra computed from the 

data reduction stage are carried forward to be aggregated into new means in subsequent stages. 

Therefore, at every step of the algorithm, every cluster mean spectrum and standard deviation had 

to be recalculated using statistical information stored after the stage prior.  

The total sum of reflectance (∑R) ∑ 𝑅𝑖,𝜆
𝑁
𝑖=1 , total sum of squared reflectance (∑R2) ∑ 𝑅𝑖,𝜆

2𝑁
𝑖=1 , and 

total pixel population 𝑁, of a cluster in any reflectance or CIELAB channel can be used to perform 

this more accurate calculation for the mean reflectance �̅�𝜆, mean CIELAB vector �̅�𝐿𝑎𝑏, and 

standard deviations 𝜎𝜆, 𝜎𝐿𝑎𝑏 using: 
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Where 𝑖 is the position of the reflectance datapoint within the whole collection of data, and 𝜆 

corresponds to any wavelength channel. This means that at every stage of clustering, a simple 

addition of the ∑R, ∑R2, and population can be performed so that the pixel-accurate representative 

cluster mean spectra and standard deviations can be recalculated repeatedly without having to 

extract spectra directly from the original spectral cubes. This decreases computational time but 
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more importantly also avoids weighting issues that may arise when merging or clustering together 

a low-population cluster with a large-population cluster. 

 

2.4.5 Clustering Outputs & Statistical Data 

Final Cluster Maps 

After filtering has been completed, final sets of statistical data for the clusters and the cluster maps 

are produced. The cluster maps produced are the spatial maps of the imaged object where the 

intensity of any pixel in greyscale value is defined by the cluster with which that pixel belongs 

where, for example, a pixel belonging to cluster 5 in a cluster map will have an integer intensity 

of 5. In addition to the greyscale maps, false colour cluster maps are also generated with unique 

colours representing different clusters, allowing for the convenient basic visualisation of 

clustering data without having to explore the cluster map integer intensities themselves. 

Cluster Statistics 

The statistical data which is produced after the clustering procedure is completed includes the 

total sum reflectance, the total sum of square reflectance, the mean cluster reflectance spectra, 

cluster standard deviations, and cluster pixel populations. It is necessary to continue recording 

this data as if any clusters eventually wish to be further merged, the quickest way to recalculate 

the new mean cluster spectrum and standard deviation is to use the total sum of reflectance, the 

total sum of squared reflectance, and the total pixel population. As mentioned at the beginning of 

this section, cluster grouping routines are often necessary for answering certain research questions 

more efficiently, therefore by storing this data in the clustering results, statistics data can be 

updated to provide pixel-accurate spectra for these final cluster groups. 

It is important to note that at the end of the clustering process, the total number of clusters 

produced may still be considered very large for certain applications such as pigment 

identification. However, this is because the clustering code not only produces clusters with unique 

spectral shape but also unique intensities and colours as well. This means that many clusters for 

a specific pigment or mixture may exist due to factors such as changes in concentrations between 

certain mixture components, differences in paint layers, changes in infrared intensity due to the 

presence of underdrawings or differences in substrate, changes in intensity due to increases in 

specular reflection, and more, each of which can vary the reflectance spectra in many ways. 

Regardless, the reduction of billions of spectra down to thousands is still a vast improvement over 

performing analysis in a more traditional way, as the likelihood of missing information is removed 

and with the use of multiple tools and further grouping techniques, different research questions 

can still be answered in a much timelier manner than previously. 
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2.5 Automated Clustering Results for the Maritime Southeast Asian Collection 

2.5.1 Clustering Evaluation for Variable-Sized Datasets 

Prior to covering the different clusters created for the entire manuscript collection, a quick 

investigation which presented interesting results was performed to understand how changing the 

size and therefore complexity of the dataset affected the clustering outcome. This investigation 

sought to understand how the number of clusters changes with how the number of spectral data 

cubes introduced into the clustering method increases. It is expected for the clustering approach 

that as long as any new data being introduced into the method is spectrally similar, the number of 

clusters should eventually converge as the number of spectral data cubes increases. This is 

because if all the new data being introduced into the clustering method are like data already seen, 

they should be placed into clusters which already exist, thereby no longer increasing the total 

number of clusters. To investigate if this was indeed the case, the number of clusters was 

monitored as the number of spectral data cubes undergoing clustering was increased, the graphs 

for which can be seen in Fig. 2.16. 

  

Fig.2.16 Graphs showing how the number of clusters changes as the number of data cubes being clustered increases. 

Note that in the graph on the right-hand side, multiple convergence curves can be found within the main trend of the 

entire plot. 

 

As Fig. 2.16 shows, some level of convergence is reached in the number of clusters as the number 

of data cubes increases. It is interesting however that a form of convergence occurs multiple times 

as the number of spectral data cubes is increased. This is suspected to be because as more data is 

added, there are new parts of the collection which have new sets of unique spectra which have 

not been encountered already. This means that the position at which the graphs in Fig. 2.16 

suddenly change from a trend towards convergence into a new curve, denotes the position with 

which a new unseen part of the collection is being clustered. As each of these smaller curves does 

eventually tend toward convergence, however, it seems reasonable to assume that the clustering 

method is performing as expected, where new spectra which are similar to previous data are 

increasingly added into previous clusters. It would be interesting to know with further inspection 
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into other datasets whether these multiple convergence curves can be used to gather a quick 

representation of how many artistic styles exist within the collection being clustered. However, 

without having access to numerous large collections this is difficult to perform, though would be 

interesting to understand if investigated in the future. 

 

2.5.2 Automated Clustering Results 

Using the final parameters of colour difference, ∆𝐸𝑎𝑏
∗ =2.5 and standard deviation coefficient of 

reflectance 𝜎𝑉𝑁𝐼𝑅= 2, a total of 22,837 clusters were found over the entire collection, an average 

of 15 unique clusters per spectral imaging data cube. This means that for the entire collection, the 

total number of spectra reaching almost two billion was reduced by a factor of ≈84200. Although 

the factor of reduction is significant, the overall number of clusters may still seem large at first 

glance, however, the reasoning for this is that many clusters do in fact have subtle differences 

between reflectance spectra for real reasons. Performing clustering with this level of precision 

allows for the separate clustering of artistic materials which can often have many subtle 

differences in colour or reflectance, accounting and allowing for the separation of many different 

properties including but not limited to differences in paint thicknesses, variations in pigment 

concentration, presence of underdrawings, degradation of paints, damage to paper, and spatial 

interfaces between materials in the 2D image plane. Some examples of these results can be seen 

in the following section to illustrate the strengths of performing clustering, however, some 

weaknesses are also discussed which cover the limitations of this clustering method when applied 

to VNIR reflectance and colour data.  

 

2.5.3 Cluster Maps 

As has been mentioned already, one of the main benefits of performing clustering is that the 

production of cluster maps can allow for a visualisation of the distribution of pigments and 

mixtures over many collection items at once. While most of these maps are eventually grouped at 

a later stage to answer specific research questions about the collection for this thesis, some of the 

individual cluster maps are shown in this section to demonstrate the effectiveness of performing 

clustering on colour and VNIR spectral imaging data. For this demonstration, multiple real colour 

cluster maps were produced for different manuscripts within the collection, allowing the 

distribution of certain commonly used pigment mixtures to be mapped, where pigments were 

confirmed using complementary analysis mentioned in chapter 1 and demonstrated further in 

chapter 3. 
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Mapping of Vermillion 

The red pigment vermillion appears abundantly throughout the collection and is applied in many 

different thicknesses or with other materials depending on which manuscript is being analysed. 

As vermillion is used in many manuscripts, performing clustering should allow for the distribution 

of the pigment to be mapped over the entire collection. By creating cluster maps which show 

pixels for only a single cluster in their true colour, maps showing the presence of vermillion with 

a specific concentration and mixture can be created to aid in the analysis of the collection. A few 

examples of these vermillion maps can be seen in Fig. 2.17, where the distribution of vermillion 

is shown for manuscripts Add MS 12280, Add MS 12291 and MSS Jav 4. 

Mapping of Green Indigo & Orpiment Mixture 

Throughout the manuscript collection a green colour created by mixing indigo (blue) and 

orpiment (yellow), appeared in multiple different manuscripts. By applying clustering to the entire 

dataset, a variation of this mixture with a specific colour and pigment concentration could easily 

be confirmed to exist on numerous Javanese manuscripts by analysing the different cluster maps. 

The cluster in question, cluster 3156, was used to generate a set of true colour cluster maps which 

can confirm the presence of this indigo and orpiment mixture on manuscripts MSS Jav 24, Add 

MS 12291, and Add MS 12297. The cluster maps can be seen to demonstrate this in Fig. 2.18, 

where the cluster spectrum and some constituent member spectra form each spectral image can 

also be seen plotted together.  

Mapping of Orpiment 

The final example which will be shown to demonstrate the usefulness of the clustering method is 

for the detected yellow pigment orpiment, which can be shown to appear in many different 

manuscripts. Some example cluster maps showing the distribution of orpiment throughout the 

collection can be seen in Fig. 2.19, where cluster 527 was used to create a set of true colour cluster 

maps for manuscripts MSS Jav 24 and Add MS 12298.  

While the clustering of orpiment performs well for most regions, there are situations in the 

orpiment cluster where misclustered data begins to appear. When taking a closer look at some of 

the pixels within cluster 527, it becomes apparent that gold can often be clustered with the 

orpiment due to the similarity in their colour and reflectance spectra. This situation can be seen 

clearly in Add MS 12291, where a closeup of the gold bulb on folio f3r (see Fig. 2.20) can 

illustrate both correctly clustered orpiment pixels by each of the leaf/petal motifs and misclustered 

gold pixels in the gold frame which have been placed together due to their similar spectra. 
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Fig.2.17 Top: RGB Images and true colour cluster maps showing the distribution of highly precise vermillion pixels 

over three different Javanese manuscripts. Bottom: The mean cluster spectrum of the vermillion cluster with 

extracted spectra from each manuscript seen fitting within one standard deviation of the mean. 
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Fig.2.18 Top: RGB Images and true colour cluster maps showing the distribution of highly precise indigo and 

orpiment mixture pixels over three different Javanese manuscripts. Bottom: The mean cluster spectrum of the 

mixture cluster with extracted spectra from each manuscript seen fitting within one standard deviation of the mean. 
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Fig.2.19 RGB Images and true colour cluster maps showing the distribution of highly precise orpiment pixels over 

two different Javanese manuscripts 
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Fig.2.20 Top: RGB Image and cluster map corresponding to the orpiment cluster seen on Add MS 12291 with a 

region of interest shown in black for closer inspection. Bottom: Superimposed cluster map for the region of interest 

over the RGB image showing misclustered gold pixels which have been assigned due to their spectral similarity as 

shown in the graph on the bottom right. (Note: correctly assigned pixels have black arrows pointed to them and can 

be seen next to the green areas.) 

 

While this is technically a scenario demonstrating misclustering, it is not a surprise that an issue 

like this would arise, as clustering in only one region of the electromagnetic spectrum would mean 

that there is no clear information which can be acquired to ensure that gold and yellow materials 

are always kept separate. This demonstrates a fundamental limitation of the clustering method 

and implies that there is no fix for this problem without introducing new data. Such a fix could 

be achieved through the use of alternative techniques such as XRF, which can provide the 

elemental composition of a material thereby allowing for gold and orpiment to be distinguished 

from one another easily. If XRF spectral imaging is introduced into the clustering method as an 

extra modality in addition to reflectance and colour, then it is likely that misclusterings such as 

this would not occur. This idea is explored in greater detail in chapter 4, where a holistic 

multimodal clustering approach is developed and performed on paper-based paintings.  
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2.6 Grouping of Materials and Pigment Mixtures in Large Collections 

After automated clustering had been performed, it was clear that for the most part, accurate 

clusters can be produced which are unique to specific materials throughout multiple manuscripts, 

which can be useful for representing different pigments or mixtures with varying concentrations. 

In many research studies, however, such precise clusters are not always required, and it can be 

more informative to instead group together many of the clusters into fine-tuned cluster groups 

which can ultimately be used to answer specific questions about the data being analysed. In the 

case of the British Library’s maritime southeast Asian collection, the focus for most of the study 

is to be able to map different pigment mixtures over the entire collection. As multiple different 

clusters can often correspond to the same mixture it would therefore be more beneficial to place 

these precise clusters into pigment mixture groups, which would in turn create pigment mixture 

cluster maps which can then be used to understand the distribution of different pigments 

throughout the collection. 

To carry this out, a software-driven approach (see chapter 6) for the grouping of clusters was 

developed and used with the precise clusters formed after automated clustering of the British 

Library’s maritime Southeast Asian collection had been performed. The full analysis of the 

manuscript collection can be followed in greater detail in chapter 3, however, the basic procedure 

for performing grouping is shown here to demonstrate a more general use of the method and to 

show the advantages of creating pigment mixture maps using the precise automated clustering 

results. 

 

2.6.1 Grouping Procedure 

The grouping procedure is a basic methodology in which clusters possessing similar mean cluster 

colour and spectra are manually grouped. The basic process for grouping two clusters can be 

described in a few steps as follows: 

1. Find two similar clusters, KA and KB 

2. For all cluster maps in the collection, convert KA and KB pixels with intensities IA and IB 

respectively, into a new group KC with intensity IC. (Where IC is always a negative integer 

to ensure that original clusters and groups can be distinguished) 

3. Update statistical data by combining the total sum of reflectance (∑R) ∑ 𝑅𝑖,𝜆
𝑁
𝑖=1 , total 

sum of squared reflectance (∑R2) ∑ 𝑅𝑖,𝜆
2𝑁

𝑖=1 , and total pixel population 𝑁. Then calculate 

the new KC mean and standard deviation. 

Grouping can be performed on any number of clusters at once using this approach, thereby 

allowing for the quick production of pigment mixture cluster maps by grouping multiple clusters 

with spectra which correspond to the same materials. The outputs of the grouping procedure, 
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therefore, include a new set of statistical data, a set of group cluster maps, and a set of false colour 

group cluster maps. The continued production of both the statistical data and greyscale group 

cluster maps allows for further grouping to be performed on already created groups at a later 

stage, allowing for iterative grouping to be achieved with varying levels of precision based on 

what the research questions are within any given study. 

 

2.6.2 Software Implementation 

When using the previously mentioned grouping technique, it was found that manually performing 

grouping by interacting with mean cluster spectra and colour data could prove to be very time-

consuming due to the sizable number of clusters produced for large collections. In response, it 

was perceived that the most efficient way of disseminating results was through a software-driven 

approach where a researcher can visualise, analyse and group clusters together by working with 

all available data directly and simultaneously. This is where Guisi (see chapter 8) could be used 

to allow for grouping to be performed with spectra and colour through the user selection of painted 

areas which could be visualised in different formats as: Spectral Bands, Mean Images, Cluster 

Maps, True Colour Cluster Maps, sRGB Images, or False colour images. By selecting sets of 

clusters to group via direct interaction with spectral imaging data, subtle differences between 

clusters caused by variations in layering or concentrations could be investigated live. 

Furthermore, due to the clustering encompassing the entire collection, placing these different 

clusters into groups with common spectral features for only one spectral imaging data cube 

additionally performed grouping for the same mixtures over the entire collection. 

To demonstrate an example of the grouping procedure in use on the maritime southeast Asian 

manuscript collection, multiple clusters belonging to the vermillion pigment discussed briefly in 

5.2.1 were grouped for manuscript MSS Jav 24 on folio f104v. A colour image of this manuscript 

can be seen with the page highlighted in Fig. 2.21. 

This involved first taking a single PRISMS reflectance spectral imaging data cube for this page 

and selecting multiple regions of interest (ROIs) which covered various shades of the red pigment 

believed to be vermillion. The 4 ROIs selected can be seen in Fig. 2.22, denoted by different 

coloured rectangles on the sRGB image which was created directly from the spectral reflectance 

data. Within these 4 ROIs, multiple clusters representing slightly different colours or spectra for 

vermillion could be found. When plotting the different mean cluster spectra together for each 

ROI, it becomes clear that the majority of clusters are largely the same, as demonstrated in Fig. 

2.23, which shows the constituent mean cluster spectra within ROI 1, the leftmost region of 

interest in the previous image shown in Fig. 2.22.  
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Fig.2.21 Open-book colour image of MSS Jav 24 f104v and f105r which will be used for grouping vermillion 

clusters. The region which underwent PRISMS scanning can be seen highlighted by the black and yellow box. 

 

 

Fig.2.22 Representation of the area in MSS Jav 14 f104v which was used to perform grouping. PRISMS scanning 

was performed with the manuscript on its side, so the extracted region is rotated by 90 degrees for ROI selection. The 

ROIs used can be seen in the bottom left-hand image as small, coloured rectangles. 
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Fig.2.23 Graph extracted from the grouping software (Guisi - see chapter 6) which shows the different vermillion 

clusters and mean cluster spectra which will be grouped for a single ROI. 

 

As the graph shows, most of these different clusters have similar mean cluster reflectance 

spectra which mainly only appear to differ in reflectance intensity towards the near infrared, 

implying that these areas may correspond to different thicknesses of the paint, slight 

concentration differences or to different shades of the substrate. Therefore, if trying to simply 

map where the vermillion pigment is used regardless of application, it would be appropriate to 

group these spectra together. Any clusters which are deemed not to match with the rest of the 

spectra can be ignored, this is seen for clusters 1756 and 4200, which are greyed out in Fig. 2.23 

to show they will not be included in the group.  

It is important to mention here that with an example such as this, a form of automated grouping 

can also be performed, where mean cluster spectra can be normalised and compared within their 

standard deviation ranges to group together spectra with similar features. However, in the case 

of performing clustering for the British Library’s maritime Southeast Asian manuscript 

collection, this was not performed, and the more manual approach was taken.  

When analysing all four regions of interest selected in the software, each ROI can be shown to 

possess its own set of unique clusters which can only be grouped if they are not already part of 

another ROI group. This means that for ROI 0, all constituent cluster members within the ROI 

can be grouped together, but for the subsequent ROI 1, only clusters which do not belong to ROI 

0 can be grouped. When monitoring the unique clusters belonging to each ROI, it was shown that 

the final ROI possessed no constituent cluster members as all had already been grouped into the 

previous three. As the ROI groups also appeared to possess similar reflectance spectra, the three 

were combined into a single cluster group, as shown in Fig. 2.24, which would represent all the 

vermillion pixels in the single spectral data cube, and therefore by relation in the entire collection.  
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Fig.2.24 Graphs showing the constituent cluster spectra belonging to the three ROI groups (left) and then all ROIs 

joined into a single group given a red colour (right). 

 

 

2.6.3 Grouping Results & Discussion 

After performing the grouping as outlined in 2.6.1-2, pixels with spectra representing vermillion 

over the entire collection were all placed into the same group, after which new group cluster maps 

were then created. In this final section, some of these cluster maps will be shown for numerous 

manuscripts (see 2.6.3.1 – 2.6.3.3), but to understand how effective this method is in performing 

pigment mixture mapping over an entire collection, a simple table, shown in Fig. 2.25, can easily 

show that 35 manuscripts were found to possess the vermillion mixture grouped from only a 

single spectral imaging data cube.  

 

Fig.2.25 Table showing the manuscripts shown to possess vermillion throughout the collection by grouping only the 

clusters in one spectral data cube. 
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Furthermore, as the grouping process normally only takes a few minutes to perform by having a 

specialist use the Guisi software, the process of mapping vermillion over many spectral data cubes 

using the automated clustering results within a software driven approach clearly provides huge 

efficiency improvements in performing reliable and accurate data analysis. 

In the context of this thesis, this quick capability to map VNIR spectra over an entire collection 

with very little effort after clustering was a huge advantage for performing large-scale pigment 

identification. Furthermore, even though the groups were only created using a single data cube, 

large areas of grouped vermillion pixels can be identified over many different spectral cubes, 

instead of small areas which may happen to match well with the vermillion cluster just by chance. 

To demonstrate the effectiveness of the cluster grouping, three manuscripts are shown in the 

following subsections with their true colour “group cluster maps”. 
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2.6.3.1 MSS Jav 24 

The best starting point to demonstrate how well the grouping procedure has performed is to show 

the rest of the manuscript page (MSS Jav 24 f104v) which was used to create the cluster groups 

in the first place. This is because if this single page of the same manuscript could not demonstrate 

accurately grouped vermillion pixels, then the chances of the approach working for the whole 

collection would be slim. When analysing the new group cluster maps created for MSS Jav 24, it 

became clear that the procedure had worked very well, with large regions of correctly grouped 

pixels being mapped not just over folio f104v, but also over other pages within the manuscript, 

as shown in Fig. 2.26. 

 

 

Fig.2.26 RGB images and corresponding true colour group cluster maps showing the distribution of vermillion pixels 

assigned to the same group within MSS Jav 24. 
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2.6.3.2 Add MS 12291 

As shown in the results directly from automated clustering, the cluster map for vermillion in Add 

MS 12291 demonstrated shared pixels between itself and other manuscripts. With the grouping 

of MSS Jav 24 being performed with a successful outcome, it is important to demonstrate whether 

the same performance could also be achieved on Add MS 12291, as it was known to have a 

provenance traceable to the same island in maritime southeast Asia (Java) as MSS Jav 24. By 

once again analysing the produced group cluster maps, it could be shown that manuscript Add 

MS 12291 had successfully undergone grouping, with maps now possessing larger areas of 

correctly grouped vermillion pixels, as illustrated in Fig. 2.27. 

 

 

Fig.2.27 RGB image and true colour group cluster map showing the distribution of vermillion in manuscript Add MS 

12291, a completely different manuscript to that used in the grouping procedure. 
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2.6.3.3 Or 8154 

While the grouping of vermillion pixels between manuscripts with similar provenance seems 

logical, it was not known whether the grouping procedure would perform well with the clustering 

results for manuscripts from different locations in maritime southeast Asia. Therefore, a 

manuscript with a completely different provenance, Or 8154, originating from Bugis, South 

Sulawesi, was also investigated (see Fig. 2.28). 

 

Fig.2.28 RGB image and true colour group cluster map showing the distribution of vermillion in manuscript Or 

9154, a completely different manuscript to that used in the grouping procedure which also possesses a different 

provenance. 

 

As can be seen from Fig. 2.28, the grouping is able to place together the vermillion clusters in a 

completely different manuscript with a different provenance. This therefore demonstrates that the 

automated clustering was able to successfully cluster vermillion of different concentrations 

throughout the entire collection, and with implementing this basic grouping procedure these 

variations can be unified if the research question only requires a mapping of basic pigment 

mixtures. 
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2.6.4 Kubelka-Munk (KM) Model Informed Grouping 

With the results provided via the automated clustering method, accurate cluster grouping was 

shown to be accomplished by determining relationships between clusters based on their spectral 

shape and colour. However, this is not the only way in which grouping can be performed, in 

certain scenarios where the clustering of spectral imaging data is carried out simultaneously to 

pigment identification, much more accurate and reliable cluster grouping can be performed by 

using the Kubelka-Munk theory to inform a Guisi user if certain mixtures are the same. This can 

allow for more accurate grouping of spectra which can also account for greater differences in both 

spectral shape and colour, as many pigment mixtures with the same constituent materials can 

often vary greatly in spectral shape due to changes in relative concentration. 

It was found that applying a hybrid approach of simultaneous pigment identification and 

clustering provided a more accurate way of grouping clusters into even fewer groups than if 

spectra and colour had been used alone, as greater spectral variation and colour could be 

confidently accounted for. Because of this, this was the process performed for the British 

Library’s maritime Southeast Asian illuminated manuscript collection, and as a result allowed for 

the majority of the collection to be characterised into fewer than 200 groups in a day or so. This 

hybrid approach is best described by a few basic steps as shown in Fig 2.29, which demonstrates 

how a cluster grouping and pigment identification loop can be used to sequentially map pigment 

mixtures while informing where further pigment identification is required. Though a more 

detailed explanation is also provided in the following paragraph. 

 

Fig.2.29 Diagram showing the procedure for KM-informed cluster grouping. An example output group cluster map 

created afterwards can be seen with its associated RGB image. 
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Essentially, the hybrid approach involves performing spectral imaging and automated clustering 

in the typical ways described throughout this chapter. However, before performing any grouping, 

pigment identification is performed so that the materials used within a small selection of mixtures 

are known and can be accurately modelled in the VNIR using KM mixture modelling. If a 

researcher is satisfied that certain VNIR spectra and colour correspond to specific mixtures, the 

software can then be used to group clusters which are known to represent the same pigments but 

in different concentrations. As this grouping will also merge similar spectra throughout the rest 

of the collection, every material that has been characterised by a researcher into a group can be 

mapped, as shown in the cluster map in Fig.2.29, which maps paper, vermillion, indigo, and 

orpiment in false colour. Any pixels within the cluster maps after automated clustering that have 

not been assigned to a group will be also highlighted in these maps as black in false colour, 

implying that areas with black pixels need to be further analysed or have their pigment mixture 

identified. Eventually, by performing grouping over many different areas where point 

measurements have been performed, complete reliable pigment mixture maps can be created for 

every identified mixture within a collection.  

This approach was used to characterise most of the collection as seen in chapter 3, which meant 

that much of the data analysis in the VNIR could be performed with minimal effort when many 

different items using similar artistic materials had been imaged using PRISMS. The approach 

however did mean that thorough point measurements, such as with XRF, had to be performed to 

ensure that for the most part, mixtures with different constituent materials but similar VNIR 

spectra did not become incorrectly clustered or were at least could be identified as different if 

they did. 

 

2.7 Conclusions 

In this chapter, two different commonly implemented unsupervised clustering algorithms were 

compared to evaluate their performance for use in a large-scale spectral imaging study of the 

British Library’s maritime southeast Asian illuminated manuscript collection. It was found that 

the most accurate approach for performing unsupervised clustering on VNIR reflectance data was 

the self-organising map used in its batch mode, however, it was also found that even when using 

this accurate clustering technique, misclustered data still occurred when using only VNIR spectra. 

To address these common misclustering situations, two new approaches to performing a form of 

multimodal clustering between reflectance and CIELAB were developed. These two techniques, 

termed in this thesis as re-clustering and map-overlay clustering, were used as the building blocks 

alongside hierarchical clustering to perform data reduction, precise repeated clustering, and 

merging of spectral reflectance and colour information for the large collection. The newly 

developed process allowed for the reduction of almost 2 billion reflectance spectra within a 
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collection down to only 22,837 sets of unique clusters, in which each cluster possessed its own 

unique mean spectrum representative of its constituent pixel spectra. As an output of the newly 

developed clustering method, cluster maps could be produced where every pixel in an image 

corresponded to a specific cluster and therefore, in the context of illuminated manuscripts, a 

specific material, pigment or pigment mixture with a specific relative concentration.  

In many pigment identification studies, it is often not necessary to have such precise results which 

are offered by the automated clustering method outlined in this chapter. Therefore, another 

method was also developed to complement the results created after automated clustering by 

allowing collection-wide grouping to be performed. This was performed via a newly designed 

software suite known as Guisi (see chapter 6) which allowed for the direct simultaneous 

interrogation of clustering results and spectral data cubes, providing a method to perform targeted 

merging of precise clusters based on what the research questions of a study may be. It was found 

that by performing grouping in only a single spectral imaging data cube, the natural spectral 

variation which occurs in different painted areas can be exploited to group clusters over an entire 

collection. Furthermore, it was also found that by implementing a hybrid pigment identification 

and grouping approach, highly accurate pigment mixture maps could be created that not only 

illustrated the distribution of identified pigment mixtures in numerous manuscripts, but also 

provided insight into the data so that further, more accurate, analysis could be performed. It was 

found when using these approaches on the British Library’s collection, most pigment mixtures 

could be characterised in less than 200 groups, with some groups still accounting for some 

differences in pigment concentration to avoid common misclustering issues which were 

encountered due to clusters possessing similar VNIR spectra, an example of which was provided 

in section 2.5.2, where gold and orpiment pixels were incorrectly assigned to each other. 

These types of misclustering difficulties are expected to be an unavoidable problem encountered 

for different pigment mixtures and is likely a fundamental limitation of performing analysis in the 

VNIR. As both the colour and spectra can appear very similar, it is unlikely that clustering would 

ever be able to distinguish between these regions clearly. However, there are potential ways 

around this by introducing complementary mapping techniques directly into the clustering 

process, which is discussed further in chapter 4, and covers the holistic multimodal clustering of 

two export paintings. 
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Chapter 3  

Analysis of the British Library’s Collection of 

Illuminated Manuscripts from Southeast Asia 

 

3.1 Introduction 

3.1.1 Maritime Southeast Asian Illuminated Manuscript Collection 

With the clustering and grouping methods outlined in chapter 2 successfully demonstrating their 

usefulness for characterising large-scale visible-near infrared (VNIR) spectral imaging surveys, 

the techniques could be implemented on the British Library’s maritime Southeast Asian 

illuminated manuscript collection for the purposes of performing accurate material identification 

and pigment mixture mapping. 

The British Library’s Maritime Southeast Asian collection includes around 550 manuscripts from 

modern Indonesia and the Malay world. This study analysed 50 of the most important well-

illuminated manuscripts of this collection which cover different genres and subjects, including 

Qur’ans, historical and fictional traditional stories, historical calendars, and letters, all from many 

islands and port towns or cities. To study this complex collection, manuscripts were separated 

into six well-definable regions based on their provenance, split into the following major islands 

and regions within Southeast Asia: Sumatra; the Malay Peninsula; Borneo; Java; Sulawesi; and 

Lombok. Within each region, manuscripts could be traced to locations which shared common 

traditions or artistic styles based on the history of the area and its trade with other regions. The 

main regions and origins associated with different manuscripts can be seen in Fig 3.1.  

 
Fig.3.1 Map representing the six major regions of maritime Southeast Asia in different colours, with the individual 

locations of manuscript provenance seen on the right-hand side. Major regions are given in brackets. 
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Separating the different groups of manuscripts this way meant that comparisons between the six 

different locations could be carried out to investigate commonalities which may be linked by 

tradition, geographical similarity or through trade routes. It is also important to note however that 

the collection also covers a wide period, with different illuminated manuscripts being dated from 

as early as 1738, potentially up to the early 20th century, with the majority being from the 19th 

century. This implies that in addition to geographical separation, the chronological differences 

between manuscripts can also be used with analytical results to discover how artistic practises 

may have developed over time in the region. 

To aid in this pursuit, a short list of every manuscript analysed along with its either known or 

suspected date can be seen as follows (where manuscripts with unspecified dates are marked with 

an asterisk: 

 

In the following parts of this section, a brief overview of the locations is covered and includes 

discussions into potential subgroups of manuscripts within each region which tend to possess 

different artistic styles and therefore also perhaps different artistic materials. 

 

 

 

 

• Add MS 12280 (1800) 

• Add MS 12281 (1813) 

• Add MS 12284 (1814) 

• Add MS 12285 (Early 

19th CE) 

• Add MS 12287* 

• Add MS 12291 (1813) 

• Add MS 12292* 

• Add MS 12297 (Early 

19th CE) 

• Add MS 12298 (Early 

19th CE) 

• Add MS 12300 (1815) 

• Add MS 12302 (1802) 

• Add MS 12312* 

• Add MS 12337 (1812) 

• Add MS 12339* 

• Add MS 12363 (1759) 

• Add MS 12372 (Late 

18th CE) 

• Add MS 12379 (Late 

18th CE) 

• MSS Jav 4 (1804) 

• MSS Jav 14 (1814) 

• MSS Jav 16 (Early 19th 

CE) 

• MSS Jav 17 (Early 19th 

CE) 

• MSS Jav 24 (1803) 

• MSS Jav 28 (1804) 

• MSS Jav 36 (1738) 

• MSS Jav 67 (1812) 

• MSS Jav 68 (1805) 

• MSS Jav 89 (18th CE) 

• MSS Malay B3 (1806) 

• MSS Malay B6 (1805) 

• MSS Malay B12 (1804) 

• MSS Malay B14 (Early 

19th CE) 

• MSS Malay D3 (1806) 

• MSS Malay D4 (1802) 

• Or 8154 (1790-1800) 

• Or 9333 (Late 19th – 

Early 20th CE) 

• Or 13295 (1824) 

• Or 15026 (1861) 

• Or 15227 (Late 19th CE) 

• Or 15924 (Late 19th CE) 

• Or 15932 (1814) 

• Or 15979 (Late 19th CE) 

• Or 16034 (18th – 19th CE) 

• Or 16035 (1764) 

• Or 16126 (1857) 

• Or 16769 (19th CE) 

• Or 16915 (Early 19th CE) 

• MSS Eur F148/4 F106 

(1811) 

• MSS Eur E378 (1813-

1817) 

• MSS Eur D742/1 f32r 

(1811) 

• MSS Eur Mack Private 

42 (1812) 
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3.1.1.1 Javanese Manuscripts 

The biggest regional collection of manuscripts was those belonging to Java, of which there were 

28 manuscripts with provenance from different locations such as Yogyakarta, Surabaya and 

Cirebon. Overall, there appeared to be four main subgroups of manuscripts within the Javanese 

collection which had unique artistic styles.  

The first style tends to consist of a typical traditional Islamic Southeast Asian manuscript that is 

almost always beset with opening double frames illuminated with gold, white, red, blue, yellow, 

and other colours, such as green or pink, which could be created as a result of mixing those already 

found within the manuscript. In many of these manuscripts, the opening double frames are the 

only illuminations present and normally have opaque and thick paint layers, though, in some 

examples such as MSS Jav 24, multiple illuminated frames can be seen throughout the entire 

manuscript. Six examples of the first artistic style can be seen in Fig 3.2.  

 

 

Fig.3.2 RGB Images of different Javanese manuscripts representing the first group of artistic styles in Java. 

 

The second artistic style keeps a similar format as the first, with illuminated double frames always 

being included at the beginning of the manuscript, however, for this set, there also exists further 

illustration within the text. These manuscripts can include traditional Javanese Wayang-style 

characters, however, there are also illustrations of people in alternative styles, alongside 

depictions of animals, ships, buildings etc. The colour palette in these manuscripts is also like the 
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first style, though, through visible observation, the paints normally appear to be thinner in their 

application. Each manuscript includes the typical opening double frames, however, in many 

manuscripts, the artistic style tends to deviate slightly from the first, with the most noticeable 

differences being the lack of pillar illustrations and animal-based iconography. The use of gold is 

still included throughout and is used in the opening frames similarly to the first style. Three 

examples of this other artistic style can be seen in Fig 3.3, which shows MSS Jav 28, MSS Jav 

68, and MSS Jav 89. 

 

Fig.3.3 RGB Images showing numerous pages from three example manuscripts representing the second Javanese art 

style. 

 

The third artistic style of Javanese manuscripts tends to have an alternative appearance, perhaps 

suggesting alternative influences, with preferential use of watercolour style paints and a 

completely different format to the previous two styles as the traditional opening double frames 

are not used. Furthermore, the style of illustration and figural depiction is also more westernised, 

with no clear use of traditional Wayang characters. Three examples of this final artistic style can 

be seen in Fig 3.4, showing images for manuscripts MSS Jav 67, Or 15932, and Mackenzie Private 

42. All three manuscripts have very similar design structures, and the illustrations themselves are 

very similar also. One standout manuscript within this style is Or 15932, which also has an 

additional full-page painting of a brown tree over a purple and blue background, where the leaves 

follow a genealogical chart from Adam to Pakuwana IV and Mataram IV (Gallop, 2015). 
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Fig.3.4 RGB Images showing numerous pages from three manuscripts in the third Javanese art style. These possess 

more westernised figural depictions and illustrations. 

 

The fourth and final artistic style for the Javanese manuscripts is unique as it does not encompass 

a group of manuscripts but instead covers one item within the collection: Or 9333. Or 9333 is less 

a single manuscript but instead appears more like a pieced-together book of numerous illuminated 

Wayang characters on different papers, with which many are noted to have been made by different 

hands. The colour palette is as extensive as some of the groups of manuscripts seen earlier, with 

various shades of green, blue, pink, purple, red, orange and more, applied in different thicknesses 

and with seemingly different amounts of degradation over time. This manuscript is the latest in 

the collection and is ambiguously dated to roughly the late 19th or early 20th century, therefore it 

is understandable why there may be differences between this and other manuscripts. 

Some examples of pages from Or 9333 can be seen in Fig 3.5, demonstrating the complexity of 

the colours and how they are used in illuminating the different Wayang characters. This extensive 

use of Wayang characters marks this manuscript as being Javanese, however, it is unsure as to 

which port town or cities the different paintings may have originated from; however, it was 

suspected by Ricklefs, (1969) that they are all likely from the 19th century. If this is the case, then 

it would not be a surprise to see many similar pigments used within this manuscript as may be 

found in some of the later manuscripts from other regions, making it another good target for 

analysis. 
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Fig.3.5 RGB images showing numerous pages within manuscript Or 9333, which encompasses the fourth artistic 

style of the Javanese manuscripts seen in this collection. 

 

3.1.1.2 Peninsula Malaysian Manuscripts 

Ten manuscripts originating from different locations within the Malay peninsula were also 

analysed from within the collection, with most possessing very similar artistic styles to those 

expected for most maritime southeast Asian manuscripts. Throughout this thesis, the group is 

commonly referred to as “Malay manuscripts” however it is important to note that this does not 

extend to other manuscripts which may use the Malay language, such as Sumatra, which has its 

own dedicated group. These Peninsula Malaysian manuscripts tend to always be illuminated with 

opening double frames, except for MSS EUR F148/4 f106v, and do not possess any human or 

animal illustrations such as the items seen from Java. There are however different styles of 

opening double frames which can be encountered, with the easiest way of dividing the 

manuscripts being those which have only red pigments, versus those which use a much wider 

palette. This meant that the Malay collection could be split into either a “red” and “coloured” 

style of manuscript volumes, and an illuminated letter. The ‘red’ set of manuscripts, uses multiple 

thicknesses and shades of red or pink to illuminate double frames and includes manuscripts MSS 

Malay B6, MSS Malay B12, MSS Malay D3 (see Fig 3.6). The manuscripts which use the wider 

colour palette can use colours ranging from green, to red, yellow, and blue, and include 

manuscripts Add MS 12379, Or 13295, Or 15227, MSS Malay B3, and MSS Malay D4, which 
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are shown in Fig 3.7. Finally, the letter MSS EUR F148/4 f106v has a palette which includes the 

use of red, black, and gold, but does not take the form of a book, and so is kept separate from the 

others in terms of its grouping. 

 

 

Fig.3.6 Images representing the "red" style of manuscripts from the Malay peninsula. 

 

Fig.3.7 Images showing the "coloured" style of manuscripts from the Malay peninsula. 
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3.1.1.3 Sumatran Manuscripts 

Most Sumatran manuscripts in the collection are from Aceh, apart from one which is noted to be 

from West Sumatra. Most of the Sumatran manuscripts follow the typical Acehnese style of 

illumination which tends to stick with using different shades of red, normally in addition to 

yellow, black and reserved white. There is however one exception to this: manuscript Or 16769, 

which contains two sets of double frames adorned with blues and greens in addition to the 

traditional Acehnese palette, making it unique amongst the others. The manuscripts included in 

the Sumatran part of the collection include MSS Malay B14 (West Sumatra), Or 15979 (Aceh), 

Or 16034 (Aceh), Or 16035 (Aceh), Or 16915 (Aceh), and the previously mentioned Or 16769 

(Aceh). Images showing examples of the double frames in the manuscripts can be seen in Fig 3.8, 

with two examples demonstrating the unique palette seen in Or 16769 (top right). 

 

 

Fig.3.8 Images showing the multiple different manuscripts from Sumatra. note the standout manuscript Or 16769, 

which uses a different colour palette than the other manuscripts. 
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3.1.1.4 Sulawesi (Bugis) Manuscripts 

Three manuscripts within the collection are from Sulawesi, or more specifically South Sulawesi 

(attributed due to their use of Bugis language and script). Each has a slightly different style, as 

they are not in keeping with any single traditional artistic approach, however, the palette used 

appears to be very similar over the three Bugis manuscripts. Images showing some illuminations 

for manuscripts Add 12363, Add 12372 and Or 8154 can be seen in Fig 3.9. Yellow, green and 

red are used on all three manuscripts, with additional use of blue colours on both Add 12372 and 

Or 8154 and a dark magenta colour in small roundels within the text on Add 12363 f37v. 

 

 

Fig.3.9 Images showing the variety of illumination in multiple Bugis manuscripts from South Sulawesi. 
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3.1.1.5 Manuscript from Borneo 

One letter within the manuscript collection can be traced to Pontianak on the west coast of the 

island of Borneo. MSS EUR D742/1 f32r is a letter illuminated with a lampblack seal, dark ink 

and gold, an image of which can be seen in Fig 3.10. 

Though not illuminated with many colours, the use of paper materials or the concentration of 

certain materials in the lampblack seal may give an insight into some of the potential trade 

connections between different islands, especially considering that most items in MSS EUR 

D742/1 are letters of correspondence between different Malay or Indonesian Rulers and Sir 

Thomas Raffles from 1810-1811, roughly the same time that many other manuscripts in the 

collection are also dated to. 

 

 

Fig.3.10 Image showing the full letter MSS Eur D742/1 f32r, illuminated with gold, black and a lampblack seal. 
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3.1.1.6 Manuscript from Lombok 

A single scroll most likely from Lombok with illumination on paper and a dyed silk wrap was 

included in the collection. Or 15924 (Fig 3.11), dated to the late 19th- early 20th century is a scroll 

with a sermon and prayers in Arabic but has within it some Javanese words in Arabic script. The 

illumination on the paper scroll is limited, with use of only black, gold, red and blue however the 

silk is adorned with flower-like motifs dyed red, brown, and purple. The scroll is unique within 

the collection, as it is the only item with original wrapping which does not consist of only paper. 

As this is an Arabic sermon and prayer scroll, it would be interesting to investigate whether the 

manuscript illumination has links with other Qur’ans or religious manuscripts such as those from 

Aceh or various parts of the Malay peninsula. 

 

 

Fig.3.11 Images showing the only item within the collection likely from Lombok, Or 15924, dated to the late 19th-

early 20th century. 
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3.1.2 Data Collection Techniques 

A multitude of different scientific techniques mentioned in chapter 1 were employed to perform 

the large-scale spectral imaging and point measurements required for complementary pigment 

identification to be performed, and by extension confident Kubelka-Munk (KM) informed 

grouping of clusters to be achieved, as outlined in chapter 2.  The different instruments used can 

be seen in this section and are briefly described as a quick recap so that a clearer understanding 

can be reached of exactly how the different methods were used together in this chapter. 

 

3.1.2.1 Reflectance Spectral Imaging 

PRISMS VNIR spectral imaging was used as the primary data collection technique to gather large 

amounts of VNIR reflectance information for the collection (Liang et al., 2014). For two 

manuscripts, however, the British Library’s own system, the MegaVision EV, was used to gather 

this information instead (MegaVision, 2023). In both scenarios, the collected spectral imaging 

reflectance data could be used with other techniques in a complementary way, by extracting mean 

reflectance spectra from areas with which point measurements had been performed using other 

techniques. Furthermore, the KM informed grouping method used after automated clustering was 

also able to guide the complementary point spectroscopy analysis covered throughout this 

chapter, in turn providing large amounts of VNIR spectra that could be used holistically with 

other techniques to identify most artistic materials expected to be found in the collection. 

PRISMS 

The PRISMS data collection in this chapter is the same as described previously in chapter 2. In 

total for the PRISMS collected data, 1515 spectral imaging data cubes were recorded covering 48 

items throughout the entire collection of 50 manuscripts, with reflectance and colour images being 

created for clustering and analysis purposes. 

MegaVision EV 

The MegaVision EV system used within this thesis offered a 14-band spectral imaging data cube 

ranging from 365-1040nm which could be used for analysis. It involved the use of two 

programmable LED arrays which could be tuned through a range of several emission bands over 

the entire spectral range and employed diffuser plates between the manuscript and the light source 

to ensure uniform illumination. The MegaVision EV system was used in the early stages of the 

project to record spectral imaging data for only two Javanese manuscripts: MSS Jav 36 and Add 

MS 12281. 
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3.1.2.2 UV-VNIR-SWIR Reflectance Spectroscopy 

FORS – Spectral Evolution 

FORS was performed using a Spectral Evolution spectrometer SR3500 (Spectral Evolution, 2023) 

with a halogen light source. The spectrometer covered the wavelength ranges of 350nm-2500nm, 

providing reflectance information from the Ultraviolet (UV) to the short-wave infrared (SWIR) 

with a spectral resolution of 2.8nm at 700nm, 8nm at 1500nm, and 6nm at 2100nm and a sampling 

spectral resolution of 1nm. The increased spectral resolution allowed for the more accurate 

identification of different pigments with fine absorption features in the visible range, such as 

cochineal or lac, and was therefore primarily used in areas where these materials were suspected. 

However, in a few other examples the SWIR regions were also used. 

 

3.1.2.3 XRF Spectroscopy 

XRF measurements were taken for regions with unique spectra on almost every item within the 

collection so that materials across different manuscripts which may possess indistinguishable 

VNIR spectra, but different elemental composition, could be properly identified. For the data 

collection of XRF throughout all the manuscripts, two separate instruments were used: the Bruker 

CRONO, and the Niton XL3t GOLDD+. 

Bruker CRONO 

The majority of XRF spectra recorded over the collection used the Bruker CRONO (Alberti et 

al., 2017) system fixed onto a tripod which could be placed above different manuscripts to 

perform point measurements non-invasively. The Bruker CRONO uses a Rhodium-target X-ray 

tube which functions at a variable voltage and current of 10-50kV and 5-200µA respectively, at 

10W. For most measurements, a voltage and current of 40kV and 20µA were used respectively, 

which allowed for the identification of elements in the range of atomic number Z=14 (Silicon) to 

Z=92 (Uranium) without helium purge, which was the mode of use throughout this study. The 

CRONO can record XRF data for any given dwell time and utilises three different collimator sizes 

of 0.5mm, 1mm and 2mm. The 0.5mm collimator was used for most measurements as it was 

found to be especially useful for the analysis of manuscripts as the smaller diameter could be used 

for spatially precise measurements with a good signal-to-noise ratio when long dwell times 

(between 30-60 seconds) are used. Two guide lasers can be used with the CRONO to position the 

head so that the same working distance is always used when performing data collection, this 

allowed for the precise collection of spectra where it would be clear where the fluorescence would 

be induced. Furthermore, as the working distance is fixed, it avoids common issues which can 

arise during data collection where different count rates for elemental peaks are observed due to 

changes in distance between the detector and the object. 
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Niton XL3t GOLDD+ 

For a minority of the manuscripts, a Niton XL3t GOLDD+ (ThermoFisher Scientific, 2019) was 

used to collect XRF spectra before the Bruker CRONO was available to this study. The XL3t 

GOLDD+ is a handheld system which uses a silver (Ag) anode which can be used with a voltage 

and current of 50kV and 200µA respectively. A minimum dwell time of 30 seconds was used 

with a 3mm diameter spot size when recording data, which offered useful high signal-to-noise 

XRF spectra at the cost of spatial precision for areas smaller than 3mm. 

 

3.1.2.4 ER-FTIR Spectroscopy 

For the collection of FTIR spectra, a Bruker Alpha FTIR spectrometer was used in its external 

reflection mode, allowing for the non-invasive analysis of illuminated manuscripts within a range 

of up to 400-6000cm-1. This range can allow for the identification and confirmation of many 

pigments and potentially some binders which may be expected to appear throughout the 

manuscripts. Data collection for the Bruker Alpha was also performed in-situ at the British 

Library by fixing the system onto a tripod, allowing for the completely non-invasive and non-

destructive analysis of the illuminated manuscripts.  

 

3.1.2.5 Raman Spectroscopy 

For certain areas where the identification of pigments was otherwise difficult to perform, Raman 

spectroscopy was implemented. For this, a 780nm lab-built mobile Raman system was used to 

collect spectra so that the confirmation of certain pigments could be performed when other 

techniques may not be able to provide definitive material characterisation. The system used 

involved passing the laser through an objective to give a spot size of 15µm and could function in 

the spectral range of ≈65-3000cm-1 with a spectral resolution of ≈4cm-1.   
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3.1.3 Analytical Techniques 

In addition to data collection techniques, the analytical techniques used to identify VNIR 

spectra and aid in characterising the entire collection via clustering and grouping are also 

described. 

 

3.1.3.1 Kubelka-Munk Model for Pigment Identification 

After acquiring a VNIR reflectance spectrum either using FORS or via the extraction of spectra 

from spectral imaging or clustering, the Kubelka-Munk (KM) model could be used to simulate 

best-fitting mixtures to unknown spectra to perform pigment identification. For this purpose, 

several reference databases were used which contained reference spectra for different common 

pigments used throughout history, described in greater detail in (Kogou et al., 2015). It was often 

found when using the KM fitting mentioned in (Liang, 2012) that using pure references alone 

resulted in spectra which often did not properly fit the unknown pigment mixtures. This was 

normally found to be due to the contribution of the substrate on the spectra, and therefore, it was 

chosen to add the paper as a component during virtual mixing in nearly all circumstances, which 

often worked to bring the simulated mixtures closer to the unknown spectra for the suspected 

pigments used, in turn also improving the grouping procedures mentioned in chapter 2. While the 

number of spectra being mixed has no theoretical limit, it was very rare that more than 5 different 

constituent references were used to produce these virtual mixtures. 

 

3.1.3.2 Automated Clustering & Grouping 

In addition to the application of point analysis and prior to KM informed grouping, clustering 

results directly from the automated clustering method used on the entire collection of PRISMS 

spectral imaging data were also used to aid in the identification of paints and pigment mixtures. 

Cluster-Based Analysis 

Directly extracted spectra taken from PRISMS data may sometimes be difficult to use for pigment 

identification due to painted areas being highly absorbing or very small, and therefore possessing 

low signal-to-noise ratio (SNR). For these regions, the automated clustering results found in 

chapter 2 offer the advantage of providing spectra calculated from many more pixels than would 

typically be selected by using a region of interest. Additionally, automated clustering results from 

PRISMS could often be used to hasten the pigment identification process prior to grouping by 

providing their own informative cluster maps, allowing for the distribution of pigments and 

mixtures to be visualised more clearly. Therefore, during the analytical process, automated 

clustering results were also used alongside the direct extraction of VNIR spectra to allow for 

analysis to be performed without having to record numerous point measurements per page.  
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Pigment Mixture Mapping 

Throughout this chapter as point measurements were recorded, the placement of clusters into 

groups based on their discovered pigment mixtures and or spectral shape was performed as 

discussed in section 2.6.3-4. This meant that differences in concentration between constituent 

pigments within a mixture are largely ignored, so that the same pigment mixtures can be mapped 

regardless of their relative pigment ratios. Furthermore, as the clustering approach developed 

typically ensures that severe misclusterings and misgroupings do not occur, the produced group 

cluster maps can normally be confidently taken as a final representative set of images which can 

illustrate the distribution of pigment mixtures over the collection. This therefore provides 

convenient visual information which can be used to aid in mapping how different islands in 

maritime Southeast Asia may have interacted with each other or how influences from outside the 

archipelago may have affected the region. In many circumstances, however, many point 

measurements using complementary techniques were still taken for this study across different 

manuscripts even if grouping had already placed painted areas in different manuscripts together, 

so that the performance of the clustering and grouping approach could be carefully monitored for 

misidentifications over the entire collection. 

 

3.2 Material Analysis Results & Discussion 

Pigment identification was primarily performed by recording point measurements throughout 

many different manuscripts and comparing the results against the known material composition of 

common pigments. Some basic pigment identification of painted areas could be easily performed 

by comparing different spectra against reference databases, however, for most illumination in the 

manuscripts, the materials used are not pure pigments and therefore do not have references. 

Consequently, the identification of most pigments and mixtures was regularly performed by using 

complementary information for different techniques, such as XRF, to perform well-informed KM 

mixture modelling on spectral imaging or FORS spectra. For scenarios where this approach was 

not enough to perform identification, further confirmation of different pigments could then be 

made with ER-FTIR, Raman or SWIR reflectance spectroscopy. 

Throughout the collection, many different pigments were detected on manuscripts with specific 

artistic styles and provenance. This section will cover the pigments and mixtures detected 

throughout the collection, separated into parts covering the different encountered colours and 

likely pigments or pigment mixtures. Each subsection will mainly cover the data analysis but will 

also involve some discussion regarding what the results may mean for the collection when 

considering the provenance of the manuscripts. At the end of the chapter can then be found a final 

table summarising the point analysis and clustering/grouping results, followed by a collection-

wide discussion/conclusion. 
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3.2.1 White Pigments 

Throughout the collection, there is a notable lack of white pigmentation over many different 

manuscripts. The main reason for this is likely since in 18th-19th century maritime Southeast Asia, 

it was common for reserved white, where the background paper substrate is intentionally used 

within the illumination itself, to be used in place of white paints. Within the collection, however, 

there were still a handful of examples where white pigments had been applied directly onto the 

paper or used as a component in lightening other colours. Over the whole collection, evidence for 

four white pigments was found: lead white; bone ash white; barium white; and calcium carbonate-

based white; all of which will be covered in the following subsections with an additional 

discussion into the use of reserved white, due to its common use in maritime Southeast Asian 

manuscript illumination. 

 

3.2.1.1 Bone White (Bone Ash) 

Bone White, or Bone Ash White, is a white pigment primarily created from bone ash, a white 

powder-like material produced by the calcination of bone. It can vary in form depending on the 

method used to produce it, however in general all types of bone white will consist of some form 

of calcium phosphate, implying that it can be detected through the identification of calcium (Ca) 

and phosphorus (P). 

Javanese Manuscripts 

Bone white has a history of usage in Javanese culture as a primary colourant during the 

preparation and painting of traditional Wayang shadow puppets, as can is described in Mellema 

et al., (1991), and so it stands to reason that the use of this white pigment may be expected in 

Javanese manuscripts, though there has been little to no evidence within any literature suggesting 

this to be the case for any illumination outside of traditional Wayang puppetry. Within the 

collection, bone ash white was detected in numerous Javanese manuscripts and was found to have 

been used both as a white paint applied directly onto the manuscript and in several mixtures as a 

whitening component to lighten other colours such as reds or blues into pinks or lighter blues 

respectively. There is evidence suggesting that it appears in almost every single Javanese 

manuscript, with it mainly presenting itself in the XRF spectra, though it was also confirmed with 

FTIR on multiple items. The best example to illustrate the presence of bone white is within the 

manuscript Add MS 12287. In this example, XRF showed increased amounts of calcium in 

comparison to paper and the presence of a peak corresponding to phosphorus at ≈2.01kev. With 

the knowledge that bone ash white mainly takes on a form of calcium phosphate, it was suspected 

that the constituent pigment belonging to most manuscripts with these peaks is bone ash. Though 

it could be further confirmed with ER-FTIR where the IR spectrum showed a strong peak at 
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≈1048cm-1 which matches well with a reference transmission spectrum of bone ash corresponding 

with bone ash white (CAMEO, 2020; Eastaugh et al., 2008), as seen in Fig 3.12.  

 

 

Fig.3.12 FTIR-ATR reference (Red) and ER-FTIR (Black) collected spectrum showing the similar absorption features 

indicative of bone ash white. 

 

In multiple manuscripts and painted regions where this strong ER-FTIR peak existed, XRF 

spectra normally also possessed the Calcium (Ca) and Phosphorus (P) peaks. Therefore, it was 

determined that the detection of Ca and P within this manuscript collection was a good indicator 

for the use of bone ash white. As XRF was used in every manuscript, the detection of Ca and P 

could be confirmed for many other items in the collection, with at least 15 other Javanese 

manuscripts (see Fig 3.13) and one Malay manuscript possessing XRF peaks indicative of bone 

ash white. This meant that bone ash white was the most abundant white pigment used throughout 

the entire collection, a surprise considering that by the 18th-19th centuries, the most common white 

in use would have been lead white over most of the world. Furthermore, as bone ash white is 

known to have been used on traditional Wayang puppets, its use could suggest that some of the 

Javanese artists who illustrated these manuscripts also had experience in creating mixtures for 

and painting Wayang puppet figures. It could also be that the traditional use of colour was kept 

as the materials could be sourced locally. 
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Fig.3.13 Graph showing the presence of Calcium and Phosphorus in many Javanese manuscripts. Each plot is 

normalised and adjusted for clarity, with the paper of the same manuscript coloured in black. 

 

 

 

 

3.2.1.2 Barium White 

Barium white, or barium sulphate (BaSO4) could also be detected in the collection, which seems 

reasonable for these manuscripts as it has known to have been used as a pigment and extender in 

artworks from the late 18th century, commonly being a non-toxic alternative to lead white. When 

mixing barium white with lead white, different mixtures were often created with different ratios 

for different purposes, with examples including Venetian white at 1:1, Hamburg white at 2:1 and 

Dutch white at 3:1 Barite/Lead White (Mactaggart & Mactaggart, 2007), and so different 

variations may occur. It is noted in (Feller, 1986) that the minerals required to create high-quality 

barium white were not always available in large quantities, and that as a consequence barium 

sulphate was not a commonly used pigment until the early 19th century. With this being the case, 

it would be appropriate to assume that the pigment would appear very few times in the collection, 

however, if it is detected, it is likely to only appear in items which were illuminated after 1810-

1820, as this was the most likely period with which it would have been made more available. 



96 

 

Javanese Manuscripts 

Barium white was detected only once within the Javanese collection, in Or 15026 (dated to 1861), 

but there was evidence to suggest that it may have also been used in MSS Jav 68 (dated to 1805) 

and Or 9333 (late 19th-early 20th century). There is also evidence that it may have been used in 

other manuscripts where the primary white used was another pigment, such as lead white. To 

detect the pigment, ER-FTIR was used alongside XRF for the blue region of Or 15026 on the 

opening double frames of the manuscript. XRF peaks typical of barium were detected at 

approximately 4.5kev, 4.8kev, and 5.1kev, which can be seen in Fig 3.15. In addition to barium, 

the presence of lead could be found in the XRF spectrum, suggesting that the barium white is not 

pure, and is instead mixed into one of the barite/lead white mixtures mentioned previously. For 

further confirmation, barium sulphate could also be identified for the same region using ER-FTIR 

after detecting a peak at approximately 603cm-1, as shown in Fig 3.16, which corresponds well 

with a barium sulphate transmittance reference collected using FTIR-ATR (Vahur et al., 2016) , 

barium white was not found in any other manuscripts in such strong concentrations but was found 

as a potential impurity in different lead white pigments. 

 

 

 

Fig.3.14 XRF spectrum showing the presence of barium along with other elements for Or 15026 
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Fig.3.15 Graphs showing a (left) FTIR-ATR reference and (right) a collected ER-FTIR spectrum corresponding to 

barium white. Suggested by the absorption feature at approximately 603cm-1. 

 

3.2.1.3 Lead White 

Lead white is considered one of the earliest pigments and has been used for many purposes, 

including artistic, for centuries. It is known to have been used in some of the earliest Chinese 

paintings, and evidence of its use in Athens, Greece can be traced to as early as 400 BC (Han et 

al., 2022). With lead white being used in different regions much earlier and throughout the period 

studied within this thesis (18th-19th centuries), it is highly likely that it would exist within maritime 

Southeast Asia, especially considering that both Europe and China had used lead white throughout 

the same centuries and had many commercial ties with the region. Within the collection, lead 

white was detected, however this was the case only found a handful of times, appearing in only 3 

Javanese and 4 Malay manuscripts. 

Javanese Manuscripts 

Evidence of lead white was found in multiple Javanese manuscripts, including MSS Jav 68, MSS 

Jav 89, and Or 15026, in which it was always used as a component in mixtures with other 

pigments, as can be illustrated by analysing the normalised XRF spectra taken from different blue 

areas for all three manuscripts in Fig 3.17, where the main XRF lines for lead (Pb) can be seen. 

In each of the manuscripts however, there are additional peaks in the spectra which potentially 

correspond with other additional white pigments such as barium white, or bone ash white. In all 

three manuscripts, XRF peaks for barium can be detected, where in MSS Jav 68 f2r, this can be 

attributed to the presence of barium in the paper, however in Or 15026 and MSS Jav 89, the 

barium peaks have counts much higher than the paper, suggesting that a barium white pigment is 
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used alongside the lead white. In MSS Jav 68, XRF data shows the existence of phosphorus peaks 

along with increased counts of calcium, suggesting that lead white may have been mixed with 

bone ash white to further lighten the mixture. 

 

Fig.3.16 XRF spectra indicating the presence of lead for three Javanese manuscripts, indicating the use of lead 

white. In Or 15026 and MSS Jav 89 however, an additional presence of barium can also be detected. 

 

Malay Manuscripts 

Evidence for lead white could also be detected in MSS Malay B3, MSS Malay D4, Or 13295, and 

Or 15227. XRF spectra for these manuscripts can be seen in Fig 3.18, which show peaks at 

approximately 10.5kev, 12.6kev and 14.8kev, indicating the presence of lead white within the 

mixtures of different materials where other chemical elements, such as Iron (Fe), Copper (Cu), 

Mercury (Hg) and Sulphur (S), indicate the use of Prussian blue, copper-based greens, and 

vermillion respectively. For manuscripts Or 13295 and Or 15227, the use of XRF for identifying 

lead white can be quite definitive, as the spectra are extracted from green and blue areas which 

are not likely to possess other lead-based colourants. However, in MSS Malay B3 and MSS Malay 

D4, the areas with lead content tend to only be from regions which are red with peaks for mercury 

and sulphur, typically suggesting vermillion. This could instead suggest that the lead content is 

not present because of mixing vermillion with lead white but instead could be because of the 

mixing of red lead with vermillion. 
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Fig.3.17 XRF spectra showing the presence of lead, indicating the use of lead white in four Malay manuscripts. From 

the top -- Or 13295, Or 15227, MSS Malay D4, MSS Malay B3. 

 

 

3.2.1.4 Reserved White 

While not a white pigment itself, reserved white has been placed in this section as it is nonetheless 

an artistic practice consciously used by artists depending on the school or culture to which a 

manuscript’s illumination belongs. In Southeast Asia, reserved white is often seen in the Acehnese 

(Sumatra), Terengganu (Malay), and Pattani (Malay) styles (Yahya, 2021), but is not limited to 

these making it an interesting discussion to include if considering that there is significant use of 

white pigments in other manuscripts outside these locations. 

Sumatran (Acehnese & West Sumatra) Manuscripts 

Sumatran illuminated manuscripts are well documented to have used reserved white throughout 

the 18th-19th centuries, and it is often considered that its use is the most important colour within 

the Acehnese palette (Gallop, 2004). As expected, all six Acehnese manuscripts within the 

collection make use of reserved white in some form. This is even true in manuscript Or 16769, 

which has already been noted to deviate in artistic style from the normal examples of Acehnese 

opening illuminated double frames. Furthermore, in addition to these six Acehnese manuscripts, 

another Sumatran manuscript, MSS Malay B14 (noted to originate from West Sumatra), also uses 

reserved white, which is not a surprise as it possesses a style like that of Aceh or some other 

Malay manuscripts from Penang. 

 

 

 



100 

 

Malay Manuscripts 

In addition to the previously mentioned Pattani and Terengganu schools on the Malay peninsula, 

some other regions have a history of using reserved white within their practice of manuscript 

illumination. Within the collection, many other manuscripts, whose origins include Penang, 

Perlis, and Kelantan, possess reserved white regions. The only exception to this could be 

considered to be manuscript Or 13295 (dated 31 July 1824), which consistently uses lead white 

both within mixtures and to decorate illuminated double frames, though this difference may be 

expected considering that the artistic style of this manuscript has many features more similar to 

those seen in Indi-Persian and Ottoman manuscript illumination (Gallop, 2013). 

Sulawesi (Bugis) Manuscripts 

Another island within the archipelago which normally utilises reserved white within its palette is 

Sulawesi, where manuscripts can have multiple parallels in artistic style similar to those in Aceh 

or from the Malay peninsula. A good example of one such manuscript is AKM488, a Qur’an 

manuscript dated to 1804 which is currently held in a collection kept by the Aga Khan Museum 

in Canada (Aga Khan Museum, 2023), which uses reserved white in the typical double opening 

frames often found throughout southeast Asia. However, a distinction should be made between 

Qur’anic manuscripts and those created in other regions within Sulawesi within the scope of this 

thesis, as the manuscripts within this collection, all created in Bugis, possess a different artistic 

style (as can be demonstrated in Fig 3.19). The Bugis manuscripts within the collection differ 

enough that they are some of the few items within the collection that do not possess the signature 

opening double frames so often seen in many other southeast Asian manuscripts. Furthermore, 

instead of being adorned with intricate patterns or motifs embedded with reserved white, the 

approach to implementing colour appears to be separate from many other styles. Within the 

British Library’s collection, it could be argued that reserved white is still used for all three Bugis 

manuscripts, even if the artistic style used is vastly different. In manuscript Add MS 12363, a 

large yellow ‘spade’ on f40v contains an inner decorative black flower-like illustration, 

surrounded by empty space, or reserved white, used to accentuate the black ink. In addition, in 

Add MS 12372, reserved white is used in multiple flower and petal illustrations. It could also be 

considered that manuscript Or 8154 could be using reserved white for the tree/vine-like 

illustration on f3v, however, this is more likely to have just been unfinished as there are other 

drawings within the manuscript, such as the peacock feathers on f7v, which are not illuminated 

at all (see Fig 3.20).  
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Fig.3.18 A comparison of the different artistic styles seen in Sulawesi. The Left shows a representation of a 

traditional Qur'an and the right shows a Bugis manuscript illumination of Buraq. 

 

 

Fig.3.19 Representation of different potential reserved white areas seen in Bugis manuscripts. 
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3.2.2 Blue Pigments 

Throughout the collection, four blue pigments were identified using a combination of the different 

complementary techniques involved in this study. The most common blue pigment used in the 

collection was indigo, with Prussian blue being found the second most often. In addition, there is 

evidence for both ultramarine and azurite to have been used in the collection as well, though 

ultramarine only appears in two manuscripts and azurite only within one. 

 

3.2.2.1 Indigo 

Indigo is a deep blue organic pigment which has been in use over the world throughout much of 

history, and although its origins can be traced to many different ancient civilisations, India is 

largely considered to be the first major producer, processor, and distributor of indigo throughout 

the silk road (Balaram, 2012; Clark et al., 1993). With regions in India being some of the first 

civilisations to make their mark in maritime Southeast Asia (Smith, 1999; Wilkinson, 1935), it is 

logical to assume that indigo would have a long-standing tradition of use in many different islands 

within the archipelago. In its traditional form, indigo was a blue dye typically extracted from the 

leaves of Indigofera plants which were cultivated in abundance in Asia. Towards the end of the 

19th century, the industrial mass production of synthetic indigo had become more common and 

the direction of trade of indigo moved from its traditional locations to those with the capacity to 

mass produce in factories. Many of the manuscripts in the collection were found to have contained 

indigo, and as most of the manuscripts range from the 17th- early 19th centuries, many are expected 

to contain only natural indigo dyes. 

Javanese Manuscripts 

Indigo is very commonly found in most Javanese illuminations and within the collection is found 

in every single Javanese manuscript where blue is used, though sometimes its use is not exclusive 

of other blue pigments. Out of the 28 Javanese manuscripts, pigment mixture maps demonstrated 

that indigo appeared 24 times, implying indigo to be an important aspect of manuscript 

illumination in Java. Within Javanese manuscripts in this collection, indigo is normally found 

mixed with white to create different shades of blue or can be used as a component within other 

mixtures to achieve different colours. A confirmation of indigo being used in multiple 

manuscripts can be seen in Fig 3.21, where Kubelka-Munk fitting has been used to create virtual 

mixtures that fit well to numerous shades of indigo. While indigo is very common, its 

implementation can vary depending on the manuscript being analysed, where different indigo 

mixtures can be seen to be used throughout the Javanese part of the collection. In the Javanese 

manuscripts the main indigo mixture used tends to include bone ash white, and can be seen in 

multiple manuscripts, for which XRF and VNIR results are illustrated in Fig 3.22, showing the 



103 

 

presence of typical indigo features in the PRISMS spectra and both Phosphorus and Calcium (the 

main components of bone ash) in the XRF. 

 

Fig.3.20 Graph showing (Left) various Kubelka-Munk fits (solid lines) for different blue indigo spectra (circles) 

regions in four Javanese manuscripts. 

 

Fig.3.21 Graphs showing the presence of indigo and bone ash white mixtures in four Javanese manuscripts. 

 

Malay Manuscripts 

Indigo also appears in manuscripts Add MS 12379 and MSS Malay B3, both noted to be of Malay 

origin (Fig 3.23). In Add MS 12379, indigo is used to illuminate the opening double frames with 

a light blue colour, achieved by mixing indigo with the calcium-carbonate-based white. In MSS 

Malay B3 it is used for much darker regions which depict flower petals located on folios f36v and 

f37r, and there is evidence to suggest that it is also mixed with a yellow to create the green as 

well. Clustering results prior to grouping also showed the potential presence of indigo in 

manuscript Or 15227, a Malay Quran which typically does not use indigo throughout, where a 

faded drop of blue pigment can be found on f302v which has the VNIR spectral features indicative 
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of indigo. Whether this is a mistake made by the original artist, or if it was an accidental drop 

afterwards is not known, however, if it was placed during the manuscript’s creation, its presence 

does indicate that somebody with access to indigo as a refined pigment actively chose not to use 

it in the illumination of the manuscript.  

 

Fig.3.22 Images showing indigo regions in Malay manuscripts Add MS 12379 and MSS Malay B3 

 

Fig.3.23 Images and graph showing the how clustering detected the presence of a drop of indigo on Or 15227, which 

typically uses Prussian blue throughout. 

 

Sumatran (Acehnese) Manuscripts 

Acehnese manuscripts typically do not include blue within their palette, however, within the 

collection there is one example which implements colours outside of the normal practice. Or 

16769 contains indigo on folios f.2v and f.3r, an example of which can be seen in Fig 3.25. This 
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use of colour outside the red, yellow, black, and reserved white typically seen is very unusual and 

could suggest an influence from outside of Aceh. It is difficult to determine which culture, but 

some guesses can be made where, for example, analysing the XRF spectra for the blue regions in 

Or 16769 suggests that there is no additional white pigment added to the indigo (see Fig 3.26) 

making it unlikely that there would have been Javanese or Malay influence as the use of bone ash 

white or lead white/barite would be expected respectively. Instead, the only additional materials 

seen are small amounts of copper (Cu) and Arsenic (As), both minerals which can sometimes 

appear as impurities in natural indigo which result from its production (Qi-yue et al., 2020). 

 

Fig.3.24 Graph showing a VNIR spectrum indicative of the indigo cluster for the blue regions in Or 16769 

 

 

Fig.3.25 XRF spectrum for the blue regions in Or 16769, suggesting only impurities of copper and arsenic exist 

within an indigo mixture. 
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3.2.2.2 Prussian Blue 

Prussian Blue is a dark blue synthetic pigment which was first mentioned in the early 18th century 

(Bartoll, 2008) and subsequently used in European paintings as a replacement for other more 

costly blue pigments such as natural ultramarine. It is produced as a result of the oxidation of 

ferrocyanide which consists primarily of iron (Fe). Prussian Blue has a history of use in different 

parts of the world, but in Asia, it was adopted and used most by artists in Japan during and after 

the Tokugawa (Edo) period (FitzHugh et al., 2003), which ended in the mid-19th century. It is 

documented that Prussian blue may have been largely imported to Japan by Dutch traders, and as 

plenty of the main trade routes to Japan from Europe required travelling through maritime 

Southeast Asia, it seems reasonable to assume that Prussian blue may have made its way into the 

hands of Southeast Asian artists in the 18th and 19th centuries. Furthermore, in the early to mid-

19th century, Prussian blue was regularly manufactured from, and traded to China (Wang, 2023) 

from locations as far as London, making it almost expected to be encountered within maritime 

Southeast Asia. 

Javanese Manuscripts 

Evidence of Prussian blue exists on five different Javanese manuscripts where it can be identified 

through comparisons with simulated KM mixtures using known reference spectra. MSS Jav 28, 

MSS Jav 67, MSS Jav 68, Or 15932 and Or 15026, all possessed spectra indicating the use of 

Prussian blue, where well-fitting mixtures can be created to fit with VNIR mean cluster spectra 

from each manuscript using a Prussian blue reference with an added paper component for each 

manuscript (Fig 3.27), which only deviates towards the infrared most likely due to the high 

absorption of the Prussian blue references.  

 

Fig.3.26 Multiple graphs showing KM mixtures for Prussian blue and paper in numerous Javanese manuscripts. 
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While this is a good indicator of Prussian blue being used over these many manuscripts, due to 

its high absorption and lack of clear spectral features, additional confirmation of the pigment was 

required through other means so that a conclusive identification could be performed. Additional 

evidence in favour of Prussian blue was collected via the use of XRF which can confirm the 

presence of elemental energy peaks higher than the paper for iron (Fe) at ≈6.4kev and ≈7kev, 

however, the pigments usage was fully confirmed using ER-FTIR (Fig 3.28). ER-FTIR spectra 

recorded for MSS Jav 68 and Or 15026, both provided IR spectra for the blue areas which 

possessed large absorption features at approximately 2085-2090cm-1, corresponding reasonably 

well with the typical vibration of the carbon-nitrogen bond, which can often exist shifted from 

literature values to cover a region from approximately 2074-2100cm-1  (Petroviciu et al., 2019; 

Zuena et al., 2020); normally expected to be a consequence of spectral shifting due to the 

substrate, as was mentioned in Zuena et al., (2020). 

 

 

Fig.3.27 ER-FTIR spectra for MSS Jav 68 and Or 15026 which possess absorption features at ≈2085-2090cm-1 

corresponding well with Prussian blue. 

 

As the VNIR spectra for the other manuscripts suspected to use Prussian blue belong to the same 

or similar pigment mixture cluster groups as the dark blue recorded on both Or 15026 and MSS 

Jav 68, it was assumed that the blue used in all five manuscripts is likely Prussian blue. An 

interesting point to note for these manuscripts though is that the artistic styles and origins are quite 

similar. In the case of MSS Jav 28 and MSS Jav 68 for example, each dated to 1804 and 1805 

respectively, the styles are almost identical, and as both manuscripts have the same source 

(Gallop, 2022), having been received by Col. Colin Mackenzie in 1812, and belonged to the 1822 

Mackenzie collection, it comes as no surprise that these two manuscripts would contain the same 

types of pigments. Or 15932 and MSS Jav 67 are alike in style but are independent of the previous 

items MSS Jav 28, and MSS Jav 68, suggesting that even though the materials used are similar, 

their illustrations and illumination may have been performed by an alternative artist or artistic 
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school. It is interesting though that a similarly styled manuscript to both Or 15932 and MSS Jav 

67 is Mackenzie Private 42, where the size and shape of the manuscript, and illustrations of human 

and animal characters are very similar, but for this manuscript, indigo is the only blue pigment 

confirmed. Or 15026 (dated to 1861) is the main standout manuscript here however, where the 

Prussian blue is mixed with considerable amounts of barium white to achieve a highly reflective 

VNIR spectrum in comparison to other manuscripts, clearly indicating a difference in 

implementation of colour for later Javanese manuscripts. 

Malay Manuscripts 

Two Malay manuscripts were found to possess Prussian blue after performing cluster grouping 

on the Javanese manuscripts, Or 13295 and Or 15227. Or 13295 uses Prussian blue both as a dark 

blue and a lighter shade achieved by mixing varying amounts of lead white, supported not only 

by the presence of iron in the XRF spectrum (seen in Fig 3.18) but also by a well-fitting VNIR 

spectrum created using KM modelling (Fig 3.29).  

 

Fig.3.28 (Top) Well-fitting KM mixture of Prussian blue and lead white for the blue regions in Or 13295 f190v. 

(Bottom) Group cluster map for Prussian blue distribution on f190v after grouping Javanese clusters only. Note the 

preference fir the darker Prussian blue which was more common in Java. 

 



109 

 

As the graph shows, a good fit can be achieved for the Prussian blue when using paper, lead white, 

and two references for Prussian Blue, one with low concentration and another with high 

concentration, to help account for KM fitting difficulties which can occur when highly absorbing 

pigments are used. In contrast to Or 13295, another manuscript Or 15227, made much later in the 

second half of the 19th century, uses different thicknesses of Prussian blue directly onto paper to 

achieve different hues. This can be demonstrated well within the rubrication on folio f193v, 

shown in Fig 3.30, where the lighter blue central circle is more thinly applied than the stem-like 

areas around the outside, and therefore has a reflectance spectrum of higher intensity. This result 

is interesting as it suggests that even though the same materials are used, the approach to using 

them can vary depending on the time period or location. 

 

 

Fig.3.29 Image and graph showing the use of Prussian blue in different concentrations to produce darker or brighter 

blue shades in Or 15227 f193v 

 

3.2.2.3 Ultramarine 

Ultramarine is a blue pigment produced by grinding lapis lazuli and has seen widespread use 

throughout history. It has been used for hundreds of years, being used by artists in Europe during 

the Renaissance in the 15th century (Barnett et al., 2006; Dooley et al., 2014), though in Asia, 

ultramarine had been used in Chinese paintings and Indian murals much earlier (Plesters, 1966). 

Ultramarine was commonly transported from locations such as modern-day Afghanistan, with 

evidence of its use as early as the 6th-7th centuries, and while it is largely implied that natural 

ultramarine was likely always sourced from central Asia, there are other modern sources of lapis 

lazuli which exist today within southeast Asia (AGTA, 2023), potentially implying that by the 

18th-19th centuries, more local sourcing of ultramarine may have been available. In the early 19th 

century, the synthesis of artificial ultramarine was developed (Hamerton et al., 2013), allowing 

for its mass production and causing a change of use from natural sources to artificial ones. If 

ultramarine is detected there is a chance for either artificial or natural variations to appear, as 

certain manuscripts can be dated to and beyond the early 19th century. With the data collection 



110 

 

performed throughout this thesis, ultramarine can be identified by VNIR reflectance where it has 

distinctive absorption features between 400-850nm. Furthermore, it can be detected using XRF, 

as it has the chemical formula Na6-10Al6Si6O24S2-4, and the range of the Bruker CRONO can allow 

for weak detection of silicon (Si). Throughout the collection, ultramarine was detected in two late 

Javanese manuscripts, one Bugis manuscript, and the Lombok manuscript, all of which had dates 

ranging from the mid-18th century to the late 19th century. 

Javanese Manuscripts – Or 15026 & Or 9333 

In Or 15026 (1861), ultramarine is used for multiple Wayang characters. On folio f192r, a 

character can be seen illuminated with blue, for which PRISMS and XRF provided spectra 

indicative of ultramarine. For the VNIR, KM mixture modelling was used to produce a well-

fitting ultramarine mixture to the mean cluster spectrum as shown in Fig 3.31. Furthermore, in 

addition to the VNIR, XRF spectra also showed the presence of both silicon (Si) and sulphur (S), 

providing further evidence of ultramarine (see lower figure in Fig 3.3). Ultramarine also appears 

in other parts of the manuscript but seems reserved only for the characters instead of any 

illuminated double frames, where Prussian blue is used instead. This perhaps suggests that the 

Wayang characters are treated differently due to their importance in Javanese culture, or that more 

than one artist illustrated the various areas, perhaps even at different times. In Or 9333 (late 19th-

early 20th CE), VNIR reflectance spectra can be found in multiple blue regions which have 

features also closely matching ultramarine. For example, in folio f1r, a KM mixture using paper 

with ultramarine produces a well-fitting spectrum, as illustrated in Fig 3.32. There is however 

significant deviation from 700nm onwards, but this could be due to the change in the substrate 

between the reference material used in the KM mixture and the paper in Or 9333, where there is 

greater absorption in the blue/green parts of the spectrum, causing a closer fit between 400-550nm 

while overestimating infrared where ultramarine becomes more transparent. Interestingly, for the 

same reason, the clustering also completely segregates both Or 9333 and Or 15026 prior to 

grouping. The use of ultramarine in these Javanese manuscripts may seem sensible in terms of 

the availability of pigments during the dates of creation of these manuscripts being the mid-late 

19th century, as during this time synthetic ultramarine may have been available. However, it is 

odd for these manuscripts that any ultramarine is found at all, considering that most items within 

the collection tend to use indigo or Prussian blue. It is important to note however that both of 

these manuscripts are very unique in their design and do not match well with many other artistic 

styles due to them both being created at much later dates (Or 15026: 1861, and Or 9333: late 19th-

early 20th century). The presence of ultramarine in these manuscripts therefore clearly shows that 

it used by some artists from the mid-late 19th century onwards, which could suggest that it may 

only have been used in Java after the mass production of synthetic ultramarine had begun. 

 



111 

 

 

Fig.3.30 KM fitting graph and XRF spectrum showing the existence of ultramarine blue in manuscript Or 15026 

 

 

Fig.3.31 Graphs showing the KM mixture for ultramarine blue with paper, which is reasonably well-fitting for a blue 

region in Or 9333. There may however be other materials due to the slight differences in spectral shape at 500nm. 
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Lombok Manuscript – Or 15924 

Or 15924, a scroll from Lombok, seemingly uses ultramarine in the bordered parts of the paper. 

When extracted PRISMS spectra taken from the blue regions are also analysed using KM mixture 

modelling, the best fitting mixtures are always found when using ultramarine as a component, 

either with the paper or also with the addition of lac, though this could not be confirmed. This can 

be seen in Fig 3.33, where two different mixtures are demonstrated showing well-fitting 

reflectance spectra. As the scroll is dated to the late 19th-early 20th centuries (Ricklefs et al., 2014), 

it is reasonable to assume that by this time, synthetic ultramarine blue may have been common 

throughout maritime Southeast Asia, and therefore by extension in Lombok. It also connects well 

with the other ultramarine usage being linked to later Javanese manuscripts, suggesting that over 

the entirety of the archipelago, ultramarine may have become more common towards the early 

20th century. 

 

 

Fig.3.32 KM fits showing well-fitting ultramarine mixtures for the blue in Or 15925. Note however that a mixture of 

ultramarine and lac produces an even more accurate fit, suggesting the use of this mixture. 

 

3.2.2.4 Copper-based Blue (Potentially Azurite) 

Evidence of a copper-based blue, potentially Azurite, exists within Or 9333, the latest manuscript 

in the collection. While azurite has been used in other parts of Asia, its existence in maritime 

Southeast Asian manuscripts during the 18th-19th centuries is rare. The potential presence of 

azurite could be estimated by extracting VNIR reflectance spectra and performing KM mixture 

modelling for the blue area, which indicated a well-fitting spectrum on folio f.5v when using 

paper and a sensible contribution of malachite. XRF spectra showed a strong presence of copper 
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(Cu), as demonstrated in Fig 3.34, but also silicon (Si), potassium (K), iron (Fe), mercury (Hg) 

and arsenic (As), suggesting other materials and impurities, assuming the signal is not sourced 

from elsewhere in the manuscript. While the presence of Hg and As can likely be attributed to the 

nearby yellow/orange and vermillion red overleaf, the presence of other elements could imply 

other blues, such as the iron-based (Fe) Prussian blue, or ultramarine which contains silicon (Si). 

However, as none of these other pigments match well with the VNIR spectrum, it is more likely 

that the presence of these elements is due to impurities within the pigment, as many of these 

elements can be attributed to other natural minerals sometimes found in azurite (Aru et al., 2014).  

 

Fig.3.33 KM mixture showing that azurite and malachite together can create a good fit to the unknown spectrum and 

can be confirmed by the strong presence of copper in the XRF. 

While the detection of copper in this manuscript does not confirm the presence of azurite, there 

is clearly a contribution of copper in the blue region. If this pigment is in fact azurite, this would 

come as a surprise considering its rarity as use as a pigment within maritime Southeast Asia. 

However, as this manuscript is quite different from the rest of the collection, it makes sense that 

there may be some differences in the implementation of different artistic materials. While the use 

of azurite in maritime Southeast Asia is not common, its presence could suggest a connection 

between both China or the Islamic world, as both cultures are documented to have used azurite in 

different artistic practises and manuscript illumination (Knipe et al., 2018; Ngan, 2018), although 

by the 19th century, its use would have been rare, as most regions would have likely used cheaper 

and more accessible alternatives in the same way that Europe had done so much earlier (Price, 

2000). It is unlikely that azurite would have been sourced locally, as there is little evidence to 

suggest that azurite was a commonly occurring pigment within the archipelago, with only a select 

few mineral studies suggesting the contrary, e.g. (Willbourn, 1925), and even then it is still noted 

to remain uncommon. 
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3.2.2.5 Blue Mixtures 

In one manuscript there appears a mixture of multiple pigments used to create a dark blue colour. 

While most blue pigments can be identified easily using VNIR spectra, the high absorption of this 

dark blue made the detection of materials very unclear. The dark blue, used in the hooves of Buraq 

Or 8154 f3v, appears to be very unique and unlike any other blue pigment or mixture encountered 

throughout the rest of the collection. When monitoring the group mean cluster VNIR reflectance 

spectrum of the dark blue hooves, it is not immediately clear which blue pigment the material 

consists of. Prussian blue appears to be the closest matching reference to the unknown mixture 

and can be confirmed in the blue tail after grouping the Javanese and Malay Prussian blue clusters, 

however, there is an increase in reflectance after ≈650nm for the hooves which could imply the 

presence of indigo or ultramarine. Attempting to use KM to fit for different mixtures yielded no 

useful results, as any number of different combinations of indigo, ultramarine, and Prussian blue 

in different concentrations all result in a fit which is close to the unknown spectrum, though a 

mixture of all three appears to fit best, as shown in Fig 3.35. 

 

Fig.3.34 KM Mixture of indigo, Prussian blue, and ultramarine which creates a reasonably well-fitting spectrum to 

the unknown blue mixture. 

As different shades of blue and a much darker, almost black, pigment can be seen within the hoof, 

it could be possible that there is a layering of one blue atop another which may have darkened 

over time. To further understand which constituent materials may be within the hoof XRF data 

was also recorded, however, even this did not provide any definitive evidence of exactly which 
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blue pigments have been used, as both consist of many elemental peaks which could be indicative 

of multiple materials (see Fig 3.36).  

 

Fig.3.35 XRF spectrum for the dark blue hoof in Or 8154, which shows the presence of many different elements 

which could be attributed to different blue pigments. 

 

Fig.3.36 ER-FTIR spectrum indicating the presence of both Prussian blue and ultramarine in the dark blue hoof on 

Or 8154 f3v. 

If anything, the XRF adds greater complexity, as the existence of many other elements only 

increases the number of potential components within the mixture or layers. As both XRF and 

PRISMS spectra are unable to provide any definitive results, ER-FTIR data for the navy hoof was 

analysed to investigate potential materials, the spectrum of which can be seen in Fig 3.37. The 

ER-FTIR spectrum possesses a peak at ≈2080-2090cm-1 which matches closely with that of 

Prussian blue seen earlier, which comes as no surprise considering it was the most likely pigment 

to be used due to its high absorption. There is also a broad feature at ≈1085-1095cm-1 which 

corresponds with the stretch of the Si-O-Si bond often found in ultramarine reference spectra and 

weaker bands at ≈830cm-1 which may further fit with the Si-OH stretch (Jensen, 2023) . It would 

seem appropriate then to assume that this dark blue mixture is a combination of at least both 

Prussian blue and ultramarine. 
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3.2.3 Red-Pink Pigments & Mixtures 

Throughout the collection, numerous pigments and dyes are used to achieve different red colours, 

these include red ochre, insect/plant dyes, red lead, and most commonly, vermillion. 

 

3.2.3.1 Vermillion 

Vermillion, or Mercury Sulphide (HgS), is an inorganic red pigment found over much of the 

world. In Asia, vermillion saw widespread use in China for many artworks and other objects such 

as pottery and lacquerware (Kopplin, 2002), so much so that some shades of the pigment are 

referred to as Chinese Red. During the 18th-19th centuries, vermillion was used as the primary red 

pigment throughout most of the world, but was known to be a commodity often traded between 

China and Southeast Asia as early as the 15th century via Malacca, one of the most important trade 

ports of maritime Southeast Asia located on the Malay Peninsula (Orillaneda, 2016). Due to this 

it would be an appropriate assumption to suggest that vermillion may have seen common use in 

maritime Southeast Asia. To confirm whether vermillion is used within the collection, XRF was 

primarily used alongside PRISMS reflectance spectra to both identify the chemical elements 

present within the red areas and perform a comparison of extracted VNIR spectra with references. 

Javanese Manuscripts 

Under closer inspection of the red-painted areas for each Javanese manuscript, most of the 

associated VNIR reflectance spectra appear to have only a single sharp feature that is indicative 

typically of pigments such as vermillion. Using a combination of PRISMS VNIR spectra and 

XRF, vermillion could be identified on every Javanese manuscript which implemented red into 

its palette, both independently of other mixture components and as a component in the creation 

of other colours such as pink or brown. Some example KM mixtures representing measurements 

taken from multiple red regions in different manuscripts can be seen in Fig 3.38. The multiple 

plots in Fig 3.38 clearly illustrate that using only the paper of the manuscript and vermillion as 

the two main components creates a virtual mixture which fits well in red areas over many 

manuscripts. The only deviations between the mixtures and the true extracted spectra appear 

towards the infrared parts of the spectrum, which can most likely be attributed to the spectrum 

following the reflectance intensities of different the paper substrate when the paint application is 

thin. With these results it appears clear that vermillion is most likely the pigment used in most 

manuscripts, however, this can be proven more conclusively when using XRF. Normalised and 

vertically displaced XRF spectra extracted from the same Javanese manuscripts show the 

presence of mercury (Hg) and Sulphur (S), as seen in Fig 3.39, providing further evidence of the 

red pigment in each manuscript being vermillion. 
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While for most Javanese manuscripts a simple mixture of vermillion with paper fits well to the 

extracted spectra, there are some circumstances in which the inflection point of a vermillion KM 

mixture does not completely fit with the extracted PRISMS VNIR spectra. This is not a surprise 

as KM mixtures created using pure references do not always fit perfectly with in-situ recorded 

reflectance spectra, however, there is also a chance that this spectral difference is attributed to the 

presence of red dyes or red lead in addition to vermillion (as discussed in more detail in 3.4.3.3 – 

3.4.3.4). 

 

 

Fig.3.37 Multiple graphs showing KM mixtures for Vermillion and paper in 5 different Javanese manuscripts. 
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Fig.3.38 Multiple graphs showing XRF spectra for red areas (coloured) with paper (black) for 5 different Javanese 

manuscripts. The presence of Hg and S indicated the use of vermillion in all. 

 

Fig.3.39 XRF spectra showing the presence of Hg peaks indicative of vermillion in multiple Malay manuscripts. 
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Malay Manuscripts 

Within the collection every Malay manuscript uses vermillion as a red pigment in some form, 

however, its use is not exclusive of other red pigments, as can be demonstrated in some later 

sections where red ochre and dyes can both be found within different manuscripts. The presence 

of vermillion can be confirmed by the presence of mercury (Hg) and sulphur (S) in every 

manuscript where red was used, as seen in Fig 3.40, where different XRF spectra taken of red 

areas can be seen after normalising each spectrum and displacing them vertically for clarity. In 

all the XRF spectra, the typical mercury peaks can be seen, normally with additional sulphur 

peaks which vary in intensity depending on the manuscript, with the weakest S peak found in Or 

16126 (1857) where only a trace is detected. In MSS Eur F148-4 (≈1811) however, no sulphur 

was detected by XRF at all even though the mercury was present as it has the three main peaks as 

illustrated in Fig 3.40. This is likely a result of performing XRF through a plastic film with which 

the letter was protected, as plastics can cause further absorption of X-rays at lower energies, 

therefore for this scenario, the pigment used is most likely still vermillion. In addition to 

vermillion, the red areas in some of the manuscripts appear to be mixed with other materials. The 

presence of both lead and iron peaks in multiple spectra may exist as a result of the mixing 

between vermillion and red lead, or red ochre respectively, a not uncommon approach to use if 

vermillion became too expensive or if an artist worried about its toxicity, though this is unlikely 

during this time period. It could also be the case that the vermillion is mixed with lead white to 

achieve different hues. The detection of vermillion within all the Malay manuscripts should come 

as no surprise considering the known trade activity of the pigment in and out of southeast Asia 

through ports on the Malay peninsula. It is interesting however that even though vermillion should 

have been quite accessible to artists within the Malay peninsula, it still appears to be regularly 

mixed and used with other red pigments such as red ochre or perhaps red lead. This suggests that 

in certain regions or times, certain artists may have added other red pigments to vermillion 

intentionally. 

Bugis & Acehnese manuscripts 

With the grouping of clusters performed for both Malay manuscripts and Javanese manuscripts, 

it was found that throughout the rest of the collection, most red pigments had been vermillion, a 

similar result to what was shown previously in chapter 2. With these results being confirmed by 

XRF, the final pigment mixture table was updated with the presence of vermillion found in almost 

every manuscript, however in addition to vermillion there were also other red pigments and pink 

colours not placed into the vermillion clusters. These other red hues and their pigments are 

covered in the following subsections. 
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3.2.3.2 Red Ochre 

As briefly mentioned in the previous section, there is evidence of red ochre to have been used 

within the collection. Red ochre is an inorganic red earth pigment which is produced as a result 

of the oxidation of iron (Fe) into iron oxide (Fe2O3). It has been used for thousands of years and 

is well documented to have been used for cave paintings which still exist today due to its chemical 

stability. Red ochre has seen consistent use in maritime Southeast Asia for many different 

purposes, with evidence of its use being traced as far back as 42,000 years ago in Timor-Leste, 

where archaeological excavations have uncovered marine shell beads which possessed trace 

amounts of red ochre (Langley & O’Connor, 2018). Therefore, it seems reasonable to expect that 

red ochre may appear in use within the British Library’s maritime Southeast Asian collection. As 

its only inorganic constituent chemical element is iron (Fe) it can be identified using XRF quite 

easily, as such this was the primary source of evidence for identifying it in this collection.  

As the preference for red pigment in Southeast Asia appears to be vermillion, red ochre was found 

only a few times within the collection, with no clear examples in the Javanese manuscripts at all. 

Furthermore, for most manuscripts in which it was determined to exist, red ochre was only ever 

mixed with vermillion, as XRF peaks for iron in red regions normally accompanied additional 

peaks for mercury and sulphur. In some regions, extracted PRISMS spectra which were expected 

to contain an influence from both vermillion and red ochre matched best with KM mixtures of 

only vermillion, which could suggest that detected iron content, which could be seen in XRF, was 

a result of traces of ochre or other materials being mixed into the pigment, or that layers of ochre 

may have been laid before applying vermillion, a question which is explored more in this section 

for MSS Malay B6. 

Malay Manuscripts – MSS Malay B6 

Within the Malay collection, there is evidence for red ochre to exist in only one manuscript as a 

pure pigment. In MSS Malay B6, the VNIR reflectance and XRF spectra extracted from a red 

region in folio f1v can be seen to fit well with red ochre and contain strong peaks for Iron (Fe) 

respectively, as shown in Fig 3.41. In addition, peaks for lead and trace amounts of mercury can 

be found, suggesting that red lead, lead white, or some vermillion may be mixed into the red 

ochre, however, it is difficult to confirm which. 

For MSS Malay B6, it is interesting that red ochre and vermillion are used interchangeably as the 

main red pigment depending on which page is illuminated. For example, in f1v red ochre is used 

as the main pigment, whereas on the following page, f2r, vermillion appears to be used the most. 

It is unclear why an artist would choose not to use vermillion on both opening pages however one 

reason for this if the choice was not intentional could simply be that the manuscript was unfinished 

during its first illumination and either the vermillion or red ochre were added later. 
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It could also be possible that red ochre was used first to denote where scarcer and more brilliantly 

coloured vermillion paints should be applied later. This is somewhat supported by the fact that 

fitting KM mixtures to the PRISMS spectra of the vermillion in f2r shows the most accurate fits 

when including red ochre as a component, as shown in Fig 3.42. Furthermore, XRF spectra 

recorded for the red regions on folio f2r also confirm the presence of iron in lower concentrations 

than mercury (also in Fig 3.42), indicating a higher vermillion content or that the vermillion is 

layered above the red ochre, which seems more reasonable considering that the colour and VNIR 

spectrum both indicate an increased presence of vermillion.  

Sulawesi (Bugis) Manuscripts 

A single Bugis manuscript, Add MS 12372, was found to have evidence of possessing red ochre 

mixed with vermillion in the red regions on f68v. This could be seen in the VNIR spectra where 

a KM mixture of both vermillion and red ochre was able to provide a virtual spectrum which 

matched closely with the PRISMS spectra extracted from one of the illuminated red circles seen 

on folio f68v red region, as shown in Fig 3.43. Furthermore, the XRF spectrum for the same red 

region was shown to possess both mercury (Hg) and sulphur (S) peaks, as expected for vermillion, 

but also had peaks for iron (Fe) which were higher in counts than the paper, further suggesting 

the existence of red ochre. 

Sumatran (Acehnese) Manuscripts 

Red ochre could also be found in Acehnese manuscripts, where Or 15979, Or 16034, and Or 

16035 all possess evidence of red ochre being mixed with vermillion. In both Or 16034, and Or 

16035, vermillion is the main pigment used, however, XRF spectra show a presence of iron, 

suggesting that some red ochre may be mixed into the vermillion, as shown in Fig 3.44. In Or 

15979, there appear to be regions where red ochre is found in much greater quantities, and even 

in some areas has taken an appearance closer to that of brown ochre. The red ochre in these regions 

can also be detected due to the higher iron content found in XRF spectra, however, it can be 

confirmed more clearly through the use of VNIR spectra, as shown by creating a KM mixture to 

fit a PRISMS spectrum for a light reddish-brown area on Or 15979 f2v (Fig 3.45). 
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Fig.3.40 Graphs showing the presence of red ochre in MSS Malay B6 f1v. Top: RGB image and KM mixtures 

showing a well-fitting mixture of red ochre and paper. Bottom: XRF spectrum indicating a strong presence of iron 

(Fe) with other elements. 

 

Fig.3.41 Graphs showing the presence of vermillion and red ochre in MSS Malay B6 f2r. Top: RGB image and KM 

mixtures showing a well-fitting mixture of red ochre, vermillion, and paper. Bottom: XRF spectrum indicating a 

strong presence of mercury (Hg) and sulphur (S), along with iron (Fe) and other elements. 

S 
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Fig.3.42 Graphs showing the presence of vermillion and red ochre in Add MS 12372 f68v. Top: RGB image and KM 

mixtures showing a well-fitting mixture of red ochre, vermillion, and paper. Bottom: XRF spectrum indicating a 

strong presence of mercury (Hg), sulphur (S) and iron (Fe). 

 

 

 

Fig.3.43 XRF spectra showing the presence of iron (Fe) in three Acehnese manuscripts, indicating the use of red 

ochre. 
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Fig.3.44 KM mixture showing a well-fitting spectrum using paper, vermillion, red ochre, and brown ochre as 

components in manuscript Or 15979, folio f2v. 

 

3.2.3.3 Red Dyes 

Throughout the collection, there are numerous manuscripts which implement red dyes either in 

addition to or exclusive of other red pigments. For the red dyes, clustering of PRISMS data was 

very important to be able to gather enough pixels to show clearly and confidently the presence of 

indicative absorption features. Therefore, for many of the spectra extracted for this section, the 

cluster maps are included to illustrate the group of pixels used to generate the mean spectrum for 

KM mixture modelling. 

Javanese Manuscripts – Or 15932  

Beginning with the Javanese manuscripts, aside from some red dyes being potentially mixed into 

different red colours (as is discussed later in section 3.4.4.6), there is very little evidence to 

suggest that red dyes are used in many Javanese manuscripts, with most red colours tending to 

use mainly vermillion. Two notable exceptions to this however are Or 9333, where red dyes are 

used in numerous Wayang characters, and Or 15932 where red dyes are implemented in 

abundance over many pages. Or 15932 notably uses dyes in two main colours over the manuscript. 

The first, which will be covered in this section, is a typical red dye colour which takes the form 

of burgundy or magenta on different pages. The second, which is covered in more detail in section 

3.3.4.8, is a mixture where red dye appears to be mixed with a blue, suspected to be Prussian blue, 

to create a purple colour on folio f72v. Extracting VNIR PRISMS mean cluster spectra from the 

dark reddish robe of the character on Or 15932 f17v provided a spectrum which possessed 

absorption features indicative of red dyes from approximately 400-550nm. For this reason, KM 
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mixture modelling was used to investigate whether a mixture of a reference red dye with paper 

could create an accurate fitting virtual spectrum to fit the unknown red. The KM mixture created 

can be seen in Fig 3.46, with a pigment mixture map for the red dye, which shows that the best-

fitting red dye was found to be cochineal carmine, though with deviation from the unknown 

mixture after approximately 650nm onwards. To be sure of dye being used, FORS was also used 

to provide higher spectral resolution, of which the resulting spectrum and new KM fit can be seen 

in Fig 3.46 and helps to confirm the presence of red dye. It is important to however that even 

though cochineal carmine was used for KM modelling, this does not confirm its use. However, 

the spectrum did possess absorption features which matched closely with a reference for cochineal 

carmine (containing absorption features at 525nm and 568nm), suggesting the use of insect-based 

dye. Or 9333 uses multiple dyes applied straight onto paper, where evidence can be found in 

favour of them existing to create a purple colour. The pink mixture found on f10v is discussed 

further in section 3.3.4.7, as it seems to be applied exclusively mixed with a white pigment. The 

purple also applied on f10v is also a mixture which is suspected to be mixed with blue, and so can 

be seen later also. 

 

Fig.3.45 RGB image and true colour cluster map showing the use of red dye in Or 15932 f17v with multiple graphs 

showing KM mixtures for PRISMS (top right) and FORS (bottom) indicating the use of cochineal carmine. 
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Malay Manuscripts – MSS Malay B6 & MSS Malay B12 

Two Malay manuscripts have evidence of red dyes being applied seemingly straight onto paper. 

These can be found in MSS Malay B3, and MSS Malay B6, where indicative absorption features 

can be found at approximately 400-550nm in the extracted PRISMS spectra. To illustrate this, 

KM mixtures created using paper and red dyes for each of the manuscripts can be seen fitted 

against mean cluster spectra for the different pink areas in Fig 3.47. As can be seen from the two 

different fitted mixtures, a combination of paper with cochineal carmine fitted well to these 

pink/red areas, implying again that an insect-based red dye may be the most likely used within 

these manuscripts. 

 

 

Fig.3.46 Images showing the RGB and true colour cluster maps for a red dye in MSS Malay B6 (Left) and MSS 

Malay B12 (Right). The bottom shows the KM mixtures for both manuscripts showing cochineal carmine fits well for 

both manuscripts. 

 

Sulawesi Manuscripts – Add MS 12363 

In Add MS 12363, red dye can be seen used for the dark pink coloured circles seen on folio f.37v. 

To perform analysis of the dye on this page, FORS was used to record the reflectance spectrum 

of the pink areas, after which KM mixture modelling was then used to create a spectrum to find 

the best-fitting reference dye. The spectrum extracted from the pink area and the KM fit can be 

seen in Fig 3.49. As is evident from these plots, the best-fitting dye was found to be cochineal 

carmine, and by inspecting the absorption features of the unknown red dye (positioned at ≈524nm, 

≈561nm) the feature positions agreed with the KM plot where the cochineal carmine reference 

possessed its own features at 525nm and 560nm, implying use of an insect-based red dye. 
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Fig.3.47 KM mixture showing a well-fitting spectrum using cochineal carmine for the red dye areas in Add MS 12363 

f37v. 

 

Lombok Manuscripts – Or 15924 

Within manuscript Or 15924 there is also suspected to be another red dye. When extracting 

PRISMS spectra from the outer red regions of the scroll, there is a noticeably weak absorption 

feature at 450nm which could suggest the presence of a red dye. To investigate the red dye, 

multiple KM mixtures were created using different dyes and paper, with the best reference dye 

for the red used on Or 15924 being found to be Madder Lake (see Fig 3.49), however without 

further study the type of red dye cannot be known for sure. 

 

 

Fig.3.48 Graphs showing well-fitting KM mixtures for a mixture of Madder Lake and paper for the red clusters seen 

in Or 15924 
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3.2.3.4 Vermillion + Red Lead 

Throughout the Javanese parts of the collection, there are multiple areas in which red lead may 

be used, however, it is never as a pure pigment and instead tends to be mixed with other reds 

such as vermillion. Evidence of this can be found in multiple manuscripts including MSS Jav 24 

and MSS Jav 68, and MSS Jav 89 where they could be confirmed using XRF and VNIR 

spectroscopy. In all three manuscripts, the presence of lead, mercury, and sulphur be found in 

the XRF spectra, as demonstrated in Fig 3.50. There is a chance that these mixtures instead 

include the use of lead white, but as the white which tends to be used for these manuscripts 

consists of bone ash, it seems more likely that red lead is used instead. To further demonstrate 

that a mixture of red lead and vermillion fits well for these areas, a KM mixture using the two as 

components with the paper was produced with a good fit to a red spectrum extracted from MSS 

Jav 24 that contained this XRF spectrum (see Fig 3.51). The mixing of red lead with vermillion 

was often practised in Europe as early as mediaeval times (Coccato et al., 2017) and showed 

continued use during the 18th century (Mulholland et al., 2017). If the mixture had continued to 

be used into the 19th century as well, it may be also expected in the manuscripts seen within the 

collection due to the European influences and use of European paper seen amongst different 

manuscripts within maritime Southeast Asia at the time. 

 

 

 

Fig.3.49 XRF spectra for different Javanese manuscripts showing the potential for red lead to be mixed into the 

vermillion for different red regions. 
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Fig.3.50 KM mixture showing a good fit when paper, vermillion, and red lead are used to fit a spectrum for a red 

region in manuscript MSS Jav 24 f2v 

 

3.2.3.5 Vermillion + Red Lead + White 

Javanese Manuscripts 

In a select few Javanese manuscripts there is also evidence to suggest that pink colour is achieved 

by mixing vermillion and red lead with bone ash white. The use of vermillion and red lead as a 

mixture has already been discussed in section MSS Jav 24 for instance, XRF spectra recorded for 

the pink dragon on folio f92v show clear peaks for lead (Pb), mercury (Hg), sulphur (S), calcium 

(Ca) and phosphorous (P), as shown in Fig 3.52. Furthermore, when creating a virtual spectrum 

using KM mixture modelling, accurate fits to extracted pink spectra can be made by mixing red 

led, vermillion, and white (shown in Fig 3.53, where the KM mixture uses a shell white as a 

substitute for the bone ash white due lack of reliable representative reference spectrum). 

 

 

Fig.3.51 XRF spectrum showing the presence of mercury (Hg) and lead (Pb) suggesting the use of vermillion and red 

lead, mixed with bone ash white (due to the presence of calcium (Ca) and phosphorus(P)). 
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Fig.3.52 KM mixture showing that a good fit for the pink areas on MSS Jav 24 f92v can be achieved using paper, 

vermillion, red lead, and white (in this case a shell white) spectra. 

 

 

3.2.3.6 Vermillion + White + Red Dye 

Throughout the collection numerous manuscripts use pink colours, however, there is one specific 

type of pink shade which is suspected to be created as a product of mixing mainly vermillion and 

white pigments with minor additions of red dyes.  

Javanese Manuscripts 

These suspected vermillion-dye-based mixtures are primarily found in Javanese manuscripts, 

where evidence of vermillion and red dye mixed with the bone ash white pigment, detected in 

4.1.1, is found to create a pink colour. This can normally be confirmed by using XRF, which 

shows the presence of mercury, sulphur, calcium, and phosphorus. This mixture can be seen in 

many different manuscripts including Add MS 12280, 12284, 12285, 12291, 12292 and 12339, 

as demonstrated by Fig 3.54 which shows the XRF spectra for pink areas in the different 

manuscripts. Using XRF alone it could be believed that the pink is created purely by mixing the 

vermillion and bone ash white, however when creating KM to fit with the pink spectra, much 

better fits can be achieved by also adding additional red dye, such as cochineal lake, as shown 

through the following example in Fig 3.55 for the pink parts of the flower on Add 12284 f2r. 
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Fig.3.53 XRF spectra for numerous Javanese manuscripts where pink is used, indicating the presence of vermillion 

and bone ash white due to the presence of mercury (Hg), calcium (Ca), and phosphorus (P). 

 

Fig.3.54 KM mixtures showing how well virtual spectra can fit with VNIR reflectance spectra in Add MS 12284 f2r 

by using vermillion, white, and paper with or without additional cochineal lake. 
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3.2.3.7 Red Dye + White 

Javanese Manuscripts – Or 9333 

As was briefly mentioned in a previous chapter, Or 9333 utilises red dyes mixed with white 

throughout numerous pages. In folio f10v, a mixture can be found to represent the face of a 

Wayang character, which previously had been predicted to use a mixture of lac lake and 

ultramarine to create the purple hair/headpiece. The shade of the face however is slightly pinker 

and possesses a reflectance spectrum which is different to that of the hair, so was analysed further 

using KM fitting to investigate which materials may have been used to create the pinkish mixture. 

It was found, when creating mixtures for the unknown pink, that a mixture of lac lake and a white 

could be used together to create a virtual spectrum which fitted reasonably well to the main 

absorption features, as demonstrated in Fig 3.56. With red dye likely being used in the production 

of the purple pigment seen in this manuscript page, it stands to reason that the same red dye may 

have been used in other capacities within the same painting, though a confirmation of this is 

difficult to acquire without further study with FORS. 

 

Fig.3.55 KM spectra showing how a mixture of lac lake, paper and white can fit for the unknown pink area seen on 

the face of the Wayang character in Or 9333 f10v. 
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Malay Manuscripts – Or 13295 

In manuscript Or 13295, a pink colour found on the flower motifs within one half of the double 

frame located on folio f190v is also predicted to be a mixture of a red dye with white. When 

analysing the XRF data taken for one of these flowers, sharp energy peaks representing lead can 

be seen in the spectrum, suggesting that the white pigment used is lead white and therefore must 

be mixed with a red to achieve a pink hue (see Fig 3.57).  

While the pink may be achieved using red lead, extracting VNIR spectra from the flower motifs 

clearly shows that a red dye fits more closely than any other pigment. For example, in Fig 3.57, a 

mixture of paper, lead white, and cochineal lake offers a KM model created virtual spectrum 

which has a very good fit to the true extracted spectrum for the pink. This can be further confirmed 

using fibre optic reflectance spectroscopy (FORS) which, with its higher spectral resolution, can 

reveal the clear absorption features indicative of an insect-based red dye (also in Fig 3.57). In the 

graph shown in Fig 3.58, the best fitting mixture that could be found to fit with the unknown 

FORS spectrum in the region of 400-850nm was a mixture of lead white and lac lake instead of 

the previously fitted cochineal, which seems reasonable considering that Lac was used widely 

over much of Southeast Asia. It is however difficult to be sure of exactly which red dye is used 

for the mixture, as it is still possible for other dyes, such as cochineal lake which had been fitted 

to PRISMS spectra, to fit well with the spectrum for the pink flower after being used as 

components within a simulated KM mixture. Under closer inspection, it was found that the pink 

flower spectrum possessed two indicative absorption features corresponding with red dye at 

532nm and 572nm, which placed this dye close to a reference for lac juice (with features at ≈ 533 

and 574nm),  therefore suggesting that the pink in this manuscript is achieved with a mixture of 

lead white and an insect-based red dye, though it cannot be confirmed which red dye is used 

unless further studies are performed.  
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Fig.3.56 Graph showing KM mixture and XRF spectra showing that the pink flower motifs in Or 13295 f190v are 

likely a mixture of cochineal lake and lead white 

 

Fig.3.57 KM mixture showing that a mixture of lead white and lac lake fits well to the unknown spectrum in Or 

13295. 
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3.2.3.8 Red Dye + Blue 

Javanese Manuscripts - Or 15932 (Dye + Prussian Blue) 

As was mentioned briefly in section 3.3.4.3, a mixture of a red dye with blue, likely Prussian blue 

due to its high absorption, could be detected in Or 15932 (dated to 1814), on folio f.72v. The 

mixture in question created a dark purple colour, which acted as the background for the 

genealogical chart included on the manuscript page. To identify the presence of a dye within this 

mixture, FORS was used to extract a VNIR spectrum, then, by using KM mixture modelling it 

was found that mixing Prussian blue with a spectrum of the red dye extracted from Or 15932 

f.17v resulted in a well-fitting spectrum, as demonstrated in Fig 3.59. For this purple region, 

absorption features indicative of red dye could be detected at ≈527nm and ≈567nm, which 

matched closely with a reference for Lac Lake, which possessed features at ≈528nm and ≈568nm, 

suggesting the use of insect-based red dye. 

Javanese Manuscripts – Or 9333 (Dye + Ultramarine Blue) 

In the purple areas on Or 9333 f10v, there is also a mixture of blue and dye. Using an extracted 

spectrum for the purple on f10v to perform a KM fitting showed that a mixture of ultramarine and 

lac fitted will to the unknown spectrum, as demonstrated in Fig 3.60, however as there is a 

significant deviation from 650nm onwards, there could also be additional dye of a different source 

mixed into the purple area. Therefore, if a full identification is to be performed for this dye, further 

point measurements will be required in future. The use of dye with ultramarine in this manuscript 

seems reasonable though, as ultramarine is used in abundance over many other illustrations within 

Or 9333, however, it is important to note that the illumination for these manuscripts may have not 

all been performed at once and are not created by the same artists, and so the assumption of the 

same colours being used throughout may not be true. 
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Fig.3.58 Graphs showing that a KM mixture of Prussian blue and red dye (the same dye used elsewhere in the same 

manuscript) fits well to the unknown purple cluster found in Or 15932 f72v. 

 

 

Fig.3.59 Graphs showing that a KM mixture of ultramarine and lac fits well to the unknown purple spectrum found in 

Or 9333 f10v. 
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3.2.4 Yellow Pigments & Mixtures 

Throughout the collection, yellow pigments are often used in many ways and are found either in 

the colouring of decorative leaf or flower motifs, as colours in illuminated opening double frames, 

or the painting of Wayang or human characters, animals and more. Over the many different 

manuscripts, evidence in favour of four different yellow pigments could be found. These were: 

orpiment, seen most frequently; followed by yellow ochre; chrome yellow; and an organic yellow 

which was suspected for one manuscript and confirmed for another to most likely be gamboge. 

 

3.2.4.1 Orpiment 

Orpiment is an opaque yellow mineral consisting of Arsenic Sulphide (As2S3) and has seen 

continued use throughout history in many parts of the world as a basic bright yellow pigment, as 

a component in mixtures to create other colours, or as a paint which can simulate gold. It naturally 

tends to be found in volcanic environments and therefore can be expected to be found in many 

areas which have geological volcanic history. In Southeast Asia, orpiment was an important and 

commonly exchanged trade good often transported to and from locations such as Myanmar 

(Modern Burma), Malaya, and Thailand from historical mines which produced the mineral as 

early as the Ming Period (1368-1644), in modern Weishan, China (Kim, 2020). Therefore, as it 

is well known that many trade routes travelled through these locations into maritime Southeast 

Asia, it would make sense that orpiment would be used amongst the many different islands if 

trade had continued through to the 18th-19th centuries. In addition to its production and distribution 

in China and mainland southeast Asia, orpiment was also a commonly used artistic material in 

many Central Asian Islamic paintings from the 13th-19th centuries (Knipe et al., 2018) and 

therefore could have also easily been traded between maritime Southeast Asia and the Islamic 

world as Islam began to be introduced to local populations prior to the era studied during this 

thesis. In the modern world, there are documented sources of orpiment within maritime Southeast 

Asia (Yuningsih et al., 2014), and with most of maritime Southeast Asia having a mostly volcanic 

origin, it stands to reason that orpiment may have also been locally sourced during the 17th-19th 

centuries in addition to having been imported. For pigment identification, evidence of orpiment 

can be found through the combined use of VNIR spectroscopy and XRF. In the VNIR, orpiment 

typically has a bright yellow colour, very broad spectral features and is opaque, sometimes 

making it able to be distinguished apart from other yellow pigments. With regards to the XRF, 

evidence that highly suggests that a yellow pigment is orpiment is through the existence of energy 

peaks which correspond to both arsenic (As) and sulphur (S), the two main constituent chemical 

elements of orpiment. However, even with this information the identification of orpiment can be 

confused with that of pararealgar, another yellow pigment which is also As and S based. 

Therefore, to be sure that orpiment is used in this collection, Raman spectroscopy was also used. 
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Javanese Manuscripts 

In the Javanese manuscripts within the collection, orpiment was found to be used widely and 

appeared in almost every manuscript where a yellow pigment was either applied straight onto 

paper or mixed to create other colours such as orange and green. For many manuscripts, orpiment 

is the main yellow pigment used, however, there are some circumstances where other alternatives 

are used as well. Evidence in favour of orpiment was primarily found in the Javanese manuscripts 

through the identification of its characteristic arsenic (As) and sulphur (S) energy peaks in the 

XRF, many examples of which can be seen in Fig 3.61. In addition to the XRF however, the 

presence of orpiment could also be further supported using PRISMS VNIR spectra, where well-

fitting KM mixtures using orpiment references could be created for different yellow regions in 

multiple manuscripts. Some examples of these are shown in Fig 3.61 for Add MS 12297, Add 

MS 12285, and Add MS 12280. 

 

 

Fig.3.60 XRF spectra showing the presence of arsenic (As) and sulphur (S) indicative of orpiment in numerous 

Javanese manuscripts. 

 

Furthermore, as can be seen from Fig 3.62, a mixture of orpiment with paper fits well for the 

yellow regions seen in the different manuscripts, and even good modelling of the transition from 

orpiment to the paper appears to be achieved at ≈650nm, where the absorption feature of the paper 

can be seen to dominate quite clearly. 
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Fig.3.61 KM mixture spectra showing good fits for different yellow regions in Javanese manuscripts when using 

orpiment and paper. 

 

While the KM mixtures created to fit to orpiment for these manuscripts do fit well, there are other 

yellow arsenic-based pigments, such as the already mentioned pararealgar, which could also mix 

well with paper to fit to the unknown spectra. Therefore, for final confirmation of the use of 

orpiment, Raman spectroscopy was also used to identify characteristic features indicative of 

orpiment in the same three manuscripts, also shown in Fig 3.63.  

With orpiment being confirmed using Raman for multiple yellow areas which had well-fitting 

KM mixture spectra and As + S peaks in the XRF, it was deemed largely safe to assume that for 

most Javanese manuscripts, the presence of orpiment could generally be confirmed through the 

use of XRF and VNIR alone. There is of course a chance that a different arsenic-based yellow 

could be used in some scenarios, but this is mostly unlikely when considering that all the evidence 

points toward the continued use of orpiment over most Javanese manuscripts. 
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Fig.3.62 Raman spectra indicating the presence of orpiment in three Javanese manuscripts, compared to a reference 

taken from (RRUFF, 2023b). All spectra were normalised and adjusted for clarity. 

 

Malay Manuscripts 

Orpiment was also found in two Malay manuscripts, namely MSS Malay B3 and Or 13295, and 

again was identified primarily through using XRF, of which the spectra for the manuscripts can 

be seen in Fig 3.64. For each of the regions, PRISMS spectra extracted from the same locations 

from which XRF was recorded could be compared against KM-modelled spectra to fit for 

different orpiment mixtures, the results of which can be seen in Fig 3.65. The existence of 

orpiment in most Malay manuscripts comes as no surprise as they all have provenance traceable 

to the Malay peninsula, where, as mentioned previously, there is evidence both for its trade from 

other locations such as China, but also from local sources  (Schafer, 1955). However, as it is also 

known that orpiment was regularly used in the creation of Islamic manuscripts, even through to 

the 19th century (Knipe et al., 2018), it would also be reasonable to assume that there would have 

been continuous trade connections with the Islamic world. 

In addition to its existence as a yellow pigment in these two Malay manuscripts, orpiment was 

also found in another, Add MS 12379 (18th-early 19th CE), where it had been mixed with indigo 

to achieve a blueish green colour, implying that orpiment was not used only as a pure pigment to 

achieve yellow colours in Malay peninsula, but also that it could be mixed. 
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Fig.3.63 XRF spectra indicating the use of orpiment in Or 13295 and MSS Malay B3 due to the presence of 

indicative arsenic (As) and sulphur (S). 

 

 

 

Fig.3.64 KM modelled spectra indicating the use of orpiment due to the existence of well-fitting virtual spectra when 

using it and paper as mixture components, where the only deviation is towards the NIR. 
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Sulawesi (Bugis) Manuscripts 

In the Bugis manuscripts, two of the three items possessed orpiment where the XRF peaks and 

KM mixtures of orpiment possessed As and S and fitted the extracted PRISMS spectra 

respectively. XRF spectra taken from manuscripts Add MS 12363, and Or 8154, can be seen in 

Fig 3.66. 

 

 

Fig.3.65 XRF spectra indicating the use of orpiment in two Sulawesi manuscripts due to the presence of arsenic (As). 

In Add MS 12363 there are additional signs of vermillion due to the mercury (Hg) content. 

 

While both XRF plots clearly show the presence of Arsenic, it is strange that for Add MS 12363, 

the presence of Sulphur in the yellow is lower than that of the paper, furthermore, there are also 

peaks for mercury in the mixture, which is normally indicative of vermillion for these 

manuscripts, but the colour of the illuminated area is yellow. It is suspected that vermillion is 

likely from elsewhere in the manuscript, but the lack of sulphur is strange, however this could be 

a result of absorption due to the presence of a material layered over the top (which could be the 

case as the yellow is not a consistent colour).  

To provide further evidence and improve the confidence in the yellow pigment being orpiment, 

KM mixture modelling was used to investigate how well orpiment spectra and paper would fit 

with the yellow regions in Or 8154 and Add MS 12363. Representative mean cluster spectra, used 

to avoid the darker and seemingly more degraded regions of the illumination, with fitted KM 

mixtures for both manuscripts, can be seen in Fig 3.67, where mixtures of orpiment and paper 

were able to fit the unknowns well. 
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Fig.3.66 KM mixtures showing that a mixture of orpiment and paper fits well with the yellow PRISMS mean cluster 

spectra taken from Or 8154 and Add MS 12363 

 

Sumatran (Acehnese) Manuscripts 

For every Acehnese manuscript where yellow was used, orpiment appears as the main yellow 

pigment. It can be found in Or 16034, Or 16035, Or 16769, and Or 16915, where the presence of 

Arsenic (As) and Sulphur (S) XRF peaks exist, as can be seen in Fig 3.68. As can be seen clearly, 

there is a presence of As and S in all manuscripts, therefore suggesting the presence of orpiment. 

However, for Or 16034 and Or 16035 there also appear to be additional strong peaks for iron (Fe), 

which in Or 16034 is stronger in intensity than the peak for arsenic, suggesting that yellow ochre 

could also potentially be within this mixture as well. If ochre is mixed with the yellow pigment 

suspected to be orpiment, it is likely that some of the absorption features more indicative of yellow 

ochre will present themselves in the VNIR spectra. When attempting to fit Kubelka-Munk virtual 

mixtures to fit to the unknown spectra, however, closely agreeing fits for both Or 16034 and Or 

16035 are reached with no ochre being added, as shown in Fig 3.69, it is instead predicted that 

the iron content is sourced from iron gall ink overleaf. 
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Fig.3.67 XRF spectra indicating the use of orpiment in four Sumatran manuscripts, as shown by the presence of 

arsenic (As) and sulphur (S) 

 

 

Fig.3.68 Graphs showing how orpiment and paper can be used without an yellow ochre to create well-fitting KM 

mixture spectra for Or 16034 and Or 16035 
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3.2.4.2 Yellow Ochre 

Yellow ochre is a natural mineral pigment which has seen a long history of use throughout the 

world and can vary in shade from bright yellow to almost brown with varying levels of opacity. 

It can be identified by numerous different scientific techniques including FTIR and Raman 

spectroscopy but was mostly identified in this study using a mix of both XRF and VNIR 

reflectance spectra. It can be distinguished from many other yellow pigments in the VNIR regime 

due to changes in absorption over different wavelengths which result in two separate inflection 

points at ≈500nm and ≈650nm when most other yellows within this collection possess only one 

S shaped feature between ≈400-500nm. 

Javanese Manuscripts – Or 15932 

For the Javanese part of the collection, there is evidence of yellow ochre existing on only one 

manuscript, Or 15932, where it was used as yellow paint to colour the yellow robe of a male 

character on folio f37r. This can be demonstrated in Fig 3.70, where a KM mixture created using 

yellow ochre and paper, along with a white pigment to adjust the intensity of the mixture, fitted 

well with the extracted spectra in the manuscripts, deviating only towards the near-infrared likely 

due to the transparency of the pigments resulting in a transition from yellow ochre spectral 

features to that of the paper. 

 

Fig.3.69 Graph showing that yellow earth (ochre) can be used with a white pigment and paper to create a KM 

mixture spectrum which fits closely with the yellow seen in Or 15932 f37r 

 

Sulawesi (Bugis) Manuscripts – Add MS 12372 

There is evidence which also shows the existence of yellow ochre in a single Bugis manuscript, 

Add MS 12372, however, it can be difficult to be sure of this as in the VNIR, most of the indicative 

absorption features which normally make ochre straightforward to identify in the VNIR have been 

lost due to it being mixed with other materials. For example, a virtual KM mixture using only 

yellow ochre and the paper deviates from the unknown yellow spectrum from ≈650nm, where the 
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extracted PRISMS spectrum then does not have the other absorption feature typical of yellow 

ochre found after ≈750nm (see Fig 3.71). However, to gain a better understanding of what the 

mixture may be, XRF taken from the same region can be shown to possess peaks typical of yellow 

ochre, as both iron (Fe) and manganese (Mn) can be detected to have counts much higher than 

the paper. However, there are also additional peaks for lead (Pb), mercury (Hg), and sulphur (S), 

suggesting that vermillion or a lead pigment may have also been added (also demonstrated in Fig 

3.71). This could be the source of why there is disagreement toward the NIR parts of the spectrum. 

 

 

Fig.3.70 KM mixture and XRF spectra indicating the presence of yellow ochre used in the yellow motifs seen in Add 

MS 12372 f68v. 

 

As the yellow is quite dark and possesses an orange hue, it could also be possible that in addition 

to yellow ochre, vermillion, perhaps mixed with red lead, may also exist as a component within 

the mixture. To test this a KM mixture was created again to see if this mixture would be a very 

good fit for the unknown spectrum, the result of which is demonstrated in Fig 3.72.  

Interestingly, the result from adding vermillion and red lead to the mixture results in an even 

worse fit than just yellow ochre, as the vermillion and red lead are causing the absorption feature 

of the ochre at ≈600nm-650nm to be weaker. Because of this, it was assumed that yellow ochre 

is the main yellow pigment used here, however to be understand what other pigments may be 

present further study would be required.  
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Fig.3.71 Graphs showing the KM mixture creating a worse fitting mixture when vermillion and red lead are included 

for the yellow motifs in Add MS 12372 f68v. 

 

3.2.4.3 Chrome Yellow 

Lastly, chrome yellow was another yellow pigment found within the collection, though rarely and 

only in the latest manuscripts. Chrome yellow is a yellow-orange pigment that was discovered in 

the late 18th century but was not so widely used due to its tendency to fade due to sunlight or 

blacken over time due to exposure to sulphur from the air. It can be detected using XRF due to its 

inorganic nature, where the chemical formula for chrome yellow is PbCrO4. It is created using 

lead nitrate (Pb(NO3)2) and potassium chromate (K2CrO4), implying that in some circumstances, 

impurities such as potassium (K) may be detected in addition to lead (Pb) and chromium (Cr) 

when using XRF. In addition to XRF, chrome yellow can also be identified using FTIR and 

Raman spectroscopy. Chrome yellow was not widely available until at least the early 19th century, 

when deposits of chromium-containing mineral deposits were known to have been mined in 

France and the United Kingdom in 1818 and 1820 respectively (Feller, 1986). By the 19th century, 

the British Empire had a significant enough presence that chrome yellow could have been traded 

from the United Kingdom to maritime Southeast Asia, especially considering that many 

manuscripts in modern British collections have a history of belonging to figures such as Sir 

Thomas Raffles and Colonel Colin Mackenzie. 

Javanese Manuscripts 

Of the Javanese manuscripts, chrome yellow was only found in Or 15026, where it appears as a 

pigment both for illuminating Wayang characters and for the traditional opening double frames. 

Evidence in favour of the existence of chrome yellow was found through the identification of lead 

and chromium peaks in the XRF spectra, as demonstrated in Fig 3.73. Furthermore, additional 

KM mixtures using chrome yellow were also deemed to possess a close fit to extracted PRISMS 

spectra, also shown in Fig 3.73.  



148 

 

 

Fig.3.72 (Bottom) KM mixture spectrum indicating that a mixture of chrome yellow and paper fits well to the yellow 

regions on Or 15026 f1r. This can be further indicated by XRF (top) which shows lead (Pb) and chromium (Cr). 

 

In this manuscript, chrome yellow appears to be mixed with lots of other materials, as XRF shows 

the presence of stronger-than-expected peaks for lead, calcium, barium, and sulphur. This could 

suggest that the yellow used is a mixture of several yellow pigments, such as lemon yellow or 

barium yellow, or that it could simply be mixed with a barium white or lead white mixture. 

Malay Manuscripts 

Chrome yellow was also found a single time in the Malay part of the collection, in manuscript Or 

15227, where it was used in the illumination of many decorative areas including the rubrication 

seen on every 13th page of the manuscript and in the traditional opening double frames. Again, its 

use was mainly determined by analysing the XRF spectrum extracted from a yellow region, this 

time on the border of the frame where both lead and chromium was detected, though with 

PRISMS reflectance spectra, it could be further confirmed. The different spectra associated with 

the use of chrome yellow in Or 15227 can be seen in Fig 3.74. 
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Fig.3.73 (Top) KM mixture spectrum indicating that a mixture of chrome yellow and paper fits well to the yellow 

regions on Or 15227 f1r. This can be confirmed by XRF (bottom) which shows a strong presence of both lead (Pb) 

and chromium (Cr). 

 

Unlike in the example of its use in the Javanese manuscript Or 15026, the chrome yellow used in 

Or 15227 does not appear to be as mixed with as many other materials, as illustrated in the XRF 

and ER-FTIR spectra. Instead, the XRF spectrum seems to possess only chrome yellow, perhaps 

with a lead white or calcium carbonate-based white as a mixing component to lighten the yellow, 

as the main peaks found are for Pb, Cr and Ca only. 

 

3.2.4.4 Yellow + Red Orange Mixtures 

Aside from the use of the main yellow pigments, there are also applications of orange in numerous 

manuscripts which normally exist by mixing red and yellow pigments together instead of using a 

more naturally occurring pigment. In all the scenarios where orange is found throughout the 

collection, the mixture used appears to always be a combination of the red and yellow used over 

the same manuscript. For example, in MSS Jav 24, the orange tends to be a mixture of orpiment 

with a vermillion/red lead mixture, and in others such as Add MS 12285 it is just a mixture of the 

vermillion and orpiment already detected elsewhere on the manuscript (as demonstrated in Fig 

3.75). This can even be further confirmed by Raman spectroscopy for the orange dragon in Add 

MS 12285, where features indicative of both vermillion (cinnabar) and orpiment could be found, 

as demonstrated in Fig 3.76. The orange mixture which is used most is a mixture of orpiment with 

vermillion, where it is often seen implemented in the motifs surrounding opening double frames 
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around several manuscripts, the second most common is the red lead and vermillion with orpiment 

mixture. These orange mixtures can also sometimes be seen mixed with black to make a dark 

orange or brown colour. 

 

 

Fig.3.74 KM mixture showing that the same red and yellow (vermillion and orpiment) used throughout Add MS 

12285 produces a well-fitting spectrum for the orange regions on the opening double frames. 

 

 

Fig 3.75 Raman spectra taken from (RRUFF, 2023a, 2023b) confirming the presence of both vermillion (in red) and 

orpiment (in yellow) for the orange areas on Add MS 12285 (in blue). 
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3.2.4.5 Organic Yellow 

There are other yellow regions present on two manuscripts which are suspected to be organic 

yellow. While there are multiple organic materials used throughout Asia, it is suspected that 

gamboge is the most likely yellow pigment used for these manuscripts, however conclusive 

evidence for this was difficult to gather. 

Javanese Manuscripts – Or 15932 & MSS Jav 67 

The evidence in question appears in two separate manuscripts, MSS Jav 67, where it was detected 

as part of a green mixture on folio f1r (covered later), and Or 15932, where it was used as a yellow 

colour on folio f72r. Both manuscripts are similar in design and artistic style to one another, with 

a seemingly more western influence seen in the many illustrations and illumination. It is therefore 

highly likely that they are connected in some way. 

For the detection of the organic yellow in Or 15932, an XRF spectrum taken for the centre of a 

yellow and blue star presented very weak energy peaks corresponding to calcium (Ca) and iron 

(Fe) which were stronger than the paper substrate, potentially suggesting either the use of yellow 

ochre or an organic yellow with iron as an impurity. However, to check if the material used is 

yellow ochre, a VNIR spectrum was also extracted to investigate how well either an organic 

yellow or ochre would fit via the use of a KM mixture.  

 

Fig.3.76 (top) KM mixture spectra showing that gamboge fits better than yellow ochre for the yellow circle on Or 

15932 f72v, even though there is iron content detected in the XRF (bottom) 

 

When using the paper and either yellow ochre, or gamboge, as components in a virtual mixture, 

the best matching KM fit was achieved with gamboge instead of yellow ochre. The associated 
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spectra for both the KM mixing and the XRF can be seen demonstrated in Fig 3.77. Attempts to 

identify this pigment using other complementary techniques such as SWIR FORS, ER-FTIR and 

Raman spectroscopy provided no clear features which were able to correspond with any organic 

yellows. However, with gamboge being detected in MSS Jav 67 (see 3.4.6.3), it was likely that 

gamboge may have been the same yellow used in this manuscript as well, however, without 

further study, this cannot be known for sure. 

 

3.2.5 Green Pigments & Mixtures 

The colour green holds great importance in many different cultures with influence in maritime 

Southeast Asia. For example, in modern Islam, the colour green is held with great respect and has 

many traditional ties with the religion, where it is associated with important religious figures, such 

as Al-Khidir, and even paradise itself, though this is not to say that the use of green in maritime 

Southeast Asian manuscripts in the 18th-19th centuries is directly linked to the religion, as there 

are many different cultures with a history of using green in artistic works. Although, in Islamic 

manuscripts both copper greens and mixtures consisting of indigo and orpiment were used 

regularly from the 15th century (Knipe et al., 2018), suggesting that they may have also found use 

in maritime Southeast Asian manuscripts. In many circumstances, green can generally consist of 

a mixture of two colours instead of being a naturally occurring colour. The colours which tend to 

be used for this mixture are typically yellow and blue, though there are some variations where 

darker brown-green hues can be produced with orange colours in place of yellows. Some typical 

examples of this which may be expected to be found in maritime Southeast Asia, in addition to 

the previously mentioned indigo and orpiment, can also include “Hooker’s green”, a mixture of 

Prussian blue with gamboge, or “grass green” a common mixture of indigo and gamboge found 

in Chinese paintings (Mccarthy & Giaccai, 2021). 

 

3.2.5.1 Copper Greens (Malachite & Mixtures) 

Copper-based green pigments have been used in Asia and Southeast Asia for many centuries, and 

they were found many times throughout this collection. It is important to mention a caveat of this 

study however, insomuch that the copper greens in this collection often could not be fully 

characterised. Therefore, malachite is often used as a “best fit” constituent for KM mixtures, but 

more as a placeholder for estimating the use of green copper pigments in numerous manuscripts 

instead of performing full pigment ID (hence why this section remains named “Copper Greens”). 

Javanese Manuscripts 

Within the Javanese part of the collection, there is evidence in favour of copper greens being used 

on four Javanese manuscripts: MSS Jav 28, MSS Jav 68, and Or 9333. This can be seen with the 
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use of XRF in all the manuscripts (Fig 3.78). There is also evidence in favour of a copper green 

being used in MSS Jav 17, however, no point measurement data apart from PRISMS was recorded 

for this location. 

 

Fig.3.77 XRF spectra indicating the use of copper greens in three Javanese manuscripts. 

In all these XRF spectra, there is an increased presence of copper (Cu) which can be found in the 

different green areas of the manuscripts, where counts are higher than in the paper. For all these 

manuscripts, VNIR spectra fitted well with mixtures that included malachite as a placeholder, 

therefore when analysing the green in MSS Jav 17, where XRF was not recorded, a KM mixture 

using paper, and malachite, with a white pigment to adjust the intensity of the simulated spectrum, 

was used for the identification.  This mixture was found to fit very closely with the unknown 

spectrum for the green area of the Wayang character on folio f169r, as demonstrated in Fig 3.79, 

and therefore suggested that the green pigment used on this MSS Jav 17 was also copper based.

 

Fig.3.78 Graph showing well-fitting KM mixtures for the green areas on MSS Jav 17 f169r, when a mixture of white, 

malachite, and paper are used as components. 
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For the mixture found with the copper green used in MSS Jav 68, it was also found that for the 

green ship on folio f12r with which the XRF measurement was taken, there was also a strong 

presence of arsenic and sulphur, suggesting orpiment. Under closer inspection of this painting in 

the VNIR, it was found that a KM mixture using malachite with an indigo and orpiment mixture 

fits well with the unknown spectrum for this manuscript, as shown in Fig 3.80, suggesting the use 

of copper green and the indigo and orpiment mixture commonly encountered in Islamic 

manuscripts. 

 

 

Fig.3.79 Graphs showing how a KM mixture using malachite, indigo, and orpiment together make a well-fitting 

spectrum to the green used in MSS Jav 68 f12r 
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Malay Manuscripts 

Within the Malay part of the collection copper green pigments were found only two times, where 

in manuscripts MSS Malay D4 and Or 15227, evidence of could be found through both XRF and 

VNIR analysis, though the greens used are likely mixed with other pigments, as demonstrated in 

Fig 3.81. 

 

 

Fig.3.80 (Top) KM mixtures showing well-fitting mixtures when using malachite and paper with other components. 

Additional lead white may be used in Or 15227, and impurities of azurite in MSS Malay D4. (Bottom) XRF spectra 

corresponding to both manuscripts are also shown, indicating the use of Copper (Cu). 

 



156 

 

Sulawesi Manuscripts 

Copper-based green pigments are also used in all three Bugis manuscripts within the collection, 

with each possessing spectra indicative of malachite in both the XRF and the VNIR. Extracting 

XRF spectra from Or 8154, Add MS 12363, and Add MS 12372 showed the presence of copper 

in different green regions on all three manuscripts, as demonstrated in Fig 3.82. 

 

 

Fig.3.81 (Top Left) XRF spectrum indicating the use of copper in multiple green areas within Bugis manuscripts. 

(Top Right) VNIR PRISMS spectra indicating the typical malachite features for the three regions. (Bottom) SWIR 

spectrum showing similar features to Azurite for the copper green in Or 8154 f3v. 

 

When also analysing the VNIR spectra taken from the different manuscripts, clear absorption 

features can be found for the different manuscripts that correspond well with malachite as a 

placeholder for copper green, however, the intensity for Add MS 12363 is noticeably lower, 

owing to the much darker colour of the green areas on the manuscript. This darker green is also 

copper based, however, and appears to be mixed with another colour to give it a much darker hue. 

With there being a strong presence of iron (Fe) detected in the XRF signal along with the copper 

(Cu), and the understanding that the Sulawesi manuscripts all tend to use iron-based inks (see 

4.7.1), there is a possibility that the darker colour is achieved by adding iron-gall ink into the 

malachite, however without further study of the mixture components using additional techniques 

this cannot be confirmed, as there are also other iron-based pigments which could be used to 

darken the green. Due to the unique colour of the green found in Or 8154, the green hill was also 
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investigated further using SWIR FORS (also visible in Fig. 3.82), however neither malachite, 

atacamite, or Verdigris could fit with the mixture, suggesting an alternative pigment. There was 

a feature which somewhat corresponded with azurite, at ≈2283nm, however the other features 

were not present. This could be due to the paper or binder, which may imply the green is a mixture 

of azurite and a yellow, however without closer study using other techniques this cannot be 

verified. 

 

3.2.5.2 Indigo + Orpiment 

The most common green mixture seen throughout the collection is one produced by mixing indigo 

with a yellow, which in most cases is most likely to be orpiment. The mixture is easily 

recognisable due to its green colour, VNIR reflectance spectrum which contains absorption 

features for both orpiment and indigo and XRF spectrum which contains high levels of arsenic 

(As) and sulphur (S). However, it can also be confirmed using Raman spectroscopy, where 

orpiment can normally be detected in the green mixture. 

Javanese Manuscripts 

The most prominently used green throughout most of the Javanese manuscripts is this indigo 

orpiment mixture, and it is often found in differing concentrations to achieve different hues. One 

potentially convenient way of identifying this mixture in the collection was with XRF point 

measurements. However, as mentioned in the previous section covering yellow colours, it can be 

difficult to distinguish between different arsenic-based yellow pigments, and this is especially 

true in mixtures where the VNIR spectrum is altered so there is no clear indication of which 

yellow is used, therefore later, Raman spectroscopy was also implemented. When analysing the 

XRF spectra recorded for different Javanese manuscripts where this mixture was suspected to be 

used, both arsenic (As) and sulphur (S) could be detected, as demonstrated in Fig 3.83. 

Furthermore, using KM theory to simulate different mixtures for spectra extracted from the same 

green regions where point XRF measurements were taken, allowed for good fitting of KM model 

mixtures with different concentrations of indigo and orpiment. Some examples of these spectra 

demonstrating the greatest variety of spectral shape can be seen in Fig 3.84. While the use of XRF 

and VNIR can be quite convincing of the mixture containing orpiment as the yellow, more 

definitive confirmation can be made that the presence of As and S points to the existence of 

orpiment by using Raman spectroscopy. Where features indicative of orpiment could be detected 

in multiple manuscripts, as shown in Fig 3.85.  

As Java had many trade connections with countries which could source both indigo and orpiment, 

it comes as no surprise that many of the Javanese manuscripts used a mixture of the two pigments 

to achieve different green hues and shades. 
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Malay Manuscripts 

With regards to the manuscripts in the Malay part of the collection, the indigo-orpiment mixture 

was found only in two separate manuscripts. In Add MS 12379, the mixture can be found in the 

opening double frames on pages f1v and f2r, and in MSS Malay B3 it exists in the frames on f36v 

and 37r. Extracted PRISMS spectra from the two regions clearly show the features indicative of 

the mixture as seen previously. With XRF being used to confirm that the yellow used is arsenic-

based and therefore likely orpiment, due to the presence of As and S. KM theory was used to 

produce a simulated mixture which results in a good fitting spectrum to the extracted PRISMS 

reflectance data for greens in both manuscripts. The XRF and KM-fitted spectra can be seen in 

Fig 3.86. 

 

 

Fig.3.82 XRF spectra taken from green regions in many different Javanese manuscripts, where the presence of 

arsenic (As) indicates a potential use of orpiment with indigo 
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Fig.3.83 KM mixtures for multiple Javanese manuscripts indicating that the use of indigo and orpiment fits well with 

many of the green extracted spectra from differently coloured green regions. 

 

 

Fig.3.84 Raman spectra for green indigo and orpiment areas seen in multiple Javanese manuscripts. Each share the 

same features with the orpiment reference taken from (RRUFF, 2023b) 
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Fig.3.85 (Top) graphs showing that the same indigo and orpiment mixture fits well for Malay manuscripts MSS 

Malay B3 and Add MS 12379.) Both are also confirmed to likely possess orpiment due to the presence of both arsenic 

(As) and sulphur (S) in the normalised XRF spectra (Bottom). 
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Sumatran (Acehnese) Manuscripts 

Though most Acehnese manuscripts do not typically use green colours within their illumination, 

Or 16769 is considered the exception, where a green pigment is used in a set of double frames on 

pages f6v and f7r. Again, the joint use of XRF and PRISMS reflectance spectra were used to 

identify the constituent materials used in the green paint, with which the use of indigo and 

orpiment created a good fitting virtual spectrum using KM modelling, the spectra of which can 

be seen in Fig 3.87. 

 

 

 

Fig.3.86 KM mixture showing that indigo and orpiment can be used as components with paper to create a well-fitting 

mixture to the green cluster in the Acehnese manuscript Or 16769, on folio f6v. XRF spectra of the green and paper 

(black) can be seen showing presence of arsenic (As) indicative of orpiment. 
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3.2.5.3 Prussian Blue + Organic Yellow (Gamboge) (Hooker’s Green) 

Javanese Manuscripts – MSS Jav 67 

There is evidence of a Prussian blue and gamboge mixture is used on MSS Jav 67, where multiple 

characters were consistently illuminated with watercolour style paints as opposed to the more 

opaque paints seen in more traditional manuscripts. Hooker’s green tends to be found on multiple 

pages but was identified using PRISMS, XRF and ER-FTIR on f12r, where a small bird is 

illuminated with green in its wings. Firstly, a PRISMS reflectance spectrum was used to rule out 

some of the common green pigments used throughout the collection, such as the indigo-orpiment 

mix seen in many Javanese manuscripts. Under closer inspection, the spectrum appeared to follow 

a shape commonly seen for copper-based green pigments, such as malachite, however, the 

increase in reflectance towards the red and infrared parts of the spectrum suggested otherwise. A 

point measurement taken from the same location using XRF showed that there was no copper, 

but there was an increase in the counts for iron (Fe) and potassium (K), suggesting the use of 

Prussian Blue with a yellow pigment. With no other significant XRF peaks, it was determined 

that the yellow was most likely organic. Using KM modelling to simulate the mixtures for several 

different yellow pigments with Prussian blue resulted in multiple spectra which could fit the 

unknown green mix, therefore ER-FTIR was also used to perform a final identification, where 

evidence in favour of gamboge being used could be found, due to the features at approximately 

1597-1599cm-1 and 1730-1750cm-1 which match closely with those seen in (Biron et al., 2020) 

and demonstrated in Fig 3.88. 

 

 

Fig.3.87 Multiple graphs showing the (Top Left) RGB and true colour cluster map for the green region of the bird’s 

wing. (Right) KM mixture indicating a mixture of Prussian blue and gamboge fits well to the unknown spectrum. 

(Bottom Left) ER-FTIR spectra confirming the presence of Prussian blue, and an organic yellow most likely 

gamboge. 
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3.2.5.4 Indigo + Organic Yellow 

Javanese Manuscripts – Or 15932 

Evidence suggests that the use of a mixture of both indigo and an organic yellow can be seen 

within one of the Javanese manuscripts in the collection. Or 15932 is another of the Javanese 

manuscripts which have a more western artistic style and uses watercolour type paints instead of 

traditional colours which are opaquer. It is expected that some of the pigments used may differ 

from the earlier 18th-century manuscripts due to their different style, however, the mixture of 

indigo and organic yellow appears to be unique to this manuscript, and so is explored only within 

this example. The PRISMS data extracted from the outer green leaves of a painted tree on f21v 

possessed a reflectance spectrum which possessed features similar to the very common indigo-

orpiment mixture seen in many Javanese manuscripts, as seen for the cluster map and KM fitted 

spectra shown in Fig 3.89.  

 

 

Fig.3.88 KM mixture showing that a combination of indigo and an orpiment can be used to create a good fit to the 

unknown green found in Or 15932 f21v. However, this cannot be the correct mixture as XRF shows no arsenic. 
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However, the XRF spectrum for the same region showed no presence of orpiment, with the only 

changes from paper being an increase in counts for calcium (Ca), suggesting that the yellow part 

of the mixture must be an inorganic pigment, such as gamboge seen for the previous green 

Prussian blue and gamboge mixture. ER-FTIR data was taken for this green mixture to investigate 

further, however no clear matching features with any references for different potential organic 

yellows such as gamboge, saffron, turmeric, or Indian yellow could be found, so further study 

would be required to be sure of which material is used. 

 

3.2.6 Brown Pigments & Mixtures 

3.2.6.1 Indigo + Vermillion + Orpiment 

Javanese Manuscripts 

In some of the Javanese manuscripts, brown paints are implemented in the decorative frames often 

seen at the opening folios, or in the illustrations of different characters. Under close examination 

of the PRISMS reflectance spectra, it is difficult to identify the brown with any natural pigment, 

however, there does appear to be a spectral feature which may suggest the presence of indigo. 

This however does not provide any insight into which other pigments may have been used to 

create the brown mixture, but with the use of XRF, constituent inorganic elements can be 

determined.   

Point measurements taken from the brown decorative pillars on Add MS 12280 were used to 

perform analysis for all the manuscripts which had this mixture, or spectra very similar to it. XRF 

showed evidence of mercury (Hg), arsenic (As), and sulphur (S), in addition to the materials 

present on the paper, suggesting the use of vermillion, and orpiment with the indigo, which fits 

well as blue, yellow, and red can make brown shades (see Fig 3.90). 

 

Fig.3.89 XRF spectrum showing strong peaks for mercury (Hg), arsenic (As), Calcium (Ca), Sulphur (S) and 

phosphorus (P), indicating the use of orpiment, vermillion, and bone ash white to make a brown. 
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If the assumption is made that the presence of Hg, As, and S is a result of mixing indigo with 

vermillion and an indigo/orpiment green, a Kubelka-Munk fit can be made and compared against 

the PRISMS spectrum to investigate the likelihood that these materials are the components of the 

brown paint. Such a fit can be seen in 3.91, where paper and a white pigment are added into the 

mixture, to account for any transparency toward the NIR and also mimic the detected presence of 

bone ash white detected in the XRF. 

 

Fig.3.90 KM mixture showing that a combination of paper, vermillion, orpiment, indigo, and white are used to make 

a brown in Add MS 12280 f3r 

 

The results of the KM-modelled mixture demonstrate that a combination of these three materials 

does have a good fit, suggesting that this is the mixture most likely used to achieve the brown 

mixed paint seen in Add MS 12280, and therefore by extension other manuscripts which may 

share the same VNIR and XRF spectrum. 
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3.2.6.2 Prussian Blue + Vermillion + Orpiment 

In the Malay manuscript Or 13295 there is evidence to suggest that a dark red/brown shade on 

the double frames within folios 190v and 191r is created by mixing Prussian blue, Vermillion, 

and orpiment. The XRF spectrum presents features typical of pigments seen over the rest of the 

manuscript, with strong signal present for pigments such as vermillion (Hg, S), Orpiment (As), 

and Prussian Blue (Fe), and when using the three pigments together to create a virtual mixture 

using KM mixture modelling, the three create a spectrum which matches almost perfectly with 

cluster 6741, which represents a significant number of the brown pixels in this manuscript. The 

associated KM mixture spectra and XRF spectrum can be seen in Fig 3.92. While this is a good 

fitting mixture however, other point measurements, such as ER-FTIR, will likely be needed to 

confirm it in future. 

 

 

Fig.3.91 KM mixture showing how orpiment, vermillion and Prussian blue can be used together to create a well-

fitting spectrum that matches with the dark reddish-brown frame of Or 13295 f190v. Support by XRF (bottom) which 

shows elements indicative of all three pigments: Mercury (Hg), arsenic (As), sulphur (S) and iron (Fe). Notice the 

addition of lead (Pb), which is likely indicative of lead white used to lighten the mixture. 
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3.2.6.3 Vermillion + Yellow Ochre + Brown Ochre 

There is evidence to suggest that a mixture of vermillion, yellow ochre and brown ochre is used 

on Or 15932 f72v for the tree which dominates a significant portion of the page. However, when 

monitoring the XRF spectrum for the brown area, there was a strong presence of mercury (Hg) 

and sulphur (S) with no clear change in iron (Fe), suggesting that the only inorganic pigment 

present in the mixture is vermillion. As iron (Fe) would have been detected in large amounts if 

ochre had been used it was first concluded that the brown mixture may be an entirely different 

mixture, however when analysing FORS spectra extracted from a brown location, the VNIR 

spectrum matched more closely with a mixture of vermillion with red, yellow and brown ochre 

than anything else. The XRF spectrum and associated KM fitting spectrum used with FORS data 

in the range 400-1000nm can be seen demonstrated in Fig 3.93. This is likely a result of the XRF 

and FORS not being recorded from quite the same location, resulting in one of the small redder 

appearing spots having a greater effect on the XRF signal than for the FORS spectra. Either way, 

the KM fitting performs better when implementing ochre into the mixture, so it is likely that in 

certain parts of this brown tree, ochre is used. 

 

Fig.3.92 (Top) XRF spectra indicating the presence of vermillion, via the clear peaks of mercury (Hg) and sulphur 

(S), though for a more brown spot, taken using FORS, spectra closer to that of a mixture of vermillion with 

red/brown ochre could be detected, as is indicated by the KM mixture. 
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3.2.7 Black Pigments & Inks 

As the VNIR reflectance spectra are not particularly useful for the analysis of most black colours 

and inks, XRF and NIR spectral image bands were primarily used to aid in their analysis and 

identification. Carbon black is noted to have been used in some of the manuscripts seen in this 

collection, however as Raman spectroscopy was not used to confirm this, and other detection 

methods used on inks within this study cannot detect carbon, the study was primarily focussed on 

other inks and black pigments. 

 

3.2.7.1 Iron-Based Ink (Iron Gall) 

Within the collection, there is evidence of different iron-based inks being used, with the most 

likely being iron gall ink, which has been used throughout many parts of the world for centuries 

and can be found in many manuscripts with different cultural origins. Iron gall was the primary 

pigment used within Europe from as early as the 5th century, was used regularly in the Islamic 

world and can still be found in use today, making it very possible it to have appeared in 18th-19th 

century illuminated manuscripts within maritime Southeast Asia, especially considering the 

influence Europe and Islam nations would have had at the time. Furthermore, by the 18th century, 

mass production of iron gall ink was more commonplace due to the rise of industrialisation in the 

west, increasing the chances of the ink being readily available among maritime trade routes. Iron 

gall ink production would often involve the use of iron (II) and gallic acid (Raggetti, 2021) , 

(normally extracted from plant materials such as gall nuts, which is where the ink owes its name), 

though there are many variations and different recipes for producing it, which can vary widely 

based on the cultures or times throughout history with which the ink was produced (Lemay, 2013). 

It is therefore expected that there may be some variations in the use of iron gall ink in maritime 

Southeast Asia due to the many different connections that the region had with other locations 

during the 17th-19th centuries. If iron gall ink can be detected in different manuscripts, it would be 

interesting to understand how their provenance may link with its use and therefore how different 

cultures may have had an impact on the production of illuminated manuscripts in different 

regions. Iron gall ink can be detected in many ways, however, due to the main ingredient of the 

ink being iron, it can be simple to find evidence for its existence in different manuscripts by using 

XRF spectroscopy, which would provide energy peaks at approximately 6.4keV and 7.06keV, 

though other techniques such as FTIR and Raman can be used (Raggetti, 2021). Furthermore, iron 

gall can also be detected using PRISMS as it becomes transparent towards the NIR parts of the 

electromagnetic spectrum (Havermans et al., 2003). Due to this simplicity, a combination of XRF 

and spectral imaging was used to identify iron gall over the collection. In total, iron gall was 

detected in 10 manuscripts, with the potential for it to also exist in a few more, though these were 

unclear. The manuscripts which were seen to potentially contain iron gall ink are as follows: 
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• Add MS 12292 (Inner Writing) 

• Add MS 12297 (Inner Writing) 

• Add MS 12300 (Inner Writing) 

• Add MS 12363 (f63v - Smudges) 

• Add MS 12372 (f66r Circle) 

• F-148-4-f106 (Smudges) 

• Mackenzie Pv. 42 (Writing) 

• MSS Jav 67 (Writing) 

• MSS EUR E378-1 (Writing) 

• Or 15026 (Writing) 

 

In Or 9333, there is also some evidence suggesting iron gall ink had been used previously but has 

since been removed. This can be seen in folio f11r, where in the bottom corner a removed piece 

of writing can be shown to become more transparent at 850nm, as demonstrated in Fig 3.94. XRF 

also showed significant content of iron in the Sumatran manuscripts (see Fig 3.95), however, the 

850nm bands for these manuscripts did not show any transparency. 

 

Fig.3.93 PRISMS spectral images demonstrating potential iron gall ink regions becoming transparent in the NIR 

(850nm) on Or 9333 f11r.

 

Fig.3.94 XRF spectra showing strong iron presence on multiple Sumatran manuscripts, indicating iron gall ink even 

though the inks did not become transparent toward the NIR. 
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3.2.7.2 Copper-Based Inks 

In numerous manuscripts, copper can often be detected by XRF in the inks or black-painted areas. 

This copper presence could be attributed to the use of black copper (II) oxide or copper sulphate    

(Fichera et al., 2018) as an ingredient in creating ink, however, there is very little literature to 

suggest this was ever used in the 18th-19th centuries in maritime Southeast Asia. Within the 

literature, there has been considerable study into the existence of copper in other inks such as 

impurities in iron-gall, or its potential use within renaissance printing inks to enhance colour 

(Stanley, 2018). However, in most manuscripts with signs of a copper-based ink seen within this 

collection, the copper presence in the XRF spectrum tends to be higher in XRF counts than any 

other element and often is accompanied with little to no iron. 

The following manuscripts were shown to have contained significant copper presence within their 

inks, where those with additional detected elements are mentioned in the right-hand side column: 

 

• Add MS 12302 

• Add MS 12312 

• Add MS 12337 

• Add MS 12339 

• MSS Malay B12  

• MSS Malay B3 

• Or 8154 

• MSS Jav 17 (+Fe, Pb) 

• MSS Jav 24 (+Fe, Ni, Zn, As) 

• MSS Jav 28 (+Fe, As, Zn) 

• MSS Malay D4 (+ Trace Pb) 

• Add MS 12379 (+Hg, Trace Zn) 

• MSS Jav 14 (+As, Trace Zn) 

• MSS Jav 16 (+Zn) 

 

 

For the manuscripts which possess iron content (MSS Jav 17, MSS Jav 24, and MSS Jav 28) in 

addition to copper, the source of copper in the XRF could be due to its use during the creation of 

an iron gall ink which is now mixed with another ink, though in this circumstance it would be 

strange for these manuscripts to have an iron content secondary to the copper. However, for the 

other inks where there is no detectable iron content, and copper still exists as the primary element, 

the question of which materials may be used still needs to be answered. It is more likely for these 

inks that the presence of copper is due to there being contaminants within a carbon black, which 

is likely to be used on manuscripts due to its well-known use within Asia (Singh, 2020; Stanley, 

2017)  and the Islamic world (Kantoğlu et al., 2018; Knipe et al., 2018). The copper could 

potentially also exist as a result of the direct use of copper sulphate or black copper oxide as ink, 

however further study would have to be performed to determine this as there is little evidence to 

suggest that this was a normal practice within the region. 
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3.2.7.3 Bone Black – Add MS 12291 

Within one manuscript evidence was also found to suggest the use of bone black, due to the 

presence of calcium (Ca) peaks which are much higher in XRF counts than what can be detected 

in the paper, as shown in Fig 3.96. Potassium (K), Sulphur (S) and silicon (Si) presence within 

the XRF spectrum is likely due to impurities in the mixture, but the presence of calcium and 

potentially trace phosphorus (P), clearly links the ink used in this manuscript with bone black 

which typically has the elemental composition Ca3(PO4)2 + CaCO3 + C. This however would need 

further confirmation using alternative techniques to be sure. 

 

Fig.3.95 XRF spectrum indicating the use of bone black in Add MS 12291, indicated by the presence of calcium (Ca) 

and perhaps some trace phosphorus (P). 

 

3.2.7.4 Mercury-Based Black – MSS Jav 4 

In the Javanese manuscript MSS Jav 4, there are black areas around the outsides of the opening 

double frames that, when analysed using XRF, showed a strong presence of mercury (Hg) and 

sulphur (S), which highly suggests the use of vermillion (see Fig 3.97). While vermillion is known 

to blacken over time (Spring et al., 2002), this is an unlikely cause for the black areas on this 

manuscript, as even though the pages have seen some degradation over the years, other parts of 

the page still possess the same bright vermillion red which would have been intentionally applied 

onto the paper. This may imply that a use of black vermillion in this manuscript is intentional. 

An alternative, more likely, cause of the presence of vermillion is that the red was painted over a 

black already present on the manuscript page, instead of being a black pigment itself. There is 

limited evidence to suggest this, however, visual observation of the manuscript shows that there 

are certain areas of this black part of the frame that seemingly have red or brownish hues attributed 

to paint which may be layered over the top. Such an example can be seen in Fig 3.98, which also 

shows that a combination of vermillion and black (in this case ivory black) could be used to create 

a KM mixture with paper that fits well to a cluster of these reddish-brown areas. 
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Fig.3.96 XRF spectrum showing strong peaks for mercury (Hg) and sulphur (S) suggesting a use of vermillion in the 

black parts of MSS Jav 4’s opening illuminated double frames. 

 

 

 

Fig.3.97 KM mixture for a mean cluster spectrum representing the dark vermillion parts of MSS Jav 4, which shows 

that a mixture of vermillion with paper and black fits well. Possibly suggesting a layering of vermilion over black 

instead of blackened vermillion. 
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3.3 Pigment Mixture Mapping 

Throughout the previous section many multimodal point measurements, including VNIR spectra 

extracted from PRISMS data and clustering, were used to successfully identify many different 

specific pigments and mixtures in varying concentrations over different manuscripts. This 

provided plenty of information which is valuable to understanding how the use, trade and 

exchange of artistic materials may have evolved between regions and across trade routes within 

maritime Southeast Asia. To reiterate, it is essential for this study that large amounts of data are 

collected as the main purpose of analysing an entire collection is to ensure that a significant 

enough sample size is used to make statistically reliable conclusions about the pigments and 

artistic styles used in different regions. However, determining these conclusions is not the only 

motivation for performing these point measurements, another important reason is also because 

building reliable connections between colour/VNIR spectral data and the pigments with which 

these spectra represent can allow for highly reliable pigment mixture maps to be created. 

Throughout this chapter, cluster grouping was performed simultaneously to pigment 

identification using the hybrid Kubelka-Munk model informed approach outlined in chapter 2.6.4, 

resulting in accurate illustrations of pigment mixture distribution over the entire collection. 

To therefore perform a final collection-wide summary, different groups created for specific 

pigment mixtures could be further updated or regrouped and then analysed to determine the 

distribution of artistic materials used throughout the entire collection. Essentially, this regrouping 

approach followed the same example shown in chapter 2, where painted areas would be grouped 

by selecting regions of interest at positions known to be a specific mixture, however instead of 

focussing on grouping using a single spectral imaging data cube or manuscript, grouping was 

performed by selecting sets of manuscripts from the collection that were shown to possess a good 

variety and volume of areas where specific pigments and mixtures used for the illumination were 

either known outright or extrapolated from the results of grouping which had already been 

performed. This meant that, for example, if a set of clusters representing vermillion are grouped 

on one manuscript, in turn grouping vermillion clusters on a second manuscript which has more 

spectral variation than the first, then this second manuscript may also have its own vermillion 

clusters added to the same group as well. This process ensured that more complete cluster maps 

could be generated by attempting to encompass all the spectral variations which may occur on 

account of there being changes in constituent pigment concentration, paint layer thickness, or 

substrate. There was however a risk that the limitations of performing the grouping using VNIR 

clusters would result in misidentified pigment map areas where the constituent artistic materials 

used to create colours are different, even though the VNIR reflectance spectrum and colour appear 

the same. This potential for misidentification was the main reason why so many XRF point 

measurements were recorded for different manuscripts, as at least in this study, if these problems 

are encountered it is likely that they will be discovered. Some of these discovered 
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misidentifications are discussed further in the following section (3.3.1), however, it was found 

that for most materials, pigments and pigment mixtures, the clustering and grouping process 

performed well. 

 

3.3.1 Clustering & Grouping Limitations/Misidentifications 

While the pigment mixture mapping worked well to represent most artistic materials, there were 

some mixtures which were expected to have incorrect representations in different manuscripts 

from clustering and grouping. This is unfortunately a consequence of performing clustering in 

only the VNIR because, in the range of PRISMS (400-850nm), multiple different pigments can 

often be mixed in such a way that they may possess similar spectra which may have no, or very 

subtle, spectral differences which will likely not be distinguished during clustering. This 

subsection will briefly mention some of these incorrectly identified mixtures so that there is a 

greater understanding behind some of the pigment results displayed in the pigment mixture table 

within 3.5. 

Yellow (Ochre, Orpiment, Organic, Gold) misidentification  

Probably the most common form of misidentification is when clustering and grouping together 

thinly applied yellow-painted regions. While it was shown in chapter 2 to be expected for gold 

regions to become misclustered into certain clusters representing yellow pigments, the continued 

grouping highlighted that multiple different yellow pigments could be incorrectly clustered 

together due to there being only subtle differences in spectral shape and a quick transition to 

where the painting materials often became transparent (which meant that some absorption features 

would be much weaker toward the NIR). A good example of this can be seen in Fig 3.99, where 

a mixture already identified in the pigment ID section to be yellow ochre in Or 15932, could be 

incorrectly grouped into a cluster mainly representing a thin application of orpiment across the 

rest of the collection. As the ochre is not very thickly applied in this manuscript the absorption 

features are weak, resulting in spectra that can be clustered together within the colour difference 

and standard deviation range of spectra for light applications of orpiment, even though under 

closer inspection a subtle spectral difference can be identified.  

In this scenario, the main cause of this misidentification is most likely due to the standard 

deviation range being larger due to an increased spectral contribution of the paper towards the 

NIR, which for many manuscripts tends to have an absorption feature at approximately 650nm, 

approximately the same location with which yellow ochre possesses its own features. 
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Fig.3.98 (left) RGB image and true colour cluster map of the yellow ochre which is clustered with the thinly applied 

orpiment. (Right) Graph showing how the yellow ochre mean cluster spectrum taken from Or 15932 fits within the 

mean cluster spectrum over the entire collection, due to the weak absorption features keeping all data points within 2 

standard deviations of the mean. 

This presents obvious problems, as by eye it is often quite clear from a spectrum of yellow ochre 

that its absorption features can be used to separate it from other yellow pigments. Such problems 

are quite typical of performing clustering in Euclidean distance, so some potential fixes could be 

to implement different distance metrics in the future, or perhaps to use alternative data, such as 

the derivative, to accentuate absorption features over intensity. However even when doing this 

one must be careful, as by changing one part of the data something else may likely be altered and 

begin to become misclustered instead. Using finer parameters in the algorithm may also work, 

but this is likely to result in creating many other clusters which may already be perfectly correct, 

thereby needlessly increasing the work required for grouping many other pigments and mixtures. 

A good alternative instead may therefore be to introduce brand new data, as implementing 

alternative spectral imaging techniques directly into the clustering may benefit the accuracy of 

the clusters in the same way that adding in colour could, where, for example, orpiment and yellow 

ochre for this cluster could be separated by their iron content in XRF as an addition to the VNIR. 

This idea is explored more in chapter 4, where a form of holistic multimodal clustering is 

investigated, however for the analysis of these results, the existence of point measurements was 

satisfactory for providing the information needed to distinguish the incorrectly grouped spectra 

in individual manuscripts and therefore properly identify different artistic materials collection-

wide. 

Green (Indigo, Yellow) Misidentification 

Another common misclustering can be seen when comparing mixtures of indigo with different 

types of yellow. In a scenario where two different yellows are mixed with indigo, the resulting 

mixture can generate an identical VNIR spectrum which differs more with concentration 

differences than with the type of yellow used, as demonstrated for multiple KM mixtures in Fig 

3.100).  
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Fig.3.99 KM mixtures for different manuscripts which all fit well with a combination of paper and orpiment, 

regardless of the real yellow pigment used (organic or orpiment). 

 

This means that some of the yellow pigments with more subtle spectral differences would 

minimally affect the green spectra, causing different mixtures to be clustered together based more 

on the concentration of any type of yellow rather than pinpointing exactly which yellow pigment 

is used. Again, as this is likely an intrinsic limitation of VNIR which could be solved by 

introducing new datasets, such as XRF or ER-FTIR mapping, directly into the clustering 

procedure, however, for this study, the numerous point measurements taken for different 

manuscripts were used to provide clarification. 

Red (Vermillion, Vermillion + Red Lead, Vermillion) Misidentification 

In a few of the Javanese manuscripts, it was noted that a red mixture likely consisting of vermillion 

and red lead (informed by XRF) was commonly used throughout many pages. For the VNIR 

spectra extracted from these red regions, many pixels with pure vermillion spectra can be 

clustered together with the potential vermillion/red lead mixture due to their similarity in spectrum 

and colour. This is another result which is to be expected considering that pure vermillion 

references mixed with paper in KM modelling can be fitted to the mixture just as well as the 

mixture of vermillion and red lead together (see Fig 3.101). 

Therefore, during pigment mapping, many of the pixels representing these mixtures were 

consequently clustered and in turn grouped regardless of their differences in constituent materials. 

For these maps, however, XRF point measurements had been recorded, so segregation between 

manuscripts where additional red lead is used could still be performed for the pigment study. 
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Fig.3.100 Graph showing how a mixture of vermillion and red lead fits just as well as pure vermillion for a red 

spectrum taken from MSS Jav 24 

 

Other likely Misidentifications 

With only these three examples it becomes clearer as to why some different mixtures may be 

misidentified during the clustering and grouping procedure, though with the point measurements, 

correct identification can still be performed. There are however other scenarios where the same 

problems can be encountered for other materials, such other examples include incorrectly 

clustering or grouping: 

• Red dyes (with small absorption features) with vermillion. 

• Different red dyes with one another 

• Dark red with dark orange. 

• Additional green mixtures (similar to indigo + orpiment problems) 

• Different white colours and paper. 

 

3.4 Collection-Wide Discussion & Conclusion 

A convenient summary of the results found both through the point measurements and via 

clustering can be easily demonstrated in the form of a pigment mixture table, seen in Fig 3.102-

3, where filled cells correspond to one of the pigments or pigment mixtures in each column 

appearing within the manuscript in each row. Cells are labelled with their potential origin location 

and those marked by asterisks are clustering results which cannot be confirmed with point 

measurements in any way. 
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Fig.3.101 LHS of the pigment table for the British Library's maritime Southeast Asian manuscript collection 
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Fig.3.102 RHS of the pigment table for the British Library's maritime Southeast Asian manuscript collection 
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With this table, the material identification results become much easier to interpret, and as can be 

seen many of the results found throughout the collection presented brand new findings as the 

study into the use of different pigments within maritime Southeast Asia had been uncommon prior 

to this research. Furthermore, as clustering was able to demonstrate the distribution of different 

pigment mixtures in large regions and over many items, the presence of different materials could 

be more confidently determined when paired with point measurement analysis such as XRF, 

Raman spectroscopy, and ER-FTIR. In fact, it was often shown that the pigment mixture maps 

produced after clustering and grouping VNIR spectra were only further supported by the extra 

XRF measurements regularly recorded for evaluating the clustering technique, where VNIR data 

was able to correctly identify material composition in most circumstances. It was clear therefore, 

that studying such a large collection in this way delivered great insight and efficiency that was 

invaluable in the study of artistic practises within maritime Southeast Asia, thereby providing the 

following opportunity to discuss the use of pigments over the entire collection more confidently. 

With regards to the white pigments, it appears that most regions within maritime Southeast Asia 

still tend to use more traditional reserved white within their illumination, or just happen to have 

used no white for the items covered in this thesis. This could be seen in multiple manuscripts from 

Aceh, Lombok, Borneo, and Sulawesi, however for both the Javanese and Malay manuscripts, 

this does not appear to be the case. For most Javanese manuscripts, the most used white pigment 

appears to be one created from bone ash, and while its use seems logical due to Java having a 

history of using bone ash within the creation and painting of Wayang shadow puppets, it does 

come as a surprise as the most used white pigment generally found during the 18th-19th centuries 

would have been expected to be lead white. Another interesting discussion point here is that three 

of the four Javanese manuscripts (bottom section of the table) with unspecified dates possess bone 

white and other similar colours to different manuscripts, which may place their dates of creation 

at the early 19th century. 

The Malay manuscripts on the other hand (along with a three Javanese examples) primarily used 

lead white in their illumination implying a greater willingness to use non-traditional white 

pigment than was seen in Java. Most of these manuscripts can be dated to the early 19th century, 

so it seems reasonable to expect they may use similar materials, however, it does appear that 

toward the latter half of the 19th century, barium white had started to be used within the 

archipelago, perhaps indicating increased connection with Europe, as indicated by its presence in 

Or 15026 (dated to 1861 though there is also evidence of barium white usage in MSS Jav 89, 

created before 1815). 

Blue colourants could be found implemented in many manuscripts throughout the collection. 

Most Javanese manuscripts tend to use indigo, however, there are some which chronologically 

have the same provenance but use Prussian blue, likely suggesting greater European influence, 

especially if one considers that the manuscripts not using indigo also do not tend to use the more 
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traditional bone ash white. Malay manuscripts within the collection have a 50/50 split, with the 

earliest two dated items using indigo and the latest two Prussian blue, and they all (except for the 

Javanese influenced Add MS 12379) use lead white to lighten the blue colours. Ultramarine seems 

to be used primarily by only the latest manuscripts (after 1860), likely suggesting the use of 

artificial ultramarine and therefore, again, an increasing European influence towards the late 19th 

century. The only exception to this is Or 8154 (dated 1790-1800), which is unique in its use of 

both Prussian blue and ultramarine being mixed, which could suggest that ultramarine may have 

been applied later or that the natural variation is used. There is also some limited evidence of 

azurite being used within Or 9333 and Or 8154, however to be sure of this identification further 

analysis would be required. 

For red pigments, the use of vermillion dominates throughout the collection, with it being present 

in all but one item where red is used, where in Or 15924 (a scroll from Lombok) madder lake was 

potentially likely to be used instead. The use of vermillion is no surprise, as during the 18th-19th 

centuries it was the most used red pigment in Asia, however, it is interesting to note that in many 

scenarios it is not the only red pigment used. In multiple Javanese manuscripts, the mixture of red 

lead and vermillion was potentially likely, and in multiple other manuscripts, red dyes are often 

implemented used as standalone colourants or are mixed with white, however there was also 

limited evidence suggesting a potential mixture with vermillion. Red dyes could be mixed with 

white in both Malay and a late Javanese manuscript, Or 13295 and Or 9333 respectively. They 

could also be found applied straight onto paper in numerous Malay manuscripts, a single Bugis 

manuscript (Add MS 12363), and a few Javanese manuscripts, though for these manuscripts from 

Java the red dye only occurred for the more westernised third artistic style mentioned in section 

1. For the most part, red insect-based dyes were normally detected through the comparison of fine 

absorption features, however there could also be plant-based red dyes in areas where PRISMS 

was the only VNIR data collected. It is also important to note the additional use of red ochre in 

some manuscripts, with it appearing most commonly in Sumatra, in addition to one Malay (MSS 

Malay B6) and one Bugis manuscript (Add MS 12372).  

When considering the use of yellow throughout the collection, the most abundantly used pigment 

is orpiment, in which evidence could be found for it to exist in almost every manuscript regardless 

of provenance. It was commonly used in Acehnese, Javanese, Bugis and a few Malay 

manuscripts, with other yellows seemingly used only seven times throughout the rest of the 

collection. The other yellows found included yellow ochre, found in a select few manuscripts, 

chrome yellow (found in two later manuscripts from 1861-late 19th century), and organic yellows, 

with one confirmed to be gamboge in MSS Jav 67 (dated to 1812). The use of ochre is no surprise 

as it has been used in general for thousands of years, however, the presence of chrome yellow 

likely suggests further European influence towards the end of the 19th century, and gamboge 
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perhaps an influence from mainland southeast Asia or China, where it was also used in the 19th 

century (Eremin et al., 2008; French & Monaghan, 2018) 

Throughout the collection green is also used extensively, with the most abundant being a result 

of the mixture of indigo and orpiment, commonly seen within the Javanese manuscripts, however 

the same mixture can also be found in two Malay manuscripts and a single Sumatran manuscript. 

In addition to this mixture however can be found numerous others, such as a mixture of Prussian 

blue with gamboge (Hooker’s green), indigo with organic yellow, and potentially Prussian blue 

with orpiment. Furthermore, there are also use of other copper-based greens in numerous Bugis, 

Malay, and Javanese manuscripts. The use of indigo and orpiment is typical of many cultures and 

had already been confirmed in a previous study for Javanese manuscripts by Burgio et al., (1999), 

however its use at the scale demonstrated by this study clearly indicates its importance in maritime 

Southeast Asia. The use of Prussian blue within green mixtures is likely due to European influence 

during the 19th century, as the manuscripts which use Prussian blue all tend to have similar dates. 

However, the use of copper-based green has an ambiguous source depending on different regions, 

as the Bugis manuscripts used copper-based greens very early (mid-late 18th century) but others, 

such as the Malay manuscript Or 15227, were produced towards the late 19th century. 

For most of the other colours, it seems that the common practice was to achieve different shades 

and hues by mixing primary colourants seen elsewhere in a manuscript. This can include mixing 

white and red or blue to make pinks or different shades of blue, mixing reds and blue to create 

purples, red and yellow for orange, or many different colours to form a brown or others. This is 

an interesting result as it implies that many of the artists may have known how to properly mix 

different artistic materials to gain different shades and colours, a practise not necessarily 

guaranteed at the time. The only exception this for brown colours was where brown ochre could 

be likely be found on the Sumatran manuscript Or 15979 (dated to 19th century), though it is 

unknown if this was intentional or exists now as a degradation product of the red ochre originally 

applied. Finally, this holistic study was also able to provide insight into the inks used throughout 

numerous manuscripts in various parts of maritime Southeast Asia, where 24 manuscripts (around 

half the collection) were confirmed to use either iron gall ink or a copper-containing ink (which 

could correspond to numerous inks such as black copper (II) oxide or carbon black, though to 

perform identification of the inks at a grand scale it is likely further Raman spectroscopy would 

be required. There was suggestive XRF evidence in favour of bone black in Add MS 12291, 

though XRF alone is not enough to confirm this, and seemingly a mixture of vermillion and black 

in MSS Jav 4. 

Therefore, the study overall appeared to show an adoption of new pigments towards the mid-late 

19th century, most likely due to European influence where materials such as barium white and 

chrome yellow began to appear. But with the collection skewed towards the early-19th century, it 

is difficult to find any consistent trends with how pigment usage may have changed with time. 
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One factor that can be determined however is that within the early 19th century, most manuscript 

illumination involved same materials, as can be seen by the abundance of the same mixtures 

appearing for different blues, yellows, reds, and greens, especially in Java, where most of the 

collection is from. 
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Chapter 4  

Holistic Multimodal Clustering of Export Paintings 

 

4.1 Introduction 

Spectral Imaging techniques of different varieties are commonly used in cultural heritage studies 

and can be useful for researchers and curators as they can allow for the fast non-invasive collection 

of large amounts of spectral data. When analysing paintings, a broad range of spectral features 

can be encountered for different techniques due to the variation of artistic materials and styles 

used. In these studies, some commonly implemented spectral imaging techniques can include 

VNIR spectral imaging (Cucci et al., 2016; Liang, 2012; Picollo et al., 2020), XRF mapping 

(Alfeld et al., 2011; Caliri et al., 2021; Mazzinghi et al., 2021; Saverwyns et al., 2018), and ER-

FTIR mapping (Legrand et al., 2014). Each technique used can produce complex results which 

require considerable effort to analyse individually, and when considering that many painting 

studies require a holistic approach to fully analyse materials, every technique added into the 

analysis can exponentially increase the complexity of the data. Consequently, material analysis 

for paintings can be time consuming and, in some scenarios, certain features may be missed if a 

researcher interprets where to extract spectra through observations made only by eye. In the 

previous chapters clustering was shown to provide a convenient solution to tackling complex 

spectral imaging data, though this was only performed for the VNIR modality of a holistic study. 

In the event where multiple spectral imaging techniques are required to be performed on a single 

painting, it is desirable to have a more automated time-efficient approach for each method. In 

these scenarios, the clustering technique outlined in chapter 2 could be used to reduce the total 

number of spectra and create cluster maps for each spectral imaging modality, thereby making 

the analytical process less intensive while also reducing the chances of missing important 

information. Furthermore, while clustering the spectral imaging data produced from each 

technique would provide advantages over analysing multimodal data manually, clustering 

approaches do not have to be limited to one spectral domain at a time. Instead, with the correct 

pre-processing and data treatment, clustering can be performed across all modalities 

simultaneously, allowing for complementary information to be used to automatically produce 

cluster maps which have features created from all techniques, which in turn may reveal 

information about a painting which would otherwise be difficult to identify. While many 

approaches have been suggested and developed for this type of data fusion in many applications 

(Lahat et al., 2015) including remote sensing (Chang & Bai, 2018; Ghamisi et al., 2019), its use 

in cultural heritage applications has not been thoroughly explored, and in most scenarios where it 

has been implemented, priori knowledge and direct interaction with the data in feature space can 

be required such as in Alfeld et al., (2018). This implies that in depth manual research is still 
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required to some degree before implementing any machine learning approaches, however in 

practical terms the multimodal study of paintings would be best executed when using 

unsupervised clustering at the beginning of the study. This chapter investigates a novel approach 

for performing material identification by examining how automated clustering can be 

implemented at the beginning of an analysis workflow for multiple complementary spectral 

imaging techniques. Exploration into how the results from each modality can be unified into a 

single cluster map is also performed to allow every cluster a unique spectrum in all spectral 

domains. Human interaction with the data was not required until the final stages, where a reduced 

number of unique clusters were assigned into groups for performing pigment identification. Two 

different studies were performed on export paintings from Peru and China, where different 

complementary information was exposed to a multimodal clustering algorithm which can allow 

for more accurate and efficient confirmation of pigments and pigment mixtures. 

 

4.2 Holistic Multimodal Clustering of Peruvian Export Paintings 

To perform more automated holistic studies of different paper-based paintings, clustering using 

techniques of different modalities was required where each would provide its own portion of 

complementary data required to complete a full pigment study. The first dataset consisted of a 

Peruvian export watercolour painting with a relatively simple palette which included various red, 

yellow, brown, blue, green, and black pigments, with a reserved white. In the analysis performed 

for the British Library’s maritime southeast Asian collection in chapter 3, it was shown that VNIR 

spectral imaging could be used alongside XRF to aid in the identification of artistic materials. The 

complementarity of the two techniques was useful when attempting to identify pigments with 

similar VNIR spectra but different elemental composition, such as in distinguishing different 

yellow paints. Furthermore, XRF was useful for guiding the interpretation and analysis of results 

by directing many of the mixtures used to identify pigments using the Kubelka-Munk model. 

VNIR and XRF spectral imaging data were recorded for the Peruvian export painting, P80001-8, 

with the intention of performing a manual holistic study of the pigments used in the painting. 

However, after the success seen in combining colour and reflectance information together in 

previous chapters, the procedure of automated clustering and grouping was seen as a good 

candidate for performing multimodal clustering across completely different techniques, so that 

the cross comparison of artistic materials and their application could be performed more 

efficiently. 
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4.2.1 VNIR Spectral Imaging 

VNIR and colour data was recorded using the PRISMS (Liang et al., 2014) system previously 

mentioned in chapters 2 and 3, however each pixel possessed a VNIR spectrum ranging from 400-

880nm for this study, separated into nine 40nm bandwidth filters at 50nm intervals from 400-

800nm and a final filter at 880nm with a bandwidth of 70nm.  

 

Fig.4.1 Left: Representation of the 10 PRISMS spectral imaging channels placed into a 3D spectral imaging data 

cube. Right: An example reflectance spectrum representing a blue area on the painting. 

 

4.2.2 XRF Spectral Imaging & Pre-Processing 

Ma-XRF data was recorded for using a Bruker M6 “Jetstream” XRF scanner (Bruker, 2023). The 

M6 used a spot size of 230µm for data collection, with a sampling step of 200µm and a dwell 

time of 25ms. Voltage and current were set to 50kV and 600mA, respectively. MA-XRF data 

cubes consisted of a 2D image where each pixel possessed a 4096-channel ranging 0.35-40keV. 

Therefore, the XRF spectral data cube had a total size of 276x570x4096 pixels, a total of 157320 

spectra with 4096 channels each (Fig. 4.2). 

 

Fig.4.2 A representation of the XRF spectral imaging data cube collected by the Bruker M6, with an example 

spectrum extracted from the blue area of the painting. 

 



187 

 

Pre-Processing 

The clustering of MA-XRF Spectral Imaging data using SOMs had already been demonstrated 

by the ISAAC research group for a painting in this Peruvian collection before in (Kogou et al., 

2021). The process in that investigation involved a prior pre-treatment step where a sum image 

was recorded for each detected XRF spectral line by adding together the 5 most intense channels 

around the top of each peak after applying a spatial median filter. This was useful in this 

investigation as it allowed for dimensionality reduction to be performed on the XRF data while 

maintaining the core information useful for the clustering of separate elemental mixtures, it also 

in turn would have increased the accuracy of SOM, due to better SNR and because in general for 

any clustering using Euclidean distance, fewer dimensions is preferable. There were however 

some concerns which prompted further research into how clustering may react with different pre-

processing approaches, especially those which can be automated by a computer to allow for the 

detection of certain elements which a human may miss, such as in the detection of trace elements. 

In addition, the use of Euclidean distance as a standard metric for SOM based clustering meant 

that the use of sum images may result in unfairly weighted clustering results, where clusters 

prioritise small relative differences in strong XRF peaks over large relative differences in weak 

peaks. To counteract such issues, a more automated XRF pre-processing algorithm was designed 

to transform the full XRF spectral image into a smaller set of elemental spectral bands which 

could be used for clustering. The pre-processing of XRF data involved: 

1. Calculating and subtracting the XRF background continuum from the spectral cube mean 

spectrum. 

2. Finding all XRF peaks in the continuum subtracted spectrum. 

3. Creating elemental spectral bands by merging the energy channels within the FWHM of 

each peak into mean images before applying a 3x3 spatial median filter.  

 

Continuum Subtraction 

The removal of Bremsstrahlung background radiation within XRF data is an important part of 

processing as it can make the procedure of identifying elements, and therefore image channels, 

much easier if there is no underlying background feature to skew the heights of different energy 

peaks. Therefore, a reliable and accurate method of performing continuum subtraction on XRF 

mapping data was applied to be able to separate the background from the channels required for 

clustering. The technique decided upon to perform the subtraction was peak stripping, a 

commonly used method of estimating the background continuum which compares the counts in 

an XRF channel against the mean of its neighbours to remove structures, such as peaks or noise, 

in a spectrum. The process is covered in detail in (Van Grieken & Eds, 2002) the discussion 

continues further to cover how the application of smoothing algorithms and large numbers of 
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iterations can change the efficiency of the algorithm, where some options may provide more 

accurate results. As it is unsure of how well these different peak stripping methods may be applied 

onto data recorded by the Bruker M6, a short investigation was carried out to investigate three 

different approaches: Peak Stripping, Square Root Peak Stripping, and Log peak stripping. 

This investigation for P80001-8 was performed by comparing an ideal ‘reference continuum’ 

calculated by a human researcher against the automated peak stripping results. A value for the 

standard deviation, 𝜎, between the reference continuum and the peak stripping continuum was 

calculated over increasing numbers of iterations. Standard deviation was derived from the 

difference between each respective peak stripping approach and the manually selected continuum 

for multiple iterations, of which the calculations are as follows: 

 

𝑓(𝑥)𝑖 = 𝑚(𝑥) − 𝑝(𝑥)𝑖     ,   𝜎 =  √∑ ( 𝑓(𝑥)− 𝑓(𝑥)̅̅ ̅̅ ̅̅  )
2𝑁

𝑖=1

𝑁
 

 

Where 𝑚(𝑥)𝑖 is the manual continuum subtracted spectrum, 𝑝(𝑥)𝑖 is the peak-stripping 

continuum subtracted spectrum for iteration 𝑖 and 𝑁 is the number of XRF channels used. The 

changes in standard deviation were recorded for iterations between 1-10,000, with the standard 

deviation decreasing rapidly before levelling off and reaching a point of convergence, as can be 

seen in Fig. 4.3.  The results from this test clearly show that the square root and log peak stripping 

approaches both offer an improvement over the ordinary peak stripping method. As it is difficult 

to distinguish which of the two improvements are best, a mean of the standard deviation was 

calculated for all the datapoints, allowing for a quantitative comparison which finally showed log 

peak stripping to be the best technique, though only by a small amount, as seen in the table in Fig. 

4.3. 
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Fig.4.3 Graph showing the standard deviation convergence of three peak stripping techniques used for performing 

continuum subtraction. A table is included within the graph which shows the Log peak stripping to have the smallest 

deviation. 

Regardless, for all techniques the curves clearly show that the standard deviation always decreases 

as iterations increase before reaching a position of convergence, suggesting that the peak stripping 

method will always eventually reach a point where no significantly better fitting is made to a 

continuum that is close to a human fitted reference continuum. Furthermore, as the process of 

performing log peak stripping is not too computationally expensive for a single mean XRF 

spectrum, it is never a problem for high numbers of iterations to be used. After the testing of the 

techniques, the process was applied onto the mean XRF spectrum to create a new continuum 

subtracted spectrum (see Fig. 4.4) so that peak fitting could be performed more easily.  

 

Fig.4.4 Graph showing the original mean spectral imaging XRF spectrum (in blue) compared to the continuum 

subtracted XRF spectrum (in orange), after log peak stripping. 
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Peak Fitting & Spectral Energy Band Creation 

After the removal of the background continuum, different peaks for the entire XRF cube are found 

by detecting turning points and troughs in the first and second derivatives of the spectrum 

respectively. The process finds potential peak positions, checks the surrounding data points if a 

negative polynomial can be fitted (acting as the top of the peak), and stores peak positions for 

later processing, allowing for the detection of all energy peaks including trace elements, which 

may otherwise be missed if using XRF data with low signal to noise spectra or the more 

commonly used single element maps. After the peaks are found, gaussian curves are fitted to the 

surrounding data about each peak position and a FWHM is calculated so that the number of 

channels used to create new XRF energy bands scales with the width of the of the peak. The 

channels encompassed by the FWHM for each peak are subsequently combined into a single mean 

XRF energy channel, which can then be used in clustering in the same way a single PRISMS 

channel would be in the VNIR. In total for P80001-8, 29 individual XRF spectral channels were 

created from regions which possessed clear peaks (as seen in Fig. 4.5), covering many different 

chemical elements. For one of the channels at ≈7.82keV, the element could not be defined as it 

may instead correspond to an instrumental sum or escape peak as mentioned in chapter 1, though 

when attempting to calculate which, no strong signals corresponded well. Following this, the 29 

channels were combined into a single XRF spectral imaging data cube, which was then applied 

to the automated clustering code covered in chapter 2, the results of which can be seen in section 

4.2.5 of this chapter. 

 

 

Fig.4.5 Collection of images representing the 29 different energy channels created after performing XRF pre-

processing. Each channel is associated with an elemental peak except for E=7.82keV, where a peak was found but 

could not be associated with any known element, suggesting it may be instrumental. 
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4.2.3 Image Registration 

Prior to performing multimodal clustering, VNIR, Colour, and ma-XRF spectral imaging data 

first needs to be registered so that the pixel size and resolution is comparable between the 

techniques. As the resolution for the ma-XRF was lower than other techniques, all VNIR images 

were scaled down to the same resolution as the ma-XRF maps. This was done by manually 

selecting common feature points between the sRGB image and mean ma-XRF image and using 

an affine transformation to perform a geometric transformation to the data that was also applied 

to the PRISMS spectral reflectance data and CIELAB data so that clustering could be performed. 

This registration was performed in MATLAB using the ‘fitgeotrans’ function, which is closely 

related to two papers, notably Goshtasby, (1986, 1988). A brief diagram illustrating the results of 

the registration along with the anchor points chosen can be seen in Fig. 4.6. 

 

Fig.4.6 Representation of the image registration process performed to transform VNIR spectral and colour data 

(Left) down to the same resolution and pixel size as XRF (Middle). Crosses mark the anchor points used for the 

geometrical transformation of data, with a final RGB image showing the transformed data (Right). 

 

4.2.4 VNIR Clustering Results 

Following the registration of the VNIR spectral imaging data to the resolution and pixel size of 

the XRF data, the method outlined in chapter 2 was used to perform automated clustering for the 

P80001-8. For the clustering, parameters of colour difference, ∆𝐸𝑎𝑏
∗ =5, and standard deviation 

range, σVNIR = 2.5, were used as they were deemed adequate to ensure that the VNIR clustering 

was performed without any misclustering of colour or spectra. After undergoing filtering to 

remove redundant clusters, a total of 42 unique clusters were found over the painting, accounting 

for differences in pigment concentration and layering etc. A false colour cluster map generated 

prior to filtering can be seen next to the sRGB of the painting in Fig. 4.7, where, as expected, 

many redundant clusters appeared to exist in large numbers due to edge effects caused by artefacts 

resulting from the change in resolution during image registration. After performing clustering on 
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the VNIR data, the cluster maps produced can be used as inputs into the multimodal clustering 

technique, which is covered in detail in section 4.2.7. 

 

Fig.4.7 Images showing the RGB image (left) of P80001-8 next to the false colour cluster map of the VNIR spectral 

data (Right) created after performing automated clustering. 

 

Fig.4.8 Images showing the RGB image (left) of P80001-8 next to the false colour cluster map of the XRF spectral 

data (Right) created after performing automated clustering. Note: That the paper and yellow/green regions are 

clustered together due to their spectral similarity in the XRF. 
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4.2.5 XRF Clustering Results 

Clustering using the 29-band pre-processed XRF spectral imaging data cube produced a total of 

72 unique clusters, possessing many variations in intensities for XRF peaks in different 

combinations. For this clustering, a standard deviation for XRF, σXRF, of 2.5 was used, as this 

allowed for a set of clusters to be made where any smaller numbers of standard deviation did not 

significantly change any clustering results. Again, a false colour cluster map showing the 

clustering results prior to filtering can be seen next to the sRGB image for P80001-8 (Fig. 4.8). 

By observing this cluster map next to the sRGB image, the limitations of relying on only XRF 

alone to perform clustering can be seen clearly. Many pigments used in different paintings or 

other artistic works use only organic materials, which XRF would be unable to distinguish 

between as the detection limit for chemical elements typically only reaches as low as Silicon (Si) 

in air and does not cover the common components for organic materials such as oxygen, carbon 

or hydrogen. This is clearly demonstrated in the Peruvian painting where the background paper 

has been clustered together with the yellow and green parts of the man’s shirt, which when 

observing the XRF spectra (as shown in Fig. 4.9) is clearly due to the two different coloured 

regions having the same elemental composition, even though a clear difference can be seen in the 

colour images. 

 

Fig.4.9 True colour cluster map of the yellow, green, and paper regions (right) which have been clustered together 

due to possessing the same XRF spectrum. Spectra for all three regions can be seen in the graph on the left-hand side 

of the figure. 

 

Like with the VNIR clustering results outlined during chapter 3, using spectral imaging in only a 

single domain limits the ability of performing clustering for the purposes of pigment 

identification. This further justifies our need for multimodal clustering, especially when we 

consider that the yellow, green, and paper regions can all be clearly separated in the VNIR, as 

was demonstrated through the false colour map seen in Fig. 4.7. 
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4.2.6 Multimodal Clustering Procedure 

To perform multimodal clustering, each individual technique first must be clustered individually, 

to produce output cluster maps which can subsequently be used as a new input. The basic idea for 

the process is to perform repeated clustering using the overlaying method, as mentioned in chapter 

2, but using all modalities of data instead of just VNIR reflectance and CIELAB. As the different 

spectral imaging data cubes produced from each modality were registered to each other before 

being clustered individually, the different cluster maps can be overlaid easily and merged to 

produce a unique set of clusters ranging from 1 to N where every cluster should possess its own 

unique CIELAB L*a*b* vector, VNIR reflectance spectrum, and XRF energy spectrum, as 

demonstrated by the diagram in Fig. 4.10. 

 

Fig.4.10 Basic graphical representation of the map overlay clustering method originally introduced in chapter 2, 

however this time implemented for automated clustering in three different techniques: PRISMS VNIR, CIELAB, and 

XRF. 

 

After map overlay repeated clustering has been performed covering all three modalities, binary 

median filtering and hierarchical merging are performed once again to ensure that redundant 

clusters with low populations or sparse distributions are removed, and that everything is properly 

merged within the user defined parameters of σXRF, ∆𝐸𝑎𝑏
∗ , and σVNIR. For performing multimodal 

merging and removal, it is generally wise for the same user parameters to be used as were for 

each individual technique, however it has been seen that with the complementarity of each 

technique creating more refined clusters, larger parameters can sometimes be used without 

sacrificing accuracy. Finally, after hierarchical merging has been completed, the output data is 

produced, which again includes cluster maps, false colour cluster maps, and the statistical data 

for all techniques which is required for analysis and further grouping. 

This full process of multimodal clustering is in theory able to accept as many different modalities 

as possible, and only has requirements of accurate image registration across techniques 
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beforehand. Therefore, in a scenario where many more techniques may be required for a full 

holistic analysis of a painting, such as in section 3, this methodology should continue to work, so 

long as each individual modality has been clustered correctly in the prior stages. 

 

4.2.7 Multimodal Clustering Results 

The produced XRF and Colour/VNIR cluster maps underwent the multimodal clustering 

procedure using the same parameters as were used for each individual modality: where σXRF=2.5, 

σVNIR=2.5, and ∆𝐸𝑎𝑏
∗ =5. After the process was completed the total number of clusters found within 

the multimodal cluster map was 114. A false colour representation of the 114 clusters can be seen 

in Fig. 4.11, with the removed redundant clusters coloured in black. 

 

Fig.4.11 Images showing the RGB (left) of P80001-8 along with the resulting false colour cluster map produced after 

performing multimodal clustering, with redundant clusters removed and shown in black (right). 

 

As expected, the final multimodal cluster map has contributions from both the XRF and VNIR, 

with each complementing the other in different ways. One such example showing how the 

complementarity of the techniques provides benefits over XRF alone is by monitoring the cluster 

which previously had joined the background paper with the yellow and green spectra on the shirt. 

Now, with the application of multimodal clustering, the separation of the clusters is performed 

due to adding the reflectance and colour information, as clearly shown in the false colour image 

seen in Fig. 4.10. Under close examination there are also other regions in which the same benefits 

to XRF can be found, such as for the blue trousers or the shaded parts of the hat, where more 
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correct clusters are formed due to the contribution of the VNIR spectral imaging. These 

improvements are almost expected, as differences in colour can easily be identified by eye, 

however it does provide a greater level of convenience and confidence in results to have all 

available information confirming the same distribution of materials represented in a single image. 

Multimodal Clustering of Paint Layers 

The full advantages of multimodal clustering however are better demonstrated when analysing 

clusters in the other direction; observing what additions XRF can provide to VNIR reflectance. 

One such example is the separation of cluster regions on the man’s brown hair in the painting, 

where even though the spectral reflectance and colour are both identical, a separation of clusters 

exists due to the changes in the layering of the paints. These changes in paint layering can be 

identified in the XRF spectral data cube for the separately clustered brown region due to the 

presence of Mercury (Hg), as shown in Fig. 4.12, suggesting that a reddish pigment used for the 

skin, most likely vermillion, exists under only a small part of the brown hair. This presence of 

vermillion cannot be detected in the VNIR alone as demonstrated by the almost identical VNIR 

spectra, showing that such a result is only possible through the multimodal clustering of the two 

techniques. 

 

Fig.4.12 Representation of multimodal clustering identifying paint layers by incorporating XRF information into the 

PRISMS VNIR results. 

 

Signal-Noise Ratio Improvements 

In general, automated clustering provides mean spectra for different regions which will be of a 

much higher signal to noise ratio (SNR) than either a single pixel or even a small group of pixels 

which could be manually extracted from a spectral imaging data cube for analysis. This is 

obviously an improvement in general for performing any form of analysis, however, an additional 
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advantage of this for performing pigment identification is that small, subtle spectral features in 

low SNR regions can be revealed when at both the pixel level and in the individual elemental 

maps they would not be discernible. The multimodal clustering results illustrate this happening 

in multiple areas over the painting where the original pixel level XRF signal is too weak to be 

able to clearly separate small changes in elemental composition.  

One good example is for green parts of the shirt which in XRF clustering alone were automatically 

grouped together with the background paper and organic yellow. For this region, manually 

extracting groups of pixels clustered in only the XRF showed that the spectra were identical, as 

already seen in Fig. 4.8, and it was therefore concluded that the clustering had performed well in 

joining these regions together. However, after performing multimodal clustering, the resulting 

higher SNR spectrum for the green parts of the shirt, which is only achievable through the 

contributions of the VNIR data, revealed a small difference in elemental composition between the 

green and the paper which was not discernible previously. This can be demonstrated clearly in 

Fig. 4.13, which revealed a more intense peak for iron (Fe) which, prior to multimodal clustering, 

could not be detected. 

 

 

Fig.4.13 Representation of the mean cluster spectrum for the now correctly clustered green shirt pixels highlighted in 

the LHS cluster map. The higher SNR spectrum in the bottom RHS now illustrates a clear difference in material 

which was not previously detectable. 

This new outcome and the previously covered results clearly demonstrate how beneficial 

performing multimodal clustering may be in future studies, or even when returning to previously 

analysed items. For example, in the context of studying P80001-8, it was previously ambiguous 

as to which materials were used to create the green pigment on the shirt. However, the provision 

of this higher SNR XRF data allowed for more accurately guided pigment identification to be 

performed, where for this green area it was only after understanding that a higher presence of iron 
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existed that evidence could be found to suggest that the green was in fact a combination of the 

yellow and blue already used within the painting, shown in the following section 4.2.8, where 

pigment identification is performed for the painting. 

 

4.2.8 Material & Pigment Identification 

With the clusters produced from the multimodal clustering, further grouping of some clusters was 

performed using both the VNIR and XRF spectra, to allow for basic material and pigment 

identification to be carried out for different regions. 

Paper 

Paper cannot be analysed fully using VNIR as there are no clear features which are indicative of 

specific materials. However, using XRF shows a presence of multiple different pigments, giving 

an indication to the sizing materials used in the preparation of the paper, as can be seen in Fig. 

4.14. Some of the elements contained within the paper include Sulphur (S), Potassium (K), 

Calcium (Ca), Barium (Ba), Chromium (Cr), Manganese (Mn), Iron (Fe), Nickel (Ni), Copper 

(Cu), Zinc (Zn), and Lead (Pb).  

 

Fig.4.14 RGB and True colour cluster map (left) of the paper in P80001-8, alongside the mean XRF spectrum of the 

same cluster. Instrumental peaks are highlighted in red. 

 

This many metals being detected could suggest that the paper making process used significant 

amounts of contaminated water. This may also explain the large concentrations of Chromium 

which exist only in the paper, as chromium contamination can be common in modern and 

historical Peruvian water sources (Butler, 2018; Uglietti et al., 2015). 
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Black & Grey Colours 

Over the whole painting there are varying shades of grey or black used to create shadowing effects 

on the paper or over other pigments, but also to paint the boots of the man. For dark materials, 

VNIR spectra recorded using PRISMS are not particularly useful, as in the 400-880nm range 

there tends to be no clear spectral features in most black pigments. Furthermore, as the SNR of 

most black areas will be low due to its high absorbance, pigment identification is not possible 

when using Kubelka-Munk. Consequently, the identification of the black pigments must be 

performed using XRF data, though with multimodal clustering this can be done with higher SNR 

mean cluster spectra to aid in the identification of both high concentration and trace elements. 

The VNIR and XRF spectra representing a cluster for the black shoes can be seen in Fig. 4.15. 

The elemental composition in the black and grey includes XRF energy peaks for lead (Pb) and 

Sulphur (S) which could suggest the use of black lead sulphide, also known as galena, which 

would align well with their being many modern mines which produce Galena in Peru today 

(Gamarra-Urrunaga et al., 2013; Mindat, 2023). 

 

Fig.4.15 True colour cluster map (Left) of the black/grey boots. On the right-hand side are the associated VNIR 

spectrum, and XRF spectrum which shows clear presence of lead (Pb) and sulphur (S) corresponding with black lead 

sulphate. 
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Brown Colours 

Multiple areas on the painting could be considered a region which used an actual brown pigment 

as opposed to adding layers over yellow. These include the cane, the darkest shades towards the 

bottom of the shirt, but most clearly the hair. An investigation into the mean cluster XRF spectra 

taken for the brown hair, along with some other regions over the rest of the painting, primarily 

show increases in the peaks for iron (Fe), Manganese (Mn), lead (Pb), Sulphur (S), and some 

mercury (Hg) suggesting the use of ochre or potentially umber mixed with some of the previously 

mentioned black pigment to darken the colour further, with low concentrations of vermillion laid 

underneath (see Fig. 4.16). 

 

 

Fig.4.16 Top: Graphs showing the Kubelka Munk mixture for the brown areas. Bottom: images showing the cluster 

maps (left) for the brown hair and the corresponding XRF spectra comparing the hair and paper (right). 

 

The VNIR spectra provided a dark spectrum which was difficult to fit exactly to any one pigment, 

however a KM mix of the paper, brown ochre and umber provided a virtual mixture which 

matched well with most parts of the unknown spectrum, except for the wavelength band at 550nm. 
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Flesh Tones 

As a continuation from the multimodal clustering results, it was shown that an increased presence 

of mercury (Hg) and sulphur (S) could be detected on the head of the man in P80001-8. After 

clustering, it becomes clear in fact that the same Hg and S peaks can be detected in all the regions 

where the man has exposed skin, such as the hands, suggesting that vermillion is used as one of 

the main pigments in creating flesh tones. When monitoring the VNIR spectra of the different 

flesh tones, three distinctly different flesh tone clusters can be detected which have changes in 

VNIR reflectance and XRF spectra. The first is the orange parts of the face and hands which are 

used as highlights on the brow, nose, and chin etc. The second is the brown-orange parts of the 

face, which tend to be used as the neutral skin tone of the character. The third is the browner parts 

which act as shadowing on the face, neck, and hands. The XRF spectra for all three clusters can 

be seen in Fig. 4.17, and clearly shows that the three regions have the same elemental composition 

with Hg, S, Pb, Fe, and Mn being detected, suggesting the use of vermillion and ochre, along with 

the black lead pigment used in various areas of the painting. 

 

 

Fig.4.17 XRF spectra showing the elemental composition of different brown areas in comparison to the paper. 

 

To confirm the presence of the different pigments, KM fitting was used to determine the most 

likely mixtures used for the three clusters, the results of which can be seen in the following 

sections.  
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Flesh Tones – Brighter Face 

For the brighter face, a combination of vermillion and yellow ochre could be used with the paper 

to create a virtual KM mixture that had a good fit to the mean cluster VNIR spectrum (see Fig. 

4.18). The only deviation for this mixture was at approximately 800nm where the fitted spectrum 

decreases in reflectance, but the real spectrum does not. This could be due to impurities or perhaps 

could be a result of the pigment mixture becoming more transparent towards the NIR. 

 

  

Fig.4.18 True colour cluster map (left) of the brighter parts of the face with the associated mean cluster spectrum and 

fitted Kubelka-Munk modelled mixture using vermillion, yellow ochre, and paper. 
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Flesh Tones – Brown-Orange Face 

For the more orange/light brown shades of the face a mixture of vermillion and yellow ochre were 

used again as components in the new mixture, however this time brown ochre was added to the 

mixture as well. This produced a KM mixture which fitted well with the brown-orange face, 

however it too deviated from the unknown spectrum at around 750nm. An alternative mixture 

which used the brown hair spectrum in place of the brown ochre was used and provided a better 

fit with deviation only at 800nm, suggesting the same mixture was used for shading the face (Fig. 

4.19). 

 

Fig.4.19 True colour cluster map of the orange-brown parts of the face (Left) along with two different Kubelka-Munk 

fitted mixtures for identifying pigments (Right). The better fitting mixture can be seen on the far-right hand side which 

used the brown hair as a component in mixing. 
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Flesh Tones- Brown Face 

The darkest parts of the face were shaded with much darker brown than the rest, which could 

either suggest that more layers of brown paint were used, or a darker mixture was applied directly 

over the painting. As the brown pigment added to the face was most likely a brown ochre, the 

same used on the hair, the same mixture used for the orange-brown parts of the face was used 

again, with the brown hair implemented into the mixture instead of brown ochre (Fig. 4.20). The 

resulting mixture is a good fit for the darker shades of the face and implies again that the brown 

is likely applied over the top as an additional layer. 

 

 

Fig.4.20 True colour cluster map (Left) of the brown parts of the face with the Kubelka-Munk mixture modelling 

graphs (right) showing that a mixture of paper, vermillion, yellow ochre, and the brown hair, fits well to the unknown 

spectrum. 
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Yellow Colours 

As illustrated with the XRF clustering, the yellow regions of the painting were noted to consist of 

only organic materials, as they were grouped together with the paper in the produced cluster maps. 

Using KM fitting, different mixtures of organic pigments with paper were fitted to the VNIR 

spectrum of the yellow areas, however for this particular case the best fitting pigment found to 

follow the yellow the closest was gamboge, which when mixed with the paper would provide a 

spectrum that closely resembles the painted yellow regions, as shown in Fig. 4.21. It is important 

to note however that this does not imply that the organic yellow is gamboge, but only that from 

these results one can clearly see it is likely to be an organic yellow with few spectral features in 

the VNIR, which at least rules out some other pigments. The only deviation to the KM fit was 

where wavelength, λ, is greater than 750nm, where the fitted spectrum reduces in reflectance, but 

the real spectrum does not. However, due to the transparency of many organic yellows towards 

the NIR, it makes sense that the real reflectance spectrum would increase as the increasing 

reflectance of the paper would dominate. 

 

Fig.4.21 Images (left) showing the RGB and true colour cluster map of the yellow regions after multimodal clustering 

with KM Mixture modelling graphs (Right) showing that a mixture of gamboge and paper fits well to the organic 

yellow VNIR spectrum. 

As it is possible that the yellow used could be any number of organic pigments complementary 

spectroscopic data could provide insight into the pigment used. Unfortunately, this data was not 

collected so a definitive identification cannot be performed. This does however show that in future 

studies, multimodal clustering may provide further benefits if more than just XRF and VNIR are 

used. For example, if techniques such as Raman mapping or FTIR mapping were also produced 
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for P80001-8, the separation of specific organic yellow pigments could have been performed 

during the multimodal clustering stages. 

Dark Yellow Colours 

As it was suspected that the dark yellow regions seemed to be created by applying varying 

amounts of a darker shading pigment over the top of the organic yellow, the organic yellow cluster 

itself was used as one of the reference spectra to investigate how well the unknown spectra would 

compare with different virtual KM mixtures. When monitoring the XRF spectra for some of the 

darker yellow clusters on the shirt, increasing concentrations of manganese (Mn) and iron (Fe) 

can be detected as the shades become darker, suggesting that multiple layers of a brown ochre 

may have been applied over the top of the organic yellow, furthermore, an increased presence of 

lead (Pb) also provides evidence for the addition of the black, lead containing, pigment used 

elsewhere in the painting. KM virtual spectra were produced to investigate the different shaded 

regions, where it became clear that a mixture of the inorganic yellow with both yellow ochre and 

brown ochre would create a reasonable fit for different darker yellow shades, as shown in Fig. 

4.22. Once again, the KM mixture deviates from the unknown spectrum at λ>750nm, which could 

be expected if the organic yellow pigment used in the mixture is transparent towards the NIR. 

 

Fig.4.22 Top: True colour cluster maps (left) showing the dark yellow clustered areas of the painting next to the XRF 

spectrum (right) of a dark yellow area showing the presence of manganese, iron, and lead. Bottom: Graphs showing 

the Kubelka-Munk mixture use to create a good fitting VNIR virtual spectrum. 
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Blue Colours 

The different blue clusters were joined together into a single group to perform pigment 

identification, as all the spectra possessed the same broad absorption features. The VNIR 

spectrum of the differently shaded blue trouser clusters all possessed spectra which fitted 

reasonably well with a KM mixture of Prussian Blue with paper. The only deviations from this 

were for some of the darker, low signal to noise areas where it is likely that a thicker application 

of Prussian blue was applied to paper, sometimes with the addition of another dark colour similar 

in elemental composition to the black pigment used. This mixture and its darker variation are 

supported by the mean XRF spectrum which show peaks for iron (Fe) in all the blue regions, with 

further increases in iron and lead (Pb) in the toward the darker blue areas. The spectra associated 

with the blue trousers can be seen in 4.23. 

 

 

 

 

 

Fig.4.23 True colour cluster maps for the differently shaded blue areas accompanied by the Kubelka-Munk 

mixture (Top Right) which fitted well to the lowest concentration blue. The corresponding XRF spectrum (bottom 

right) is also presented which indicates the presence of lead (Pb) and iron (Fe). 
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Green Colours 

Due to the increase in SNR spectrum that was made available by using multimodal clustering, 

pigment identification for the green region could be performed in a more informative way. Now 

that the presence of iron was confirmed (as shown in Fig. 4.24), the materials used in creating the 

green pigment did not have to be inorganic, and therefore KM mixtures with iron-based pigments 

could be tried with supporting XRF spectra.  

 

Fig.4.24 Images showing the newly clustered green areas (Left) after multimodal clustering next to the higher SNR 

green XRF (Right) spectrum which now detects iron (Fe). 

As the most likely blue pigment used in the painting was Prussian blue, and the most likely yellow 

being an organic pigment such as gamboge, a KM mixture using the combination of the two, 

which can often be commonly referred to as Hooker’s green, was used to investigate the unknown 

green pigment. The KM fit for this can be seen in Fig. 4.25 and shows a closely matching spectrum 

that begins to deviate at λ>700nm. This may be expected due the applied paint becoming more 

transparent towards the infrared but can be difficult to model as KM theory begins to produce 

invalid results for transparent media. 

 

 

Fig.4.25 A Kubelka-Munk mixture showing that paper, Prussian blue, and gamboge used in as components creates a 

spectrum which fits well with the unknown green until 700nm, where deviation occurs due to the transparency of the 

paints. 
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To alternatively test if the mixture used the same materials present elsewhere on the painting, the 

two mean cluster spectra for the paper, yellow shirt, and blue trousers, were instead combined 

using the KM mixture model, with the hope that using the spectra directly from the clustering 

itself would account for the transparency in the NIR, as the paper substrate used would be identical 

between the reference and unknown spectra. The result for this KM fit can be seen in Fig. 4.26, 

which provides convincing evidence that the two colours were indeed used to achieve the green 

colour seen in the shirt. 

 

 

Fig.4.26 A Kubelka-Munk mixture showing that using extracted spectra for the yellow, blue, and paper on P80001-8 

can be used to create a well-fitting mixture to the unknown green, suggesting the same pigments are used. 

 

 

4.2.9 Additional Results & Comments 

VNIR Clustering – Detection of Dyes 

In addition to the multimodal clustering results seen in the previous subsections, clustering was 

also performed on the PRISMS spectral imaging data prior to image registration, so that an 

investigation into the painting could be performed at a more optimal spatial resolution. 

Performing clustering on this data before registration and using a σVNIR=1 at the repeated 

clustering (with the same merging: σVNIR=2) allowed for the identification of one other pigment 

not mentioned in the previous sections. On the cheek and lips of the man’s face there was an 

additional spectrum, which had previously been combined into the main cluster for the face, that 

was suspected to be a red dye. This is a common practise in many paintings and is used to add a 

‘rosiness’ to the face of human characters to produce a more lifelike appearance, so is not 

surprising to find under closer observation.  
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Fig.4.27 RGB Image and representative pixels (Left) which possess a VNIR spectrum which can be estimated to be a 

mixture of rose madder over the top of the paint on the face when using Kubelka-Munk mixture modelling. 

 

Extracting the spectrum and fitting rose madder as an addition to the main brown/orange cluster 

for the face produced a virtual spectrum which was a good fit to the unknown red dye spectrum 

(see Fig. 4.27). This was an interesting result to find, as typically it would be expected that red 

dyes would only be well distinguished when using a higher spectral resolution, however in this 

scenario such a distinction can be made by the using the clustering algorithm with PRISMS data 

possessing a resolution of ≈50nm. This suggests that in some circumstances where fine clustering 

may be required, such as for the identification of dyes, using smaller standard deviation 

coefficients could be advantageous, though at the cost of time efficiency as a disadvantage of 

reducing the standard deviation is that more high precision clusters will be produced. 

VNIR Clustering vs Optimal Microscopy 

While there were no further additional materials found in the painting in comparison to the 

registered data, an interesting note to be made for the clustering results of the original resolution 

data was how well the clustering could be used to clearly isolate spatially small features which 

were difficult to identify in the sRGB. One good example of this is the distinctive clustering of 

faint drawings, where the output cluster maps can more easily isolate a finely drawn region such 

that it possesses sharp spatial features, seemingly with a resolution closer to that of a 20x image 

recorded using a Keyence VHX-6000 digital microscope (Fig. 4.28). 
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Fig.4.28 Close up comparison of the RGB PRISMS image (Left), with the false colour cluster map (centre), and an 

image recorded using optical microscopy (right). Notice that the fine pencil underdrawings are more noticeable in 

the cluster map than the PRISMS RGB. 

 

4.3 Holistic Multimodal Clustering of a Chinese Export Painting 

As demonstrated in the previous section of this chapter, multimodal clustering can be used to 

perform automated complementary clustering between VNIR PRISMS and Bruker M6 XRF 

spectral imaging data, after which analysis can be performed using a single map with clusters 

representing unique VNIR spectra, colour and elemental composition. The results from this 

investigation showed that improvements can be made to the accuracy of the results owing to the 

inclusion of more than one spectral domain, and that previously hidden information as a result of 

low SNR or paint layering can be uncovered during multimodal clustering. 

Many modern spectroscopic techniques have now developed to the point where they have their 

own spectral imaging variants, each of which provides spectral data cubes in different modalities 

which can be brought together to perform a holistic study of the materials in a painting. Therefore, 

the obvious extension from the previous section would be to investigate whether the algorithm 

can handle using even more imaging techniques in a holistic clustering approach to eventually 

allow for the definitive identification of specific materials in artistic works. To investigate such a 

method, different scientific imaging techniques were used to record data for a Chinese export 

painting, which possessed multiple artistic materials to create black, pink, red, purple, blue, 

orange, and green colours. The intention of the different data collection techniques was to perform 

multimodal clustering across, at minimum, VNIR, XRF and ER-FTIR, so that if the algorithm is 

used for many techniques in the future, a thorough identification of both organic and inorganic 

materials could be made. This would provide the information not available previously for the 

Peruvian export painting, where the conclusive identification of organic yellow pigments was not 
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possible, while still providing all the necessary data capable of reproducing similar results to those 

seen before. 

Different spectral imaging datasets were recorded for the Chinese export painting on pith paper 

using VNIR Hyperspectral Imaging, XRF mapping, and ER-FTIR mapping. Complete scans of 

the painting were performed for the XRF and VNIR to undergo multimodal clustering in the same 

way as in section 2 of this chapter, allowing for pigment identification for most materials. For the 

ER-FTIR however, a smaller area was focussed on due to the long collection time. 

 

4.3.1 VNIR Spectral Imaging 

It has been well illustrated that clustering VNIR spectral imaging data can be useful for grouping 

together spectra with similar features, however there are also limitations when performing the 

clustering on data produced by systems with low spectral resolution, such as PRISMS. Therefore, 

it may be beneficial to perform clustering on higher spectral resolution data produced by 

hyperspectral imaging systems so that materials with finer absorption features, such as cobalt blue 

pigments or organic red dyes, can be properly grouped together. In response, a lab-built line 

scanning hyperspectral system was instead used to record VNIR spectral imaging data and 

produced both a colour image and spectral reflectance data cube ranging from ≈400-1000nm with 

a spectral resolution of 4.5nm, which could both be used as inputs into the clustering and 

multimodal clustering algorithms (Fig. 4.29). 

 

 

 

Fig.4.29 Representation of the RGB and 400-1000nm reflectance spectral imaging data cube collected for the 

Chinese export painting. 
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4.3.2 XRF Spectral Imaging & Pre-Processing 

XRF mapping was performed using the Bruker CRONO system, where a full scan over the 

painting was recorded with a spot size of 0.5mm and dwell time of 30ms, with the XRF tube 

configuration voltage and current set to 50kV and 200µA respectively. The total size of the 

collected map was 166x131 pixels (83.419mm x 47.273mm) and took a total time of 647.4 

seconds to complete. A single slice of the XRF spectral data cube recorded from approximately 

10.5keV, and the mean XRF spectrum along with its log plot can be seen in Fig. 4.30 with the 

different elemental assignments. 

 

Fig.4.30 Mean XRF image of the Chines export painting (Left) next to the mean XRF spectrum (Top right) and log 

scaled mean XRF spectrum displaying the identified non-instrumental elements. 

 

In order to perform clustering of the XRF data, the same XRF pre-processing method outlined in 

the previous section of this chapter was used, resulting in 26 mean XRF channels with 

contributions from the painting which were combined into a single XRF energy spectral data cube 

to undergo clustering. The individual channels can be seen Fig. 4.31 after being flipped 

horizontally to match the direction of other data. 
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Fig.4.31 Images showing the individual energy channels for the pre-processed 26 channel deep XRF spectral 

imaging data cube used for clustering. 

 

As can be seen from the individual energy bands created after pre-processing, the data required 

for clustering in the XRF possessed significant amounts of noise, which when clustered negatively 

affected results by creating many single pixel “noise” clusters. During clustering, the filtering 

stages when applied onto the noisy data often meant that much of the painting’s cluster map pixels 

would be removed, so to address these noise problems, a 2x2x1 (2D) spatial median filter was 

applied to the XRF data cube so that each XRF channel would be free of overwhelming salt and 

pepper noise. The median filtered energy bands were manually checked to investigate whether 

any features with fine or sparse structure were lost, and after confirming that this was not the case 

the resulting median filtered spectral imaging data cube was used as the input into the clustering 

algorithm. 

 

4.3.3 ER-FTIR Mapping 

ER-FTIR mapping is a powerful tool for performing the identification of pigments, and pairs well 

with VNIR spectral imaging data, as the visible spectra can provide insights to guide the analysis 

in the IR. If clustering could therefore be performed to automatically group VNIR spectra and 

FTIR spectra together based on the material composition at any given pixel, data analysis would 

be able to be performed much more efficiently, while also providing more definitive pigment 

cluster maps. 
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For this study, ER-FTIR spectral imaging data was recorded using the Bruker Lumos II to produce 

a spectral data cube covering a spectral range of ≈600-6000cm-1. The system uses a single 

objective at 8x magnification with a numerical aperture (NA)=0.6 and spatial resolution of 

250µm. This resolution is similar to that of the hyperspectral imaging, making it useful for 

multimodal clustering between the VNIR and IR as registration would have a minimal effect on 

the data. As ER-FTIR mapping could be very time consuming and prone to problems during data 

collection, only a small area of the painting was scanned using the Lumos. An illustration of the 

recorded ER-FTIR spectral cube can be seen in Fig. 4.32, covering the purple, blue, and green of 

the robe with some of the flesh tones of the face. 

 

Fig.4.32 Representation of the area of the Chinese export painting scanned using the Bruker Lumos II system in its 

ER-FTIR mode. 

 

4.3.4 Image Registration 

Image registration between different modalities was performed using the same method outlined 

in the previous section of this chapter where anchor points were selected for common features 

between spectral images of different techniques before performing an affine transformation 

(ATF) of the data down to the pixel size of data with the lowest spatial resolution. 

VNIR to XRF 

As was already demonstrated in section two, image registration can be performed easily between 

the VNIR and the XRF. Due to the lower resolution of the XRF scanning, VNIR spectral imaging 

needed to be transformed down to the possess the same spatial pixel size and then cropped to 

cover the same regions of the export painting. The output images after applying ATF and cropping 

can be seen in Fig. 4.33. 
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Fig.4.33 Diagram showing the transformation from the original RGB and VNIR spectral imaging data down to the 

XRF dimensions and resolution. 

 

VNIR to ER-FTIR 

For the transformation between VNIR and ER-FTIR, image registration was performed down to 

the ER-FTIR with cropping taking place after registration to ensure that both the pixel size and 

region of interest being analysed between the two techniques was the same. The transformed data 

can be seen in Fig. 4.34. 

 

Fig.4.34 Diagram showing the transformation from the Original RGB and vis-BIR spectral imaging data down to the 

ER-FTIR dimensions, region of interest and resolution. 
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VNIR-XRF to FTIR 

For a more holistic clustering approach, the use of VNIR, XRF, and FTIR together should be able 

to provide most of the information required to perform definitive pigment identification over a 

painting. However, in order to carry out the procedure, the data for all three techniques had to 

first be transformed to be the same pixel size as the XRF and cover the same region of interest as 

the ER-FTIR.  

The biggest difficulty in performing this can be the lack of common features that are visible 

between FTIR and XRF that could be used as anchor points to have the different techniques to 

align perfectly for multimodal clustering. The two techniques did not possess many common 

features, and due to the resolution differences and penetration depth of XRF showing the 

underpaintings on the pith paper painting, it was difficult to pinpoint solid edges which could be 

used for registration. However, as VNIR transformations had already been performed between 

both XRF and ER-FTIR, VNIR spectral imaging could be used as a middle stage to transform 

between the two data types, allowing for more clear features to be found between the XRF and 

FTIR by using transformed sRGB images. The different images after conversion to the FTIR 

region of interest with XRF pixel size can be seen in Fig. 4.35. 

 

Fig.4.35 Diagram representing the transformations for the three different modalities into the same region of interest, 

orientation, pixel size and resolution. 

 

From Fig. 4.35 it becomes clear that some of the smaller details of the painting are being lost 

during the transformation between techniques. This will influence the clustering results, where 

some information may spread to one pixel from neighbouring pixels and cause subtle spectral 

differences. This clearly highlights the need to use spectral data of similar resolutions when 

attempting to acquire all the information, however even with spectral data at this resolution, 
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multimodal clustering should still be able to perform well. After all of the different 

transformations had been performed, the individual techniques then underwent single-mode 

clustering before being joined together for multimodal clustering, the results of which are 

discussed in the following section. 

 

4.3.5 VNIR & XRF Multimodal Clustering 

To gain a full multimodal cluster map encompassing the entire painting, multimodal clustering 

was first performed over just the VNIR and XRF. For this, clustering using the different 

techniques individually was first performed so that the cluster maps could be merged for 

multimodal clustering later. 

VNIR Single-Mode Clustering 

VNIR single mode clustering was first performed by using the entirety of the VNIR spectral 

imaging data, however it was found that due to the low SNR of the spectra captured by the system, 

large variations towards each extreme of the spectral range, caused by low photon counts, 

commonly caused the clustering results to either incorrectly group spectra by their noise, which 

may dominate the spectrum, or would produce so many clusters that results would be 

uninformative. Clustering using the full extent of the VNIR data was therefore not recommended 

for this study, as it would not be very useful for performing any pigment identification for entire 

regions within the painting. This made it very clear that in future studies, signal to noise ratio is 

of paramount importance to ensure that clustering is not affected. It was noted during previous 

sections that clustering results were sometimes still able to separate dyes from other red pigments 

at the resolution seen for the PRISMS spectral imaging system. Therefore, for clustering to be 

performed more accurately for this painting, the spectral imaging data cube was binned into 10 

channels, to mimic the same resolution and format of PRISMS data. This 10 band VNIR data was 

then clustered using parameters of σVNIR=2.5, and ∆𝐸𝑎𝑏
∗ =5, producing a total of 108 unique 

clusters, many of which were redundant but not removed, as filtering the data also resulted in 

removing important information for an image with spatially small features. A false colour cluster 

map illustrating the VNIR clustering result can be seen in Fig. 4.36.  

XRF Single-Mode Clustering 

For the 26 channel XRF spectral imaging data, a total of 51 separate clusters were found when 

using parameters of σXRF=2.5, the resulting false colour cluster map can also be seen in Fig. 4.36. 
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Fig.4.36 Images showing the RGB (Left) alongside the VNIR single mode cluster map (centre) and XRF single mode 

cluster map (right) both in false colour. 

 

Multimodal Clustering 

Using each of the individual techniques, multimodal clustering was performed by using the same 

parameters as were used for the individual modalities. The results of this provided a final cluster 

map which possessed 491 clusters in total, which after filtering could be reduced to 60 (see Fig. 

4.37). While this number of clusters appears more convenient for performing material 

identification, having 491 clusters before filtering meant that many of the pixels in the painting 

that could be useful for pigment ID were removed. 

 

Fig.4.37 Images showing the RGB (Left) alongside the filtered multimodal cluster map representing 60 clusters 

(centre). On the right-hand side are the discarded "redundant" pixels in true colour. 

So, having this many clusters in a small map meant that much of the painting would be filtered 

out when attempting to remove redundant clusters, but without removing redundant clusters the 

task of performing material identification across all the techniques was too complex and not time 

efficient. This meant that either of the approaches would produce a cluster map that is not useful 
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for performing analysis, however, under closer inspection it was clear that the improved accuracy 

gained by performing multimodal clustering had also resulted in many of the mean cluster spectra 

possessing very small standard deviations, meaning that many clusters would not be merged at 

either the repeated clustering or final merging stages if the same parameters used for each 

individual technique were used in the multimodal approach. In response, much larger coefficients 

were given to the multimodal clustering approach to investigate if accurate clusters could be 

created that would not be removed by the filtering procedure.  

Using parameters of σVNIR=4, and ∆𝐸𝑎𝑏
∗ =10, and σXRF=4, resulted in a new cluster map which 

possessed 51 clusters, very similar to the number produced using the previous parameters. 

However, the main difference found in this scenario is that more regions now remained after 

filtering, a good example being the copper-based green decorative leaves on the lower robe, which 

now appeared as a unique cluster after having been removed during filtering previously (see Fig. 

4.38). 

 

 

Fig.4.38 Images showing the changes between the old and new multimodal cluster map after altering the clustering 

input parameters. The previously removed copper green cluster can now be seen in white on the new multimodal 

cluster map and is shown in true colour on the right-hand side. 

 

Of the 51 final clusters, most of the unique pigments found throughout the painting now belonged 

to a specific cluster, and no clear misclustered data had been produced by doubling the standard 

deviation and ∆𝐸𝑎𝑏
∗  coefficient parameters. The result of this test suggests that that even though 

it would be expected for cluster accuracy to lower when increasing the standard deviation 

coefficients and colour difference parameters, multimodal clustering instead can offer improved 

results in some scenarios, likely due to the different spectral domains ensuring accuracy is 

maintained. However, as some regions, such as the red tassels toward the bottom of the painting, 

were still filtered out even at this stage, some of the single-mode cluster maps would still have to 

be used for some regions. Though either way, the new cluster map would still provide useful 
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information for identifying pigments or revealing other properties of the painting such as paint 

layering.  

 

4.3.6 VNIR & XRF & ER-FTIR Multimodal Clustering 

For the smaller area in with which ER-FTIR had also been used, multimodal clustering could be 

performed again by first performing single-mode clustering before combining the different 

techniques into the multimodal approach. 

Single-Mode Clustering 

For the ER-FTIR registered data, single-mode clustering and grouping was first performed on 

each individual modality of spectral imaging for the small region on the robe, for which the 

resulting false colour cluster maps can be seen in Fig. 4.39. Filtering was not used to avoid 

removing information as the number of pixels was already small. 

 

 

Fig.4.39 Representation of data recorded by the three different spectral imaging techniques before and after 

performing single mode clustering. 

 

 

Clustering through each modality produces maps that are similar in structure, however each 

possesses a slight variation on the different classes. For example, VNIR and FTIR show the 

features surrounding the green area of the robe very clearly as separate clusters, however XRF 

does not. In addition, FTIR is more capable of splitting the dark parts of the robe surrounding the 
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green area apart from the darker outlines, which have been clustered together in the VNIR. The 

next step after the single mode clustering involved using the multimodal approach outlined in 

section 2, and used the following free parameter standard deviation and colour difference 

coefficients to provide clusters, k, as follows: 

• ∆𝐸𝑎𝑏
∗ = 2.5, σVNIR = 2; kVNIR = 9 

• σXRF = 2; kXRF = 13 

• Repeated Clustering σER-FTIR = 1.5, Merging σER-FTIR = 3; kER-FTIR = 17 

Many of the different clusters were a result of the interfaces between clustered regions containing 

pixels which were ‘hybrids’ of two different areas due to the low spatial resolution, a result of 

singular pixels possessing signal which would have previously been separated into different pixels 

before image registration.  

Multimodal Clustering 

After combining the maps and performing multimodal clustering across all three techniques, a 

final cluster map was found which possessed complementary information contributed from each 

individual clustering approach, this holistic multimodal cluster map can be seen in Fig. 4.40. 

 

Fig.4.40 Representative before (Left) and after (Right) images of the three techniques being used to generate the full 

and final multimodal cluster map representing unique VNIR, XRF and ER-FTIR spectra. 

After filtering, there were essentially five complete clusters that could be used for material 

identification, covering the paper, green, purple, skin, and small amount of the dark blue, with 

each cluster possessing its own unique spectrum in all three techniques. While this small section 

cannot obviously be used to fully identify every pigment over the entire painting, it can be used 

for more in depth analysis for these five colours which can still be compared with the VNIR & 
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XRF multimodal cluster map, thereby building confidence in which pigments or mixtures are 

likely used over the rest of the painting. 

While the multimodal clustering in this example does not provide any further improvements to 

areas which could have been just as easily be grouped by eye, it is important to reiterate that the 

demonstration of the 3-technique multimodal clustering on this painting was a practice to test if 

the algorithm could be expanded to even more modalities. The result of the holistic multimodal 

clustering producing the same number of clusters as separable by eye shows the validity of the 

technique and opens the door for applying the approach to new, more complex datasets. 

 

4.3.7  VNIR & XRF & ER-FTIR Multimodal Clustering Results 

As the main differences between the clustering performed for the Peruvian export painting in 

comparison to this Chinese export painting are the inclusion of ER-FTIR and improved VNIR 

spectral resolution, the results for this section of the chapter mainly focus on what the holistic 

multimodal clustering offers in addition to that already seen. In this case, this includes the 

clustering and identification of a red dye used in the woman’s face on the Chinese export painting, 

and confident identification of the green pigment in which all techniques were used. 

Red Insect-Based Dye 

For the pink colour used on the face of character in the Chinese export painting, it was suspected 

that a red dye was used. To investigate this, the clustering results showed that the pink areas could 

be described by a single cluster covering both the cheek of the woman and her hand. While the 

XRF for this cluster could clearly demonstrate lead (Pb) peaks indicative of lead white (see Fig. 

4.41), the additional information provided by the high spectral resolution VNIR showed the 

presence of red dye in the mean cluster reflectance spectrum, as opposed to the potential 

implementation of red lead, which would have also been marked by Pb presence in the XRF. 

Using a KM mixture of cochineal carmine with lead white and paper showed that a spectrum 

could be produced that fitted very well to the fine absorption lines of the mean cluster spectrum 

of the pink areas, indicating use of a red insect-based dye (as demonstrated in Fig 4.42). 
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Fig.4.41 XRF spectrum of the pink cluster and paper showing the strong peaks for lead (Pb) indicating the use of 

lead white. 

 

 

Fig.4.42 Kubelka-Munk fit for the pink cheek and hand of the Chinese export painting, where a mixture of paper, lead 

white, and cochineal carmine was found to match well with the unknown spectrum. 
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Emerald Green 

With the three technique multimodal clustering results (3 meaning including ER-FTIR), all the 

spectra necessary to perform a full pigment identification were made available with higher SNR 

than provided if extracting just a single group of pixels across all techniques. This was best 

demonstrated in the identification and analysis of the green areas seen in the painting. For 

example, extracting the mean VNIR spectrum for the upper green area of the robe indicated the 

potential use of a copper (Cu)-based pigment, due to clear absorption features that matched well 

with references for malachite or Verdigris (as shown in Fig. 4.43).  

 

 

Fig.4.43 Two Kubelka-Munk mixture graphs showing that both Verdigris and malachite VNIR spectra could fit well 

to the reflectance spectrum of the unknown copper green within the Chinese export painting. 

 

XRF for the same cluster, however, indicated that there was an additional significant presence of 

arsenic (As) within the area as well, suggesting that the pigment could be a different copper-

arsenic based green instead. By using this information to analyse the ER-FTIR mean spectrum 

for the same cluster in a more informative way, the presence of an ester Cu---C=O-O acetate 

doublet, found at approximately 2386-2500cm-1, could more easily be identified, which indicated 

that the green pigment used was Emerald Green. This can be demonstrated in Fig. 4.44, where 

the VNIR and ER-FTIR cluster spectra can be seen with the region of interest after clustering. 
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Fig.4.44 Graphs showing the VNIR and ER-FTIR spectrum taken from the yellow multimodal cluster representing the 

upper green part of the robe. ER-FTIR confirms Emerald Green due to the ester Cu---C=O-O acetate doublet. 

 

Furthermore, in addition to the identification of Emerald Green, using the multimodal clustering 

results for VNIR and XRF over the entire painting showed additional information which indicated 

that the upper and lower regions were not the exact same. Under closer inspection of the cluster 

maps representing the upper and lower green regions, it was found instead that a difference in 

XRF spectra had separated the two areas due to there being much larger peaks for lead (Pb) in the 

bottom part of the painting at ≈12.61kev and ≈14.76keV than there were at the top. Furthermore, 

the presence of copper (Cu) at the top parts of the robe was much higher than at the bottom.  

This once again showed that multimodal clustering is able to identify a different layering of paints, 

where for the bottom part of the painting, the green area was layered over lead white, which was 

not the case for the upper parts. The associated cluster maps and XRF spectra can be shown to 

demonstrate this in Fig. 4.44. 
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Fig.4.45 XRF spectrum taken from the upper and lower green clusters which demonstrates the presence of 

 

 

 

4.4 Conclusions & Further Developments 

In this chapter, a novel clustering approach adapted from the new clustering methodology outlined 

in chapter 2 was developed and tested for performing automated holistic multimodal clustering 

using CIELAB, VNIR, XRF, and FTIR spectra. The approach developed allows for data fusion 

and clustering with minimal human interaction with data, where the only hands-on requirements 

prior to cluster and pigment analysis are to perform image registration across different techniques. 

This new method was shown to successfully generate cluster maps in which every pixel can be 

associated with a specific pigment, mixture, or layering of paints, allowing for convenient holistic 

analysis by analysing only a single image. 

During the analysis of a Peruvian export painting, the multimodal clustering method was able to 

map the distribution and layering of organic and inorganic pigments, allowing for the combination 

of both VNIR and XRF information into a single map. This cluster map was then used to guide a 

material identification study and offer insight into the painting techniques used by providing clear 

illustration of the distribution of pigments and paint layers. Furthermore, the use of multimodal 

clustering provided mean cluster XRF spectra which much greater signal to noise ratio for areas 
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which had previously been weak in signal strength at the pixel level, thereby allowing for the 

more confident identification of thinly applied pigment mixtures. 

In a second study on a Chinese export painting, the new method demonstrated its ability to 

generate cluster maps in more than two spectral domains. By including ER-FTIR mapping data, 

holistic multimodal clustering could be performed to allow for the complete identification of 

Emerald green. This allowed for much more accurate pigment mixture maps to be created after 

clustering. Furthermore, the same method of fusing XRF and VNIR together continued to allow 

for differences in paint layers to be discovered as well. 

Further Developments 

The success of this investigation opens new questions into how the clustering of other 

complementary techniques may be performed in future. In theory, if each individual clustering 

technique can be performed successfully, the approach of registering and merging multi-

technique cluster maps together can be repeated for any type of data. As high spatial resolution 

imaging can now be performed using a variety of different techniques including short wave 

infrared (SWIR) reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR), 

Raman spectroscopy and more, there may be potential for the clustering approach to be used 

across many different techniques for many purposes. Furthermore, as the methods used were 

initially developed for the analysis of collections, the results shown in this chapter open a new 

avenue for potentially performing holistic multimodal clustering of collections, allowing for much 

more accurate pigment mixture maps to be created for numerous items at once.  

This investigation additionally highlighted the need for higher SNR spectral imaging data to be 

used in general, so that noise does not dominate clustering results for high spectral resolution 

VNIR data and so that better separation of thinly applied pigments can be performed. Therefore, 

in future it would be wise to ensure that high signal to noise data is always recorded as a priority 

over attempts to collect data in shorter amounts of time, as it is more likely that studies of artistic 

materials benefit more with post data collection analysis being performed more accurately. 
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Chapter 5  

Automated Classification of Pigment Mixtures in Large 

Collections 

 

5.1 Introduction 

The previous chapters introduced novel approaches to performing more efficient large-scale and 

holistic studies of spectral imaging data by implementing machine learning-based clustering 

strategies. With the correct parameterisation, the clustering approach introduced in chapter 2 was 

shown to successfully map the distribution of pigment mixtures with different concentrations over 

an entire collection using VNIR spectra, however, when performing the technique, all the spectral 

imaging data required to be analysed must be used as an input into the algorithm at the same time. 

In many large-scale studies, spectral imaging data must be captured in situ and over multiple 

research trips. While one can wait for all the data to be collected for the entire collection before 

performing analysis, it is more advantageous to perform clustering to map the distribution of 

different mixtures as early as possible, as the results from a single portion of the data can direct 

the data collection efforts in subsequent research trips. The implications of this however are that 

the entire grouping and analysis procedure would have to be reperformed again every time a new 

dataset is encountered, which could prove cumbersome in large studies and may seem redundant 

when analysing objects which have already been investigated or may possess the same artistic 

materials already identified and mapped. Therefore, the ideal scenario for continuing large-scale 

studies after performing clustering on an original base of data would be to extend the data analysis 

workflow to allow for the already created pigment groups to be used to automatically identify 

previously analysed mixtures in new unseen datasets. This way, as databases of spectra are built 

having used clustering and Kubelka-Munk informed grouping to acquire vast amounts of training 

data, the same processes would not have to be performed in many different studies on similar 

datasets. 

Machine learning-based classification techniques can be seen as a great candidate for achieving 

this goal, as they have demonstrated, in many different studies, strong performances when 

classifying spectral data. In remote sensing studies, a large variety of classification techniques are 

consistently developed and implemented for the purposes of identifying spectra (Maxwell et al., 

2018), and in cultural heritage, many different algorithms can be used for automated classification 

of pigments such as the Spectral Angle Mapper (SAM) (Chakravarty et al., 2021; Kruse et al., 

1993), Support Vector Machine (SVM) (Polak et al., 2017) or convolutional neural networks 

(CNN) such as the approach covered in Kleynhans et al., (2020). In modern computing and 

analytical approaches there are now many different supervised machine learning-based models 
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which could be used for the purposes of performing pigment mixture mapping and identification 

on unseen data. Additionally, it is not known how well different classification models will 

perform with the spectral imaging data used throughout this thesis. As such, it is important for 

evaluations of different techniques to be performed before performing classification on the British 

Library’s maritime southeast Asian illuminated manuscript collection. 

 

5.2 Training & Validation Data 

When studying the basic use of pigments for a large collection, classification techniques would 

be best implemented to identify different mixtures over many manuscripts, regardless of the 

concentration of the constituent pigments. The most ideal scenario for a large-scale study would 

therefore involve performing the clustering and grouping only once, to identify unique mixtures 

for a single or small group of manuscripts that would allow for good coverage of the expected 

palette. The results of the clustering and grouping could therefore be used as training data for a 

classification approach which would automatically identify pigment mixtures over the rest of the 

collection.  

This approach outlined in this chapter intended to test whether performing pigment identification 

on a small group of manuscripts could allow for the eventual automatic identification of the same 

materials in new objects. This could mean that when performing a large-scale study, new spectral 

data could be introduced into an already trained classification model to either identify already-

seen pigments or reveal new materials which would require further study. Not only would this 

allow for pigment identification to be performed automatically, but such an approach would also 

save time during in-situ research as it would indicate where to focus future efforts in performing 

more in-depth point measurement analysis. Furthermore, as training is performed by using 

clustering results directly from cultural heritage objects, underlying relationships between the 

concentration and application of pigment mixtures in training and new unseen data may be 

uncovered, which would not be the case if pure samples or endmember spectra are used for 

classification. 

While there are many different classification techniques which could be used to achieve our goals, 

it was unknown which model may perform best for the VNIR reflectance spectral data used 

throughout this thesis. Therefore, prior to implementing any classification models for large scale 

pigment identification, different models had to be trained and tested. 

Training Using Javanese Manuscripts 

The training data set was produced by clustering and grouping spectra for multiple Javanese 

manuscripts, ensuring to capture of a variety of the palette used throughout the collection. To 

ensure a sizeable training dataset could be acquired, 90 spectral imaging data cubes taken over 
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four Javanese manuscripts were clustered separately from the rest of the collection using the 

methods outlines in chapter 2. Using a colour difference parameter, ∆𝐸𝑎𝑏
∗ =2.5, and standard 

deviation coefficient, 𝜎𝑉𝑖𝑠−𝑁𝐼𝑅= 2, a total of 5598 unique clusters were found after the automated 

clustering had been performed. After inspection, no misclustered data could be detected except 

for regions where it may be expected, for example, when pixels for gold and yellow painted areas 

were mixed due to their similarities in spectrum and colour, or the same for black text or drawings 

and the black background.  

Using a software-driven approach using Guisi (covered more in Chapter 6), clusters were grouped 

into 14 different unique classes, each with its own unique material or paint mixtures, for which 

some example cluster maps can be seen in Fig.5.1. An additional small summary table describing 

the different classes can be seen in Fig.5.2, where for clarity, classes are given negative numbers 

to show that they are groups. To ensure that an even spread of pixels is used to train different 

classification models, 20,000 randomly sampled pixel spectra were extracted from each class for 

training purposes, with the intention of using 70% of the data for training and 30% for validation 

across different methods, as these values are commonly in use within classification evaluation 

studies for hyperspectral data such as Adelabu et al., 2015; Arjasakusuma et al., 2020; Gao et al., 

2020; Nguyen et al., 2021. Pixel spectra were used as they offered a greater training pool than if 

the mean cluster spectra were used, furthermore, the natural variation and randomness that comes 

with using individual pixel spectra may aid in avoiding overfitting, where models are so precisely 

trained to the training data that they underperform in terms of accuracy on new datasets. 

With the training data sorted into the 14 different pigment mixture groups (or classes), the 

classification could be performed for the entirety of the collection, however as already mentioned, 

an investigation into the best performing classification model had to be performed. 
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Fig.5.1 Resulting pigment mixture maps next to the sRGB images of four different maritime Southeast Asian 

manuscripts at the British Library. Pigment mixture maps were created by grouping clusters created after automated 

SOM-based clustering. 

 

 

Fig.5.2 Table showing the 14 cluster groups which were used as classes to train and validate classification 

techniques. 
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5.3 Evaluation of Different Classification Models 

To evaluate different classification techniques for the automated identification of pigments 

throughout large collections, multiple classification models were trained and validated using the 

previously mentioned control sample of 20,000 spectra per class, extracted from the four Javanese 

manuscripts. The main validation technique implemented when testing different classification 

models was to perform accuracy measurements, where correctly classified validation spectra, 

considered true positives, are compared against the total size of the validation data to provide a 

score as a percentage, where: 

 

% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
× 100 

 

Percentage accuracy was chosen as it can be conveniently calculated independently of whichever 

technique is being used to perform classification, thereby allowing for a fairer comparison 

between techniques. Furthermore, the percentage accuracy can also be calculated for individual 

classes to understand where the model may be performing better or worse, which is often 

necessary as if only a single accuracy value is used to assess the model, the evaluation results can 

be misleading. This is because when monitoring the accuracy over all classes, it cannot be known 

if each is being predicted equally well or if one class is being ignored by the model. For example, 

a percentage accuracy of ≈93% may be achieved in a model with 14 classes if every class has 

100% accuracy except one with 0% accuracy.  

For performing more detailed studies on classification techniques, useful visual understanding of 

how a model performs can be attained by representing the distribution of correctly classified 

spectra in a matrix. This is commonly known as a confusion matrix and is normally built to show 

the predicted values and actual values of classified samples, thereby illustrating not only class 

accuracy, but also where the incorrectly classified spectra are being placed. A basic illustration 

of an example confusion matrix can be seen in Fig. 5.3, which shows a scenario for predicting 

classes on 300 samples evenly distributed over three classes. In this example, class -2, and -3 have 

not been modelled well, with a significant portion of the -3 labelled samples being misclassified 

into the -2 class. 

 



234 

 

 

Fig.5.3 A basic example of a confusion matrix which illustrates a different classification performance for three 

classes. Class -1 performs well, but -2 and -3 underperform. 

 

In the following subsections, different classification models are evaluated after undergoing 

training and validation on the randomly sampled 280,000 spectra after undergoing the 70:30 split 

for training and testing respectively. For each method, different parameters were tested with 

multiple results recorded for each model including accuracy and training time. 

Though there are many different classification techniques that could be used on the reflectance 

data, only a handful were investigated in detail in this study. This was because the small selection 

selected and evaluated here were able to reach high percentage accuracies that were deemed 

acceptable. After a broad evaluation, the best performing models were then tested in greater detail, 

as seen in section 5.3.7, by monitoring accuracies on a larger test data set and analysing both the 

new accuracies and produced confusion matrices. 

 

5.3.1 Supervised Self-Organising Maps 

In previous chapters the unsupervised variation of self-organising maps had already proven to 

work effectively in clustering VNIR spectral imaging data recorded using PRISMS, suggesting 

that the supervised version may also perform well. Previously, supervised SOM had been used 

within the approach taken for the clustering of cave paintings in the Mogao caves, China, in 

Kogou et al., 2020, and while this study primarily used the created topographical neural map 

created by unsupervised SOM to perform supervised clustering, SOM can also be used for 

classification purposes as well. 

The main concern regarding the performance of supervised SOM however is in how the SOM is 

used to classify target data after training. Typically, after training an SOM, each neuron in the 

network is given only a single codebook vector which is compared to target data for the 

computation of the best matching unit. Therefore, as not all constituent members for each class 

are taken into consideration during classification, SOM may struggle to classify spectra with 

different intensities but similar spectral features without performing pre-processing of the data. 

At this final classification stage, further pre-processing is not preferred, as any changes in spectral 
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features or intensity can represent true variation between different mixtures, which ideally would 

want to be maintained at this stage. Therefore, if the number of neurons in the network is kept 

equal to the number of classes (e.g. 14 classes), the neural map may struggle to correctly train an 

accurate representation of the data which can be used for classification. SOM however does 

present a different way in which classification can be performed; if a map is generated that is 

much larger than the number of classes, a better representation of the training data can often be 

created, with multiple neurons possessing slightly different groups of spectra but all 

corresponding to the same class (see Fig. 5.4), as was demonstrated in (Wong et al., 2019). 

 

Fig.5.4 Illustrations of two different self-organising maps used for classification. The left-hand side shows the 14-

neuron large map, and the right-hand side the 14x14 map. 

 

Furthermore, better SOM accuracy may also be achieved by using different distance metrics. In 

the implemented “susi” package in python (Riese et al., 2020), four different standard distance 

metrics can be used to train and classify the neural network: Euclidean, Manhattan, Mahalanobis, 

and Spectral Angle. To understand which may perform best in a basic test using a 14x1 SOM grid 

representing the 14 pigment mixture groups, the different distances were compared against each 

other with increasing numbers of iterations to ensure that convergence was being reached. A 

summary table showing the results of the training and validation for these distance metric tests 

can be seen in Fig. 5.5. 
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Fig.5.5 Table showing the 14x1 supervised SOM accuracy results for different iterations and distance metrics. As 

highlighted in green, Euclidean distance with 10,000 iterations was found to have the highest accuracy. 

 

While Fig. 5.5 shows that Euclidean distance performs the best out of the different metrics, an 

accuracy of only 31.98% after 10,000 iterations is far too low for supervised SOM to be relied 

upon for performing the accurate classification of pigments or mixtures. As it was outperforming 

all the other distance metrics, Euclidean distance was investigated by itself in greater detail to 

understand if the poor accuracy could be attributed to the model still not reaching convergence 

and therefore not being fully trained. To that end, the accuracy for the supervised SOM was 

compared against an increasing number of iterations (Fig. 5.6). 

 

Fig.5.6 Graph showing the change in accuracy with change in iterations for a 14x1 SOM grid. 
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Fig. 5.6 clearly shows that the supervised SOM does not improve greatly in its percentage 

accuracy regardless of the number of iterations used past approximately 10,000, as convergence 

is reached quickly. In fact, the large fluctuations in accuracy after 10,000 iterations indicates that 

as the number of iterations increases, the SOM does not stay stable either, which indicates it may 

not be very reliable for supervised classification. As changing the number of iterations does not 

guarantee a higher accuracy, the results suggest that the only way to improve the accuracy may 

be to increase the size of the SOM grid so that the increased number of neurons can create a better 

model of the training data for classification. To investigate the effect of different SOM grids on 

the accuracy of the model, increasing sizes of SOM grids were created and trained, before being 

evaluated using the validation data. A graph showing the results of this test can be seen in Fig. 

5.7. 

 

Fig.5.7 Graph showing how increasing the number of neurons increases the percentage accuracy of supervised SOM 

up to a maximum of 69.78% at 900 clusters. 

 

The results for this final investigation suggest that supervised SOM is simply not a good enough 

model for performing classification, reaching a maximum of only 69.78% at 900 clusters before 

only decreasing after reaching a position of convergence, implying overfitting began to occur. 

This therefore clearly demonstrates the need for alternative approaches which can better model 

the differences in intensity and spectral shape that can occur due to having different 

concentrations of pigments in a mixture. 
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5.3.2 Spectral Angle Mapper (SAM) 

One of the most widely used classification models in remote sensing or cultural heritage studies, 

the spectral angle mapper (SAM) performs classification between “endmember” reference spectra 

and new unseen spectral datapoints by calculating the angle between the two in feature space. 

Spectra can be assigned to references by calculating similarities using this spectral angle, where 

a smaller angle represents more similar data and the larger the opposite. It primarily functions 

under the assumption that a single reference spectrum, often selected by a user, can be used to 

accurately describe a single type of material over an entire spectral imaging data cube, a design 

which aligns well with the classification approach required for the large manuscript collection.  

For the application of SAM in the classification of VNIR PRISMS spectral imaging data, the 

mean cluster spectra were therefore used as 14 representative “endmembers” with which to 

classify the unseen data. This meant that the resulting classification model would be similar in 

nature to the implementation of the 14-neuron supervised SOM implemented in 5.3.1, where 

SOM instead uses codebook vectors learned from the training data to perform classification. 

While SOM however was only improved by increasing the grid, effectively moving away from 

this same ideology of classification, SAM does not require significant adaptation of any neural 

network to increase accuracy. Therefore, only parameter being altered in this investigation was 

instead the “threshold”, which is the maximum value that an angle can have for an assignment of 

a datapoint to a reference to take place. This threshold value was altered from 0-1 in steps of 0.1 

to understand how the percentage accuracy would change with different parameter setups. The 

resulting table can be seen in Fig. 5.8. 

 

 

Fig.5.8 Table showing the performance of SAM under different thresholds. Note that by a threshold value of 0.5, the 

percentage accuracy had reached convergence, as is highlighted in green. 
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These results clearly show that while the SAM becomes more accurate as the threshold is 

increased from 0, it reaches a position of complete convergence by 0.5, with a maximum accuracy 

of only ≈56.97%. This indicates a worse performance than SOM, which was already deemed not 

accurate enough for performing pigment classification in this way. As a result, it would be unwise 

to use the spectral angle mapper for the classification of pigment mixtures in new unseen data, 

instead implying that a completely new approach must be taken. 

 

5.3.3 K-Nearest Neighbours (k-NN) & Nearest Centroids (NC) 

Two potentially useful classification methods that may perform better than the supervised SOM 

is the k-Nearest Neighbours (k-NN) and nearest centroids algorithms. As the two techniques 

measure similarities between target and trained data by monitoring the proximity of individual 

points or centroids in feature space, they should not fall into the trap of trying to fit unknown 

spectra by using only a single vector in comparison (which in SOM is performed using the BMU). 

The two approaches may therefore be useful for classifying spectral data that has significant 

differences in intensity or shape but might consist of the same materials in different 

concentrations, however, to be sure the two techniques had to be evaluated. 

While NC can be used without any optimisation, k-NN requires parameterisation by selecting the 

number of neighbours. Therefore, the optimal number of neighbours first had to be determined 

for the k-NN approach. To determine this, the model was trained and validated multiple times 

with varying numbers of neighbours in Euclidean space, to understand which number of 

neighbours would produce the highest accuracy. A graph showing the results of this investigation 

can be seen in Fig. 5.9.  

 

Fig.5.9 Graph showing how the number of k-Nearest Neighbours affects the percentage accuracy of k-NN 

classification. 
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The optimal number of neighbours to use the K-NN was 9, and so was kept constant for the 

investigation between both k-NN and k-NC. The two algorithms were tested using the training 

and validation data in its 70:30 split, and like with testing the supervised SOM, different distance 

metrics were also tried for these two approaches, monitoring the accuracy and training time along 

the way. The associated results table can be seen in Fig. 5.10. 

 

 

Fig.5.10 Table displaying the accuracy and time results for performing k-NN and k-NC on the training and 

validation data. 

 

Overall, it is clear from the table in Fig. 5.9 that k-NN outperforms the k-NC approach, and both 

perform much better than the supervised SOM, with the highest accuracy of 98.98% provided by 

using k-NN with the Bray-Curtis similarity. The Bray-Curtis similarity can be calculated by 

taking the absolute difference of two vectors and dividing by their absolute summation, where for 

vectors, 𝑥 and 𝑦, it can be expressed as: 

𝐵𝐶 =  
∑(|𝑥 − 𝑦|)

∑(|𝑥|) +  ∑(|𝑦|)
 

 

A percentage accuracy this much higher than the supervised SOM clearly shows a vast 

improvement in the ability of k-NN to perform classification on reflectance spectral imaging data. 

However, there may be other alternative methods which can provide the same or better accuracy, 

and so these should be tested as well. 

 

 

 

 

 



241 

 

5.3.4 Support Vector Machine 

The next classification model to be tested was the support vector machine (SVM). SVMs have 

demonstrated their use in performing classification in a wide variety of techniques and have seen 

use in spectral imaging applications for many years, including in remote sensing and cultural 

heritage studies (Gao et al., 2023; Polak et al., 2017) . SVMs can come in a variety of different 

forms and can use different parameters and inputs to generate the ‘hyperplanes’ which are used 

to cut data into separate classes in feature space. However, the main two parameters often adapted 

for different applications are the C value and the kernel. The C value is used to define how 

“smooth” a boundary between classes in feature space can be, where training data that is 

positioned on the wrong side of a hyperplane boundary can still be associated with the correct 

class, however the datapoints will incur a “cost”, C, which can be exploited as a threshold to 

determine correct classification. The kernel instead seeks to project feature space into higher 

dimensional space before applying a hyperplane (known as “the kernel trick”) allowing for more 

complex separation between classes which has shown to improve accuracy in many applications. 

To understand both how well SVM would perform in general on VNIR spectral imaging data 

recorded by PRISMS, but also to determine the optimal parameters for performing classification, 

an investigation was carried out to calculate the accuracy of the model while varying these 

different parameters. For this investigation, a C-Support Vector machine implemented in python 

using the scikit-learn module was tested using linear, polynomial, and radial basis function (RBF) 

kernels and different C values, with the accuracy and training time being monitored throughout 

the different parameter variations. A table showing the performance of the SVM using the 

different kernels can be seen in Fig. 5.11.  
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Fig.5.11 Table showing the accuracy results of using a C-Support vector machine under various parameters. The 

best performing setup can be seen highlighted in green, which uses a C value of 10 and the RBF kernel. 

 

As highlighted, the RBF kernel performed best out of the different approaches, however it was 

unknown if its accuracy could be increased even further. In response, the SVM using the RBF 

kernel was tested for different C values from 0.01 to 10,000, whereby it was found that the SVM 

was underfitted with C-values lower than approximately 10, and overfitted with values at and 

over approximately 1000 (Fig. 5.12). 

 

Fig.5.12 Table showing the performance of the C-SVM using different C values with the RBF kernel. Underfitting 

setups can be seen in yellow, overfitting in red, and the optimal parameters can be found highlighted in green. 
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To estimate the true optimally fitted C value, different values ranging from 10 to 10000 were used 

in the training of the SVM when using the RBF kernel. In this test, the most optimal parameters 

will exist when the highest accuracy is reached, a graph showing the results of this investigation 

can be seen in Fig. 5.13 and shows a C value of 300 to be the most accurate at 98.444%. 

 

 

Fig.5.13 Graph showing the varied performance of the C-SVM under different C-Values ranging from 10-10,000. A 

C value of 300 was found to be the most accurate with a value of 98.444% and is shown in the graph by the arrow 

and circle. 

 

5.3.5 Multilayer Perceptron (MLP) 

Artificial neural network (ANN)-based classification approaches have seen more common use in 

recent years due to the rise in computational efficiency and ever-increasing amounts of big data. 

Some of the common ANNs can include convolutional neural networks, self-organising maps, or 

feedforward neural networks, each with varying performances for the classification of different 

types of data. One of the most implemented feedforward neural networks is the multilayer 

perceptron (MLP), which has proven to be able to classify spectral imaging data in many different 

studies, making it a good candidate for classifying the 14 classes of spectra extracted from the 

Javanese manuscripts. To evaluate its performance on VNIR PRISMS data, the MLP was trained 

and tested on the same data used in the previous tests, with the accuracy and training time being 

monitored for each variation of the technique. Optimisation parameters were tested by changing 

the activation functions used and investigating how the accuracy changed under the different 

settings, a table showing the results can be seen in Fig. 5.14. As highlighted in the table, the best 

MLP parameter to use for the reflectance data was the ‘relu’ activation function (see Eqn. (2) of 

(Fukushima, 1975) with an accuracy of 98.28%. While not as accurate as the k-NN or SVM, an 

accuracy of over 98% on a set of validation data is good. 
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Fig.5.14 Table showing the performance of the Multilayer Perceptron using different activation functions. As 

hhighlighted in the table, the Relu activation function was found to provide the highest accuracy. 

 

5.3.6 Decision Trees (DT) & Random Forest (RF) 

The final techniques covered in this investigation were the random forest (RF) and decision tree 

(DT) models. The two models were trained and tested in the same way as all previous techniques, 

with the separation of training data and validation data being used to evaluate the models. 

However, for any decision tree classifier different criteria can be used to define the quality of a 

split in the tree, and so variations of these were also investigated to examine if the techniques can 

be optimised for spectral imaging data, thereby providing higher a classification accuracy. The 

results from investigating both DT and RF can be seen for three different criteria, Gini, Entropy, 

and Log Loss, can be seen within the table in Fig. 5.15, with the best performing of each model 

highlighted in green. 

 

 

Fig.5.15 Table showing the performance of both the decision tree and random forest classification models using 

different classification criteria. The best performing methods can be seen highlighted in green. 

 

The results from Fig. 5.15 show that both the decision tree and random forest perform well in 

performing classification on the spectral reflectance data, with random forest slightly 

outperforming the decision tree approach by 1.99% at the cost of taking significantly longer to 

train, though a training time of 98.82 seconds is small regardless. With an accuracy of 98.3% it 

would be interesting to further examine the random forest model alongside the other best 

performing techniques to investigate which will continue to perform, and which will perform best, 

for datasets larger than the sample data of 20,000 spectra already used in training and validation.   
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5.3.7 Cross Evaluation of the Best Performing Models 

When applying classification models on large collections, the size of the datasets being analysed 

will be significantly larger than those used in the previous evaluations of the different techniques. 

Therefore, it would be wise to confirm which is the best performing classification technique when 

using much greater sample sizes, so that a better representation of the final target data, which is 

more likely to be encountered in practical terms, can be used. In response, the same classes were 

used for training the different models as before, but with the training and test data changing from 

a 70:30 split of 20,000 samples per class to a 10:90 split for 200,000 samples per class 

respectively, meaning that each model would now be trained using 20,000 samples per class and 

validated using 180,000 samples per class. 

The four techniques that were confirmed as best to use during the previous tests were: 

• K-NN with 9 neighbours using the Bray-Curtis distance metric. 

• C-SVM using a C value of 300 with the RBF kernel. 

• Random Forest using entropy. 

• Multilayer Perceptron with a Relu activation function. 

Therefore, all these techniques were investigated for the new data, with their accuracies, training 

time, validation time and confusion matrices being recorded simultaneously. A table showing the 

results for this investigation can be seen in Fig. 5.16. 

 

 

Fig.5.16 Table showing the large-scale validation results for the four best classification techniques. Highlighted in 

green is the C-SVM, which showed the best performance. 

 

As highlighted in the table, most of the classification models performed similarly well, with the 

C-Support Vector Machine based classification method showing the highest accuracy percentage 

of 98.456%, but only higher than all the other techniques by at least 0.1%. This suggests the C-

SVM is likely the best approach to use for classifying this specific large collection of spectra, 

however as the other techniques are not far behind in their accuracy, it is not guaranteed that the 

C-SVM would perform best as a general approach. It is interesting though that the previously best 

performing approach, k-NN, now performs the worst. It is important to note as well that the 

multilayer perceptron model was able to achieve a similar percentage accuracy to the C-SVM but 
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in a much shorter amount of total (training + validation) time. This could suggest that for other 

applications where classification is to be performed ‘live’, as in during data collection, this 

approach may be better to use.  

Another interesting result to note about the SVM however is that the accuracy for the larger 

dataset is higher than seen for the previously tested smaller sample sizes, suggesting that even 

though the proportional size of the test data has decreased from 70:30 to 10:90 (training: 

validation), the overall increase in the number of training spectra has still resulted in an increase 

in accuracy. This agrees with a conclusion given in Foody & Mathur, (2004) which found that 

SVMs are positively correlated with training dataset sizes, implying that not only would SVM be 

useful in this specific scenario of analysing data using clustering results derived from large 

collections, but it may continue to perform even better as the amount of training data increases 

over time. In future, it would therefore be wise to further test this to investigate also how increases 

in VNIR spectral complexity may also affect the performance as training data also becomes larger.  

While the SVM possessed the highest accuracy, each approach was still quite similar in its 

performance. To finally provide a more conclusive result for which classification model would 

be the most reliable, the confusion matrices were also examined to understand where 

misclassifications were distributed. The confusion matrices were plotted with their diagonals set 

to zero, so that the distribution of misclassifications could be visualised more clearly as a map. 

The corresponding maps are shown in Fig. 5.17. 

Each of the confusion matrices appears to have the same structure, likely suggesting that the same 

misclassifications exist across all methods. However, it could also suggest that some of the 

validation data was labelled incorrectly before training or validating any of the classification 

models, and that each technique performs equally well given the data used for training. Either 

way, these maps confirm that there is no considerable difference between the techniques in terms 

of the distribution of incorrectly classified data, and therefore the C-Support Vector Machine 

using a C Value of 300 with the RBF kernel should be used for classifying the 14 pigment 

mixtures over the rest of the collection, as there is no significant structural change in the confusion 

matrix from any of the other techniques and it possesses the highest overall accuracy. 
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Fig.5.17 Confusion matrices for the four best performing classification techniques which show very similar structure. 

 

 

5.4 C-SVM on the British Library’s Maritime Southeast Asian Manuscript Collection 

Now that it was established that the C-support vector machine was the most accurate method to 

be used when training and validating the different classification models for larger scale data, an 

investigation into how well the trained C-SVM could classify a set of target data covering the rest 

of the collection was performed.  

Class & Probability Maps 

To maintain continuity with the original and group cluster maps, new ‘class maps’ were built to 

represent the distribution of pixels belonging to a class where each pixel can be characterised by 

its given integer intensity which is equal to their class number. For example, a group of pixels 

belonging to class -3, corresponding to the mixture of vermillion and bone ash white, will all have 

an intensity of -3. This way, class maps can easily be compared between the original 

training/validation data and the newly introduced target data to determine how well the 

classification has performed.  
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An additional way of monitoring the performance of the classification procedure is through the 

creation of a probability map, where each pixel possesses a probability calculated through cross 

validation, which represents how well each pixel or cluster belongs to its designated class after 

being assigned by the C-SVM. Probability map pixels will always possess an intensity ranging 

from 0-1, with 1 showing a high probability that the pixel belongs to its assigned class. These 

probability maps were produced as they can be useful in checking how accurate pixel 

classification may be, but in addition to this they can also be used to remove any low probability 

pixels, thereby creating a ‘high probability class map’, where pixels with low values for 

probability will be given an intensity of 0, to indicate that they are unclassified. As SVM has no 

procedure for dealing with data that does not fit well into any of the trained classes, the production 

of these high probability class maps was necessary to ensure that many pixels with spectra 

representing unknown mixtures would not be incorrectly grouped into trained classes solely 

because they are forced by the algorithm to belong to a class. 

High probability class maps are produced by first determining what threshold probability value 

should be used to decide when to remove pixels or clusters from their assigned class. This is done 

by computing the mean probability and standard deviation for all the correctly assigned validation 

data per class, which can then be used to calculate cut-off points equivalent to either the mean, or 

the mean subtracted by a certain number of standard deviations. Calculations for the mean and 

standard deviations of the probabilities can be seen within the table in Fig. 5.18. 

 

 

Fig.5.18 Table showing the mean, standard deviation, and population of correctly labelled data above the mean-

N*Standard deviations for all 14 classes. 
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As the table shows, most correctly assigned data will belong within 3 standard deviations of the 

mean for each class, with a small amount of leeway to remove probably incorrectly classified 

spectra. It was therefore decided that the probability threshold used would be the mean subtracted 

by 3 standard deviations, where, for example, the threshold, P, for class -14 would be: 

 

𝑃 = 𝑀𝑒𝑎𝑛𝑐𝑙𝑎𝑠𝑠14 − 3 ×  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠14 

= 0.997622 − 3 × 0.024205 

=  0.925117 

 

Therefore, for class -14, any pixel with a class probability of less than 0.925117 would be 

reclassed as unassigned and be given an intensity of zero in the high probability class maps. This 

procedure was chosen because the probability for a pixel to belong to its class varies depending 

on the class and its variation of constituent spectra, as can be seen in Fig. 5.18 where the mean 

probability can fluctuate significantly between classes. Therefore, by considering the probability 

with which correctly assigned pixels belong to their class during validation, a reasonable 

judgement can be made to determine if any new data belongs as well. This results in much 

‘cleaner’ class maps, where only the spectra which are similar in nature to the 14 classes are 

assigned, and other pixels or clusters with completely different and untrained spectra will be 

ignored, allowing for more accurate classification and more clear inspection and analysis. It is 

important to note however that these unclassified spectra are not completely removed, and are 

typically given a class value of zero, so that they can be inspected or perhaps clustered by 

themselves at a later stage. This means that in the grand scheme of analysing a new collection 

using original data from an already characterised previous collection, data analysis can be 

performed in a loop to continually update databases and perform pigment mixture identification 

over multiple collections. 

 

5.4.1 Pixel Level Classification using the C-Support Vector Machine 

The approach investigated involved performing classification on each individual pixel in every 

spectral imaging data cube recorded using PRISMS in the VNIR, resulting in the creation of a set 

of 1515 high probability class maps which illustrate the distribution the 14 different pigment 

mixtures trained into the SVM. This pixel classification method involved taking the trained SVM, 

using the RBF kernel with a C value of 300, and using it to classify the spectral reflectance data 

recorded for the manuscript collection. To reduce the computational time for performing the 

classification, each spectral imaging data cube was resized by a factor of 0.25 to possess 1/16th of 

its original number of reflectance spectra. This massively reduced the computational and time 



250 

 

requirements for performing classification for all data cubes, while still allowing for most small 

spatial regions with different spectral information to be grouped into their respective classes 

correctly. Following this, each of the resized data cubes were used as an input into the trained 

SVM, producing a class map and probability map which were used together to produce the high 

probability class maps. As mentioned in the previous section, high probability maps were 

produced for the different standard deviation ranges about the mean, so that pixels with a low 

probability of belonging to their class become unclassified. The process followed for pixel level 

classification is demonstrated in the flow chart shown in Fig. 5.19. 

 

 

Fig.5.19 Flow chart showing the process of performing C-SVM classification to produce high probability class maps 

for all spectral data cubes within a collection. 
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5.4.2 Pixel Level Classification Results & Discussion 

Computational & Time Requirements 

Probably the largest hurdle with approaching classification in an image-by-image way for large 

collections are the computational and time requirements, which are quite high considering that 

millions or even billions of spectra need to be classified by the SVM. When performing the 

classification on a computer with an AMD Ryzen 5 5600G CPU (12 CPUs ~3.9GHz), with 

16384MB RAM, each of the resized spectral imaging data cubes took a mean average of 117.6 

seconds to be opened, classified and stored as class and probability maps. The total runtime of 

performing the classification for all 1515 reflectance spectral data cubes was ≈49.5 hours, which 

is considered a large amount of time when taking into account that this data had already been 

reduced in size by a factor of 16. Assuming the performance of the SVM and computer remains 

stable and is linear over time, this would imply that it may take approximately 33 days to complete 

the pixel level classification of a collection of 1515 reflectance spectral data cubes without any 

resizing.  

It is therefore important to emphasise that this amount of processing time is much larger than that 

of performing clustering and suggests that performing classification on the clustering results in 

the future may therefore be more beneficial in terms of time efficiency, so long as the accuracy 

of the clustering results themselves is reliably high to avoid misclassification. What has been 

shown in the previous chapters of this thesis however is that this is normally achievable by using 

fine parameters during automated clustering, and as the extra clusters likely to be created due to 

the increased precision would be dealt with using classification models instead of grouping, the 

workload required for their analysis would be greatly reduced. This method should therefore be 

explored in the future, however in the meantime it was also important to understand if the 

classification model could perform in a satisfactory way by analysing cluster maps directly, as a 

cluster is an accurate representation of real spectra anyway.  

Classification Performance for all Manuscripts 

To evaluate the pixel level classification performance of the C-SVM, each manuscript was 

inspected to determine whether the pixel assignments led to each class falling into one of 7 

evaluation groups, which were as follows: 

• ‘Mostly True Positives’ – meaning that pixels possessing spectra corresponding to the 

correct pigment mixtures were the majority in the class. Although some leniency was 

permitted for small groups or sparse pixels with incorrect spectra, as it was not uncommon 

for random incorrect pixels to still have a high enough probability to not be unclassified. 

• ‘Mostly True Positives with False Positives’ – meaning that the manuscript mainly 

follows the previous ‘Mostly True Positives’ evaluation group, but there are also other 
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pigment mixtures which have been assigned to the class, normally due to them possessing 

similar spectra. 

• ‘Mostly False Positives with True Positives’ – where most pixels assigned to the class are 

not of the correct pigment mixture but may be assigned due to their similarity in spectral 

features. For example, where chrome yellow may be placed into the orpiment class. In 

some of these manuscripts there also may be small areas of true positive classification, 

but they are the minority. 

• ‘Mostly False Positives’ – where most pixels assigned to the class are not the correct 

pigment mixture but are normally assigned due to their similar spectral features. This 

normally occurs when the pigments differ from those seen in the four Javanese 

manuscripts used for training. 

• ‘Mostly False Negatives with True Positives’ – meaning that there are very few pixels in 

areas where the correct pigment mixture exists, but there are some true positive 

assignments. This illustrates that the classification works for many pixels but perhaps 

requires more training data to cover a wider variety of potential spectra due to changes in 

pigment concentration. 

• ‘Mostly False Negatives’ – where there are no assigned pixels in areas where the correct 

pigment mixture exists, this illustrates a total failure of the SVM to perform classification 

but perhaps could be addressed by using more training data which can account for a wider 

variety of spectra. 

• ‘Pigment Not Present so N/A’ – meaning that no pixels were ever assigned to the class in 

the manuscript, aside from a few randomly associated spectra. In these scenarios, this is 

not a problem however, as there is no evidence for the pigment mixture to exist on the 

manuscript, essentially making this an evaluation group for ‘True Negatives’.  

After analysing every manuscript for which PRISMS data had been recorded, the different 

evaluation groups were assigned to each class for every manuscript, the results of which can be 

seen in Fig. 5.20. What is clear from this table, is that most classes throughout all the different 

manuscripts fall into either ‘Mostly True Positives’, ‘Mostly True Positives with False Positives’, 

‘Mostly False Positives with True Positives’, or ‘Pigment not Present so N/A’. These results 

suggest that classification using SVM performs well on new data but requires a greater number 

of classes with different mixtures to use during training if false positives are to be avoided in the 

future. The reasoning behind this is that most false positives occur as a result of pixels with an 

unseen and untrained mixture existing on a manuscript which happens to have similar spectra to 

the class with which it is assigned. Some of examples of these false positives, along with some 

true positive and false negative data are discussed in the following parts of this section. In these 

sections some of the limitations of the approach taken to perform classification are demonstrated, 

with some interesting results covered which open new questions for future research. The sections 
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are mainly covered by class but start with the areas that possess false negatives, as these show the 

performance of the SVM at its worst.  

 

 

Fig.5.20 Tables showing - Left: the classification evaluation results for the 14 classes over the different manuscripts 

within the collection. Top Right: The colour key for the results. Bottom Right: Which material or pigment mixture the 

class represents. 
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5.4.2.1 Class -1 (Paper) 

The classification for the paper is largely performed well, with most pixel assignments being true 

positives with some false positives included in two manuscripts. However, there are two scenarios 

where the paper is completely misclassified, and both times this is done by mistakenly grouping 

the paper into class -11, for which real colour class maps can be seen in Fig. 5.21.  

 

Fig.5.21 True colour high probability class maps representing the incorrectly classified pixels belonging to class -11 

(White) for manuscripts Add MS 12284 and MSS Eur F/148/4 f106. 

 

The two regions where the C-SVM fails are in Add MS 12284 and MSS Eur F/148/4 f106, where 

both times the paper is assigned to the bone ash white class due to the spectra having a lower 

intensity towards the near infrared than that seen for most other paper spectra in the collection, as 
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shown in Fig. 5.22, where the paper spectrum from Add MS 12280 f3r, which was used to train 

the SVM, can be seen plotted alongside the misclassified paper spectra. 

 

 

Fig.5.22 Graph showing the PRISMS reflectance spectra extracted for the paper from three different manuscripts. 

Add MS 112280 f3r clearly demonstrates a spectral difference towards the NIR (>650nm). 

 

The similarly low intensity in both manuscripts could be related to them both being produced 

using English paper, with MSS Eur f148/4 f106 possessing a watermark ‘G. Jones 1807’ and Add 

MS 12284 watermarked with ‘S & Wise 1815’. Furthermore, on close inspection of the paper in 

both manuscripts, straight lines indicative of marks commonly found on laid paper can be seen, a 

feature not seen on many other manuscripts, suggesting that they may also share a similar 

manufacturing process which has resulted in this difference in reflectance. 

 

5.4.2.2 Class -2 (Vermillion Mixtures) 

Throughout the entire collection the main red pigment to be found was vermillion, and therefore 

it would be wise to assume that the class representing vermillion would be found in many other 

manuscripts. After performing classification, large numbers of correctly classified vermillion 

pixels could be found over many different manuscripts, most of which were confirmed by cross 

referencing results seen in chapter 3, where more in depth analysis of the British Library’s 

maritime southeast Asian collection was performed. The confirmation of successfully classified 

red vermillion mixture regions can be seen in the class chart shown previously (see Fig. 5.20) 

however a few example manuscripts and pages from different regions in maritime Southeast Asia 

are also covered in closer detail in the following subsections to demonstrate how the SVM is able 

to perform classification in manuscripts from regions separate from Java (the location of the 4 
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training manuscripts). The manuscripts/pages explored further include Or 8154 f3v, Or 15227 

(Multiple Pages), and Or 16034 f261r, and were chosen as they share provenances with the 

different regions which possessed the greatest abundance of manuscripts outside Java including 

Sumatra, Sulawesi and also the Malay Peninsula.  

Or 8154 f3v 

In the Buginese manuscript Or 8154 f3v, the vermillion class was detected in the red wings and 

other red decorative parts of the illustration of Buraq, the winged horse (see Fig. 5.23). In chapter 

3 these regions were confirmed to be vermillion using both XRF, which showed presence of 

mercury (Hg) and sulphur (S), and Kubelka-Munk mixture modelling which showed that the 

mixture of paper and vermillion fitted to the red spectra well. 

 

Fig.5.23 RGB Image (Left) and true colour class maps (Right) for the correctly classified vermillion pixels seen in 

manuscript Or 8154, on folio f3v. 

 

These results are particularly interesting as it implies that even if the paper substrate used below 

vermillion is different, or if a different artistic style is used in a different location, classification 

can still be performed accurately with the SVM.   

Or 15227 

The vermillion class can also be found in several pages of manuscript Or 15227, a copy of a 

Qur’an from the Malay Peninsula. In this manuscript, pixels were assigned to the class both in the 

decorative frames seen throughout various pages and in the many pages where juz’ are marked 

with illuminated roundels and floral patterns, examples of which can be seen in Fig. 5.24.  
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Fig.5.24 True colour class maps representing vermillion classified pixels for juz' markers within Or 15227 

 

Or 16034 f261r 

A further manuscript from Aceh can be seen with classified vermillion pixels also, where, like 

many others, they can be found distributed in patterns over the opening double frames, as 

demonstrated in Fig. 5.25. 

 

 

Fig.5.25 True colour class maps showing classified vermillion pixels in manuscript Or 16034, folio f261r. 
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5.4.2.3 Class -3 (Vermillion + Bone Ash White Mixture) 

For the vermillion and bone ash white class, correctly classified pixels can be seen in many of the 

Javanese manuscripts where the mixture was confirmed in chapter 3. A good example to illustrate 

this is in Add MS 12292 f2v, where the pink can be seen in the opening double frames positioned 

in both the rubrication aside the text and in the flower petal motifs placed around the outsides 

(Fig. 5.26). 

 

Fig.5.26 RGB Image (Left) and true colour class maps showing the distribution of pink vermillion + bone ash white 

pixels in manuscript Ass MS 12292, folio f2v. 

 

In all the other Javanese manuscripts where the pink vermillion and bone ash white pigment 

mixture existed, it was found to be successfully assigned to class -3, again illustrating the 

usefulness of SVM in performing classification. There were, however, also many circumstances 

for this class where pixels were incorrectly assigned due to them possessing similar spectra but 

not the same materials, for example, where red dye or a thinly applied vermillion pixels are 

classified as the same mixture. This is no surprise considering that most of the training data used 

for the vermillion areas in the training data set were applied heavily and would therefore not be 

trained to fit thinly applied regions, and likewise as no dyes were trained into the SVM either, 

misclassifications between the pink and a spectrally similar dye are likely to occur. A good 

example of the SVM incorrectly classifying a dye-based pink into the vermillion-based pink class 

can be seen in MSS Malay B12 f2r, a high probability class map of which can be seen in Fig. 

5.27. 
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Fig.5.27 Images showing the RGB (Left), and true colour class map (Right) of false positive red dye pixels assigned 

into the pink vermillion and bone ash white class due to their similarity in VNIR spectra. 

 

 

5.4.2.4 Cass -4 (Orpiment) 

Throughout the collection, numerous different regions with spectra corresponding to orpiment 

were correctly classified into class -4 using the SVM. Orpiment can be found correctly classified 

in many other parts of the target data within the collection and covers a variation of provenances 

including manuscripts from Sulawesi, the Malay Peninsula, Aceh, and other parts of Java, with 

some good examples including Or 8154 and Or 13295. 

Or 8154 f3v 

In the Buginese manuscript Or 8154 in folio f3v, orpiment can be found correctly classified where 

the yellow body of the winged horse is placed in the orpiment class (see Fig. 5.28). While the 

majority is properly classified, the front legs of the horse are not placed into the high probability 

class maps however, and this appears to be due to a darker more degraded look to the paints. 

Or 13295 f190v 

In the case of manuscript Or 13295 f190v, many of the yellow pixels on the outer part of the frame 

have been successfully classified into the orpiment class as well, as demonstrated in Fig. 5.29.  
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Fig.5.28 Images showing the RGB image for Or 8154 f3v (Left), with the true colour class maps for orpiment (Right) 

created from the C-SVM. 

 

Fig.5.29 Images showing the RGB image for Or 13295 f190v (Left), with the true colour class maps representing 

orpiment pixels (Right) 

 

False Positive Misclassifications 

The presence of orpiment on many of these other manuscripts can be confirmed by point 

measurement analysis using techniques such as XRF or Raman spectroscopy, however there are 

some regions in other manuscripts which possess misclassifications where a yellow spectrum has 

been assigned into class -4 but is not orpiment. One such manuscript where this happens regularly 

can be seen in Or 15227, where a chrome yellow-based pigment which is present in many of the 

decorative frames and juz markers can be seen incorrectly classified with the orpiment (Fig. 5.30). 
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Fig.5.30 Images showing the RGB and true colour class maps for a juz' marker and an opening frame in manuscript 

Or 15227. In both images, pixels corresponding to chrome yellow can be seen classified into the orpiment class. 

 

The misclassification of yellow pigments in Or 15227 comes as no surprise, as it can be incredibly 

difficult, and sometimes impossible, to distinguish between pigments such as orpiment and 

chrome yellow, through the use of VNIR spectral imaging alone. It is often therefore a 

requirement that XRF or other techniques such as Raman spectroscopy need to be used to fully 

distinguish between them, so without this information being factored into the classification in 

some way, such a misclassification will always be likely to occur.  

This does however introduce a research question that would be very interesting to explore in the 

future, which is whether classification can be performed multimodally. This is because, by using 

multimodal clustering, as seen in chapter 4, to create sets of training data with information from 

other sources such as XRF spectral imaging, or perhaps SWIR reflectance, there is potential for 

more accurate holistic classification to be performed on new collections. Such an approach, for 

example, would be likely able to distinguish between yellow pigments of different kinds, where, 

for example, XRF would be able to provide the elemental composition of different painted regions 

which would either confirm or deny the presence of specific materials such as arsenic-based or 

chrome-based yellows.  
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5.4.2.5 Class -5 (Vermillion + Orpiment) 

When investigating the classification of the orange orpiment and vermillion mixture class, most 

manuscripts primarily have true positive pixel assignments. One good example of this can be seen 

in the Javanese manuscript Add MS 12287, where the use of orange in the opening double frames 

is classified into the orpiment and vermillion mixture class correctly (Fig. 5.31).  

While most of the data throughout the collection is correctly classified, there are some 

circumstances where there are large inclusions of false positives due to a lack of training data 

covering dark yellow pigments. For example, misclassifications can be seen on manuscript Or 

15227, where some of the darker chrome yellow illumination in the decorative frames is assigned 

incorrectly due to its similarity in spectral shape and intensity to the training data used in the SVM 

for class -5. This can be seen in Fig. 5.32, where the dark yellow pixels in the outer frames are 

seen to be assigned into the same class as the orange found on Add MSS 12285 f1v, which was 

used in the training data set.  

 

 

Fig.5.31 Images showing the RGB (Left) and true colour high probability class maps for the orange vermillion and 

orpiment mixture seen in Add MS 12287. 
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Fig.5.32 Upper Left - Images showing the RGB (Left) and true colour class map of an orange used for training 

(Right). Upper Right – Images showing the RGB (Left) and true colour class map of an incorrectly classified dark 

yellow in Or 15227. Bottom – extracted VNIR spectra from the two areas indicating their similarity in spectrum 

which is suspected to be the root cause for the misclassification. 

 

 

5.4.2.6 Class -6 (Indigo) 

In most of the manuscripts in which indigo existed in the collection, the C-SVM was able to 

correctly classify most of the pixels into the proper class, as demonstrated in the classification 

table (Fig. 5.20). However, there is one manuscript which completely failed to identify indigo, as 

is noted in the class table for MSS Jav 67. In MSS Jav 67 f12r, the blue used for colouring the 

illustration of a man’s robes is indigo, but there are very few pixels which are properly classified 

into the indigo class, with the majority instead being assigned to the lilac and green indigo-based 

mixtures, as shown in Fig. 5.33. It is likely that the assignment into these alternative classes is 

mainly due to changes in the thickness of the indigo applied onto the paper causing changes in 

the reflectance spectrum, where the darker and more yellow looking paper introduces spectral 

features which fit more closely to a green or lilac spectrum. For example, if the spectrum of the 

green area taken from MSS Jav 24 during training is plotted next to the MSS Jav 67 indigo 

spectrum incorrectly assigned to class -7, then it becomes clear that the two spectra are very 

similar, and likewise the same problem is detected for class -8 (see Fig. 5.34). 
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Fig.5.33 RGB (Top Left) and true colour class maps for classes -6, -7, and -8, which show that most pixels are 

incorrectly assigned to the lilac and green classes on MSS Jav 67 f12r. 

 

 

 

Fig.5.34 Graphs showing the similar reflectance spectra between incorrectly assigned indigo pixels in MSS Jav 67 

f12r with lilac pixels from Add MS 12285 (Left) and green pixels found in MSS Jav 24 (Right).  
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5.4.2.7 Class -7 (Indigo + Orpiment) 

Indigo and Orpiment mixtures can be seen over most of the manuscript collection, with correct 

classification performed by the SVM in almost all cases. Although the class table mainly shows 

that proper assignment of pixels into the class is performed for most manuscripts, there are some 

scenarios where some assignments made to the class are instead false positives and are in fact 

classified with indigo and orpiment mixtures due to them consisting of a mixture of indigo with 

a different yellow. 

One good example of this is in manuscript Or 15932 where many of the green mixtures used 

consist of a yellow and indigo mix, but the yellow used is not orpiment, and instead is suspected 

to be an organic pigment. An example of incorrectly classified pixels can be seen in Fig. 5.35, 

where for folio f21v, the pixels for the green leaves on the outer parts of the tree on the right-hand 

side of the page are placed into the indigo and orpiment mixture class even though the yellow 

used is not orpiment. The spectrum for both this Or 15932 green and a green indigo and orpiment 

mixture extracted from some training data in MSS Jav 24 can be seen plotted together, showing 

their similar spectra also in Fig. 5.35 and clearly demonstrate that there is a similarity spectrally 

between the two mixtures. 

This misclassification comes as no surprise as there is no information available to the model that 

would flag the mixture as being an alternative to indigo and orpiment, therefore it would be 

assigned to the closest material. This could be addressed by having a mixture of indigo and 

organic yellow in the training dataset but is also another argument in support of using multimodal 

classification in the future, as clustering also encountered the same problems in chapter 3. 

 

 

Fig.5.35 Left: Images showing the false positive classification of green pixels in Or 15932 into the indigo and 

orpiment class due to their similarity in reflectance spectra between themselves and training data seen in MSS Jav 

24. Right: A graph illustrating the similarity in reflectance spectra of the tree in Or 15932 and the green training 

areas in MSS Jav 24. 
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5.4.2.8 Class -8 (Indigo + Vermillion) 

The lilac-coloured mixture of indigo and vermillion does not appear many other times throughout 

the collection apart from where it exists in the training dataset. However, there are two 

circumstances where there are groups of pixels assigned to the class. This occurs in Add MS 

12339, where a correct classification of the mixture is performed, and MSS Jav 89, where an 

alternative mixture not identical to that of the training dataset is assigned due to its similarity in 

spectral features.  

In Add MS 12339, the correct classification of the lilac mixture is produced for the long-tailed 

creature drawn and illuminated on the outside of the double frames on folio f1v. This becomes 

clear when extracting the spectrum from the lilac training data and comparing it directly with the 

spectra of the same class in Add MS 12339, where it is highly suggested from the VNIR 

reflectance that the two pigment mixtures are likely the same due to their similar reflectance 

spectra, as shown in Fig. 5.36. 

However, when comparing training data from the lilac regions with the same class on MSS Jav 

89, the two spectra, while similar, likely do not correspond to the same material composition due 

to the changes in spectral features which are present at both 400nm and 550nm (as shown in Fig. 

5.37). Instead, it is likely that these pixels were assigned into the lilac class due to there being a 

very thin application of indigo, and with no thinner application of indigo being included in the 

training dataset, it was placed more closely into the class for the lilac-coloured vermillion and 

indigo mixture, which was applied in thin layers onto the paper in the training manuscript. 

 

 

Fig.5.36 Left: images showing the correctly classified lilac regions in Add MS 12339. Right: Graph representing the 

mean reflectance spectrum of the lilac pixels in Add MS 12339 in comparison to the lilac training data taken from 

Add MS 12285. 
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Fig.5.37 Left: Images showing the incorrectly classified indigo pixels in MSS Jav 89. Right: A graph showing the 

reflectance spectra for the incorrectly assigned indigo pixels with the mean spectrum of the lilac class pixels seen in 

Add MS 12285. 

 

5.4.2.9 Class -9 (Indigo + Vermillion + Orpiment) 

When looking over the entire collection, the reddish-brown pigment mixture can be seen 

successfully classified in numerous manuscripts. One interesting example can be seen in 

manuscript Or 15026 f192r, where a correct classification of the reddish-brown mixture is 

performed for the alternative art style to that seen in the training dataset, as shown in Fig. 5.38. 

 

Fig.5.38 Left: Images showing correctly classified reddish-brown pixels in Or 15026 f192r. Right: Graph showing 

the reflectance spectrum of the reddish-brown pixels in Or 15026 compared to the same class in the training data 

from Add MS 12291. 
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As the presence of mercury, arsenic and sulphur can be detected in XRF point measurements 

taken for this brown coat, there is substantial evidence which supports the reddish-brown 

classification as being true, which illustrates the strength of using the SVM trained on the grouped 

clusters.  

However, as is commonly seen in different mixtures over the collection, there are also multiple 

manuscripts which possess primarily false positive assignments instead of true positives, as 

highlighted by the yellow cells in the class table (Fig. 5.20). In most of these scenarios a spectrum 

like that of the reddish brown is normally achieved due to the layering of vermillion over indigo, 

instead of a direct mixture of both with orpiment, as is demonstrated in Fig. 5.39, where this 

layering can be seen in manuscript Add MS 12379. 

 

Fig.5.39 Incorrectly classified pixels in Add MS 12379 which have been grouped into the reddish-brown cluster due 

to the layering of vermillion over indigo. 

 

Interestingly though, even though the appearance of the colour and spectrum indicates a use of 

indigo, extracting an XRF spectrum from the blue frame elsewhere on the page showed arsenic 

and sulphur peaks, suggesting that there is some orpiment within the mixture of the blue pigment 

mixture. If this is the case, then it implies that this may have been classified due to the layering 

of vermillion over a mixture of indigo and orpiment, meaning that the same materials have been 

detected and classified appropriately. 
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5.4.2.10    Class -10 (Indigo + Vermillion + Orpiment (Dark)) 

For class -10, most of the pixel assignments are false positives which possess similar spectra to 

those seen in the training data for Add MS 12280 except towards the NIR parts of the spectrum. 

One good example to illustrate this is in MSS Malay D4 f4r, where a different VNIR spectrum is 

incorrectly classified into the indigo, vermillion, and orpiment class, as demonstrated by Fig. 5.40. 

Once again this is most likely an issue being encountered due to a lack of training data. For this 

manuscript however, a useful part of the classification method became clear, as the use of high 

probability class maps resulted in few incorrectly classified pixels in MSS Malay D4. This does 

suggest that the pigment mixture is different for many brown pixels, however there are clearly 

still other approaches that should be taken in future to alleviate misclassification problems such 

as this. 

 

Fig.5.40 Images showing the RGB image (Left) and tru colour class map (right) of incorrectly classified brown pixels 

in MSS Malay D4 f4r. 
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5.4.2.11     Class -11 (Bone Ash White) 

Throughout the collection, many of the pixels assigned to the white class are not actual white 

pigments but possess similar enough spectra that they are assigned regardless. This is expected as 

there is normally a lack of absorption features in white pigments which can be used to find similar 

spectra, causing other bright featureless spectra to become assigned to the same class. A good 

example of this has already been shown for the paper in 5.4.2.1. Another example of where this 

can commonly occur is in the interfaces between black inks and clear paper, where the greyish 

pixels created due to the change from one colour to the next possess spectra with few features and 

similar intensities to the white areas seen in the training data. 

There are also cases where a different white is used in the collection but is still classified into the 

same class as the bone ash white, mainly since the white pigments have very few spectral features 

and sit at roughly the same intensity. For example, in manuscript Or 13295, there are many small 

white areas painted within the double frames on folios 190v and 191r, in small crosses or within 

the flower motifs, which are classified into the bone ash white class, as shown in Fig. 5.41. 

 

Fig.5.41 Images showing the misclassified lead white parts of Or 13295 which were assigned into the same class as 

the bone ash white found in the four training Javanese manuscripts 

 

This is considered a misclassification as the detected white pigment in these areas is more likely 

lead white, as the counts for lead increase in the majority of XRF spectra recorded for this 

manuscript where white is used to achieve lighter colours. It is expected however that this 

misclassification would occur, as lead white can be difficult to distinguish from others without 

the use of other spectroscopy techniques. 
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5.4.2.12     Class -12 (Gold) 

As gold is present throughout most of the collection, it comes as no surprise that there are many 

manuscripts which have pixels assigned into the gold class. The class table illustrates the 

successful classification of gold clearly, but in many of the manuscripts it also notes that there are 

additional false positives that can be included alongside the true positivise class assignments. For 

the manuscripts which are labelled with having “mostly false positives” in the class table, the 

cause of the misclassifications tends to be a result of yellow pigments being assigned into the gold 

class, which is to be expected considering that many yellow pigments and gold, under illumination 

that avoids any specular reflection, can result in very similar VNIR reflectance spectra (as 

demonstrated in Fig. 5.42). 

 

Fig.5.42 Graph showing the reflectance spectrum of gold in MSS Jav 24 and a similar yellow colour in Or 16915 

which was incorrectly assigned into the gold class. 

 

 

5.4.2.13     Class -13 (Vermillion + Black) 

The dark red class appears in almost every single manuscript where vermillion can also be found, 

and normally exists as a consequence of degradation, or black and red being placed either next to 

each other or atop one another in different layers, a good example of these classifications can be 

seen in MSS Malay D4 (see Fig. 5.43). There are very few times where a dark red appears to be 

used as an intentionally mixed pigment, however there are a few circumstances where this is the 

case outside of the training data examples. However, alongside these correct classifications, there 

are also some misclassified regions in manuscripts which come as a result of regions sharing 

similar reflectance spectra. A good example of this can be seen in Or 13295 f190v, where the 

darker brownish-red parts of the frame are classified into the dark red class due to their VNIR 

spectrum fitting well with the dark red in the training dataset. It is not a surprise that these areas 
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may be classified into the dark red, as the mixture was confirmed in chapter 3 to be a combination 

of Prussian blue, orpiment, and vermillion, which was not implemented into the training. 

However, it is unfortunate that the implementation of probability did not label the brown-red 

mixture as unclassified. The class maps for this manuscript page can be seen in Fig. 5.44 and 

shows a consistent classification over much of the manuscript page which is split into numerous 

data cubes. 

 

Fig.5.43 Images showing (Left) an RGB image of MSS Malay D4 with correctly classified dark vermillion pixels in a 

true colour class map (right). 

 

 

Fig.5.44 Image showing (left) RGB image of Or 13295 f190v alongside a true colour class map (right) of the 

incorrectly classified vermillion, orpiment, and Prussian blue mixture. 
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5.4.2.14      Class -14 (Black Ink/Pigments & Background) 

As the final class acted to encapsulate the majority of dark areas, the performance of the SVM is 

not particularly informative. However, there are a few areas in which some of the pigments with 

higher absorption, such as dark Prussian blue determined during the pigment analysis in chapter 

4, are grouped into class -14 due to them possessing similarly low reflectance intensity and 

consequently weak spectral features. As it has already been covered in detail throughout the 

previous sections, Or 13295 will be used as a good example yet again, where throughout the 

double frames, Prussian blue is the main pigment used and is classified with the other black 

materials and the background, as shown in Fig. 5.44. 

 

Fig.5.45 Top:  Images showing (Left) the RGB of Or 13295 f190v alongside (right) the true colour class map of the 

Prussian blue regions which are incorrectly classified into the black due to their high absorption.  

Bottom: A graph showing a black and Prussian blue area plotted together with similar highly absorbing reflectance 

spectra. 



274 

 

5.5 Conclusions & Future Developments 

This chapter explored the use of classification techniques on VNIR spectral imaging data recorded 

for a large manuscript collection, and how they may fit into the workflow for performing large-

scale pigment mixture identification in the future. In the first half of this study, different 

classification techniques were compared to evaluate their performance for identifying pigment 

mixtures in illuminated manuscripts, where it was found that four different techniques: k-Nearest 

Neighbours, Random Forest, Multilayer Perceptron and C-Support Vector machine, were all 

found to perform well. As the highest accuracy achieved in this evaluation was the C-SVM, 

though only by 0.1%, it was decided to use this as a model with which to perform classification 

for 14 different classes, created through clustering and grouping 4 Javanese manuscripts, on the 

large manuscript collection already explored in chapters 2 and 3. The results from this test showed 

that C-SVM based classification can perform well in classifying unseen VNIR spectral data, 

implying that C-SVM or the other highly accurate models, may cooperate well with the 

methodology already outlined in the previous chapters. Overall, it seems that classification 

techniques in use with large-scale clustering of collections can be incredibly useful in future 

studies of illuminated manuscripts. However, care must be taken when using classification to 

perform material identification over many manuscripts at once, as there is no guarantee that the 

performance will always be accurate if training data is limited for use on new datasets, even in 

the case where high probability class maps are used, as was demonstrated for black ink/pigments 

and the background. 

During this chapter it was discussed that while the C-SVM performed well, it was also both time 

and computationally expensive for performing classification at a large scale, even after reducing 

the number of spectra in each image by a factor of 16. While this is a drawback of performing 

classification as opposed to clustering, the problem can likely be solved by performing 

classification on clustering results. While such an approach would save computational effort and 

time, it also presents an opportunity to link classification together with the methodology 

developed for clustering and grouping, where instead of simply using clustering and grouping 

results to train a model, the two approaches could work in unity together for future for large-scale 

studies. The intention would be to expand the clustering and grouping workflows, such as the 

Kubelka-Munk (KM) informed grouping workflow covered in section 2.6.4 of this thesis, to 

include a classification step. The outcome of this unification of both techniques would therefore 

be a looped process in which a model, such as C-SVM, learns from pixels within manually 

grouped clusters, allowing for new future clusters (not pixels) to be automatically classified in a 

time efficient way. Successful classification will therefore be able to easily group data over entire 

collection quickly, but in addition to this, clusters which cannot be classified due to possessing 

low probabilities can also be returned to the user to undergo a new round of KM informed 

grouping as per 2.6.4. This would in turn allow for a retraining of the classification model so that 
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the next time the same pigment mixture or material is encountered, it is classified correctly, and 

with a high probability. Each time this process is performed, classification and clustering would 

work together in a loop, until every spectrum in a new collection has been not only identified, but 

also stored within a database and trained model for future use. This proposed expansion of the 

diagram shown in section 2.6.4 can be seen in Fig 5.46 and demonstrates the direction in which 

this research is likely to continue moving forward. 

 

 

Fig.5.46 Expansion of the clustering and grouping procedure outlined in chapter 2, where Kubelka-Munk informed 

grouping can inform classification, and vice versa. 
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Chapter 6  

Guisi: A GUI for Analysis of Spectral Imaging & 

Clustering Data 

 

6.1 Introduction 

As large-scale studies of artistic materials used throughout entire collections become more 

commonplace in the future, there is a growing need for data visualisation tools that can be used 

alongside clustering or classification techniques to allow for the interrogation of high dimensional 

and highly complex spectral imaging data.  

At the time of writing this thesis, multiple approaches can be taken to analyse spectral imaging 

data in cultural heritage applications using a variety of different software, including those 

designed for different specific techniques and instruments such as ESPRIT Spectrum (Bruker, 

n.d.), PyMCA (Solé et al., 2007), Specim IQ Studio (Picollo et al., 2020; Specim, n.d.) and more. 

Furthermorea variety of software has also been developed by the research community on an ad 

hoc basis using common software platforms such as MATLAB, Python or R. Many of these 

software programs can offer the ability to perform data processing, extraction of spectra, spectral 

image visualisation and even allow for users to perform clustering or classification on data 

directly (such as Prediktera’s breeze and EVINCE software (Prediktera, n.d.), or perClass BV’s 

MIRA (perClass BV, n.d.)), however, there are seemingly no clear leading software applications 

that can allow for fully accessible analysis of any spectral imaging modality and any type of 

spectral image based clustering result produced from any algorithm. Furthermore, when 

considering the use of software for the analysis of large-scale datasets, these applications cannot 

facilitate and allow for simultaneous spectral imaging or clustering visualisation and analysis over 

many items at once, which was essential for most of the work in this thesis.  

As a large part of this thesis scope was to design a working methodology for analysing multimodal 

spectral imaging data and large collections, many analytical tools were investigated and newly 

developed or redeveloped throughout the different projects mentioned in earlier chapters. 

Eventually, compartmentalising many different small codes or programs for different analytical 

purposes became cumbersome, and a streamlined approach to go from data collection to material 

analysis was desired. As a result, the design and development of a new software application, 

named Guisi (GUI for the Analysis of Spectral Imaging & Clustering Data), was prescribed as 

the best route forward in the analysis of large-scale datasets. Guisi was initially created as an 

application that would allow for the basic visualisation and analysis of spectral imaging data 

through simple isolation of colour information, spectral bands, and extraction of spectra. 
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However, as it progressed the software became essential to performing clustering analysis, 

especially when performing processes such as the grouping or plotting of clusters for 

understanding material distribution. As the software became central to the methodology of the 

different projects, it is covered further within this chapter, where its uses and design choices are 

discussed for the current version “Guisi v.0.3”. 

As this chapter is mainly revolved around the implementation of newly developed software 

central to the clustering approach outlined in chapter 2, the structure of the chapter is slightly 

different to those seen previously. Sections of this chapter will discuss the design choices and 

implementation of Guisi and will also include discussions on how Guisi may be used in the 

broader cultural heritage community. Arguments in favour of transitioning to more universal data 

types will be made so that analysis can be more standardised across joint projects in the future, 

aiding workflow efficiency across institutions. A final discussion about future developments will 

also then be included with the intentions of how the software intends to be used in the future. 

 

6.2 Data Pipeline, Needs & Design Choices 

When considering the design of software for the analysis of spectral imaging and clustering, it 

was first important to understand what the different needs and requirements were for multimodal 

and large-scale studies so that the software could be optimally designed to fill a specific role.  

 

6.2.1 Acquisition to Results Workflow (ARW) for Spectral Imaging Studies 

In the grand scheme of performing different spectral imaging studies, several stages were always 

followed so that data could be captured, processed, and then eventually used for analysis within 

the research encountered in this thesis. Throughout this chapter, these different processes will be 

referred to as the ‘Acquisition to Results workflow’ or ARW. Covering the entirety of a spectral 

imaging study, the ARW normally begins with data collection (spectral imaging), and in the 

context of this thesis typically ends with clustering, grouping, and material identification (pigment 

identification). A diagram illustrating the typical ARW for this thesis can be seen in Fig. 6.1.  

At every step in this ARW, it was found that both data visualisation and interrogation of raw or 

processed spectral data was useful. For example, aside from being beneficial for analysis, it was 

often also useful to understand if proper calibration, data collection and processing were taking 

place while in-situ so that when clustering and material identification is performed later, it was 

done so with data which had been captured and processed in the most optimal way. Because of 

this, it was imperative that Guisi could be used with equal accessibility over the entirety of this 

ARW for different techniques, therefore implying that the software and the data for clustering had 

to be designed and used in such a way that allowed for any spectral imaging type to be used in 
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the software, from XRF to Vis-NIR. While Guisi’s uses are covered in more detail in sections 6.3 

and 6.4, the first investigation covered in this chapter discusses how this accessibility to data at 

any point of the ARW be achieved by ensuring that a universal datatype is chosen to be used with 

Guisi, so that spectral imaging data of any format can be used in the application at any stage. 

 

 

Fig.6.1 Diagram representing an Acquisition to Results Workflow (ARW) for spectral imaging studies of large 

collections or holistic multimodal data 

 

6.2.2 Data Formats for Holistic Spectral Imaging Studies in Cultural Heritage 

Though most spectral imaging data for collections can essentially be simplified into a set of 

volumetric data cubes, one of the greatest obstacles in allowing for a universal file format to be 

used for cross-system data analysis in Guisi is how to account for the many different formats 

already commonly implemented in different applications. Across different disciplines and over 

many techniques in cultural heritage, spectral imaging data is stored and saved in a variety of 

different formats, with many techniques resulting in data which can require different pieces of 

software to be opened, investigated, and analysed (some examples of which are shown in Fig. 

6.2). Many of the software packages required to interpret the data can be tied into the sale of 

specific instruments or are specifically designed to be used with only a single type of spectral 

imaging data or for specific purposes. This segregation of data types and tools is understandable 

when considering that single-mode analysis is used often in many studies, however for large-scale 

holistic spectral imaging studies in cultural heritage, it presents problems where data cannot be 

easily used together as it is always compartmentalised in some way. Even within this thesis alone 
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there were numerous different data formats which were tied to various instruments or techniques, 

resulting in holistic analysis and multimodal clustering of spectral imaging data becoming 

needlessly complex as it required consistent conversion between data types so that different 

analysis processes could be performed efficiently. 

 

 

Fig.6.2 Table demonstrating some of the different spectral imaging file formats produced from different techniques in 

cultural heritage. 

 

In addition to the concerns regarding bringing data together in a complementary way, there are 

other difficulties to encounter when sharing data of different formats for joint analysis efforts 

between collaborators or coworking researchers. If data is stored in many different formats before 

being transferred to coworking researchers or groups, it may have to be repeatedly converted into 

accessible data types if associated software to the instruments used is not universally available. 

As the conversion between different large datasets can be computationally and time expensive, it 

is therefore important for common formats to be used across institutions and research groups to 

increase productivity for large collections. Therefore, to avoid processing and analysis hurdles 

like this in the future, it makes sense to use only a single universal data format for these types of 

studies. However, to understand which formats may best work for an application such as Guisi, 

some of the strengths and weaknesses of different data types encountered during the research 

performed in this thesis were first investigated to understand which would best serve the ARW 

moving forward. 

 

6.2.2.1 ENVI 

The ENVI file format is often considered the industry standard for most spectral imaging 

applications and is therefore a decent candidate for standardising the storage of spectral imaging 

data. However, ENVI is still not used in all scenarios, with many different commercial or lab-

built instruments opting for different data formats completely, as illustrated previously within the 

table in Fig. 6.2. ENVI can be powerful in storing spectral imaging data of different formats as it 

is completely lossless and has plenty of options for storing different sizes of raw data captured 

from a variety of different instruments. However, these features can also present disadvantages 
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when used in practice by a researcher who has not necessarily collected the spectral imaging data 

themselves, as accessing ENVI data always requires unique inputs catered to the data collection 

settings to open saved data correctly. When performing data analysis for large collections across 

multiple different spectral imaging data types this can begin to overcomplicate the ARW, as many 

different properties must be accounted for including the samples (columns), lines (rows), bands 

(channels), byte orders, byte offsets, interleaving configurations, data types (bit depth) and type 

of header file extension (*.hdr or *.rpl). While Guisi could use the ENVI file format for certain 

applications, a detailed understanding of where the data is sourced and how it was collected must 

always exist, so that a user can input the correct parameters to acquire the correctly formatted 

spectral imaging data. For large collections this can prove to be time-consuming, as changing 

parameters for hundreds or even thousands of spectral imaging data cubes would not be ideal. 

 

6.2.2.2 HDF (Hierarchical Data Format) 

Another widely used format, HDF shows promise for analysing multiple types of data as it was 

designed specifically for the storage of scientific data across different systems and techniques. It 

can be used to store volumetric data (or arrays), tables, annotations, raster images and more, and 

therefore can be used as a single file to hold all the information associated with a spectral imaging 

data cube. Additionally, HDF is also widely supported, with many prebuilt functions in many 

programming languages able to access the data easily, including R (Fischer B et al., 2022), 

MATLAB (MATLAB, n.d.), python (h5py, n.d.)and more. The main disadvantage of using HDF 

in the context of this study however is that the structure of the file itself can vary depending on 

the system used and how the file is created. This means that without ensuring that all HDF file 

structures are the same for different independent spectral imaging techniques, an understanding 

of where certain data exists within any HDF file is critical, which can make automatic accessing 

of data problematic for large-scale holistic studies. However, as programs can be written to 

automatically read the tags and structure of an HDF file, it does hold the potential to be a universal 

format in the future if a standard conventional file structure is followed in cultural heritage studies. 

 

6.2.2.3 TIFF (Tagged Image File Format) 

An alternative file format widely used for storing imaging data is the TIFF file format, a format 

which can store volumetric data and any tagged data, such as header information, as a single ‘*.tif’ 

or ‘*.tiff’ file, meaning that any spectral imaging data and its associated reading properties, 

wavelength or frequency channels can be kept together at all times, a seemingly minor detail that 

is increasingly important when dealing with large sets of multidimensional spectral data cubes. 

The traditional downsides of the TIFF file were that it uses 32-bit offsets, which means that a 

TIFF cannot store information with a bit depth greater than 32 bits (float 32, uint32, int32) and is 
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limited to a maximum file size of 4GB. However, as big data has become more common in the 

21st century, the development of BigTIFF began to rise as a more common variant of the TIFF 

file which instead uses 64-bit offsets, meaning that the maximum size of a single BigTIFF file 

can reach 18 exabytes (equivalent to ≈1x109 GB), which is much greater than any spectral imaging 

dataset which would ever be kept as a single file. The capability of being able to store any spectral 

imaging data cube in a single file with all it is associated wavelength/frequency information can 

massively simplify the process of data analysis and streamline data workflows. It also allows for 

easier transfer of files between different instruments, applications, computers, researchers, or 

institutions without the need for conversion between the many different data types commonly 

used in many different sectors. 

 

6.2.2.4 VIPS 

The file format originally used to store raw and processed PRISMS (Liang et al., 2014) spectral 

imaging data used throughout this thesis, VIPS (Cupitt & Martinez, 1996; Martinez & Cupitt, 

2005) is an image format that can be used to store volumetric data for easy use with the VIPS 

image processing library and user interfaces such as nip2. VIPS has seen use in many museums 

and galleries over the world and is popular due to its open source and cross-platform capabilities, 

and therefore presents a unique data format which may be effective in its use as a universal format 

in the future. The disadvantages of VIPS however are that the format is not as widely used as 

other file types, such as ENVI or tiff, and as such would have limited support for many 

instruments. 

 

 

6.2.2.5 Other 

In addition to the previously mentioned commonly used file formats, there are a multitude of other 

file formats which could act as a universal data format for analysing large-scale spectral imaging 

data. However, many of these were not tried or tested during the research carried out in this thesis 

so are not covered in greater detail. Some of these other formats can include FITS, NetCDF, DNG, 

IMG, DF3, just to name a few, with many more 3D volumetric data formats developed for many 

different purposes. 

 

6.2.3 Guisi Compatibility with TIFF, VIPS, and other formats 

Due to the ease and accessibility of using BigTIFF over other techniques in supplying spectral 

imaging data cubes as a single easy-to-access file, the most stable data format to be used with the 
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Guisi software is TIFF, and when used allows for the visualisation of spectral imaging data of any 

type and any wavelength or frequency. To support this, a suite of different conversion functions 

has also been developed to allow for seamless reformatting between common datatypes and 

BigTIFF, many of which are implemented into the backend of Guisi directly, but it is 

recommended that any volumetric data cubes imported into Guisi use either the TIFF or BigTIFF 

formats to avoid import errors. For scenarios where computer RAM becomes a limitation in 

performing data analysis, such as for large-scale XRF data, the VIPS file format can also be used 

to access spectral imaging data within Guisi as well, which can sometimes offer memory 

performance improvements. If a TIFF or VIPS file is not tagged with any information during 

import, wavelength or frequency data can also be accessed for a data cube file by using an 

identically named ‘*.iwvl’ file, a ‘*.txt’ file where each row is a float value corresponding to each 

channel or image band.  

 

6.3 Software Application & Implementation 

Throughout this thesis, spectral imaging case studies were performed which required the 

interrogation, analysis, and grouping of spectral data over multiple export paintings and many 

manuscript illuminations. In all these studies, investigations into the use of pigments and or 

painting techniques were performed much more efficiently using Guisi as it provided a platform 

for cluster analysis and high-dimensional spectral data analysis. The tools used to perform these 

studies were purposefully developed with the clustering and spectral imaging of collections in 

mind and are therefore designed to allow for convenient large-scale analysis. This section will 

cover the structure of the software, including these different tools, and will provide examples of 

their use in previous chapters where it will then become clearer as to why a visualisation approach 

was important for this study and will continue to be in the future. 

 

6.3.1 Graphical User Interface 

The front-end GUI side of the application is primarily developed in python and its current state 

consists of three main interactive windows: a main display, a data visualisation display, and a 

cluster analysis display, of which the latter two are accessible in different tabs. There are 

additional tools in the menu toolbar at the top of the window, but as these are simple tools used 

only to upload data or save/open projects, they will not be covered in detail. An example of the 

main window and tabs before uploading data can be seen in Fig. 6.3, with different sections of 

the GUI labelled to appropriately match the following sections 6.3.1.1 – 6.3.1.5. 
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6.3.1.1 Main Display 

Highlighted in black within Fig. 6.3, the main display works as both the main data visualisation 

window but also serves as the primary point of the user’s interactivity with any uploaded data. 

There are multiple tools for selecting images, visualising data of different types, or even extracting 

spectra to perform analysis directly within the software. From top to bottom, the main display can 

be split into three main parts: image display, analysis tools, and spectral image selection, all of 

which can be used for the analysis of spectral imaging data in different ways. 

 

Fig.6.3 images showing the Guisi main window, separated into different sections by colour and associated with 

chapter sections. 
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Image Display 

Within the main display of Guisi, different types of uploaded data can be visualised in multiple 

ways. Furthermore, so long as the spectral image files used possess the same names or order, 

colour images, mean images, spectral image bands, and cluster maps all corresponding to one 

another can be visualised simultaneously within the main display window, allowing for multiple 

analytical processes to be performed where: 

• Colour images can be used to monitor the basic colour palette used over a painting and 

pinpoint regions for closer study.  

• Mean images can be used to visualise an entire image from data with more sparse 

information, such as XRF (where in many individual energy channels no signal is found 

for certain regions, or perhaps even the whole painting). 

• Spectral bands can be used to observe individual channels, where singular XRF energy 

channels or single vis-NIR wavelength bands could be displayed (as was performed for 

the detection of iron gall inks in chapter 3). 

• Cluster maps can be used to visualise the distribution of unique spectra, either as binary 

maps or in true colour, over an entire image and across multiple spectral data cubes (used 

throughout the thesis). 

In addition to the analytical processes used for material identification after data collection, these 

features made it possible to check spectral data cubes and individual raw channels simultaneously 

to data capture, which meant that Guisi could be used as a tool for calibration purposes or for 

checking and identifying artefacts, saturation, or other problems. Furthermore, certain features 

such as underdrawings, which do not always require processing to visualise, could also be 

identified live. Mean images were also useful in quickly visualising XRF data, as the alternative 

would be to look through sparse XRF energy channels. And finally, cluster maps and spectral 

image visualisation displayed in Guisi could be used to guide the subsequent collection of point 

measurements. 

Analysis Tools 

In the centre of the main display are tools that allow for the extraction of spectra from any type 

of spectral imaging data. By selecting a region of interest (ROI) when displaying any data in the 

main display widget, the voxels selected within the ROI will be averaged into a mean spectrum 

to be displayed in the data visualisation tab. Typically, a rectangular selection of pixels is used to 

create the mean, however, a user can also capture only the spectra belonging to a specific cluster 

in one area, allowing for the analysis of clustering results and providing high SNR spectra for 

only one type of material in an ROI. ROIs are stored in the software and can be labelled or given 

any colour decided by the user, they can be deleted at will or saved and used for other actions 

such as to perform cluster merging. This section is also where the images being shown in the main 
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display are controlled. The tools developed for use here were central to performing pigment 

identification in the investigations seen in this thesis, as vis-NIR spectra could be easily obtained 

from areas of PRISMS or XRF data where complementary point measurements using other 

techniques were also recorded. Furthermore, swapping between multimodal data allowed for the 

extraction of spectra of different types from the same pixels (such as XRF, Vis-NIR, and FTIR), 

which was often central to performing cluster analysis during chapter 4. Spectral extraction could 

be performed for specific clusters in any given ROI, providing high SNR spectra belonging to 

inhomogeneous areas. This was particularly useful for scenarios where data had to be collected 

for spatially small objects (only a few pixels) found throughout different manuscript pages in 

chapter 3 which had a non-uniform structure but repeated as a pattern in many locations. 

Additionally, this was used consistently throughout the clustering analysis to ensure that the 

parameters used within the clustering algorithm provided clusters which were accurate and 

avoided misclassifications. 

Image Selection 

As the data upload routines for use with BigTIFF *.tiff and VIPS *.v files within the software are 

completely automated, data can be easily selected and swapped between by using the tools at the 

bottom of the main display window, allowing for an almost seamless transition between different 

spectral data cubes and any associated colour images or cluster maps. This streamlines any data 

analysis as the process of swapping between many different spectral imaging data sets of different 

types can be made completely effortless. Furthermore, as folders selected for data visualisation in 

Guisi can be updated live during data collection, spectral imaging data cubes can also be 

interrogated live, allowing for the analysis of raw or processed data directly during or after 

collection. 

 

6.3.1.2 Spectral Extraction 

The spectral extraction window works as a basic graphical display which can plot extracted 

spectra (extracted using an ROI in the main display) or mean cluster spectra and their standard 

deviation ranges, either calculated from the current spectral image alone, or over the entire 

collection. For ease, the plot seen in this window for any specific ROI selected in the main display 

will always share the same colour, line thickness, and line style, with the mean spectrum and 

standard deviation always depicted in black and grey respectively. This allows for a clear 

separation between the ROI spectra and the cluster spectra if both must be analysed 

simultaneously, which was often implemented throughout this thesis to validate clustering results 

and perform grouping. An example of an ROI selected in the main display, next to the extracted 

PRISMS vis-NIR spectrum for a red region, can be seen in Fig. 6.4. 
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Fig.6.4 A representation of performing spectral extraction in Guisi. The left-hand side shows an RGB image with an 

ROI selected, and the right-hand side shows a graph of the mean reflectance spectrum in the ROI area. 

 

This process of spectral extraction and visualisation is one of the most essential parts of Guisi for 

the analysis of spectral imaging data in any study. This is because the data plotted directly from 

clusters or ROIs and shown in the spectral extraction window can be exported from the software 

into a *.csv file which subsequently can be used anywhere. In the context of this thesis for 

example, *.csv files for vis-NIR PRISMS data could be extracted from the software and used as 

unknown spectra within the Kubelka-Munk model for the identification of pigments, as is 

demonstrated in abundance in chapter 3. 

 

6.3.1.3 Cluster Visualisation 

Cluster visualisation allows for cluster maps to be visualised in the bottom right-hand window of 

Guisi, a copy of which will be shown in the main display if the user chooses. The different options 

for visualising certain variations of the cluster map (shown in Fig. 6.5) are as follows: 

• Full Greyscale Cluster Map – a representation of all the clusters can be displayed in 

greyscale, where the pixel intensity corresponds to the cluster number. 

• Binary Cluster Map - A black-and-white binary cluster map can be obtained for specific 

cluster numbers which can be selected by a user. 

• RGB Cluster Map – The RGB cluster map is essentially the same as the binary cluster 

map but also allows for the true colour representation of the cluster pixels by using the 

binary map as a mask. 
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Fig.6.5 Different images which can be found displayed within the cluster visualisation window of Guisi. From Left: 

sRGB Image, Greyscale cluster map, binary cluster map for vermillion, true colour cluster map for vermillion. 

 

Different cluster map variations can be useful for analysis in different ways. The full greyscale 

maps, which can also be converted to false colour, can be useful for investigating the dispersion 

of different clusters over a painting, with the binary and RGB cluster maps useful for mapping 

the distribution of pixels belonging to specific pigment mixtures either in a single painting or over 

an entire collection. In addition, all the cluster maps are used in cluster grouping, where smaller 

ROIs of cluster map regions can be used to highlight spatial areas with similar clusters (as shown 

in section 6.3.1.4). The visualisation of these maps was useful throughout the thesis in all the 

different case studies, with the RGB cluster maps seen numerous times in different chapters. 

Furthermore, even the classification maps produced in chapter 5 could be used within Guisi and 

were shown to be used to map classified pigment mixtures over the collection when evaluating 

the C-SVM performance. This flexibility in cluster visualisation is provided through the use of 

cluster maps where pixel intensities correspond to the cluster to which the pixel belongs. This 

implies that if the same format is followed for any clustering or analysis technique involving any 

form of cluster map in any data type, then the results can be used within Guisi, making it a very 

universal approach to data analysis – precisely is needed for holistic multimodal studies. 

 

6.3.1.4 Cluster ROI Tools 

The upper part of the cluster merging tab is used to primarily interact with spectral imaging data 

to gather clusters from selected spatial areas in the main display. This is typically performed either 

by selecting a live ROI, which can be moved around to any point on an image or by using a saved 

ROI created during spectral extraction. For whichever type of ROI is used, the left-hand side of 

the cluster ROI tools window will, as a result, show either the RGB, mean, or cluster map image 

of the selected region, easily switchable by the user. Within this region will exist a set of unique 

clusters, each of which will possess a unique mean cluster spectrum which will be displayed on 

the right-hand side of the window.  
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A typical example of this window in use for a red region of interest can be seen in Fig. 6.6, where 

the leftmost part of the figure. displays the greyscale cluster map, the middle the RGB for the 

selected region, and the rightmost part shows the mean cluster spectra belonging to the clusters 

within the ROI. 

 

Fig.6.6 Different Guisi displays found within the cluster ROI tools window. From Left: ROI Greyscale cluster map; 

ROI sRGB Image; a plot of vis-NIR mean cluster spectra belonging to each unique cluster within the ROI. 

 

After selecting a region of interest,  clusters can be merged by simply clicking the “create merged 

cluster” button, which will assign the different clusters into a single new group, which will be 

sent through to the cluster grouping part of Guisi (shown in 6.3.1.5) to be further analysed, edited, 

and eventually used to create new group clusters maps. If a selected region of interest possesses 

spectra that may lay within the selected region of interest but do not possess the same features as 

most of the other clusters in the region, spectra can be removed from the set to be merged by 

clicking either on their plot or legend entry, as shown with the greyed-out cluster 240 in Fig. 6.6, 

ensuring accurate grouping of clusters which can clearly be shown to have the same spectrum. 

 

6.3.1.5 Cluster Grouping 

Cluster grouping can be performed by merging the clusters selected in the cluster ROI tools, or 

by creating an empty group and populating it with clusters afterwards. Either way, clusters can be 

added or removed to and from groups by using the cluster list widget and the popup window 

which will hold group properties (as seen in Fig. 6.7). Within each popup window, the constituent 

clusters belonging to each group can be edited, and as clusters are added or removed from the 

group, the associated cluster means are updated. Multiple options can be edited within the popup 

cluster options window, these include: 

• Changing the cluster number: This will in turn update group cluster maps if produced. 

The cluster cannot be changed to a number which already exists for another cluster to 

avoid confusion. 
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• Changing the colour of the cluster: This will update not only the plot colours inside the 

software but also affects the colour of the false colour group cluster maps. 

• Adding Clusters: Clusters can be manually added to the group if they possess similar 

features. Other groups can also be merged into the group being edited as well, which 

allows for the easier combining of cluster groups representing the same materials over 

multiple ROIs. 

• Removing Clusters: Constituent clusters can be removed from the cluster if any 

anomalies are found. 

• Changing Metadata: By clicking on the metadata tab, an open text area will be found 

where anything typed will be stored in the group for future reference. This can be useful 

when labelling different clusters with what they represent over large collections. 

 

 

Fig.6.7 Illustration of the Guisi grouping options after opening from the panel on the left-hand side. 

 

After analysis, grouping data can be exported which will create a new set of cluster maps and 

results data which will have negative cluster numbers for merged groups. This means that 

ungrouped clusters can be placed into the same maps as grouped clusters, though if requested just 

the grouped data can be produced also (which is typically how the grouping was used for the 

research within this study). Output cluster maps and the corresponding data can also be placed 

into Guisi again later if another stage of grouping is preferred. New results data is created from 

the clustering outputs described in chapter 2, which includes the total sum of reflectance (∑R) 

∑ 𝑅𝑖,𝜆
𝑁
𝑖=1 , the total sum of squared reflectance (∑R2) ∑ 𝑅𝑖,𝜆

2𝑁
𝑖=1 , and total pixel population 𝑁, so 

pixel-accurate means and standard deviations representing each cluster can be calculated quickly 

and used for analysis or further grouping. 
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6.4 Conclusions & Further Developments 

In this chapter, a new software application, Guisi, was introduced for the purposes of performing 

spectral imaging data analysis and grouping of clusters which are generated after performing the 

automated clustering procedures seen in chapter 2. An acquisition to results workflow (ARW) for 

spectral imaging studies was briefly mentioned which illustrated where Guisi could be 

implemented for numerous purposes, both within the studies in this thesis and in future research 

projects.  

Questions were asked about the data formats which should be used in cultural heritage studies of 

large data collections, where it was discussed that many techniques can be useful in their 

applications, however, to perform large-scale or holistic multimodal studies with different 

spectral imaging data types, the commonly supported and open access BigTIFF file format is an 

excellent candidate for studies in this thesis and beyond. Finally, the software itself was discussed 

and demonstrated, where a more detailed use of the application for the extraction of spectra and 

grouping of clusters was shown. 

Moving forward, intentional future developments of Guisi are to integrate more tools useful for 

the analysis of spectral data and identification of materials in cultural heritage studies. There are 

already other codes and basic GUI programs that have been developed separately for analytical 

processes such as XRF element identification or Kubelka-Munk mixture modelling for the 

identification of pigments, respectively. However, as of yet, these processes are developed as 

separate algorithms or exist in other programs such as MATLAB. By bringing these tools into the 

software, Guisi can begin to become a platform in which large-scale complex data analysis can 

be performed accurately, efficiently, and conveniently. Furthermore, with the results shown in 

various chapters within this thesis, it is possible that in the future, clustering and classification 

techniques could be implemented directly into the software also, so that in future Guisi can be 

used to analyse multimodal spectral imaging data and large collections throughout all steps of the 

proposed ARW. 

Finally, Guisi is being partly developed as part of the “AI for DIGILAB” (https://www.isaac-

lab.com/isaac-digilab) project and is likely to adapt, improve and develop as researchers from 

different cultural institutions or other organisations begin to use the available services involved 

with the project. Therefore, it is also the intention that in the future multiple other tools useful for 

the interpretation of spectral data not already mentioned within this thesis will be incorporated 

into the software, so that Guisi can grow and then continue to be a dynamic software application 

useful throughout the broader cultural heritage research community. 
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Chapter 7  

Conclusions 

 

The main objective of this thesis was to develop and implement working methodologies which 

would allow for the large-scale analysis of complex spectral imaging data so that the British 

Library’s collection of Southeast Asian illuminated manuscripts could undergo efficient, 

thorough and widespread material analysis. The main motivations for this project were to acquire 

a fundamental basis of knowledge surrounding the evolution of trade and cultural exchanges 

within maritime Southeast Asia by studying how the development of artistic practises and use of 

artistic materials in the production of illuminated manuscripts may have adapted over time and 

between regions. While maritime Southeast Asia has a well-documented history of producing 

finely illuminated manuscripts, very little is known about the artistic practises implemented 

within their production throughout the 18th-19th centuries. Furthermore, as the number of well-

illuminated manuscripts is limited, and the use of artistic materials largely unknown, basic 

comparative studies may not be informative or statistically reliable enough to provide conclusions 

about the materials used in the creation of illuminated manuscripts. Therefore, the holistic use of 

reflectance spectral imaging with other complementary techniques was considered a perfect 

candidate methodology for performing a large-scale material analysis. However, when 

performing studies covering vast geographical regions, a large volume of data is required to make 

confident conclusions about the use of different artistic materials, resulting in data which can 

become too large or complex to analyse. Therefore, it was determined that machine learning 

techniques were required to confidently characterise artistic materials with significant variation 

spread over a large amount of collection items. 

Prior to the beginning of this research project, the large-scale analysis of spectral imaging data 

had not been explored thoroughly within cultural heritage science. However, one clustering 

approach had already been explored and implemented by our research group for the large-scale 

material identification of wall paintings (Kogou et al., 2020). While this technique had 

performed well for the application outlined in that study, expanding the method to alternative 

datasets showed that the algorithm suffered from multiple difficulties where data would not be 

clustered correctly. Therefore, the initial focus of the research outlined in this thesis was to 

develop a generalised machine-learning methodology which would allow for accurate material 

identification to be performed on the British Library’s large and spectrally complex illuminated 

manuscript collection. The developed method eventually came to be a novel fully automated 

complementary multimodal clustering technique (multimodal meaning more than one type of 

spectroscopy/data type corresponding to the same object) which could perform large-scale 

clustering of collections by using VNIR spectral imaging data and CIELAB colour information 
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together in a unified way, which demonstrated the ability to successfully cluster previously 

misclustered data. For performing analysis on the British Library’s maritime Southeast Asian 

illuminated manuscript collection, the automated clustering was able to provide a reduction in 

the size of the dataset by roughly a factor of 84,200, meaning that a collection of almost 2 

billion spectra could be reduced to 22,837 unique clusters representing different artistic 

materials including variations in substrate, inks, pigments, pigment mixtures, paint layers, and 

more. 

While this methodology was shown to provide accurate clustering results which could 

demonstrate the presence of the same materials spread over entire collections, analysing 22,837 

individual clusters for this thesis was not an ideal approach for performing large-scale data 

analysis. Therefore, a highly reliable method of placing clusters into pigment mixture groups 

was also developed and implemented which used the Kubelka-Munk model for the 

identification of pigments to inform the grouping of clusters which shared the same pigment 

mixtures, regardless of relative concentration between individual constituent materials. As this 

process would be highly accurate in theory but difficult to implement in practise, a new 

software application, named Guisi (a Graphical User Interface for Spectral Imaging and 

Clustering Analysis), was developed so that the spectral data could be analysed more efficiently 

and automated clustering results could be assigned into groups by interacting directly VNIR 

data, colour data, and clustering results simultaneously through convenient data visualisation 

tools. In the context of this thesis, this meant that grouping could be used to illustrate the 

distribution of pigments and pigment mixtures for over a thousand spectral images by 

interacting with only a small set of data cubes, making accurate large-scale material analysis 

more achievable for many different items within the British Library’s collection.  

When analysing these automated clustering results and grouping results over the entire manuscript 

collection during pigment identification for the whole collection, it became obvious that there 

were fundamental limitations which led to the misclustering of spectrally similar pigments and 

materials which in truth possessed chemical differences. These limitations were mainly a result 

of performing clustering in only the VNIR, however, for the analysis of the collection this was 

not a huge problem, as it was found that by implementing other complementary point-based 

measurement techniques, such as XRF and ER-FTIR, many of the misclustered regions could be 

easily identified and then correctly characterised anyway. This did however make it clear that the 

natural progression of performing automated clustering for holistic studies was to include more 

than just one technique in the clustering approach itself. This is because the complementary 

information available via imaging variants of the point analysis techniques can provide data to 

not only identify specific material composition, but also map different materials and mixtures 

more accurately. 
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Therefore, the automated clustering method was investigated once again to determine its 

effectiveness in clustering alternative complementary spectral imaging techniques, where it was 

found that the same clustering algorithm developed for VNIR could also be used to cluster XRF 

and ER-FTIR data. Furthermore, as the automated clustering method developed for 

CIELAB/VNIR spectral imaging could allow for two datasets to be clustered at a time, an 

adaptation of the algorithm was created to allow for the automated clustering of all techniques 

simultaneously, where for two export paintings, XRF mapping and ER-FTIR mapping were used 

directly with VNIR spectroscopy and CIELAB within the clustering. This novel holistic 

multimodal clustering approach showed success in addressing the misclustering problems seen 

commonly in each individual technique, as the inclusion of complementary information improved 

the overall accuracy. In addition to this however, the approach also provided cluster maps which 

could provide a holistic analysis of artistic materials and demonstrate the layering of different 

paints by combining both the XRF and VNIR. Furthermore, in general, the clustering approach 

was also able to provide much needed higher SNR spectra required for XRF (where it is often 

preferable to collect data quickly instead of using longer spectra collection times for higher SNR) 

so that more accurate pigment identification could be performed.  

After performing automated clustering on other projects outside this thesis’ scope, along with the 

dataset used during the investigation into holistic multimodal clustering, it was discovered that 

the same pigment mixtures used within the British Library’s maritime Southeast Asian 

illuminated manuscript collection could often appear in other analysed artworks. Multiple 

successes in performing automated clustering on other datasets presented the question of whether 

results gained from one study could be used to inform the study of another completely different 

small or large collection, in turn bypassing much of the initial grouping that may be required with 

brand new datasets. As machine learning had already been implemented in the automated 

clustering and grouping methodology used to analyse large collections, it was investigated again 

to see whether classification techniques could be used to achieve this new objective. In response, 

several different commonly implemented classification techniques were investigated in this thesis 

to understand if they could be used to automatically classify previously encountered and 

characterised VNIR spectra. After training different models on a small subset of manuscripts from 

the British Library’s collection and applying them to the rest of the dataset, it was found that 

classification can, for the most part, successfully classify already seen pigment mixtures in new 

collections. This prompted the development of a new methodology which will be investigated in 

the future, which involves a unified clustering, grouping, and classification workflow that can 

allow for automated pigment identification to be performed for already seen pigment mixtures, 

while also allowing misclassifications to be used as further inputs into the KM informed grouping, 

thus producing a loop which will iteratively update and improve as more materials are identified, 

classified and trained into the classification model.   



294 

 

Finally, with regards to the pigment identification performed for the British Library’s collection 

of maritime Southeast Asian illuminated manuscripts, the different clustering and grouping 

techniques were shown to perform well in mapping pigments over the entire collection when 

using the KM informed approach. These results, used in combination with UV-VNIR-SWIR 

reflectance, XRF spectroscopy, ER-FTIR spectroscopy and Raman spectroscopy were able to 

perform identification of many pigments and mixtures spread wide throughout numerous 

manuscripts with provenances ranging over two centuries. While the findings are explained in 

detail in chapter 3, some of the overarching trends which could be determined are as follows: 

• As very little was known about any pigment usage, the identification of lead white, bone 

white, calcium carbonate white, barium white, indigo, Prussian blue, ultramarine, azurite 

(potentially), vermillion, red lead (potentially), red insect-based dyes, red ochre, 

orpiment, yellow ochre, chrome yellow, gamboge, copper greens, iron gall ink, copper-

based ink, carbon black (likely) and bone black (potentially) were all detected within the 

collection. 

• Most non-primary colours such as greens, oranges, browns, pinks etc. were likely to 

almost always be produced in manuscripts by mixing the same materials used elsewhere 

on the manuscripts, unless copper-based green or brown ochre was used. 

• The previously unmentioned use of bone ash white in early 19th century manuscripts was 

very common in Java and can likely be used to date some other bone ash containing 

manuscripts (Add MS 12287, Add MS 12292, Add MSS 12339) with unspecified dates. 

• In general, it was found that until the mid-late 19th century, most regions within maritime 

Southeast Asia used relatively similar materials within their manuscript illumination that 

they had used since at least the mid-18th century. The changes in the mid-late 19th century 

however were seen most clearly for blue, yellow and white pigments, where towards the 

later dates, the use of more traditional materials such as indigo, orpiment, and bone ash 

white had changed to Prussian blue, ultramarine, chrome yellow of barium white: see Or 

15227 (Late 19th century), Or 15026 (dated to 1861) and Or 9333 (dated late 19th-early 

20th century).  

• During these two centuries, it seems the greatest “new” influences were likely European, 

where materials such as Prussian Blue, Ultramarine (likely synthetic), Chrome Yellow, 

and Barium white were introduced in most in manuscripts which typically had less 

traditional features. 
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In addition to the future developments already mentioned regarding the unified clustering, 

classification, and pigment identification workflow, there are also other future developments 

which will be explored due to the positive results seen in this thesis. 

Firstly, as in general most of the clustering throughout this thesis is performed using the same 

automated method developed in chapter 2, it would be interesting in future to continue 

investigating how well this generalised automated clustering algorithm would work with 

alternative spectral imaging systems that may use different spectral ranges or have greater focus 

on different parts of the VNIR, SWIR etc. It would also be interesting to investigate new distance 

metrics at the clustering stage to understand if the approach can be optimised for different spectral 

resolutions or techniques different from PRISMS. 

Chapter 3 demonstrated clearly that the clustering techniques and overall methodology could 

perform well for the investigation of the maritime Southeast Asian illuminated manuscript 

collection. While there is significant complexity to the variation and application of different 

pigments found in the collection, there are perhaps some general scenarios in different studies 

where an even greater level of complexity could be encountered. While the clustering method has 

already been implemented on different sets of data including VNIR spectral imaging/CIELAB of 

Columbian export paintings, and XRF/SWIR hyperspectral imaging of old master paintings, it 

would be interesting to continue investigating how wide the range of analysis using this technique 

can be, and if this generalised clustering algorithm can in fact work for all spectral imaging-based 

heritage science investigations. 

With the successes of holistic multimodal clustering using VNIR spectral imaging/CIELAB/XRF 

together were clear within this thesis, it would be interesting in future to investigate whether the 

holistic multimodal clustering of collections can be performed. Or if even more, higher-spatial 

resolution techniques can be incorporated into the clustering approach. This is because if the same 

approach can be extended to many high-resolution non-invasive imaging and mapping 

techniques, such as VNIR, XRF, and FTIR, a completely automated holistic analysis of artworks 

could be performed without losing information during image registration between different 

techniques. 

Finally, while Guisi demonstrated its importance for the different analysis and grouping 

implementations seen in different chapters, there are still many other data analysis and processing 

techniques, such as Kubelka-Munk modelling for pigment identification, which are not integrated 

into the software application at the time of writing this thesis. Therefore, there are obvious future 

developments which can still be made to the software so that Guisi can one day become an open 

platform for multiple spectral imaging techniques in cultural heritage.  
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Appendix A  

Flowcharts for Multiple Steps of Automated Clustering 

 

Appendix A.1 – Flowchart for the Clustering of Large Collections – Data Reduction  
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Appendix A.2 – Flowchart for the Clustering of Large Collections – Repeated Clustering 
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Appendix A.3 – Flowchart for the Clustering of Large Collections – Filtering 
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Appendix A.4 – Flowchart for the Clustering of Large Collections – Hierarchical Merging 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


