DETECTION AND CLASSIFICATION OF DDOS FLOODING ATTACKS IN
SMART HOME NETWORKS USING MACHINE LEARNING
TECHNIQUES AND RULE-BASED ALGORITHM.

ASMAU WALI KAZAURE
SCHOOL OF SCIENCE AND TECHNOLOGY

NOTTINGHAM TRENT UNIVERSITY

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF
NOTTINGHAM TRENT UNIVERSITY
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

MARCH 2023

Dedication

| confirm that this is my own work and the use of all materials from other sources has been properly
and fully acknowledged.

No part of this thesis has already been, or is being currently submitted for any such degree, diploma,
or other qualification.

Signature: ASMAU WALI

Email: N0825492 @ntu.ac.uk

Date: March 31°%, 2023

This thesis is copyright ¢ 2023 by Asmau Wali Kazaure

mailto:N0825492@ntu.ac.uk

Acknowledgement

| would like to express my immense gratitude to my supervisor Dr. Xiaoqi Ma for his expert guidance,
support and understanding throughout my PhD journey. | would also like to thank my second
supervisor Dr. Jun He for his relentless professional support all through. | would like to thank
Petroleum Technology Development Fund, Nigeria for making this possible. To my colleague
Michael, thank you for the energy you brought during our collaborative research works. Special

thanks to Amir for the insightful guidance all along.

My heartfelt gratitude goes to my parents for their unwavering support, sacrifices and
encouragement throughout this journey. The support from my siblings translated into a source of
strength during challenging times. | will forever be grateful to my husband for the sincere support,

motivation and care. This means the world to me. To my in-laws, your trust and belief in my
aspirations coupled with your warm support and encouragement has really contributed to my
success. | thank God for brining all these people together in my life as their collated support has
resulted in this successful journey. Thank you, God, for giving me the strength, knowledge and

wisdom all through.

Abstract

Smart homes are gaining more popularity by the day due to the ease they provide in terms of running
our homes. However, the energy and resource constrained nature of the smart home devices make
security integration challenging, thus making them prone to cyber-attacks. DDoS remains one of the
most threatening attacks to this network and loT in general. To curb this issue, there is a need to study
the behavioural pattern of this attack and smart home devices at a low level. This will aid in designing
a timely and more effective DDoS detection and attack type classification system, which is what this

thesis presents.

This research collects DDoS and benign traffic in a real smart home environment and performs an
Exploratory Data Analysis (EDA), visualizing the behavioural pattern of DDoS flooding attacks when
targeted at smart home networks in comparison to the benign smart home traffic pattern. Specific
smart home traffic properties were selected, correlated, and visualized showing their reversed
behaviour during an attack compared to their normal benign nature. To further validate the findings,
public IoT datasets were analysed in the same manner and the same results were achieved. The results
and observations from the findings are used to propose and implement a novel hybrid anomaly and

feature-based DDoS detection and attack type classification system.

The implemented system detects and classifies a wide range of DDoS flooding attacks at the very onset
including unfamiliar, amplification, and protocol-based attacks. To validate this system, it is tested
rigorously on both private and public sourced benign and infiltrated smart home traffic. An excellent

performance was recorded making it not user, device or attack centric among other benefits.

Due to the excellent performance recorded, the attack type classification approach was further
applied to a supervised machine learning model, Random Forest. This was tested to find out the
performance of the Random Forest model in attack type classification compared to when it is coupled
with the classification module from the hybrid anomaly and feature-based solution. The performance
clearly showed the latter outperforming the Random Forest model on its own by far in terms of attack
type classification, thus proving that domain knowledge is very important when it comes to security

design and implementation even when using Machine Leaning models.

Contents

=Yoot Y i oY W TSSO PP PRSP PPRPPP 2
ACKNOWIBAZEMENT ...t e e e e e et e e e e e e e e e bt e aeeeeeessesnnbeaeeeeeeeeannnrrnneeaeens 3
LiSt OF PUBIICAtIONS ..ottt ettt e et e st e e sab e e st e e bee e sabeeeneeesaneas 9
(01 =T o1 T PSPPI 11
INEFOTUCTION ettt et e s b e st esb e e e snreesneeennes 11
1.1 2 Yol €= oYU o Vo USSR 11
1.2 RESEAICN QUESTIONS. .. uviieiiie ettt s e s e e eme e e saree s ree e sareeesnneesnneeens 11
1.3 ATM AN ODJECTIVES .eieiie ettt st e e s st e e e s sbae e e ssabaeeeseabeeeessnseeaesans 13
1.4 High level MethodOlOgYcccviiiiieee e e e s e e s aaaee s 13
1.5 CONEIBULIONS ettt sb e st st s e sbe e b e sbeesanesanes 16
1.6 Yol o LI Ta Vol 110011 1o o -3 SRR 18
1.7 THESIS STIUCTUIE.c..eeiieiie ettt ettt ettt ettt e et e e st e s bt e e sabe e s bee e sareesabeeesabeesaneeenee 18

(01 0T o1 T USRS SPR 20
LItErature FEVIEW .. .cci ittt e e s sra e e s sba e e e saas 20
B8 R 1418 o T IV T o] o RO PP O PO PST PP PRPRTRON 20
2.2 SMArt ROME ECO-SYSTEIM ...uiiiiiiiee i e e e e e e e te e e e e e e esnsbereeeeeeeeesannrreaeeeeeas 21
2.3 Challenges and risks concerning smart home NetWOrKccovcvveeiiriiieiiicieee e 22
2.4 DDoS flooding attacks in the smart home NetWOrk........cccveviieiiieiiciiii e, 23
2.5 DDoS detection and classification in smart home Networksccccceveeiieniiniiniieseeeseeene 25
2.5.1 Data visualization in CYber SECUNITYcviiiiiiiciiiiieee e 25
2.5.2 Rule/ signature/ hybrid -based ID(P)Sccveeeeueeieeeeeee ettt ettt e eeaee e 26
2.5.3 Supervised Machine learning based solutions for attack detection and classification....... 31

2.6 Gaps identified and coONtribBULIONSoeiiiiiiieice et 32

W A0 11111 4 T VR 34
(01 0 1= o (= S TR 35
Smart home NetWOork BEhaVIOUNoi i 35
3L INErOTUCTION ettt ettt st e e st e s bt e e s it e e s beeesabeesabeeeanbeesabeeesabeesareenas 35
320 |V, =1 d o oo [o] Lo = 2SR 35
G I V= Ao T QY=Y U o SRR 36
R A E) - I olo] | [=Tot i o T o RO TP PSPPPRTOPRPRON 37
3.5 EXPlOratory Data ANAIYSIS ...ueeiiiiiiei it cciiee sttt e et e e s e e st e s et e e e esbr e e e enbaeeesereeeeens 40
3.5.1 Traffic Cat@GOIIiZAtiON ..cc.uviei e 40
3.5.2 Device IdentifiCationc.cooieiiieiieiieeeee et 46
3.5.3 Protocols (idle & aCtiVe STALES) ...ccccueeeeeiiiie ettt et e e e e aae e e e e aree e e nnes 51
3.5.4 Flow volume and durationceeeiieeiieiiiiee ettt s s e 51

3.5.5 Traffic pattern based on mode of 0PErationcccceeeecieiieciieie e e 54

3.6 Comparison to literature and NeW fiNdINGSuueeiiiiiiiciiieeee e 56
3.7 SUMIMIAEY i e e s e s s s s s s s s s s s s s s sssssssssssnsnsssnsssnsnsnsnsnsnnns 57

(0 0T o1 o =T o SRR 58
Exploratory Data Analysis comparing attack and benign smart home traffic properties 58
/N [T oo (¥ ot To] o RO TSP PSPPI OPRTOPRPRIN 58
|V =Y i g Yoo [o] o =4V AR 58
4.2.1 Data COECION ..couveiiiiei ettt ettt et s s e e r e b e s s eanes 60
4.2.2 EXPloratory Data ANAlYSiScccieee ittt e tae e e bae e e e ata e e s e atae e e nees 60
4.2.3 Proposed NOVEl @PPrOaChueiii e e e e e e e e e e e e e e eanns 63

4.3 Attack data COIRCTIONeiiiiieiee e s s e s b e e sar e sneeeas 63
4.4 EXPloratory Data ANAIYSISuiiiiiuiiieiiiiiiesciiiee sttt e sttt e s sttt e s st e e s saba e e s s aae e e s s araeeeenraeeeennnaees 69
4.4, 1 BeNigN traffiC...cueii i e et e e e nees 70
A.A4.2 ALEACK TraffiC.. e e s 78

4.5 Proposed novel detection Methodooviiiiiiiiiie e 88
4.6 Comparison to literature and new contributionsccccoevvciiiiiiciiie e, 91
.7 SUMMAIY coiiieiiiiiieeeeeeeeeeee ettt e e et et et e e e e et et et e e et e e eeeeeeeeeeeeeeeeaeeeeeaeetetetereeeeereeerererereeerereeeees 94

(0 0= o1 T ot TSP 96
A Novel Hybrid DDoS attack Detection and attack type indication system in the Smart Home Network
.. 96
5.1 INTrOTUCTION .t sttt st et b e s san e st e bt e b e reesree s 96
o320 |V, =1 d o ToTe [o] Lo =4V 2SR 97
SN R D L) - I o] £ =Y o - T L o] o H 98
5.2.2 Algorithm drafting ... e e e e e s e et e e e e e e e nrrraees 98
oI B =T 1o = OO PPOOUOPPPPPURUPPPPPPPPPPN 100
IV N VT4 14]- S 100
5.2.5 Validation ...cooeiiiiiiieee e s s 101
5.2.6 COMPAriSON t0 lIEEratUIE.....uveeii i e s e e e s e e e e e e s s arbeaeeeeeeeeenanns 101

5.3 How the detection and attack type indication algorithm work...........ccccceeeiiiiciiiiieee e, 102
oI Ve Y] [T g 1T o =1 o TP 104
SR D L) - W o] £ <Y o -1 - L o] DO 104
5.4.2 AlOTIthm Draftingccoociiie it e e et e e e sate e e e e atee e e enbaee e ennees 106
R e B [T A F- | B Ty o o = U UU PSRRI 109
D TUNING e e s e s s s e s e sasasasasassnsssnsnsnsssnsnnns 113
5.4.5 Final Testing and ValidatioNncccuiiiiioiiiei et 114

5.5 Comparison to literature and New fiNdiNGsc.vveeiiiiiiiciee e 118

S S IN YU [121 1 4T 1 VR 122

(00 F=Y o =T TR 123
A Novel Hybrid Machine Learning Attack Type identification model using Domain Knowledge........ 123
6.1 INTrOAUCTION ..eiiniiiiiiiie e s s s e e s s enae e sanees 123
(o3 201V, = d g oo [o] Lo =4V 2SR 124
6.3 Proposed hybrid Machine Learning detection and attack type identification model............... 126
(o Ve Y] =T o 1T] 7 o T o PP 127
LR N o To [= TSRO PPO PR 127
6.4.2 MOEI SEIECLION ...ttt s 128
6.4.3 ChOSEN IMOE ..ttt e s e re e e sre e e snreesareeeas 130

L 1V o To L] I =Ty oY -SSR 133
B.4.5 TUNING .eeiiiiiieieetee ettt e e e e e e e bbb et e e e e e e s e bbb e e e eeesessaababeaeeeeeeesannsanaaaeeeesnsanns 134
6.4.6 Validation ..o..eeieeiieiieee e e e 134

6.5 Comparison to literature and NeW fiNdINGSc.vveeiiiiiii e e 135

Lo SR L1 4= 1 136

(01 0T o1 T PSPPSR 138
ReSEArCh CONEIIDULIONS. ...coutiiiieiieieere ettt st st s e r e e sn e snee s sanes 138
7.1 0Verall CONTIIBULIONS ...cuviiiiiiieiiee ettt s e e e 138
YN L1111 o I VR 141
(00 1= o = TSR 142
CONCIUSION ...ttt ettt ettt e s e ettt e s bt e s bt e e s bt e s bt e e sabeesabaeesabeesabeeesabeesabaeesaseesaseeennes 142
8.1 INTFOTUCTION ..ttt et ettt st e b e sbe e saee st e ere e 142
8.2 Areas of improvement and fULUIE WOTIKcccuiiiiiiiiie et 143

271 o] [ToT={ - o] o V2RSS UUPPR 144

List of Publications

Wali, A., Apejoye, O., He, J. and Ma, X., 2021, December. An exploratory data
analysis of the network behavior of hive home devices. In 2021 8th International
Conference on Internet of Things: Systems, Management and Security (IOTSMS)
(pp. 1-8). IEEE.

Wali, A., Apejoye, O., Raja, T., He, J. and Ma, X., 2022, September. A Novel
Approach to Identifying DDoS Traffic in the Smart Home Network via Exploratory
Data Analysis. In International Conference on Applied Intelligence and Informatics
(pp. 478-498). Cham: Springer Nature Switzerland.

Raja, T.V,, Ezziane, Z., He, J., Ma, X. and Kazaure, A.W.Z., 2022, October. Detection
of DDoS Attack on Smart Home Infrastructure Using Artificial Intelligence Models.
In 2022 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC) (pp. 12-18). IEEE.

10

Chapter 1

Introduction

1.1 Background
loT devices are becoming more popular in our daily lives due to the advantageous services they render

to users. These devices cover a broad surface in terms of connectivity ranging from but not limited to,
healthcare, home automation, weather forecast, transport, agriculture, security, and a variety of other
dimensions. loT further gives us the ability to have more control over our loT ecosystem. By tailoring
these devices to run exactly when we need them, this improves our energy conservation plans. We
also get to monitor devices’ usage in real time, which paves way for accountability when the need

arises. It is estimated that 150,000 loT devices join the global network every minute [1].

However, the energy and resource constrained nature of these devices make them prone to cyber-
attacks [2] [3] [4] [5] [6]. This, in addition to their heterogeneous nature, makes security
implementation challenging [7] [8]. The device vendors are not helping matters too as their focus is
more aligned to device functionality and features rather than security [9]. This poses risks in terms of
security as the lives of individuals are directly affected [10]. DDoS flooding attacks remain a big threat
to the loT network. During the first quarter of 2020 there has been a significant rise in DDoS attacks
witnessing an 80 percent increase from 2019 [11]. This attack tends to flood a targeted server with
voluminous unnecessary traffic, in the process over saturating its capacity causing service to be denied
or halted to legitimate devices. Several of the server’s resources get negatively affected like processing
power and memory capabilities as it is preoccupied in dealing with more traffic than it is designed to

handle.

The traditional approaches used in DDoS attack detection will not suffice in the smart home network
due its heterogeneous and resource constrained nature at device level. This brings about the urgency
to develop more efficient, centralized, and scalable solutions to deal with attacks of this form. The
main goal of this thesis is to address these contemporary issues by designing and implementing a DDoS
detection and attack type identification system based on the general behavioural properties of the

smart home network, thereby making it not user, attack or device centric.

1.2 Research Questions
For this persistent attack to be detected and mitigated, there is a prerequisite need to study the

individual attack traffic properties in relation to the benign corresponding properties of the smart
network. This will help in identifying the affected traffic properties and what to look out for during a
DDoS flooding attack. The best way to do this is by using data visualization techniques, as the network

traffic is vast and multidimensional. This visualization method will also be beneficial to network

11

security operators as the human brain tends to better process images than text [12]. It can also give
network operators the advance notice needed in case of a sensed attack. Although there have been
immense contributions in DDoS visualization, detection and mitigation areas, there are still open
challenges on the best way to identify and visualize DDoS attack patterns which will pave way for

better detection and mitigation approaches [13] [14].

This led to the first 3 research questions which are as follows:

RQ1 - What is the normal traffic pattern of a smart home network when visualized?

RQ2 - What is the traffic pattern of the smart home network during a DDoS attack when visualized?
RQ3 - What general smart home traffic properties get affected during a DDoS flooding attack?

Several works have addressed DDoS detection and classification in the smart home network, however,
there remain open challenges in this avenue [13] [14] [15] [16]. Some solutions make use of outdated
or simulated data, which might hinder the accuracy when deployed in real life scenarios. In addition,
some of the approaches used are not very practical or feasible in some scenarios. For example, using
the single packet inspection method to determine if it is malicious or benign [17] [18]. This not only is
time and resource consuming, but a less effective way of identifying DDoS patterns. This is due to
DDoS flooding attacks being volume based, thus will need a volume based or cumulative approach to
determine an attack pattern as opposed to the single packet approach. The approach of employing
sequential user behaviour [19] or Device Usage Description (DUD) model [20] is not very practical as
the former is user centric which will raise false positives when there is slight change in user pattern
while the latter is not practical in large scale scenarios as it’s a device centric solution and not a
generalized one. The issue of a solution being attack centric also comes into play [21] [22]. Using too
much metrics for attack detection is another issue as it results in high resource consumption and

detection time [23].
This led to the last 4 research questions which are as follows:

RQ4 - How can the properties identified in RQ3 be used to develop a light weight, practical,
centralized, and counter spoof DDoS detection and attack type identification system that is not user,

attack nor device centric covering unfamiliar attack?
RQ5 - Can a single network feature be used to detect all DDoS flooding attacks?
RQ6 — Can feature absence or feature range be used in DDoS attack detection?

RQ7 - Can the approach used in RQ4 be applied to a Supervised Machine Learning model leading to

better performance while maintaining the benefits attained in answering RQ4?

12

RQ8 — Are the following metrics (Is attack present, type of attack present, is attack detected, packet
number attack started, packet number attack detected, packet number attack type indicted, attack
type indicated, window attack started, window attack detected) more relevant than using confusion

matrix in assessing the performance of a DDoS detection and classification system?

1.3 Aim and Objectives
The main aim of this research is to develop a light weight, practical, centralized, and counter spoof

DDoS detection and attack type indication system that detects and indicates attack type at the very
onset, while not being user, attack nor device centric covering unfamiliar attacks based on the general
behaviour exhibited by smart home devices when under attack. To achieve this aim, certain objectives

must be outlined and adhered to. These are as follows:

v Identify gaps in literature relating to DDoS attack detection and classification in the smart
home network.

Setup a real smart home network to collect benign and attack data.

Identify the smart home network properties that get affected during the attack.

Design and implement a DDoS detection and attack type indication system.

Test and validate the system on both private and public attack and benign datasets.

NSRS NN

Evaluate the system’s performance based on the following factors: Is attack present, is attack
detected, packet number attack started, packet number attack detected, packet number
attack type indicated, attack type indicated, window attack started, window attack detected.
v" Apply attack type indication module to a supervised machine learning model and compare the

attack type indication performance with and without it.

1.4 High level methodology
Due to the broad and multiple research phases involved in this research, a high-level methodology

covering the entire research journey is presented here. More detailed and elaborate methodology
relating to each phase or chapter is presented at the beginning of each chapter. However, this high-
level methodology will give a general and comprehensive overview of the main methodological
processes involved and adhered to. As this research is technically inclined, a quantitative research
method is used because the research processes are heavily reliant on numerical analysis and empirical

data. Figure 1.1 presents this high-level methodology.
This methodology comprises of 5 phases. Each phase and what it entails are as follows:

> Literature review: The adapted methodology for this phase is “Literature review and focusing
the research” [24]. It involves reviewing literature in the field of interest which is detection

and classification of DDoS attacks in the smart home network. This includes anomaly,

13

signature and supervised machine learning based solutions. Literature surveys around these
topics are consulted to know the current state of the art and gaps. In addition to that,
individual research papers, conference proceedings and technical reports are also consulted
paying special attention to approach used, detection rates, practicality, light weightiness,
validation process, attacks covered and issues the respective approaches and solutions solved.
This will help provide a comprehensive and solid understanding of the state of the art relating
to the topics in question. This will also help come up with the respective research questions
that need answering in this thesis.

Data collection: This phase involves setting up the smart home network and DDoS attack
experiments. Purely benign smart home traffic and a mixture of benign and attack traffic is
collected by designing use cases that will provide the required data. The collected data
includes several DDoS attacks and mixed attacks. Mixed attacks are a combination of different
individual DDoS attacks like TCP SYN, ICMP and UDP attacks launched at the same time
targeting the smart home network. Public attack and benign data from reputable sources are
also gathered. These will be used in the validation phase.

Exploratory Data Analysis (EDA): The collected data is analysed using EDA [25] which is a
statistical method used to analyse datasets summarizing their main characteristics using data
visualization techniques [26]. Both private and public attack and benign data are analysed
using this approach. Observations relating to how the smart home network properties are
affected during a targeted attack are noted. These will be used to propose, design, and
implement the detection and attack type indication system.

Iterative system development model [27] to design and implement detection and attack type
indication system: The iterative model is adapted due to its recursive nature especially at the
testing and tuning stage for this system. It is found to be most suitable as lots of testing and
tunings are carried out to continuously improve the system after each iteration. The results
and observations derived from the data analysis stage are used to design and implement a
hybrid anomaly and feature-based detection and attack type indication system. The research
guestions to be answered and gaps to be bridged are taken into consideration in this phase
as the solution will be modelled to successfully answer the research questions.

The attack type indication approach used in the hybrid anomaly and feature-based detection
and attack type indication system is applied to a supervised machine learning model (Random
Forest). The ability of the Random Forest (GB) model in classifying attack type will be
compared to when it is coupled with the algorithm-based approach which is based on domain

knowledge.

14

The systems performances are evaluated based on quantitative factors which are: Is attack

present, type of attack present, is attack detected, packet number attack started, packet

number attack detected, packet number attack type indicated, attack type indicated, window

attack started, window attack detected. These factors will provide very precise and accurate

details as to how early and accurately the attack is detected and type indicated.

The system is further validated by testing on public datasets spanning known attacks,

Unfamiliar attacks (attacks not tested or exposed to system previously), mixed attacks and

normal traffic using the same performance metrics listed in the performance evaluation phase.

This will prove the system’s ability in:

1) Not being user, device or attack centric,

2) Eliminating bias with regards to the private dataset it was initially evaluated on

3) Detecting and attack type identification of a wide range of DDoS attacks including mixed
and unfamiliar attacks.

Compare with state of the art: This phase deals with comparing both the hybrid anomaly and

feature-based detection and attack type indication system and the hybrid ML based

classification model to existing methods and solutions in the same field. The comparison is

based on 12 rigorous factors that provide clear and holistic justification that is scientifically

sound.

| Literature review J

Y
[Data collection]

Y
[Exploratory Data Analysis]

Y
(Iterative software development model |

Y
L Compare with state of the art)

Figure 1.1 High level methodology

15

1.5 Contributions
This research has 6 main contributions which are as follows:

R/
0.0

Contribution 1: In the event of studying the smart home network behaviour and traffic
patterns, unique correlated traffic patterns attributed to each mode of device control was
visualized. This correlation and visualization are new with regards to deriving a unique
signature for each method or mode used to control the smart devices. The explored modes
include manually operating the devices, automated/ scheduled, using Hive app, using Home
kit app and using Google home app. The protocol and packet length sequence of each mode
of control was found to be unique and uniform regardless of the platform (iPhone, iPad,
Samsung smart phone) used to control it. These correlated patterns can be used in forensic
investigations to prove how someone controlled a particular device or devices and whether
they were present at the scene during some specified times. For instance, if the evidence
shows proof of manual mode of operation, then this ties one to physically being at the
premises. Furthermore, as each operation mode has a unique traffic pattern, these patterns
could be part of the allowed list on the smart home network to detect certain attacks relating
to unauthorized control of device which might have a deviating pattern from the allowed
listed ones. This is addressed in chapter 3.

Contribution 2: Normal smart home traffic pattern in comparison to when DDoS flooding
attacks infiltrate the network are visualized using Exploratory Data Analysis. This visualization
is new as it clearly visualizes the benign and attack patterns based on smart home network
features that get simultaneously affected during an attack. The visualized network features
can be incorporated into data visualisation tools and Intrusion Detection Systems. This will
provide clearer low-level statistics as to how the network is deviating from its normal pattern
during an attack. The visualised EDA [25] [26] images can also be trained on a Convolutional
Neural Network (CNN) [28] using ResNet [29]. It is well known that deep learning models
especially CNN achieved high significance due to their outstanding performance in the image
processing field. The potential of CNN can be used to detect DDoS attacks by converting the
network traffic data into images. This is addressed in chapter 4.

Contribution 3: A new approach to DDoS attack detection has been presented. The approach
uses feature absence and feature range in attack detection from the very onset. Some
prominent network features (Sequence numbers and TCP flags) were found to be absent for
the duration of certain attacks. The narrative needs to be changed from only focusing on
present network feature statistics to detect attacks, rather features that are normally present
but tend to be absent for a prolonged period also contribute to rapid attack detection as seen

in this research. In addition to that, the sequence number range in normal traffic tend to be

16

very wide, starting with a 0 or 1 at the beginning of a session and keeps incrementing to very
high values. However, during an attack, the sequence numbers were found to stallat 0 or 1
all through. This new detection technique led to contribution 4. This is addressed in chapter
4.

+*» Contribution 4: A hybrid anomaly and feature-based DDoS detection and attack type
indication algorithm has been implemented and tested. This algorithm is based on the findings
in contribution 3. The feature absence (sequence numbers & TCP flags) and feature range
(Sequence numbers) phenomena are used as baseline as to what is considered anomaly in the
traffic. Thus, this is incorporated as conditions in the algorithm to flag the anomalies as attack
packets. After a grouped series of packets are flagged and labelled as attack, the protocol with
the highest count among those flagged packets is used as the attack type classification label
for each of the attack labelled packets. Both detection and attack type identification modules
of the system performed excellently with only 1 wrong prediction due to traffic from a new
device joining the network. The system was able to detect and indicate the attack type at the
very onset. In addition to that the solution is light weight, practical, centralized, and counter
spoof that is not user, attack nor device centric covering unfamiliar and mixed attacks. This is
addressed in chapter 5.

«*» Contribution 5: A hybrid Machine learning detection and attack type identification model is
developed. Random Forest model is trained based on the same network features used in
contribution 4. The model was able to accurately detect the attack at the very onset and to
some extent classify the attack type. The model was able to predict the presence/absence of
an attack in all testcases within the first 5 packets of an attack except for the attack type
prediction which it failed to correctly predict in 5 testcases out of 20. However, the novel
attack type identification approach used in contribution 4 which is based on highest protocol
count among the attack labelled packets was applied to the Random Forest model. After the
RF model detects the attack, the attack type indication module applies the highest protocol
count check and labels the attack type using that. This hybrid model outperformed the RF’s
ability to classify the attack type correctly including unfamiliar attacks with 99% accuracy. In
all the testing and validation cases, the hybrid model predicted all testcases correctly except
for one instance due to the same reason of new device joining the network as in contribution
4 in Indicating the attack type while the RF model on its own misclassified the attack type 6
out of 20 testcases. This proves that the hybrid model is more effective in terms of attack type

identification. This is addressed in chapter 6.

17

R/
0.0

Contribution 6: A new approach to assessing the performance of a DDoS attack detection and
attack type identification system is presented. This new approach is proven to be more
relevantin terms of precisely measuring the system’s ability to detect and identify attack types
at the very onset and how accurate the prediction is. Currently the conventional method is
the use of confusion matrix [30]. However, confusion matrix does not specify how early the
attack is detected or classified rather it gives statistics on how much the solution was able to
predict right. This proposed approach is used in this research and has proven to provide more
relevant performance details. The metrics used to gauge the performance of the detection
and attack type indication system on each data source in this new approach are: Is attack
present, type of attack present, is attack detected, packet number attack started, packet
number attack detected, packet number attack type indicated, attack type indicated, window

attack started, window attack detected. This is addressed in chapter 5.

1.6 Scope and limitations
The scope of this research is limited to the following areas:

>

Smart home network: The focus of this research is on smart home devices and the network
they form; thus, the solution is tailored to detect and indicate attack types in this network.
TCP/HTTP based protocols: This research is also limited to devices that use TCP/HTTP
communication protocols; thus, the solution is only intended for TCP/HTTP based traffic with
TLS/SSH based encryption. However, the solution still accommodates other protocols like UDP
ICMP and the like used by these TCP/HTTP based devices.

DDoS flooding attacks: The attacks covered in this research are limited to DDoS flooding
attacks like TCP SYN, UDP, ICMP, HTTP, DNS, NTP, ARP and the like thus slow stealth DDoS
attacks are not catered for by the solutions.

Detection and attack type indication: The implemented and tested system is limited to

detecting and indicating attack types as no mitigation is involved at this point.

1.7 Thesis structure
The rest of this thesis is structures as follows:

@
0.0

Chapter 2 Literature review: This chapter deals with reviewing the current state of the art in
the field of DDoS detection and classification in the smart home network. The challenges, gaps
and open research questions relating to the solutions are identified.

Chapter 3 Smart Home network behaviour: This chapter delves into setting up a real-life
smart home network and collecting data from the network. The collected data is analysed to

understand the behavioural pattern of the network.

18

’

R/
0'0

Chapter 4 Exploratory Data Analysis comparing attack and benign smart home traffic
properties: This chapter is concerned with attacking the smart home network with DDoS
flooding attacks and comparing the attack and benign patterns of the network using EDA.
Chapter 5 A novel algorithm-based DDoS attack detection and attack type indication in the
smart home network: This chapter implements the DDoS detection and attack type indication
algorithm based on the findings from the EDA in chapter 4.

Chapter 6 A novel hybrid Machine Learning detection and attack type classification model
using domain knowledge: This chapter presents the hybrid supervised ML based attack
detection and attack type indication model using the features and attack type indication
approach from chapter 5.

Chapter 7 Research contributions: The overall research contributions and how they were
achieved are discussed here.

Chapter 8 Conclusion: This chapter concludes the thesis. The limitations are discussed as well

as future work.

19

Chapter 2

Literature review

2.1 Introduction
The fast evolving and disruptive nature of DDoS attacks has become a great concern for smart

homeowners. Due to this, security experts and researchers are continuously conducting investigations
and research studies with regards to better and more efficient methods of dealing with this attack.
The main goal of this chapter is to harness knowledge of the current state of the art, thereby
identifying existing solutions, the gaps involved and how to bridge these gaps in ways that will address

both the attack and the constrained and heterogenic nature of the network.

The following methodology [24] was adhered to for a comprehensive and holistic understanding of

the current state of the art and opportunities to build on.

v Identify research topic: Topics with the following key words are the points of interest:
Anomaly/signature/ML/hybrid-based DDoS detection and classification systems in loT, IDS in
smart home networks, DDoS attack identification and traffic analysis in smart homes, smart
home network characteristics.

v Database query: Reputable academic search engines and databases will be queried with the
key words of interest. These include Google Scholar, IEEE Xplore, ScienceDirect.

v' Review secondary sources to get an overview of the topic: Literature surveys/ reviews of the
current state of the art relating to the topic of interest are consulted.

v" Develop a search strategy and use appropriate preliminary sources and primary research: An
inclusion and exclusion criteria will be outlined to avoid going out of scope. Relevant
information from selected sources will be extracted like detection and classification
approaches, performance metrics used, detection time, practicality and overall strengths and
limitations.

v" Prepare bibliographic information and notes on each article: Relevant details derived from
each source will be stitched together.

v Evaluate the research reports: The potential gaps identified based on the consulted sources
will be identified. This will give rise to research questions of interest and what approach/

methodology to employ while bridging these gaps.

The rest of the chapter is structured as follows: Section 2.2 delves into the smart home architecture
and network characteristics. 2.3 discusses the security challenges and risks associated with smart
home networks due to their nature. 2.4 delves into an overview of DDoS attacks and their impact on

smart home networks. 2.5 is concerned with the existing solutions in DDoS detection and classification.

20

2.6 discusses the main research gaps identified and how this thesis will contribute to bridging some of

these gaps. 2.7 summarises the chapter.

2.2 Smart home eco-system
Advancements on the Internet of Things (1oT) has created a sharp rise in the popularity of smart homes

over the years. The ease, convenience and efficiency that come with smart home devices keeps
necessitating their presence in our lives today. Very drastic increase in the use of smart devices has
been witnessed with statistics predicting that over 75 billion loT devices will be connected around the
world [31]. Figure 2.1 shows a projection of the sharp increase in the use of these interconnected

devices from 2015-2025.

sa21naQg

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year

Figure 2.1 Projection of increase in loT use, 2015-2025 [31]

The smart home eco system is made up of interconnected devices, controllers, sensors, and actuators.
These exchange signals and communicate via numerous protocols [32]. The popular communication

protocols include Zigbee, Z-wave, Wi-Fi, and Bluetooth [33].

The smart home eco system can be broadly categorized into 3 namely centralized, decentralized and
hybrid [34]. Centralized infrastructure is managed by a single hub that handles device management
and data processing duties. As this type of connectivity comes with good coordination, it is prone to
single point of failure. On the other hand, the decentralized version shares the decision-making
process among several other devices that intercommunicate. This is deemed safer but can be difficult
to maintain [35]. The hybrid infrastructure is a combination of both centralized and decentralized that

brings about more flexibility and control [36].

The smart home can also be looked at from a layered perspective. There are four main layers which

are physical, communications, information, and decision [37]. The physical layer consists of hardware

21

components like routers. The communication layer handles the connection between servers, routers,
and other networked devices [38]. The information layer handles data storage, processing and analysis
received from devices and sensors in the network [39]. The decision layer determines what action or

data is to be stored in the information layer [40].

From this we can see how complex and heterogeneous the smart home eco system can be.

2.3 Challenges and risks concerning smart home network
Since smart home networks are becoming more and more interconnected with and very much

internet dependant, this broadens the attack surface in addition to their not so security
accommodating nature. This section delves into the various smart home network properties that

make them susceptible to cyber-attacks.

Among the smart home characteristics that make them highly prone and exposed to the fast-evolving

cyber-attacks are:

e Resource constrained: Smart home devices tend to have very limited memory, battery
resource and processing power. This brings about the challenge in incorporating security
protocols, thus leaving them exposed [41].

e Protocol diversity: The heterogeneous nature of the devices under a single roof without
standardized and unified method of consolidation makes it difficult to implement seamless
security measures [41].

e Wide attack surface: The ever-increasing smart home connections widens the attack surface
thereby making provision for multiple entry and routing points for cyber attackers [42].

e Update challenges: Updating firmware and applying patches is difficult with the devices

frequent updates to fix vulnerabilities [43].

The smart home device vendors are not making things easier as they tend to prioritize functionality
over security. This results in having vulnerable devices in the market due to several security flaws like
weak authentication credentials and weak or no encryption. This makes them prone to numerous
attacks like unauthorized access, Man-In-The-Middle attack, reverse engineering attacks and the like

[44] [45] [46]. Some popular cyberattacks on smart devices over the years include:

e The baby monitor hack: In 2015, there were several reports of baby monitors being hacked as
the attackers gained unauthorized access. The BBC reported a specific case of a hacker that
shouted obscenities after taking control of a couple’s baby monitor [47].

e Ring camera hack: In 2019, unauthorized access to Ring cameras was reported. This event

really put emphasis on privacy risks related to smart home devices. Weak and reused

22

credentials were the main point of exploit in this attack for unauthorized access. The attackers
after gaining access were able to communicate with the legitimate owners and view live video
feeds [48].

e Mirai Botnet: In 2016, a malware called Mirai infiltrated smart home devices among other loT.
This was done by exploiting weak and default authentication credentials. The infected devices
were used as Bots to spread DDoS attacks across high profile organizations leading to serious
outages. More than 600,000 devices were affected [49].

e Dyn attack: In 2016, a company called Dyn had its servers targeted with DDoS. This company
provides DNS related services. This resulted in significant disruptions to popular sites like CNN,
Reddit, Netflix and Twitter among others. The botnets used in this attack were largely made
up of loT devices like digital cameras and DVR players [50].

e GitHub attack: In 2018, GitHub was hit by DDoS attack that lasted for about 20 minutes. This
was traced back to over a thousand autonomous systems with tens of thousands of unique

end points which greatly overwhelmed their defence measures [50].

2.4 DDoS flooding attacks in the smart home network
DDoS flooding attacks remain a big threat to the loT network. During the first quarter of 2020 there

has been a significant rise in DDoS attacks witnessing an 80 percent increase from 2019 [11]. This
attack tends to flood a targeted server with voluminous unnecessary traffic, in the process over
saturating its capacity causing service to be denied or halted to legitimate devices. Several of the

server’s resources get negatively affected like processing power and memory capabilities.

DDoS attacks are well-known attacks of major concern violating the “Availability” principle of security.
The attack vectors exploit several internet protocols features built decades ago when security was not
a concern as it is today [51]. This attack is majorly categorised in two namely bandwidth and resource
depletion attacks [52]. In the bandwidth depletion attack, legitimate looking traffic that is highly
voluminous gets directed towards the target device or network while the resource depletion attack
directs bogus service request that appear legitimate to the target device, thereby tricking it to respond
continuously to the level that it can’t respond to legitimate devices requiring its service. In both
scenarios service is denied to those that require it as the name implies Denial of Service attack. When
multiple sources or agents are used to direct this attack to a target device, this becomes Distributed
Denial of Service (DDoS). Figure 2.2 shows a taxonomy of these attacks [53]. A breakdown of these

attacks and how they operate is as follows:

23

Amplification attack: In this type of attack, a request is sent by the attacker to several DNS or
NTP servers using a spoofed address which is the victims IP address. The servers respond to
this with much larger bytes thereby overwhelming the victims’ network.

Protocol exploit attack: In this type of attack, the communication protocol is taken advantage
of. An example is the TCP SYN flood attack where the attacker takes advantage of the 3-way
TCP handshake, initiating the process without completing it. It floods the target server with
SYN requests which arrive faster than the target server can process them, thus leaving it
saturated. This results in the connection being half open as it is never acknowledged or ended
[53]

Zero-day attack: This attack tends to exploit an unknown vulnerability in a target device,
software, or network. Dealing with this sort of attack is challenging as traditional signature or
anomaly-based IDS still miss it [54].

ICMP: This attack tends to overwhelm the target server with ICMP echo requests (pings). The
server tries to process each incoming packet and responds to it and in the process failing to

process legitimate packets as it is already saturated.

Protocol Exploit
Attack

Bandwidth
Depletion Attack

Amplification
Attack

DDoS Protocol Exploit PUSH ACK
Attacks Attack
Resource
+Q<ST P,”D

->6YN ACK

T

Ping of @
Forged Packet ~

Depletion Attack

i

Attack

Infrastructure
Attack

Zero-Day
Attack

i

Figure 2.2 DDoS attack taxonomy [53]

24

2.5 DDoS detection and classification in smart home networks
Several works have addressed DDoS detection in the smart home network, however, there remain

open challenges in this avenue [13] [14] [15] [16]. For the attack to be efficiently and effectively
detected and mitigated, analysis of the smart home network characteristics in relation to the attack
patterns remain crucial. This section delves into the use of data visualization in cyber security and
some DDoS detection and classification tools and approaches. The approaches of interest here are
rule/signature based, supervised machine learning based, and hybrid-based Intrusion Detection and
(Prevention) Systems (ID(P)S). However, the scope of this research is limited to detection and not

prevention or mitigation.

2.5.1 Data visualization in cyber security
Data visualization is very important when it comes to understanding normal device behaviour and

attack patterns. This can help security analysts in spotting outliers, patterns and trends that separate
a normal behaviour from a malicious one [14]. When it comes to DDoS attacks, data visualization aids

in anomaly detection in a network traffic [55].

Smart home, being one of the most popular and relatable 0T to users, has gained a lot of attention in
the research community. This has led to growth in research relating to smart home behaviour and
security. Several works have addressed smart home device identification or fingerprinting [56] [57]
[58] [59] [60] [61] [62] [63] [64] [65] [66]. Privacy attacks from the adversary angle have also gained
much attention within the research community, thereby being able to profile a smart home users’

behaviour [67] [68] [69] [70] [71] [72] [73] [74] from unencrypted logs.

However, with all these developments, it is observed that there is lack of visualization for low-level
network features in relation to their behaviour during a DDoS flooding attack. Studies mainly focus on
smart home behaviour profiling and device fingerprinting. For this persistent attack to be detected
and mitigated, there is a prerequisite need to study the individual attack traffic properties in relation
to the benign corresponding properties of the smart network. This will help in identifying the affected
traffic properties and what to look out for during a DDoS flooding attack. The best way to do this is by
using data visualization techniques, as the network traffic is vast and multidimensional. This
visualization method will also be beneficial to network security operators as the human brain tends to
better process images than text [12]. It can also give network operators the advance notice needed in
case of a sensed attack. Although there have been immense contributions in DDoS detection
techniques, there are still open challenges on the best way to identify and visualize DDoS attack

patterns which will pave way for better detection and mitigation approaches [13] [14].

25

Exploratory Data Analysis is a statistical method of analysing data to summarize the main
characteristics of the dataset by using data visualization tools and techniques to represent the derived
results for ease of understanding. Visualization features like scatter plots, heat maps and time series

graphs will help give insights to attack patterns [61].

2.5.2 Rule/ signature/ hybrid -based ID(P)S
The signature-based ID(P)S monitors network traffic for known or prestored signatures relating to

numerous known attacks. This allows it to precisely identify an attack for what exactly is as it already
has knowledge of how it looks or behaves [54] [75] [76]. However, this ID(P)S cannot recognize
unfamiliar attacks because it has not learned its signature or behavioural pattern in the past. Due to
this, the signature-based ID(P)S requires a frequently updated database to keep track of the most

recent attack signatures so it can flag them right away.

The anomaly-based ID(P)S monitors a traffic for deviating patterns from the normal traffic pattern and
uses this as a basis for intrusion detection. The challenging part of this ID(P)S is the very thin line
between normal and abnormal traffic patterns which in turn leads to False Positive alarms [75] [76]

[77].

The hybrid-based ID(P)S is a combination of both signature and anomaly-based versions. This
combines both advantages of the anomaly and signature-based systems, providing a more robust
solution. Nonetheless it can be challenging to implement and consolidate [54]. The working process

as well as the up and down sides of the anomaly and hybrid- based ID(P)S are shown in figure 2.3 and

table 2.1.
Signature-based Anomaly-based
Detection Detection
Data
Source
Generate
Match Pattem Activity Profile
== Detect
Security Anomalies
Rules /
Generate
Alerts / Reports

Figure 2.3 Signature & anomaly-based monitoring process [76]

26

Criteria Anomaly-Based Signature-Based

Update No Yes

Detection ability Can detect Known and unknown Only Known attacks can be detected with
attacks extremely high-quality accuracy

Definition Employ deviation idea from the Employ patterns of the well-known
standard usage pattern to recognize | attacks to recognize intrusions
intrusions

Characteristics of the High False Alarm Low False Alarm

system

Implementation Needs fewer computation and Needs extra computation and resources

requirement resources

Table 2.1 Upsides and downsides of signature and anomaly-based ID(P)S [77]

Snort and Suricata are two popular opensource ID(P)S’s. Snort is an IPS that can run in IDS mode
purchased by Cisco from Sourcefire in 2013. It detects malicious activities like DoS and unauthorised
access attacks. It carries out real time traffic analysis and packet logging. Snort has features to support
anomaly-based detection. Similarly, Suricata is another IDPS tool that supports both signature and
anomaly-based features. It was developed by the Open Information Security Foundation (OSIF). Both
Snort and Suricata have proven effective in traditional networks, however certain limitations arise
when they are deployed in smart home networks or loT in general due to the nature of these networks
in terms of resources, scalability, and high false alarm rates due to how heterogenic the network is

[78].

Researchers in [20] propose the use of Device Usage Description (DUD) model for device behaviour
and flow rules extraction to detect DDoS attacks in a smart home network. Nevertheless, this method
tends to be device specific and may be problematic in large-scale networks as extracting each device
DUD may not be feasible and bring about significant overheads. The paper also states traffic properties
considered in generating flow rules for DDoS detection but without any visual representation or
comparison. User behavioural pattern was also used in [19] to develop anomaly detection model in
loT device operations. The sequence of activities performed by the user is learned and any deviation
from this sequence is classified as an anomaly. However, this could be problematic as any change in

user behaviour can raise a false positive alarm.

A rule based SIEM detection model is presented in [79]. It analyses a series of packets to find out if
certain rules are breached based on a fixed threshold. Its main detection metric is SYN flags to detect
TCPSYN attacks. This was tested on a simulated network. An SDN based detection system is presented
in [23]. Various metrics like number of flow entries, similar payload packet count, number of sent and
received packets on each node, power ratio of each node, in/out traffic load and session IP counter

among others. Due to the intricacy of processing these metrics, it results in high detection time and

27

consumes a lot of processing power, thus the need to investigate on a light weight and intelligent
method to detect attacks. The use of a packet counter can also be problematic in diverse environments
as each device tends to behave differently in terms of number of packets transmitted over time. The
use of similar payload in attack detection raises the rate of false positive alarms. The paper mentions

early attack detection but without how this was evaluated.

A Networked Smart Object (NOS) at edge is presented in [43]. The NOS acts as the middleware which
approves and acknowledges every request on the network before a connection is established.
However, this results in delays and the volume of attacks it can handle is determined by the number
of NOS. It is also resource and memory consuming due to the TCP protocol involved in the request and
approval or acknowledgement aspect by the NOS. Performance metrics used were latency, computing

effort and attack recovery time.

A whitelist and blacklist IP method is used in [80] to allow or deny IP addresses. The main features of
detection are IP address and packet interarrival time which can raise false positive alarms as each

device is different in terms of packet transmission frequency.

Researchersin [81] present a signature-based IDS based on wired connection. It is limited to detecting
HELLO flooding and version number modification attacks. Packet sending rate and signal power are

the features used in detection.

A device level signature-based botnet detection system is presented in [82]. Snort and Suricata are
used to test this using 3 public datasets which are ISOT [83], 10T23 [84], and BOTIoT [85]. Only known
attacks are detected and the performance metrics used are number of alerts, accuracy, detection time,

CPU, and memory usage. The attacks covered are TCP, UDP, ICMP and IRC.

Researchers in [86] proposed a detection mechanism that uses a predefined threshold of packets to
determine attack traffic. If the total number of packets sent to an IP address exceeds the set threshold
for a specific duration, this is blocked. Only TCPSYN attacks are covered in this work. This is not

practical for large scale environments as false alarm rates will be high.

In [87] an entropy-based DoS/DDoS detection and mitigation system In |oT is presented. The detection
metrics are source/ destination IP addresses coupled with their respective port numbers and protocols.
This experiment was simulated and when the window size is increased, the switches stop responding.
Another downside to this approach was the fact that the entropy is calculated in real time at the
beginning of the set window or threshold. If an attack starts at the very beginning of this window, then

no entropy is calculated as no prior variation to compare with is present, thus the failure to detect the

28

attack. In [88] another entropy-based DDoS detection mechanism is brought forward with the same

detection metrics and downsides as [87].

An anomaly detection model for fog empowered networks is proposed in [89]. Continuous Ranked
Probability Score (CPRS) is used as the forecasting model. The number of packets passing through the
network within a specified time window coupled with packet inter arrival times are the main detection

metrics used. However, no clear performance metrics were discussed.

Firewalls have also been known to play a crucial role in network protection. They control network
traffic based on specified rules set by an administrator or security expert [90]. Firewalls have evolved
and are categorised into several generations. First generation firewalls filter packets at the network
layer of the OSI model [91] considering the source and destination IP addresses and ports. The second
generation extends to carrying out stateful packet inspection by having the ability to keep track of
state or status of connections which in turn is used to differentiate between legitimate and malicious
traffic. The third-generation firewalls go beyond stateful inspection as they can have integrated
features like IPS coupled with application layer filtering. Next Generation Firewalls (NGFW) further
extend into deep packet inspection coupled with the previous generations’ abilities [92]. However, all
these firewall generations require an expert’s intervention in deployment, defining rules and checking

them for correctness [90] which raises and issue for the average smart home user.

A firewall appliance for the smart home network called FANE is proposed in [90]. It operates using a
Wi-Fi bridge that connects to the loT network segment to the internet. It learns firewall rules by
observing network packets of the devices at installation and whenever a new device joins, it has to go
through this process. Standard firewall rules using IP tables and rate limiting are applied. However, no

clear performance evaluation is provided.

A Network Based IPS is proposed in [93]. This is located behind a firewall with network-based IP
sensors installed to block malicious traffic. The countermeasure mechanisms include blocking activity
from the source address, dropping malicious packets and resetting the connection. However, no clear

performance evaluation is provided.

In [94] a comparison between a NGFW and a traditional firewall is made. These are tested on DDoS,
SQL injection and phishing attacks. TCP SYN and UDP attacks are focused on in the DDoS category. The
UDP attack traffic was dropped by both firewalls due to a stateful rule that prevents UDP packets from
going through a particular server and port. On the other hand, the TCP SYN traffic was allowed to pass
by the traditional firewall while the IPS embedded in the NGWF blocked the traffic due to the 3-way

29

handshake being ignored. However how subsequent legitimate traffic of the same protocol is handled

was not discussed. No clear performance evaluation was provided here as well.

Another firewall-based DDoS attack mitigation is proposed in [95]. It used Manufacturer Usage
description [MUD] to determine whether traffic is malicious or legitimate. The user is required to set
the MUD rules for traffic flow generated by each device as well as access control lists. When the set
rate limit is exceeded, the firewall drops the incoming packets. The same downsides to the work in

[94] are noted here as well.

Machine learning based IDPS is presented in [96]. The models tested and their respective accuracies
are: Random Forest (85.9), Decision Trees (83.8), K Nearest Neighbour (84.3), Bagging (85.8), Ada
Boost (86.6) and Voting (84.8). An IPS is further proposed to take an action after the detection by
dropping the malicious packets and blocking the attackers IP and MAC addresses. Another IPS

alternative presented is to redirect the intruder’s connection to a honeypot.

An ML embedded IDPS is presented in [97]. Three models were tested with regards to DoS detection.
The models and their respective accuracies are: Random Forest (99.68), Decision Trees (99.68),

Gradient Boosting (99.59). The IPS embedded then drops the malicious packets.

However, as these solutions might work well in handling certain attacks, it is not easily the case in real
life smart home scenarios. Firewall and IDPS technologies are mostly suited for enterprise networks
with mostly traditional IT devices [90]. The nature of the smart home network coupled with an average
user’s knowledge and financial constraints give rise to several challenges in making use of or deploying

these technologies. These challenges include:

Knowledge and expertise constraints: An average user does not have the technical know-how when
it comes to setting up firewalls and ID(P)S’s. Having to define firewall rules based on the homes
network traffic flow will be challenging. Another dimension is from cases where the firewall with
combined ID(P)S or Machine learning features requires the smart home user to install and train each
device joining the network as seen from the literature reviewed. Furthermore, having a segmented
network for both smart home devices and traditional devices will be ideal [90] but an average user
lacks the expertise. There is a need for usability with these security mechanisms in the average user

home network without expert knowledge.

Financial constraints: Having to deploy a NGFW with combined ID(P)S will add to the cost of the smart

home devices already purchased, which will discourage users due to the financial implication.

Continuous user intervention: These security mechanisms like firewalls need continuous monitoring

and updates which an average home user will prefer to have this automated.

30

2.5.3 Supervised Machine learning based solutions for attack detection and classification
Supervised Machine Learning solutions involves training an algorithm using a labelled dataset of attack

and normal traffic. The Machine Learning model then uses this to make predictions on unseen data

by classifying it as attack or normal data.

Labelled datasets are required to train ML models for DDoS detection. These datasets should contain
several DDoS attacks and benign traffic as well. There are numerous publicly available datasets for this
purpose even though some are outdated which makes them unfit for training robust DDoS detection
models which cannot handle recent attacks due to the fast-evolving nature of these attacks [54]. Table

2.2 shows some public datasets and what they comprise of.

Researchers in [98] use ML models to detect attack traffic in smart home network. Support Vector
Machine (SVM), Random Forest (RF), Decision Tree (DT), Logistics Regression (LR), K-nearest
neighbours (KNN), and Naive Bayes (NB) algorithm were tested. Random Forest classifier was the best
performing model for detection. However specific attack type classification was not achieved.

Confusion matrix was used to assess the performance.

A framework for DDoS attack detection in smart home network using ML models is presented in [99].
The attacks covered are TCPSYN, ICMP and UDP attacks. Features used in detection are TCP, UDP and
ICMP distribution, packet size and count and IP diversity ratio. Only the accuracy (98%) and average
latency (1.18 milli secs) were provided for performance assessment. Random Forest model was also

reported to have performed well in the detection.

In [100] several ML classifiers were used to detect DDoS attacks in the smart home network. The
attacks covered are TCPSYN, UDP and HTTP flood attacks. The Random Forest classifier was one of the
best performing models in attack detection. Features used in detection include packet size, packet
interarrival time, protocol, bandwidth, and IP addresses. Specific attack type classification has not
been achieved. Confusion matrix was used to assess the performance. A similar research was carried

out in [101] achieving similar results.

In [102] a DDoS defence mechanism is proposed called FLOWGUARD. It consists of an identification
and classification module. Long Short-Term Memory (LSTM) was used for identification while CNN was
used for classification. Both achieved high accuracy and confusion matrix was used to assess the
performance. LSTM achieved 98.9% while CNN achieved 99.9% accuracy. 83 features were also used

for the training.

31

https://www.sciencedirect.com/topics/computer-science/decision-trees
https://www.sciencedirect.com/topics/computer-science/logistic-regression

Researchers in [103] propose a hybrid IDS that combines multiple ML models. An average accuracy of
95% was achieved. Confusion matrix was used to assess the performance. However, attack type

classification was not carried out.

An IDS is presented in [104] which detects and classifies into 4 categories which are Man-In-The-
Middle, DoS, replay and reconnaissance attacks. On the side of DDoS attacks, three attacks were
covered which are TCP, UDP and HELLO flood attacks. Confusion matrix was used to assess the

performance.

In [105] an ensemble feature selection algorithm was used to select features to detect DDoS attacks
using various classifiers. Specific attack type classification was not achieved, and confusion matrix

were used to assess the performance.

A clustering based semi supervised ML model for DDoS attack detection is presented in [106]. Attack

type classification was not achieved, and confusion matrix was used to assess the performance.

A supervised IDS is presented in [107] which classifies attack types into 4 main categories which are
DoS, evil twin, MITM and scanning attacks. Specific DDoS attack types were not classified, and

confusion matrix is used in performance assessment.

From the reviewed existing works, certain gaps are evident. Specific DDoS attack type classification is
not carried out which tends to be highly relevant in terms of what mitigation measure to take. In
addition to that most if not all current solutions base their performance assessment on confusion
matrix which does not provide relevant details like onset attack detection. This is very relevant when
it comes to assessing the performance of DDoS attack solutions as how early the attack is detected
matters most. Another observation is that solutions tend to be attack centric covering between 1-4
attacks (TCPSYN, UDP, ICMP, HTTP) at a time. There is a need for more robust solutions that can cover
a wider range of flooding attacks at a go like DNS, NTP, ARP, TCP, HTTP, UDP, fragmentation and ICMP

flooding attacks and the like.

2.6 Gaps identified and contributions
From reviewed literature, there have been numerous contributions in terms of DDoS detection in

smart home networks and loT at large. Nevertheless, there are still gaps in the approach relating to
better and improved methods of DDoS traffic identification. There is lack of detailed analysis and visual

comparison of attack and benign traffic patterns.

Some solutions make use of simulated data [108] [109] [110] [111] [112] [113], which might hinder
the accuracy when deployed in real life scenarios. In addition, some of the approaches used are not

very practical or feasible in some scenarios. For example, using the single packet inspection method

32

to determine if it’s malicious or benign. This not only is time and resource consuming, but a less
effective way of identifying DDoS patterns. This is due to DDoS flooding attacks being volume based,
thus will need a volume based or cumulative approach to determine an attack pattern as opposed to
the single packet approach. The approach of employing sequential user behaviour or DUD model is
not very practical as the former will raise false positives when there is slight change in user pattern

while the latter is not practical in large scale scenarios as it’s a device centric solution.

Name Format | Size No. of Attack Types Features | Data Types Environment | Publisher | Year
Records
1SOT PCAP 1.74 GB 1.67+M HTTP Botnet 49 Network Testbed University | 2017
unique (App layer) of
flows Victoria
Bot-loT Pcap, PCAP 72M DoS, DDOS (TCP, 46 Network Testbed UNSW 2018
(Used in argus, (69.3GB) UDP, Canberra
this Ccsv Ccsv HTTP), Services Cyber
research) (16.7GB) scan, OS
Scan, Keylogging,
Data
ex-filtration
attacks
N_BaloT Ccsv _ 7062606 Mirai and 115 Network Real (9 Maiden 2018
BASHLITE (10 Commercial etal.
115 loT Devices)
attack classes, 1
benign
Class)
Anthi Arff 977MB 2M DoS,DDoS,MITM, | 135 Network Real (8 Anthi et 2019
Dataset Malicious- Spoofing, Devices) al.
Benign Insecure
Ration 50- Firmware, Data
50%) leakage
loTID20 Csv 294MB 625784 DoS, Mirai, 12 Network _ Ontario 2020
MITM, Scan Tech
University
loT-23 Pcap, 21GB _ Mirai, Tori, 21 Network Real (23 Avast, AIC | 2020
(Used in Ccsv 8.8GB Gagfyt, (Application | Devices) group,
this (Lighter Kenjiro, Hakai, Layer CTU
research) Ver) IRCBot, Protocols)
Linux.Mirai,
Linux.Hajmi,
Muhsitk, Hide
and Seek,
Trojan, Okiru

Table 2.2 Public datasets [82]

Furthermore, some existing works tend to be unfit for large scale or diverse environments as they
require training the behavioural patterns of different devices which will be time and resource
consuming [8]. This also raises the issue of having user, attack, or device centric solutions due to the
type of network features used in detection which are very user or device dependent. More uniform

and generalized approaches are needed which will cater for all regardless of the user or device.

Light weight solutions are also needed. From literature we can see that some solutions use too many
features for detection which leads to delayed detection times. A reduced number of features which

at the same time are effective in attack detection need to be investigated.

33

The issue of assessing a systems performance based on confusion matrices and other conventional
statistics also come into play. Confusion matrix does not specify how early the attack is detected or
classified rather it gives statistics on how much the solution was able to predict right. The narrative
from using conventional methods like confusion matrices and other statistics in terms of performance
assessment as they do not provide relevant information as to how early and accurate the system was
able to detect or classify an attack which is very crucial in the field of DDoS attacks needs to be changed.
The effect is what you want to mitigate as early as possible not how much the attack is guessed right

down the line when much of the damage has been done.

Another challenging issue is dealing with unfamiliar attacks. Existing works don’t seem to have gotten
around detecting and classifying unfamiliar attacks due to their unpredictive nature. An Intelligent

way to handle this kind of attack is needed.

To design an efficient and effective DDoS detection and classification system, there is a need to have
an in-depth understanding with regards to the attack pattern and network changes that occur during
the attack and in the process monitoring the most affected network properties. These can be used as
a baseline for attack identification. To bridge the above-mentioned gaps, this research will carry out

the following:

e EDA on the normal and attack network characteristics in a real smart home environment and
propose a better way to identify a DDoS pattern based on the analysed network features.

e |dentify the most affected network features during a DDoS flooding attack and capitalize on
them for a timely and more effective solution

e Design and implement a detection and classification solution that is light weight, not user,
attack, or device centric and practical. This will cover all DDoS flooding attacks including
unfamiliar attacks.

e A better way to assess DDoS detection and classification systems performance which will
provide details of how early and accurate a system is able to detect and classify an attack.

e A more robust supervised machine learning model that covers a wide range of attacks

including unfamiliar ones.

2.7 Summary
This chapter has reviewed the current state of the art in terms of DDoS detection and classification in

smart home networks. The different approaches used to combat this attack has been researched as
well as the existing gaps that need to be bridged. Areas have been identified which this research aims

to contribute to in terms of bridging the gaps identified.

34

Chapter 3

Smart home network behaviour

3.1 Introduction
This chapter delves into the network behaviour of the smart home devices used in this research. The

chosen brand is Hive home [114] due to the lack of attention from the research community despite
being one of the most patronized smart home brands in the UK. An in-depth study of the Hive home
devices is carried out in this chapter to have a clear understanding of how these devices behave
normally, as this will be used as a baseline for attack detection in subsequent chapters. The
behavioural pattern of the devices both independently and collectively as an loT network in
connection to user behaviour is studied and analysed as these observations and analyses will be used
to tailor security protocols that will suit the loT network in question. Exploratory Data Analysis (EDA)
is the technique used to analyse and visualize the collected hive home dataset, which led to some

interesting novel findings.
In terms of device behaviours and characteristics, this chapter covers the following:

e Collection of data from a real-life Hive home network due to unavailability of Hive dataset in
existing works.

e EDA on the collected logs visualizing the behaviour of these devices covering the following
aspects: flow volume, flow duration, protocols, traffic categorization, device identification,
varying flow volumes and duration based on device mode of control (manual, automated, Hive
app, home kit app, Google home app) and the distinct traffic pattern that applies to each of
the mentioned device modes of control.

e Discussion of new findings based on results derived from the EDA with regards to device

behaviour when certain triggers are applied.

The sub-sections in this chapter covers the methodology used, network setup, data collection process,
EDA on the collected data, new findings, and comparison with literature and finally a summary of the

chapter.

3.2 Methodology

The methodology used in this chapter is broken down and explained in this section. It has four phases,

which are network setup, data collection, Exploratory Data Analysis, and reporting.

The network setup phase involves getting the required tools, designing the network topology, and
making the smart home network connection. The next phase is data collection where the use cases

for data collection were outlined. This includes use cases like collecting data from each individual

35

device and together as a collective, triggering the devices at certain times using specific modes
(manual, scheduled, application) and monitoring the devices in different states like idle and active.
Traffic generated from the various use cases are sniffed using Wireshark. The EDA phase entails data
pre-processing, network feature selection, normalization, and visualization of results. The last phase
is the reporting phase where the findings are documented, compared with literature and new findings

discussed.

3.3 Network setup
Hive home smart devices were used for this study. The devices include a smart hub (to integrate the

smart devices), a motion sensor, a smart plug, and a smart bulb. The network communication that
takes place when these devices are both idle and active is the main point of interest, thus a setup to
collect this network data for further analysis was carried out. Hardware and software tools used are

listed as follows:

* Samsung A12 smart phone

o Netgear GS308E — 100NAS switch [115]
* Mac book air OS X El Capitan 10.11.6

¢ Jupyter Notebook [116]

« TL-WR940N Router [117]

¢ iPhone SE

e iPad

® LAN cable

* Wireshark 2.6.0

 Hive starter pack (motion sensor, plug, Bulb, hub) [114]
¢ Hive home app v.10.44.0 (6)

® Google home app v.2.42.120

* Home kit app 14.4.2
Traffic generated from/to each of the mentioned devices was captured separately to know the type
of network traffic that relates to a particular device. To get very detailed network traffic, the capture
setup was made to collect traffic at layer 2 (datalink). This was done by connecting the hub to port 1
of the switch. Port 8 of the switch was then connected to the router (for internet connection). To
capture all that flowed in and out of the hub and all devices paired to it, port 1 was mirrored on port
4. Port 4 was connected to the laptop using a Local Area Network (LAN) cable and Wireshark was used

to capture this traffic. This capture setup is depicted in Figure. 3.1.

36

PLUG
BULB

- e EEE .
MOTION SENSOR s .
Hub e —

E

Smart
Phone /
Controller

Switch
Router
PORT 4
i

Laptop Device

Figure 3.1 Data collection connectivity

3.4 Data collection
Before the commencement of collecting traffic, use cases were drafted for specific scenarios. This will

give a clear understanding of the kind of traffic that gets generated by these devices for every scenario.

The parameters that come with each use case include:

e Device: This indicates what device or devices are being monitored. This can be a single device

isolated or connected to other devices. For instance, there is a use case which monitors only

the smart hub to know how this device behaves in solo and there is also a use case which

monitors the smart hub, motion sensor, smart plug and bulb connected to get the type of

traffic generated when the devices are working together.

e Mode of control: This refers to the means used to operate or control the device(s). Five

different modes were studied which include:

Using the Hive proprietary app: The Hive app was used to operate these devices after
downloading it on the control devices (iPhone, iPad, Samsung smart phone).

Using Google home app: The Google home app was used to operate these devices after
downloading it on control devices.

Using home kit: This app comes preloaded on apple devices (iPhone, iPad). This app is
compatible with Hive devices just like the Google home app. This was also used to operate
the hive devices.

Manually: The devices (plug and smart bulb) were controlled by physical means by
turning their switch ON and OFF.

Scheduled: Using the Hive app, times when the devices should automatically go ON and
OFF were set on the app. This automated the triggers without any manual intervention
either physically or via the apps. In this auto mode the hive devices go ON/OFF at the

desired pre-set times.

37

Trigger: This refers to the trigger action used for each particular use case. This can be turning

the device ON, OFF, brightness UP/DOWN, physically triggering motion sensor and the like.

State: This indicates whether the device is in active or idle state. Active state is when the

device is ON from the switch and triggered like plug ON or bulb brightness UP/DOWN while

idle state is when the device is in the OFF state but still ON from the switch.

Window duration: This refers to how long a particular use case is being monitored as well as

capturing the traffic relating to that particular use case.

Mode: This indicates whether the device is pairing, unpairing or at boot stage.

Count: This indicates the number of times a particular trigger like ON/OFF has been executed

within a particular window duration.

Table 3.1 shows some of these use cases. Figure 3.2 shows some of the Wireshark file captures. Figure

3.3 shows some of the MOOP Wireshark captures.

W NGOV AE WNR

BR R R e
B WNRO

(=Y
v

(=Y
(<)}

17
18

19

20

Device(s)

Hub

Hub

Hub + plug
Hub + plug
Hub + plug
Hub + plug
Hub + plug
Hub + plug
Hub + plug
Hub + plug
Hub + plug
Hub + plug
Hub + plug
Hub + plug

Hub + plug

Hub + Motion Sensor +
bulb + plug

Hub + bulb
Hub + bulb

Hub + motion sensor

Hub + Motion Sensor +
bulb + plug

Table 3.1 Use cases scenarios

Mode of Trigger Duration
operation
Manual ON Idle 2 hours Boot 3
Idle 8 hours
Hive app Idle 30 minutes Pairing 1
Hive app Idle 30 minutes Unpairing 1
Idle 2 hours Paired
Manual ON Active 2 hours Paired 4
Manual OFF Active-idle 2 hours Paired 4
Hive app ON Active 2 hours Paired 4
Hive app OFF Active-idle 2 hours paired 4
Home kit ON Active 2 hours Paired 4
Home kit OFF Active-idle 2 hours Paired 4
Google home ON Active 2 hours Paired 4
Google home = OFF Active-idle 2 hours Paired 4
Scheduled ON from 6- Active 2 hours Paired 1
8pm
Scheduled OFF from Active-idle 1 hour Paired 1
8:30-9pm
Scheduled If motion Active 5 hours Paired 4
detected, ON
bulb for 10
minutes and
plug for 5
minutes.
Hive app Brightness UP = Active 1 hour Paired 3
Hive app Brightness Active 1 hour Paired 3
DOWN
Scheduled Move to Active 5 hours Paired 10
perimeter
Scheduled If motion 8 hours
detected, ON
bulb and plug
for 1 hour

38

Name v Date modified Type Size
AllappsMOOP 30/06/2021 11:41 Wireshark capture file 2,445 KB
alldevicestrafficO1 30/03/2021 13:33 Wireshark capture file 4,239 KB
hiveapppattern 02/06/2021 13:46 Wireshark capture file 218 KB
hubbootmode 27/06/2021 11:28 Wireshark capture file 863 KB
hubbootmode2 27/06/2021 11:55 Wireshark capture file 860 KB
hubtrafficO1 19/03/2021 11:05 Wireshark capture file 569 KB
hubtraffic02 19/03/2021 21:34 Wireshark capture file 1,474 KB
hubtraffic03 20/03/2021 23:34 Wireshark capture file 539 KB
lampfiltered01 18/04/2021 09:51 Wireshark capture file 1,946 KB
lamppairing 27/06/2021 14:09 Wireshark capture file 435 KB
lamptrafficO1 23/03/2021 17:29 Wireshark capture file 6,917 KB
motionsensorfiltered01 18/04/2021 09:47 Wireshark capture file 3,162 KB
motionsenstrafficO1 29/03/2021 23:29 Wireshark capture file 3,130 KB
plugfiltered01 18/04/2021 09:51 Wireshark capture file 1,696 KB

| plugpairing 11/07/2021 11:45 Wireshark capture file 467 KB
Figure 3.2 Wireshark captures for separate devices

Name B v Date modified Type Size
AllappsMOOP 30/06/2021 11:41 Wireshark capture file 2,445 KB
googlehomeMOOP 22/06/2021 16:00 Wireshark capture file 2,110 KB
googlehomepattern 02/06/2021 20:21 Wireshark capture file 159 KB
HiveappMOOP 23/06/2021 23:59 Wireshark capture file 1,566 KB
hiveapppattern 02/06/2021 13:46 Wireshark capture file 218 KB
homekitflowvol 19/08/2021 18:22 Wireshark capture file 17 KB
homekitON2 19/09/2021 18:05 Wireshark capture file 3 KB
manualflowvol 19/08/2021 18:48 Wireshark capture file 16 KB
mergedMOOP 01/07/2021 00:19 Wireshark capture file 14,762 KB
ScheduledMOOP 24/06/2021 11:50 Wireshark capture file 2,761 KB

Figure 3.3 MOOP Wireshark captures

Before the execution of each use case, Wireshark is connected to sniff the traffic. This lasts until the
window duration has elapsed. This is then saved in the default Wireshark extension as a pcap file

which is later converted to csv for further analysis if needed.

Figure 3.4 shows a sample of the raw data capture. This shows the packet header details like the
source and destination IP addresses between the smart devices and the external servers they
communicate with. The time stamps, protocols utilized, packet lengths and sequence number utilized

by each packet are shown as well. The info column shows additional details like the TCP flags.

39

No. Time Source Destination Protocol Length Sequence Number Info
©.000600 192.168.0. 34.243.56.134 66 1
2 9.0 3 34 56.13 192.16 CP 66 1
1
1

Ack=1 Win=6312 Len=0@

9.984042 192.168.0.

.798496
42

8 16 68.0. 1€ 5 97 c { unseen seg t] , App
12 19.980629 192.168.0.100 34.243.56.134 TCP 66 33 44420 -» 443 [ACK] Seq=33 Ack=32 Win=6312 Len:
13 29,952138 192.168.0.100 34.246.111.38 TCP 66 32 [TCP Keep-Alive] 57970 -» 443 [ACK] Seq=32 Ack
14 29.971547 34.246.111.38 192.168.0.180 TCP 66 32 [TCP Keep-Alive ACK] 443 + 57970 [ACK] Seg=3:
15 35.072291 192.168.0.100 34.243.56.134 TCP 66 32 [TCP Keep-Alive] 44420 - 443 [ACK] Seq=32 Ack
16 35.094536 34.243.56.134 192.168.0.180 TCP 66 32 [TCP Keep-Alive ACK] 443 -+ 44420 [ACK] Seq=3:
17 45.856398 192.168.0.100 34.246.111.38 TCP 66 32 [TCP Keep-Alive] 57970 - 443 [ACK] Seq=32 Ack

18 45?2’5328 34246‘11138 1921658199 TCP o (?6 32 UC{D,KEEP—AL}VQ ACK] 443 -+ 57970 [ACK] Seq=3:
Figure 3.4 Raw data capture sample

3.5 Exploratory Data Analysis
This section delves into the EDA of the unencrypted collected logs. EDA is a statistical method of
analysing data to summarize the main characteristics of the dataset by using data visualization tools
and techniques to represent the results derived for ease of understanding. Jupyter notebook is the
tool used for this purpose [116]. The areas covered were chosen for specific reasons. Traffic
categorization was covered to have a holistic view of the kind of traffic Hive devices exchange. This
will help in addressing strange and malicious traffic. Device identification was carried out to know the
fingerprint of each device to be able to identify Hive devices in a pool of other loT. Protocols and flow
volume and duration were studied as these aspects are used in propagating DDoS attacks. Studying
them will help in knowing the normal Hive traffic pattern when it comes to protocol sequence, flow
volume and duration in comparison to malicious use of them in flooding attacks as we will see in
subsequent chapters. This section is further divided into subsections addressing traffic categorization,
device identification, protocols in both Idle and active states, flow volume (total number of incoming
and outgoing bytes in one cycle) and flow duration (time it takes from the beginning of a flow to the

end) and traffic pattern distinct to each mode of operation.

3.5.1 Traffic categorization
Traffic collected from this network was broadly categorized into 3 after analysis of the executed use

cases. These categories are as follows:

e Periodic queries: These queries were found to take place automatically regardless of an event
trigger ranging from every few minutes to some hours depending on the protocol or device.
The hub was studied without pairing any device to it to capture the network activity that takes
place in its lone state. This was repeated with devices (plug, lamp, motion sensor) paired to

the hub to identify what happens differently in this scenario. Figure 3.5 shows this periodic

40

activity originating from the hub without any device paired to it compared to when a device
is paired to the hub over a period of 2 hours. As seen from Figure 3.5 there is more frequent
DNS, TCP and TLS activity happening when a device is paired to the hub as opposed to when
the hub is on its own. Figure 3.6 — 3.10 shows a raw data capture of this extended protocol
activity comparing the hubs protocol activity to when it is connected to a motion sensor in
one minute window. We can see that the protocols in figure 3.6 are much less than those in
figure 3.7 — 3.10 due to the motion sensors presence.

Hub without any device paired

2000

@
3
=1

1000

Packet Count

500

TCP TLSV1.2 DNS NTP DHCP
Protocol

Hub paired with a device - in idle state
2500

2000

Packet Count
7]
8
3

=)
3
S

o
3
S

TcP TLSV1.2 MDNS DNS NTP DHCP
Protocol
Hub paired with a device - in active state
3000

2500

N
S
=3
=3

1500

Packet Count

1000

500

TCP TLSV1.2 DNS NTP DHCP
Protocol

Figure 3.5 Protocol count compared by device state

Event trigger: This kind of traffic gets generated whenever an event is triggered. For instance,
when the plug or lamp goes ON or OFF or the motion sensor detects movement. This results
in generation of DNS, TCP, and TLS packets. In some cases, mDNS traffic is also generated
depending on the mode of operation used to trigger the event. An example is shown in figure
3.11 when the mode of operation is from a mobile phone via an app as compared to a manual
trigger shown in figure 3.12 where no mDNS protocol appears. We can see mDNS protocol as
the very first under the protocol column with the mobile phones IP address in the source

address column as 192.168.0.102 with the DNS query appearing at the very bottom of the

41

protocol column showing the smart hub source address as 192.168.0.101. However, with the
manual trigger, only the DNS query appears with the same hub IP source address.

e Boot, pairing and firmware updates: This traffic is generated whenever the hub is in boot
mode, when paring with the devices or a firmware update takes place. A certain number of
DNS servers are communicated with when these take place. Figure 3.13 shows some DNS
servers that are being queried during boot mode in the info column with the hub IP address
being 192.168.0.103 in source address column while figure 3.14 shows some DNS servers

being queried during pairing mode with the hub/plug IP address being 192.168.0.101 as the

source.
No. Arrival Time Source Destination Protocol
21 Mar 19, 2021 11:05:58.. 192.168.0.101 52.209.105.92 TCP
Mar 19, 20621 11: :58.. 52.209.105.92 e
) Mar 2021
Mar 19, 2021 :03... D¢ .
31 Mar 19, 2021 11:06:03.. 192.168.0.101 52.209.105.92 TCP
r 34 Mar 19, 2021 11:06:04.. 192.168.0.101 54.228.82.112 TCP

2 192.168.0.101 1
: 52 Mar 19, 2021 11:06:15.. 192.168.0.101 216.239.35.0 NTP

|
} 53 Mar 19, 2021 11:06:15.. 216.239.35.0 192.168.0.101 NTP
{ 54 Mar 19, 2021 11:06:18.. 192.168.0.101 52.209.105.92 TCP
} 55 Mar 19, 2021 11:06:18.. 52.209.105.92 192.168.0.101 TCP
2021 1 9.. 192.168 28
2021 11:06:19.. 54.228.82.
2021 1 6:23 192.168.0.
2021 1 3.. 54.228.82.
60 Mar 19, 2021 11:06:23.. 192.168.0.101 54.228.82.112 TCP
I 74 Mar 19, 2021 11:06:33.. 192.168.0.101 52209 2105192 TCP
} 75 Mar 19, 2021 11:06:33.. 52.209.105.92 192.168.0.101 TCP
} 76 Mar 19, 2021 11:06:38.. 192.168.0.101 52.209.105.92 TLSv1.2
} 77 Mar 19, 2021 11:06:38.. 52.209.105.92 192.168.0.101 TLSv1.2
} 78 Mar 19, 2021 11:06:38.. 192.168.0.101 52.209.105.92 TCP
79 Mar 19, 2021 11:06:39.. 192.168.0.101 54.228.82.112 TCP
80 Mar 19, 2021 11:06:39.. 54.228.82.112 192.168.0.101 TCP
i 94 Mar 19, 2021 11:06:53.. 192.168.0.101 52.209.105.92 Lep
} 95 Mar 19, 2021 11:06:53.. 52.209.105.92 192.168.0.101 TCP
98 Mar 19, 2021 11:06:54.. 192.168.0.101 54.228.82.112 TCP
99 Mar 19, 2021 11:06:54.. 54.228.82.112 192.168.0.101 TCP
2021 11:06:58.. 192.168.0.101 54.228.82.112 TLSv1.2

Figure 3.6 Hub protocol frequency

42

No. Arrival Time Source Destination Protocol

2 Apr 4, 2821 ©9:20:22. 192.168.0.1@1 99.88.34.253 Tcp
4 Apr 4, 2021 09:20:23. 192.168.0.101 99.80.34.253 TCP

5 Apr 4, 2021 09:2

7.. 192.168.0.101 34.249.107.124 TCP

7 Apr 4, 2021 ©9:20:29.. 192.168.0.101 52.210.184.200

11 Apr 4, 2021 ©09:20:32.. 192.168.0.101 34.240.107.124

15 Apr 4, 2021 192.168.0.101 99.80.34.253 TLSv1.2
16 Apr 4, 2021 99.88.34.253 192.168.0.101 TCP

17 Apr 4, 2021 99.80.34.253 192.168.0.101 TLSv1.2
18 Apr 4, 2021 99.88.34.253 192.168.0.101 Tcp

19 Apr 4, 2021 99.80.34.253 192.168.0.101 TCP

20 Apr 4, 2021 192.168.0.101 99.80.34.253 TCP

21 Apr 4, 2021 99.808.34.253 192.168.0.101 TCP

22 Apr 4, 2021 99.88.34.253 192.168.0.101 TLSv1.2
23 Apr 4, 2021 99.80.34.253 192.168.0.101 TLSv1.2
24 Apr 4, 2021 99.88.34.253 192.168.0.101 TLSv1.2
25 Apr 4, 2021 192.168.0.101 99.80.34.253 TCP

26 Apr 4, 2021 192.168.0.101 99.88.34.253 Tcp

27 Apr 4, 2021 192.168.0.101 99.80.34.253 TCP

28 Apr 4, 2021 192.168.0.101 99.80.34.253 TCP

29 Apr 4, 2021 192.168.0.101 99.80.34.253 TCP

2021 @ 2.168.0.101 0.34.253

34 Apr 4, 2021 @9: 192.168.0.101 99.808.34.253 TLsvi.2
35 Apr 4, 2021 09: 99.80.34.253 192.168.0.101 TCP

36 Apr 4, 2021 09: 192.168.0.101 99.80.34.253 TLSv1.2
37 Apr 4, 2021 09:20: 192.168.0.101 99.80.34.253 TLSv1.2
38 Apr 4, 2021 09:20:44.. 99.80.34.253 192.168.0.101 TCP

39 Apr 4, 2021 09:20:44.. 99.808.34.253 192.168.0.101 TCP

Figure 3.7 Hub + motion sensor protocol frequency

No. Arrival Time Source Destination Protocol
39 Apr 4, 2821 99.80.34.253 192.168.0.101 TCcP
40 Apr 4, 2021 99.80.34.253 192.168.0.101 TLSv1.2
41 Apr 4, 2821 99.80.34.253 192.168.0.101 TLSv1.2
42 Apr 4, 2021 192.168.0.101 99.80.34.253 TCP
43 Apr 4, 2821 192.168.0.101 99.80.34.253 TCP
44 Apr 4, 2021 192.168.0.101 99.80.34.253 TCP
45 Apr 4, 2821 192.168.0.101 99.80.34.253 TLSv1.2
46 Apr 4, 2021 99.80.34.253 192.168.0.101 TCcP
47 Apr 4, 2021 99.80.34.253 192.168.0.101 TLSv1.2
48 Apr 4, 2021 99.80.34.253 192.168.0.101 TLSv1.2
49 Apr 4, 2821 192.168.0.101 99.80.34.253 TCP
58 Apr 4, 2021 192.168.0.101 192.168.0.1 DNS
51 Apr 4, 2821 192.168.0.1 192.168.0.101 DNS
54 Apr 4, 2021 192.168.0.101 99.80.34.156 TCcP
55 Apr 4, 2821 192.168.0.101 99.80.34.156 TLSv1.2
56 Apr 4, 2021 99.80.34.156 192.168.0.101 TCP
57 Apr 4, 2821 99.80.34.156 192.168.0.101 TLSv1.2
58 Apr 4, 2021 99.80.34.156 192.168.0.101 TCP
59 Apr 4, 28021 192.168.0.101 99.80.34.156 TCcP
68 Apr 4, 2021 99.80.34.156 192.168.0.101 TCP
61 Apr 4, 2021 99.80.34.156 192.168.0.101 TCcP
62 Apr 4, 2021 99.80.34.156 192.168.0.101 TLSv1.2
63 Apr 4, 2021 99.80.34.156 192.168.0.101 TLSv1.2
64 Apr 4, 2021 99.80.34.156 192.168.0.101 TLSv1.2
65 Apr 4, 2021 192.168.0.101 99.80.34.156 TCP
66 Apr 4, 2021 192.168.0.101 99.80.34.156 TCcP
67 Apr 4, 2021 192.168.0.101 99.80.34.156 TCcP
68 Apr 4, 2021 192.168.0.101 99.80.34.156 TCP
69 Apr 4, 2021 192.168.0.101 99.80.34.156 TCcP
78 Apr 4, 2021 192.168.0.101 99.80.34.156 TCcP
71 Apr 4, 2021 192.168.0.101 99.80.34.156 TLSv1.2
72 Apr 4, 2021 99.80.34.156 192.168.0.101 TCP
73 Apr 4, 2021 192.168.0.101 99.80.34.156 TLSv1.2
74 Apr 4, 2021 192.168.0.101 99.80.34.156 TLSv1.2
75 Apr 4, 2021 99.80.34.156 192.168.0.101 TCcP
76 Apr 4, 2021 99.80.34.156 192.168.0.101 TCcP
77 Aor 4, 2021 99.80.34.156 192.168.0.101 TLSv1.2

Figure 3.8 Hub + motion sensor protocol frequency

43

96

97

98

99
108
101
102
103
104
105
106
107
108
109

Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr

Apr

2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021
2021

2021 @9:

@9:
09:
@9:
09:
@9:
09:
@9:
09:
@9:
09:
@9:
09:

09:

No. Arrival Time
77 Apr 4, 2021 ©9:20:
78 Apr 4, 20821 09:20:
79 Apr 4, 2021 09:20:
8@ Apr 4, 2021 09:20:
81 Apr 4, 2021 09:20:
82 Apr 4, 2021 @9:20:
83 Apr 4, 2021 09:20:
84 Apr 4, 2021 @9:208:
85 Apr 4, 2021 09:20:
86 Apr 4, 2021 @9:208:
87 Apr 4, 2021 09:20:
88 Apr 4, 2821 @9:20:
89 Apr 4, 2021 09:20:
92 Apr 4, 2821 09:20:
91 Apr 4, 2021 09:20:
92 Apr 4, 2821 @9:20:
i 3 sor 4,
94 Apr 4, 20

50..
50..

152,

152,
so9
1595
182,
182,
:107..
107..
107..
114
114,
:16..
:16..

Source

99.86.34.156
99.80.34.156
192.168.0.101
192.168.0.101
192.168.0.101
192.168.0.101
99.806.34.156
99.80.34.156
99.86.34.156
192.168.0.101
192.168.0.101
34.249.107.124
99.86.34.253
192.168.0.101
99.86.34.156
192.168.0.101

Destination

192.168.0.101
192.168.0.101
99.80.34.156
99.80.34.156
99.80.34.156
99.80.34.156
192.168.0.101
192.168.0.101
192.168.0.101
99.80.34.156
34.249.107.124
192.168.0.101
192.168.0.101
99.80.34.253
192.168.0.101
99.80.34.156

192.168.0.101

Protocol

TLSv1.
TLSv1.

TCP
TCP
TCP

TLSv1.

TCP

TLSv1.
TLSv1.

TCP
TCP
TCP

TLSv1.

TCP

TLSv1.

TCP

2
2

99.80.34.253

TCP

192.168.0.101
192.168.0.101
52.210.184.200
192.168.0.101
34.249.107.124
192.168.0.101
34.249.107.124
192.168.0.101
192.168.0.101
52.210.184.200
192.168.0.101
52.210.184.200
192.168.0.101
192.168.0.101

99.80.34.156
52.210.184.200
192.168.0.101
34.240.107.124
192.168.0.101
34.240.107.124
192.168.0.101
34.240.107.124
52.210.184.200
192.168.0.101
52.210.184.200
192.168.0.101
52.210.184.200
99.80.34.242

Figure 3.9 Hub + motion sensor protocol frequency

TCP
TCP
TCP
TCP

TLSv1.
TLSv1.

TCP
TCP
TCP

TLSv1.
TLSv1.

TCP

TLSv1.

Arrival Time

Source

192.168.

192.168.

192.168.

192.168.0.
192.168.0.

Destination

Protocol

TLSv1.2

TLSv1.2

TLSv1.2

TLSv1.2

©9:21:22.. 192.168.0.101 34.240.107.124

Figure 3.10 Hub + motion sensor protocol frequency

44

No. Arrival Time Source Destination Protocol

7883 Jun 30, 2821 11:18:85.719873898 GMT Summer Time 152.168.8.182 224.9.0.251 MONS

3un 38, 2821 11:18:88.335248898 GMT Surmer Tine 152.158.8. 34.245.111.38

7838 Jun 30, 2021 11:18:8%.354895002 GMT Summer Time 34.245.111.38 152.158.8.180 TLSv2.2

7891 Jun 39, 2021 11:18:82.355325098 GMT Suwmer Time 152.158.8.189 34.245.111.38 TP

2021 11 5 T i B 34.243.35.138

EED

7857 3un 38, 2821 11:18:12.169860098 GMT Summer Time 34.243.35.132 152.168.9.180 TP
7987 Jun 39, 2021 11:18:13.515517898 GMT Summer Time 152.158.2.100 34.243.35.134 TLSV2.2
7988 Jun 38, 2021 11:18:13.535869898 GMT Suwmer Time 34.243.35.134 192.158.8.180 hi=
7985 Jun 30, 2821 11:18:13.535425808 GMT Summer Time 34.243.35.133 152.168.@.188 TLSV1.2

7918 Jun 3, 2021 11:18:13.535748892 GMT Summer Time 152.158.8.100 34.243.35.132 TP

. 2821 11:18:22.493744898 GMT Summer Time 152.168.8.182 165.254.22.158

7928 Jun 30, 2821 11:18:22.505368098 GMT Summer Time 185.254.22.158 152.168.9.102 HTTR
7925 Jun 30, 2021 11:18:22.512751092 GMT Summer Time 152.158.2.102 169.254.22.158 TP
7938 Jun 38, 2021 11:18:22.513674898 GMT Summer Time 152.158.8.282 169.234.22.159 HTTR
7931 Jun 36, 2821 11:18:22.515152008 GMT Suwmer Time 165.254.22.158 152.168.9.282 HTTR
7932 3un 38, 2821 11:18:22.513458892 GMT Surmer Time 152.158.8.102 169.254.22.158 TP
7933 Jun 30, 2021 11:18:22.529873802 GMT Summer Time 152.158.8.282 169.254.22.158 HTTR
7934 Oun 39, 2021 11:18:22.541211898 GMT Summer Time 165.254.22.158 152.168.9.182 HTTR
7935 3un 39, 2021 11:18:22.544485008 GMT Summer Time 152.158.8.182 185.254.22.158 TR
7936 Jun 38, 2821 11:18:22 841885898 GMT Surmer Time 152.158.8.182 189.254.22.158 TR
7937 Jun 30, 2021 11:18:22.841548892 GMT Summer Time 169.254.22.158 152.158.8.182 TP
7935 Jun 39, 2021 11:18:23.412787092 GMT Suwmer Time 152.158.8.180 34.245.111.38 TP
793% Jun 39, 2821 11:18:23.431513898 GMT Summer Time 34.2d5.211.38 152.268.9.180 TR
7938 Jun 30, 2821 11:18:28.564771898 GMT Surmer Time 152.158.9.100 34.243.35.132 TP
7331 Jun 39, 2021 11:18:28.584675898 GMT Summer Time 34.243.35.134 152.158.8.180 TP
734z Jun 38, 2021 11:18:25.853862098 GMT Summer Time 152.158.8.182 169.254.22.159 HTTR
7983 Jun 30, 2821 11:18:25.955659808 GMT Summer Time 1€2.254.22.158 152.168.9.282 TP
7944 Jun 30, 2821 11:18:25.138343098 GMT Susmer Time 185.254.22.158 152.168.8.102 HTTR
7945 Jun 39, 2021 11:18:29.201155892 GMT Summer Time 152.158.8.100 32.243.35.133 TLSvV3.2
7345 Jun 38, 2021 11:18:25.231655898 GMT Summer Time 34.243.35.134 192.158.8.180 TLSV1.2
7957 Jun 30, 2021 11:18:29.232122008 GMT Summer Time 152.158.8.180 34.283.35.132 TP
7948 3un 38, 2821 11:18:25.253525898 GMT Summer Time 152.158.8.102 169.254.22.158 TP
7385 Jun 30, 2821 11:18:29.539343092 GMT Summer Time 152.158.8.202 169.254.22.158 TP
7958 Jun 39, 2021 11:18:25.539784898 GMT Summer Time 165.254.22.158 192.158.9.182 TP
7951 3un 39, 2821 11:18:25.655644808 GMT Summer Time 15z.158.8.180 152.165.8.1 ons
7952 Jun 30, 2821 11:18:25.697413898 GMT Surmer Time 152.158.8.1 152.168.9.180 oS

Figure 3.11 mDNS protocol in appearance when using a mobile phone

No. Arrival Time Source Destination Protocol
5742 Jun 30, 2021 11:05:45.284208.. 34.243.56.134 192.168.0.100 TCP
5743 Jun 30, 2021 11:05:45.298498.. 34.243.56.134 192.168.0.100 TLSV1.2
5744 Jun 30, 2021 11:05:45.341992.. 192.168.0.100 34.243.56.134 TCP
5747 Jun 30, 2021 11:05:53.586183.. 192.168.0.100 34.246.111.38 TCP
5748 Jun 30, 2021 11:05:53.605682.. 34.246.111.38 192.168.0.100 TCP
5756 Jun 3@, 2021 11:05:58.332514.. 192.168.0.100 34.246.111.38 TLSV1.2
5758 Jun 30, 2021 11:05:58.352003.. 34.246.111.38 192.168.0.100 TLSV1.2
5759 Jun 30, 2021 11:05:58.352446.. 192.168.0.100 34.246.111.38 TCP
5765 Jun 30, 2021 11:06:00.306179.. 192.168.0.100 34.243.56.134 TCP
5766 Jun 30, 2021 11:06:00.326186.. 34.243.56.134 192.168.0.100 TCP
5767 Jun 30, 2021 11:06:00.772391.. 34.243.56.134 192.168.0.100 TLSV1.2
5768 Jun 30, 2021 11:06:00.773248.. 192.168.0.100 34.243.56.134 TCP
5769 Jun 30, 2021 11:06:01.017433.. 192.168.0.100 34.243.56.134 TCP
5770 Jun 30, 2021 11:06:01.018083.. 192.168.0.100 34.243.56.134 TLSV1.2
5771 Jun 30, 2021 11:06:01.838533.. 34.243.56.134 192.168.0.100 TCP
5772 Jun 3@, 2021 11:06:01.048220.. 34.243.56.134 192.168.0.100 TLSV1.2
5773 Jun 30, 2021 11:06:01.048675.. 192.168.0.100 34.243.56.134 TCP
5776 Jun 30, 2021 11:06:01.488724.. 192.168.0.100 192.168.0.1 DNS
5777 Jun 30, 2021 11:06:01.498824.. 192.168.0.1 192.168.0.100 DNS
5780 Jun 30, 2021 11:06:01.525534.. 192.168.0.100 99.80.34.139 TCP
5783 Jun 30, 2021 11:06:01.546000.. 192.168.0.100 99.80.34.139 TLSV1.2
5784 Jun 30, 2021 11:06:01.566491. 99.806.34.139 192.168.0.100 TCP
5785 Jun 30, 2021 11:06:01.566530.. 99.80.34.139 192.168.0.100 TLSV1.2
5786 Jun 3@, 2021 11:06:01.566849.. 99.80.34.139 192.168.0.100 TCP

Figure 3.12 Absence of mDNS when operating using manual mode

45

Arrival Time Source Destination Protocol Length Sequence Info

Jun 27, 2021 12:22:17.788927.. 192.168.0.103 192.168.0.1 DNS 113 Standard query ©xde8d A greengrass-ats.iot.eu-west-1.amazonaws.com Of
Jun 27, 2021 12:22:17.795158.. 192.168.0.103 192.168.0.1 DNS 113 iStandard query ©x736a AAAA greengrass-ats.lot.eu-west-1.amazonaws.cor
Jun 27, 2021 12:22:17.883151.. 192.168.0.1 192.168.0.103 DNS 241 Standard query response @xde8d A greengrass-ats.iot.eu-west-1.amazon:
Jun 27, 2021 12:22:17.8€9710.. 192.168.0.1 192.168.0.103 DNS 337 Standard query response ©x736a AAAA greengrass-ats.iot.eu-west-1.ama:
Jun 27, 2021 12:22:21.598467.. 192.168.0.103 192.168.0.1 DNS 117 Standard query ©xb5f4 A a26m9qrmiux96c-ats.iot.eu-west-1.amazonaws.c¢
Jun 27, 2021 12:22:21.613569.. 192.168.0.1 192.168.0.103 DNS 245 Standard query response @xb5f4 A a26m9qrmiux96c-ats.iot.eu-west-1.am:
Jun 27, 2021 12:22:21.623072.. 192.168.0.103 192.168.0.1 DNS 117 Standard query ©x2e5f AAAA a26m9qrmiux96c-ats.iot.eu-west-1.amazonaw:
Jun 27, 2021 12:22:21.636980.. 192.168.0.1 192.168.0.103 DNS 341 Standard query response @x2e5f AAAA a26m9grmiux96c-ats.iot.eu-west-1,
Jun 27, 2021 12:22:22.801239.. 192.168.0.103 192.168.0.1 DNS 102 Standard query ©x66ab A time.production.zoo.alertme.com OPT

Jun 27, 2021 12:22:22.821724.. 192.168.0.1 192.168.0.103 DNS 240 Standard query response ©x66ab A time.production.zoo.alertme.com CNA!
Jun 27, 2021 12:22:26.435497.. 192.168.0.103 192.168.0.1 DNS 87 Standard query ©x5bc8 A time3.google.com OPT

Jun 27, 2021 12:22:26.446021.. 192.168.0.1 192.168.0.183 DNS 1e3 Standard query response ©x5bc8 A time3.google.com A 216.239.35.8 OPT
Jun 27, 2021 12:23:35.7543%0.. 192.168.0.103 192.168.0.1 DNS 94 Standard query ©xeac3 A v1.hubreg.bgchprod.info OPT

Jun 27, 2021 12:23:35.776377.. 192.168.0.1 192.168.08.103 DNS 188 Standard query response ©xeac3 A vl.hubreg.bgchprod.info CNAME hubreg
Jun 27, 2021 12:25:50.222227.. 192.168.0.103 192.168.0.1 DNS 125 Standard query ©x@ba2 A c3t5k8kx91jab4.credentials.iot.eu-west-1.ama:
Jun 27, 2021 12:25:50.232670.. 192.168.0.1 192.168.0.103 DNS 173 Standard query response @x@ba2 A c3t5k8kx91jab4.credentials.iot.eu-we
Jun 27, 2021 12:26:07.452653.. 192.168.9.103 192.168.0.1 DNS 103 Standard query 9x5d96 A dynamodb.eu-west-1.amazonaws.com OPT

Jun 27, 2021 12:26:07.464620.. 192.168.0.1 192.168.0.103 DNS 119 Standard query response ©x5d96 A dynamodb.eu-west-1.amazonaws.com A !

Figure 3.13 DNS queries during boot mode

Arrival Time Source Destination ~ Protocol Length Sequence Info
2 Jul 11, 2021 11:43:37.39.. 192.168,0.101 192.168.0.1 DNS 101 Standard query @x5f37 A v1.deviceupgrade.bgchprod.info 0PT

5 Jul 11, 2621 11:43:37.40.. 192.168.0.1 192.168.0.101 DNS 218 Standard query response @x5f37 A v1.deviceupgrade.bgchprod.info CNAME deviceupgrade-dfr-1-8-b.
292 Jul 11, 2021 11:43:43.80.. 192.168.0.101 192.168.0.1 DNS 125 Standard query @x4c52 A c3tSkskx91jabd.credentials.iot.eu-west-1.amazonaws.com OPT
294 Jul 11, 2021 11:43:43.81.. 192.168.0.1 192.168.0.101 DNS 173 Standard query response 0x4c52 A c3t5kskx91jaba.credentials.iot.eu-west-1.amazonaws.com A 54.2.
393 Jul 11, 2021 11:43:47.78.. 192.168.0.101 192.168.0.1 DNS 102 Standard query @x85f3 A kinesis.eu-west-1.amazonaws.com OPT
394 Jul 11, 2021 11:43:47.80.. 192.168.0.1 192.168.0.101 DNS 118 Standard query response @x85f3 A kinesis.eu-west-1.amazonaws.com A 99.80.34.175 OPT
661 Jul 11, 2021 11:43:56.01. 192.168.6.101 192.168.0.1 DNS 88 Standard query @x5858 A sts.amazonaws.com OPT
662 Jul 11, 2021 11:43:56.02.. 192.168.0.1 192.168.0.101 DNS 104 Standard query response 0x5858 A sts.amazonaws.com A 52.46.149.173 OPT

Figure 3.14 DNS queries during pairing mode

3.5.2 Device Identification
Each device was paired with the hub individually to get a unique fingerprint of the device. This method

will help in identifying each device from the type of traffic it generates when all devices are paired to
the hub. However, it was discovered that all 3 devices have a similar pattern. All devices utilized the
same source MAC and IP Address, which is that of the hub. They also utilized the same protocols and
server-side port numbers. Furthermore, when an event is triggered, all devices have the same traffic
pattern of contacting the same DNS servers, having the same flow volume and duration as will be seen
in subsequent sections of this chapter. Table 3.2 shows a list of these DNS servers, their respective
lengths and purpose. Whenever an event is triggered like the smart plug or lamp going ON, a DNS
request is made to kinesis.eu-west-1.amazonaws.com, which contains requests and reply packets.
The same thing happens when the plug or lamp goes OFF, as this DNS is queried. An interesting
observation is, whenever the interval between one triggered event (ON/OFF) and the next is less than
an hour then a DNS request is made to only kinesis.eu-west-1.amazonaws.com, however if the
interval is more than an hour then a DNS request is made to c¢3t5k8kx91jab4.credentials.iot.eu-west-
1.amazonaws.com, sts.amazonaws.com and kinesis.eu-west-1.amazonaws.com. The reason behind
this is c3t5k8kx91jab4.credentials.iot.eu-west-1.amazonaws.com and sts.amazonaws.com are
responsible for providing temporary authentication keys whenever a request or a triggered event
takes place. These keys are short lived and by default expire in one hour, thus the need for newly
generated authentication keys when a new query is made an hour after the last one as seen in table

3.2.

46

However, one slightly different behaviour was observed which differentiated the motion sensor from
the plug and lamp. When it detects motion, a DNS query and response is established as mentioned
earlier which is the same with the plug and lamp. However, the motion sensor always establishes
another DNS query 5 minutes later, which is not the case for the plug and lamp. Figures 3.15, 3.16 and
3.17 show these commonalities shared by the plug, lamp, and motion sensor. Figure 3.18 shows event
triggered DNS activity from these devices, independently. The packet length was plotted against the
time stamp. The reason for using the packet length is because each length corresponds to a particular
DNS address. For instance, length 102 is kinesis.eu-west-1.amazonaws.com and 125 is
c3t5k8kx91jab4.credentials.iot.eu-west-1.amazonaws.com. This method was found to present a
neater and less cluttered labels on the graph, as they are shorter and easier to read. The lamp and
bulb have a single peak of contacting the kinesis.eu-west-1.amazonaws.com DNS server of length
102, when an event is triggered while the motion sensor has a distinct pattern of having 2 peaks for
every event trigger to this same server. In Figure 3.18 the lamp was triggered at 12:00, 1:00, 2:30 and
at 3:30, all having a single peak. The plug was triggered at 2:30, 3:30 and 4:30 with single peaks as well
for each trigger. The motion sensor detected motion 3 times between 8:30 and 12:00 each time having

double peaks when motion was detected.

As observed from the section above in periodic queries, the hub has a unique pattern of generating
periodic traffic like TCP Keep Alive, DNS, ARP, and DHCP. This unique traffic makes it easier to identify
the hub in a pool of other loT devices. This can be seen in figure 3.19, 3.20, 3.21 and 3.22 respectively
with the hubs IP address being 192.168.0.101.

Table 3.2 DNS servers queried and their purpose

Sts.amazonaws.com
(packet length 88)

For provision of temporary limited privilege credentials for AWS
identity and access management. These temporary credentials last for
one hour by default thus, why the sts.amazonaws.com DNS query
when an event is an hour apart from the last.

Dynamodb.eu-west-
1.amazonaws.com
(packet length 103)
Kinesis.eu-west-
1.amazonaws.com
(packet length 102)
Credentials.iot.eu-west-
1.amazonaws.com
(packet length 125)

Ec2.00.00.00.00.eu-
west-1l.amazonaws.com

Proprietary NoSQL database service that supports key value and
documents data structure.

Managed scalable cloud-based service allowing real-time processing of
streaming large amount of data. Designed for real-time applications (in
this case hive app).

This credentials provider authenticates a client in this case the smart
device making request, and issues temporary limited privilege security
token. This token can be used to sign and authenticate any AWS
request. Therefore, the same one-hour expiration rule applies.

Elastic compute cloud that provides secure, resizable compute
capacity on the cloud.

47

No. Arrival Time Source Destination Protocol Length Sequence Info
242 Mar 22, 2021 14:30:00... 192.168.0.101 192.168.6.1 DNS 102 Standard query @x99e5 A kinesi -west-1 com OPT
243 Mar 22, 2021 14:30:00... 192.168.0.1 192.168.0.101 DNS 118 Standard query response 0x99e5 A kinesis.eu-west-1.amazonaws.com #

246 Mar 2021 14:30:00... 192.168.0.101 99.80.34.243 TCP 1 43484 + 443 [ACK] Seq=1 Ack=1 Win=65344 Len=0 TSval=369848558 TSec

247 Mar 22, 2021 14:30:00... 192.168.0.101 99.80.34.243 TLSv1.2 296 1 Client Hello

248 Mar 22, 2021 14:30:00... 99.80.34.243 192.168.0.101 TCP 66 1 443 - 43404 [ACK] Seq=1 Ack=231 Win=28160 Len=@ TSval=174506228 T<

249 Mar 22, 2021 14:30:00... 99.80.34.243 192.168.0.101 TLSv1.2 162 1 Server Hello

250 Mar 22, 2021 14:30:00... 99.80.34.243 192.168.0.101 TCP 1294 97 443 -+ 43404 [ACK] Seq=97 Ack=231 Win=28160 Len=1228 TSval=1745862:

251 Mar 22, 2021 14:30:00... 192.168.0.101 99.80.34.243 TCP 66 231 43484 » 443 [ACK] Seq=231 Ack=97 Win=65280 Len=@ TSval=369848612 1

252 Mar 22, 2021 14:30:00... 99.80.34.243 192.168.0.101 TCP 1294 1325 443 -+ 43404 [ACK] Seq=1325 Ack=231 Win=28160 Len=1228 TSval=17450¢

253 Mar 22, 2021 14:30:00... 99.80.34.243 192.168.0.101 TCP 1294 2553 443 -+ 43404 [ACK] Seq=2553 Ack=231 Win=28160 Len=1228 TSval=17450¢

254 Mar 22, 2021 14:30:00... 99.80.34.243 192.168.0.101 TLSv1.2 1285 3781 Certificate

255 Mar 22, 2021 14:30:00... 99.80.34.243 192.168.0.101 TLSv1.2 404 5800 Server Key Exchange

256 Mar 22, 2021 14:30:00... 99.80.34.243 192.168.0.101 TLSv1.2 75 5338 Server Hello Done

257 Mar 22, 2021 14:30:00... 192.168.0.101 99.80.34.243 TCP 66 231 43404 -+ 443 [ACK] Seq=231 Ack=1325 Win=64128 Len=0 TSval=36984861:
< >

Frame 242: 102 bytes on wire (816 bits), 182 bytes captured (816 bits) on interface en6, id @
Ethernet II, Src: Alertmec_1a:63:95 (@@:1c:2b:1a:63:95), Dst: Tp-LinkT_02:4d:12 (d8:47:32:02:4d:12)
Internet Protocol Version 4, Src: 192.168.0.101, Dst: 192.168.0.1

User Datagram Protocol, Src Port: 32866, Dst Port: 53

Domain Name System (query)

vVVvivuwvwy

Figure 3.15 Plug traffic

No. Arrival Time Source Destination Protocol Length Sequence N Info
568 Mar 23, 2021 11:51:52. 192.168.0.101 192.168.8.1 {ONS™ T} 102 Standard query @x28af A kinesi -west-1 com OPT
I 569 Mar 23, 2021 11:51:52.. 192.168.0.1 192.168.2.101 DNS 118 Standard query response ©x28af A kinesis.eu-west-1.amazonaws.com A 99.80.34.

572 Mar 23, 2021 11:51:52.. 192.168.0.101 99.80.34.243 TCP 66 1 43748 » 443 [ACK] Seg=1 Ack=1 Win=65344 Len=0 TSval=446761583 TSecr=18424373
573 Mar 23, 2021 192.168.0.101 99.80.34.243 TLSv1.2 296 1 Client Hello
574 Mar 23, 2021 99.80.34.243 192.168.0.101 TCP 66 1 443 » 43748 [ACK] Seq=1 Ack=231 Win=29952 Len=0 TSval=184243775 TSecr=446761
575 Mar 23, 2021 99.80.34.243 192.168.0.101 TLSv1.2 162 1 Server Hello
576 Mar 23, 2021 99.80.34.243 192.168.0.101 TCP 1394 97 443 » 43748 [ACK] Seq=97 Ack=231 Win=29952 Len=1328 TSval=184243775 TSecr=44
577 Mar 23, 2021 99.80.34.243 192.168.0.101 TCP 1394 1425 443 » 43748 [ACK] Seq=1425 Ack=231 Win=29952 Len=1328 TSval=184243775 TSecr=
578 Mar 23, 2021 192.168.0.101 99.80.34.243 TCP 66 231 43748 -» 443 [ACK] Seq=231 Ack=97 Win=65280 Len=0 TSval=446761558 TSecr=18424
579 Mar 23, 2021 99.80.34.243 192.168.0.101 TCP 1394 2753 443 > 43748 [ACK] Seq=2753 Ack=231 Win=29952 Len=1328 TSval=184243775 TSecr=
580 Mar 23, 2021 99.80.34.243 192.168.0.101 TLSv1.2 985 4081 Certificate
581 Mar 23, 2021 99.80.34.243 192.168.0.101 TLSv1i.2 484 5008 Server Key Exchange
582 Mar 23, 2021 99.80.34.243 192.168.0.101 TLSv1.2 75 5338 Server Hello Done
583 Mar 23, 2021 192.168.0.101 99.80.34.243 TCcP 66 231 43748 - 443 [ACK] Seq=231 Ack=1425 Win=64128 Len=0 TSval=446761559 TSecr=184
584 Mar 23, 2021 192.168.0.101 99.80.34.243 TCP 66 231 43748 - 443 [ACK] Seq=231 Ack=2753 Win=63680 Len=0 TSval=446761560 TSecr=184
< . >
> Frame 568: 102 bytes on wire (816 bits), 102 bytes captured (816 bits) on interface en6, id @
> Ethernet II, Src: Alertmec_1a:63:95 (80:1c:2b:1a:63:95), Dst: Tp-LinkT_02:4d:12 (d8:47:32:02:4d:12)
> Internet Protocol Version 4, Src: 192.168.0.101, Dst: 192.168.0.1
> User Datagram Protocol, Src Port: 32942, Dst Port: 53
> Domain Name System (query)

Figure 3.16 lamp traffic

No. Arrival Time Source Destination Protocol Length Sequence N Info
50 Apr 4, 2021 ©9:20.. 192.168.0.101 192.168.0.1 DNS [}_0_2] Standard query @xf973 A kinesis.eu-west-1.amazonaws.com OPT \
51 Apr 4, 2021 ©99:20.. 192.168.0.1 192.168.0.101 DNS 118 Standard query response @xf973 A kinesis.eu-west-1.amazonaws.com A
54 Apr 4, 2021 ©09:20.. 192.168.0.101 99.80.34.156 TCP 66 1 47926 - 443 [ACK] Seg=1 Ack=1 Win=65344 Len=0 TSval=1320538865 TSec
S5 Apr 4, 2021 09:20.. 192.168.0.101 99.80.34.156 TLSv1.2 296 1 Client Hello
56 Apr 4, 2021 09:20.. 99.80.34.156 192.168.0.101 TCP 66 1 443 » 47926 [ACK] Seg=1 Ack=231 Win=29952 Len=@ TSval=16999421 Tsec
57 Apr 4, 2021 09:20.. 99.80.34.156 192.168.0.101 TLSv1.2 162 1 Server Hello
58 Apr 4, 2021 09:20.. 99.80.34.156 192.168.0.101 TCP 1294 97 443 » 47926 [ACK] Seq=97 Ack=231 Win=29952 Len=1228 TSval=16999421
59 Apr 4, 2021 ©09:20.. 192.168.0.101 99.80.34.156 TCP 66 231 47926 - 443 [ACK] Seq=231 Ack=97 Win=65280 Len=0 TSval=1320538903 'I"
60 Apr 4, 2021 ©9:20.. 99.80.34.156 192.168.0.101 TCP 1294 1325 443 » 47926 [ACK] Seq=1325 Ack=231 Win=29952 Len=1228 TSval=1699942
61 Apr 4, 2021 09:20.. 99.80.34.156 192.168.0.101 TCP 1294 2553 443 - 47926 [ACK] Seq=2553 Ack=231 Win=29952 Len=1228 TSval=1699942
62 Apr 4, 2021 09:20.. 99.80.34.156 192.168.0.101 TLSv1.2 1285 3781 Certificate

< A2 Anr 4 9071 0Q-7A QG RA U 18R 107 1AR 4 181 TiI<wv1 I aoa EAa0a Sarver Vav Evrhanoa 5

> Frame 5@: 102 bytes on wire (816 bits), 102 bytes captured (816 bits) on interface en6, id @

> Ethernet II, Src: Alertmec_1a:63:95 (00:1c:2b:1a:63:95), Dst: Tp-LinkT_02:4d:12 (d8:47:32:02:4d:12)

> Internet Protocol Version 4, Src: 192.168.0.101, Dst: 192.168.8.1

> User Datagram Protocol, Src Port: 49594, Dst Port: 53

> Domain Name System (query)

Figure 3.17 Motion sensor traffic

48

100 4 — Lamp
80 4
60
40
20 4
o 1 T T Ll i Ll T T T
2312:00 23212:30 2313:00 2313:30 23 14:00 23 14:30 23 15:00 2315:30
Time
100
80 4
= 60 ~
= —— Plug
3 a0
20 4
o L T T T T T T T T T
23 14:30 23 14:45 23 15:00 23 15:15 23 15:30 23 15:45 23 16:00 2316:15 23 16:30
Time
100 + —— Motion sensor
80 -
£ 60
2
5 40
20 4
o
23 08:30 23 09:00 23 09:30 23 10:00 2310:30 23 11:00 2311:30 2312:00
Time
Figure 3.18 Device identification by trigger pattern using DNS query length
No. Arrival Time Source Destination Protocol Length Sequence Info
23 Apr 1, 2021 16:57:41.82. 192.168.0.101 34.240.107.124 e 66 33 49730 -+ 443 [ACK] Seq=33 Ack=32 Len=0 1 TSecr:
37 Apr 1, 2021 16:57:56.24. 192.168.0.101 52.210.184.200 TcP 66 32 [TCP Keep-Alive] 58088 + 443 [ACK] Seq=32 Ack=32 Len=0 T Se: 341044
38 Apr 1, 2021 16:57:56.26.. 52.210.184.200 192.168.0.101 TP 66 32 [TCP Keep-Alive ACK] 443 » 58088 [ACK] Seq=32 Ack=33 Win=425 Len=0 TSval=4291356135 TSecr=3476344091
39 Apr 1, 2021 16:57:57.01. 192.168.0.101 34.240.107.124 TP 66 32 [TCP Keep-Alive] 49730 + 443 [ACK] Seq=32 Ack=32 Len=0 T 7388 TSecr=:
40 Apr 1, 2021 16:57:57.03. 34.240.107.124 192.168.0.101 TP 66 32 [TCP Keep-Alive ACK] 443 + 49730 [ACK] Seq=32 Ack=33 Win=120 Len=0 TSval T
47 Apr 1, 2021 16:58:11.34. 192.168.8.101 52.210.184.200 Tcp 3 32 [TCP Keep-Alive] 58088 -+ 443 [ACK] Seq=32 Ack=32 Len=0 T 356135
48 Apr 1, 2021 16:58:11.36. 52.210.184.200 192.168.0.101 TCP 66 32 [TCP Keep-Alive ACK] 443 -+ 58088 [ACK] Seq=32 Ack=33 Win=425 Len=0 TSval=4291371239 TSecr=3476344091
56 Apr 1, 2021 16:58:12.11. 192.168.0.161 34.240.107.124 TP 6 32 [TCP Keep-Alive] 4973@ =+ 443 [ACK] Seq=32 Ack=32 Wi Len=0 1 TSecr=11:
57 Apr 1, 2021 16:58:12.13. 34,240.107.124 192.168.0.101 TCP 66 32 [TCP Keep-Alive ACK] 443 + 49730 [ACK] Seq=32 Ack=33 Win=120 Len=0 TSval
58 Apr 1, 2021 16:58:16.14. 192.168.0.101 52.210.184.200 TLSv1.2 97 33 Application Data
59 Apr 1, 2021 16:58:16.16. 52.210.184.200 192.168.0.101 TLSV1.2 97 32 Application Data
60 Apr 1, 2021 16:58:16.16. 192.168.0.101 52.210.184.200 TCP 66 64 58088 -+ 443 [ACK] Seq=64 Ack=63 Win=8292 Len=0 TSval=3476379083 TSecr=4291376035
61 Apr 1, 2021 16:58:16.80. 192.168.0.101 34.240.107.124 TLSvl.2 97 33 Application Data
62 Apr 1, 2021 16:58:16.82. 34.249.107.124 192.168.0.101 TLSvl.2 97 32 Application Data
63 Apr 1, 2021 16:58:16.82. 192.168.0.101 34.240.107.124 TP 66 64 49730 + 443 [ACK] Seq=64 Ack=63 Len=0 1 TSecr:
64 Apr 1, 2021 16:58:31.31. 192.168.0.101 52.210.184.200 ™ 66 63 [TCP Keep-Alive] 58088 + 443 [ACK] Seqe=63 Ack=63 Len=0 376035
65 Apr 1, 2021 16:58:31.33. 52.210.184.200 192.168.0.101 TCP 66 63 [TCP Keep-Alive ACK] 243 » 58088 [ACK] Seq=63 Ack=64 Win=425 Len=0 TSval=4291391207 TSecr=3476379683
69 Apr 1, 2021 16:58:32.08. 192.168.0.101 34.240.107.124 TP 66 63 [TCP Keep-Alive] 49730 + 443 [ACK] Seq=63 Ack=63 Wi Len=0 T 1 TSecr=11
70 Apr 1, 2021 16:58:32.10. 34.240.107.124 192.168.0.101 TP 66 63 [TCP Keep-Alive ACK] 443 + 49730 [ACK] Seq=63 Ack=64 Win=120 Len=0 TSval
83 Apr 1, 2021 16:58:46.41. 192.168.0.101 52.210.184.200 TP 66 63 [TCP Keep-Alive] 58088 + 443 [ACK] Seq=63 Ack=63 Len=0 T 1 391207
84 Apr 1, 2021 16:58:46.43. 52.210.184.200 192.168.0.101 R 66 63 [TCP Keep-Alive ACK] 443 + 58088 [ACK] Seq=63 Ack=64 Win=425 Len=@ 2
85 Apr 1, 2021 16:58:47.18. 192.168.0.101 34.240.107.124 TCP 66 63 [TCP Keep-Alive] 49738 -+ 443 [ACK] Seq=63 Ack=63 Wi Len=0 TSval TSecr=1110284819
86 Apr 1, 2021 16:58:47.20. 34.240.107.124 192.168.0.101 e 66 63 [TCP Keep-Alive ACK] 443 + 49730 [ACK] Seq=63 Ack=64 Win=120 Len=@ TSval
88 Apr 1, 2021 16:58:51.14. 192.168.0.101 52.210.184.200 TLSv1.2 97 64 Application Data
89 Apr 1, 2021 16:58:51.16. 52.210.184.200 192.168.0.101 TiSvl.2 97 63 Application Data
90 Apr 1, 2021 16 51.16. 192.168.0.101 52.210.184.200 e 66 95 58088 + 443 [ACK] Seq=95 Ack=94 Win=8292 Len=0 TSval=3476414083 TSecr=4291411036
91 Apr 1, 2021 16:58:51.80.. 192.168.0.181 34.240.107.124 TiSvl.2 97 64 Application Data
92 Apr 1, 2021 16:58:51.82. 34.240.107.124 192.168.0.101 TLSv1.2 97 63 Application Data
93 Apr 1, 2021 16:58:51.82. 192.168.0.101 34.240.107.124 TP 66 95 49730 -+ 443 [ACK] Seq=95 Ack=94 Len=0 TSecr:
115 Apr 1, 2021 16:59:06.38. 192.168.0.101 52.210.184.200 TP 66 94 [TCP Keep-Alive] 58088 + 443 [ACK] Seq=94 Ack=94 Len=@ 1 Sec
116 Apr 1, 2021 16:59:06.40. 52.210.184.200 192.168.0.101 TP 66 94 [TCP Keep-Alive ACK] 443 + 58088 [ACK] Seq=94 Ack=95 Win=425 Len=0 1
117 Apr 1, 2021 16:59:06.89. 192.168.0.101 34.240.107.124 TP 66 94 [TCP Keep-Alive] 49738 + 443 [ACK] Seq=94 Ack=94 Wi Len=0 1 TSecr=:
118 Apr 1, 2021 16:59:06.92. 34.240.107.124 192.168.0.101 TP 66 94 [TCP Keep-Alive ACK] 443 » 49730 [ACK] Seq=94 Ack=95 Win=120 Len=@ TSval

Figure 3.19 Hub TCP keep-alive packets

49

192.168.0.101

Source Destination Protocol Length Sequence Info

35.221 A 63.

131 Standard query response @x75bb A api. hubcontrol.bgchprod. info A

192.1 DNS oPT
71. Apr 1, 2021 18:41:51.53. 192.168.0.101 192.168.0.1 DNS 125 Standard query 0x4622 A c3t5kBkx91jabd.credentials.iot.eu-west-1 com OPT
71. Apr 1, 2021 18:41:51.54. 192.168.0.1 192.168.0.101 DNS 173 Standard query response @x4622 A ¢3tSkBkx31jabd.credentials.iot.eu-west-1.amazonaws.com A 54.246.236..
71. Apr 1, 2021 18:41:54.40. 192.168.0.101 192.168.0.1 DNS 103 Standard query 0x2bb3 A dy db t-1 com OPT
71. Apr 1, 2021 18:41:54.41. 192.168.0.1 192.168.8.101 DNS 19 Standard query response @x2bb2 A d db. eu-west-1 com A 52.94.25.126 OPT
72. Apr 1, 2021 18:41:55.28. 192.168.0.101 192.168.8.1 DNS 88 Standard query 0xa931 A sts.amazonaws.com OPT
72. Apr 1, 2021 18:41:55.29. 192.168.0.1 192.168.08.101 DNS 104 Standard query response 0xa931 A sts.amazonaws.com A 52.46.134.192 OPT
72. Apr 1, 2021 18:41:56.17. 192.168.0.101 192.168.0.1 DNS 102 Standard query 0x1321 A kinesis.eu-west-1.amazonaws.com OPT
72. Apr 1, 2021 18:41:56.18. 192.168.0.1 192.168.08.101 DNS 18 Standard query response 0x1321 A kinesis.eu-west-1.amazonaws.com A 99.80.34.170 OPT
19. Apr 1, 2021 21:44:56.41. 192.168.0.101 192.168.8.1 DNS 125 Standard query @x8d3a A c3t5k8kx91jabd.credentials.iot.eu-west-1.amazonaws.com OPT
19.. Apr 1, 2021 21:44:56.42. 192.168.0.1 192.168.8.101 DNS 173 Standard query response @x8d3a A c3t5k8kx91jabd.credentials.iot.eu-west-1.amazonaws.com A 52.18.31.2..
19. Apr 1, 2021 21:44:58.97. 192.168.0.101 192.168.8.1 DNS 103 Standard query @xedad A dy db st-1 com OPT
19.. Apr 1, 2021 21:44:58.98. 192.168.0.1 192.168.8.101 DNS 19 Standard query response Oxe@ad A dy db. eu-west-1 com A 52.94.25.92 OPT
19. Apr 1, 2021 21:44:59.72. 192.168.0.101 192.168.0.1 DNS 88 Standard query @xefc® A sts.amazonaws.com OPT
19. Apr 1, 2021 21:44:59.73. 192.168.0.1 192.168.0.101 DNS 104 Standard query response Oxefc® A sts.amazonaws.com A 54.239.21.217 OPT
20.. Apr 1, 2021 21:45:00.62. 192.168.0.101 192.168.0.1 DNS 102 Standard query 0xd689 A kinesis.eu-west-1.amazonaws.com OPT
20.. Apr 1, 2021 21:45:00.63. 192.168.0.1 192.168.8.101 DNS 118 Standard query response 0xd689 A kinesis.eu-west-1.amazonaws.com A 99.80.34.215 OPT
20 Apr 1, 2021 21:49:19.79.. 192.168.0.101 192.168.0.1 DNS 99 Standard query Bxelf3 A api.hubcontrol.bgchprod.info OPT
20. Apr 1, 2021 21:49:19.80.. 192.168.0.1 192.168.0.101 DNS 13 Standard query response Oxelf3 A api.hubcontrol.bgchprod.info A 63.32.144.128 A 54.77.235.221 OPT
32. Apr 2, 2021 00:48:01.62.. 192.168.0.101 192.168.0.1 DNS 125 Standard query 0x6297 A k jabd.credentials.iot.eu-west-1 com OPT
32. Apr 2, 2021 00:48:01.63.. 192.168.0.1 192.168.0.101 DNS 173 Standard query response 0x6297 A c3t5kBkx91jabd.credentials.iot.eu-west-1.amazonaws.com A 54.229.11...
32. Apr 2, 2021 00:48:04.29.. 192.168.0.101 192.168.0.1 DNS 103 Standard query 0xff27 A dy db. eu-west-1 com OPT
32. Apr 2, 2021 00:48:84.30.. 192.168.0.1 192.168.0.101 DNS 19 Standard query response 0xff27 A dy db t-1 com A 52.94.24,184 OPT
32. Apr 2, 2021 00:48:05.14.. 192.168.0.101 192.168.0.1 DNS 88 Standard query 0x5a76 A sts.amazonaws.com OPT
Figure 3.20 Hub DNS packets
No. Arrival Time Source Destination Protocol Length Sequence Info

277 Apr 1, 2021 17:01:31.18.. Tp-LinkT_82:4d:12 Alertmec_1a:63:95 ARP 60 Who has 192.168.0.101 Tell 192.168.0.1

278 Apr 1, 2621 17:01:31.18.. Alertmec_1 : ARP 64 192.168.0.101 is at @0:1c:2b:1a:63:95

757 Apr 1, 2021 17:08:42.02.. ARP 60 Who has 192.168.0.101? Tell 192.168.0.1

758 Apr 1, 2021 17:08:42.02.. Tp-LinkT_02:4d:12 ARP 64 192.168.0.101 is at 00:1c:2b:1a:63:95

10. Apr 1, 2021 17:12:46.86.. z Tp-LinkT_e ARP 64 Who has 192.168.8.1? Tell 192.168.0.101

10. Apr 1, 2021 17:12:46.86.. Tp-LinkT_82:4d:12 ARP (] 192.168.0.1 is at d8:47:32:02:4d:12

12.. Apr 1, 2021 17:15:51.15. Tp-LinkT_02: 60 Who has 192.168.0.1012 Tell 192.168.0.1

12.. Apr 1, 2021 17:15:51.15.. 64 192.168.0.101 is at 00:1c:2b:1a:63:95

15. Apr 1, 2821 :06.15..) Who has 192.168.0.1012 Tell 192.168.0.1

15.. Apr 1, 2021 64 192.168.0.101 is at @0:1c:2b:1a:63:95

18.. Apr 1, 2021 60 Who has 192.168.0.1017 Tell 192.168.0.1

18 k 6 € E 0.101 is at 63:95

23. Apr 1, 2021 17:31: 60 Who has 192.168.0.1012 Tell 192.168.0.1

23. Apr 1, 2021 17:31: Tp-LinkT_e. ARP 64 192.168.0.101 is at 00:1c:2b:1a:63:95

27.. Apr 1, 2021 17:38: Alertmec_1 ARP 68 Who has 192.168.8.1012 Tell 192.168.0.1

27.. Apr 1, 2021 17:38 Tp-LinkT_@: 3 ARP 64 192.168.0.101 is at 00:1c:2b:1a:63:95

31. Apr 1, 2021 17:43:07.22.. Tp-LinkT_02:4d:12 ARP 64 Who has 192.168.0.17 Tell 192.168.0.101

> Frame 1875: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface en6, id @
> Ethernet II, Src: Alertmec_1a:63:95 (@@:1c:2b:1a:63:95), Dst: Tp-LinkT_02:4d:12 (d8:47:32:02:4d:12)
v Address Resolution Protocol (reply)

Hardware type: Ethernet (1)

Protocol type: IPva (@x@800)

Hardware size: 6

Protocol size: 4

Opcode: reply (2)

Sender MAC address: Alertmec_1a2:63:95 (00:1c:2b:1a:63:95)

Sender IP address: 192.168.0.101

Target MAC address: Tp-LinkT_02:4d:12 (d8:47:32:02:4d:12)

Target IP address: 192.168.0.1

Figure 3.21 Hub ARP packets

No. Arrival Time Source Destination Protocol Length Sequence Info

Apr 2021 17:27 590 DHCP ACK ction ID @x7d722d75

40.. Apr 1, 2021 17:56:50.80.. 192.168.0.102 192.168.0.1 342 DHCP Request - Transaction ID @xd8cde69e
40.. Apr 1, 2021 17:56:50.80.. 192.168.0.1 192.168.0.102 590 DHCP ACK - Transaction ID @xd8cde69e
61.. Apr 1, 2021 18:27:26.31.. 192.168.0.101 192.168.0.1 332 DHCP Request - Transaction ID @x7d722d75
61. Apr 1, 2021 18:27:26.31.. 192.168.0.1 192.168.0.101 590 DHCP ACK - Transaction ID 0x7d722d75
83.. Apr 1, 2021 18:56:50.94.. 192.168.0.102 192.168.0.1 342 DHCP Request - Transaction ID @xd8cde69f
83.. Apr 1, 2021 18:56:50.94.. 192.168.0.1 192.168.0.102 590 DHCP ACK - Transaction ID @xd8cde69f
10.. Apr 1, 2021 19:27:25.74.. 192.168.0.101 192.168.0.1 332 DHCP Request - Transaction ID ©x7d722d75
10.. Apr 1, 2021 19:27:25.74.. 192.168.08.1 192.168.0.101 590 DHCP ACK - Transaction ID @x7d722d75
12.. Apr 1, 2021 19:56:51.08.. 192.168.0.102 192.168.0.1 342 DHCP Request - Transaction ID @xd8cde6a®
12.. Apr 1, 2021 19:56:51.08.. 192.168.0.1 192.168.0.102 59@ DHCP ACK - Transaction ID @xd8cde6a@
14.. Apr 1, 2021 20:27:24.45.. 192.168.0.101 192.168.0.1 332 DHCP Request - Transaction ID ©0x7d722d75
14.. Apr 1, 2021 20:27:24.45.. 192.168.0.1 192.168.0.101 590 DHCP ACK = Transaction ID @x7d722d75
16.. Apr 1, 2021 20:56:51.22.. 192.168.0.102 192.168.0.1 342 DHCP Request - Transaction ID @xd8cde6al
16.. Apr 1, 2021 20:56:51.22.. 192.168.0.1 192.168.0.102 590 DHCP ACK - Transaction ID @xd8cdebal
18.. Apr 1, 2021 21:27:23.48.. 192.168.0.101 192.168.0.1 332 DHCP Request - Transaction ID ©x7d722d75

> Frame 2017: 332 bytes on wire (2656 bits), 332 bytes captured (2656 bits) on interface en6, id @

> Ethernet II, Src: Alertmec_1a:63:95 (@@:1c:2b:1a:63:95), Dst: Tp-LinkT_02:4d:12 (d8:47:32:02:4d:12)

> Internet Protocol Version 4, Src: 192.168.0.101, Dst: 192.168.0.1

> User Datagram Protocol, Src Port: 68, Dst Port: 67

> Dynamic Host Configuration Protocol (Request)

Figure 3.22 Hub DHCP packets

50

3.5.3 Protocols (idle & active states)
These devices both in idle and active state utilize several protocols. Idle state refers to when a device

is connected to the hub but without any triggered activity like ON or OFF. Active state refers to when
a device is connected to the hub and triggers take place, which results in extra traffic generation, thus
the spike in certain protocols. The hub sends TCP Keep Alive messages every 14 and then every 19
seconds. This message tends to keep the hub awake to prevent the connection between the client
(hub) and the server from breaking, which is why this takes place frequently. Another protocol is NTP
(Network Time Protocol) taking place every 34 minutes. NTP is a protocol utilized by loT devices, as
very accurate timings are highly important in loT communication. This happens periodically to
synchronize their time with publicly available NTP servers. DNS requests are also made to four
addresses every 3 to 4 hours. Other protocols observed were TLS, ARP, ICMPv6, DHCP and mDNS. This
shows that the hub regardless of a device paired to it, or an event being triggered generates this traffic
intermittently. By pairing a device to the hub and triggering events, the frequency of some of these
protocols increase. The ratios of these protocols are compared over 2 hours when the hub is not paired
with any device, when the hub is paired with devices but are in idle state and when there is activity
(event triggers). This is shown in Figure 3.5. It is observed that the packet count of these protocols like
DNS (52), TCP (3143) AND TLS (1423) drastically increase due to the presence of activity while NTP (8)
and DHCP (4) remain fairly the same. The hub without devices paired has the least count of these
protocols DNS (10), TCP (2239) TLS (900), NTP (8) and DHCP (4) followed by when devices are idle
which shows a slight increase in DNS (22), TCP (2401) and TLS (1003) while NTP (8) and DHCP (4)
remain the same. This protocol data gives us an idea on the frequency or count of the several protocols
utilized by these devices over time. We can see that there is a limit or cap to how frequent these get

generated which will be useful in DDoS attack mitigation strategies like rate limiting.

3.5.4 Flow volume and duration
Whenever an event is triggered, or boot and pairing modes are taking place or some periodic updates

take place, a DNS query and response happens. A TCP connection is then established which involves
a client and server handshake and a change of cipher spec between the smart devices and the DNS
servers as shown in figure 3.23 under the info column. This entire process is referred to as a flow. The
total number of bytes exchanged in this entire flow is known as the flow volume while the total time
it takes for one complete flow is the flow duration. This was computed by getting the time difference
between the first and last packet in that flow. Packets in a flow come in pairs consisting of a request
and reply packet. Each packet also has a fixed length. Furthermore, a single flow comprises of several
combination of protocols as we have seen. This can include DNS, TCP, TLS and mDNS. The flow volume
and flow duration differ for each mode of operation and also when an event is triggered by one device

compared to when multiple devices are triggered like a motion sensor detecting movement and

51

triggering the light bulb to go ON. The Hive devices were tested in 5 different operation modes
(manual, scheduled, Hive app, Google home app, Home kit app). This was carried out using several
control devices, which are Samsung A12 phone, iPhone SE, and an iPad. This was done to make sure
these discovered distinct patterns for each mode are uniform across a variety of control devices.
Traffic was captured from all the above-mentioned control modes to identify a pattern for each mode
and also the flow volume and duration as seen from figure 3.24. The trigger times for each mode of
operation was noted to use these for cross referencing during analysis. Several packet header details
were captured including source, destination, time, packet length, sequence number, protocol, and
info (a column that gives extra details like packet sequence and labels). Figure 3.25 shows the varying

flow volumes and duration for the different modes of operation.

Time Source Destination Protoco Length Info
6262.7@7570 rcr-663. local 192.168.0.1 DNS 125 Standard query @x4622 A c3t5k8kx91jabd.credentials.iot.eu=-west=1.amazonaws.com OPT
6262.71817¢ 192.168.0.1 rcr-663. local DNS 173 Standard query response 9x4622 A c3t5kBkx91jabd.credentials.iot.eu-west-1.amazonaws.com A 54.246.236,
6262.753958 rcr=-663. local c3t5kBkx91jabd. c.. TCP 66 54420 - https(443) [ACK] Seq=1 Ack=1 Win=65344 Len=0 TSval=841731851 TSecr=2291990405
6262.926161 rcr=663.local c3t5kBkx91jabd. c. TLSV. 319 Client Hello
6262.945823 c3t5kBkx91jabd... rcr-663.local TCP 66 https(443) - 54420 [ACK] Seq=1 Ack=254 Win=2816@ Len=8 TSval=2291999597 TSecr=841732023
6262.949412 c3t5kBkx91jabd... rcr-663.local TCP 1506 https(443) - 54420 [ACK] Seq=1 Ack=254 Win=2816@ Len=1440 TSval=2291990600 TSecr=841732023 [TCP segm
6262.949548 c3t5k8kx91jabd... rcr-663.local TCP 1586 https(443) -+ 54428 [ACK] Seq=1441 Ack=254 Win=28168 Len=1446 TSval=2291990680 TSecr=841732023 [TCP st
6262.949652 c3t5kBkx91jabd... rcr-663.local TCP 1506 https(443) - 54420 [ACK] Seq=2881 Ack=254 Win=2816@ Len=1448 TSval=22919906@0 TSecr=841732023 [TCP st
6262.949689 c3t5kBkx91jabd... rcr-663.local TLSV.. 1089 Server Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done
6262.950924 rcr-663. local c3t5kBkx91jabd. c.. TCP 66 54420 - https(443) [ACK] Seq=254 Ack=1441 Win=64128 Len=@ TSval=841732048 TSecr=2291990600
6262.952017 rcr-663. local c3t5kBkx91jabd. c.. TCP 66 54420 - https(443) [ACK] Seq=254 Ack=2881 Win=64128 Len=@ TSval=841732049 TSecr=2291990600
6262.953197 rcr-663. local c3t5k8kx91jabd.c.. TCP 66 54428 - https{443) [ACK] Seq=254 Ack=4321 Win=64128 Len=8 TSval=8417320850 TSecr=2291390600
6262.954868 rcr-663.local c3t5k8kx91jabd.c.. TCP 66 54428 - https(443) [ACK] Seq=254 Ack=5344 Win=64128 Len=@ TSval=841732851 TSecr=2291990600
6263.193705 rcr-663.local €c2-34-240-107-1.. TLSV. 97 Application Data
6263.215939 ec2-34-240-1@7-.. rcr=663.local TLSVeu 97 Application Data
6263.21655@0 rcr-663. local ec2-34-240-107-1.. TCP 66 49730 - https(443) [ACK] Seq=5582 Ack=5581 Win=1002 Len=@ TSval=2203152362 TSecr=1116484583
6264.648862 rcr-663. local c3t5kBkx91jabd.c.. TLSv. 1029 Certificate, Client Key Exchange
6264.70977@ c3t5k8kx91jabd... rcr-663.local TCP 66 https(443) -+ 54428 [ACK] Seq=5344 Ack=1217 Win=29952 Len=0 TSval=2291992362 TSecr=841733745
6265.357731 rcr-663. local c3t5kBkx91jabd. c.. TLSV. 335 Certificate Verify
6265.357797 rcr=663. local c3t5kBkx91jabd. c. TLSV. 72 Change Cipher Spec
6265.361777 rcr-663. local c3t5kBkx91jabd. c.. TLSV.. 167 Encrypted Handshake Message
6265.376342 c3t5kBkx91jabd... rcr-663.local TCP 66 https(443) - 54420 [ACK] Seq=5344 Ack=1486 Win=32000 Len=0 TSval=2291993028 TSecr=841734454
6265.376794 c3t5k8kx91jabd... rcr-663.local TCP 66 https(443) -+ 54428 [ACK] Seq=5344 Ack=1492 Win=32000 Len=0 TSval=2291993828 TSecr=841734455
6265.380666 c3t5k8kx91jabd... rcr-663.local TCP 66 https(443) -+ 54428 [ACK] Seq=5344 Ack=1593 Win=32000 Len=0 TSval=2291993832 TSecr=841734459
6265.381491 c3t5kBkx91jabd... rcr=663.local TLSVeu 173 Change Cipher Spec, Encrypted Handshake Message
6265.381902 rcr-663. local c3t5kBkx91jabd. c.. TCP 66 54420 - https(443) [ACK] Seq=1593 Ack=5451 Win=64128 Len=0 TSval=841734479 TSecr=2291993033
6265.393578 rcr-663. local c3t5kBkx91jabd. c.. TLSV.. 375 Application Data
6265.445522 ¢3t5kBkx91jabd... rcr-663.local TCP 1586 https(443) - 54420 [ACK] Seq=5451 Ack=1902 Win=33792 Len=1448 TSval=2291993096 TSecr=841734499 [TCP !
6265.445525 c3t5k8kx91jabd... rcr-663.local TLSv.. 183 Application Data

6265.445526 c3t5kBkx91jabd... rcr=663.local TLSVeu 151 Encrypted Alert

Figure 3.23 Client server handshake and cipher spec change.

Name B Date modified Type

[l AllappsMOOP 30/06/2021 11:41 Wireshark capture file
[l googlehomeMOOP 22/06/2021 16:00 Wireshark capture file
& googlehomepattern 02/06/2021 20:21 Wireshark capture file
& HiveappMOOP 23/06/2021 23:59 Wireshark capture file
f hiveapppattern 02/06/2021 13:46 Wireshark capture file
" homekitflowvol 19/08/2021 18:22 Wireshark capture file
" homekitON2 19/09/2021 18:05 Wireshark capture file
| manualflowvol 19/08/2021 18:48 Wireshark capture file
) mergedMOOP 01/07/2021 00:19 Wireshark capture file
" ScheduledMOOP 24/06/2021 11:50 Wireshark capture file

Figure 3.24 Wireshark files for each MOOP

52

= googleapp
. hwveapp
80000 = manual
 sched
= homekit
70000
60000
D
gSOODO
e
o
E
2
,laooca
g
30000
20000
10000
0

78.58 99.53 112,61 119.68 155.28
flow_duration (sec)

Figure 3.25 Device mode of operation by flow volume & duration

Itis observed that when we use any of the smart phone apps (Hive, home kit, Google home) to control
the devices, the flow volumes of these tend to be higher compared to when we operate the devices
manually or the scheduled way, which have the same flow volume and duration. This increase in
volume is due to the extra traffic generated because of using an application to control the devices.
Mere opening any of the apps generates bytes of traffic without triggering an event. The duration can
also vary because of extra time taken by the user to launch the app and further trigger an event as
opposed to the scheduled and manual modes that has no delay involved during the flow, as there is

less human intervention. Figure 3.26 shows a capture from the Hive app pattern.

No. Arrival Time Source Destination Protocol Length Sequence Nt Info
1 Jun 23, 2021 22:56:02.18. 192.168.0. R n 66 1 32852 » 443 [ACK]) Se

24 Jun 23, 2021 1 33914 - 443 [ACK] S

2021 22:56:12. 192.168.9.1€2 20313534 TSecr=2585220735

33 Jun 23, 2021 52.210.179.105 { Tisvi.2 525 32

34 Jun 23, 2021 192.168.0.102 52.210.179.105 TCP 66 33 33914 - 443 [ACK] Seq=33 Ack=491 Win=1002 Len=@ TSval=3920314924 TSecr=2585222125

35 Jun 23, 2021 52.218.179.185 192.168.8.182 TLSvi.2 524 491 Application Data

36 Jun 23, 2821 22: 192.168.9.102 52.210.179.105 TCP 66 33 33914 » 443 [ACK] Seq=33 Ack=049 Win=1002 Len= TSval=-3920314934 TSecr=2585222134

37 Jun 23, 2021 22:56:13.94. 192.168.0.102 52.210.179.105 TCP 1506 33 33914 - 443 [ACK] Seq=33 Ack=949 Win=1002 Len=144@ TSval-3920315355 TSecr=2585222134 [TCP se
38 Jun 23, 2021 22: 192.168.0.162 52.210.179.105 TCP 1506 1473 33914 - 443 [ACK] Seq=1473 Ack=049 Win=1002 Len=1448 TSval=3920315355 TSecr=2585222134 [TCP
39 Jun 23, 2021 192.168.0.162 52.210.179.105 TCP 1506 2913 33914 + 443 [ACK] Seq=2913 Ack=049 Win=1002 Len=1448 TSvale3920315355 TSecr~2585222134 [TCP
48 Jun 23, 2021 192.168.9.102 52.210.179.105 TCP 1566 4353 33914 - 443 [ACK] Seq=4353 Ack=949 Win=1082 Len=1440 TSval=3920315355 TSecr=2585222134 [TCP
41 Jun 23, 2021 192.168.0.162 52.210.179.185 TCP 1506 5793 33014 - 443 [ACK] Seq=5793 Ack=049 Win=1062 Len-1448 TSval-3920315355 TSecr=2585222134 [TCP
42 Jun 23, 2021 192.168.0.102 52.210.179.185 TCP 1506 7233 33914 » 443 [ACK] Seq=7233 Ack=049 Win=1002 Len=184@ TSval=3920315355 TSecr=2585222134 [TCP
43 Jun 23, 2021 192.168.9.102 52.210.179.105 TLSv1.2 1263 8673 Application Data

44 3Jun 23, 2021
45 Jun 23, 2021

52.210.179.185 192.168.8.102 TCP
52.210.179.185 192.168.6.182 TCP

66 949 443 -+ 33914 [ACK] Seq=049 Ack=2913 Win=425 Len~d TSval-2585222580 TSecr=3920315355
66 949 443 -+ 33014 [ACK] Seq=049 Ack=5793 Win=425 Len=8 TSval=2585222582 TSecr=3920315355
46 Jun 23, 2021 52.210.179.105 192.168.8.182 TCP 66 949 443 + 33914 [ACK] Seq=949 Ack=8673 Win=425 Len=@ TSval=-2585222585 TSecr=3920315355
47 Jun 23, 2021 22:56: 52.210.179.105 192.168.0.182 TLSvi.2 %9 949 Application Data
48 Jun 23, 2021 22:56:13.98. 192.168.0.102 52.210.179.105 TCP 66 9870 33914 + 443 [ACK] 5eqe9870 Ack982 Win=1002 Len-@ TSval3920315398 TSecr=-2585222598
5 06
06
86
06

49 Jun 23, 2021 192.168.0.102 52.210.179.105 TCP 154 9870 33914 - 443 [ACK] Seq=987@ Ack=982 Win=1002 Len=1448 TSval=3920315406 TSecr=2585222598 [TCP
58 Jun 23, 2021 192.168.0.162 52.210.179.105 TCP 15 11310 33914 - 443 [ACK] Seq=11310 Ack=082 Win-1002 Len-1449 TSval-3920315406 TSecr-2585222598 [TCP
51 Jun 23, 2021 192.168.9.102 52.210.179.185 TCP 15 12750 33914 -+ 443 [ACK] Seq=1275@ Ack=982 Win=1002 Len=1440 TSval=-3920315406 TSecr=2585222598 [TCP
52 Jun 23, 2021 192.168.0.162 52.210.179.105 TCP 154 14190 33914 - 443 [ACK] Seq-14190 Ack=982 Win=1002 Len-1440 TSvale3920315406 TSecr-2585222598 [TCP
53 Jun 23, 2021 192,168.0.102 52,210.179.105 TCP 1506 15630 33914 » 443 [ACK] Seq=15630 Ack«=982 Win=1002 Len=1440 TSval=3920315486 TSecr=2585222598 [TCP

Figure 3.26 Hive app flow volume and duration traffic

53

The flow volume is calculated by taking the total bytes using the individual packet lengths of each
packet in the flow from the beginning which starts at packet no 24 in figure 3.26. The flow duration is
arrived at by comparing the arrival times of the first and last packet in the flow to get the time
difference. This was done for each mode of operation thus arriving at figure 3.25 showing the

respective flow volumes and duration of each MOOP.

Figure 3.27 also shows the varying flow volumes and duration of a triggered event originating from
one device compared to when the motion sensor triggers the plug and bulb to go ON (integrated form).
Both the flow volume and duration of the traffic that originated because of multiple devices being
active at the same time is higher. This helps give an idea of the maximum flow volume to expect at
times of operating multiple devices making the volume to peak which can be useful in terms of traffic

rate limiting as part of DDoS attack mitigation.

3.5.5 Traffic pattern based on mode of operation
As mentioned earlier, controlling the smart home devices was done using 5 different modes, with each

mode monitored and analysed in isolation. This led to some interesting observations whereby each
mode exhibited a distinct pattern in terms of the protocol and packet length traffic sequence. This was
tested using three different devices (iPhone, iPad, Samsung smart phone) to confirm this exhibited
unique sequence for each mode is uniform regardless of the platform used to control it. After several

repetition of the test cases this uniformity was validated.

Whenever an event is triggered like ON/OFF, a DNS query and response takes place between the

device and a kinesis DNS server which is responsible for triggered events of this sort. This became a

mmm integrated

120000 .
single

100000

80000

(byte)

60000

flow_volume

40000

20000

scenerio 1 scenerio 2

Figure 3.27 Single & integrated device traffic compared by flow volume

54

baseline for identifying triggered events as this server is always queried when such happens. This was
found to be uniform across all control devices. However, the preceding packets right before this DNS
packet were observed to have a unique sequential combination in terms of protocol and packet length
for each mode of operation. Each packet is paired with a corresponding protocol and packet length,
among other network details. Table 3.3 shows the unique pattern attributed to each mode of
operation. We can see that each mode has a different combination of protocols and packet lengths
except the manual and scheduled modes which have an identical pattern, thus categorized together.
This order for both protocol and packet length were found to be consistent for each MOOP when

there is a trigger.

Table 3.3 MOOP protocol & packet length sequence

Mode of operation (MOOP) Protocol + Packet length order

Hive app TCP+1506
TLSv1.2+1019
TCP+66
TLSv1.2+99
TCP+66
DNS+102
DNS+118
Google home app MDNS+103
TCP+1506
TLSv1.2+1003
TCP+66
TLSv1.2+99
TCP+66
DNS+102
DNS+118
Home kit app TCP+275
TCP+66
TCP+111
TCP+66
TCP+60
TCP+66
DNS+102
DNS+118
Manual and scheduled TLSv1.2+97
TLSv1.2+97
TCP+66
DNS+102
DNS+118

55

3.6 Comparison to literature and new findings
This chapter has analysed several behavioural aspects of Hive home devices. An EDA was performed

on the unencrypted features from the captured logs addressing traffic categorization, device
identification, protocols in both Idle and active states, flow volume (total number of incoming and
outgoing bytes in one cycle), flow duration (time it takes from the beginning of a flow to the end) and
traffic sequence based on the mode of operation. Based on these logs it conforms to [118] about
generally categorizing M2M generated traffic into 3, which are periodic update, event driven and
payload exchange. Furthermore, this research also agrees with [119] where it states that loT
communicates with a number of fixed DNS servers. Several protocols were found to be utilized by
these devices, which vary in volume and duration depending on the device state (active or idle). On
the aspect of device identification, the motion sensor and the hub have their unique patterns, but this
was not the case with the plug and bulb as they had an identical pattern. This could be due to their
similar basic functionalities of ON and OFF. Other similarities shared by all the devices are
communication with the same DNS servers, server port numbers and protocols among others. This
conforms to the findings in [57] that devices from the same vendor behave in a very similar manner.
The idle and active moments of these devices can also be identified based on the drastic increase in

the volume or count of certain protocols when active as we have seen in this study.
During analysis, some observations were made which led to new findings. These are as follows:

e Distinct flow volumes and duration for each mode of operation as shown in figure 3.25. It was
observed that while using the apps the flow volume in bytes was higher than when operating
the devices in the manual or scheduled mode. This is due to more traffic being generated from
mere opening of the app. The flow duration also differed for each mode. This provides a
signature relating to how these devices are operated which can be used to detect an
unauthorised user.

e Unique traffic patterns based on protocol and packet length are also exhibited for each of the
modes as shown in table 3.3. We can see that the packets before the DNS query during event
triggers have a unique sequence for each MOOP. However, the manual and scheduled modes
have identical patterns which is also the case for flow volume and duration. This can also be

used as a signature to know what mode is used for operating these devices.

These new findings can be used in forensic investigations to prove how someone controlled a
particular device or devices and whether they were present at the scene during some specified times.
For instance, if the evidence shows proof of manual mode of operation, then this ties one to physically

being at the premises. Furthermore, as each operation mode has a unique traffic pattern, these

56

patterns could be whitelisted on the smart home network to detect certain attacks relating to
unauthorized control of device which might have a deviating pattern from the whitelisted ones. For
instance, if a user normally operates their device manually between 8am and 10am, and for some
reason the device gets operated using another mode like one of the apps, then this should raise a flag

for unauthorised control.

3.7 Summary
This chapter has covered several aspects relating to the behaviour of Hive home devices both in their

lone state and as a collective. Traffic was collected from a real-life hive home network with an EDA
performed on it. The areas covered are traffic categorization, device identification, protocols in both
Idle and active states, flow volume (total number of incoming and outgoing bytes in one cycle), flow
duration (time it takes from the beginning of a flow to the end) and traffic sequence based on the
mode of operation. Several observations have been made which agrees with existing literature with
regards to the behaviour of loT devices in general. New findings were also derived from the EDA results
which can be applied in forensic investigations and detection of unauthorised control of smart home

device by an attacker.

57

Chapter 4

Exploratory Data Analysis comparing attack and benign smart home
traffic properties

4.1 Introduction
As the previous chapter has dealt with the study of normal smart home network behaviour, this

chapter extends to study how these devices behave under the influence of DDoS flooding attacks in
real time. Both behavioural properties (attack and benign) are compared to see what aspects differ.
This will aid in designing a timely and more effective DDoS visualization and detection models as we
will see in subsequent sections. The findings from this EDA led to a proposed novel DDoS detection

approach as covered in this chapter. This chapter covers the following areas in general:

e It collects DDoS and benign traffic in a real smart home environment and performs an
Exploratory Data Analysis (EDA), visualizing the behavioural pattern of 3 types of DDoS
flooding attacks when targeted at smart home networks in comparison to the benign smart
home traffic pattern. The attacks covered are TCP SYN, ICMP and UDP flooding attacks.

e For each of the covered attacks, specific smart home traffic properties were selected,
correlated, and visualized showing their reversed behaviour during an attack compared to
their normal benign nature.

e To further validate the findings, public loT datasets were analysed in the same manner and
the same results were achieved.

e |t presents 3 principles derived from the EDA based on which DDoS flooding attack traffic can
be identified.

e Finally, it presents a DDoS detection approach by integrating the 3 principles derived from the
EDA which are feature variance, absent features, and feature range. It discusses the

significance of this approach in comparison to present approaches.

The sub-sections in this chapter covers the methodology used, attack propagation, EDA on attack
traffic, comparison of attack and benign traffic EDA, new findings, comparison with literature and

finally a summary of the chapter.

4.2 Methodology

The various processes and sub processes followed in this phase are broken down and explained in this
section as shown in figure 4.1. It has three main phases, which are data collection, Exploratory Data
Analysis and proposed novel method of DDoS detection based on the EDA results. This method is
designed in such a way that one phase and its sub phases are needed to be completed before moving

to the next. This ensures that a complete understanding and outcome of each phase is clearly drawn

58

out before proceeding. As this chapter is aimed at studying attack behaviours in comparison to normal

network behaviours and further proposing a better method to detect these attacks, this methodology

provides the suitable execution points to achieve this in the following ways:

v

v

The data collection phase anticipates for an unbiased EDA and evaluation of the proposed
detection approach thereby making provision for credible public data. This was used to
showcase that the same observations were arrived at in terms of traffic properties and
patterns for both the public and private data covering attack and benign traffic.

Using EDA as a method for the data analysis provided clearer and more efficient way to
represent the multidimensional nature of the datasets. The graphical or visual aspects of the
EDA also makes it easier to understand as the human brain tends to better process images
than texts, thus giving a clear picture of what both an attack and normal traffic looks like with
very visible differences.

To design an effective DDoS detection system, there is a need to have an in-depth
understanding with regards to the attack pattern and network changes that occur during the
attack and in the process monitoring the most affected network properties. These can be used
as a baseline for attack identification. This methodology paved way for the prerequisite of
having the in-depth understanding from the EDA thus, giving rise to the proposed detection

approach with ease and better clarity referencing facts and observations derived from the

EDA.
i : P 1l |
Data Collection Exploratory Data Analysis ropase nave
approach
Y
Data
r i
Metwork preprocessing
setu
P Feature Novel
selection detection
Attack - method
launch Normalize
values —
Application
Data Label F;Traterg_yt?'r
sniffing encoding propose
detection
Feature method
correlation
Method of
representation
Visualization

Figure 4.1 Research methodology

59

4.2.1 Data Collection

>

Setup: The network topology to be used for data generation and collection is the same one
from figure 3.1 in the previous chapter.

Benign data: Normal smart home traffic was collected here, which was generated from using
the smart home devices. Public datasets were also sourced for validation purposes.

Attack data: 6 types of DDoS flooding attacks (TCP, UDP, ICMP, HTTP, SLOW LOIC, RECOIL)
were launched on the smart home network and the traffic from this attack was collected.
Public datasets were also sourced for validation. HTTP, SLOW LOIC and RECOIL attacks are

collected for testing purposes in the next chapter.

4.2.2 Exploratory Data Analysis

>

Data pre-processing: Each dataset was filtered to have only the relevant traffic flows from the
target devices needed for analysis. This involves eliminating background traffic generated by
other devices on the network. An instance is shown in figure 4.2 where several other IP
addresses and protocols appear in the traffic. However only IP address 192.168.0.100 is
relevant in this case, which is the smart hub’s address, thus the filter syntax applied at the
very top of the figure to get only this relevant traffic.

Feature selection: The corresponding attack and benign network traffic properties to be
analysed were selected and extracted. The most affected benign traffic properties during an
attack were chosen and filtered out. This was done for each attack. These properties include
protocol, packet length, sequence number and TCP flags bearing in mind the time stamps and
packet ID or frame number for each packet. Figure 4.3 shows the selected features which will
be converted to csv and exported for further analysis. Figure 4.4 shows this converted and
exported file.

Data normalization: Among the selected network features, those with a wide range of numeric
values were normalized using the min-max scalar to have a more befitting range during visual
representation. These features are packet length and packet sequence. Figure 4.5 shows the
packet length scaling for TCP SYN dataset and a benign dataset.

Label encoding: Non numerical values like the various protocols were encoded using a
numerical value. This means each protocol corresponds to a number on the plotted figures.
This is shown in figure 4.6 where encoding labels are applied to TCP SYN and benign dataset.
Feature correlation: The selected benign features were analysed side by side to find out if they

get affected simultaneously during an attack. This was tested for each of the 3 attacks covered.

60

» Method of representation: Various methods of visual representation were used like bar charts,
pie charts, frequency polygons and scatter plots. The most befitting method of representation
was chosen based on the network feature(s) being visualized.

> Visualization: Python programming was used on Google Colab [120] to plot the charts and
graphs. Corresponding network features for each attack and benign scenario were compared.
Each of the analysed network feature (protocol, packet length, sequence number, TCP flag)

was plotted against the respective frame number of the corresponding packet.

(N

ip.addr == 192.168.0.100|

No. Arrival Time Source Destination Protocol Length Sequence Nt Info
4.. Jun 30, 2021 10:.. 192.168.0.1 2390255.2.. SSDP 306 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 239255020 'SSDP. 315 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 239:.255.2... 'SSDP 378 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 2395255220 SSDP. 370 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. Netgear_c@:f4:cl Broadcast ARP 60 Who has 192.168.90.:
4.. Jun 30, 2021 10:.. 192.168.0.1 2395255020 SSDP. 315 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 239.255.2.. 'SSDP 354 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 2395255220 'SSDP. 386 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 239.255.2.. SSDP 315 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 239:255.2.0 'SSDP. 374 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 239:.255.2... 'SSDP 368 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 2395255220 SSDP. 315 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 239:255 .20 'SSDP 370 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.1 2395255020 SSDP. 380 NOTIFY * HTTP/1.1
4.. Jun 30, 2021 10:.. 192.168.0.100 34.246.11.. TCP 66 186 [TCP Keep-Alive] 5
4.. Jun 30, 2021 10:.. 34.246.111.38 192.168.0.. TCP 66 187 [TCP Keep-Alive ACI
4.. Jun 30, 2021 10:.. 192.168.0.102 224.0.0.2.. MDNS 154 Standard query ©xeol
4.. Jun 30, 2021 10:.. fe80::1c7c:7537:2.. ffe2::fb MDNS 174 Standard query ©xe(
4.. Jun 30, 2021 10:.. 192.168.0.100 34.243.56.. TCP 66 41528 [TCP Keep-Alive] &
4.. Jun 30, 2021 10:.. 34.243.56.134 192.168.0.. TCP 66 2658 [TCP Keep-Alive AC
{ 4.. Jun 30, 2021 10:.. 192.168.0.100 34.243.56.. TLSv1.2 97 41529 Application Data
Figure 4.2 Filtering traffic

Arrival Time Source Destination Protocol Length Sequence Nt Info

Mar 23, 2021 11:.. 192.168.0.101 34.246.15.. TLSv1.2 97 1 Application Data

Mar 23, 2021 11:.. 34.246.152.68 192.168.60.. TLSv1.2 97 1 Application Data

Mar 23, 2021 11:.. 192.168.0.101 34.246.15.. TCP 66 32 49538 > 443 [ACK] Seg=3:

Mar 23, 2021 11:.. 192.168.0.101 54.194.80.. TCP 66 1 39076 - 443 [ACK] Se

54.194.86.207 192.168.0.. ACKed unseen se
. 192.168.0.101 34.246.15.. Keep-Alive] 49538

Mar 23, 2021 11:.. 34.246.152.68 192.168.0.. TCP 66 32 [TCP Keep-Alive ACK] 44
Mar 23, 2021 11:.. 192.168.0.101 192.168.0.. DHCP 332 DHCP Request - Transac
Mar 23, 2021 11:.. 192.168.0.1 192.168.0.. DHCP 590 DHCP ACK - Transac
192.168.0.180 54.194.86..
54.194.80.207 192.168.0.. (@
192.168.0. 54.194.86.. t
54.194.80.207 192.168.0.. TLSv1.2 (ed unseen gn
. 192.168.0. 54.194.80.. 39076 > 443 [ACK] Seq:

Mar 23, 2021 11:.. 192.168.0.101 34.246.15.. TCP 66 31 [TCP Keep-Alive] 49538

Mar 23, 2021 11:.. 34.246.152.68 192.168.0.. TCP 66 32 [TCP Keep-Alive ACK] 44
Mar 23, 2021 11:.. 192.168.0.101 34.246.15.. TLSv1l.2 97 32 Application Data

Mar 23, 2021 11:.. 34.246.152.68 192.168.0.. TLSv1.2 97 32 Application Data

Mar 23, 2021 11:.. 192.168.0.101 34.246.15.. TCP 66 63 49538 > 443 [ACK] Seq=6
Mar 23, 2021 11:.. 192.168.0.101 54.194.80.. TCP 66 32 [TCP Keep-Alive] 39076

Mar 23, 2021 11:.. 54.194.80.207 192.168.0.. TCP 66 32 [TCP Keep-Alive ACK] 44

o

Dup ACK

4#1]
Dup ACK 5#1

[

110

ious segme

0 VW 0

NN

Figure 4.3 Selected features

61

[No. lArﬁvaITthource Destination Protocol Length Sequence Info
1 Mar 23,2(192.168.0.101 34.246.152.68 TLSv1.2 97 1 Application Data
2 Mar 23,2(34.246.152.68 192.168.0.101 TLSv1.2 97 1 Application Data
3 Mar 23,2(192.168.0.101 34.246.152.68 TCP 66 32 49538 > 443 [ACK] Seq=
4 Mar 23,2(192.168.0.101 54.194.80.207 TCP 66 139076 > 443 [ACK] Seq=
5 Mar 23, 2(54.194.80.207 192.168.0.101 TCP 66 1 [TCP ACKed unseen segr
6 Mar 23,2(192.168.0.101 34.246.152.68 TCP 66 31 [TCP Keep-Alive] 49538
7 Mar 23, 2(34.246.152.68 192.168.0.101 TCP 66 32 [TCP Keep-Alive ACK] 44.
8 Mar 23,2(192.168.0.101 192.168.0.1 DHCP 332 DHCP Request - Transac
9 Mar 23,2(192.168.0.1 192.168.0.101 DHCP 590 DHCP ACK - Transacti
10 Mar 23,2(192.168.0.101 54.194.80.207 TCP 66 1 [TCP Dup ACK 4#1] 3907
11 Mar 23, 2(54.194.80.207 192.168.0.101 TCP 66 1 [TCP Dup ACK 5#1] [TCP
12 Mar 23, 2(192.168.0.101 54.194.80.207 TLSv1.2 97 2 [TCP Previous segmentr
13 Mar 23, 2(54.194.80.207 192.168.0.101 TLSv1.2 97 1 [TCP ACKed unseen segr
14 Mar 23,2(192.168.0.101 54.194.80.207 TCP 66 33 39076 > 443 [ACK] Seq=
15 Mar 23,2(192.168.0.101 34.246.152.68 TCP 66 31 [TCP Keep-Alive] 49538
16 Mar 23, 2(34.246.152.68 192.168.0.101 TCP 66 32 [TCP Keep-Alive ACK] 44.
17 Mar 23, 2(192.168.0.101 34.246.152.68 TLSv1.2 97 32 Application Data
18 Mar 23, 2(34.246.152.68 192.168.0.101 TLSv1.2 97 32 Application Data
19 Mar 23,2(192.168.0.101 34.246.152.68 TCP 66 63 49538 > 443 [ACK] Seq=
20 Mar 23,2(192.168.0.101 54.194.80.207 TCP 66 32 [TCP Keep-Alive] 39076
21 Mar 23, 2(54.194.80.207 192.168.0.101 TCP 66 32 [TCP Keep-Alive ACK] 44.
22 Mar 23,2(192.168.0.101 99.80.34.191 TLSv1.2 119 1 Encrypted Alert
23 Mar 23,2(192.168.0.101 99.80.34.191 TCP 66 54 44076 > 443 [RST, ACK]

Figure 4.4 PCAP converted to CSV

MinMax Scaling

normal_df1.loc[:,['Length']].apply(Llambda x: (x-x.min())/(x.max() - x.min()), axis=0)
private data

normal_df1['Length'] = MinMaxScaler().fit_transform(normal_dfl.loc[:,['Length']])
tcpsyn_dfl['Length'] = MinMaxScaler().fit_transform(tcpsyn_dfl.loc[:,['Length']])

public data
public_normal_df['Length'] = MinMaxScaler().fit_transform(public_normal_df.loc[:,['Length']])
public_tcpsyn_df['Length'] = MinMaxScaler().fit_transform(public_tcpsyn_df.loc[:,['Length']])

Figure 4.5 Packet length scaling

preprocess

normal_protocols = {q:p for p,q in enumerate(sorted(set(normal_dfl.Protocol)))}
tcpsyn_protocols = {q:p for p,q in enumerate(sorted(set(tcpsyn_dfl.Protocol)))}
print('Normal data encoding:', normal_protocols)

print('tcpsyn tcpsyn encoding:', tcpsyn_protocols)

new_normal_dfl = normal_dfl.copy() # create a new data because of the Label encoding
new_tcpsyn_dfl = tcpsyn_dfl.copy() # create a new data because of the Label encoding
new_normal_dfl.Protocol = LabelEncoder().fit_transform(new_normal_dfl.Protocol)
new_tcpsyn_dfl.Protocol = LabelEncoder().fit_transform(new_tcpsyn_dfl.Protocol)

tcpsyn tcpsyn (all packets)
plt.figure(figsize = (15,8))
g = sns.pointplot(x=new_tcpsyn_dfl.index, y='Protocol’,
hue="Protocol ',
data=new_tcpsyn_df1
)
plt.xticks(rotation=90)
plt.title("tcpsyn tcpsyn Protocol Variation (all packets - 1min traffic)", fontdict
rename the Legend
current_handles, current_Labels = plt.gca().get_Legend handles_Llabels()
new_Labels = [sorted(set(tcpsyn dfl.Protocol))[int(i)] for i1 in current_Labels]
plt.legend(current_handles, new_Labels) # call plt.legend() with the new values

EE

Normal data encoding: {'DNS': ©, 'MDNS': 1, 'TCP': 2, 'TLSv1.2': 3}
tcpsyn tcpsyn encoding: {'TCP': @, 'TLSvl.2': 1}

Figure 4.6 Label Encoding

4.2.3 Proposed novel approach

» Propose novel detection method: A novel DDoS identification approach is proposed based on
the derived EDA results.
» Novel method application strategies: Ways by which the proposed novel method can be

incorporated into the smart home network for better DDoS detection are outlined.

4.3 Attack data collection
The smart home devices used in this study include a smart hub (to integrate the smart devices), motion

sensor, smart plug and bulb. The network communication that takes place when these devices are
being flooded with DDoS traffic is the main point of interest, thus a setup to collect this traffic for
further analysis. Six types of DDoS flooding attacks were launched on the smart devices with the smart
hub serving as the main gateway. These are TCPSYN, UDP, ICMP, HTTP, RECOIL, SLOWLOIC and mixed
attacks. Low Orbit lon Cannon (LOIC) [121] and Hping3 [122] of Kali Linux suit [123] coupled with
Wireshark [124] as packet analyser are the tools used for these attacks. For each attack, the target IP
address and flooding rate of packets was specified and then launched. Each attack was directed to the
target device using 4 different machines on the same private network to make it a distributed attack.
Traffic generated from/to the target smart home device (hub) was captured separately for each attack
to know the network changes that relate to each attack. To get very detailed network traffic, the
capture setup was made to collect traffic at layer 2 (datalink). This was done by connecting the hub to
port 1 of the switch. Port 8 of the switch was then connected to the router (for internet connection).
To capture all that flowed in and out of the hub and all devices paired to it, port 1 was mirrored on
port 4. Port 4 was connected to the laptop using a Local Area Network (LAN) cable and Wireshark was

used to capture this traffic. This connection is shown in figure 4.7.

DOoS DOHoS DhoS DOoS
Auacker Atacker Attacker Attacker

Plug
vvvvv

Hub Swiitch " Router

Wireshark

Smart
Phone /
Controller

Figure 4.7 Attack data collection

63

Figure 4.8 shows the launching of LOIC on 4 virtual machines and Wireshark. Each of these LOIC
windows will be used to launch the same attack in parallel with others. Figure 4.9 shows the launch of
TCP flood attack. The IP address of the smart hub which is 192.168.0.103 is typed in the box as
specified target IP. The attack thread is set to 1000 and the type of attack is chosen from the drop-
down menu in this case TCP. The port number is specified as port 80. After populating these details,
the immacharginmalazer button is clicked to initialize the attack. Figure 4.9 shows the attack traffic
being captured by in the Wireshark window. The same process is repeated to launch HTTP, UDP, ICMP,
RECOIL, SLOWLOIC and mixed attack. Figures 4.10 and 4.11 show the launch of HTTP and UDP attacks.

As mentioned, Hping3 on Kali Linux is also used for attack propagation. Figure 4.12 shows the
command to launch the TCP flood attack. The type of attack is specified as -s which is TCP, the attack
is set to flood using --flood, the port number of hub is specified as -p49808 and the hubs IP address as
target which is 192.168.0.103. On the left side in the Wireshark window, we can see the flood packets
to the hubs IP address. Figure 4.13 shows the UDP flood attack. A similar syntax is used to the TCP
flood however UDP is specified here by using --2. The UDP flood packets can be seen on the Wireshark
window. Figure 4.14 shows the ICMP flood attack. This is signified by --1 in the syntax. The flood

packets are seen in the Wireshark window as well.

NONE!

Figure 4.8 LOIC windows and Wireshark

During the collection of attack traffic, each capture session starts off with normal traffic and then the

attack traffic comes through after launching the attack. That way, a real-life scenario of having normal

64

traffic flow before an attack is launched at the target gets mimicked. The attack source IP address is
used to pinpoint the very moment the attack traffic starts coming through. Table 4.1 shows the attack
traffic capture details. Each attack is launched several times and collected as a separate dataset file as
indicated under file count column. Each data source is properly labelled according to the category it

falls in. These categories include:

> Single attacks: Individually launched attacks. This comprises of one exploited protocol.

> Mixed attacks: A combination of the single attacks considered are launched at once and this
traffic of mixed attacks is collected.

> Unfamiliar attacks: Attacks not exposed to detection system in the first batch of testing. This
will be used to confirm if the system correctly detects and classifies new attacks in the next
chapter.

> Public data: Both attack and normal data are publicly sourced to be used in the validation

phase.

The data source being public or private is also indicated. The source and target IP addresses are also
specified as well as the composition of the dataset whether it is purely normal or a mixture of attack

and normal.

[

192.168.0.103

192.168.0.103

192.168.0.103

Figure 4.9 TCP flood using LOIC

65

onOrbit ;i [AMA CHARGIN WA LAZER
Jon, Cannon

L 192.168.0.103

192.168.0.103 ﬁ?
\of

Figure 4.10 HTTP flood using LOIC

192.168.0.103 woo

o, Cantion

\\g

Figure 4.11 UDP flood using LOIC

=

192.168.0.103

192.168.0.103

192.168.0.103

192.168.0.103

/home /smo

/home/smo
lood -p &

/home /smo

Figure 4.12 TCP flood using Hping3

3234980
222048

398230407
16, 340837503

/home/smo
flood -p 49
(ethe 1

Figure 4.13 UDP flood using Hping3

67

Label

(Protocol)

Source IP

Figure 4.14 ICMP using Hping3

Table 4.1 Data collection

Target IP

119 484730841
119, 404822441

Public/Private

1

Known/Unfami

liar

W) e

\wer
(ping) regeest
(Bing) request
(ping) regeest
(ping) reguest
(PIng) regeest

b0 (ping) regeest
(14ng) request
(ping) regeest

W (ping) regeest

W (pig) reguest

S (ping) regwest

o (ping) regeest
(pIng) reguest
(Wing) request

W (ping) reguest

“ (ping) reguest

o (ping) regeest

"o (iG] Treguest

Composition

4 HTTP 192.168.0.103 192.168.0.102 Private Known 3 Attack+benign
5 SLOWLOIC 192.168.0.103 192.168.0.102 Private Unfamiliar 2 Attack+benign
6 RECOIL 192.168.0.103 192.168.0.102 Private Unfamiliar 2 Attack+benign
7 Mixed 192.168.0.103 192.168.0.102 Private Unfamiliar 3 Attack+benign
8 Normal 192.168.0.101 Private 34 Benign
TCPSYN 192.168.0.101 192.168.0.102 Private familiar 8 Attack+benign
192.168.0.103
uDP 192.168.0.101 192.168.0.102 Private Familiar 8 Attack+benign
192.168.0.103
ICMP 192.168.0.101 Private Familiar 5 Attack+benign
9 TCPSYN 192.168.100.147- 192.168.100.3 Public Known 12 Attack+benign
150
10 UDP 192.168.100.147- 192.168.100.3 Public Known 10 Attack+benign
150
11 HTTP 192.168.100.147- 192.168.100.3 Public Known 3 Attack+benign
150
12 = FRAGMENTED 192.168.1.195 74.91.117.248 Public Unfamiliar 3 Attack+benign
13 Mixed 192.168.100.147- 192.168.100.3 Public Unfamiliar 3 Attack+benign
150
ICMP Public Familiar 1 Attack
14 Normal 192.168.1.158 Public Unfamiliar 5 Benign

192.168.1.132

The benign data used in this research is from the previous chapter which addresses EDA on benign
smart home traffic. This consists of the same network devices and topology as mentioned in the attack
data collection above just excluding the DDoS attacking points. The loT-23 dataset [84] is the public
dataset used for validation of the EDA on benign smart home traffic. This dataset consists of loT
network traffic from real devices. It has 20 malware captures executed in loT devices, and 3 captures
for benign loT devices traffic. These traffic flows were captured in the Stratosphere Laboratory, AIC
group, FEL, CTU University, Czech Republic. The benign traffic flows were extracted from this dataset

and used in this research. The BoT-loT dataset [85] is one of the public attack datasets used for the

68

EDA validation. It was created at Cyber Range Lab of UNSW Canberra by designing a realistic network
environment. The network environment incorporated a combination of normal and botnet traffic. The
dataset includes DDoS, DoS, OS and service scan, keylogging and data exfiltration attacks, with the
DDoS and DoS attacks further organized, based on the protocol used. TCPSYN and UDP DDoS attack
flows were extracted from the dataset and used in this research. Lastly, public ICMP DDoS attack flow
was extracted from the BUET-DD0S2020 dataset [125]. It consists of several DDoS flooding attack
flows including TCPSYN, DNS, HTTP and UDP.

4.4 Exploratory Data Analysis
Exploratory Data Analysis is a statistical method of analysing data to summarize the main

characteristics of the dataset by using data visualization tools and techniques to represent the derived
results for ease of understanding. Google Colab [120] has been used for this purpose in this research.
As outlined in the methodology, the EDA process has several sub processes of data pre-processing,
feature selection, data normalization, label encoding, feature correlation, method representation and
lastly visualization. After collecting the data, it was filtered to have only the relevant flows relating to
the smart home devices. The data had several columns carrying different packet details. Certain
network features were found to be greatly affected during a DDoS flood. These features were filtered

out and focused on for further analysis. They are as follows:

- Protocol: These are the various communication entities necessary for different types of
data transmission between devices. They include TCP, UDP, NTP, ICMP, DNS, MDNS, TLS,
SSH. Each transmitted data packet is associated with a protocol.

- TCP Sequence number: This is a counter-based mechanism attributed to TCP packets to
keep track of transmitted and received packets. Packets in the same flow carry an
incremental value of sequence numbers, thus you can identify what packet comes after
which by computing these numbers.

- Packet length: This is the payload size carried by each packet

- TCP flags: These are the labels carried by each TCP packet to indicate the state of
connection. These are also present during the 3-way TCP handshake. For a complete TCP
handshake to take place, these flags must be present in their sequential manner
depending on the type of communication.

- Encryption: A secure communication channel is bound by encryption protocols. These

include TLS and SSH.

69

As each packet is attached to some or all the above listed network properties, they were observed to
be simultaneously affected during an attack, thus the reason they were correlated as a baseline for

attack detection.

4.4.1 Benign traffic
The benign smart home traffic was analysed based on the listed features. One minute traffic was

filtered out and visualized to show how these properties behave. The ID of each frame or packet which
corresponds to the time series column in Wireshark is plotted against its corresponding protocol. This

shows the dynamic pattern of the visualised packet headers in the smart home traffic.

* Protocols: The protocols in a benign flow are dynamic. They tend to change from one packet
to the next or every few packets. These varying protocols can include DNS, TCP, MDNS, TLS,
NTP, ICMP, and the like. This is shown in figure 4.15 and 4.16 for both the private and public
benign traffic flows respectively. Both figures show the alternating pattern of the protocols
having various combinations. Encryption protocols (TLS.v1.3) also tend to be predominant in
a flow as most exchanged packets are securely encrypted. This results in encryption protocols
being one of the frequent ones among the pool of protocols utilized by the devices. Message
Queuing Telemetry Protocol (MQTT) is the application layer protocol used by the private
dataset which are Hive devices. The significance of these figures is to show that smart home
traffic comprises of a variation of several protocols in a short period of time. This will be
compared with the absence of this variation in the DDoS attacks covered in this research in

the next section.

30 o e soe e oo oo e oo oo o oo o-o’ﬂ’;iﬁ
® TP
® Tisvl2

25

20 ese o oooe 999608 © S0 S88 & & © GG ESSE SS9 SO GO9

=]
215
=2

&

10

0.5

00 je-e

S NmMT e e g N R AN IR SRS A RAN AR AR A AT ST LSS SR AN AR N ERASE D

Figure 4.15 Varying protocol (private data)

70

Length

6 @ DHcp L] L] L] L L] [] eoee L] L L X L] L] [] e L] L L L] *oe e
@ DNs
e IcMP
® IGMPvZ
® NTP
51 @ TP = - es L] =
® Tsvi2
4 s
B
g3 -
2
£
2 - e
1 - =
0 -pesses
ENT

Figure 4.16 Varying protocol (public data)

» Packet length: The packet length of the benign flow had the same varying property as the

protocol. Figures 4.17 and 4.18 show the private and public packet length dynamic nature. We

can see that the lengths fall in different ranges from one packet to the next.

104

08 4

06

DNS
TP
TLSv1 2
MDNS

‘r Protocol

T1

[XXX}

0.4 4
02
- L]
: ° ol)
P .
0.0 1 oo e ‘—m—n—oD od’.“(’ . e" "¢ 000000000 o0 e oooeee
RS R S AL AR AR R A AR NRR AR R AR AR AR R ARG ST GeSeeRC R AR AACARERGE
Figure 4.17 Varying packet length (private data)
> Protocel
® DHCP
1600 J ® IcMP
® DNS
® NTP
1400 ® IGMPv2
- e TP
® TSv12
1200 W
1000
- L]
) . H . . »
X 8004 -
600
400 4
sessss - ‘.
200 J J J
- > L »]]
ol
= SreEnT AT T T T i e e Rtk AT e acilm iz st

Uhdlib e e

Figure 4.18 Varying packet length (public data)

= TCP Sequence numbers: TCP Sequence numbers also had the same varying nature. This is

shown in figures 4.19 and 4.20. However, not all protocols carry TCP sequence numbers like

71

Sequence number

Sequence number

10 4

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

10

0.8 4

0.6

0.4 4

0.2

DNS, NTP, ICMP and the like. Nonetheless TCP sequence numbers were found to be persistent
as the scope of this research is limited to TCP/ HTTP based traffic. This makes the appearance
of TCP sequence numbers frequent as the predominant traffic protocols are of this type. TCP
sequence numbers were observed to be incremental from one packet to the next in a flow.
This starts from a 0, 1 and shoots up to very high values as shown in figures 4.19 and 4.20.
This shows that apart from being dynamic in nature, the TCP sequence numbers have a wide
range that they fall within. The relevance of this TCP sequence number visualisation is to
compare the dominance of these TCP sequence numbers to exploited attack protocols that
do not carry this feature like UDP and ICMP attacks among others. This will aid in attack

detection in TCP based traffic which the scope of this research is limited to.

Pratocol
& DNS

/ & TCP
- e . ® TsSvl2
® MDNS

Figure 4.19 Varying sequence number (private data)

Pratocol
DHCP
ICMP
DNS 4
NTR

IGMPY2 r »
P
TLSv1.2 r » 3

Figure 4.20 Varying sequence number (public data)

72

= TCP flags: Due to the 3-way handshake that takes place for TCP flows, varying TCP flags were
observed to be present in a flow. Figures 4.21 and 4.22 show the various proportions of these
flags contained in a one-minute window for both private and public datasets respectively. This
observation also validates TCP flags having several combinations in a flow, thus also having a
dynamic pattern like the previous features. The TCP flags from both public and private dataset
are extracted from a one-minute window of the traffic. The public dataset tends to have more
generated packets in a one-minute window compared to the private one as seen across all
visualizations in this section. The significance of this is to show how TCP flags vary in a traffic
flow compared to some attack traffic that lack this variation which can be used for attack

detection in TCP based traffic.

SYN. ACK SYN, ACK

SYN SYN

FIN, ACK

PSH, ACK

Figure 4.21 Varying TCP flags (Private)

Figure 4.22 Varying TCP flags (public)

Figures 4.23 to 4.32 show the various packet header patterns visualised at packet level. Figure 4.23 to
4.26 are from the private dataset while figure 4.27 to 4.32 are captures from the public dataset. In all
the figures under the protocol column we can see the dynamic nature of these protocols over time as
explained in the EDA. The packet length columns exhibit the same pattern of having dynamic lengths.
From the TCP sequence number columns (Sequence number) we can see these incremental numbers.
As mentioned earlier they start with 0,1 at the beginning of a flow which can be seen to correspond
with the first SYN packet under the info column. These can be seen in figures 4.23, 4.24, 4.25, 4.26,
4.30 and 4.31 right after the DNS query and response. The next packet after this query tends to have
a SYN flag and a sequence number of 0 which keeps incrementing as the flow generates. We can also
see the various TCP flags present in this traffic under the info column including SYN, ACK, PSH and FIN

as also visualised in figures 4.23, 4.24 and 4.25.

73

Arrival Time

Jun 3e,

2021 11:13:03.69..
2021 11:13:05.46..
2021 11:13:08.51..
2021 11:13:08.53..
2021 11:13:08.53..
2021 11:13:08.53..
2021 11:13:08.55..
2021 11:13:23.63..
2021 11:13:23.63..
2021 11:13:23.65..
2021 11:13:23.65..
2021 11:13:28.33..
2021 11:13:28.35..
2021 11:13:28.35..
2021 11:13:28.69..
2021 11:13:28.72..
2021 11:13:28.72..
2021 11:13:29.20..
2021 11:13:29.21..

2021 11:13:29.24..
2021 11:13:29.28..
2021 11:13:29.31..
2021 11:13:29.31..
2021 11:13:29.31..
2021 11:13:29.31..

. 2021 11:13:29.31..

Source

34.243.56.134
192.168.0.100
192.168.0.100
192.168.0.100
34.243.56.134
192.168.0.100
34.246.111.38
192.168.0.100
192.168.0.100
34.246.111.38
34.243.56.134
192.168.0.100
34.246.111.38
192.168.8.100
192.168.0.100
34.243.56.134
192.168.0.100
192.168.0.100
192.168.0.1

192.168.0.100
192.168.0.100
99.80.34.156
99.80.34.156
99.80.34.156
99.80.34.156
99.80.34.156

Destinatio

192.168.0.100
192.168.0.162
34.243.56.134
34.246.111.38
192.168.0.100
34.243.56.134
192.168.0.100
34.243.56.134
34.246.111.38
192.168.0.100
192.168.0.100
34.246.111.38
192.168.0.100
34.246.111.38
34.243.56.134
192.168.0.100
34.243.56.134
192.168.0.1

192.168.0.100

99.80.34.156

99.80.34.156

192.168.0.100
192.168.0.100
192.168.0.100
192.168.0.100
192.168.0.100

Protocol Length Sequence Nt

Tcp
MDNS
TLSV1.2
TP
TLSv1.2

TLSv1.2
TLSv1.2
TCP

TLSv1.2
TLSv1.2

TcP
TLSv1.2
TP
TLSv1.2

66

1294
1204
1204

15604

181789
3658
15604
181820
3659
181819
3658
3659
15635
3659
3659
3690
181820
15635
182351

el e

©
S

1325
2553

Info

[TCP Keep-Alive ACK] 443 - 44420 [ACK] Seq=15604 Ack=181789 Win=425 Len=@ TSval=1599585
Standard query response @xeee@ PTR Hive Bridge (RCR-663). hap._tcp.local SRV, cache flu
Application Data

[TCP Keep-Alive] 5797@ - 443 [ACK] Seq=3658 Ack=3659 Win=1002 Len=@ TSval=1865123648 TS
Application Data

44420 » 443 [ACK] Seq=181820 Ack=15635 Win=4467 Len=0 TSval=2090623125 TSecr=1599590724
[TCP Keep-Alive ACK] 443 - 57970 [ACK] Seq=3659 Ack=3659 Win=120 Len=@ TSval=2798006047
[TCP Keep-Alive] 44420 -+ 443 [ACK] Seq=181819 Ack=15635 Win=4467 Len=@ TSval=2090638225
[TCP Keep-Alive] 57976 + 443 [ACK] Seq=3658 Ack=3650 Win=1602 Len=8 TSval=1865138752 TSt
[TCP Keep-Alive ACK] 443 - 57970 [ACK] Seq=3659 Ack=3659 Win=120 Len=@ TSval=2798021151
[TCP Keep-Alive ACK] 443 - 44420 [ACK] Seq=15635 Ack=181820 Win=425 Len=@ TSval=1599605
Application Data

Application Data

57970 -+ 443 [ACK] Seq=3690 Ack=3690 Win=1002 Len=0 TSval=1865143470 TSecr=2798025849
Application Data

Application Data

44420 » 443 [ACK] Seq=182351 Ack=15668 Win=4467 Len=0 TSval=2090643311 TSecr=1599610969
Standard query @x1854 A kinesis.eu-west-1.amazonaws.com OPT

Standard query response @x1854 A kinesis.eu-west-1.amazonaws.com A 99.80.34.156 OPT

35654 » 443 [ACK] Seq=1 Ack=1 Win=65344 Len=0 TSval=4208278692 TSecr=365875734

Client Hello

443 > 35654 [ACK] Seq=1 Ack=231 Win=2816@ Len=@ TSval=365875741 TSecr=4208278736

Server Hello

443 » 35654 [ACK] Seq=97 Ack=231 Win=2816@ Len=1228 TSval=365875741 TSecr=4208278736 [T(
443 » 35654 [ACK] Seq=1325 Ack=231 Win=2816@ Len=1228 TSval=365875741 TSecr=4208278736 |
443 » 35654 [ACK] Seq=2553 Ack=231 Win=28160 Len=1228 TSval=365875741 TSecr=4208278736 |

Arrival Time Source

Mar 29, 2021 21:27:54._ 192.168.0.101 192.168.8.1 ons 102 Standard query 8x4859 A kinesis.eu-west-1.amazonaws.com 0PT

Mar 29, 2021 21:27:54._ 192.168.0.1 192.168.0.101 ons 118 Standard query response 8x4859 A kinesis.eu-west-1.amazonaws.com A 99.58.34.142 OPT

Mar 29, 2021 2 S4.. 192.165.8.181 99.80.34.142 TCR 86 1 55925 - 443 [ACK] Seg=1 Ack=1 Win=65344 Len=@ TSval=3153442916 TSecr=29358934

Mar 29, 2021 21:27:56.. 192.165.9.101 99.80.34.142 TLSV1.2 296 1 Client Hello

Mar 29, 2021 21:27:54.. 99.80.38.142 192.168.8.181 TCR 86 1 443 » 55928 [ACK] Seg=1 Ack=231 Wi Len=2 TSec

Mar 29, 2021 21:27:54.. 99.80.38.142 192.168.8.181 TLSV1.2 162 1 Server Hello

Mar 29, 2021 21:27:54.. 99.80.34.142 192.168.8.181 TCR 1415 97 443 + 55928 [ACK] Seq=97 Ack=231 Wi Len=1388 TSecr=: [TCP segmen'
Mar 29, 2021 21:27:54.. 99.80.38.142 192.168.8.181 TCR 1415 1477 443 » 55928 [ACK] Seq=1477 Ack=231 Wi Len=1358 TSva. [TcP segm
Mar 29, 2621 21:27:56.. 192.165.9.101 99.80.34.142 TCR 86 231 55928 + 443 [ACK] Seq=231 Ack=97 Wi Len=2 T

Mar 29, 2021 21:27:54.. 99.80.34.142 192.168.8.181 TCR 1415 2857 443 + 55928 [ACK] Seq=2857 Ack=231 Wi Len=1388 TSva. [TcP segm
Mar 29, 2021 21:27:54.. 99.80.38.142 192.168.8.181 TLSV1.2 829 4237 Certificate

Mar 29, 2021 21:27:54.. 99.80.38.142 192.168.8.181 TLSV1.2 488 5898 Server Key Exchange

Mar 29, 2021 21:27:54.. 99.80.38.142 192.168.8.181 TLSV1.2 75 5338 Server Hello Done

Mar 29, 221 21:27:56.. 192.165.9.101 99.80.34.142 TCR 86 231 55928 + 443 [ACK] Seq=231 Ack=1477 Win=64128 Len=8 TSval=3153442956 TSecr=29358945

Mar 29, 2021 21:27:56.. 192.165.9.101 99.80.34.142 TCR 86 231 55928 + 443 [ACK] Seq=231 Ack=2857 Wil Len=8 T

Mar 29, 2021 21:27:56.. 192.165.9.101 99.80.34.142 TCR 86 231 55928 + 443 [ACK] Seq=231 Ack=4237 Win=64128 Len=8 TSval=3153442955 TSecr=29358945

Mar 29, 2021 21:27:54.. 192.165.9.101 99.80.34.142 TCR 86 231 55928 + 443 [ACK] Seq=231 Ack=5880 Win=64128 Len=8 TSval=3153442959 TSecr=29353945

Mar 29, 2021 21:27:56.. 192.165.9.101 99.80.34.142 TCR 86 231 55928 + 443 [ACK] Seq=231 Ack=5338 Win=64128 Len=8 TSval=3153442959 TSecr=29358945

Mar 29, 2021 21:27:56.. 192.165.9.101 99.80.34.142 TCR 86 231 55928 + 443 [ACK] Seq=231 Ack=5347 Win=64128 Len=8 TSval=3153442959 TSecr=29358945

Mar 29, 2021 21:27:56.. 192.165.9.101 99.80.34.142 TLSV1.2 141 231 Client Key Exchange

Mar 29, 2021 21:27:54.. 99.80.38.142 192.168.8.181 TCR 86 5347 443 + 55928 [ACK] Seq=5347 Ack=386 Wi Len=8 T: T

Mar 29, 2021 21:27:55.. 192.168.0.101 99.80.34.142 TLSV1.2 72 386 Change Cipher Spec

Mar 29, 2021 21:27:55.. 192.165.9.101 99.80.34.142 TLSV1.2 135 312 Encrypted Handshake Message

Mar 29, 2021 21:27:55.. 99.80.38.142 192.168.8.181 TCR 86 5347 443 + 55928 [ACK] Seq=5347 Ack=312 Wi Len=8 T: T

Mar 29, 2021 21:27:55.. 99.80.34.142 192.168.8.181 TCR 86 5347 443 + 55928 [ACK] Seq=5347 Ack=351 Wi Len=8 T: T 2

Mar 29, 2021 21:27:55.. 99.80.34.142 192.168.8.181 TLSV1.2 72 5347 Change Cipher Spec

Mar 29, 2021 21:27:55.. 99.80.34.142 192.168.8.181 TLSV1.2 135 5353 Encrypted Handshaks Message

Mar 29, 2021 21:27:55.. 192.165.9.101 99.80.34.142 TCR 86 381 55928 + 443 [ACK] Seq=351 Ack=5353 Win=64128 Len=8 TSval=3153443134 TSecr=29358963

Mar 29, 2021 21:27:55.. 192.165.9.101 99.80.34.142 TCR 86 381 55928 + 443 [ACK] Seq=381 Ack=5422 Win=64128 Len=8 T5val=3153443134 TSecr=29358963

Mar 29, 2021 21:27:55.. 192.165.9.101 99.80.34.142 TCR 1506 381 55928 + 443 [ACK] Seq=381 Ack=5422 Win=64128 Len=1448 TSval=3153443142 TSecr=29355963 [TCP segm
Mar 29, 2021 21:27:55.. 192.165.9.101 99.80.34.142 TLSV1.2 873 1821 Application Data

Mar 29, 2021 21:27:55.. 99.80.38.142 192.168.8.181 TCR 86 5422 443 + 55928 [ACK] Seq=5422 Ack=2434 Wi Len=2 TSecr=3.

Mar 29, 2021 21:27:55.. 99.80.34.142 192.168.8.181 TLSV1.2 487 5422 Application Data

Mar 29, 2021 21:27:55.. 99.80.34.142 192.168.8.181 TLSV1.2 247 5763 Application Data

Mar 29, 2021 21:27:55.. 192.165.9.101 99.80.34.142 TCR 86 2434 55928 =+ 443 [ACK] Seq=2434 Ack=5344 Win=54125 Len=8 TSval=3153443178 TSecr=293589567

Mar 29, 2021 21:27:55.. 192.165.9.101 52.218.154.208 TCR 86 95496 [TCP Keep-Alive] 58985 + 443 [ACK] 5eq=95496 Ack=5589 Win=7787 Len=e TSval=3233354138 TSecr=484
Mar 29, 2021 21:27:55.. 52.218.184.208 192.165.8.181 TCR 86 6589 [TCP Keep-Alive ACK] 443 » 58883 [ACK] Seq=6589 Ack=95497 Win=425 Len=8 TSval=4845358591 TSecr=
Mar 29, 2021 21:28:08.. 192.165.9.101 52.218.184.208 TLSV1.2 97 95497 Application Data

Mar 29, 2021 21:28:08.. 52.218.184.208 192.165.8.181 TLSV1.2 97 6589 Application Data

Mar 29, 2021 21:28:00.- 192.168.0.101 52.218.154.208 TcR 86 95525 58888 = 443 [ACK] Seq=95528 Ack=6548 Win=7787 Len=B TSval=3233358866 TSecr=4843355399

Mar 29, 2021 21:25:01.. 99.80.34.142 192.168.8.181 TLSV1.2 119 5944 Encrypted Alert

Mar 29, 2021 21:28:01._ 192.165.9.101 99.80.34.142 TCR 86 2434 55928 =+ 443 [ACK] Seq=2434 Ack=5997 Win=54125 Len=8 TSval=3153449216 TSecr=29359567

Mar 29, 2021 21:28:01._ 192.165.9.101 34.248.107.124 TCR 86 1458 [TCP Keep-Alive] 49738 + 443 [ACK] Seq=1458 Ack=1458 Win=18@2 Len=8 TSval=1953917228 TSecr=8672
Mar 29, 2021 2 81.. 34.248.197.124 192.165.8.181 TCR 86 1455 [TCP Keep-Alive ACK] 443 =+ 49739 [ACK] Seq=1458 Ack=1453 Win=120 Len=@ TSval=867254127 TSecr=19!
Mar 29, 2021 21:28:03.. 192.165.9.101 99.80.34.142 TCR 86 2434 55928 = 443 [ACK] Seq=2434 Ack=5995 Win=64125 Len=B TSval=3153451220 TSecr=29359767

Mar 29, 2021 21:28:03._ 192.168.0.101 192.168.8.1 DHCP 332 DHCP Request - Transaction ID @x7d722d75

Mar 39. 7871 71-R-A3. 192 16R.A1 192 18R @ 181 e s9p nHre ack. - Transartion T A¥7d727475

Figure 4.23 Private dataset benign pattern

Destinatio Protocol Length Sequence Nt Info

Figure 4.24 Private dataset benign pattern

74

Arrival Time Source

Mar 22, 2021 14:38:01.. 99.50.34.243
Mar 22, 2821 99.59.34.243
Mar 22, 2021 99.89.34.243
mar 22, 2821 192.165.8.101
Mar 22, 2021 99.89.34.243
Mar 22, 2821 192.165.8.101
mar 22, 2021 34.246.152.68
mar 22, 2821 192.165.8.101

Destinatio Protocol Length Sequence Nt

5422
5822
5763
1938

1938

Info

243 <+ 43884 [ACK] Seq=5422 Ack=1938 Win=38976 Len=8 TSval=174586254 TSecr=359548852

Application Data

Application Data

43284 + 443 [ACK] 52q=1938 Ack=5344 Win=64125 Len=p TSval=369848591 TSecr=174586255

Encrypted Alert

[TCP Keep-Alive] 49535 + 443 [ACK] Seq=528 Ack=528 Win=2397 Len=8 TSval=164701843 TSecr=1574332898
[TCP Keep-Alive ACK] 443 » 49538 [ACK] 5eq=528 Ack=529 Win=425 Len=8 TSval=1574398154 TSecr=16468653
43284 + 443 [ACK] 52q=1938 Ack=5997 Win=64125 Len=e TSval=369854331 TSecr=174586855

Mar 22, 2821 14: 192.165.8.101
Mar 22, 2021 14:38:13.. 192.165.8.101
Mar 22, 2821 14:38:13.. 192.165.8.1

192.168.8.101 TP 56
192.165.8.181 TLSV1.2 a87
192.165.8.101 TLSV1.2 247
99.50.34.243 Tce 56
192.165.8.101 TLSV1.2 113
34.246.152.68 Tce 56
192.165.8.181 TP 56
99.50.34.243 Tce 56
99.50.34.243 TCce 56
192.165.8.1 ons. 125
192.165.8.181 ons. 173

1938

9856931 TSecr=174587056
com OPT

43484 - 443 [ACK] 58q=1938 Ack=5998 Win=64125 Len=e Tsva
Standard query @x118 A
Standard query response Bx11fe A

jaba.cr ials.iot.eu-west-1

iot.eu-west-1 com A 58.246.236

jaba.cr

Mar 22, 2621 1a:
Mar 22, 2621 1a:
Mar 22, 2621 1a:
Mar 22, 2621 1a:
Mar 22, 2021 14:
Mar 22, 2621 1a:
Mar 22, 2021 14:

:13.. 192.168.8.181
«— 192.168.8.181
:13.. 54.246.236.187
.- 58.246.236.187
:13.. 54.246.236.187
54.245.236.157
54.246.236.1587

30
38
30
38
30
38
30
38

Mar 22, 2821 14: 192.165.8.101
Mar 22, 2821 192.165.9.101
mar 22, 2821 192.165.8.101
Mar 22, 2821 192.165.6.101
mar 22, 2821 192.165.8.101
Mar 22, 2021 54.246.236.157
Mar 22, 2821 192.165.8.101
Mar 22, 2821 192.165.8.101
mar 22, 2021 192.165.8.101
mar 22, 2821 54.245.236.157
Mar 22, 2021 54.245.236.187
Mar 22, 2821 54.245.236.157
mar 22, 2021 54.245.236.187
Mar 22, 2821 192.165.8.101
mar 22, 2021 192.165.6.101
mar 22, 2821 54.246.236.157
Mar 22, 2821 54.245.236.187
mar 22, 2821 54.246.236.157

Mar 22, 2821 14:38:
Mar 22, 2021 1

192.165.8.101
192.165.6.101

54.245.236.157
54.246.236.157
192.165.8.101
192.168.8.181
192.165.8.101
192.168.8.181
192.165.8.181
54.246.236.157
54.246.236.157
54.246.236.157
54.246.236.157
54.246.236.157
192.165.8.181
54.246.236.157
54.245.236.157
54.246.236.157
192.165.8.181
192.168.8.101
192.165.8.181
192.165.8.181
54.246.236.157
54.246.236.157
192.165.8.161
192.165.8.101
192.165.8.181

54.246.236.157
54.246.236.157

q
b
2
&

TcP
TLSV1.2

56
313
56
1585
1585
1585

56
56
56
56
1029

5324
1593
1593
5451
5891
5928

1992
1992

58624 + 443 [ACK] Seq=1 Ack=1 Win=55324 Len=8 Tsval=1679595981 Tsecr=1416457124
Client Hello

443 + 59524 [ACK] Seq=1 Ack=254
443 + 58524 [ACK] Seq=1 Ack=254 Win=2316 Len=1448 TSval=1416497246 TSecr=1678596879 [TCP segment of

Len=2 T

443 + 58524 [ACK] Seq=1441 Ack=254 Len=1440 T: T [TCP segment
443 + 58524 [ACK] Seq=2881 Ack=254 Len=1428 TSval Sec [TCP segment
Server Hello, Certificate, Server Key Exchange, Certificate Request, Server Hello Done

58624 + 443 [ACK] Seq=254 Ack=1441 Win=64128 Len=8 TSval=1678596184 TSecr=1416497245

58624 + 443 [ACK] Seq=258 Ack=2851 Win=64125 Len=8 TSval=1678596185 TSecr=1415437245

58624 + 443 [ACK] Seq=254 Ack=4321 Win=64128 Len=8 TSval=1678596186 TSecr=1416497245

58624 + 443 [ACK] S5eq=258 Ack=5344 Win=64125 Len=8 TSval=1678596187 TSecr=1416437245

Certificate, Client Key Exchange

443 + 58624 [ACK] Seq=5344 Ack=1217 Lten=g T 1 Tsecr=

Certificate Verify

Change Cipher Spec

Encrypted Handshake Message

443 + 58624 [ACK] Seq=5344 Ack=1436 Len=@ T: Tsecr=:

243 + 58624 [ACK] Seq=5324 Ack=1492 Len=p T: Tsec

443 + 58524 [ACK] 52q=5324 Ack=1593 Len=s T ¢

Change Cipher Spec, Encrypted Handshake Message

50624 + 423 [ACK] Seq=1593 Ack=5451 Win=64125 Len=8 TSval=1678596813 TSecr=1416497957

Application Data

443 + 58524 [ACK] Seq=5451 Ack=1982 Len=1420 2 Tsecr= [TCP segmen

Application Data
Encrypted Alert

50624 + 423 [ACK] 5eq=1982 Ack=7814 Win=52784 Len=B TSval=1578596891 TSecr=1416495832
Encrypted Alert

Mar 22, 2821 14:38:
Mar 22, 2821 14:38:

192.165.6.101
52.119.244.93
197 18R @ 181

Mar 22, 2821 14:38:
Mar 22, 2821 14:38:14..
Mar 37. 7871 14-3@-14

1
192.165.8.181

52.119.244.93
192.165.8.181
53 119 782 a3

ons.

Tce
TP
TiSvi >

1
1
h]

Standard query @xafc A dynamodb.
Standard query response Bx68fc A dynamodb.eu-west-1.3mazonaws.com A 52.119.244.93 OPT

51394 + 443 [ACK] Seq=1 Ack=1 Win=65344 Len=2
[TCP window Update] 443 - 51394 [ACK] Seq=1 Ack=1 Win=29696 Len=8
Clisnt Halln

Figure 4.25 Private dataset benign pattern

Arrival Time Source

Dec 21, 2023 21.. 20.49.172.247
Dec 21, 2023 21.. 52.123.137.141
Dec 21, 2023 21.. 192.168.0.1

Dec 21, 2023 21..
Dec 21, 2023 21..
Dec 21, 2023 21..
Dec 21, 2023 21..
Dec 21, 2023 21..
Dec 21, 2023 21..
Dec 21, 2023 21..
Dec 21, 2023 21..
Dec 21, 2023 21..
Dec 21, 2023 21..

20.49.172.247
52.113.205.22
192.168.8.1
93.184.221.240
93.184.221.240
93.184.221.240
93.184.221.240
192.168.0.1
192.168.0.1
20.49.172.247

Destinatio

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.

168.0.103
168.0.103
168.0.103
168.0.103
0.103
0.103
168.0.103
0.103
0.103
168.0.103

Protocol Length Sequence Nt

TLSv1.2
TLSv1.2
DNS
TLSv1.2
TLSv1.2
DNS

Tcp

TCP
HTTP
HTTP
DNS

DNS
TLSv1.2

85
99
78
85
182
202
66
54
343
345
78
74
85

Info
1 Application Data

46 Application Data

Standard query response @xea6l Server failure A wpad.ads.ntu.ac.uk

32 Application Data
49 Application Data

6

him.traf

Standard query response ©x8e8@ A ctldl.wind e.com CNAME bg.

®

80 - 49820 [SYN, ACK] Seq=08 Ack=1 Win=65535 Len=0 MSS=1452 SACK_PERM=1 WS=512
80 - 49820 [ACK] Seq=1 Ack=287 Win=67072 Len=0

HTTP/1.1 384 Not Modified

290 HTTP/1.1 304 Not Modified

Standard query response @x@39f Server failure A wpad.ads.ntu.ac.uk

Standard query response @x3707 No such name A wpad.ntu.ac.uk

Application Data

PR

)

Dec 21, 2023 21. 192.168.0.1

Dec 21, 2023 21. 52.123.144.72
Dec 21, 2023 21. 52.123.144.72
Dec 21, 2023 21.. 52.123.144.72
Dec 21, 2023 21.. 52.123.144.72
Dec 21, 2023 21.. 52.123.144.72
Dec 21, 2023 21. 52.123.144.72
Dec 21, 2023 21.. 52.123.144.72

Dec 21, 2023 21.. 52.123.144.72

Nar 71 72022 21 €2 192 144 77

192.

192.
192.
192.
192.
192.
192.
192.
102

107

168.0.103

.1e3
.1e3
.1e3
.1e3
.1e3
.1e3
.1e3
.1e3

102

Tcp
TCP
cp
TCP
TLSv1.2
TCP
TCP
TLSv1.2
TiCu1 9

158

1506
1506
1506
1506

54
54
185
122

Standard query response ©x@1c9 A presence.teams.microsoft.com CNAME presence.s

1 443 > 49821 [ACK] Seq=1 Ack=518 Win=4194304 Len=1452 [TCP segment of a reassem

1453 443 > 49821 [ACK] Seq=1453 Ack=518 Win=4194304 Len=1452 [TCP segment of a reas
2905 443 > 49821 [ACK] Seq=29@5 Ack=518 Win=4194304 Len=1452 [TCP segment of a reas
4357 443 > 49821 [ACK] Seq=4357 Ack=518 Win=4194304 Len=1452 [TCP segment of a reas
5809 Server Hello, Certificate, Certificate Status, Server Key Exchange, Server Hel
6198 443 > 49821 [ACK] Seq=6198 Ack=775 Win=4194048 Len=0
6108 443 > 49821 [ACK] Seq=6198 Ack=3166 Win=4104816 Len=8

6198 Change Cipher Spec, Encrypted Handshake Message
AI10 Annliratinan Nata

Figure 4.26 Private dataset benign pattern

75

Source Destination
0 192.168.1.158 35.157.240.102
0.000013 192.168.1.158/35.157.240.102
0.009228 35.157.240.10 192.168.1.158
0.009234 35.157.240.10 192.168.1.158
0.386274 35.157.240.10 192.168.1.158
0.386513 35.157.240.10 192.168.1.158
0.386518 35.157.240.10 192.168.1.158
0.386521 35.157.240.10 192.168.1.158

0.45024 192.168.1.158 35.157.240.102
0.450254 192.168.1.158/35.157.240.102
10.45554 192.168.1.158 35.157.240.102
10.45556 192.168.1.158 35.157.240.102
10.46477 35.157.240.10 192.168.1.158
10.46478 35.157.240.10 192.168.1.158
10.73338 35.157.240.10. 192.168.1.158

10.7334 35.157.240.10 192.168.1.158
10.73362 35.157.240.10 192.168.1.158
10.73387 35.157.240.10 192.168.1.158
10.78535 192.168.1.158 35.157.240.102
10.78537 192.168.1.158 35.157.240.102
10.79258 192.168.1.158 35.157.240.102
10.79259 192.168.1.158 35.157.240.102
20.79815/192.168.1.158/35.157.240.102
20.79816 192.168.1.158 35.157.240.102
20.80713 35.157.240.10 192.168.1.158
20.80714 35.157.240.10 192.168.1.158
21.12372 35.157.240.10 192.168.1.158
21.12373 35.157.240.10 192.168.1.158
21.12374 35.157.240.10 192.168.1.158
21.12374 35.157.240.10 192.168.1.158

21.2374 192.168.1.158 35.157.240.102
21.23742 192.168.1.158/35.157.240.102

lTlme

Protocol
TLSv1.2
TCP

TCP

TCP
TLSv1.2

TLSvi2

TLSv1.2

TLSvi2

25.81479 Ubiquiti_43:€Espressi_le:76 ARP

25.8148 Ubiquiti_43:CEspressi_le:76 ARP
25.83651 Espressi_le: Ubiquiti_43:93: ARP
25.83652 Espressi_le:” Ubiquiti_43:93: ARP

31.2437 192.168.1.158 35.157.240.102
31.24371 192.168.1.158 35.157.240.102
31.25293 35.157.240.10.192.168.1.158
31.25293 35.157.240.10.192.168.1.158
31.26417 192.168.1.158 35.157.240.102
31.26418 192.168.1.158 35.157.240.102

TLSv1.2
TCP
TCP
TCP
TLSv1.2
TCP

Length

363
363
60
60
875
875
123
123
60
60
363
363
60
60
123
123

38388338

99
8338

w ow
@ o
w W

Sequence Info

1 Application Data
1 [TCP Retransmission] 30367 > 443 [PSH, ACK] Seq=1 Ack=1 Win=5840 Len=309
1 443 > 30367 [ACK] Seq=1 Ack=310 Win=65072 Len=0
1 [TCP Dup ACK 3#1] 443 > 30367 [ACK] Seq=1 Ack=310 Win=65072 Len=0
1 Application Data
1 [TCP Retransmission] 443 > 30367 [PSH, ACK] Seq=1 Ack=310 Win=65072 Len=821
822 Application Data
822 [TCP Retransmission] 443 > 30367 [PSH, ACK] Seq=822 Ack=310 Win=65072 Len=6%
310 30367 > 443 [ACK] Seq=310 Ack=891 Win=4950 Len=0
310 [TCP Dup ACK 8#1] 30367 > 443 [ACK] Seq=310 Ack=891 Win=4850 Len=0
310 Application Data
310 [TCP Retransmission] 30367 > 443 [PSH, ACK] Seq=310 Ack=891 Win=4950 Len=309
891 443 > 30367 [ACK] Seq=891 Ack=61% Win=65072 Len=0
891 [TCP Dup ACK 13#1] 443 > 30367 [ACK] Seq=891 Ack=619 Win=65072 Len=0
1712 [TCP Previous segment not captured] , Application Data
1712 [TCP Retransmission] 443 > 30367 [PSH, ACK] Seq=1712 Ack=619 Win=65072 Len=69
891 [TCP Qut-Of-Order] 443 > 30367 [PSH, ACK] Seq=891 Ack=61% Win=65072 Len=821
891 [TCP Out-Of-Order] 443 > 30367 [PSH, ACK] Seq=891 Ack=619 Win=65072 Len=821
619 [TCP Dup ACK 9#2] 30367 > 443 [ACK] Seq=61% Ack=891 Win=4850 Len=0
619 [TCP Dup ACK 9#3] 30367 > 443 [ACK] Seq=619 Ack=891 Win=4950 Len=0
618 30367 > 443 [ACK] Seq=619 Ack=1781 Win=5840 Len=0
618 [TCP Dup ACK 21#1] 30367 > 443 [ACK] Seq=619 Ack=1781 Win=5840 Len=0
619 Application Data
618 [TCP Retransmission] 30367 > 443 [PSH, ACK] Seq=619 Ack=1781 Win=5840 Len=309
1781 443 > 30367 [ACK] Seq=1781 Ack=928 Win=65072 Len=0
1781 [TCP Dup ACK 25#1)] 443 > 30367 [ACK] Seq=1781 Ack=828 Win=65072 Len=0
1781 Application Data
1781 [TCP Retransmission] 443 > 30367 [PSH, ACK] Seq=1781 Ack=928 Win=65072 Len=821
2602 Application Data
2602 [TCP Retransmission] 443 > 30367 [PSH, ACK] Seq=2602 Ack=928 Win=65072 Len=69
928 30367 > 443 [ACK] Seq=928 Ack=2671 Win=4850 Len=0
928 [TCP Dup ACK 31#1] 30367 > 443 [ACK] Seq=928 Ack=2671 Win=43850 Len=0
Who has 192.168.1.158? Tell 192.168.1.1
Who has 192.168.1.158? Tell 192.168.1.1
192.168.1.158 is at Scicf:7f:1e:76:54
192.168.1.158 is at 5cicf:7f:1e:76:54
928 Application Data
928 [TCP Retransmission] 30367 > 443 [PSH, ACK] Seq=928 Ack=2671 Win=4950 Len=325
2671 443 > 30367 [ACK] Seq=2671 Ack=1253 Win=65072 Len=0
2671 [TCP Dup ACK 39#1)] 443 > 30367 [ACK] Seq=2671 Ack=1253 Win=65072 Len=0
1253 Application Data
1253 [TCP Retransmission] 30367 > 443 [PSH, ACK] Seq=1253 Ack=2671 Win=4950 Len=30%

Figure 4.27 Public dataset benign pattern

B | C | D | E F | G H | J K L M N | ©O
37.09866 35.157.240.102 192.168.1.158 TCP 875 4467 [TCP Retransmission] 443 > 28291 [PSH, ACK] Seq=4467 Ack=2143 Win=65072 Len=821
37.09866 35.157.240.102 192.168.1.158 TLSv1.2 123 5288 Application Data
37.09867 35.157.240.102 192.168.1.158 TCP 123 5288 [TCP Retransmission] 443 > 28291 [PSH, ACK] Seq=5288 Ack=2143 Win=65072 Len=69
37.20108 192.168.1.158 35.157.240.102 TCP 60 2143 28291 > 443 [ACK] Seq=2143 Ack=5288 Win=5840 Len=0
37.20109 192.168.1.158 35.157.240.102 TCP 60 2143 [TCP Dup ACK 63#1] 28291 > 443 [ACK] Seq=2143 Ack=5288 Win=5840 Len=0
37.26355 192.168.1.158 35.157.240.102 TCP 60 2143 28291 > 443 [ACK] Seq=2143 Ack=5357 Win=5771 Len=0
37.26356 192.168.1.158 35.157.240.102 TCP 60 2143 [TCP Dup ACK 65#1] 28291 > 443 [ACK] Seq=2143 Ack=5357 Win=5771 Len=0
41.56808 Ubiquiti_43:93: Espressi 60 Who has 192.168.1.158? Tell 192.168.1.1
41.56809 Ubiquiti_43:93:(Espressi 60 Who has 192.168.1.158? Tell 192.168.1.1
41.57034 Espressi_le:76: Ubiquiti_43:93:d5 ARP 60 192.168.1.158 is at 5c:cf:7f:1e:76:54
41.57035 Espressi_le:76: Ubiquiti_43:93:d5 ARP 60 192.168.1.158 is at 5c:cf:7f:1e:76:54
47.21039 192.168.1.158 35.157.240.102 TLSv1.2 363 2143 Application Data

47.2104 192.168.1.158 35.157.240.102 TCP 363 2143 [TCP Retransmission] 28291 > 443 [PSH, ACK] Seq=2143 Ack=5357 Win=5771 Len=309
47.21961 35.157.240.102 192.168.1.158 TCP 60 5357 443 > 28291 [ACK] Seq=5357 Ack=2452 Win=65072 Len=0
47.21962 35.157.240.102 192.168.1.158 TCP 60 5357 [TCP Dup ACK 73#1] 443 > 28291 [ACK] Seq=5357 Ack=2452 Win=65072 Len=0
47.42277 35.157.240.102 192.168.1.158 TLSv1.2 875 5357 Application Data
47.42278 35.157.240.102 192.168.1.158 TCP 875 5357 [TCP Retransmission] 443 > 28291 [PSH, ACK] Seq=5357 Ack=2452 Win=65072 Len=821
47.42279 35.157.240.102 192.168.1.158 TLSv1.2 123 6178 Application Data
47.42279 35.157.240.102 192.168.1.158 TCP 123 6178 [TCP Retransmission] 443 > 28291 [PSH, ACK] Seq=6178 Ack=2452 Win=65072 Len=69
47.54993 192.168.1.158 35.157.240.102 TCP 60 2452 28291 > 443 [ACK] Seq=2452 Ack=6247 Win=4881 Len=0
47.54994 192.168.1.158 35.157.240.102 TCP 60 2452 [TCP Dup ACK 79#1] 28291 > 443 [ACK] Seq=2452 Ack=6247 Win=4881 Len=0

57.549 192.168.1.158 35.157.240.102 TLSvl.2 363 2452 Application Data

57.54902 192.168.1.158 35.157.240.102 TCP 363 2452 [TCP Retransmission] 28291 > 443 [PSH, ACK] Seq=2452 Ack=6247 Win=4881 Len=309
57.55823 35.157.240.102 192.168.1.158 TCP 60 6247 443 > 28291 [ACK] Seq=6247 Ack=2761 Win=65072 Len=0
57.55824 35.157.240.102 192.168.1.158 TCP 60 6247 [TCP Dup ACK 83#1] 443 > 28291 [ACK] Seq=6247 Ack=2761 Win=65072 Len=0
58.39177 35.157.240.102 192.168.1.158 TLSv1.2 123 7068 [TCP Previous segment not captured] , Application Data
58.39179 35.157.240.102 192.168.1.158 TCP 123 7068 [TCP Retransmission] 443 > 28291 [PSH, ACK] Seq=7068 Ack=2761 Win=65072 Len=69
58.39201 35.157.240.102 192.168.1.158 TCP 875 6247 [TCP Out-Of-Order] 443 > 28291 [PSH, ACK] Seq=6247 Ack=2761 Win=65072 Len=821
58.39201 35.157.240.102 192.168.1.158 TCP 875 6247 [TCP Out-Of-Order] 443 > 28291 [PSH, ACK] Seq=6247 Ack=2761 Win=65072 Len=821
58.49896 192.168.1.158 35.157.240.102 TCP 60 2761 [TCP Dup ACK 79#2] 28291 > 443 [ACK] Seq=2761 Ack=6247 Win=4881 Len=0
58.49898 192.168.1.158 35.157.240.102 TCP 60 2761 [TCP Dup ACK 79#3] 28291 > 443 [ACK] Seq=2761 Ack=6247 Win=4881 Len=0
58.50619 192.168.1.158 35.157.240.102 TCP 60 2761 28291 > 443 [ACK] Seq=2761 Ack=7137 Win=5840 Len=0

58.5062 192.168.1.158 35.157.240.102 TCP 60 2761 [TCP Dup ACK 91#1] 28291 > 443 [ACK] Seq=2761 Ack=7137 Win=5840 Len=0
66.88044 192.168.1.158 192.168.1.1 DNS 81 Standard query 0x45e1 A 0.europe.pool.ntp.org
66.88045 192.168.1.158 192.168.1.1 DNS 81 Standard query 0x45e1 A 0.europe.pool.ntp.org

Figure 4.28 Public dataset benign pattern

76

lTime Source
0.000014 192.168.1.35.157.24(TCP
0.009231 35.157.241192.168.1. TCP
0.009237 35.157.241192.168.1. TCP

0.245104 35.157.241192.168.1.TLSv1.2

0.245116 35.157.24(192.168.1. TCP

0.24512 35.157.24(192.168.1.TCP
0.245123 35.157.241192.168.1.TCP
0.327557 192.168.1.35.157.24/TCP
0.327571 192.168.1.35.157.24/TCP
0.335042 192.168.1.35.157.241TCP
0.335048 192.168.1.35.157.24(TCP

10.34061 192.168.1.35.157.24(TLSv1.2

10.34062 192.168.1.35.157.24(TCP
10.34984 35.157.241192.168.1. TCP
10.34984 35.157.24(192.168.1. TCP

11.16814 35.157.241192.168.1.TLSv1.2

11.16815 35.157.24(192.168.1. TCP

11.16816 35.157.24(192.168.1. TLSv1.2

11.16816 35.157.24(192.168.1. TCP
11.29007 192.168.1.35.157.24(TCP
11.29008 192.168.1.35.157.24(TCP

15.358 Ubiquiti_4Espressi_1ARP

Destinatio Protocol Length
0 192.168.1.35.157.24(TLSv1.2

363
363
60
60
123
123

Sequence Info

1 Application Data
1 [TCP Retransmission] 28291 > 443 [PSH, ACK] Seq=1 Ack=1 Win=48:
1443 > 28291 [ACK] Seq=1 Ack=310 Win=65072 Len=0
1 [TCP Dup ACK 3#1] 443 > 28291 [ACK] Seq=1 Ack=310 Win=65072 L¢
822 [TCP Previous segment not captured] , Application Data
822 [TCP Retransmission] 443 > 28291 [PSH, ACK] Seq=822 Ack=310 Wir
1 [TCP Out-Of-Order] 443 > 28291 [PSH, ACK] Seq=1 Ack=310 Win=65
1 [TCP Out-Of-Order] 443 > 28291 [PSH, ACK] Seq=1 Ack=310 Win=65
310 [TCP Dup ACK 1#1] 28291 > 443 [ACK] Seq=310 Ack=1 Win=4817 Lei
310 [TCP Dup ACK 1#2] 28291 > 443 [ACK] Seq=310 Ack=1 Win=4817 Lei
310 28291 > 443 [ACK] Seq=310 Ack=891 Win=5840 Len=0
310 [TCP Dup ACK 11#1] 28291 > 443 [ACK] Seq=310 Ack=891 Win=584(
310 Application Data
310 [TCP Retransmission] 28291 > 443 [PSH, ACK] Seq=310 Ack=891 Wir
891 443 > 28291 [ACK] Seq=891 Ack=619 Win=65072 Len=0
891 [TCP Dup ACK 15#1] 443 > 28291 [ACK] Seq=891 Ack=619 Win=6507
891 Application Data
891 [TCP Retransmission] 443 > 28291 [PSH, ACK] Seq=891 Ack=619 Wir
1712 Application Data
1712 [TCP Retransmission] 443 > 28291 [PSH, ACK] Seq=1712 Ack=619 W
619 28291 > 443 [ACK] Seq=619 Ack=1781 Win=4950 Len=0
619 [TCP Dup ACK 21#1] 28291 > 443 [ACK] Seq=619 Ack=1781 Win=49¢
Who has 192.168.1.158? Tell 192.168.1.1

Figure 4.29 Public dataset benign pattern

Arrival Time Source

Oct 25, 2018 13.. 216.239.35.4 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 216.239.35.8 192.168.1.132
Oct 25, 2018 13.. 164.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 192.168.1.1 192.168.1.132

Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132

NTP.
TP
TP
TP
NTP.
TLSv1.2
TP
TP
TP
TLSv1.2
TP
TP
TP
TLSv1.2
TP
TP
TP
TLSvi.2
TP
TP
s

TP
TLSv1.2

Destinatio Protocol Length Sequence Nt Info

NTP Version 4, server
36 [TCP Keep-Alive ACK] 443 » 37653 [ACK] Seq=36 Ack=41 Win=258 Len=@
36 [TCP Keep-Alive ACK] 443 » 37653 [ACK] Seq=36 Ack=41 Win=258 Len=8
[TCP Keep-Alive ACK] 443 » 37653 [ACK] Seq-36 Ack=41 Win=258 Len-@
NTP Version 4, server
36 Application Data
71 [TCP Keep-Alive ACK] 443 » 37653 [ACK] Seq=71 Ack=80 Win=258 Len-8
71 [TCP Keep-Alive ACK] 443 » 37653 [ACK] Seq-71 Ack-80 Win-258 Len-8
71 [TCP Keep-Alive ACK] 443 » 37653 [ACK] Seq=71 Ack=88 Win=258 Len-@
71 Application Data
106 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq~106 Ack-119 Win-258 Len-0
106 [TCP Keep-Alive ACK] 443 ~ 37653 [ACK] Seqe106 Ack-119 Win-258 Len-0
106 [TCP Keep-Alive ACK] 443 -+ 37653 [ACK] Seq=106 Ack=119 Win=258 Len=0
106 Application Data
141 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq~141 Ack-158 Win-258 Len-0
141 [TCP Keep-Alive ACK] 443 = 37653 [ACK] Seq=141 Ack=-158 Win=258 Len=0
141 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=141 Ack=158 Win=258 Len=0
121 Application Data
176 [TCP Keep-Alive ACK] 443 = 37653 [ACK] Seq176 Ack=197 Win=258 Len-0
176 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=176 Ack=197 Win=258 Len=0
Standard query response 0x8031 A www2.meethue.com CNAME brands.lighting.p

w
&

176 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=176 Ack=197 Win=258 Len=0
176 Application Data

211 [TCP Keep-Alive ACK] 443 » 37653 [ACK] Seq=211 Ack=236 Win=258 Len=0
211 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=211 Ack=236 Win=258 Len=0
211 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=211 Ack=236 Win=258 Len=0

Figure 4.30 Public dataset benign pattern

Arrival Time Source
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 216.239.35.8 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 192.168.1.1 192.168.1.132

Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 104.155.18.91 192.168.1.132
Oct 25, 2018 13. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 104.155.18.91 192.168.1.132
Oct 25, 2018 13.. 216.239.35.12 192.168.1.132
Oct 5. JA1R 13 1A4.155.18.91 197.16R.1.13

TP
NTP.
TLSv1.2

TLSV1.2
TP
Tce
DNS

TP
TLsvi.2

TLsvi.2
TP
TP
NTP
TP

Destinatio Protocol Length Sequence Nt Info

36 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq-36 Ack=41 Win-258 Len-0
NTP version 4, server

36 Application Data

71 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=71 Ack=88 Win=258 Len=0

71 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq-71 Ack-88 Win-258 Len-9

71 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=71 Ack=80 Win=258 Len=0

71 Application Data

186 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=186 Ack=119 Win=258 Len=0

106 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=106 Ack=119 Win=258 Len-8

166 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=106 Ack=119 Win=258 Len=0

106 Application Data

141 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=141 Ack=158 Win=258 Len=@

121 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=141 Ack=158 Win=258 Len-@

141 [TCP Keep-Alive ACK] 443 + 37653 [ACK] Seq=141 Ack=158 Win=258 Len=@

141 Application Data

176 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=176 Ack=197 Win=258 Len=@

176 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=176 Ack=197 Win=258 Len-0
Standard query response @x0831 A www2.meethue.con CHAME brands.lighting.ph

176 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=176 Ack=197 Win-258 Len-@
176 Application Data

211 [TCP Keep-Alive ACK] 443 = 37653 [ACK] Seq=211 Ack=236 Win-258 Len-@
211 [TCP Keep-Alive ACK] 443 + 37653 [ACK] Seq=211 Ack=236 Win=258 Len=0
211 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=211 Ack=236 Win=258 Len-@
211 Application Data

246 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=246 Ack=275 Win-258 Len-@
246 [TCP Keep-Alive ACK] 443 - 37653 [ACK] Seq=246 Ack=275 Win=258 Len-8

NTP Version 4, server
246 TTCP Keen-Alfve ACK] 443 - 37653 TACK] Sen=746 Ack=775 Win=75R |en=A

Figure 4.31 Public dataset benign pattern

77

Arrival Time Source Destinatio Protocol Length Sequence Nt Info
Sep 20, 2019 01.. 192.168.1.1 192.168.1.195 SSH 106 1 Client: Encrypted packet (len-de)

Sep 20, 2019 01. 192.168.1.1 192.168.1.195 TCP 66 41 47805 » 22 (ACK] Seq 41 Ack=73 Win=465 Len=0 TSval=307672368 TSecr=38

Sep 20, 2019 1. 192.168.1.1 192.168.1.195 SSH 186 81 Cllent Encrypted packet (len=: 49)

Sep 20, 2019 ©61.. 192.168.1.1 192.168.1.195 TCP 66 121 47865 » 22 [ACK] Seq 121 Ack=217 Win=465 Len=0 TSval=307672410 TSecr=

Sep 20, 2019 ©1. 212.111.30.190 192.168.1.195 NTP 920 NTP Version 4, server

Sep 20, 2019 61. 212.111.30.190 192.168.1.195 NTP 90 NTP Version 4, server

Sep 20, 2019 01. 192.168.1.1 192.168.1.195 SSH 106 161 Client: Encrypted packet (len 49)

Sep 20, 2019 01.. 192.168.1.1 192.168.1.195 TCP 66 201 47805 - 22 [ACK] Seq 201 Ack=361 Win=465 Len=0 TSval=307678980 TSecr=

Sep 20, 2019 1. 192.168.1.1 192.168.1.195 SSH 186 201 Client: Encr‘ypted packet (1len=: 46)

Sep 20, 2019 1. 192.168.1.1 192.168.1.195 TCP 66 241 47805 » 22 [ACK] Seq 241 Ack=433 Win=465 Len=0 TSval=307678993 TSecr=

Sep 20, 2019 01. 192.168.1.1 192.168.1.195 SSH 1e6 241 Client: Encr‘ypted packet (len=49)

Sep 20, 2019 01.. 192.168.1.1 192.168.1.195 TCP 66 281 47805 » 22 [ACK] Seq=281 Ack=505 Win=465 Len=0 TSval=387679009 TSecr=

Sen 20. 72019 A1.. 192.168.1.1 192.168.1.195 SSH 196 281 (‘11Ar\f Fnrr‘vnfpd nacket (len=48)

Figure 4.32 Public dataset benign pattern
4.4.2 Attack traffic

The results from the attack flow EDA for the 3 considered attacks (TCP, UDP and ICMP) are visualized

and discussed here.

= TCPSYN: This attack takes advantage of the 3-way TCP handshake, initiating the process
without completing it. It floods the target server with SYN requests which arrive faster than
the target server can process them, thus leaving it saturated. This results in the connection
being half open as it is never acknowledged or ended. After some time of waiting without
acknowledgement from the malicious source, the target server sends a bulk of TCP reset
packets to the malicious source with the aim to wake it up to respond to the half open
requests. During this flooding process, certain network features lose their dynamic nature and
get stalled at a single state making the network pattern static. The protocol in the traffic flow
gets stalled at TCP for however long the attack runs. Figure 4.33 shows the 1%t 50 packets of
both the private and public TCP attack traffic focusing on the protocol. Comparing these to
figures 4.15 and 4.16 shows the static pattern exhibited by the protocols during the attack.
The frame number of each packet is plotted against its corresponding protocol which shows
the attack pattern of the packets over time protocol wise. Moreover, encryption protocols
(TLsv.2) that tend to be persistent in the benign traffic are nowhere to be found in the attack
traffic. The same was observed for the packet length in figure 4.34 in comparison to figures

4.17 and 4.18 where the lengths vary. The frame number of each packet is plotted against its

78

corresponding packet length to show the pattern of attack traffic in terms of packet length.
The sequence numbers also maintained a static pattern of getting stalled at 0 or 1 for all the
attack packets. The respective frame numbers are also plotted against their corresponding
sequence numbers to show the attack traffic pattern in terms of TCP sequence numbers.
These are shown in figures 4.35 as compared to figures 4.19 and 4.20 where they exhibit a
wide range of varying values. The frame numbers in the public dataset plots do not start from
the first 50 as the traffic began with benign traffic. The TCP flags were also affected as the SYN
flag became predominant as shown in figure 4.36 when compared to figures 4.21 and 4.22
where the flags vary. In figure 4.36 we can see a proportion of the TCP flags are RST because

of the target server trying to reconnect with the malicious source.

. s
0.04 0.04
002 002
= B
8 5]
9 um 2 o
=] - o]
o j
] o,
Q" -0.02
0.0z
-0.04
-0.04
o] O 1T B . 0 O T G 2 G U T o B e U B S s By
S —r S2agonm et s agoanin SEEaosNn Sn0 LoagHHe SnasBagding nn
O e e N R LR AR AR N AR RR AR R AR ARARASTYF 44599 fonfgasoftafodnofongdnsaataaadtaan A aansaaaananaaa
frame n frame no
Figure 4.33 Protocol pattern, 1st 50 packets, private dataset (left) and public dataset (right)
030
.06
025
- = 005
5 B
o £ 004
2)
FE] FTRE]
D s L
b 3
= © 007
d =3
R
0L
0.05 —_— i
tep private 200 tcp public
T T T T T T T T T T T T T T T T T T [1 1= =
SrnATne~angNnTnEra g e 1R RARANAARARARBSE DITS5ET &l o
frame no o
Figure 4.34 Packet length pattern, 1st 50 packets, private dataset (left) and public dataset (right)
—— tcp private 10] — tcp public
0.041{
E 5os
K=
0.021
]
0.6
= =]
@ 000 0]
Q o
=} [=LX]
- :
=0.02 |
g &
—0.04 |
0.0
T T AN S AR R AR AR ARRARARA AR ARRRATIITI VIR PERE i el TS NNG SN R PP R R
frame no ARAAaAAAAARRRARER ARgRA a3 AaaHAAR A AA AR HEEsEE
frame no

Figure 4.35 Sequence number pattern, 1st 50 packets, private dataset (left), public dataset (right)

79

Cehers

Figure 4.36 TCP flags proportion (private data on left and public data on right)

Figure 4.36 shows the dominance exhibited by the SYN flag during this attack. This unusual
pattern can help in attack detection as the normal traffic pattern has far less proportion of the
SYN flag. In figures 4.34 and the public dataset of 4.35 we can see that 3 packets are not
uniformly aligned as the rest of the packets. This is due to normal smart home traffic making

its way into the attack traffic, thus disruption the static pattern slightly.

UDP: This attack floods a target server with UDP packets. This in turn overwhelms the server’s
ability to process and respond to the packets and in the process denying service to legitimate
packets. The protocol and packet lengths were found to lose their varying nature as seen in
the TCPSYN attack. The packet length and protocol are plotted against their corresponding
frame numbers in both figures 4.37 and 4.38. Figure 4.37 shows the static protocol pattern
during this attack when compared to figures 4.15 and 4.16. The same is seen in figure 4.38 for
the packet lengths when compared to figures 4.17 and 4.18. The sequence numbers are
absent deviating from the normal traffic pattern of having sequence numbers frequently as
observed in figures 4.19 and 4.20 of the TCP based traffic. Another unusual pattern observed
during this attack was the absence of encryption protocols (TLsv.2) as compared to the normal

traffic pattern in figures 4.15 and 4.16 where TLsv.2 is one of the predominant protocols.

LR 2.100
2075
2050

B 2025

2.000

1975

protoc

1950

1925

1.900

Figure 4.37 Protocol pattern, 1st 50 packets, private dataset (left) and public dataset (right)

80

ﬁﬁ

(atata

—— udp private — udp public

0.0z

0.00 0.00

packet length
packet length

—0.04
0.04

Figure 4.38 Packet length pattern, 1st 50 packets, private dataset (left) and public dataset (right)

The normal TCP based traffic as we have seen tends to have frequent TCP flags like SYN, ACK,
and FIN flags. However, these flags are absent due to the UDP flood packets which deviates

from a normal TCP traffic. This can also help in attack detection.

*= ICMP: This attack overwhelms the target server with ICMP echo requests (pings). The server
tries to process each incoming packet and responds to it and in the process failing to process
legitimate packets as it is already saturated. This attack pattern is very similar to UDP attack
as sequence numbers, encryption protocols and TCP flags are also absent for the duration of
the attack. The packet length and protocol are plotted against their corresponding frame
numbers in both figures 4.39 and 4.40. The protocols in figure 4.39 and packet lengths in figure
4.40 exhibit a static pattern. Figure 4.39 shows the protocol stalled at ICMP. In figure 4.40 we
can see the packet length alternating between two lengths strictly. The echo request has a
packet length of 0.000 and a reply of 0.020 in the private dataset of figure 4.40 while it is 0.000
and 0.012 for the public data. This is due to the reply packets directed to each ping. The
incoming pings have the same length while the reply packets have the same length. This still

opposes the varying packet length nature of the normal traffic flow from figures 4.17 and 4.18.

0.04

0.021

0.00

protocol

.02

-0.04 1925

Figure 4.39 Protocol pattern, 1st 50 packets, private dataset (left) and public dataset (right)

81

o
5
8

0020 0.012
0.010
0015

0.010

0.005 V
0.000
1

0.006

0.004

0.002

yer 0.000

N

1} a
2
I
o
3

frame no

packet length
packet length

rDOOMNMTNONDAOHN
SRERRARAAAA M, RAmAASSS

Figure 4.40 Packet length pattern, 1st 50 packets, private dataset (left) and public dataset (right)

Even with the slight appearance of benign traffic amid the attack flow as observed in figures 4.34
and public dataset of 4.35, this still does not affect the predominant static effect the attack causes
to the network pattern as seen from figure 4.33 to 4.40. The EDA has clearly shown the difference
in pattern between a benign and attack traffic flow regardless of the dataset being analyzed.

Figures 4.41 to 4.52 show Wireshark captures of the attacks visualized. Figures 4.41 to 4.47 show
captures of TCP SYN attack. The protocols under the protocol column are all TCP due to the flood.
This conforms to the static pattern of the protocol in figure 4.33. The packet length under the packet
length column of figures 4.41 to 4.47 are also stalled at the same length as visualized in figure 4.34.
The TCP sequence numbers are also stalled at 0 or 1 as presented in figure 4.35. TCP flags which can
be found in figures 4.41 to 4.47 under the info column are also stalled at the SYN flag as visualized

in figure 4.36.

Arrival Time Source Destinatio

Protocol Length Sequence Number Info
19 TCP 7. 3 [

2022 13.. 92. 16 03 s)
Sep 18, 20822 13.. 192.168.0.102 55020 » 80 [SYN] Seq=@ Win=65535 Len=@ MSS=1460 WS=64 TSval=458653081 TSt

Sep 18, 20822 13.. 192.168.0.102 TCP 78 @ 55021 » 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=64 TSval=3132191595 T¢
Win=65535

Sep 18, 2022 13.. 192.168.0.102 TCP 78

8 ©

55022 » 80 [SYN] Seg

192.168.0.103 192.168.0.102

Figure 4.41 TCP SYN attack using LOIC

82

Arrival Time Source

Sep -0
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.9.103 192.
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.9.103 192.
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.0.103 192.
Sep 18, 2022 13 192.168.9.103 192.
Sep 18, 2022 13 192.168.0.103 192.
.0.103 192.

Destinatio

© 0000000 DDDDDDDO

5 330
8.027045389
o o;;) 2041
19.011400%

ISTOetS
: L RIBNALS)

041644900

YOR3wr0d
[ZIZLIYICY
508435
030036454
9, 075244444
L FLITEN]
Z.98110 3;:
10016
105737049
107924824

10eiae2 14

17004

78539%

14587
108157875

13

Protocol Length Sequence Number

Info

De tio
55366 » 8@
55367 -» 8@
55368 » 80
55369 » 80
55370 - 8@
55371 -» 8@
55372 » 8@
55373 » 80
55374 » 8@
55375 » 80
55376 » 80
55377 -» 8@
55378 » 8@
55379 » 8@
55380 » 80
55381 » 80
55382 - 8@

[T T T R T T Y T T T I I I B)

®

il
g

w i
o I
B3

+ Il
5 e

®

55383 » 80

[SYN]
[SYN]
[SYN]
[SYN]
[SYN]
[SYN]
[SYN]
[s¥N]
[s¥n]
[SYN]
[SYN]
[S¥N]
[s¥N]
[s¥n]
[SYN]
[SYN]
[SYN]

[s

ijr

Seqg=0
Seq=0
Seq=0
Seq=0
Seq=@
Seg=0
Seq=0
Seq=0
Seq=0
Seq=0
Seq=0
Seq=0
Seg=0
Seq=0
Seq=0
Seq=0

Seq=0

Seq=0 Win=65535 Len=0

Win=65535 Len=0
Win=65535 Len=0
Win=65535 Len=@
Win=65535 Len=0
Win=65535 Len=0
Win=65535 Len=0
Win=65535 Len=@
Win=65535 Len=0
Win=65535 Len=0
Win=65535 Len=0
Win=65535 Len=@
Win=65535 Len=0
Win=65535 Len=0
Win=65535 Len=0
Win=65535 Len=0
Win=65535 Len=0
Win=65535 Len=@

Win=65535 Len=

ooe>] Se9=1 Win3312 Lenze

49508 | <Nor

vl
Av“u
Ay)‘ﬁ
4000
436564
0
& porpat
4y
43008
43008
FRz0a)
avoes |«
4yess | <wone

49008 | <Wone>

43008 [<None

45008 [«

F32I0]

- 4y008

43053

4008

s

iz}

FERI=Y

49009

Figure 4.43 TCP SYN attack using Hping3

$1 WinsS12 Lenso

MS5=1460
MSS=1460
MSS=1460
MS5=1460
MS5=1468
MSS=1460
MSS=1460
MS5=1460
MS5=1468
MS5=1460
MSS5=1460
MSS=1460
MS5=1468
MS5=1460
MS5=1468
MS5=1460
MSS5=1460

MSS=1460

MSS5=1460

WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64
WS=64

WS=64 1

WS=64 1

83

Figure 4.48 and 4.49 show Wireshark captures of UDP flood attack. The protocols under the protocol
column are stalled at UDP as shown in figure 4.37. The packet length is also stalled on the same
number all through as presented in figure 4.38.

Figures 4.50 to 4.52 show the Wireshark captures of ICMP flood attack. The protocols under the
protocol columns are all stalled at ICMP as presented in figure 4.39. The packet length in figures 4.50
and 4.51 are stalled at 2 lengths as one is for the request while the other is for reply as shown in
figure 4.40. However, the packet length in figure 4.52 is just a single length of 42 which is the echo

request length as no replies are received.

234.763539 192.168.1.198 156.2.206.170 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763542 192.168.1.198 156.213.134.69 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763544 192.168.1.198 197.25.194.39 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763547 192.168.1.198 41.250.93.208 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763549 192.168.1.198 197.249.120.60 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763552 192.168.1.198 197.38.63.146 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0

234.76377 192.168.1.198 156.57.227.84 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763776 192.168.1.198 197.24.96.180 TCP 60 024360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763782 192.168.1.198 41.221.209.61 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763784 192.168.1.198 197.137.153.159 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763786 192.168.1.198 41.74.2.41 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763789 192.168.1.198 41.53.84.70 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763792 192.168.1.198 197.51.232.206 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763794 192.168.1.198 41.187.250.130 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763797 192.168.1.198 41.38.215.251 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.763799 192.168.1.198 156.162.217.241TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.764026 192.168.1.198 41.195.190.140 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.764029 192.168.1.198 197.49.155.126 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.764032 192.168.1.198 197.143.149.60 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.764034 192.168.1.198 156.86.168.133 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.764037 192.168.1.198 41.240.197.50 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.764042 192.168.1.198 41.180.116.83 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.764045 192.168.1.198 41.15.92.125 TCP 60 0 24360 > 37215 [SYN] Seq=0 Win=14912 Len=0
234.764047 192.168.1.198 156.140.61.142 TCP 60 024360 > 37215 [SYN] Seq=0 Win=14912 Len=0

Figure 4.44 TCPSYN Public dataset using Ostinato

59.22851 192.168.100.149 192.168.100.3 TCP 154 0 10525 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22851 192.168.100.149 192.168.100.3 TCP 154 0 10530 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22851 192.168.100.149 192.168.100.3 TCP 154 010531 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22852 192.168.100.149 192.168.100.3 TCP 154 0 10534 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22852 192.168.100.149 192.168.100.3 TCP 154 0 10535 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22852 192.168.100.149 192.168.100.3 TCP 154 0 10536 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22852 192.168.100.149 192.168.100.3 TCP 154 0 10537 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22852 192.168.100.149 192.168.100.3 TCP 154 0 10540 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22852 192.168.100.149 192.168.100.3 TCP 154 0 10541 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22853 192.168.100.149 192.168.100.3 TCP 154 0 10546 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22853 192.168.100.149 192.168.100.3 TCP 154 0 10547 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22853 192.168.100.149 192.168.100.3 TCP 154 010550 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22853 192.168.100.149 192.168.100.3 TCP 154 0 10551 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22853 192.168.100.149 192.168.100.3 TCP 154 0 10552 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22853 192.168.100.149 192.168.100.3 TCP 154 0 10553 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22854 192.168.100.149 192.168.100.3 TCP 154 0 10556 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22854 192.168.100.149 192.168.100.3 TCP 154 0 10557 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22854 192.168.100.149 192.168.100.3 TCP 154 0 10562 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22854 192.168.100.149 192.168.100.3 TCP 154 0 10563 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22854 192.168.100.149 192.168.100.3 TCP 154 0 10566 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22854 192.168.100.149 192.168.100.3 TCP 154 0 10567 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22854 192.168.100.149 192.168.100.3 TCP 154 0 10568 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22855 192.168.100.149 192.168.100.3 TCP 154 0 10569 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:
59.22855 192.168.100.149 192.168.100.3 TCP 154 0 10572 > 80 [SYN] Seq=0 Win=512 Len=100 [TCP:

Figure 4.45 TCP SYN public dataset using Ostinato

84

59.22851 192.168.100.149
59.22851 192.168.100.149
59.22851 192.168.100.149
59.22852 192.168.100.149
59.22852 192.168.100.149
59.22852 192.168.100.149
59.22852 192.168.100.149
59.22852 192.168.100.149
59.22852 192.168.100.149
59.22853 192.168.100.149
59.22853 192.168.100.149
59.22853 192.168.100.149
59.22853 192.168.100.149
59.22853 192.168.100.149
59.22853 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22855 192.168.100.149
59.22855 192.168.100.149

192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3

TCP
TCP
TEP
TCP
TCP
TCP
TCP
TEP
Tep
TCP
TCP
TEP
TCP
TCP
TCP
TCP
TCP
TCP
TEP
TEPR
TCP
TCP
TEP
TEP

154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154

0 10525
0 10530
0 10531
0 10534
0 10535
0 10536
0 10537
0 10540
0 10541
0 10546
0 10547
0 10550
0 10551
0 10552
0 10553
0 10556
0 10557
0 10562
0 10563
0 10566
0 10567
0 10568
0 10569
0 10572

VIVIVIVIVIVIVIVIVIVIVIVIVIV IV VIV |VIVI|V| VIV V|V

80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP:

Figure 4.46 TCP SYN public dataset using Ostinato

59.22851 192.168.100.149
59.22851 192.168.100.149
59.22851 192.168.100.149
59.22852 192.168.100.149
59.22852 192.168.100.149
59.22852 192.168.100.149
59.22852 192.168.100.149
59.22852 192.168.100.149
59.22852 192.168.100.149
59.22853 192.168.100.149
59.22853 192.168.100.149
59.22853 192.168.100.149
59.22853 192.168.100.149
59.22853 192.168.100.149
59.22853 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22854 192.168.100.149
59.22855 192.168.100.149
59.22855 192.168.100.149

192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3
192.168.100.3

TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TEP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TEPR
TCP
TCP
TCP
TEP
TEP

154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154

0 10525
0 10530
0 10531
0 10534
0 10535
0 10536
0 10537
0 10540
0 10541
0 10546
0 10547
0 10550
0 10551
0 10552
0 10553
0 10556
0 10557
0 10562
0 10563
0 10566
0 10567
0 10568
0 10569
0 10572

VIVIVIVIVIVIVIVIVIVIVIVIVIVIVIV|IVIVIV|V|V|V | |V|V

80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP:
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP
80 [SYN] Seq=0 Win=512 Len=100 [TCP

Figure 4.47 TCP SYN public dataset using Ostinato

85

18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,
18,

2449 18,
2470 18,
2471 18,
2472 10,
2473 18,

2470 18,
477 18,
2478 18
2479 10,
2480 16,
441 18,
2482 18.
2483 18
2484 18,
24885 18,
3480 18,
2487 18,
24438 18,
2400 10,
2490 18,
2491 18,
2492 10.
2493 18,
2404 18,
2495 18,
2490 10,
2007 18,
2490 18
2499 18,
2600 16,
001 18
2502 18.
23403 18
2504 18,
2045 18,
3240 18,
2587 18.
2080 18,
2580 18,
2510 1.
2911 18,
%12 18,
2513 18,
235418,
2815 18,
310 18,
J5iT 18,
2510 10
2510 18,
2520 16,
3821 18,
2522 18.
2523 18,

2022 ..
202205
2022 ..
2022 ..
2022 ..
2022 ..
2022 ..
202205
2022 ..
202205
2022 ..
2022 ..
2022 ..
2022 ..
2022 ..
202205
2022 ..
2022 ..
202205
2022 ..
202205
2022 ..
2022 ..
2022 ..
2022 ..
2022 ..
2022 ..
2022 ..
2022 ..
2022 ..

18383308 10
00633 10
00074372 10
7050k 10

2MaTsa1e 10,
L TA8ET6815 10

M2300i13 10
a3T0054 30
18897905 10
08013 10
26705108 10
IATEM07RS 10
09533547 10
DAUTETE 10

9105003 18,

23T 10
W0119727T% 30

33401848 0.

MWLe9722) W0
305153948 10
Woware 10
Jemizeane 10
sesTed11 10
HNeemae 19
nereas? 10
5ressise 10
MSN 10
520334440 120
321311588 10
32243000 0
3300864 10
ome; 0
2504307 10
217 W0

327305728 1.

2883418 10
nge7 0

33013814 0.

B223159¢ 10
3410008 10
235526308 10
3oiaMm3r 0
000140 10
BT45M6T 10
0002?10
sense 10
030487 10
3408375631 10
12918 10
32000707 10
MO 10
MMT30s 10
MosTEIOE 20
JMTI0L125 10

392
192.
192.
3925
392°
192.
3927
192.
192.
92
192.
3927
3927
192.
392
192.
192.
392
392°
192.
192.
192.
192
392
192.
3927
392
192.
192.
392°

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

R R Y Y R R R R R,
D B T I R T T PR SR e
.
<}

0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103
0.103

192.
192
192
9t
192
192.
192.
192
1920
192.
192
192.
192
192.
399
192
192.
192.
192
1920
192.
192
1920
192.
192
9
192
192.
192
921

Figure 4.48 UDP attack using Hping3

168.
168.

168

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

168

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

Figure 4.49 UDP attack using Hping3

-102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
.102

£
ssssscsssssssssssnas:

®ssssesssessessssssssssscsssssssse

ubp
ubp
ubp
ubp
ubp
ubp
ubp
ubp
ubpP
ubp
ubp
ubp
ubp
ubp
ubp
ubp
ubp
ubp
ubp
ubpP
ubp
ubp
ubp
ubp
ubp
ubp
ubp
ubp
ubp
ubp

GI8R88R838 8000090303902 03803830820090328890888888383438

60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60

4020
a63?
4028
a6
403e
4851
a2
4833
4632
4635
4030
Aoa7
4038
4639
4640
4041
4642
4643
4644
4043
4640
Asar
464dn
1649
4630
4051
A052
4633
4652
Aoss
4656
A7
Apsy
4639

4081
4662
4083
anes
4083
1000
Aoe?
40e8
1669
400
4071
4672
4673
4674
Ll
4670
A7
4678
4679

- 40278
. 49278
A9278
- 49278
« 49278
- 49275
- 49275
ARzrs
- 49275
49278
- 49275
49275
40278
- 49275
49275
- 4927%
« 49275
. 40275
- 49278
49378
- 49278
. 49778
A0278
- 49278
. 40278
- 49275
-« 49275
A0S
- 49278
49278
- 49275
49278
- 40278
- 49275
49275
- 49278
« 49275
-~ 49278
- 4927%
49378
- 40278
. 49778
49278
- 42278
. 40278
- 49275
-« 49275
A0S
- 49278
49278
- 49275
49275
- 40278
- 49275

56115
63029
54608
62667
51586
56539
58545
53663
64811
54894
60955
56051
60955
54894
64811
53663
58545
56539
51586
62667
54608
63029
56115
52931
53639
56599
65231
53211
60300
56252

Lenza
Lenve
Lensa
Len=t
Len-d
Len=9
Lensd
Len<a
Len=2
Len 9
Len=e
Len=9
Len-a
Len=9
Lenrg
Len=a
Lenh
Lene@
Len=3
Lenvd
Lenza
Lenve
Lansa
Len=8
Lend
Len=9
Lentd
Len<y
Len=e
Lened
Len=g
Len=9
Len-a
Len=g
[
Len=a
Len$
Len-@
Len=3
Lol
Lenza
Lenve
Lensa
Len=8
Len-d
Len=9
Lend
Lensa
Len=2
Lend
Len=g
Lenrd

80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80

L2 2 2 N N R N T R NN ZN R RN ZNE N N R JRE JNE N JN R TN ZR JR R TR R SR 2

Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4
Len=4

86

Arrival Time Source Destination Protocol Length Sequence Number Info

Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=ex0ee1,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 IcMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 IcMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.6.102 ICMP 60 Echo (ping) request id=0x@001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.6.103 ICMP 64 Echo (ping) reply id=0x@@01,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=ex0ee1,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=ex0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 IcMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 IcMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.6.102 ICMP 60 Echo (ping) request id=0x@001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x@@01,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x@001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 IcMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.6.103 ICMP 64 Echo (ping) reply id=0x@@01,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.6.103 ICMP 64 Echo (ping) reply id=0x@@01,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x@@01,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x@001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,

Figure 4.50 ICMP attack using LOIC

Arrival Time Source Destination Protocol Length Sequence Number Info

Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 IcMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 IcMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x@001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 IcMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.6.103 ICMP 64 Echo (ping) reply id=0x@ee1,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.6.103 ICMP 64 Echo (ping) reply id=0x@@01,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x@@01,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0xeee1,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 IcMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 IcMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0e01,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 ICMP 64 Echo (ping) reply id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.103 192.168.0.102 ICMP 60 Echo (ping) request id=0x0001,
Sep 18, 2022 13:57.. 192.168.0.102 192.168.0.103 IcMP 64 Echo (ping) reply id=0x0001,

Figure 4.51 ICMP attack using LOIC

87

c
L3103 le J 42 tche
L1083 1O 42 Eco
(103 IO 42 Echo
L1023 TOw 42 fcho 1d+@xbedd,
103 ple 4 42 tcho 10+0vbed9,
.103 10w 42 teho 16:0xbedy,
103 1t 42 Echo 10=0sbed9,
102 1o 42 Echo 10 0xbedd,
103 ow 42 tcho 1d+Qxbed9,
.103 e 42 tche 1040xbedd,
103 ow 42 tche 18:0abedy,
103 1Cnp &2 Ecw 10:8sbed9 |
103 10w 42 icho] 1d*@xbed9
102 o 42 tcho 10+0xbed9,
.103 i 4 42 tcho 18:0abed9,
.103 1o 42 tcho 1030abedy,
183 10w 42 Echo 10:0xbed9 |
<103 e 42 Echo 19:@abed9,
103 O 42 tcho 1d+0abed9
.103 0% 42 tcho 18:0xbed,
.103 1Oow 42 Echo 10:0abedd,
.103 1Ow 42 €cho L0z8xbed9
103 10w 42 Echo 18*@xbedd,
302 10 42 fcho 18+0abed9,
103 oW 42 tcho 10+0xbed9,
103 10w 42 tcho L0:0abedy,
L 1O 42 Eco 10=8sbed9 |
102 1O 42 Echo 10-0sbed9,
L4103 1o 42 fcho 1d+Qxbedy,
.103 1o 42 tcho 1g:01bedy,
L3103 e 42 Echo 16:0xbed9,
L1083 10w 42 Eco 10:0ubedy,
103 1w 42 Echo 1970xbed9,
102 10 42 fcho 1d*Qxbed9,
.103 oW 42 tcho 18:0bed9,
.103 1o 42 e L8:0abedy,
L1063 10w 42 Echo 10:0xbedd |
103 1O 42 Echo 1o 0abedd,
103 o 42 fcho 1d+*Qxbedy,
L3103 10w 42 tche 1040abedd,
103 ow 42 Echo 16:0xbedy,
103 10w 42 Eco 10:8xbed9
.103 Onp 42 Echo 1070xbed9,
.103 1o &2 tcho 10*0xbed9,
103 ow 42 tcho 1840abedy,
.103 le J 42 toho
L2103 IO 42 Echo
103 1Cp &2 Echo 10 @xbedd,
L1023 1o 42 fcho 18+0xbed9,
103 0% 42 tcho 18:0xbed,
.103 o 42 tcho 16:0xbedy,
103 10w 42 Echo 10=8xbedd,

15 192.188.
15 192,148,
15 192,148
1% 192.1¢8,
15 192.188.
15 192,148,
15 192,148,
15 192.148
15 192,140,
1% 192.188.
15 192,188
15 192,148
15 192.148
1% 192,140
15 192.188.
15 192,188,
15 192,148
15 192,148
15 192.160
15 192.188.
15 192.188.
15 192,148
1% 192.148
1% 192,160
15 192.148.
15 192.148.
192,148,
15 192,148
1% 192.144.
13 192.168.
15 192.188.
15 192,148,
15 192.148
15 192,160,
15 192.188.
15 192,168,
15 192.148.
15 192.148
1% 192.1¢60
s 192,168,
15 192.168.
15 192.148
1% 192,148
1% 192.1¢0
15 192.168.
15 192,168
15 192.148
15 192.148
1% 192. 140
15 192.1¢8
15 192.168.
A5 192,148,

1993, 119.801084374 10,
1593 119 401151841 18,
1593, 119, 801240283 18,
15592 119. 801206705 10,
15993, 119.801423%01 10,
1593, 119, 601513155 10,
1593, 119, 501000109 19,
19593, 119, 501087408 10,
1593 119. 801775306 19,
1393 119.801870%05 10,
1593 119.401957145 10.
1593 119, 402044959 10,
1593, 119, 402137411 19
1593 119, 802227244 19,
15993, 119.402310071 10.
1593, 119. 802400854 10,
1553, 119, 402493212 16
1593, 119, 402500604 19
1503 119, 802717200 18,
1593 119.4802819795 10,
1593, 119. 402007751 10.
1593, 119, 863014100 10,
1593, 119, 803192495 19
1993, 119. 800100004 10
1593 119.400301709 10.
1593 119.400393079 10.
1593, 119, 463430843 19,
1593 119. 800572291 19,
1593, 119, 800040102 10,
15993, 119.80074T460 10.
1593, 119. 803538359 10,
1593, 119, 403925827 18,
1593, 119, 803029956 18,
1593 119.80411970% 10,
1593, 119.404200295 10.
1993, 119, 404295205 10,
1593 119, 602536735 18,
1593, 119, 804400740 10,
1593 119. 6043406020 10,
1593 119. 804031004 10,
1593, 119. 40730841 10,
1594, 119403822441 10,
1594, 110, 4000 10
1994 110. 805000362 10,
1594, 119.405100028 10.
1994, 119.405188459 10,
1594, 119. 405281353 10,
1994, 110, . 4050010% 10
2504, 119. 805457102 19,
1994 119.805544270 10,
1594, 119. 805034039 10.
1594, 119, 806722430 10,

0000000000000 0000000000000000RCO0DOOODORROODRBODDOO
NNNNNNNNNNNNNNNNNNNNNNNYSNNNYNNYNNNNNNNNNNYNNNN NSNS NN
e
>
P 000000000 000000000000000000000000200000000000000000

Figure 4.52 ICMP attack using Hping3
4.5 Proposed novel detection method
The proposed detection mechanism takes into consideration three characteristics of IoT traffic as a
benchmark for DDos traffic identification as derived from the EDA. These characteristics are often
neglected when it comes to DDoS detection. They are:

» Feature randomness: From the EDA we can observe that certain network features like
protocol, packet length and sequence numbers have a dynamic property. They tend to be
randomized as opposed to the static nature they exhibit during a DDoS attack as seen from
the attack EDA and Wireshark captures. For instance, when you take a window of 20 packets,
you sometimes find the protocols changing after every three to four packets. The sequence
number also varies in most cases for each packet having an incremental value. The packet
length exhibits the same property of varying lengths every few packets. TCP flags also fall in
this category as a normal TCP flow contains varying flags (SYN, SYN+ACK, ACK, FIN+ACK) as
opposed to the single flag exhibited during attacks like TCPSYN flood. Lack of this dynamic

pattern exhibited by these features in the smart home traffic flow should raise flags.

88

> Absent features: To identify or detect an attack, we should change the narrative from only
focusing on the statistics or behaviour of present network features. Rather, features that are
normally meant to be present but for some reason are absent for a prolonged period or
certain threshold of packets should be a point of concern. For example, the normal network
flow we have observed in the EDA tends to have a continuous flow of sequence numbers, as
they are required for majority of the packets. However, during a UDP or ICMP attack, the
sequence numbers are absent as these two protocols are not sequence number carriers
naturally. A prolonged exhibition of this absence should raise a flag in a TCP based network or
traffic. The same rule applies to missing encryption protocols in the traffic flow. For smart
home devices that make use of encryption protocols like the TLSv.2 from the benign EDA, this
protocol is persistent whenever a TCP connection is established. However, in the attacks
within the scope of this research, this encryption protocol appears to be absent as attacks of
this sort do not carry encryption protocols normally. As mentioned earlier, a complete
established TCP flow carries several TCP flags. Having completely absent or some missing flags
in a flow should raise concern as this is a common characteristic of flooding attacks. This shows
that focusing on the missing features can also aid in identifying a malicious traffic flow. This
should be an important avenue to consider for a more effective approach of attack detection.
> Feature range: Another important neglected point in DDoS identification is the range in which
some features normally fall into. If we look at the sequence number range for the benign
smart home traffic, we see the values are mostly double, triple, or quadruple digits with a few
single digits of 0’s and 1’s at the beginning of a flow. This pattern contrasts with an attack flow
within the scope of this research which carries only single digits of sequence numbers of just

0’s orl’s for all the packets as seen in the Wireshark captures provided.

After considering the points above, a DDoS traffic detection approach is presented. The network
features considered in this proposed approach were found to be simultaneously affected during an
attack. This means the packet lengths, sequence numbers, protocols and TCP flags all lost their
variance at the very onset of an attack by exhibiting a static pattern as well as missing encryption
protocols or sequence numbers in some cases. This new approach is composed of the following

processes and sub processes to be implemented at the gateway of the network:

= Define target address: The target IP/MAC address of the device is set here.

= Specify flow direction: The desired flow direction of packets is specified. For instance,
incoming/outgoing or bidirectional. However, for a lighter weight detection module with
clearer variance and less redundancy during the flow, a single direction of flow is advised being

incoming traffic to the specified device

89

Set threshold/ time window: A cumulative sum of packets on which the subsequent checks
will be carried out is set. This can be capped at every 20 packets or what best suits the type of
network. Alternatively, a time window of some seconds or minutes can be used here for
instance the n number of packets after every 60 seconds.

Network feature checks: This is where feature presence, absence and variance are inspected,
after which a decision is made of the pattern being malicious or not. This is done for the
following network components:

Protocol & Packet length: The protocol and packet length variance for the specified number
of packets are checked. If the ratio of the various protocols and lengths present are balanced,
then this is passed. However, if the ratio is found to be imbalanced like one protocol being
present thorough out or the same value of length for all packets or majority of the packets,
then is also logged. However, this is not objective as this must be tested first to confirm what
ratios work.

TCP Sequence number: The sequence number is first checked for presence or absence. If
absent, this is logged. If present, variance, and range are checked. If the variance ratio is
imbalanced or majority of packets have the same value of sequence number as are attacks
within the scope of this research, this is logged. The range is also checked. If the values are all
single digits of either O’s or 1’s or both, this is also logged. Alternatively, if the range of values
is incremental or maintains values with multiple digits, then this is passed. This is limited to
TCP based network as mentioned in the scope of this research.

Encryption & TCP flags: The presence or absence of encryption protocols and TCP flags are
checked. If found absent for all packets, this is logged. On the other hand, if found present,
this goes through a balance check. If found to be evenly distributed, this is passed. On the
contrary if it is found to be highly uneven, this is logged. For example, with the SYN flag being

predominant or completely dominant.

For a malicious pattern to be detected a minimum of 3 logged features must take place to avoid false

positives. Moreover, the fact that these listed components get affected simultaneously during an

attack makes it more likely for all components to be logged during an attack. For instance, a TCPSYN

attack will log absence of encryption, imbalanced sequence number, imbalanced packet length,

imbalanced protocol, and imbalanced TCP flags with the SYN flag predominant. On the other hand, a

UDP or ICMP attack will log an absence of sequence numbers, absence of TCP flags, absence of

encryption, imbalanced protocol, and an imbalanced packet length.

90

4.6 Comparison to literature and new contributions

The previous section has proposed an approach for DDoS flooding attack detection. This section

moves to compare the proposed approach to literature based on several factors. It also highlights the

contributions made in this chapter. It discusses how some aspects in literature have been improved

and the novel contributions made.

As this the proposed approach is theoretical, which has not been implemented and tested, the factors

used in this comparison are limited to technique, methodology and practicality among others rather

than performance related factors. After implementation and testing performance related

comparisons are made in the next chapter. The factors considered as a baseline for comparison here

are five in number. These are as follows:

«» Data analysis: The method used to analyse the traffic or dataset.

% Centric: Is the solution attack, user, or device centric?

% Technique: The detection technique used like machine learning or algorithm based.

«* Features: Network features used and biased features that could favour performance.

+* Practicality: How feasible and light weight is the solution. What are the down sides?

Table 4.2 shows this comparison citing each paper and evaluating it against the above listed factors.

Technique

Features

Table 4.2 Comparison details

Data analysis

Centric

Practicality

Data source

Attacks

covered

Algorithm
based.
Learns
sequential
user
behaviour
to detect
anomalies

Rule based
algorithm.
Uses
Device
Usage
Description
(DUD)
model for
device
behaviour
and flow
rules
extraction
to detect
attacks.

Machine
learning
based DNS

Conditions
(temperature,
humidity,
noise),
behaviours
(operating
devices like
opening fridge,
Tv On)

User

Communication
direction,
Destination IP,
port, protocol,
interarrival
time of packets,
number of
packets over
time, packet
sequence (7)

DNS packets (1)

No comparison
or analysis of
data in normal
and anomalous
moments. Lack
of visual dataset
representations.

Lack of
sufficient
graphs. Only
one visual
showing
number of
exchanged
packets.
Presented what
normal data
looks like,
however
nothing about
what attack
data looks like
or visual
comparison.
Data analysed
and visualized
showing

Solution tends

to be user
centric as
sequential user
behaviour is
being learned
prior to
anomaly

detection.

Solution tends
to be device

and user
centric. It's
limited to
Samsung
Smartthings.
Solution
depends on
extracting
device
behaviours
which is also

dependant on
user behaviours
in some cases.

Solution is
attack centric as

Having to learn each
user behaviour does
not seem practical in

bigger
environments.
Having multiple

users in the same
place can also raise
performance
problems.

Due to the need for
having to extract
and train or learn
each devices pattern
this is not practical
in large scale
environments.
Training time too
will be a hassle as
each device will
have to go through
training for a period.

Solution attack

centric.

Real
devices

Private
network.

Private
network

lot

Anomalous
behaviours
or events

UDP, SYN,
ACK, HTTP,
DNS Flood

DNS
spoofing

91

[79]

[87]

botnet
detection.

Counter
based
DDoS
attack
detection
using SDN.

Machine
learning
based
DDoS
detection
using
stateful
and
stateless
network
features.
Using
Wireshark
to identify
TCPSYN
attack

Entropy-
based
DoS/DDoS
detection
system

ML based
DDoS
detection
through
network
traffic
analysis.

A
supervised
based IDS
for
anomaly
detection.

Algorithm
based
solution.

number of flow
entries, similar
payload packet
count, number
of sent and
received
packets on each
node, power
ratio of each
node, in/out
traffic load and
session IP
counter
Packet
protocol,
interarrival
time,
bandwidth, IP
destination
address (5)

size,

Request/reply

packet count,
SYN & ACK flag
count, average

packet per
second,
average packet
size, average
bytes of
captured

traffic, number
of packets, time
span (7)
source/
destination IP
addresses
coupled with
their respective
port numbers
and protocols

Selected
network
features not
mentioned.
121 network
features.
Data rate,
packet length,
average time

differences in
normal and
attack data.
Attack
normal
patterns
analysed
visualizing
differences

and
data

Dataset used
analysed
visualizing
differences in
attack and

normal data.

Raw attack data
Wireshark
screen
provided.
However, no
visual

shots

comparison
with normal
traffic.

Only entropy for
attack data is
visualized
leaving out the
normal data
pattern.

Dataset used
not analysed
with no visual
comparison
between normal
and attack
patterns.
Dataset used
not analysed to
show attack and
benign patterns.

Data used has
not been
analysed or

it only covers
DNS attacks.

Attacks covered

and their
collection
details not
provided.

Only 3 attacks
covered.

TCPSYN attack
centric as only
this attack s
analysed.

Attacks covered

limited to
TCPSYN and
UDP attacks.

Attacks covered
not mentioned.

Covers
reconnaissance,
spoofing,
replay, MITM
and DoS/DDoS
(TCP, UDP,
Hello flood)
attacks

No mention of
dataset used or
how it was

Due to the intricacy
of processing these
metrics, it results in
high detection time
and processing
power.

Public data has not

been used for
validation.
No detection

module in place

If an attack starts at
the very beginning
of this window, then
no entropy is
calculated as no

prior variation to
compare with s
present, thus the

failure to detect the
attack

Lack of sufficient
data analysis and
some important

details missing like
features selected
and attacks covered.

Single packet
inspection approach
used which is time
and resource
consuming as
dealing with each
packet for feature
extraction and
classification takes
significant time and
processing power.
The proposed
algorithm was not
presented as well as

Simulation DDoS (not
using SDN. specified)
Simulation TCP SYN
Simulation TCP, UDP
using SDN

Simulation TCP SYN,
using Hping3, UDP, HTTP
Golden eye.

Real loT TCP, UDP,
devices. HELLO

Kali used. flood.
Simulation. DDoS (not
Wireshark specified)
used.

92

Applies a between compared collected. the type of attacks

limit to requests and visually. Attacks covered covered in the
network responses, also not paper which makes
parameters port, protocol mentioned. it difficult to
which if (6) reconstruct and
exceeded validate.
flags an
attack.
Machine 29 features of Statistical data Device centric Metrics used were BoTloT Botnet
learning BoTloT dataset. provided due to metrics limited to packet dataset. attacks.
based 8 features were showing used for count over time, Python
solution to selected to difference in detection. which might hinder libraries used.
detect train model. attack and the accuracy of
botnets. benign data. detection
However, no
visualization
provided

From reviewed literature, there have been numerous contributions in terms of DDoS detection in
smart home networks and loT at large. Nevertheless, there are still gaps in the approach relating to
better and improved methods of DDoS traffic identification. There is lack of detailed analysis and visual
comparison of attack and benign traffic patterns. Some solutions make use of simulated data [108]
[109] [110] [111] [112] [113], which might hinder the accuracy when deployed in real life scenarios. In
addition, some of the approaches used are not very practical or feasible in some scenarios. For
example, using the single packet inspection method to determine if it’s malicious or benign. This not
only is time and resource consuming, but a less effective way of identifying DDoS patterns. This is due
to DDoS flooding attacks being volume based, thus will need a volume based or cumulative approach
to determine an attack pattern as opposed to the single packet approach. The approach of employing
sequential user behaviour or Device Usage Description model (DUD) is not very practical as the former
will raise false positives when there is slight change in user pattern while the latter is not practical in
large scale scenarios as it’s a device centric solution and not a generalized one. There is also the issue
of using biased network features in detection like IP addresses and port numbers which are device
specific. This tends to favour the performance of the detection approach to the very scenario in
guestion, thus making the solution user or device centric. Some detection approaches also use too
many features which is time and resource consuming and leads to very significant overheads. This is
due to the intricacy of processing these metrics as it results in high detection time and consumes a lot

of processing power.

The network features used as a basis for detection gives this approach a generalized edge in terms of
not being device, user or attack centric as seen in related works. This is due to all detection metrics
being derived from general network characteristics shared by loT devices. The various checks
incorporated in this approach gives it the robust edge when dealing with the detection of several kinds
of attacks. This is not only limited to the attacks covered here, but other attacks with similar

propagation pattern to the ones covered like NTP, ARP and DNS flooding attacks.

93

The entropy or variance of the detection metrics is not calculated in real time based on the network
statistics. Rather, a set of rules and conditions are used to identify an attack traffic. This will handle
the failure in detection experienced by some approaches as seen in the related works when an attack
starts at the very beginning of a set window. This is because no prior variance or entropy statistics are
available to compare the current attacks entropy to. As a result, this approach does not rely on prior

real time network statistics.

This approach is also light weight in terms of time and resource consumption as the flexibility to
monitor a single flow direction (incoming traffic to target device) is possible. This results in clearer and
less redundant variance statistics as opposed to a bidirectional flow (incoming/outgoing) which might
hinder the clarity of the variance and carry redundant statistics like protocols, lengths, Flags, and

sequence numbers.

This approach also eliminated the use of certain network features that can result in higher rates of
false positives/negatives. For instance, the use of incoming/ outgoing distribution will raise a false
negative for attacks like ICMP flooding. This is due to the nature of the attack traffic whereby majority
of the echo requests have a paired reply packet from the target, thus making the incoming/ outgoing
ratio evenly distributed. Same applies to the use of source IP addresses and port numbers in highly
distributed attack scenarios where the source IP’s and ports are spoofed. Moreover, IP addresses and
ports tend to bring about biases especially in Machine Learning domains as they are specific to each

scenario.

This approach can be incorporated into areas like Data visualization tools, Intrusion Detection System
(IDS), Software Defined Network (SDN) & Machine Learning for better DDoS detection. The proposed
network features used as detection metrics can be integrated into data visualisation tools and IDS.
This will provide clearer low-level statistics as to how the network is deviating from its normal pattern
during an attack. These features can also be defined as flow rules and conditions at the SDN gateway
coupled with the appropriate mitigation measure in the case of a detected attack. The visualised EDA
images can also be trained on a Convolutional Neural Network (CNN) using ResNet, as deep learning
models especially CNN achieved high significance due to their outstanding performance in the image

processing field.

4.7 Summary
This paper has carried out an EDA on collected smart home data, comparing the behavioral pattern of

certain network features in a benign and DDoS attack flow. The same results have been derived for
both privately collected data and public datasets. Based on the EDA results, a novel DDoS detection

approach has been proposed which is neither user, attack nor device centric as it is applicable to loT

94

devices in general and a variety of DDoS flooding attacks. The detection model is based on the
observed general network behavior of the smart home devices. These include feature variance, absent
features and feature range which tend to be neglected in attack detection as observed from related
works. The narrative needs to be changed from only focusing on present network feature statistics to
detect attacks, rather features that are normally present but tend to be absent for a prolonged period
also contribute to rapid attack detection as seen in this paper. However, this proposed approach relies
heavily on the static nature of DDoS attack traffic and as such, low stealth DDoS attacks that exhibit a
dynamic nature are not detected by this approach. The approach also detects a DDoS pattern at a
certain threshold of packets which if not reached will fail to detect an attack. However, the
overwhelming nature of the attack traffic always tends to go way above the threshold. As this

detection method has not been implemented and tested, the next chapter covers this.

95

Chapter 5

A Novel Hybrid DDoS attack Detection and attack type indication
system in the Smart Home Network

5.1 Introduction
The previous chapter proposed a novel approach to DDoS identification in the smart home traffic

based on some observations derived from the Exploratory Data Analysis (EDA). This chapter
implements a detection and attack type indication system based on the EDA observations which were
majorly categorized into three conditions (Feature absence, Feature range, Feature randomness). The
main goal is to have a detection and attack type indication solution that is light weight, practical, not
attack, user nor device centric which works on several flooding attacks. In addition to that this solution
is required to flag the covered attacks at the very onset to avoid the intended damage as the attack
will be contained or thwarted in time. These conditions which the solution is based on are translated
into an algorithm that will flag attack traffic in a pool of benign traffic and further indicate the type of
attack. This solution is first tested on 3 flooding attacks (TCP SYN, UDP, ICMP). The performance of the
system is evaluated, and improvements are made to the algorithm after which it is further tested on
unfamiliar flooding attacks (HTTP, Slow LOIC, RECOIL [128]) and a mixture of all the attacks (TCP SYN,
UDP, ICMP, HTTP, RECOIL, slow LOIC). This detection and attack type indication algorithm is also
validated using public attack and benign data to eliminate biases and verify that it is not user, attack
nor device centric. Finally, the implemented and tested detection and attack type indication system is
compared to other state of the art solutions based on 12 critical factors. This chapter covers and

achieves the following points:

e A better and more efficient methodology is designed and employed in terms of robustness,
relevance, and clarity when it comes to the testing procedure as it redefines performance
metrics using more relevant factors.

e Novel detection and attack type indication approaches are presented. It achieved better
performance when compared to state of the art in terms of light weightiness, attacks covered,
accuracy, practicality in terms of feasibility and scalability and not being attack, user nor
device centric.

e The detection and attack type indication algorithms cover a broader surface in terms of attack
variation. It works on known attacks, unfamiliar attacks, and mixed attacks. It is also validated

successfully on Public normal and attack data.

The remaining sections in this chapter cover methodology used, how the novel detection and attack

type indication system works, an implementation of the system, its performance and results achieved,

96

a comparison of the systems performance to literature, new findings, and finally a summary of the

chapter.

5.2 Methodology
The various processes and sub-processes followed to achieve a successful implementation of the

proposed detection and attack type indication system is broken down in this section as shown in figure

5.1.

Data Preparation

l

Draft Algorithm

Test

- Tune

v
Validate

y

Compare with
Literature

Figure 5.1 Methodology

This methodology consists of 6 main phases which are data preparation, algorithm scripting, testing,
tuning, validation, and comparison to literature. The methodology is designed to be smooth and
seamless in terms of transitioning from one phase to the next. It is manageable due to its segregated
phases with having to complete one phase before moving onto the next as the results from the
previous phase are used to commence working on the next phase. A recursive point is also included

in the methodology comprising of testing, tuning and validation. This gives a smooth and clear process

97

in terms of accommodating observations during testing that will be used in tuning the system for
better performance. More attacks (unfamiliar attacks, mixed attacks, public data) are tested on the
system at the validation phase for robustness and elimination of biases in terms of data source used.
As the main goal is to have a solution that is light weight, practical, not user, device, nor attack centric,
which works on unfamiliar and mixed attacks, this methodology tends to provide a plan to achieve
each of these goals. A concise way to measure the systems performance in relation to how early the
attack is flagged and robustness is also presented using more relevant metrics and factors. The
methodology also lays out a rigorous comparison of the systems performance to other state of the art
solutions based on several clear and critical factors. The factors based on which the systems
performance is measured tends to be clearer and more scientifically sound which makes this
methodology stand out when compared with state-of-the-art methods. The various phases and what

they entail are outlined in the subsequent sections.

5.2.1 Data preparation
This phase is concerned with making sure the collected data is in the most suitable form for use in

testing the proposed system. This involves the following steps:

> Data conversion: The collected raw data on table 4.1 in chapter 4 is converted from the
Wireshark format (.pcap) to csv. This csv format is better in terms of compatibility with Google
Colab that will be used as a platform to draft and test the algorithm.

> Filtering features: The relevant network features to be used are filtered. These features are
source address, destination address, protocol, packet length, TCP sequence number and TCP
flags. Although these features are for a TCP based traffic, using them does not completely
deny the necessary UDP and ICMP traffic in the network as the algorithm is designed to
accommodate them.

> Labelling: Each data source is properly labelled according to the category it falls in. These
categories include the various attacks, whether it is a mixed or single attack, known or
unfamiliar attack, public or private data and finally purely normal data or a mixture of normal
and attack. This will help in giving a clear distinction of how the detection and attack type

indication algorithm performs on each category.

5.2.2 Algorithm drafting
This phase delves into the steps taken to develop the detection and attack type indication algorithm

in the most suitable environment. This includes the following:

98

Language choice: A language that is easy to comprehend, light weight and compatible across
several simulation platforms is considered for scripting the algorithm. The chosen language
that fits all the considered qualities is python.

Required conditions: Before scripting the algorithm, each considered network feature is
translated into a condition that if met or breached, will result in a predefined decision. This
will help in coupling up the various segments of the detection and attack type indication
algorithm and the action taken after each condition.

Window size: A specified number of packets to be inspected at a time is set here. This is
intended to be set at the gateway. However, Google Colab is used to test this.

IP address filter: The relevant IP addresses to be used are noted for each data source. This will
be specified in the algorithm for each data source file to be tested. The flow direction
considered is to the target device to avoid redundancy.

Relevant protocols: Relevant protocols to be used in the conditions are noted from each data
source. This will later be incorporated into the algorithm so the protocols from each data
source are recognized during testing.

Data source labels: The data source files, and column headers are labelled using a uniform
naming convention so that each data source as well as the various columns are recognized
without errors during testing.

Result presentation: This involves coming up with how the detected and indicated attacks and
normal traffic are flagged, labelled, and presented in the output file. The chosen method for
this is to create 2 additional columns in the output file. One column will present traffic as
either “attack “or “not attack” corresponding to each packet while the second column will
present the attack type corresponding to each detected attack. Normal packets will carry the
label “no type” in the classification column as they are already labelled “not attack” in the first
column.

Software choice: The preferred testing platform is Google Colab as it is open source, no
downloads/installation needed, allows writing code and collaborating on it with team
members and lastly being able to save directly to Git hub.

Develop script: After fulfilling all the above-mentioned steps, a script is developed in python
using Google Colab to test on the various data sources.

Output location: The output location for each tested data source is set.

99

5.2.3 Testing
The testing phase is concerned with running several variations of the attacks, recording the

performance, and making observations which will be used to improve the performance. The following

steps are followed to achieve this:

» Test case metrics: Several factors used to distinguish between the various testcases, and the
performance of each test case are outlined. This helps to give precise and scientifically sound
results in relation to the performance of the algorithm. These factors include Dataset
category (private/public), attack variation (single/mixed/unfamiliar), attack type (TCP, UDP,
ICMP, HTTP), detection column label, indication column label, packet number attack started,
packet number attack detected, packet number attack indicated.

> Note observations: Observations made relating to the performance of the algorithm are
noted and these are used in the tuning phase to improve the weak points of the system.

» Unfamiliar attacks: These attacks (HTTP, SLOW LOIC, RECOIL) are tested on the algorithm to
confirm if it precisely detects and indicate the attack type in unfamiliar attacks. Results from
this is recorded in the test case table.

» Mixed attacks: These attacks are tested on the algorithm to confirm if it precisely detects and
indicates the attack types in mixed attacks (a combination of several unfamiliar and known

attacks). Results from this is recorded in the test case table.

5.2.4 Tuning
This phase requires making improvement to the detection and attack type indication algorithm based

on the observations made during the testing phase. The steps in this phase include:

> Eliminate redundancy: Network features that pose redundant in the algorithm are removed
to increase the light weightiness of the system. Only the best performing features in terms of
detection trigger will be used.

» Alter number of consecutive packets to be flagged: Based on the performance of the algorithm
on the various test cases in relation to number of consecutive packets to be flagged, this
number is altered to the one which gives better results in terms of accuracy.

> False positive/negative reduction: One of the major aims of this system is to detect and
indicate the attack type at the very onset (within the first 10-15 attack packets targeting the
device) to minimize or totally avoid damage. Based on the performance results from the test
cases, possible ways to improve the algorithm to achieve this precise detection and attack

type indication at the onset or as close to the onset of the attack as possible are applied.

100

5.2.5 Validation
This phase is concerned with testing the detection and attack type indication algorithm on public data.

This data is from a different environment and from a variety of smart home device brands. This is done

to make the system bias free in terms of the data used. Furthermore, it will prove that the detection

and attack type indication system is not user or device centric as it works on other smart home device

brands from other users. The steps involved in this phase are:

>
>

Normal data: Sourcing purely normal data.

Normal + attack: Sourcing a mixture of normal and attack data.

Record performance: Testing both publicly sourced data on the algorithm and recording its
performance on the test case metric table. This will provide a clear result and conformation

on whether the detection and attack type indication system are not user nor device centric.

5.2.6 Comparison to literature
This phase is about comparing the performance of the implemented and tested detection and attack

type indication algorithm to state-of-the-art solutions. This will help to provide a clear-cut evaluation

based on the performance of the implemented solution against current solutions. This comparison is

based on 12 factors which are:

1)

2)
3)
4)
5)

6)

7)

8)
9)

Features used: This refers to the network features used like protocol and port numbers and
their total number. Are biased features used in attack detection? The traffic flow direction is
also identified.

Attacks covered: The types and variations of attacks the solution covers.

Problem solved: What the solution solves like detection or classification or both.

Focus: Is the solution user, device or attack centric?

Practicality: Is the solution feasible in large scale environment, with reasonable resources and
deployment time?

Data source: Is data source simulated or is it from a real smart home network? Is data
composition realistic for use in testing?

Performance metrics: Are the metrics used to measure solution performance relevant?
Onset detection: Is the attack detected/ type indicated at the very onset?

Validation: How is the solution validated?

10) Counter spoof: Is the solution resistant to IP/port spoofing?

11) Approach: Relevance/downsides of approach to solving problem.

12) Coverage: Does the traffic inspection point cover all devices on the network?

101

5.3 How the detection and attack type indication algorithm work
The detection and attack type indication algorithm has two main functions which are to detect DDoS

attacks and indicate the attack type in the infiltrated smart home traffic. It is built on 3 smart home
traffic properties derived from the EDA in the previous chapter which are feature absence, feature
range and feature variance. These properties are based on the general characteristics of smart home
device traffic which the DDoS attack traffic violates. They are based on some smart home network
features which were discovered to be simultaneously affected during a flooding attack. These affected
features are protocol, packet length, sequence numbers, TCP flags and encryption. A raw data
comparison of the state of these features in normal traffic to when attack sets in has been addressed
in chapter 4 in figures 4.29 to 4.40. Each feature is categorized into one of the 3 properties due to its
behavioural pattern during the attack flood. The features and properties are linked in the following

ways:

o Feature absence: This refers to network features that are normally present in the smart home
traffic but disappear during certain DDoS flooding attacks like ICMP, UDP and DNS among
others. The affected network features that fall in this category are TCP flags, encryption
protocols, and TCP sequence numbers. However, this is not tagging all ICMP, UDP or DNS
traffic as malicious because the TCP based traffic also uses these at some point. These will be
only tagged malicious if they go above a certain threshold.

o Feature range: This refers to network features that have numbers falling in wide ranges as
they get incremental from one packet to the next in a short period of time but get limited to
0’s/1’s during an attack. The affected network feature in this category are the sequence
numbers. This was discovered to be true for attacks like TCP SYN, HTTP and RECOIL among
others. The sequence numbers that usually start from 0 or 1 and shoots up to thousands
within seconds was found to be limited to just O’s or 1’s or a combination of both for the
packets during the duration of these attacks.

o Feature variance: This refers to the randomness or dynamics exhibited by some network
features in normal smart home traffic but tend to get static during an attack. The features
affected here are protocol, packet length, TCP flags and TCP sequence numbers. These
features tend to have different compositions within a short period of time but become static

to a single value during an attack like in TCP SYN, HTTP, UDP among others.

The above-mentioned properties were translated into conditions which if met or violated results in a
specific action which in turn were embedded in an algorithm that detects and classifies the incoming

attacks at the very onset. However, these conditions will be improved after the initial testing stage,

102

thus removing some aspects of it. These conditions are as follows for each network feature for the

detection aspect:

Condition A (Protocol): If 10 consecutive packets out of 20 have the same protocol, in
combination with either sequence number or TCP flag triggers then flag all 20 packets as
“Attack”. The TCP flag triggers are mentioned in condition D. A 20-packet window is chosen
as it doubles the number of the consecutive packets needed to flag an attack. Moreover the
20-packet window is useful in the attack type indication stage where the highest protocol
count is taken out of the 20 attack packets to label the attack type. This reduces the chances
of a false negative due to window not being wide enough.

Condition B (Packet length): If 10 consecutive packets out of 20 have the same packet length
in combination with TCP sequence number or TCP flag triggers, then flag all 20 packets as
“Attack”.

Condition C (TCP Sequence numbers): If 10 consecutive packets out of 20 have absent TCP
sequence numbers, then flag all 20 packets as “Attack”. If 10 consecutive packets out of 20
have their sequence numbers as only 0’s or 1’s or a combination of 0’s and 1’s, then flag all 20
packets as “Attack”. However, this does not mean all packets that do not carry these sequence
numbers like UDP and ICMP will be automatically flagged as attack. The 10 consecutive packet
rule takes care of this.

Condition D (TCP flags): If 10 consecutive packets out of 20 have absent TCP flags, then flag
all 20 packets as “Attack”. If 10 consecutive packets out of 20 have their TCP flags set to SYN
or RST or a combination of SYN and RST, then flag all 20 packets as “Attack”.

Condition E (Encryption): If encryption protocol (tlsv1.2) is missing for 10 consecutive packets
out of 20 in combination with either TCP sequence number or TCP flag alarm, then flag all 20
packets as “Attack”. However, this depends on whether the devices use encryption protocols

or not and the type of encryption used.

Attack type indication comes after the flagged packets have been labelled as “Attack”. The condition

relating to classification is as follows:

If 20 packets are flagged and labelled as “Attack” based on the aforementioned conditions,
then focus on the protocol column and take the protocol with the highest count out of the 20
packets flagged as “Attack” and label all 20 packets as the protocol name like “UDP” or “TCP”.

This provides the information on the protocol used in the attack.

The network feature(s) in the conditions above that lead(s) to packets being labelled as “Attack” and

type indicated using the highest protocol count from the attack labelled packets is subject to changes

103

based on the performance of the feature(s) at the testing stage. This depends on the result of how
well a condition independently or in combination with others flag an attack. An accurate truth table

will be provided after testing confirming the most appropriate conditions.

5.4 Implementation
This section delves into the series of steps and processes carried out during the implementation of the

detection and attack type indication system. Several phases of the previously presented methodology
are laid out here with details of the actual work done to successfully achieve the overall intended

system.

5.4.1 Data preparation
The dataset files were converted from the Wireshark format (.pcap) to csv. Figure 5.2 shows the

process of this conversion. The pcap file is exported as csv in Wireshark and saved. Figure 5.3 shows
the converted csv. The relevant network features to be tested are filtered. These features are source
and destination IP addresses, protocol, packet length, sequence number and TCP flags. The required
attack source and destination IP addresses are also isolated. Each data source is properly labelled
according to the category it falls in. These categories include the various attacks, whether it is a mixed
or single attack, known or unfamiliar attack, public or private data and finally purely normal data or a
mixture of normal and attack. This will help in giving a clear distinction of how the detection and attack
type indication algorithm performs on each category. Table 5.1 shows the details of the dataset labels
with their file count, source and destination IP addresses and categories they fall into whether

public/private or known/Unfamiliar.

Vruny e uygv (o

Arrival Time Source Destinatio Protocol Length Sequence Ny Quick access 9 icmpddos05 17/11/2022 11:58
Mar 22, 2021 14. 192.168.0.101 54.194.80.207 - @) icmpddos01 17/11/2022 11:36
- 80.207 1 1 TCP] =
) ddos _attack (1) 24/07/2022 16:07
Desktop e
ar 22, 2021 14.. 54.194.8 B tep_attack (2) 24/07/2022 16:05
Mar 22, 2021 14.. 192.168.0.101 @) udp_attack (3) 24/07/2022 15:59
Mar 22, 2021 14.. 192.168.0.101 n .
ar 22, 2021 14. 34.246.152.68 3 56 Libraries B publicbenignF 192.168.1.132 21/07/2022 22:41
Mar 22, 2021 14.. 192.168.0.161 54.194.80.207 @) publicbenignE 192.168.1.158 21/07/2022 22:40
R 20 2Rt Lied o B S0 2L R 18 St @; @9 publicbenignD 192.168.1.158 21/07/2022 22:39
This PC] publicbenignC 192.168.1.158 21/07/2022 22:39
" 89 publicBenignB 192.168.1.158 21/07/2022 22:38
Mar 22 21 14.. 34.2 2 192.168.0.101 TLSv1.2 97 i — .)
Warszos R M6 150 en Tt [.é ﬂ: publicBenignA 192.168.1.158 21/07/2022 22:37)
Mar 22, 2021 14. 192.168.0.101 54.194.80.207 TCP 66 Network < >
Mar 22, 2021 14.. 54.194.80.207 192.168.0.101 TCP 66
Mar 22, 2021 14.. 192.168.0.101 54.194.80.207 TLSv1.2 97 Flename: v‘ Save
Mar 22, 2021 14. 54.194.80.207 192.168.0.101 TLSv1.2 97
Mar 22, 2021 14.. 192.168.0.101 54.194.80.207 TCP 66 Save as type: CSV (Comma Separated Values summary) (*.cs v Cancel
Mar 22, 2021 14.. 192.168.0.101 34.246.152.68 TCP 66
Mar 22, 2021 14.. 34.246.152.68 192.168.0.101 TCP 66 Help
Mar 22, 2021 14.. 192.168.0.101 54.194.80.207 TCP 66
Mar 22, 2021 14.. 54.194.80.207 192.168.0.101 TCP 66 Packet Range Pack
Mar 22, 2021 14. 192.168.0.101 34.246.152.68 TCP 66 (O Captured (@ Displayed
Mar 22, 2021 14.. 34.246.152.68 192.168.0.101 TCP 66 F
Mar 22, 2021 14. 192.168.0.101 34.246.152.68 TLSV1.2 97 ® Allpackets =S [
Mar 22, 2021 14.. 34.246.152.68 192.168.6.101 TLSv1.2 97 (O Selected packet 1 F
Mar 22, 2021 14.. 192.168.0.101 34.246.152.68 TCP 66 Marked p ackets
Mar 22, 2021 14.. 192.168.0.101 54.194.80.207 TCP 66)
Mar 22, 2021 14.. 54.194.80.207 192.168.0.161 TCP 66 First to last marked
Mar 22, 2021 14. 192.168.0.161 54.194.80.207 TLSV1.2 97 (O Range: [0 l;
Remnua Innnred narkate DE

Figure 5.2 CSV conversion

104

A

B € D E F

H | | | J | K | L= | M

[No.

_IArrivaI TinSource Destinatio Protocol Length
1 Mar 22,2(192.168.0.54.194.80.TCP
2 Mar 22, 2(54.194.80.192.168.0. TCP
3 Mar 22, 2(192.168.0.54.194.80.TLSv1.2
4 Mar 22, 2(54.194.80.192.168.0.TLSv1.2
5 Mar 22, 2(192.168.0.54.194.80. TCP
6 Mar 22, 2(192.168.0.34.246.15.TCP
7 Mar 22,2(34.246.15:192.168.0.TCP
8 Mar 22,2(192.168.0.54.194.80.TCP
9 Mar 22, 2(54.194.80.192.168.0.TCP
10 Mar 22, 20192.168.0.34.246.15. TCP
11 Mar 22, 2(34.246.15.192.168.0. TCP
12 Mar 22, 2(192.168.0.34.246.15. TLSv1.2
13 Mar 22, 2(34.246.15:192.168.0. TLSv1.2
14 Mar 22,2(192.168.0.34.246.15. TCP
15 Mar 22, 2(192.168.0.54.194.80.TCP
16 Mar 22, 2(54.194.80.192.168.0. TCP
17 Mar 22,2(192.168.0.54.194.80.TLSv1.2
18 Mar 22, 2(54.194.80.192.168.0. TLSv1.2
19 Mar 22,2(192.168.0.54.194.80. TCP
20 Mar 22,2(192.168.0.34.246.15: TCP
21 Mar 22,2(34.246.15.:192.168.0. TCP
22 Mar 22,2(192.168.0.54.194.80.TCP
23 Mar 22, 2(54.194.80.192.168.0.TCP

Sequence Info

66
66
97
97
66
66
66
66
66
66
66
97
97
66
66
66
97
97
66
66
66
66
66

139076 > 443 [ACK] Seq=1 Ack=1 Win=1002 Len=0 TSval=4005
1 [TCP ACKed unseen segment] 443 > 39076 [ACK] Seq=1 Ack=
2 [TCP Previous segment not captured] , Application Data
1 [TCP ACKed unseen segment] , Application Data
33 39076 > 443 [ACK] Seq=33 Ack=32 Win=1002 Len=0 TSval=40
149538 > 443 [ACK] Seq=1 Ack=1 Win=2397 Len=0 TSval=1641
1 [TCP ACKed unseen segment] 443 > 49538 [ACK] Seq=1 Ack=
32 [TCP Keep-Alive] 39076 > 443 [ACK] Seq=32 Ack=32 Win=100
32 [TCP Keep-Alive ACK] 443 > 39076 [ACK] Seq=32 Ack=33 Win:
1 [TCP Dup ACK 6#1] 49538 > 443 [ACK] Seq=1 Ack=1 Win=239
1 [TCP Dup ACK 7#1] [TCP ACKed unseen segment] 443 > 4953
2 [TCP Previous segment not captured] , Application Data
1 [TCP ACKed unseen segment] , Application Data
33 49538 > 443 [ACK] Seq=33 Ack=32 Win=2397 Len=0 TSval=16
32 [TCP Keep-Alive] 39076 > 443 [ACK] Seq=32 Ack=32 Win=100
32 [TCP Keep-Alive ACK] 443 > 39076 [ACK] Seq=32 Ack=33 Win:
33 Application Data
32 Application Data
64 39076 > 443 [ACK] Seq=64 Ack=63 Win=1002 Len=0 TSval=40
32 [TCP Keep-Alive] 49538 > 443 [ACK] Seq=32 Ack=32 Win=239
32 [TCP Keep-Alive ACK] 443 > 49538 [ACK] Seq=32 Ack=33 Win:
63 [TCP Keep-Alive] 39076 > 443 [ACK] Seq=63 Ack=63 Win=100
63 [TCP Keep-Alive ACK] 443 > 39076 [ACK] Seq=63 Ack=64 Win:

Figure 5.3 Converted pcap to csv

Table 5.1 Dataset categorization details

Dataset Source IP Destination IP

TCPSYN (5 files) 192.168.0.10 192.168.0.102
3

UDP (5 files) 192.168.0.10 | 192.168.0.102
3

ICMP (5 files) 192.168.0.10 = 192.168.0.102
3

HTTP (3 files) 192.168.0.10 | 192.168.0.102
3

SLOWLOIC (2 192.168.0.10 = 192.168.0.102

files) 3

RECOIL (2 files) 192.168.0.10 | 192.168.0.102
3

Mixed (3 files) 192.168.0.10 192.168.0.102
3

Normal (5 files) 192.168.0.101

TCPSYN (2 files) 192.168.100. = 192.168.100.3
147-150

UDP (2 files) 192.168.100. | 192.168.100.3
147-150

Public/Private Known/Unfamiliar Composition Protocol

Private

Private

Private

Private

Private

Private

Private

Private

Public

Public

Known Attack+benign | TCP,DNS,ICMP
,TLSv1.2,NTP

Known Attack+benign UDP,TCP,DNS,|
CMP,TLSV1.2,
NTP

Known Attack+benign TCP,DNS,ICMP

,TLSv1.2,NTP
Unfamiliar Attack+benign | TCP,DNS,ICMP
,TLSv1.2,NTP,H
TTP
Unfamiliar Attack+benign | TCP,DNS,ICMP
,TLSv1.2,NTP
Unfamiliar Attack+benign | TCP,DNS,ICMP
,TLSv1.2,NTP
Unfamiliar Attack+benign | TCP,DNS,ICMP
,TLSv1.2,NTP,H
TTP,UDP
Benign TCP,DNS,ICMP
,TLSv1.2,NTP,

MDNS,ARP
Known Attack+benign TCP,DNS,ICMP

,TLSV1.2,
Known Attack+benign | TCP,DNS,ICMP

,TLSv1.2

105

HTTP (2 files)

[

1 FRAGMENTED
2 (2 files)

1 Mixed (2 files)
3

1 Normal (5 files)
4

Normal (1 file)

192.168.100.
147-150
192.168.1.19
5
192.168.100.
147-150

5.4.2 Algorithm Drafting
The listed conditions from section 5.3 are translated into a python script. The window size is fixed to

192.168.100.3

74.91.117.248

192.168.100.3

192.168.1.158

192.168.1.132

Public

Public

Public

Public

Public

Unfamiliar

Unfamiliar

Unfamiliar

Attack+benign

Attack+benign

Attack+benign

Benign

Benign

TCP,DNS,ICMP
,SSH,HTTP
TCP,DNS,ICMP
,TLSv1.2,UDP
TCP,DNS,ICMP
,TLSv1.2,UDP
TCP,DNS,ICMP
,SSH,NTP,HTTP
JARP
TCP,DNS,ICMP
,SSH,NTP,HTTP
,ARP

20. The number of consecutive packets required to flag an attack pattern is tested by setting it to 5

and 10 packets respectively. Both will be tested to see how they perform. The relevant destination IP

addresses for each dataset will be incorporated into the script as well as the correct dataset label so

it can be identified as the data source. The flow direction is set to only focus on incoming packets to

the target smart home devices. This means a one-way traffic direction will be monitored which

contributes to the solutions light weight nature. The encryption protocol present in the dataset is also

defined in the script so it can identify the absence of such protocols. Pandas and NumPy are the

libraries imported at the beginning of the script as some functions from them will be utilized.

Figure 5.4 shows the code responsible for creating the data frame with the respective relevant

columns. This is read from the dataset file it is pointed to.

1 # creating a datafarme from the dataset

2 packets_df = pd.read_csv('/content/UDP_privateDDoS.csv')

Execution output

Figure 5.4 Data frame creation

Figure 5.5 is where the destination IP is set, which is that of the smart home device. The “window size”

refers to the number of packets checked at a time. The “number of packets checked” is what

determines how many consecutive packets make an attack pattern if the conditions in figures 5.6 to

5.9 are true. The output file path is also set here.

106

[1 packets_df = packets_df[packets_df['Destination'] == '192.168.8.1084"']

[1] final_df = initate_check(packets_df,window_size=2@,num_packets_checked=18)

False

[1] final_df.to_csv('udp_attack.csv')

Figure 5.5 Setting IP, window size, packets checked and output path

Figure 5.6 shows the code in charge of checking the protocol conditions. The number of unique
elements present in the protocol column are checked for. If any of those unique elements appear
consecutively for ten or more packets at a go, then this is flagged as attack. Secondly, if the encryption

protocol TLSv1.2 is missing for ten consecutive packets, then the 10 packets are flagged as attack.

1 # redundant
2 def check_protocol(df):
3| wun

4 classifies a sequence of packets as attack if TLSv1.2 is not contained in any of the packets

5 or if (consecutive packets have the same protocol and is not TLVv1.2).

g umuw

7 protocol_col = df['Protocol’].unique()

8 is_attack = False

9 # no tlsvl.2 in list of protocols or (we have the same protocol for all packets and the protocol is not tlsvl.2)
1@ if 'TLSv1.2' not in protocol_col or (len(protocol_col) == 1 and protocol_col != 'TLSv1l.2'):

11 is_attack = True

12 return is_attack

Figure 5.6 Protocol condition check
Figure 5.7 shows the code responsible for checking the packet length conditions. It checks the number

of unique elements in the packet length data frame. If only one or two unique elements are found for

10 consecutive packets, then these 10 packets are flagged as attack.

1 # redundant
2 def check_packet_length(df):

3 wun
4 classifies a sequence of packets if the packet length only consists of two values
5 or the packet length is the same for all packets
g wum
7 packet_length_col = df['Length'].unique()

8 1s_attack = False

9 if len(packet_length_col) < 3:
10 is_attack = True

11 return is attack

Figure 5.7 Packet length condition check

Figure 5.8 shows the code responsible for checking the sequence number conditions. If the sequence
number column of the data frame is found to have only 0’s or 1’s or a combination of both for 10

consecutive packets, then these 10 packets are flagged as attack, otherwise normal. Secondly, if 10

107

consecutive packets have absented or null sequence numbers, these are also flagged as attack,

otherwise normal.

1 def check_sequence_number (df):

> warn

3 classifies a sequence of packets if only ©s and 1s compose the segeunce numbers
4 or if the sequence number if absent for all packets

5 .

6 seq_number_col = df['Sequence_Number'].unique()

7 is_attack = False

8

9 # if the sequence number is composed of only ©'s and 1's

10 if len(seq_number_col) ==

11 if © in seq_number_col and 1 in seq_number_col:

12 is_attack = True

13

14 # checks if the sequence number is absent for all packets

15 if len(seq_nhumber_col) == 1:

16 if np.NaN is seq_number_col[@] or @ in seq_nhumber_col or 1 in seq_number_col:
17 is_attack = True

18 return is_attack

Figure 5.8 Sequence number condition check
Figure 5.9 shows the code responsible for checking the TCP flag conditions. This checks for the number
of unique elements in the TCP flag column data frame. It further checks if only SYN or RST flags or a
combination of both are found for 10 consecutive packets then these are flagged as attack, otherwise

normal. If TCP flags are found to be absent for ten consecutive packets, these are also flagged as attack.

1 def check_tcp_flag(df):

5 wuw
3 classifies a sequence of packets if all tcp flags are absent or

4 if SYN is the only flag for all packets or

5 if all packets cosist of only SYN and RST flags

g mnw

7 tcp_flag_col = df['TCP_flag'].unique()

8 1is_attack = False

S
1©@ # checks if the all tcp flags are absent or all tcp flags have SYN or RST
11 if len(tcp_flag_col) == 1:
12 if 'SYN' in tcp_flag_col or np.NaN is tcp_flag _col[@] or 'RST' in tcp_flag_col:
13 is_attack = True
14 # checks if all packets only consist of 'SYN' and 'RST'
15 if len(tcp_flag_col) == 2:
16 if 'SYN' in tcp_flag_col and 'RST' in tcp_flag_col:
17 is_attack = True
18 return is_attack

Figure 5.9 TCP flag condition check

Figure 5.10 shows the code responsible for checking if any of the conditions in figures 5.6 — 5.9 are
true, then return the sequence of packets with attack label. This code triggers the actual labelling of a
sequence of packets as an attack or not attack depending on what has been flagged from figure 5.6 —

5.9.

108

1 def check_flags(df):

5 mun
3 Check if any of the above conditons is true,

4 then the sequence is classified as an attack

5 muw

6 enum

7 # if any of this attributes flags, check_flags returns true, otherwise, check_flags return false
8 flagged = False

9 if check_sequence_number(df) or check_tcp_flag(df):
1e return True
11 # if check_protocol(df) and check_packet_length(df):
12 # if check_sequence_number(df) or check_tcp_flag(df):
13| # return True
14 return flagged

Figure 5.10 Flagging and labelling true conditions

Figure 5.11 shows the code responsible for stacking the labelled packets of each iterated window. The
protocol column of the packets labelled “attack” is checked for the most appearing protocol. The
protocol with the highest count is then labelled as the attack type, thereby indicating the attack type
detected. However if packets have a label of no attack, then the corresponding attack type column

carries the label “ no type ”.

def initate_check(partition_df,window_size,num_packets_checked):
new_df = None
i=e
j = window_size
while i < len(partition_df):
df = check_group(partition_df[i:j],num_packets_checked)
if len(df['Outcome'].unique()) == 1:

if df['Outcome’'].unique()[@] == 'attack':
df['Attack_Type'] = df['Protocol'].mode().values[@]
else:

df['Attack_Type'] = 'No Type'
Stack group of window_size packets
if new_df is None:
new_df = df
else:
new_df = pd.concat([new_df,df])
i =1+ window_size
j = J + window_size
handles the edge case where the number of remaining sequences is less than the window length
if len(partition_df) - i < window_size:
j = len(partition_df)
return new_df

Figure 5.11 Stacking labelled packets and indicating attack type

5.4.3 Initial Testing
Some of the dataset files from table 5.1 are run over the scripted detection and attack type indication

algorithm from section 5.4.2. This initial testing stage focuses only on testing and recording the
performance of known private attacks which comprises of a mixture of benign and attack traffic (ID 1-

3) as well as benign private traffic (ID 8) from table 5.1. The number of “packets checked” will be tested

109

by setting it to “5” and “10”. All algorithm conditions A — E from section 5.3. will be applied. Table 5.2
shows when the number of packets check is set to 5 while 5.3 shows when it is set to 10. Observations
based on the performance are also noted which will be used in the tuning phase. The test case metric
table is being populated with the details of the tested datasets based on several factors mentioned in

section 5.2.3. This is presented in table 5.2 and 5.3. For each dataset it states the following:

- The name of the dataset, specifying if its attack or normal.

- Whether attack traffic is present in the flow.

- If the algorithm detected the attack.

- Attack type indicated.

- The packet number the attack started in the traffic flow.

- The packet number at which the algorithm detected the attack.

- The packet number at which the attack type is indicated.

- The feature(s) that triggered the attack detection. This will help to gauge the best performing
feature in terms of detection trigger. The keys to this column are A = Protocol, B = Packet
length, C = Sequence number, D = TCP flags, E = Encryption.

- The window where the attack started. For instance, if there are 100 packets and the window
size is 20 packets. If an attack starts between packet 1 and 20 then this is the first window.
The packet number the attack started is divided by 20 to get the actual window.

- The window at which the attack is detected and classified.

The number of “packets checked” will be tested by setting it to “5” and “10”. All algorithm conditions
A — E from section 5.3. will be applied. This means that if any of the conditions is flagged in 5 or 10
consecutive packets, then this will be flagged as “attack”. Table 5.2 shows when the number of packets

checked is set to 5 while 5.3 shows when it is set to 10.

From table 5.2 we can see that more false alarms (in red) have been raised in comparison to table 5.3
where the packets checked is set to 10. This indicates that using a threshold of 10 packets yields better
results. Nevertheless, the algorithm still must be improved for better performance to reduce the false
alarms. From the trigger feature column of both tables, we can see that Protocol (A), Packet Length
(B) and Encryption (E) are those that led to all the false alarms. However, Sequence Number (C) and
TCP flags (D) resulted in all the true cases. These factors will be taken into consideration in the tuning
stage where the algorithm is improved. Figure 5.12 shows an instance where setting the packets
checked to 5, labelled normal traffic as “attack” while figure 5.13 shows the 10-threshold labelling the

same set of packets as “not attack” which is true.

110

Table 5.2 Initial Testing results, packets checked set to 5

ID Dataset Attack Attack Attack Pkt no Pkt no Pkt no Trigger Window Window
present? detected type attack attack attack type feature(s attack attack
? indicat started detected indicated &) started detected
ed? and attack
type
I

3 TCPSYNO3.csv Yes Yes Yes 38 38 38,TCP AB,CDE 2™ NP
4 TCPSYNO4.csv ~ Yes Yes Yes 19 19,TCP A,B,C,D, 1t 157
E

10 UDPO5.csv Yes Yes Yes 297 297 297,UDP AB,C,D,E 14" 14t

13 ICMPO3.csv Yes Yes Yes 191 191 191,ICMP ABCDE 9" 9t
14 ICMPO4.csv Yes Yes Yes 181 181 181,ICMP ABCDE 9" R

Table 5.3 Initial Testing results, packets checked set to 10

ID Dataset Attack Attack Attack Pkt no Pkt no Pkt no Trigger Window Window
present? detected type attack attack attack type feature(s attack attack
? indicat started detected indicated &) started detected
ed? and attack
type

2 T 0 e O .0 LSS
- I A I i e
3 TCPSYNO3.csv = Yes Yes Yes 38 38 38,TCP A,B,C,.D 2nd 2NP
4 TCPSYNO4.csv ~ Yes Yes Yes 19 19 19,TCP A,B,C,D, 1t 157

E
5 TCPSYNO5.csv = Yes Yes Yes 279 294 294,TCP AB,CDE 13" 14™
6 UDPO1.csv Yes Yes Yes 196 196 196,UDP ABCDE 9 g™
7 UDPO2.csv Yes Yes Yes 304 304 304,UDP ABCD,E 15" 15t
8 UDPO3.csv Yes Yes Yes 325 325 325,UDP A,B,C,D, 16t 16t

E

111

9 UDPO4.csv Yes Yes Yes 202 202 202,UDP AB,C,D,E 10" 10t
10 UDPOS5.csv Yes Yes Yes 297 297 297,UDP ABCDE 14" 14th
11 ICMPOl.csv Yes Yes Yes 598 598 598,ICMP AB,CDE 29" 20t
12 ICMPO02.csv Yes Yes Yes 509 509 509,ICMP AB,CD,E 25" 25t
13 ICMPO3.csv Yes Yes Yes 191 191 191,ICMP AB,CD,E 9™ gth

14 ICMPO4.csv Yes Yes Yes 181 181 181,ICMP AB,CD,E 9™ gth

15 ICMPO5.csv Yes Yes Yes 293 293 293,ICMP AB,CD,E 14" 14t

1Source Destination Protocol Length Sequence_Info name TCP_flag Outcome Attack Type
ec2-34-24:rcr-663.loca TCP 66 1 [TCP ACKe benignprivACK attack TCP
ec2-34-24(rcr-663.loc: TCP 66 1 [TCP ACKe benignprivACK attack TCP
ec2-34-241rcr-663.locz TLSv1.2 97 1 [TCP ACKe benignprivate attack TCP
ec2-34-24:rcr-663.loce TCP 66 1 [TCP Dup ibenignprinTCP, ACK attack TCP
ec2-34-24:rcr-663.loce TLSv1.2 97 1 [TCP ACKe benignprivate attack TCP
ec2-34-24(rcr-663.loce TCP 66 32 [TCP Keep benignprivACK attack TCP
ec2-34-24:rcr-663.locc TCP 66 32 [TCP Keep benignprivACK attack TCP
ec2-34-241rcr-663.loce TCP 66 32 [TCP Keep benignprivACK attack TCP
ec2-34-24(rcr-663.locz TLSv1.2 97 32 Applicatio benignprivate attack TCP
ec2-34-24:rcr-663.loca TCP 66 32 [TCP Keep benignprivACK attack TCP
ec2-34-24.rcr-663.loce TLSv1.2 97 32 Applicatio benignprivate attack TCP
ec2-34-24(rcr-663.loce TCP 66 63 [TCP Keep benignprivACK attack TCP
ec2-34-24:rcr-663.loce TCP 66 63 [TCP Keep benignprivACK attack TCP
ec2-34-24ircr-663.loce TCP 66 63 [TCP Keep benignprivACK attack TCP
ec2-34-24(rcr-663.locz TLSv1.2 97 63 Applicatio benignprivate attack TCP
ec2-34-24:rcr-663.loce TCP 66 63 [TCP Keep benignprivACK attack TCP
192.168.0.rcr-663.locz DNS 118 Standard (benignprivate attack TCP
kinesis.eu- rcr-663.locz TCP 74 0 https(443)benignprivSYN, ACK attack TCP
kinesis.eu: rcr-663.locz TCP 66 1 https(443) benignprivACK attack TCP
kinesis.eu rcr-663.loce TLSv1.2 162 1 Server Hel benignprivate attack TCP
kinesis.eu- rcr-663.locz TCP 1448 97 https(443)benignprivACK not attack No Type
kinesis.eu- rcr-663.locz TCP 1448 1479 https(443)benignprivACK not attack No Type
kinesis.eu rcr-663.loc: TCP 1448 2861 https(443) benignprivACK not attack No Type
Figure 5.12 False positive by setting packets checked to 5
1Source Destinatio Protocol Length Sequence_Info name TCP_flag Outcome Attack_Type
ec2-34-24:rcr-663.lo(TCP 66 1 [TCP ACKe benignprivACK not attack No Type
ec2-34-24(rcr-663.1o« TCP 66 1 [TCP ACKe benignprivACK not attack No Type
ec2-34-24(rcr-663.lo(TLSv1.2 97 1 [TCP ACKe benignprivate not attack No Type
ec2-34-24:rcr-663.lo(TCP 66 1 [TCP Dup .benignprinTCP, ACK not attack No Type
ec2-34-24:rcr-663.lo¢TLSv1.2 97 1 [TCP ACKe benignprivate not attack No Type
ec2-34-24(rcr-663.lo«TCP 66 32 [TCP Keep benignprivACK not attack No Type
ec2-34-24.rcr-663.1o¢TCP 66 32 [TCP Keep benignprivACK not attack No Type
ec2-34-24(rcr-663.lo« TCP 66 32 [TCP Keep benignprivACK not attack No Type
ec2-34-24(rcr-663.1o¢TLSv1.2 97 32 Applicatio benignprivate not attack No Type
ec2-34-24rcr-663.lo« TCP 66 32 [TCP Keep benignprivACK not attack No Type
ec2-34-24:rcr-663.lo¢TLSv1.2 97 32 Applicatio benignprivate not attack No Type
ec2-34-24(rcr-663.lo«TCP 66 63 [TCP Keep benignprivACK not attack No Type
ec2-34-24rcr-663.lo(TCP 66 63 [TCP Keep benignprivACK not attack No Type
ec2-34-24(rcr-663.lo«TCP 66 63 [TCP Keep benignprivACK not attack No Type
ec2-34-24(rcr-663.lo(TLSv1.2 97 63 Applicatio benignprivate not attack No Type
ec2-34-24:rcr-663.lo« TCP 66 63 [TCP Keep benignprivACK not attack No Type
192.168.0.rcr-663.1o0¢ DNS 118 Standard (benignprivate not attack No Type
kinesis.eu:rcr-663.lo¢TCP 74 0 https(443) benignprivSYN, ACK not attack No Type
kinesis.eu: rcr-663.lo¢TCP 66 1 https(443) benignprivACK not attack No Type
kinesis.eu:rcr-663.lo¢TLSv1.2 162 1 Server Hel benignprivate not attack No Type
kinesis.eu:rcr-663.lo(TCP 1448 97 https(443) benignprivACK not attack No Type
kinesis.eu rcr-663.lo(TCP 1448 1479 https(443)benignprivACK not attack No Type
kinesis.eu:rcr-663.lo¢TCP 1448 2861 https(443) benignprivACK not attack No Type

Figure 5.13 True negative by setting the packets checked to 10

112

5.4.3.1 Observations

The relevant observations made which will be taken into consideration at the tuning stage are

presented in table 5.4.

Observation

Trigger feature (E)
which is the encryption
condition leads to false
positives.

Trigger feature (E), the
encryption condition
leads to wrong attack
type classification.
Trigger features A
(Protocol) and B
(Packet length) lead to
false positives.

Trigger features C
(Sequence no) and D
(TCP flags) lead to true
positives.

Packets checked set to
5 leads to more false
alarms

Packets checked set to
10 leads to less false
alarms

5.4.4 Tuning

ID on table
5.2
1,2

18, 20

1,2, 16, 17,
18, 19, 20

Table 5.4 Observation details

ID on table 5.3

1,2,5,6,8,9,11,12,15,16,18,19,20

18, 20

1,2,5,6,8,9,11,12,15,16,18,19,20

3,4,10,13,14

Reason

Encryption protocols tend to be absent in normal
traffic for 10 packets sometimes, thus the false
positives raised.

The classification method takes the protocol with the
highest count in the attack labelled packet and labels
the attack type using that protocol name thus
labelling attack types using encryption labels.

Protocol and packet length tend to be the same for 10
consecutive packets in normal traffic sometimes.

Sequence no and TCP flags tend to always be part of
the trigger features during true positive attacks. They
never appear as trigger features in false positive
attacks.

5 consecutive packets are not sufficient to declare
and attack, thus the higher false alarms observed.

10 consecutive packets sufficient to declare an attack,
thus the more positive alarms.

The detection and attack type indication algorithm will be tuned and improved based on the noted

observations in table 5.4. The respective approaches taken to improve the algorithm are presented in

table 5.5.

ID | Observation

1 Trigger feature (E) which is the encryption

condition leads to false positives.

2 Trigger features A (Protocol) and B (Packet

length) lead to false positives.

3 Trigger features C (Sequence no) and D (TCP

flags) lead to true positives.

4 Packets checked “5” leads to false alarms

Table 5.5 Tuning approaches

Tuning approach

detection algorithm.

detection algorithm.

detection algorithm.

Remove condition from

Remove conditions from

Use them as trigger features in

Set packets checked to 10

Location in algorithm/ Reason for false
alarm

Figure 5.6. Condition E tends to raise false
positives due to the number of packets
checked set to 5 or 10. For this to work, the
number of packets checked has to be
increased. This either calls for the condition
to be dropped or have a separate number
for packets checked. The former will be
used as conditions C and D tend to detect
an attack with packets checked set to 10
even without condition E, thus eliminating
redundant conditions.

Figure 5.6 and 5.7. Conditions A and B tend
to raise False positives due to the number
of packets checked set to 5 or 10. This
number needs to be increased or entirely
drop the conditions to solve the issue. The
latter will be done to reduce redundancy in
the algorithm as conditions C and D tend to
detect the attack without conditions A and
B

Figure 5.8 and 5.9

Figure 5.5. Setting the packets to 5 tends to
raise false positives which indicates that its

113

too low in comparison to when it is set to
10 which yields better results.

5.4.5 Final Testing and Validation
The tuned detection and attack type indication algorithm is tested on the respective collected datasets

from table 4.1 section 4. This will provide clear results in terms of the algorithms performance before
and after tuning. Conditions A, B and E have been dropped from the algorithm as they are responsible
for generating false positives as seen from the trigger feature column of tables 5.2 and 5.3. They were
also found to be redundant as conditions C and D can flag the attack pattern even without A, B and E.
Table 5.6 provides the results to this. The same performance metrics from table 5.2 and 5.3 are used
to measure the performance for clear comparison. All datasets from table 4.1 in chapter 4 are tested

in this stage to see the performance of the algorithm after tuning it.

The results in table 5.6 clearly shows the respective tuned components have very much improved the
performance of the detection and attack type indication system. We can see the accuracy achieved is
much higher in terms of onset attack detection and attack type indication including unfamiliar (UDP
fragmentation, RECOIL, SLOWLOIC) and mixed attacks. Normal data is also recognized as completely
normal traffic except for one case, ID 21. The reason for this false positive is pointed out in the public
dataset used [85]. The device that emanated this traffic was newly deployed to the network, thus it
generated unusual DHCP traffic for connectivity establishment purposes. This is shown in figure 5.14.
However, after that, the traffic flow became normal. The absence of TCP sequence numbers and TCP
flags for more than 10 consecutive packets triggered this as seen from the figure. In the case of mixed
attacks, only the predominant attack type in the first window of the attack is indicated as the system
is designed to detect only at onset, which is a very crucial aspect in DDoS attack detection.
Furthermore, the performance metrics used here gives much more precise and useful details
compared to the traditional confusion matrix. The fact that early detection one of the most important
aspects in dealing with DDoS attacks, the conventional performance metrics used do not provide this
detail. Literature shows a system can provide high accuracy but not able to detect at onset or even
provide details about the point at which attack was detected, which questions the efficiency of the
system. The trigger features also show how effective the use of Sequence numbers and TCP flags are
in attack traffic detection as their pattern deviates and reverses completely from the usual one.
Furthermore, the normal traffic carries other protocols like DNS, ICMP, UDP among others as
identified on table 4.1 in chapter 4. However, this has not identified these legitimate protocols as
attack traffic but accommodates them. Even though the algorithm is designed for TCP/ HTTP based
traffic, it stillaccommodates these legitimate protocols. This is due to the number of “packets checked”
threshold which does not flag any protocol as attack unless it exceeds that number. Figure 5.15 shows

a flow process of how the final version of the algorithm works.

114

Arrival Time Source Destinatio Protocol Length Sequence Number Info

Jul , 2819 14 18.195.134.186 192.168.1.158 TCP 6@ 3162 443 > 18366 [ACK] Seq=3162 Ack=1048 Win=31044

Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 DHCP 342 DHCP Offer - Transaction ID @xabcdeeel
Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 DHCP 342 DHCP Offer - Transaction ID @xabcdeeel
Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 DHCP 342 DHCP Offer - Transaction ID @xabcd@eel
Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 DHCP 342 DHCP Offer - Transaction ID @xabcd@e@l
Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 DHCP 342 DHCP ACK - Transaction ID @xabcd@eel
Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 DHCP 342 DHCP ACK - Transaction ID @xabcd@eel
Jul 3, 20819 14.. 192.168.1.1 192.168.1.158 TICMP 62 Echo (ping) request id=8xfaB8, seq=0/8, ttl=6«
Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 TICMP 62 Echo (ping) request id=8xfaB8, seq=8/8, ttl=6:
Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 DNS 145 Standard guery response 8x43d4 A @.europe.pool
Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 DNS 145 Standard gquery response 8x43d4 A @.europe.pool
Jul 3, 2819 14. 78.46.182.188 192.168.1.158 NTP 28 NTP Version 4, server
Jul 3, 2819 14. 78.46.182.188 192.168.1.158 NTP 28 NTP Version 4, server
Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 DNS 188 Standard gquery response @x7del A somfykeys.opet
Jul 3, 2819 14.. 192.168.1.1 192.168.1.158 DNS 188 Standard gquery response 8x7del A somfykeys.opet
Jul 3, 2819 5 134, -1 68
3 1.1
3 -l
3 1.1
3 Sdle
3 ilt
3 ol
1.
1.
1.
1.
oo
1.
1
1.
1.1
1.1

Figure 5.14. New device joining network traffic

Table 5.6 Final testing and validation results

ID Dataset Attack Attack Attack Pkt no Pkt no Pkt no Trigger Window Window
present? detected classifi attack attack attack feature(s) attack attack
? ed? started detected classified started detected

and type

1 HTTPO1.csv Yes Yes Yes 47 47 47,TCP Cc,D 2N\P 2N\P

2 HTTPO2.csv Yes Yes Yes 124 124 124,TCP c,D 6™ 6™

3 HTTPO3.csv Yes Yes Yes 189 189 189,TCP Cc,D 9™ g™

4 SLOWLOICO01. Yes Yes Yes 209 209 209,TCP C,D 10™ 10™

csv
5 SLOWLOIC02. Yes Yes Yes 312 312 312,TCP Cc,D 15™ 15™
csv

6 RECOIL.csv Yes Yes Yes 192 192 192,TCP Cc,D g™ g™

7 UDPO1.csv Yes Yes Yes 11462 11462 11462,U C,D 573FfP 573FfP
DP

8 TCPSYNOl.csv Yes Yes Yes 2618 2618 2618,TCP CD 130™ 130™

9 TCPSYNO2.csv = Yes Yes Yes 25295 25295 25295, TC CD 1264™ 1264™
P

10 Mixed0Ol.csv Yes Yes Yes 204 204 204,TCP Cc,D 10™ 10™

11 Mixed002.csv ~ Yes Yes Yes 120 120 120,UDP Cc,D 6™ 6™

12 Mixed003.csv = Yes Yes Yes 283 283 283,ICMP CD 14™ 14™

13 FRAGOOl.csv Yes Yes Yes 129249 129249 129249,Uu CD 6462N° 6462N°
DP

115

14

15

16

17

18

19

20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

FRAGO002.csv Yes Yes Yes 163740 163740 163740,U
DP

Normal00l.cs No No No Null Null Null

v

Normal002.cs = No No No Null Null Null

v

Normal003.cs No No No Null Null Null

v

Normal004.cs No No No Null Null Null

v

Normal005.cs No No No Null Null Null

v

Normal006.cs No No No Null Null Null

v

TCPSYNOl.csv = Yes Yes Yes 2402 2402 2402, TCP

TCPSYNO2.csv = Yes Yes Yes 272 272 272,TCP

TCPSYNO3.csv ~ Yes Yes Yes 38 38 38,TCP

TCPSYNO4.csv ~ Yes Yes Yes 19 19 19,TCP

TCPSYNO5.csv ~ Yes Yes Yes 279 279 279,TCP

UDPO1.csv Yes Yes Yes 196 196 196,UDP

UDPO2.csv Yes Yes Yes 304 304 304,UDP

UDPO3.csv Yes Yes Yes 325 325 325,UDP

UDPO4.csv Yes Yes Yes 202 202 202,UDP

UDPO5.csv Yes Yes Yes 297 297 297,UDP

ICMPO1.csv Yes Yes Yes 598 598 598,ICMP

ICMPO2.csv Yes Yes Yes 509 509 509,ICMP

ICMPO3.csv Yes Yes Yes 191 191 191,ICMP

ICMPO4.csv Yes Yes Yes 181 181 181,ICMP

ICMPO5.csv Yes Yes Yes 293 293 293,ICMP

NormalOl.csv No No No Null Null Null

Normal02.csv No No No Null Null Null

Normal03.csv ~ No No No Null Null Null

NormalO4.csv No No No Null Null Null

Normal05.csv~ No No No Null Null Null

The following are the results achieved from table 5.6.

Total number of test cases: 41

Actual True positives: 29, Attained True positives: 29
Actual True Negatives: 12, Attained True Negatives: 11
False positives: 1

False Negatives: 0

CD

Null

Null

Null

Null

Null

Null

c,D
Cc,D
Cc,D
Cc,D
Cc,D
c,D
c,D
c,D
c,D
Cc,D
Cc,D
Cc,D
Cc,D
Cc,D
c,D
Null
Null
Null
Null
Null

8187™

Null

Null

Null

Null

Null

Null

14
Null
Null
Null
Null
Null

8187™

Null

Null

Null

Null

Null

Null

14
Null
Null
Null
Null
Null

116

Table 5.7 shows which conditions (A TO E) from section 5.3 result in false positives and true positives.

No false negatives have been attained, thus not addressed here.

Table 5.7 Conditions and their outcomes

Condition(s) Outcome

A False positive
B False positive
C True positive
D True positive
E False positive
AandB False positive
Aand E False positive
AandBandE False positive
CandD True positive

Figure 5.15 shows a flow process of how the final version of the algorithm works. After capturing 20

packets, the sequence number is checked, and condition C (section 5.3) is applied. If found true, the

packets are labelled as “attack” and if found false they are labelled as “not attack”. The TCP flags are

checked next and condition D (section 5.3) is applied. If found true, the packets are labelled as “attack”

and if found false they are labelled as “not attack”. The highest protocol count of those labelled “attack”

is taken, and the protocol name is used to further indicate the attack type.

Start

|

Capture 20

R
Packets

\
|

equence
Number

False TCP Flags True
Label as Labelas
Not Attack Attack

T

Highest
Protocol
Count

l

—
Attact Type ‘
Label ‘

Figure 2.15 Algorithm Flow process

117

5.5 Comparison to literature and new findings
This section compares the systems performance to existing solutions in DDoS detection in the smart

home network. It is based on 12 comparison factors as presented on table 5.8 and 5.9 which are:

v

Features used: The respective features used in attack detection are listed and compared to
the ones used in this research. We can see that majority of the features used are device
dependent like IP address, ports and packet frequency which tend to make the solution device
centric. However, this research uses generalized features applicable to all smart home devices
thereby making the solution not device or user centric. In addition to that, we can see that
existing solutions monitor 2-way traffic while our solution monitors one way which
contributes to reduction of redundant traffic thereby making the system light weight.
Attacks covered: The various attacks the existing systems can detect are identified. We can
see that existing solutions tend to be attack centric detecting between 1 to 4 attacks overall.
However, our solution can detect and indicate the attack type of a wider range of DDoS attacks
like volume, protocol and amplification based including unfamiliar attacks. This is due to the
nature of the network features used which are generalized smart home features and not
device specific. Furthermore, some generalized attack features (absence and range) are also
used which makes the solution a hybrid one and robust enough to cater for all attacks and
devices.

Problem solved: The problem solved by the existing solutions are compared to ours. We can
see that current solutions focus on attack detection while ours both detects and indicates the
attack type including unfamiliar and mixed attacks.

Data source: The various datasets or data sources used by existing solutions for
testing/validation are compared. We can see that a reasonable number of existing works used
only private simulated data. In addition to that some have used public datasets which are
outdated like the DARPA99 [129]. Our solution stands out as it uses both private data
generated from real smart home environment, not simulated plus making use of recent
reputable public datasets for validation.

Focus: Areas where the existing solutions focus on are identified. Several existing works tend
to be either attack, device, or user centric due to the detection features used. Our solution
stands out as it is not user, attack, or device centric as detection features used a general smart
home and attack traffic properties, thus catering for both device and attack perspectives.
Practicality: This indicates how feasible or practical deploying the system is in real life
environments. We can see that some solutions tend to consume a lot of resources, while some

are not fit for diverse environments. Some also require extraction of device behaviour which

118

doesn’t seem practical in a large or diverse network as this will be time consuming and
requires device behaviour extraction each time a new device is added to the network. Our
solution stands out in this aspect as it is not device or user pattern specific, so it doesn’t
require any sort of training or extraction. This makes it ready to deploy at any environment.
Our solution also tends to be suitable for diverse settings due to its accommodating features.
Performance metrics: The metrics used to assess a systems performance are identified here.
From the table we can see that existing solutions use confusion matrix, memory utilization,
CPU utilization, rejected packets, blacklisted addresses and the like. However, none of these
metrics gives clear and precise details on whether the system was able to detect the attack at
the very onset, which should be one of the most relevant details when it comes to DDoS
detection performance measure. Some works have not assessed their performance at all as
seen form table 5.8 and 5.9. Our work stands out as the performance metrics used clearly
provides information on how early and accurately the system was able to detect and classify.
Onset detection: How early the existing solutions have been able to detect or classify the
attacks are outlined. We can see that none of the reviewed works have provided this detail
which should be at the top of the list when it comes to DDoS attack detection. Our solution
has provided these details and each time it is able to detect and indicate attack type accurately
from the very onset.

Validation: This indicates how a system has been validated to prove that it is reliable outside
the private network or initial data source it is tested on. We can see that based on the papers
reviewed in this work, solutions have not been validated on reputable public data. Our
solution has been validated using recent and reputable public data as well as unfamiliar
attacks on which it performed excellently well. This proves that the solution is applicable to a
diverse range of devices and networks as well as attacks.

Approach: The detection approach used by existing works and how it affects their
performance is compared. We can see that most of the approaches lead to the solutions being
either device, user or attack centric due to the detection approach (mainly features) used
while some lead to high False Positive alarms. Approaches that use real time entropy tend to
miss the attack traffic when it starts at the very beginning of a window or at the very end of a
window, so the attack is only detected if it starts at the middle of window. Our approach
stands out as it uses feature absence, variance, and range to detect the attacks thereby not
being centric and having no false positive alarms. Our approach has no issue missing any
attack that starts at the very beginning of a window as a set of predefined rules and features

are used for detection as opposed to the real time entropy method.

119

ID

[y

Coverage: This shows the area a solution covers at a time during monitoring. Majority of the

solutions monitor at device level while our work monitors at network level (router). This

provides a central point of detection covering the entire network at once.

Counter spoof: This indicates if a solution is counter spoof in terms of port and IP spoofing.

Majority of the existing works are not counter spoof as they use IP addresses and sometimes

port numbers as detection features which can mistake a spoofed feature for a legitimate

device and let it pass through as part of the whitelisted devices. Furthermore, if it gets

blacklisted this can block legitimate IP’s. Our solution avoids this by not using features that

can be spoofed as a basis for detection.

Factor

Features and
flow direction

Attacks
covered

Problem

solved

Data source

Focus

Practicality

Performance
metrics and
rates

Onset
detection

[20]
Communicati
on
direction,dest
ination
IP,port,protoc
ol,time
interval of
packets,numb
er of
packets,packe
t sequence,
DUD.

2 way
UDP,SYN,ACK
,DNS,HTTP

Detection

Private

Device, user
centric

Not feasible
in large scale
as you must
extract each
device
behaviour.

Not clear
Detection
rate: 97-99%

Not
mentioned

Table 5.8 Comparison to literature

[23]
Packets/sec
, payload
size.

2 way

Not
mentioned

Detection

Private(sim
ulated)

User/
device
centric
Features
used will
lead to FP
in diverse
environme
nts as they
vary
between
devices
Memory
and CPU
utilization

No
evidence

[43]
Networked
smart
object(NOS
).

2 way

Not
mentioned

Detection

Private

Not clear

High
resource
consumptio
n

Latency,
computing
effort,
attack
recovery
time

Not
mentioned

[55]

Attack
signatures 2-
way

TCP,UDP,ICMP,|
RC

Detection

ISOT,BOTIoT,loT
23

Not clear

Resource
consuming

Accuracy,
detection time,
CPU &memory
usage

Not mentioned

[79]
TCP SYN flags.
2 way

TCP SYN, ICMP, DNS

Detection

Private(simulated)

Attack centric

Analyses traffic from
each device
independently which
can cause delays.

Not used

Not mentioned

Our solution
Protocol(for
attack type
identification),s
eq no,TCP flags

All DDoS
flooding
attacks and
unfamiliar
Detection &
attack type
identification
Private(real
network),
10T23,BOTloT,B
UETDD0S2020
Covers all

Suitable for
large scale and
diverse
networks. No
false positive
alarms.

Packet attack
started,
detected,type
indicated,
Window attack
started,detcted
Detects and
indicates attack
type at onset

120

9

11

12

10

Validation

Approach

Coverage

Counter
spoof

Factor

Features and
flow direction

Attacks
covered

Problem
solved
Data source

Focus

Practicality

Performance
metrics and
rates

Onset
detection

Validation

Approach

Not

mentioned

Change in

device or user
behaviour
will cause FP.

Device level

No

[80]

IP
address,
interval
between
packets.
2 way
Not
mentione
d

Detectio
n
Private(Si
mulation)

Not clear

Not
feasible
in diverse
environm
ents as
features
used can
raise
false
alarms
No of
whitelist
ed and
black
listed IP’s
Accuracy:
99.1

Not
mentione
d

Not
validated

Features
used can
lead to
blocking
legitimat
elP’s

Not Validated Validated Not validated Validated
validated using 1
source
Detection Not Only known Doesn’t provide Features used
approach scalable as attacks are detection approach covers all
problemati number of detected. devices and
cas NOS attacks and
features determines detects at very
used will how much onset.
raise FP attack it
can handle
Device level = Device level Device level Network level Network level
No No No No No
Table 5.9 Comparison to literature
[81] [86] [87] [89] Our solution
Packet Number of Source/destination Protocol(for attack type
sending rate, packet sent IP & port. indication),seq no, TCP
signal power. over a 2 way flags
2 way duration.
2 way
Hello TCPSYN TCPSYN,UDP TCP All DDoS flooding attacks
flooding, SYN,Sm and unfamiliar
version urf
number
modification
Detection Detection Detection Detectio = Detection & attack type
n indication
Private Private Private(simulated) DARPA9 Private(real network),
and BOTIoT 9 10T23,BOTloT,BUETDDoS
2020
Attack, user Attack,user,de Attack centric Attack Covers all
centric vice centric centric
Features used Feature used Not practical for Suitable for large scale
will raise FP will lead to FP. large scale as and diverse networks.
in diverse system stops No false positive alarms.
environment detecting when
window gets too
large.
Not tested Rejected Detection Not Packet attack started,
packets rate,FP,mean,stan used detected,attack type
dard deviation indicated, Window
Detection rate: attack started, and
80%, 20%FPR indicated
Not Not mentioned =~ Not mentioned Detects and indicates
mentioned attack type at onset
Not validated Not validated Validated Not Validated
validate
d

Countermeas
ure can lead
to blocking
legitimate IP’s

Not practical
for diverse or
large-scale
environments.

Attack starting at
the beginning of a
window or end of
a previous window
is not detected

Features used covers all
devices and attacks and
detects at very onset.

121

11 Coverage Network Network and Device level Network Network level
level device
12 Counter No No No No No Yes
spoof

Several new findings have surfaced from this chapter. These include:

> The use of absent features as a basis for attack detection including unfamiliar attacks. We
have seen how absence of TCP flags and Sequence numbers gives a strong base for attack
detection as well as encryption protocols in heavily encrypted networks. As these are
predominant and frequent in normal traffic, their absence creates a deviating pattern.

» The use of feature range as a basis for attack detection including unfamiliar attacks. We have
seen how the sequence number range can be used to determine the very onset of attack
traffic. Sequence numbers in normal traffic tend to be incremental and very dynamic while
they get stalled at 0 or 1 during an attack.

» The use of highest protocol count to indicate the attack type of both known and unfamiliar
attacks. We have seen how effective using the predominant protocol from attack labelled
packets lead to straightforward and accurate attack type indication, more interestingly for
unfamiliar attacks. This provides timely information as to the protocol exploited during the
attack which in turn can be used to decide what countermeasure to take.

> Presentation of more relevant metrics in terms of evaluating the performance of a DDoS
detection and classification system. We have seen how the performance metrics used in the
testing phase of this chapter has provided more relevant and precise details as opposed to
the conventional means of using confusion matrices and other statistics that don’t point out

how early a proposed system is able to detect attacks.

5.6 Summary
This chapter has implemented and tested a hybrid anomaly and feature-based DDoS detection and

attack type indication algorithm. This is based on general smart home traffic properties and attack
signatures derived from the EDA in the previous chapter. The system has been tested on private attack
and normal data and on public data including unfamiliar attacks. Rigorous testing has been carried out
and the system performed well. The system has also proven the effectiveness and importance of using
feature absence as a basis for attack detection. Performance metrics for DDoS detection and
classification systems has also been presented which have proven to be more effective and relevant
in terms of providing precise and accurate performance details as opposed to the traditional confusion

matrix and other statistics that don’t say if a system can spot an attack at the very onset.

122

Chapter 6

A Novel Hybrid Machine Learning Attack Type identification model
using Domain Knowledge

6.1 Introduction
The previous chapter implemented a hybrid anomaly and feature-based DDoS detection and attack

type identification system using a set of properties derived from the EDA. This chapter aims to apply
the approach used in the previous chapter for attack type identification using a Supervised Machine
Learning model. The network features used in detection as well as the highest protocol count attack
type indication approach will be integrated into the ML model with the aim of achieving better
performance in terms of attack type indication. Random Forest is the chosen model due to its
promising performance after testing and comparing it to other ensemble models. It has also shown
promising results on smart home traffic from literature [97] [98] [99] [100]. First, the model is trained
and tested to see its performance in attack type indication. It is then coupled with the indication
approach used in the previous chapter to compare which model (RF OR hybrid RF) performs better at
attack type indication. This is trained and tested on 3 flooding attacks (TCP SYN, UDP, ICMP). The
performance of the system is evaluated, and improvements are made to the classification algorithm
after which it is further tested on unfamiliar flooding attacks (HTTP, Slow LOIC, RECOIL) and a mixture
of all the attacks (TCP SYN, UDP, ICMP, HTTP, RECOIL, slow LOIC). It is also validated using public attack
and benign data to eliminate biases and verify that it is not user, attack nor device centric. Finally, the
trained and tested hybrid Random Forest detection and attack type identification model (Hybrid RF)
is compared to other state of the art supervised DDoS attack type classification models like CNN [28]

Gradient Boosting [133] and Ada Boost [136]. This chapter covers and achieves the following points:

e Anovel detection supervised learning model capitalizing on feature absence is presented. This
is tested on both private and public data including unfamiliar attacks.

e The supervised learning detection model is coupled with an algorithm-based attack type
indication approach based on domain knowledge for more accurate attack type indication.

This is also evaluated using both private and public data including unfamiliar attacks.

The remaining sections in this chapter cover methodology used, how the proposed hybrid detection
model works, an implementation of the model, its performance and results achieved, a comparison

of the systems performance to literature, new findings, and finally a summary of the chapter.

123

6.2 Methodology

The various processes and sub-processes followed to achieve a successful implementation of the
proposed hybrid detection and attack type indication model is broken down in this section as shown

in figure 6.1.

Choose Model | » Coding I » Model Training

|
A

Validation - { Tuning } ! Model Testing
J

L

Performance { Comparison to

< Comparison Literiture
) J

Figure 6.1 Methodology

This methodology consists of 8 main phases which are choosing model, coding, model training, model
testing, tuning, validation, performance comparison and comparison to literature. The methodology
is designed to be smooth and seamless in terms of transitioning from one phase to the next. It is
manageable due to its segregated phases with having to complete one phase before moving onto the
next as the results from the previous phase are used to commence working on the next phase. The
model accommodates observations from the testing phase which will be used in tuning the system for
better performance at the validation stage. Validation data includes unfamiliar attacks, mixed attacks,
and public data for elimination of biases in terms of data source used and prove that the hybrid model
is not user, device, nor attack centric, which works on zero day and mixed attacks which this
methodology accommodates. A concise way to measure the systems performance in relation to how
early and accurate the attack is detected and classified is also presented using more relevant metrics
and factors. The methodology also lays out a comparison of the systems performance to other state
of the art solutions based on several clear and critical factors. The factors based on which the systems

performance is measured tends to be clearer and more scientifically sound which makes this

124

methodology stand out when compared with state-of-the-art methods. The various phases and what

they entail are as follows:

v

Choose model: This phase involves reviewing literature to find the most suitable model
(supervised ML model) in terms of attack detection and classification using smart home
network traffic. Other ensemble models will also be tested and compared with the most
suitable model found from literature.

Coding: This phase involves importing the required python libraries to be used during training
and testing. These libraries will provide pre-built functions which will simplify the algorithm
scripting process. This means pre-existing, tested and working code will be used for some tasks
as this will reduce errors and inconsistencies. Helper functions will also be created to have an
organized and modular code. The created functions will also be reusable in other parts of the
code, thus eliminating the need for repetitive code. Updates made where these functions are
used will also reflect throughout thereby saving time and avoiding inconsistencies.

Model training: Several stages are involved in this phase to ensure an effective model is
achieved at the end. It consists of data collection, data pre-processing, splitting the datasets,
and finally training the model using the datasets.

Model testing: The performance of the trained models is evaluated here. The testing bit of
the split dataset is used for evaluating the model’s performance. The models will be tested
based on attack detection accuracy. Observations will be made at this stage which will be used
in the tuning stage. At this stage the best performing model will be coupled with the attack
type indication module and the performance will be compared when it is hybrid and on its
own.

Tuning: This phase involves making improvements to the hybrid model based on its
performance at the testing stage. Potential issues to look out for include trying different
sliding windows and tuning the attack type indication algorithm.

Validation: This phase involves using additional public datasets consisting of mixed (attack
and benign) and purely benign traffic. Private data will also be used including unfamiliar and
mixed attacks. This will provide bias free performance details at the same time ensuring
rigorous testing and validation.

Performance comparison: The performance of the chosen model in attack type classification
will be compared to its performance when coupled with the domain knowledge-based attack
type indication approach. The important factors are how accurate and early the attack type is

detected and classified.

125

v' Comparison to literature: The performance of the hybrid detection and attack type
identification model will be compared to existing solutions. This will prove or disprove how
important domain knowledge is when dealing with attack detection and attack type indication

when designing machine learning models.

6.3 Proposed hybrid Machine Learning detection and attack type identification model
The proposed hybrid detection and attack type identification model has two main functions. First it

detects the attack based on what it learned from the training data and secondly it indicates the attack
type from attack labelled packets based on the most predominant protocol. Figure 6.2 shows the flow

process involved.

Load Data

\J

Extract Features

Y
Predict Using
Random Forest

v .
Label as Attack or
Normal

Y

Highest Protocol
Count

Label

Stack

Figure 6.2 Hybrid model flow process

After loading the dataset, the required features are then extracted with the appropriate flow direction
(destination IP address). The features used in the previous chapter for the hybrid anomaly and feature-

based solution are used here, including the absent features. These include protocol, packet length,

126

TCP flags and sequence numbers in addition to packet inter-arrival times. After the extraction, the
chosen model predicts what the traffic is, based on its learning knowledge of what differentiates an
attack from normal traffic. The traffic is then labelled as either the predicted attack type or normal.
The labelled packets both attack and normal are then stacked in an output location. The protocol
column of the attack type labelled packets is inspected and the protocol with the highest count is used
as the attack type label for those packets. This is also stacked, and the process starts over. Stacking

refers to placing a window of labelled packet on top of the previously labelled ones.

6.4 Implementation
This section delves into the series of steps and processes carried out in selecting the best model which

will be used in the implementation of the hybrid detection and attack type identification model.

Several models were tested to get the best performing model.

6.4.1 Coding
As mentioned earlier several libraries were imported in Google Colab to start with. These include:

e Pandas [130]: This is for data manipulation. It makes provision for structures like DataFrame
which helps in analysing and cleaning organized data.

e NumPy [130]: This is for mathematical operations like matrix operations and handling of large
data sources that require complex computations.

e Matplotlib [130]: This is for data visualization as it provides plotting and presentation tools.

e Seaborn [130]: This is for more complex visualizations. It is an extension of Matplotlib.

e Pickle [130]: This is for serializing and deserializing objects so they can be saved and loaded at
later times like models that have been already trained.

e Re [130]: This allows for use of regular expressions to search and manipulate text output in
the data.

e Scikit-learn [130]: This is for model development and evaluation.
The next step is the creation of helper functions. The created functions are:

e read_multifiles: For reading in several data sources at a time.

e make_modeling_data: For data pre-processing steps like feature extraction and scaling and
splitting into training and testing.

e make_attack_model: For fitting pre-processed and split data into Random Forest model for
training and testing.

e attack detector: For unseen data source attack type classification.

e extract_flow_metrics: For extracting flow features from each window.

e get tcp_flag: For extraction of TCP flags from the info column.

127

6.4.2 Model Selection
The following ensemble models are trained and tested to find out the best performing one in terms
of attack detection:

e Random Forest (RF) [131]: This is an ensemble learning method used in regression and
classification. It combines several decision trees at the training stage and takes the mode as
output for classification tasks while using the mean for regression tasks.

e Support Vector Machines (SVM) [132]: This is another supervised machine learning algorithm
that does classification and regression. It works by finding a hyperplane which differentiates
the data points there by assigning them to their respective classes.

e Gradient Boosting [133]: This is another ensemble model that is used for classification and
regression tasks. By combining predictions from multiple weaker models, it builds its own
strong prediction model.

e Ensemble by voting [134]: This is another ensemble model that uses several machine learning
models that have been trained independently and using their combined predictions to arrive
at a final prediction. In classification scenarios a majority vote is used for final prediction while
the average is used for regression cases.

e Stacked generalization [135]: This is another ensemble learning technique that uses
predictions from several other base models by using a meta model. It combines the strengths
of different models thus improving the overall performance.

e Ada boost classifier [136]: This is another ensemble model used for classification tasks. It
combines weak classifiers and improves an overall accuracy by merging their respective

predictions.

These models were trained and tested using the “make attack model function” as shown in figure 6.3.
The private datasets from table 6.1 are used in training the models. Figure 6.4 shows the performance
of these models compared. We can see that Random Forest scored highest in terms of Balance
accuracy and F1 score. It is also the second fastest in terms of training time after Gradient Boosting.
This makes Random Forest the selected model that will be coupled with the attack type identification

module from the algorithm in chapter 5.

128

Table 6.1 Datasets

Source IP Target IP Public/Private Known/U Composition
nknown
1 TCPSYNO1.csv 192.168.0.103 192.168.0.102 Private Known 5 Attack+benign
2 UDPO1.csv 192.168.0.103 192.168.0.102 Private Known 5 Attack+benign
3 ICMPO1.csv 192.168.0.103 192.168.0.102 Private Known 5 Attack+benign
4 HTTPO1.csv 192.168.0.103 192.168.0.102 Private Unknown | 3 Attack+benign
5 SLOWLOICO1.csv 192.168.0.103 192.168.0.102 Private Unknown = 2 Attack+benign
6 RECOILO1.csv 192.168.0.103 192.168.0.102 Private Unknown 1 Attack+benign
7 MixedO1.csv 192.168.0.103 192.168.0.102 Private Unknown 3 Attack+benign
8 NormalO1.csv 192.168.0.101 Private 1 Benign
9 TCPSYNOO1.csv 192.168.100.147- 192.168.100.3 Public Known 1 Attack+benign
150
10 UDPOO1.csv 192.168.100.147- 192.168.100.3 Public Known 1 Attack+benign
150
14 Normal001.csv 192.168.1.158 Public 5 Benign

nb = GaussianNB()

rf = RandomForestClassifier(n_estimators=18, random_state=1)
svm = LinearSVC(random_state=0, tol=le-5)
estimators=[('nb', nb), ('rf', rf), ('svm', svm)]

models = [RandomForestClassifier(random_state=10), LinearSVC(random_state=0, tol=le-5),
HistGradientBoostingClassifier(max_iter=100), VotingClassifier(estimators=estimators, votin
StackingClassifier(estimators=estimators, final_estimator= RandomForestClassifier(random_ st
model_names = ["Random Forest", "SVM", "Gradient Boosting", "Ensemble by voting", "Stacked generaliza
models_df = pd.DataFrame()

for clf, name in zip(models, model_names):
start = time.perf_counter()
print("\n", "="*10, name, "="*10)
,, scores = make_attack_model(flow_data, clf, scale=True) # for use during prediction
print("Total run time is {:0.2f} seconds".format(time.perf_counter() - start))

scores["name" name
scores["time"] = time.perf_counter() - start
models_df = models_df.append(scores, ignore_index=True)

print()
Figure 3.3 Trained models

Balance Accuracy f1_score name time
0 0.994729 0.994731 Random Forest ~ 14.430699
1 0.994283 0.994286 SVM 27998523
2 0.994283 0.994286 Gradient Boosting 5.780776
3 0.994283 0.994286 Ensemble by voting 27.351088
5 0.994283 0.994286 Ada Boost Classifier 37.339183
4 0.987597 0.987600 Stacked generalization 136.404501

Figure 6.4 Comparing model performance

129

6.4.3 Chosen Model
Random Forest was selected based on its performance among the tested models in section 6.4.2 and

from reviewed literature. It was found to perform well on DDoS detection and classification using
smart home traffic. It is an ensemble learning method comprising of several decision trees and
collectively harnessing their prediction capabilities. This gives it a robust nature paving way for more
accurate results. Studies have shown the Random Forest model to have performed well in DDoS attack
detection in smart home networks and 10T in general [97] [98] [99] [100]. This is retrained using the

same private datasets from table 6.1.
The stages involved in this phase are as follows:

e Create training data: The read_multiplefiles function is used to load in the numerous datasets
to train the model. Background noises are filtered out. For the benign dataset the smart hubs
IP address is used as destination address filter. This will leave only data flowing to the smart
home device. For the attack dataset, the attack IP is used as source and smart home device IP
as destination. This way only traffic flowing from the attack source to the smart device is left.
The flow metrics are extracted next using the extract_flow_metrics function. Null values are
replaced with empty strings. The considered features are then extracted which are TCP flags,
protocol, packet interarrival time, time interval between first and last packet in a flow, packet
length and sequence numbers. The window is set to 10 packets and after these flow metrics
are extracted, the window slides by 2 packets to continue extraction until it exhausts the
entire dataset. The flow data is then created which will be used in the training phase. Figure
6.5 shows the output of the created flow data. The rest of the columns carry the dataset label
and protocol counts.

Unnamedc; pkt start pkt end flow dur ave pack IAT count tcp flags count syn flag count ack flag count fin flag count rst flag

Figure 6.5 Flow data output

130

Train model: This phase involves scaling the feature variables using the standard scaler from
scikit-learn, splitting the data using train_test_split function, training the Random Forest
classifier, testing, and saving the model for future use. Figure 6.6 shows the code responsible

for these steps.

def make_attack_model (flow_data, scale=False, plot_eval=True):
#2 Preprocess data
y = flow_data['label']
X = flow_data.drop(columns = ['pkt_start','pkt_end', 'label']) # drop dummy column and the actual Label
X['av_sn'].replace([np.nan], -1, inplace=True) # encode flows with no average sequece number (nan) with -1

#3 create scaler and scale the data

scaler = StandardScaler().fit(X)

if scale:
X = scale_data(X, scaler)

#4 modeling

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=10, shuffle=True, stratify=y)

model = RandomForestClassifier(random_state=10).fit(X_train, y_train)

y_pred = model.predict(X_test)

#5 evaluate model

print_model_eval(y_test, y_pred)

if plot_eval:
visualiozation
pca_le = get_pca(X_test, scale=False) if scale else get_pca(X_test) # PCA
plot_pred_label (pca_le, y_pred, title = 'Label-encoding') # predicted Label
plot_true_Llabel(pca_Lle, y test, ‘Label-encoding') # true Label

return model, scaler

model, scaler = make_attack_model(flow_data, scale=True) # for use during prediction

save model and scaler
pickle.dump(scaler, open('../models/scaler_17_11", ‘wb'))
pickle.dump(model, open('../models/RF_model_17 11", 'wb'))

Figure 6.6 Model training

Prediction: This phase involves filtering out the background noise, extract features from a
rolling chunk of the data, and predict if that chuck is an attack or not. Once an attack is
detected, the packet number of the start and end of the chunk is returned together with the
attack type. Figure 6.7 shows the code responsible for background noise filter and feature
extraction while figure 6.8 shows the code handling attack prediction, labelling and attack
type indication using the highest protocol count (mode function) among the attack labelled
packets. The output shows what the Random Forest model predicted as attack type and what
the secondary classifier using the protocol mode predicts.

Evaluation: The trained Random Forest model is evaluated using confusion matrix. This shows
the precision, recall and fl1score. This is shown in figure 6.9. Looking at the confusion matrix
in all scenarios the model correctly predicted all the attacks as attack. It also correctly
identified all the normal data as normal. So, in terms of binary classification, it works well.
However, it misclassified some of the attacks like where it identified 23 UDP attacks as ICMP.
1202 ICMP as TCPSYN. This is where the strength of the Hybrid model will come in as it will

help the RF classify the attack type correctly.

131

def attack_detector (df, trained_model, scaler, device_ipadd=None, roller=7, step=2):
froo
Predict if a tuple of {roller + step + 1} packets is an attack or normal flow by extracting
flow metric from the {roller + step + 1} packet tuple and using the loaded model for the predict.

if device_ipadd:

data = df.query(f'Destination == "{device_ipadd}"') # to filter out background noise
else:

data = df

assert len(data) > @, 'Confirm that the correct device IP address is provided. All the traffic count been filtered out as background
print(data) # for debugging

#1 Extract flow data ------- >flow_df = make_flow_data(traffic_df)

flow_id = 1

start = ©

atk_name = []

atk_str =[]

atk_end = []

atk_mode = []

for r in range(@, len(data), step):

flow_dt = {'pkt_start':[], 'pkt_end':[], 'flow_dur':[], 'ave_pack IAT':[],'count_tcp_flags':[],

‘count_syn_flag':[], 'count_ack_flag':[], 'count_fin_flag':[], 'count_rst_flag':[], 'count_psh_flag':[],
‘count_tecp':[], 'count_tls':[], 'count_icmp':[], 'count_udp':[], ‘count_ntp':[], 'count_dns':[],
'no_unique_prot':[], 'no_unique_pl':[], 'sn_type':[]

Figure 6.7 Filtration and feature extraction

#5 make prediction
pred = trained_model.predict(feature)[@]
print (pred) ##for debugging purpose

#6 Take action based on the prediction (traffic flow type)
if pred != 'Normal':
atk_name.append(pred)
atk_str.append(packet_info.pkt_start[6])
atk_end.append(packet_info.pkt_end[@])

For monitoring or later analysis
For monitoring or later analysis
For monitoring or later analysis

try:

atk_mode.append(mode(rolling_df.Protocol)) # to guess the attack type for monitoring or Llater analysis

atk_mode.append(rolling_df.Protocol.mode().values[@]) # to guess the attack type for monitoring or Later analysis
except:

atk_mode.append('unknown ") # For monitoring or Later analysis

print(f'"{pred}" Attack(attack mode - {atk_mode}) detected between packet ==> {packet_info.pkt_start[@]} and {packet_info.pkt
stop server NOW')

break # un/comment if you need to stop detection after first attack has been detected

else: # For monitoring
print(' "Nermal flow"')

print('="*58, f'flow {flow id} : start {end}', '='*58)

start = r

flow_id+= 1

return atk_name, atk_str, atk_end, atk_mode

Figure 6.8 Prediction and labelling

ICMP
100000
80000
Normal
]
Q
= 60000
L)
2
E
TCPSYN
40000
20000
uppP 23 0 119393
0
ICMP Normal TCPSYN upP
Predicted label
ICMP Normal TCPSYN upP
precision ©.984 1.0 ©.868 ©.998
recall 0.982 1.0 0.873 0.998
fscore 9.983 1.0 0.870 0.998
support 12659.60@ 1972.@ 2826.808 119590.000

Figure 6.9 Random Forest confusion matrix

132

6.4.4 Model testing
This phase involves testing the trained model on the test partition of the initially split dataset. This

data is unseen by the model and comprises of unfamiliar attacks and mixed attacks. Table 6.2 shows

the testing results achieved from both the Random Forest classifier and the Hybrid Random Forest

model.
Table 6.2 Testing results
ID Dataset Attack Attack Attack Attack Pkt no attack Window range attack detected
present? detected classified classified by started
? by RF hybrid RF

1 HTTPOl.csv Yes Yes TCPSYN TCP 47 48-63
2 HTTPO2.csv Yes Yes - TCp 124 122-134
3 HTTPO3.csv Yes Yes TCPSYN TCP 189 189-198
4 SLOWLOICO1. Yes Yes TCPSYN TCP 209 209-228

csv
5 SLOWLOICO02. Yes Yes TCP 312 309-322
6 RECOILO1.csv Yes Yes TCPSYN TCP 192 211-232
7 UDPO4.csv Yes Yes ubP UDP 202 179-206
8 UDPO5.csv Yes Yes uDP ubP 297 278-305
9 TCPSYNO2.csv = Yes Yes TCPSYN TCP 272 272-293
10 TCPSYNO3.csv = Yes Yes - TCP 38 38-53
11 Mixed0Ol.csv = Yes Yes - TCP 283 265-324
12 Mixed002.csv ~ Yes Yes ICMP ICMP 120 72-130
13 Mixed003.csv Yes Yes - TCP 204 197-237
14 ICMPO1.csv Yes Yes ICMP ICMP 598 581-610

ICMPO5.csv Yes Yes ICMP ICMP 293 281-299
14 Normal00l.cs No No No Null Null Null

v

From table 6.2 we can see that the hybrid Random Forest model has outperformed the Random Forest
model in terms of attack type classification. The hybrid RF has classified all attack types correctly with
no false positives. However, the Random Forest on its own classified the attacks wrong in 4 instances
which have been highlighted in red. For the mixed attacks, the Hybrid RF takes the first attack protocol
that appears in the mixed attack traffic as it is the predominant one at that point. The hybrid RF has
classified even the unfamiliar attacks with high accuracy. On the other hand, the Random Forest was
able to detect all attacks at the very onset as seen from the table. It detects at the very first window
and sometimes at the very first packet too. This shows its excellent performance in detection. This
proves that a hybrid model is strong in terms of covering the detection and classification aspects as

each has where its strength lies. Figure 6.10 shows the raw result output.

133

========== processing {'ICMPOl'} ===============
"ICMP" Attack(attack mode - ['"ICMP']) detected between packet ==> 88 and 97 (original index 581 : 618)
stop server NOW

"ICMP" Attack(attack mode - ['ICMP']) detected between packet ==> 88 and 97 (original index 281 : 299)
stop server NOW

========== pPQCessing {'TCPSYN@2'} ===============
"TCPSYN" Attack(attack mode - ['TCP']) detected between packet ==> 98 and 187 (original index 272 : 293)
stop server NOW

========== pPQCessing {'TCPSVN@S‘} ===============
"ICMP" Attack(attack mode - ['TCP']) detected between packet ==> @ and 9 (original index 38 : 53)
stop server NOW

========== pPoCessing {'UDP94'} ===============
"UDP" Attack(attack mode - ['UDP']) detected between packet ==> 46 and 55 (original index 179 : 2@6)
stop server NOW

========== pPoCessing {'UDP@S'} ===============
"UDP" Attack(attack mode - ['UDP']) detected between packet ==> 102 and 111 (original index 278 : 3@5)
stop server NOW

========== prccessing {'HTTPDDOS@l'} ===============
"TCPSYN" Attack(attack mode - ['TCP']) detected between packet ==> 2 and 11 (original index 48 : 63)
stop server NOW

========== prccessing {'HTTPDDOS@z'} ===============
"UDP" Attack(attack mode - ['TCP']) detected between packet ==> 42 and 51 (original index 122 : 134)
stop server NOW

Figure 6.10 Raw result output

6.4.5 Tuning

No

tuning was carried out as the intended result was achieved. The Random Forest proved strong in

detection while the hybrid Random Forest proved even stronger in classification. This dropped the

need for tuning as there was no observation of concern.

6.4.6 Validation
This phase tests the Random Forest and the hybrid Random Forest on Public data to eliminate biases

and prove that the solution is not user, device or attack centric. Table 6.3 presents the results.

Table 6.3 Validation results

Dataset Attack Attack Attack Attack Pkt no attack Window range attack detected
present? detected classified classified by started
? by RF hybrid RF
Normal002.cs No No No No None None
v
Normal002.cs No No No No None None
v

134

3 Normal002.cs No No No No None None

v

4 Normal002.cs No No No No None None
v
5 SLOWLOIC02. No No No No None None
csv
6 Normal002.cs = No No No No None None
v
7 Normal002.cs No
v I
8 UDPO0O05.csv Yes Yes ubP uDP 11462 11463-11472

9 TCPSYNOO1.c Yes Yes TCP 11549 11550-11559
sV

The validation results from table 6.3 also show similar performance to the preceding test results. The
hybrid Random Forest has outperformed the Random Forest in attack type classification. We can see
that the Random Forest misclassified the TCPSYN attack as ICMP while the hybrid Random Forest
classified it correctly as TCP. Nevertheless, the Random Forest showed excellent performance in attack
detection at onset. There is a case of false positive highlighted in red. The same False Positive alarm
was experienced on the same Normal dataset in the section 5.4.5 of chapter 5. This is due to the same
reason as explained in the Final testing section (5.4.5) of chapter 5. The device in question was newly
deployed and was establishing connection with its surroundings thereby sending and receiving pings
which got mistook as ICMP attack. This tends to be a limitation in the system as accommodation for
new devices has not been catered for. Nevertheless, this proves the hybrid Random Forest model to
be effective regardless of the environment it is tested in as it has done well on public data as well as

private.

6.5 Comparison to literature and new findings
Several literature sources have been consulted for performance comparison. However, this turned

out to be difficult due to the nature of the Proposed hybrid RF model. These reasons are as follows:

e Most existing Supervised ML solutions applied in the smart home network domain in DDoS
detection [96] [97] [98] [99] are purely ML based and so this cannot be fairly compared with
the proposed hybrid based Random Forest model.

e The existing hybrid models [103] [105] tend to combine supervised and unsupervised Machine
learning techniques as opposed to this proposed hybrid model that combines Supervised ML
model and domain knowledge-based classifier.

e The method of performance assessment in existing works [92] [93] [94] [95] [96] is different

from the one used for the proposed approach. This is because the proposed approach is more

135

concerned with attack detection and attack type identification at the very onset and
maintaining accuracy while existing works assess performance based on how many times their
system detected correctly without looking into how early it detects.

e Some existing works tend to carry out general attack type classification, like categorizing DDoS,
MITM, and replay attacks [104] [107]. On the other hand, this work is concerned with DDoS

attack type classification and no other attacks outside its scope.

Due to the above-mentioned reasons a fair and straight forward comparison was not achieved.

Nevertheless, the proposed hybrid RF model stands out in several aspects as follows:

e It can detect and classify unfamiliar attacks which existing models have not been able to.

e |t covers a wider range of DDoS flooding attacks in terms of detection and classification as
opposed to existing models that cover about 3-4 at a time as seen from chapter 2.

e It has proven to detect and identify attack types at the very onset using the right metrics.

e It has no False Positive alarms which is the first of its kind among existing works.

e |t uses metrics that point out how early and accurate it can detect and classify as opposed to
existing works that give other statistics which don’t say much with regards to onset detection
and classification.

e |t capitalizes on using absent or missing values as detection features as opposed to some
existing solutions that drop or replace missing values with the most common surrounding

value. A common practice in ML pre-processing is to drop or replace absent values.

Table 6.4 compares this hybrid RF with some works from literature.

Works Model and accuracy

[96] RF (85.9) Ada Boost (86.6) DT
(83.8)

[97] RF (99.68) DT (99.68) GB
(99.59)

[99] RF (98)

[102] LSTM (98.9) CNN (99.9)

This work RF (99)

6.6 Summary
This chapter has trained and tested the performance of two models when it comes to attack detection

and attack type indication. A Random Forest model and a hybrid Random Forest model using domain

knowledge for attack type indication were compared. The Hybrid version outperformed the

136

independent Random Forest model in attack type indication. However, the independent Random
Forest has proven to perform excellent with high accuracy in attack detection at the very onset. On
the other hand, the hybrid model had the same accuracy in attack type indication. This has given rise
to a more robust version due to the application of domain knowledge as each has where its strength
lies. This proposed hybrid model has also proven to work perfectly on unfamiliar attacks and has been

validated using public data achieving 99 % accuracy.

137

Chapter 7

Research Contributions

7.1 Overall contributions
The respective contributions made by this research are presented here. These contributions will be

linked to the various research questions raised at the beginning of this work. The respective gaps

bridged will be discussed and the strategy applied that resulted in each of the systems benefits will be

outlined.

v" Contribution 1: In the event of studying the smart home network behaviour and traffic

patterns, unique traffic patterns attributed to each mode of device control was discovered.
This discovery is new with regards to deriving a unique signature for each method or mode
used to control the smart devices. The explored modes include manually operating the devices,
automated/ scheduled, using Hive app, using Home kit app and using Google home app. The
protocol and packet length sequence of each mode of control was found to be unique and
uniform regardless of the platform (iPhone, iPad, Samsung smart phone) used to control it.
These new findings can be used in forensic investigations to prove how someone controlled a
particular device or devices and whether they were present at the scene during some specified
times. For instance, if the evidence shows proof of manual mode of operation, then this ties
one to physically being at the premises. Furthermore, as each operation mode has a unique
traffic pattern (section 3.5.4 and 3.5.5), these patterns could be whitelisted on the smart
home network to detect certain attacks relating to unauthorized control of device which might
have a deviating pattern from the whitelisted ones. This contribution does not answer any of
the research questions raised in chapter 1 as it was an unplanned discovery. Table 7.1 shows

how the contribution was achieved. This contribution is addressed in chapter 3 section 3.5.4

and 3.5.5
Discovery How it was achieved
Distinct mode of operation for devices Distinct protocol & packet length sequence (3.5.5)
Distinct mode of operation for devices Distinct flow volume & duration (3.5.4)

Table 7.1 How contribution 1 was achieved

v' Contribution 2: Normal smart home traffic pattern in comparison to when DDoS flooding

attacks infiltrate the network are visualized using Exploratory Data Analysis in section 4.4 of
chapter 4. This visualization is new as it clearly visualizes the benign and attack patterns based
on smart home network features that get simultaneously affected during an attack. The
visualized network features can be incorporated into data visualisation tools and Intrusion

Detection Systems. This will provide clearer low-level statistics as to how the network is

138

ID

1

deviating from its normal pattern during an attack. Table 7.2 presents how this contribution
was achieved. This contribution covers RQl, RQ2 AND RQ3.This is addressed in chapter 4

(section 4.4).

Discovery How it was achieved
Attack traffic pattern EDA on protocol, packet length, sequence numbers, TCP flags (section 4.4)
Benign traffic pattern EDA on protocol, packet length, sequence numbers, TCP flags (section 4.4)

Table 7.2 How contribution 2 was achieved

v Contribution 3: A new approach to DDoS attack detection has been presented. The approach

uses feature absence and feature range in attack detection from the very onset. Some
prominent network features (Sequence numbers and TCP flags) were found to be absent for
the duration of certain attacks. The narrative needs to be changed from only focusing on
present network feature statistics to detect attacks, rather features that are normally present
but tend to be absent for a prolonged period also contribute to rapid attack detection as seen
in this research. In addition to that, the sequence number range in normal traffic tends to be
very wide, starting with a 0 or 1 at the beginning of a session and keeps incrementing to very
high values. However, during an attack, the sequence numbers were found to stall at 0 or 1
all through. This new finding led to contribution 4. Table 7.3 shows how this contribution was
achieved. This covers RQ3. This is addressed in chapter 4 (section 4.5).
Discovery How it was achieved

Proposed detection approach Feature variance, absence, and range (Section 4.5)

Table 7.3 How contribution 3 was achieved

v' Contribution 4: A hybrid anomaly and feature-based DDoS detection and attack type

indication algorithm has been implemented and tested. This algorithm is based on the findings
in contribution 3. After a grouped series of packets are flagged and labelled as attack, the
protocol with the highest count among those flagged packets is used as the attack type
indication label for each of the attack labelled packets. Both detection and attack type
indication modules of the system performed excellently while always detecting and indicating
the attack type at the very onset. In addition to that the solution is light weight, practical,
centralized, and counter spoof that is not user, attack nor device centric covering unfamiliar
and mixed attacks. Table 7.4 shows how this contribution was achieved. This covers RQ4, RQ5,

RQ6. This is addressed in chapter 5.

Discovery How it was achieved

Light weight 2 features (sequence number & TCP flags), one way traffic monitoring
Not user, device or attack centric Using smart home general characteristics and general attack signatures
Network level coverage Monitoring at gateway (router)

139

O W N o Uu b

11

11

Unfamiliar attacks General DDoS attack signatures used

Onset detection Setting detection threshold to 10 consecutive packets

Covers all DDoS attacks General DDoS attack signatures used

Counter spoof Avoided using spoof prone features like IP address and port numbers
Practical No training needed, no single packet inspection,

Not biased Validated using public data

Reliable Tested using relevant metrics

Accurate attack type indication Using highest protocol count among attack labelled packets

Table 7.4 How contribution 4 was achieved

v Contribution 5: A hybrid Machine learning detection and attack type indication model is

developed. The Random Forest model is trained based on the same network features used in
contribution 4. The model was able to accurately detect the attack at the very onset and to
some extent classify the attack type. However, the novel attack type indication approach used
in contribution 4 which is based on highest protocol count among the attack labelled packets
was applied to the RF model. After the RF model detects the attack, the indication module
applies the highest protocol count check and labels the attack type using that. This hybrid
model outperformed the RF’s ability to classify the attack type correctly including unfamiliar
attacks. In all the testing and validation cases, the hybrid model performed better in indicating
the attack type while the RF model on its own misclassified the attack type a couple of times.
This proves that the hybrid model is more effective in terms of attack type indication. Table

7.5 shows how this contribution was achieved. This covers RQ7. This is addressed in chapter

6.
Discovery How it was achieved
Light weight 4 features (seq no, TCP flags, protocol, packet length),1 way traffic monitoring
Not user, device or attack centric Using smart home general characteristics and general attack signatures
Network level coverage Monitoring at gateway (router)
Unfamiliar attacks Used features that are highly affected during attack. (Domain knowledge)
Onset detection Feature choice (domain knowledge), sliding window by 2 packets, RF model
Covers all DDoS attacks Used features that are highly affected during attack. (Domain knowledge)
Counter spoof Avoided using spoof prone features like IP address and port numbers

High accuracy in detection and attack type = Hybrid model and domain knowledge

indication

Not biased Validated using public data

Reliable Tested using relevant metrics

Accurate attack type indication Highest protocol count among attack labelled packets (domain knowledge)

Table 7.5 How contribution 5 was achieved

v Contribution 6: A new approach to assessing the performance of a DDoS attack detection and

attack type indication system is presented. This new approach is proven to be more relevant

in terms of precisely measuring the system’s ability to detect and classify attacks at the very

140

onset and how accurate the prediction is. Currently the conventional method is the use of
confusion matrix and other statistics. However, confusion matrix does not specify how early
the attack is detected or classified rather it gives statistics on how much the solution was able
to predict right. This proposed approach is used in this research and has proven to provide
more relevant performance details. The metrics used to gauge the performance of the
detection and attack type indication system on each data source in this new approach are: Is
attack present, type of attack present, is attack detected, packet number attack started,
packet number attack detected, packet number attack classified, attack type classified,
window attack started, window attack detected. Table 7.6 shows how this contribution was

achieved. This covers RQ8. This is addressed in chapter 5 section 5.4.3 and 6 section 6.4.5.

ID Discovery How it was achieved

1 Onset attack detection Packet no attack started, packet no attack detected

2 Onset attack type indication Packet no attack started, packet no attack type indicated
3 Accurate attack indicated Attack type present, Attack type indicated

Table 7.6 How contribution 6 was achieved

7.4 Summary
This chapter has laid out the various contributions made by this research and linked them to the

respective research questions they address. Furthermore, it has identified the various approaches

used to achieve the gaps bridged by the contributions.

141

Chapter 8

Conclusion

8.1 Introduction
This research has shown how effective data visualization is in terms of studying and identifying attack

patterns. By employing this method via EDA, smart home traffic properties that get highly affected
during DDoS attacks have been identified. This was used to produce a robust, light weight detection
and attack type indication solution that is not user, attack, or device centric. The implemented and
tested system has achieved excellent results even on unfamiliar attacks which have proven to be
difficult to tackle by existing solutions. This is due to using generalized smart home traffic properties
and generalized attack signatures which gave rise to a hybrid anomaly and feature-based detection

and attack type indication system.

The relevance of using feature absence cannot be underestimated as this has been discovered to
highly contribute to attack detection at the very onset. The same goes for feature range. The narrative
needs to be changed from only focusing on present network feature statistics to detect attacks, rather
features that are normally present but tend to be absent for a prolonged period also contribute to

rapid attack detection as seen in this research.

This research has also proven how powerful some network features are, on their own in terms of
attack detection. On the other hand, we have also seen how some conventionally used features by
existing works lead to high false positive rate. This brings us back to the importance of data

visualization to understand traffic patterns.

A hybrid Supervised Machine Learning model has also been developed that has performed excellently
well with no false positive rates, which is rare among exiting solutions. Furthermore, it can detect and
classify unfamiliar attacks from the very onset which says a lot about its robustness. This is due to its
hybrid nature of using a Supervised ML model coupled with a domain knowledge-based attack type
indicator. In addition to that the features used in training the model were selected purposely due to
the prospects they showed right from the EDA phase. From this, we can see how relevant the

application of domain knowledge is when designing Machine Learning models for attack detection.

A more effective method of assessing the performance of DDoS attack detection systems has also
been presented which tends to give more useful details in terms of a system’s ability to detect and
classify attacks at the very onset accurately. This should change the narrative from using conventional
methods like confusion matrices and other statistics in terms of performance assessment as they do

not provide relevant information as to how early and accurate the system was able to detect or classify

142

an attack which is very crucial in the field of DDoS attacks. The effect is what you want to mitigate as
early as possible not how much the attack is guessed right down the line when much of the damage
has been done. This proposed method of assessment will help give birth to more reliable and robust

solutions.

8.2 Areas of improvement and future work
The hybrid signature and anomaly-based system has some limitations, which will be part of the future

work for improvement. The system is not able to detect or classify low stealth attacks as it mainly
capitalizes on the static nature of most DDoS attack traffic, which low stealth attacks deviate from.
Future work is looking at using the EDA technique to study the attack pattern of these low stealth
attacks better and come up with a way to integrate a detection mechanism for them in the current

system.

The system also uses an attack threshold of 10 packets to determine an attack pattern. If this threshold
is not reached the attack will be missed. However, this highly unlikely as the nature of DDoS flooding

attacks is too overwhelming for it to be missed due to this fixed threshold.

The visualised EDA images can be trained on a convolutional Neural Network (CNN) using ResNet.
More so, attack type binary classification can be further carried out based on the predominant
protocol derived from the statistics. It is well known that deep learning models especially CNN
achieved high significance due to their outstanding performance in the image processing field. The
potential of CNN can be used to detect DDoS attacks by converting the network traffic data into images.

This an area of interest for future work.

143

Bibliography
[1] K. Kostas, M. Just and M. A. Lones, "loTDevID: A Behaviour-Based Fingerprinting Method for Device
Identification in the loT," arXiv Preprint arXiv: 2102.08866, 2021.

[2] S. Notra, M. Siddiqi, H. H. Gharakheili, V. Sivaraman and R. Boreli, "An experimental study of security and
privacy risks with emerging household appliances," in 2014 IEEE Conference on Communications and

Network Security, pp. 79-84, 2014.

[3] F.Loi, A.Sivanathan, H. H. Gharakheili, A. Radford and V. Sivaraman, "Systematically evaluating security and
privacy for consumer loT devices," in Proceedings of the 2017 Workshop on Internet of Things Security and
Privacy, pp. 1-6, 2017.

[4] L. Andrea, C. Chrysostomou and G. Hadjichristofi, "Internet of things: Security vulnerabilities and
challenges," in 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 180-187, 2015

[5] K.Moskvitch, "Securing IoT: In your smart home and your connected enterprise," Engineering & Technology,
12(3), pp. 40-42, 2017.

[6] N. Dhanjani, "Abusing the Internet of Things: Blackouts, Freakouts, and Stakeouts. " O'Reilly Media, Inc.",
2015.

[7] J. Fernandes and A. Prakash, "Security analysis of emerging smart home applications," in 2016 IEEE
Symposium on Security and Privacy (SP), pp. 636-654, 2016

[8] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac and P. Faruki, "Network intrusion detection for loT
security based on learning techniques," IEEE Communications Surveys & Tutorials, 21(3), pp. 2671-2701,
2019.

[9] F.Hussain, R. Hussain, S. A. Hassan and E. Hossain, "Machine learning in 10T security: Current solutions and
future challenges," IEEE Communications Surveys & Tutorials, 22(3), pp. 1686-1721, 2020.

[10]B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, |. Ray and I. Ray, "Behavioral fingerprinting of iot devices,"
in Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security, pp. 41-50, 2018.
[11]0. Kupreev, E. Badovskaya, A. Gutnikov, “DDoS attacks in Q1 2020”, Kaspersky DDoS reports, 2020

[Online]. https://securelist.com/ddos-attacks-in-q1-2020/96837/ [Accessed: 01- Jan- 2022].

[12]K. Brush, E. Burns, “Data Visualization”, Techtarget Business Analytics, 2022 [Online].
https://www.techtarget.com/searchbusinessanalytics/definition/data-visualization ~ [Accessed 03-Nov-

2023].

[13]H. Huang, J. Chu and X. Cheng, “Trend analysis and countermeasure research of DDoS attack under 5G
network”, In 2021 |IEEE 5th International Conference on Cryptography, Security and Privacy (CSP), pp. 153-
160, 2021.

[14]C. Wu, S. Sheng and X. Dong, “Research on visualization systems for DDoS attack detection”, In 2018 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pp. 2986-2991, 2018.

144

https://securelist.com/ddos-attacks-in-q1-2020/96837/
https://www.techtarget.com/searchbusinessanalytics/definition/data-visualization

[15] M. Cinque, D. Cotroneo, and A. Pecchia, “Challenges and Directions in Security Information and Event
Management (SIEM),” In 2018 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), Memphis, USA, pp. 95-99, 2018.

[16]J. Miranda-Calle, V. Reddy, P. Dhawan and P. Churi, “Exploratory data analysis for cybersecurity”. World

Journal of Engineering, 2021.

[17]E. Anthi, L. Williams, M. Stowiniska, G. Theodorakopoulos and P. Burnap, “A supervised intrusion detection

system for smart home loT devices” IEEE Internet of Things Journal, 6(5), pp.9042-9053, 2019.

[18]Q. Niyaz, W. Sun and A. Javaid, “A deep learning based DDoS detection system in software-defined
networking (SDN)”. arXiv preprint arXiv:1611.07400, 2016.

[19] M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda and Y. Kato, “Anomaly detection in smart home operation from

user behaviors and home conditions” IEEE Transactions on Consumer Electronics, 66(2), pp.183-192, 2020.

[20]J). Wang, S. Hao, R. Wen, B. Zhang, L. Zhang, H. Hu and R. Lu, "loT-praetor: Undesired behaviors detection
for loT devices," IEEE Internet of Things Journal, vol. 8, no. 2, pp. 927-940, Feb. 2021.

[21]Y. Mon, M. Soe, C. Su, T. Tun and M. Mie, “loT Security: “Simulation and Analysis of TCP SYN Flooded DDOS
Attack using WireShark”, Transactions on Networks and Communications, 8(3), 2020.

[22]R. Vinayakumar, M. Alazab, S. Srinivasan, Q. Pham, S. Padannayil and K. Simran, “A visualized botnet
detection system based deep learning for the Internet of Things networks of smart cities”, IEEE Transactions

on Industry Applications, 56(4), pp.4436-4456, 2020.

[23]J. Bhayo, S. Hameed and S. Shah, “An efficient counter-based ddos attack detection framework leveraging
software defined iot (sd-iot)”, IEEE Access, 8, pp. 221612-221631, 2020

[24] Literature review and focusing the research. [Online]. https://www.sagepub.com/ sites/default/files/upm-
binaries/29986_Chapter3.pdf [Accessed: 10- Jan- 2022].

[25]T. Jebb, S. Parrigon, and E. Woo, “Exploratory data analysis as a foundation of inductive research”, Human

Resource Management Review, Vol.27 No. 2, available at: https://doi.org/10.1016/j.hrmr.2016.08.003,

2017.

[26]D. Miranda-Calle, V. Reddy, P. Dhawan and P. Churi, "Exploratory data analysis for cybersecurity", World
Journal of Engineering, Vol. 18 No. 5, pp. 734-749. https://doi.org/10.1108/WJE-11-2020-0560, 2021.

[27]). Okesola, A. Ayodele, A. Owoade, O. Adeaga, A. Oluseyi, and I. Odun-Ayo. "Software requirement in
iterative SDLC model." In Intelligent Algorithms in Software Engineering: Proceedings of the 9th Computer

Science On-line Conference 2020, Volume 1 9, pp. 26-34. Springer International Publishing, 2020.
[28]F. Hussain, S. Abbas, M. Husnain, U. Fayyaz, F. Shahzad and G. Shah, “loT DoS and DDoS attack detection

using ResNet”, In 2020 /EEE 23rd International Multitopic Conference (INMIC) (pp. 1-6). IEEE, 2020.

[29]R. Khan, X. Zhang, R. Kumar and E. Aboagye, “Evaluating the performance of resnet model based on image
recognition”, In Proceedings of the 2018 International Conference on Computing and Artificial

Intelligence (pp. 86-90), 2018.

145

https://doi.org/10.1016/j.hrmr.2016.08.003
https://www.emerald.com/insight/publication/issn/1708-5284
https://www.emerald.com/insight/publication/issn/1708-5284
https://doi.org/10.1108/WJE-11-2020-0560

[30]A. Salih and A. Abdulazeez, “Evaluation of classification algorithms for intrusion detection system: A
review”, Journal of Soft Computing and Data Mining, 2(1), pp.31-40, 2021.

[31]Statista internet of things: The number of connected devices worldwide 2012-2025. [Online].
https://www.statista.com/statistics/471264/ iot-number-of-connected-devices-worldwide/. [Accessed: 25-
June- 2022].

[32] M.R. Alam, M. St-Hilaire, and T. Kunz, "Peer-to-peer energy trading among smart homes," Applied energy,
vol. 238, pp. 1434-1443, 2019.

[33]S.S. Gill, P. Garraghan, and R. Buyya, "ROUTER: Fog enabled cloud based intelligent resource management
approach for smart home loT devices," Journal of Systems and Software, vol. 154, pp. 125-138, 2019.

[34]B. Alsinglawi, M. Elkhodr, Q.V. Nguyen, U. Gunawardana, A. Maeder, and S. Simoff, "RFID localisation for
Internet of Things smart homes: a survey," arXiv preprint arXiv:1702.02311, 2017.

[35] N. Balta-Ozkan, R. Davidson, M. Bicket, and L. Whitmarsh, "The development of smart homes market in the
UK," Energy, vol. 60, pp. 361-372, 2013.

[36]D. Marikyan, S. Papagiannidis, and E. Alamanos, "A systematic review of the smart home literature: A user
perspective," Technological Forecasting and Social Change, vol. 138, pp. 139-154, 2019.

[37]D. Geneiatakis, I. Kounelis, R. Neisse, I. Nai-Fovino, G. Steri, and G. Baldini, “Security and privacy issues for
an iot based smart home,” in 2017 40th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). IEEE, 2017, pp. 1292—-1297

[38]M. Bilal, "A review of internet of things architecture, technologies and analysis smartphone-based attacks
against 3d printers," arXiv preprint arXiv:1708.04560, 2017.

[39]M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, "Research on the architecture of internet of things," in 2010
3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), vol. 5, pp. V5-484,
IEEE, 2010.

[40]F. Alghayadh and D. Debnath, "A hybrid intrusion detection system for smart home security," in 2020 IEEE
International Conference on Electro Information Technology (EIT), pp. 319-323, IEEE, July 2020.

[41]Z. K. Zhang, M. C. Y. Cho, C. Wang, C. Hsu, C. Chen, and S. Shieh, "loT security: ongoing challenges and
research opportunities," in 2014 |IEEE 7th International Conference on Service-Oriented Computing and
Applications, pp. 230-234, IEEE, 2014.

[42]A. Acar, H. Fereidooni, T. Abera, A.K. Sikder, M. Miettinen, H. Aksu, M. Conti, A.R. Sadeghi, and S. Uluagac,
"Peek-a-boo: | see your smart home activities, even encrypted!," in Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, pp. 207-218, July 2020.

[43]S. Sicari, A. Rizzardi, D. Miorandi, and A. Coen-Porisini, "Securing the smart home: A real case study,"
Internet Technology Letters, vol. 1, no. 3, pp. e22, 2018.

[44]P. Pongle and G. Chavan, "Real time intrusion and wormhole attack detection in internet of things,"

International Journal of Computer Applications, vol. 121, no. 9, 2015.

146

[45]1. Andrea, C. Chrysostomou, and G. Hadjichristofi, "Internet of things: Security vulnerabilities and

challenges," in Computers and Communication (ISCC), 2015 IEEE Symposium on, pp. 180-187, IEEE, 2015.

[46]D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, "Kalisaa system for knowledge-driven adaptable intrusion
detection for the internet of things," in Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on, pp. 656-666, IEEE, 2017.

[47]Web baby- monitoring cameras open to hacking. [Online] https://www.bbc.co.uk/news/technology-

34138480 [Accessed: 05- May- 2020].

[48] Santa hacker speaks to girl via Ring camera [Online] https://www.bbc.co.uk/news/technology-50760103

[Accessed: 05- May- 2020].

[49] Mirai Botnet: Three admit creating and running attack tool [Online]

https://www.bbc.co.uk/news/technology-42342221 [Accessed: 05- May- 2020].

[50] DDoS attack that disrupted internet was largest of its kind in history, experts say [Online]
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet [Accessed : 01-
Nov-2023].

[51] M. S. Al-Abri, A. Al-Badi, and A. Al-Badi, "A Review of Blockchain-Based DDoS Mitigation Solutions," in IEEE

Access, vol. 9, pp. 107925-107942, 2021, doi: 10.1109/ACCESS.2021.3107645.

[52]C. Douligeris, A. Mitrokotsa, DDoS attacks and defense mechanisms: A classification, in: Proceedings of the
3rd IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2003, ISBN:
0780382927, 2003, pp. 190-193.

[53]P. Kumari, and A. Kumar: "A comprehensive study of DDoS attacks over IoT network and their

countermeasures, Computers & Security p.103096, 2023.

[54]D. Javaheri, S. Gorgin, J.A. Lee and M. Masdari, "Fuzzy Logic-Based DDoS Attacks and Network Traffic
Anomaly Detection Methods: Classification, Overview, and Future Perspectives," Information Sciences,

2023.

[55]V. Bulavas, "Investigation of network intrusion detection using data visualization methods," 2018 59th
International Scientific Conference on Information Technology and Management Science of Riga Technical
University (ITMS), Riga, Latvia, 2018, pp. 1-6, doi: 10.1109/ITMS.2018.8552977.

[56]S. Marchal, M. Miettinen, T. D. Nguyen, A. Sadeghi and N. Asokan, "Audi "Toward autonomous iot device-
type identification using periodic communication," IEEE J. Select. Areas Commun. , vol. 37, (6), pp. 1402-
1412, 2019

[57]A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vishwanath and V. Sivaraman,
"Classifying loT devices in smart environments using network traffic characteristics," IEEE Transactions on
Mobile Computing, vol. 18, (8), pp. 1745-1759, 2018.

[58]M. Mazhar and Z. Shafig, "Characterizing smart home iot traffic in the wild," in 2020 IEEE/ACM Fifth
International Conference on Internet-of-Things Design and Implementation (loTDI), 2020, pp. 203-215.
[59]Y. Amar, H. Haddadi, R. Mortier, A. Brown, J. Colley and A. Crabtree, "An analysis of home loT network traffic

and behaviour," arXiv Preprint arXiv: 1803.05368, 2018.

147

https://www.bbc.co.uk/news/technology-34138480
https://www.bbc.co.uk/news/technology-34138480
https://www.bbc.co.uk/news/technology-50760103
https://www.bbc.co.uk/news/technology-42342221
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

[60]K. Xu, Y. Wan, G. Xue and F. Wang, "Multidimensional behavioral profiling of internet-of-things in edge
networks," in 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS), 2019, pp. 1-10

[61]S. Dong, Z. Li, D. Tang, J. Chen, M. Sun and K. Zhang, "Your smart home can't keep a secret: Towards
automated fingerprinting of iot traffic," in Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security, 2020, pp. 47-59.

[62]Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O. Tippenhauer and Y. Elovici, "ProfilloT:
A machine learning approach for loT device identification based on network traffic analysis," in Proceedings
of the Symposium on Applied Computing, 2017, pp. 506-509

[63] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas and J. Lloret, "Network traffic classifier with convolutional
and recurrent neuralnetworks for Internet of Things," IEEE Access, vol. 5, pp. 18042- 18050, 2017

[64]A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wijenayake, A. Vishwanath and V. Sivaraman,
"Characterizing and classifying loT traffic in smart cities and campuses," in 2017 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2017, pp. 559-564

[65]B. Copos, K. Levitt, M. Bishop and J. Rowe, "Is anybody home? Inferring activity from smart home network
traffic," in 2016 IEEE Security and Privacy Workshops (SPW), 2016, pp. 245-251.

[66]R. Trimananda, J. Varmarken, A. Markopoulou and B. Demsky, "PingPong: Packet-level signatures for smart
home device events," arXiv Preprint arXiv: 1907.11797, 2019.

[67]A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu, M. Conti, A. Sadeghi and S. Uluagac,
"Peek-a-boo: | see your smart home activities, even encrypted!" in Proceedings of the 13th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, 2020, pp. 207-218

[68]N. Apthorpe, D. Reisman and N. Feamster, "A smart home is no castle: Privacy vulnerabilities of encrypted
iot traffic," arXiv Preprint arXiv: 1705.06805, 2017.

[69]N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan and N. Feamster, "Spying on the smart home: Privacy
attacks and defenses on encrypted iot traffic," arXiv Preprint arXiv: 1708.05044, 2017.

[70]T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves and A. Sadeghi, "HomeSnitch: Behavior
transparency and control for smart home loT devices," in Proceedings of the 12th Conference on Security
and Privacy in Wireless and Mobile Networks, 2019, pp. 128-138.

[71]W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang and H. Zhu, "Homonit: Monitoring smart home apps from
encrypted traffic," in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1074-1088.

[72]K. Xu, F. Wang, S. Jimenez, A. Lamontagne, J. Cummings and M. Hoikka, "Characterizing DNS Behaviors of
Internet of Things in Edge Networks," IEEE Internet of Things Journal, vol. 7, (9), pp. 7991-7998, 2020.
[73]1. Buric, B. Dusan, B. Zorica, L. Aleksandra and R. Bozidar, "Model of an intelligent smart home system based

on ambient intelligence and user profiling." Journal of Ambient Intelligence and Humanized Computing 14,
no. 5 pp. 5137-5149, 2023.
[74]B. Hammi, Z. Sherali, K. Rida and N. Jamel, "Survey on smart homes: Vulnerabilities, risks, and

countermeasures." Computers & Security 117 (2022): 102677, 2022.

148

[75]R. Fekolkin, "Intrusion detection & prevention system: overview of snort & suricata." Internet Security,

A7011N, Lulea University of Technology (2015): 1-4. 2015.

[76]H. Shaikha and W. Abdullah, “A Review of Intrusion Detection Systems,” Academic Journal of Nawroz

University, vol. 6, no. 3, pp. 101-105, 2017, doi: https://doi.org/10.25007/ajnu.v6n3a90.

[77TM. A. Alsheikh, M. A. Al-Qutayri, A. A. Alghamdi, and M. S. Al-Rodhaan, "Fuzzy Gaussian Mixture-based

Correntropy for Host Anomaly Detection System," IEEE Access, vol. 8, pp. 174, 2020.

[78]Y. Jia, F. Zhong, A. Alrawais, B. Gong and X. Cheng, "FlowGuard: An Intelligent Edge Defense Mechanism
Against loT DDoS Attacks," in IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9552-9562, Oct. 2020, doi:
10.1109/J10T.2020.2993782.

[79]B. Al-Duwairi, W. Al-Kahla, M. A. AlRefai, Y. Abdelgader, A. Rawash, and R. Fahmawi, “SIEM-based detection
and mitigation of loT-botnet DDoS attacks,” International Journal of Electrical and Computer Engineering,
vol. 10, no. 2, pp. 2182-2191, 2020, doi: 10.11591/ijece.v10i2.pp2182-2191.

[80]M. Shurman, R. Khrais, and A. Yateem, “DoS and DDoS attack detection using deep learning and IDS,”
International Arab Journal of Information Technology, vol. 17, no. 4A Special Issue, pp. 655-661, 2020, doi:
10.34028/1A)IT/17/4A/10.

[81]P. loulianou, V. Vasileios, M. loannis, and L. Michael. "A signature-based intrusion detection system for the
internet of things." Information and Communication Technology, 2018.

[82] M. H. Nasir, J. Arshad, and M. M. Khan, “Collaborative device-level botnet detection for internet of things,”
Computer Security, vol. 129, p. 103172, Jun. 2023, doi: 10.1016/J.COSE.2023.103172.

[83] University of Victoria, Isot botnet dataset 2010 [Online]. http://www.uvic.ca/
engineering/ece/isot/datasets/ [Accessed: 03- Mar- 2022]

[84]S. Garcia, A. Parmisano and M. Erquiaga, “loT-23: A labeled dataset with malicious and benign loT network
traffic (version 1.0.0),” Zenodo, vol. 20 pp.15, doi: 10.5281/zenod0.4743746, 2020

[85]N. Koroniotis, N. Moustafa, E. Sitnikova and B. Turnbull, "Towards the development of realistic botnet
dataset in the internet of things for network forensic analytics: Bot-iot dataset”, Future Generation
Computer Systems, vol. 100, pp. 779-796, 2019.

[86] K. Al-Begain, M. Khan, B. Alothman, C. Joumaa, and E. Alrashed, “A DDoS Detection and Prevention System
for loT Devices and Its Application to Smart Home Environment,” Applied Sciences 2022, Vol. 12, Page 11853,
vol. 12, no. 22, p. 11853, Nov. 2022, doi: 10.3390/APP122211853.

[87]). Galeano, J. Carmona, J. Valenzuela and F. Luna, “Detection and mitigation of dos and ddos attacks in iot-
based stateful sdn: An experimental approach”, Sensors, 20(3), p.816, 2020

[88]J. Li, M. Liu, Z. Xue, X. Fan and X. He, “RTVD: A real-time volumetric detection scheme for DDoS in the
Internet of Things” IEEE Access, 8, pp. 36191-36201, 2020.

[89]D. K. Sharma et al., “Anomaly detection framework to prevent DDoS attack in fog empowered loT networks,”
Ad Hoc Networks, vol. 121, p. 102603, Oct. 2021, doi: 10.1016/J.ADHOC.2021.102603.

[90]H. Christoph and E. Buchmann, "Fane: a firewall appliance for the smart home." In 2019 Federated

Conference on Computer Science and Information Systems (FedCSIS), pp. 449-458. IEEE, 2019.

149

https://doi.org/10.25007/ajnu.v6n3a90.

[91]S. Kumar, S. Dalal and V. Dixit, “The OSI model: Overview on the seven layers of computer networks”,
International Journal of Computer Science and Information Technology Research, 2(3), pp.461-466, 2014.

[92]J. Liang and K. Yoohwan, "Evolution of firewalls: Toward securer network using next generation firewall."
In 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0752-0759.
IEEE, 2022.

[93]A. Kumar, A. Kumar, R. Muhammad, S. Achyut and C. Xiaochun, "Intrusion detection and prevention system
for an loT environment." Digital Communications and Networks 8, no. 4 pp. 540-551, 2022.

[94]B. Soewito and A. Charlie, "Next generation firewall for improving security in company and iot network."
In 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 205-209. IEEE, 2019.

[95]A. Feraudo, A. Diana, Y. Poonam, M. Richard and B. Paolo, "Mitigating loT Botnet DDos Attacks through
MUD and eBPF based Traffic Filtering." arXiv preprint arXiv:2305.02186, 2023.

[96]P. llly, K. Georges, K. Kuljeet and G. Sahil, "ML-based IDPS enhancement with complementary features for
home loT networks." IEEE Transactions on Network and Service Management 19, no. 2 pp. 772-783, 2022.

[97]L. Qaddoori and A. Qutaiba, "An embedded intrusion detection and prevention system for home area
networks in advanced metering infrastructure." IET Information Security, 2023.

[98]B. B. Gupta, P. Chaudhary, X. Chang, and N. Nedjah, “Smart defense against distributed Denial of service
attack in loT networks using supervised learning classifiers,” Computers & Electrical Engineering, vol. 98, p.

107726, Mar. 2022, doi: https://doi.org/10.1016/j.compeleceng.2022.107726, 2022.

[99]H. Gordon, C. Batula, B. Tushir, B. Dezfouli and Y. Liu, "Securing Smart Homes via Software-Defined
Networking and Low-Cost Traffic Classification," 2021 IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC), Madrid, Spain, 2021, pp. 1049-1057, doi:
10.1109/COMPSAC51774.2021.00143, 2021.

[100] R. Doshi, N. Apthorpe and N. Feamster, "Machine Learning DDoS Detection for Consumer Internet of
Things Devices," 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 2018, pp. 29-35,
doi: 10.1109/SPW.2018.00013, 2018.

[101] A. A. Sallam, M. N. Kabir, Y. M. Alginahi, A. Jamal and T. K. Esmeel, "IDS for Improving DDoS Attack
Recognition Based on Attack Profiles and Network Traffic Features," 2020 16th IEEE International
Colloquium on Signal Processing & Its Applications (CSPA), Langkawi, Malaysia, 2020, pp. 255-260, doi:
10.1109/CSPA48992.2020.9068679, 2020.

[102] Y.lia, F.Zhong, A. Alrawais, B. Gong, and X. Cheng, “FlowGuard: An Intelligent Edge Defense Mechanism
Against loT DDoS Attacks,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9552—9562, Oct. 2020, doi:
https://doi.org/10.1109/jiot.2020.2993782, 2020.

[103] F. Alghayadh and D. Debnath, “A Hybrid Intrusion Detection System for Smart Home Security Based on
Machine Learning and User Behavior,” Advances in Internet of Things, vol. 11, no. 01, pp. 10-25, 2021, doi:
https://doi.org/10.4236/ait.2021.111002, 2021.

[104] E. Anthi, L. Williams, M. Slowinska, G. Theodorakopoulos, and P. Burnap, “A Supervised Intrusion
Detection System for Smart Home loT Devices,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 9042—9053,
Oct. 2019, doi: https://doi.org/10.1109/jiot.2019.2926365,2019.

150

https://doi.org/10.1016/j.compeleceng.2022.107726
https://doi.org/10.1109/jiot.2020.2993782
https://doi.org/10.4236/ait.2021.111002

[105] K. J. Singh and T. De, “Efficient Classification of DDoS Attacks Using an Ensemble Feature Selection
Algorithm,” Journal of Intelligent Systems, vol. 0, no. 0, Dec. 2017, doi: https://doi.org/10.1515/]isys-2017-

0472, 2017.
[106] M. Aamir and S. M. A. Zaidi, “Clustering based semi-supervised machine learning for DDoS attack
classification,” Journal of King Saud University - Computer and Information Sciences, Feb. 2019, doi:

https://doi.org/10.1016/j.jksuci.2019.02.003, 2019.

[107] T. Li, Z. Hong and L. Yu, "Machine Learning-based Intrusion Detection for IoT Devices in Smart
Home," 2020 IEEE 16th International Conference on Control & Automation (ICCA), Singapore, 2020, pp. 277-
282, doi: 10.1109/1CCA51439.2020.9264406, 2020.

[108] W.Li,S.Tug, W. Meng, Y. Wang Designing collaborative block chained signature-based intrusion
detection in loT environments Future Generation Computer Systems, 96 (2019), pp. 481-489, 2019.

[109] A. Qureshi, L. Hadi, M. Nhamoinesu, J. Abbas and A. Jawad, "RNN-ABC: A new swarm optimization-
based technique for anomaly detection." Computers 8, no. 3 pp. 59, 2019.

[110] M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, A. Robles-Kelly, “Deep learning-based intrusion detection for loT
networks” 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing
(PRDC), IEEE (2019), pp. 256-25609, 2019.

[111] S.Ahn, H.Yi, Y. Lee, W.R. Ha, G. Kim, Y. Paek, “Hawkware: network intrusion detection based on
behaviour analysis with ANN’s on an loT device” 57th ACM/IEEE Design Automation Conference
(DAC), IEEE (2020), pp. 1-6, 2020.

[112] G.Raja, A. Ganapathisubramaniyan, G. Anand, “Intrusion detector for blockchain based IoT networks”
2018 Tenth International Conference on Advanced Computing (ICoAC), IEEE (2018), pp. 328-332, 2018.
[113] A.Diro, N. Chilamkurti, “Distributed attack detection scheme using deep learning approach for internet

of things” Future Generation Computer Systems, 82 (2018), pp. 761-768, 2018.

[114] Hive Home [Online] https://www.hivehome.com/ [Accessed: 05- July- 2020].

[115] GS308E -8- Port Gigabit Ethernet Plus Switch [Online]

https://www.netgear.com/support/product/gs308e [Accessed: 05- July- 2020].

[116] Jupyter Notebook [Online] https://jupyter.org/ [Accessed: 05- July- 2020].

[117] TL-WR940N [Online] https://www.tp-link.com/uk/home-networking/wifi-router/tl-wr940n/

[Accessed: 05- July- 2020].

[118] M. Laner, N. Nikaein, P. Svoboda, M. Popovic, D. Drajic and S. Krco, "Traffic models for machine-to-
machine (M2M) communications: Types and applications," in Machine-to-Machine (M2M) Communications
Anonymous Elsevier, pp. 133-154, 2015.

[119] K. Xu, F. Wang, S. Jimenez, A. Lamontagne, J. Cummings and M. Hoikka, "Characterizing DNS Behaviors
of Internet of Things in Edge Networks," IEEE Internet of Things Journal, vol. 7, (9), pp. 7991-7998, 2020.

[120] Google Colab [Online]
https://www.bing.com/ck/a?!&&p=8ad2fa96d733084eJmItdHMIMTcwMzExNijgwMCZpZ3VpZDOyMTg2YT

M2ZCOxZTUXLTZkZjktMzkwZiliMjJKMWY3NjZiINWUmaW5zaWQINTIwOA&ptn=3&ver=2&hsh=3&fclid=21

151

https://doi.org/10.1515/jisys-2017-0472
https://doi.org/10.1515/jisys-2017-0472
https://doi.org/10.1016/j.jksuci.2019.02.003
https://www.hivehome.com/
https://www.netgear.com/support/product/gs308e
https://jupyter.org/
https://www.tp-link.com/uk/home-networking/wifi-router/tl-wr940n/
https://www.bing.com/ck/a?!&&p=8ad2fa96d733084eJmltdHM9MTcwMzExNjgwMCZpZ3VpZD0yMTg2YTM2ZC0xZTUxLTZkZjktMzkwZi1iMjJkMWY3NjZjNWUmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=2186a36d-1e51-6df9-390fb22d1f766c5e&psq=google+colab&u=a1aHR0cHM6Ly9jb2xhYi5y%20ZXNlYXJjaC5nb29nbGUuY29tLw&ntb=1
https://www.bing.com/ck/a?!&&p=8ad2fa96d733084eJmltdHM9MTcwMzExNjgwMCZpZ3VpZD0yMTg2YTM2ZC0xZTUxLTZkZjktMzkwZi1iMjJkMWY3NjZjNWUmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=2186a36d-1e51-6df9-390fb22d1f766c5e&psq=google+colab&u=a1aHR0cHM6Ly9jb2xhYi5y%20ZXNlYXJjaC5nb29nbGUuY29tLw&ntb=1

86a36d-1e51-6df9-390fb22d1f766c5e&psq=google+colab&u=alaHROcHM6Ly9jb2xhYi5y

ZXNIYXJjaC5nb29nbGUuY29tLw&ntb=1 [Accessed: 02- Jan- 2021].

[121] LOIC download [Online] https://sourceforge.net/projects/loic/ [Accessed: 03- Mar- 2021].

[122] Hping3 — Network auditing, DoS and DDoS [Online] https://www.kalilinux.in/2021/03/hping3-kali-

linux-dos-ddos-network.html [Accessed: 03- Nov- 2023].

[123] Kali Linux Penetration testing and ethical hacking Linux distribution [Online] https://www.kali.org/

[Accessed: 03- Nov- 2023].
[124] Wireshark [Online] https://www.wireshark.org/ [Accessed: 03- June- 20219].

[125] M. Hassan (via Mendeley Data) BUET-DD0S2020 2021 [Online]. https://doi.org/10.17632/bzgf9r36kp.2
[Accessed: 03- Mar- 2022]

[126] U. Saxena, J. Sodhi and Y. Singh, “An analysis of ddos attacks in a smart home networks”, In 2020 IEEE
10th International Conference on Cloud Computing, Data Science & Engineering, pp. 272-276, 2020

[127] S.Pokhrel, R. Abbas and B. Aryal, “loT Security: Botnet detection in loT using Machine learning”, arXiv
preprint arXiv:2104.02231, 2021.

[128] LOIC's new flag help [Online]
https://documentation.help/LOIC/recoil.html#:~:text=The%20ReCoil%20attack%20focuses%200n,t0%20k

eep%20the%20socket%20alive. [Accessed: 03- Mar- 2022]

[129] MIT Lincoln Laboratory 1999 Intrusion Detection evaluation dataset [Online] https://www.|l.mit.edu/r-

d/datasets/1999-darpa-intrusion-detection-evaluation-dataset . [Accessed: 05- Jan- 2022]

[130] Python standard library [Online] https://data-flair.training/blogs/python-libraries/ [Accessed: 03- Mar-
2022]

[131] Sklearn.ensemble.RandomForest classifier [Online] http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.htm| [Accessed: 07- Mar-

2023]

[132] Support Vector Machines [Online] http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar-

2023]

[133] Gradient Boosting classifier [Online] http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar-

2023]
[134] Sklearn.ensemble.Voting classifier [Online] http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar-

2023]
[135] Sklearn.ensemble.Stacking classifier [Online] http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar-

2023]

[136] Sklearn.ensemble.Adaboost classifier [Online] http://scikit learn.org/stable/

modules/generated/sklearn.ensemble.RandomForestClassifier.html [Accessed: 07- Mar- 2023]

152

https://www.bing.com/ck/a?!&&p=8ad2fa96d733084eJmltdHM9MTcwMzExNjgwMCZpZ3VpZD0yMTg2YTM2ZC0xZTUxLTZkZjktMzkwZi1iMjJkMWY3NjZjNWUmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=2186a36d-1e51-6df9-390fb22d1f766c5e&psq=google+colab&u=a1aHR0cHM6Ly9jb2xhYi5y%20ZXNlYXJjaC5nb29nbGUuY29tLw&ntb=1
https://www.bing.com/ck/a?!&&p=8ad2fa96d733084eJmltdHM9MTcwMzExNjgwMCZpZ3VpZD0yMTg2YTM2ZC0xZTUxLTZkZjktMzkwZi1iMjJkMWY3NjZjNWUmaW5zaWQ9NTIwOA&ptn=3&ver=2&hsh=3&fclid=2186a36d-1e51-6df9-390fb22d1f766c5e&psq=google+colab&u=a1aHR0cHM6Ly9jb2xhYi5y%20ZXNlYXJjaC5nb29nbGUuY29tLw&ntb=1
https://sourceforge.net/projects/loic/
https://www.kalilinux.in/2021/03/hping3-kali-linux-dos-ddos-network.html
https://www.kalilinux.in/2021/03/hping3-kali-linux-dos-ddos-network.html
https://www.kali.org/
https://www.wireshark.org/
https://documentation.help/LOIC/recoil.html#:~:text=The%20ReCoil%20attack%20focuses%20on,to%20keep%20the%20socket%20alive
https://documentation.help/LOIC/recoil.html#:~:text=The%20ReCoil%20attack%20focuses%20on,to%20keep%20the%20socket%20alive
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://data-flair.training/blogs/python-libraries/
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

153

	Dedication
	Acknowledgement
	List of Publications
	Chapter 1
	Introduction
	1.1 Background
	1.2 Research Questions
	1.3 Aim and Objectives
	1.4 High level methodology
	1.5 Contributions
	1.6 Scope and limitations
	1.7 Thesis structure

	Chapter 2
	Literature review
	2.1 Introduction
	2.2 Smart home eco-system
	2.3 Challenges and risks concerning smart home network
	2.4 DDoS flooding attacks in the smart home network
	2.5 DDoS detection and classification in smart home networks
	2.5.1 Data visualization in cyber security
	2.5.2 Rule/ signature/ hybrid -based ID(P)S
	2.5.3 Supervised Machine learning based solutions for attack detection and classification

	2.6 Gaps identified and contributions
	2.7 Summary

	Chapter 3
	Smart home network behaviour
	3.1 Introduction
	3.2 Methodology
	3.3 Network setup
	3.4 Data collection
	3.5 Exploratory Data Analysis
	3.5.1 Traffic categorization
	3.5.2 Device Identification
	3.5.3 Protocols (idle & active states)
	3.5.4 Flow volume and duration
	3.5.5 Traffic pattern based on mode of operation

	3.6 Comparison to literature and new findings
	3.7 Summary

	Chapter 4
	Exploratory Data Analysis comparing attack and benign smart home traffic properties
	4.1 Introduction
	4.2 Methodology
	4.3 Attack data collection
	4.4 Exploratory Data Analysis
	4.4.1 Benign traffic
	4.4.2 Attack traffic

	4.5 Proposed novel detection method
	4.6 Comparison to literature and new contributions
	4.7 Summary

	Chapter 5
	A Novel Hybrid DDoS attack Detection and attack type indication system in the Smart Home Network
	5.1 Introduction
	5.2 Methodology
	5.2.1 Data preparation
	5.2.2 Algorithm drafting
	5.2.3 Testing
	5.2.4 Tuning
	5.2.5 Validation
	5.2.6 Comparison to literature

	5.3 How the detection and attack type indication algorithm work
	5.4 Implementation
	5.4.1 Data preparation
	5.4.2 Algorithm Drafting
	5.4.3 Initial Testing
	5.4.3.1 Observations

	5.4.4 Tuning
	5.4.5 Final Testing and Validation

	5.5 Comparison to literature and new findings
	5.6 Summary

	Chapter 6
	A Novel Hybrid Machine Learning Attack Type identification model using Domain Knowledge
	6.1 Introduction
	6.2 Methodology
	6.3 Proposed hybrid Machine Learning detection and attack type identification model
	6.4 Implementation
	6.4.1 Coding
	6.4.2 Model Selection
	6.4.3 Chosen Model
	6.4.4 Model testing
	6.4.5 Tuning
	6.4.6 Validation

	6.5 Comparison to literature and new findings
	6.6 Summary

	Chapter 7
	Research Contributions
	7.1 Overall contributions
	7.4 Summary

	Chapter 8
	Conclusion
	8.1 Introduction
	8.2 Areas of improvement and future work

	Bibliography
	[50] DDoS attack that disrupted internet was largest of its kind in history, experts say [Online] https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet [Accessed : 01-Nov-2023].

