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A B S T R A C T

This paper introduces 4D printing of composites of polymethyl methacrylate (PMMA) and thermoplastic poly-
urethane (TPU) reinforced with Fe3O4 particles for the first time. PMMA/TPU blends with 70/30 wt% are
selected as matrix with the best compatibility based on dynamic mechanical thermal analysis. Fe3O4 nano-
particles are added to the blends with 10 %, 15 % and 20 % weight ratios. Their addition enables remote
actuation of the materials in a high frequency alternating magnetic field. Field emission scanning microscopic
images confirms a full dispersion of nanoparticles inside the polymeric matrix. Nanocomposites with 20 wt% of
Fe3O4 can perfectly recover the permanent shape within 1.5 min in the magnetic field. They also reveal perfect
shape memory properties in the hot water. Moreover, all samples display a perfect shape fixity ratio. The addition
of TPU significantly enhances the toughness and flexibility of the PMMA matrix. It is found that Fe3O4 nano-
particles further enhance the mechanical strength by 10 % to 15 %, although they reduce the strain at break from
17 % to 14 %. Finally, a gripper is 4D printed and its excellent performance in the magnetic field is demonstrated.

1. Introduction

Shape memory polymers (SMPs) are a class of smart materials that
can keep a temporary shape and recover their primary original shape
when exposed to a suitable external stimulus such as heat, light, electric
and magnetic fields [1–7]. The majority of SMPs are thermosensitive
polymers [8–12]. The original shape is recovered when the temperature
surpasses a certain threshold which is known as switching temperature
(Tswitch) [13,14]. Thermoplastic shape memory polymers consist of two
distinct phases. In these structures, the domains with higher thermal
transition temperature (Tperm) keep the permanent shape through their
role as physical net points whereas secondary phase, exhibiting a
different thermal transition temperature (Ttrans) function as the trigger
[15,16]. Above Ttrans, the polymer chain segments of this phase become
flexible which allows the material to exhibit significant elasticity. Below
Ttrans, movement of chains is restricted and therefore at this temperature
the temporary shape of the polymer is fixed. In thermoplastic polymers,
Ttrans is typically the glass transition temperature (Tg) or the melting
temperature (Tm).

In recent years, certain limitations within specific uses, as shown in

Fig. 1, have drawn the academic interest towards the alternative
methods of activating the shape memory polymers, predominantly
through remote stimulation [17–21]. Magnetic shape memory polymers
(MSMPs) are SMPs that can be remotely stimulated in a high-frequency
alternating magnetic field, due to induction heating of super-
paramagnetic particles embedded within a thermosensitive SMP
[21–29].

Researchers have utilized different materials such as NdFeB, Ni-Mn-
Ga, nickel powder and chiefly iron (III) oxide (Fe3O4) as the main
magnetic particles in magnetic shape memory nanocomposites [30–32].
In these nanocomposites, the majority have demonstrated that shape
recovery rates in an alternating magnetic field are comparable to those
with direct heat actuation. Yakacki et al. [20] investigated the influence
of the proportion of Fe3O4 particles on the mechanical properties and
shape recovery effect of MSMPs. They concluded that by increasing the
weight percentage of the particles, the amount of induced heat that is
caused by exposure to the magnetic field increases and also decreases Tg
of the polymer matrix. Another important result is that the increase in
the number of particles causes more brittleness of the material and the
material cannot withstand large strains. Yu et al. [33] developed a
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MSMP using poly(ε-caprolactone) (c-PCL) and Fe3O4 nanoparticles
(5–25 % wt.). They found that crosslinking the polymer increased its
shape recovery by up to 70 %. In their study, they compared the shape
recovery rate in both direct heat (hot water) and an alternating magnetic
field and observed that the shape recovery of c-PCL/Fe3O4 in hot water
is much faster than in an AC magnetic field. Zhang et al. [34] created a
MSMP using PLA with embedded Fe3O4 particles (15 % wt.) that can be
activated by an AC magnetic field. They examined the shape memory
properties of this material for potential use in biomedical applications.
They discovered that a bone support structure they developed could
rapidly return to its original shape in a few seconds when subjected to
the magnetic field, with the surface temperature remaining uniform at
around 40 ◦C, making it safe for use in the human body. They reported a
shape recovery rate of approximately 96 %, with bones regaining their
original shape within 100 s under the alternating magnetic field at 27.5
kHz. They also noted that the shape recovery time in hot water was
much faster, at about 10 s.

Thermoplastic polymers exhibit shape memory effect when they are
crystalline or blended with other polymers. In thermoplastic blends, the
shape memory effect is attributed to the two-phase morphology of the
materials. The rigid amorphous regions in the blends can act as sub-
stitutes for the hard segments found in thermoset polymers and entan-
glement and bonding between two different polymer chains can serve as
a form of crosslinking, known as physical crosslinking.

Nowadays, the progress in additive manufacturing (AM) techniques
have allowed fabrication of many complex shapes that were previously
costly to create using traditional methods [35–38]. While AM offers
numerous advantages, such as increased design flexibility and reduced
lead times, material selection remains a critical factor due to limitations
in the range of materials that can be effectively utilized in 3D printing
processes. One approach to address this challenge is the blending of
materials with 3D printable polymers, although this can alter the
properties of the base polymer. As a result, researchers have focused on
developing material blends that maintain the desired characteristics
while being compatible with additive manufacturing processes. Some
other researchers have modified the characteristics of one polymer by
blending technique [39].

Poly methyl methacrylate (PMMA) is a lightweight material with
good rigidity and transparency. It is used in many industries including

automotive and biomedical applications [40]. However, PMMA has low
toughness, making it difficult to use as a 3D printing material. To
improve the mechanical properties, PMMA can be blended with other
3D printable materials that have good toughness. One such material is
Thermoplastic Polyurethane (TPU). TPU is a great 3D printing candidate
as it has high toughness and flexibility [39]. Combining TPUwith PMMA
can enhance the printability by reducing the brittleness of PMMA,
resulting in less chain shrinkage during the printing process.

In previous study, PMMA was added to PLA matrix to enhance the
mechanical robustness and shape memory properties of pure PLA [41].
In this study, the goal was to develop 4D printed PMMA/TPU/Fe3O4
nanocomposites for the first time to enhance the toughness and flexi-
bility of PMMA andmake a 3D printable material with superior remotely
controlled shape memory properties. This research investigated the
mechanical properties and shape memory behaviors of these materials,
using both direct and remote heating actuations. By adding Fe3O4
nanoparticles, these materials can be remotely activated using a high-
frequency alternating magnetic field.

First, to achieve the best combination of PMMA/TPU blends, dy-
namic mechanical thermal analysis (DMTA) tests were performed and
the best combination was chosen for being blended with Fe3O4 nano-
particles and once again DMTA tests were carried out to check the effect
of these nanoparticles on morphological and physical behavior of the
blends. Then, field emission scanning electron microscopy (FE-SEM) was
utilized to evaluate the dispersity of nanoparticles inside the polymeric
matrix. Energy dispersive X-ray (EDX) mapping was also used to confirm
the FE-SEM results. The shape memory tests were performed in both hot
water (for direct actuation) and a high-frequency alternating current
(for indirect actuation) with the frequency of f = 100 kHz. The me-
chanical tests were also performed with a universal testing machine to
evaluate the mechanical behavior of the samples. Finally, these com-
posite materials were proposed as mechanically robust grippers and
consequently a 3D gripper was printed to successfully show the capa-
bilities of the material in this type of application.

2. Materials and methods

2.1. Materials

Poly methyl methacrylate (PMMA) granules with density of 1.19 g/
cm3, melt flow rate of 1.8 g/10 min and thermoplastic polyurethane
filament (eTPU-95A) with diameter of 1.75 mm, processing temperature
of 210–240 ◦C were purchased from YOUSU (Guangzhou, China) and
eSUN (Shenzhen, China) respectively and magnetite (Fe3O4) nano-
particles coated with polyvinylpyrrolidone (PVP) were purchased from
US Research Nanomaterials, Inc. (Houston, Texas, USA). The spherical
particles had a size of 20–30 nm, surface area of 40–60 m2/g, bulk
density of 0.84 g/cm3 and true density of 4.8–5.1 g/cm3.

2.2. Processing and 4D printing

A pelletizer machine was used to chop the TPU filament into gran-
ules. Then, the TPU and PMMA granules were placed in a vacuum-
controlled oven at 85 ◦C for a duration of 8 h in order to eliminate
moisture and unpolymerized monomers. For fabrication of PMMA/TPU
blends TPU with 3 different weight ratios (10 %, 20 % and 30 %) were
added to PMMA in THF solvent (20 gr/300 ml). The solution was stirred
utilizing a mechanical stirrer for 5 h and then Fe3O4 nanoparticles (with
3 different weight ratios of 10 %, 15 % and 20 %) were added to the
solution and the mixture was stirred for 3 h at the speed of 1200 rpm.
The solution was casted onto a flat surface and after the sheets were
prepared, they were sliced into small pieces to be fed to the pellet-based
3D printer (Chakad, CCS1). The whole process is described in Fig. 2.

The parameters listed in Table 1 are used for printing the samples
required for the tensile test and shape recovery test. The nozzle tem-
perature for PMMA/TPU/Fe3O4 specimens was higher than for PMMA/

Fig. 1. MSMPs applications.
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Fig. 2. The process of fabricating PMMA/TPU/Fe3O4 nanocomposites.
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TPU because of the lower flowability of the material. Printing rate and
bed temperature were carefully adjusted to minimize printing defects,
such as poor layer adhesion and edge lifting off from the bed, with raster
angles chosen based on the performance of samples in the shape

recovery and tensile tests.

2.3. Characterization

DMTA was carried out with a dynamic mechanical analyzer from
DMA 242C (NETZSCH, Germany), using tension mode at a heating rate
of 5 ◦C/min and oscillation frequency of 1 Hz. All DMTA samples were
3D printed into rectangular shapes with dimension of 20 × 5 × 1 mm3.
Tg domain can be seen in storage modulus curves when there is a sharp
decrease in the material’s storage modulus (E’).

Morphology of nanocomposites was analyzed using field emission
scanning electron microscopy (FE-SEM) with a TESCAN MIRA 3 (TES-
CAN, Brno, Czech Republic). For this examination, rectangular samples
measuring 10 × 10 × 1 mm3 were 3D printed. Energy dispersive X-ray
(EDX) mapping analysis was also conducted to determine the distribu-
tion of Fe3O4 on the surface of the samples. PMMA/TPU samples un-
derwent chemical etching with chloroform solvent for 45 min to
partially dissolve the PMMA phase (overexposure could result in sample
failure).

2.4. Tensile test

Tensile tests were conducted to examine the mechanical properties
of the nanocomposites using SANTAM STM-05. The samples were 3D
printed following the ASTM D638 type V standard.

2.5. Shape memory behaviors

To investigate the shape memory behavior of nanocomposites in two
states of actuation − direct heat and induction heat − the bending mode
shown in Fig. 3 was used. In these two states, the shape recovery ratio
(Rr) and the shape fixity ratio (Rf) were calculated according to Eqs. (1)
and (2), respectively. θmax represents the temporary angle applied to the
samples under constraints (T > Tg), θfixed denotes the fixed angle once
the constraints are removed (T < Tg), and θi signifies the residual angle
post-exposure to stimuli (T > Tg).

Rf =
θfixed
θmax

× 100% (1)

Rr =
θmax − θi

θmax
× 100% (2)

To evaluate the shape recovery performance of nanocomposites under
high-frequency alternating magnetic fields, a specialized setup (Fig. 4)
was employed. This system can generate frequencies up to 150 kHz and
deliver power outputs reaching 2 kW. For direct heating stimulation,
samples were placed in hot water at 95 ◦C. For the programming step,
samples were heated to 105 ◦C (higher than Tg) and bent into ‘U’ shapes.
The samples were then cooled to room temperature as the last step.

Fig. 3. Shape memory programming and recovering cycle in bending mode.

Fig. 4. Schematics of high frequency AC magnetic field and induction heat-
ing setup.

Table 1
3D printing parameters of samples.

Material Nozzle Temperature (◦C) Bed Temperature (◦C) Printing
Speed (mm/min)

Raster Angle
(deg)

PMMA/TPU ​ 210 40 400 0◦/90◦

PMMA/TPU/Fe3O4 (10 % wt.) ​ 220 50 300 0◦/90◦

PMMA/TPU/Fe3O4 (15 % wt.) ​ 220 50 300 0◦/90◦

PMMA/TPU/Fe3O4 (20 % wt.) ​ 230 50 300 0◦/90◦
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3. Results and Discussion

3.1. DMTA and thermal and dynamic mechanical properties

The DMTA results for all specimens are presented in Fig. 5. Ac-
cording to Fig. 5(a), blends with 30 % wt. of TPU shows a single tran-
sition temperature region which proves its compatibility with PMMA
phase. Fig. 5(b) demonstrates tanδ of these blends which illustrates all
PMMA/TPU blends have almost the same α-relaxation time according to
the width of the peaks. This indicates that free volume in both materials
is comparable and also the concentration of nanoparticles is small
enough so that they do not form percolating networks and change the
morphology of the polymer matrix. Fig. 5(c) shows that the addition of
Fe3O4 affects the morphology and physical properties of these blends.
First, it can be seen that storage modulus has increased dramatically by

addition of magnetic nanoparticles, additionally, the thermal transition
temperature of these structures has decreased drastically compared to its
neat PMMA/TPU blends (depicted in Table 2). The increase in the
storage modulus of the nanocomposites compared to PMMA/TPU blends
is due to the high surface area of the magnetic nanoparticles, which
interact strongly with the polymer chains. Restriction in chains mobility
leads to stiffer material. Also, the steep loss in storage modulus of
nanocomposites compared to PMMA/TPU blends can be an impact of
both interfacial interaction of nanoparticles and superior heat transfer
properties of nanoparticles. As mentioned in this section, stiffer regions
in the material which are in the interface of nanoparticles and the
polymer matrix soften much faster. Additionally, these nanoparticles
have superior thermal conductivity and hence these regions are more
rapidly heated. This shows that these materials can be actuated in en-
vironments like hot water. Unlike PMMA/TPU (70/30 % wt.), these
blends have a narrower tanδ peak, which means that chains relax in a
shorter time, MSMP with 20 % wt. of Fe3O4 has the lowest Tg compared
to all other nanocomposites. The full list is provided in Table 2.

3.2. Morphology characterization

The morphological analysis of the MSMPs is provided in Fig. 6. As
depicted in Fig. 6(a), TPU phases, which are etched by THF (with TPU
having a much higher solution rate compared to PMMA) are fully

Fig. 5. DMTA results of (a, b) PMMA/TPU blends and (c, d) MSMPs.

Table 2
Tg of MSMPs.

Material Tg (◦C)

P/T (70/30 % wt.) ​ 95
P/T/F (10 % wt.) ​ 70.2
P/T/F (15 % wt.) ​ 71.9
P/T/F (20 % wt.) ​ 72.4
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Fig. 6. (a) SEM image of chemically etched PMMA/TPU sample (b–d) SEM and EDX mapping images of PMMA/TPU/Fe3O4 samples with 10 %, 15 % and 20 % wt. of
nanoparticles respectively.

A. Ahangari et al. European Polymer Journal 220 (2024) 113495 

6 



dispersed in the core–shell morphology of these blends. This full
dispersion ensures uniform distribution of load in tensile test and also
brings a uniform shape recovery in shape memory test. Fig. 6(b) to Fig. 6
(d) represent SEM and Fe element EDX mapping images of MSMPs with
10 %, 15 % and 20 % wt. of Fe3O4 respectively. In all these images, full
dispersion is confirmed. Some agglomerated zones can be detected with
diameters of less than 1 µm. These dispersed nanoparticles help better
heat transfer when placed in magnetic field. These nanoparticles also
can increase the temperature of the specimen when samples are actuated
directly which results in faster shape recovery time compared to neat
PMMA/TPU blends.

3.3. Mechanical properties

The stress–strain curves of the samples are displayed in Fig. 7. As
illustrated, neat PMMA has an ultimate tensile strength (UTS) of 59.7
MPa with strain at break of 5 %. This rigidity was reduced by addition of
30 % wt. of TPU, which resulted in strain at break of 17 %. The recorded
UTS is 46.5 MPa. In MSMPs, addition of Fe3O4 enhanced the mechanical
strength of the nanocomposites. By increasing the amount of Fe3O4
content, the tensile strength increases. The strong interfacial bonding
between polymer chains and nanoparticles is the reason behind this

improvement. The enhanced interfacial area improves the mechanical
interlocking and bonding, leading to increased strength. However,
addition of nanoparticles more than 10 %wt. has led to creation of voids
in 3D printing process and hence it resulted in a slight decrease in UTS of
MSMPs. The Fe3O4 nanoparticles can obstruct the path of propagating
cracks, causing them to deflect, branch, or even stop. This crack
deflection mechanism toughens the material and enhances its resistance
to fracture. However, the presence of Fe3O4 restricts the mobility of the
chains and hence, the strain at break point is slightly decreased.

3.4. Shape memory properties

The results related to shape memory tests are presented in Fig. 8. It is
worthy to discuss the shape fixing and shape recovery mechanisms first.
In the shape changing process and at temperatures above Tg, PMMA
chains and TPU’s hard segments start to gain their mobility and the
second shape can be fixed. TPU’s soft domain provide the flexibility and
the energy is stored in them. This stored energy acts as a driving force in
shape recovery step. When the specimen is placed in magnetic field, the
nanoparticles start to heat up and when their temperature reaches T >

Tg, the heat is conducted through the specimen and all chains retain
their permanent shape. Fig. 8(a) displays the shape changing

Fig. 6. (continued).

Fig. 7. (a) Stress-Strain curves and (b) UTS of MSMPs obtained from tensile test.
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Fig. 8. (a) shape changing mechanism (b-d) shape recovery behavior of MSMPs with 10 %, 15 % and 20 % wt. of Fe3O4 (e) recovery ratio versus time for the
three samples.
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mechanism. Fig. 8(b–d) represents the behavior of MSMPs with 10 %,
15 % and 20 % wt. of nanoparticles in alternative magnetic field. As it
can be seen, the higher content of magnetic nanoparticle, the faster the
shape recovers and the higher the shape recovery ratio is. The samples
have fully recovered and the recovery time for PMMA/TPU/Fe3O4 was

less than two minutes (115 s) with perfect shape recovery ratio. Fig. 8(e)
shows the recovery ratio versus time for the three samples. It also should
be noted that all samples could record shape fixity ratio of 100 %.

Table 3 Illustrates the shape recovery properties of MSMPs. It also
shows the magnetic response time of the specimens, which is the time
taken by the specimen to respond to the magnetic field and the shape
changing mechanism initiates.

For the direct heating actuation, Fig. 9, the samples were placed in
hot water at 95 ◦C. The samples could perfectly recover their original
shape within 6 s. The presence of nanoparticles accelerates the heating
process in direct heating compared to neat PMMA/TPU. Table 4 in-
dicates the shape recovery properties of MSMPs in hot water.

Fig. 9. Shape recovery behavior in direct actuation (a-c) MSMPs with 10 %, 15 % and 20 % wt. of Fe3O4 (d) PMMA/TPU.

Table 4
Shape recovery properties of MSMPs (Direct actuation).

Material Rf (%) Rr (%) Recovery time (s)

P/T/F (10 %) ​ 100 98 6
P/T/F (15 %) ​ 100 98 6
P/T/F (20 %) ​ 100 97 6
P/T ​ 100 96 8

Table 3
Shape recovery properties of MSMPs (Induction actuation).

Material Rf (%) Rr (%) Recovery time
(s)

Magnetic field response time
(s)

P/T/F (10 %) ​ 100 100 145 82
P/T/F (15 %) ​ 100 98 130 61
P/T/F (20 %) ​ 100 100 115 45
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4. 3D gripper as a potential application

Based on the developed MSMPs, and according to its mechanical and
shape memory properties, it can be said that they are suitable for ap-
plications like grippers. The ultimate tensile strength of the PMMA/
TPU/Fe3O4 blend provides good load-bearing capacity and resistance to
tearing or deformation during gripping. This level of tensile strength

helps ensure a secure and reliable grip on the target object.
The 12 % strain at break indicates that the PMMA/TPU/Fe3O4 blend

has a moderate level of flexibility and elongation. This flexibility allows
the gripper to conform to the shape of the object being gripped,
improving the surface contact and overall grip performance.

The combination of PMMA and TPU in the blend can result in a
material that is more durable and resistant to wear and tear compared to

Fig. 10. (a) Designed gripper (b) 3D printed sample (c) original shape (d) temporary shape (e) gripper actuation under induction heating (f) final gripping shape.
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pure PMMA or pure TPU. For better visualization, a 3D gripper has been
4D printed and its performance in magnetic field has been evaluated.
According to Fig. 10, the sample could grip the target (aluminum
specimen) in 100 s and recovered its permanent shape. The grip was
tight and the gripper could successfully hold the specimen.

5. Conclusion

The current work focused on 4D printing of magneto-thermo
responsive materials based on PMMA, TPU and Fe3O4 nanoparticles
demonstrating enhanced toughness, flexibility, and shape memory. FE-
SEM images along with DMTA assessed the compatibility of the blends
and confirmed the core–shell morphology with great dispersity of TPU
and Fe3O4 (10, 15 and 20 % wt.) phases in PMMAmatrix in PMMA/TPU
with 70/30 % wt. These materials were fabricated utilizing solution
blending method. The processed sheets were cut into small pieces and
fed into a pellet-based 3D printer. The prepared MSMPs were 4D printed
for shape memory tests and tensile tests. The results showed shape re-
covery ratio of 100 % with UTS of 53.8 MPa for 10 % wt. of Fe3O4, ratio
of 98 % with UTS of 52.8 for 15 %wt. of Fe3O4 and ratio of 100 % with
UTS of 51.5 for 20 %wt. of Fe3O4. All samples showed perfect shape
fixity (~100 %). Another important factor was the time performance of
these nanocomposites in high frequency alternating magnetic field at
which the best nanocomposite could recover its permanent shape within
1.5 min. The nanoparticles helped the specimen’s heat faster and
recover in shorter time compared to pure PMMA/TPU material. Finally,
a gripper was 4D printed to show its capabilities of the materials in a
high frequency AC magnetic field. The gripper could successfully hold
and lift the object within 100 s. In this respect, this material can be
proposed for potential use in gripper applications.
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