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In this paper we investigate synchronisation patterns and coherence for a network of delayed Wilson-Cowan nodes. To
capture information processing across different brain regions, our model incorporates two distinct delays: an intra-nodal
delay that reflects the time signals take to travel within a cortical region due to local circuitry; and an inter-nodal delay
representing the longer communication times associated with white matter connections between brain areas. To inves-
tigate the role of network topology we consider a range of toy network structures as well as the known (macro-scale)
cortical structure of the Macaque monkey. We examine how global network dynamics are shaped by a combination of
network configuration, coupling strength and time delays. Our focus lies on two dynamic measures: synchrony and
metastability, the latter reflecting the temporal variation of the former, both crucial for the brain’s real-time function-
ality. Our investigation identifies extensive regions within the system’s parameter space where the synchronised state
exhibits transverse instabilities. These instabilities give rise to diverse dynamical behaviors contingent upon the network
architecture and the interplay between coupling strength and time delay. While similar complex partially synchronised
states existed for all network topologies considered, the cortical network demonstrated time-dependent behaviors, such
as phase cluster dynamics, which were absent in the toy network architectures, and which are considered crucial in its
ability to orchestrate complex information processing and behaviour. Additionally, we illustrate how delays can regu-
late a cortical network with chaotic local dynamics, thus emphasising the potential importance of delays in suppressing
pathological spreading dynamics.

Investigating synchronization in large-scale neural net-
works is a cornerstone of understanding cognitive func-
tion. Neural ensembles exhibit a broad spectrum of
oscillatory activity, and their transient coupling (syn-
chronisation) is believed to be a fundamental mecha-
nism underlying perception, attention, and motor con-
trol. This synchronisation is not simply a global phe-
nomenon, but rather a complex interplay between local
and long-distance connections within the brain. Employ-
ing a modeling approach, this study investigates the dy-
namical properties of large-scale brain networks. We fo-
cus on synchrony and its variability, a measure considered
a proxy for metastability. These properties are thought to
be critical for the brain’s real-time functional coordination
during cognition and behavior. For all considered network
structures, we find regions of existence for synchrony, par-
tial synchrony, and irregular, chaotic-like dynamics. No-
tably, only the cortical network exhibited emergent phase
cluster dynamics, which were contingent upon specific dy-
namical parameters. This suggests that such flexible syn-
chronisation patterns might be a hallmark of functional
interactions within the brain, allowing for transitions be-
tween network configurations.

I. INTRODUCTION

Network neuroscience offers a comprehensive framework
with which to investigate large-scale networks emerging from
contemporary neuroimaging techniques describing both struc-
tural and functional connectivities within the brain1–3. Ob-

served oscillatory patterns of neural activity spanning mul-
tiple spatial scales naturally arise throughout the brain, and
are believed to be a consequence of its underlying topolog-
ical features such as the strength and location of synapses
as well as the presence of feedback loops4. Investigating
the mechanisms that govern the synchronisation and propaga-
tion of neural activity is a fundamental objective of network
neuroscience5–8.

A recent approach that promises to improve our compre-
hension of the intricate relations between structure and func-
tion in the brain involves the utilisation of brain network
models (BNMs)9. These models integrate detailed anatomi-
cal connectivity data with simulated neural activity, enabling
the replication of large-scale brain functional connectivity
such as that observed using modern imaging tools. Popu-
lation models are widely used to simulate large-scale brain
activity10–12 since they offer a computationally efficient yet
biologically plausible approach to generating physiologically
realistic brain states. A notable benefit of such an approach is
that it enables researchers to conduct virtual experiments that
serve predictive purposes and facilitate the testing of various
experimental and clinical scenarios13. Thus research in this
area potentially paves the way for personalised treatments in
the field of neuroscience14,15.

One important aspect of any BNM is that it accurately ac-
counts for the effects of finite conduction velocities within the
brain on observed spatiotemporal patterns of neural activity16.
For large-scale BNMs, such as those considered in this work,
there are two main sources of delay: inter-nodal delays
that arise between distant populations of excitatory neurons;
and intra-nodal delays that describe delayed self- or cross-
interactions between localised populations of excitatory and
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inhibitory neurons. However, most BNM studies focus on
inter-nodal delays only. They are either empirical studies
that incorporate long-distance pathway delays to replicate ob-
served neural dynamics17–19, or theoretical studies that use
simplifying assumptions (such as a constant delay) to under-
stand basic brain network properties, such as stability and
synchronisation20,21.

Recently, Conti and Van Gorder22 considered the effects of
inter- and intra-nodal delays on a system of coupled masses2

via a numerical simulation. Deploying a range of model
topologies, such as a path network, a ring network and a lattice
network, they found that when coupled with neural delays,
network structure had the ability to both regularise and dereg-
ularise network dynamics, depending upon the network’s het-
erogeneity. One of the main goals of the current work is to fur-
ther explore some of these ideas by simulating neural dynam-
ics on a range of topologies, including both artificial and ex-
perimental architectures, thereby extending the work of Conti
and Van Gorder to a more physiologically relevant setting.

In this paper we consider a BNM consisting of a network
of coupled masses, or brain regions, the activity of which will
be described by interacting populations of excitatory and in-
hibitory neurons, in accord with the standard Wilson-Cowan
model23. The model incorporates both intra- and inter-nodal
delays and we consider both model connectivity structures,
such as a path, ring, lattice and complete network, as well
as the known cortical network of the Macaque monkey24,25.
Deploying numerical simulations we investigate the effect of
inter-nodal delays and coupling strength on the network dy-
namics and complex spatiotemporal patterns for the afore-
mentioned topologies. Moreover, given the growing evidence
that brain network dynamics operate in a metastable regime,
that maximises neural flexibility26, this study aims to identify
parameter values within our model that promote this optimal
state of dynamic balance. We also analyse the extent to which
cortical topology and delays can be used to regularise aperi-
odic pathological neural activity, an important aspect for the
understanding of seizure disorders.

The structure of the paper is as follows. In §II we begin by
providing some of the necessary prerequisites in network sci-
ence, before moving on to describe the neural activity model
deployed in our BNM in detail. We conclude the section by
providing a brief overview of the different network architec-
tures considered in our work, which includes a number of
toy network structures as well as the cortical network of the
Macaque monkey. In §III we investigate the role that coupling
strength and inter-nodal delays play in the emergence of syn-
chronous brain activity, as well as considering the extent to
which cortical architecture can regularise pathological aperi-
odic brain activity. We conclude in §IV with a brief summary
of our results and suggest a number of directions for future
study.

II. METHODS

A. Network basics

Here, we consider simple networks (undirected, un-
weighted) that are defined in terms of an adjacency matrix
A ∈ Rn×n , which has ai j = a ji = 1 if nodes i and j are con-
nected, and ai j = a ji = 0 otherwise. We also have aii = 0 since
self-links are disallowed.

Given an adjacency matrix many network statistics can be
readily computed. For example, the degree of node i is given
by ki = ∑

j
ai j, and the mean degree is given by

⟨k⟩= 1
n

n

∑
i=1

ki =
2m
n
,

where here m is the number of edges in the network. Degree
heterogeneity, which is known to heavily impact the ability
for nodes to synchronise their dynamics27,28, can be quantified
using Estrada’s heterogeneity index29:

σ =
1

n−2
√

n−1 ∑
(i, j)∈E

(
1√
ki
− 1√

k j

)2

.

Here, the sum is over all network edges, i.e. the collection E
of unordered pairs (i, j) such that ai j = 1.

The global clustering coefficient is given by

C =
1
n

n

∑
i=1

Ci,

where Ci denotes the probability that two neighbours are con-
nected. The characteristic path-length ⟨l⟩ is defined as the
number of edges in the shortest path between two vertices,
averaged over all node pairs. Note that many real-world net-
works, including cortical networks, have been observed to ex-
hibit both a high clustering coefficient and a short average
path length. These networks, collectively known as small-
world networks30, are believed to offer functional advantages
such as enhanced information processing, coordination, and
robustness (see the paper by Bassett and Bullmore31 for a re-
cent discussion specific to brain networks).

For further details on the aforementioned network measures
see the text by Newman32.

B. The model

In this work we deploy the brain network metapopulation
model introduced by Conti and Van Gorder22, which is an ex-
tension of the population model of Wilson and Cowan23 to
networks. The model considers two populations of excitatory
and inhibitory neurons with neural activity being described by
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the following system

dui

dt
=−ui(t)+ f (c1ui(t − τ)+ c2vi(t − τ)+P

+ ε ∑
j

wi ju j(t −ρ)), (1)

dvi

dt
=−vi(t)+ f (c3ui(t − τ)+ c4vi(t − τ)+Q),

for i = 1,2, . . . ,n. Here, ui and vi represent the synaptic activ-
ity of the excitatory and inhibitory populations, respectively,
f denotes a firing rate function given by

f (x) =
1

1+ e−βx , (2)

and ε is the coupling strength. The parameters c1,c2,c3 and c4
denote the strengths of interactions between sub-populations
within a node, whilst P and Q are control parameters repre-
senting basal inputs to each node. Additionally, the model
includes an intra-nodal delay τ for information processing
within brain regions and an inter-nodal delay ρ for signal
transmission between them. Unless otherwise stated, in our
experiments we chose β = 60,P = 0.65,Q = 0.5,c1 = c3 =
−1,c2 = −0.4, c4 = 0 and τ = 0.5, which results in a set of
identical self-sustained oscillators when the coupling strength,
ε , is set to zero33.

The matrix W ∈ Rn×n is the scaled adjacency matrix given
by

W = D−1A, (3)

where D is the diagonal matrix of degrees, i.e.

D =

k1
. . .

kn

 . (4)

It follows that the row-sum of the weight matrix W is constant:

n

∑
j=1

wi j = 1; (5)

a condition which ensures the existence of a fully synchro-
nised solution to (1). For a detailed description of the condi-
tions under which synchronous solutions exist, see Arenas et
al.34. For more specific information related to our studies, see
Campbell et al.20,21.

Note that assumption (5) posits that each node within the
network receives an identical total input from its connected
nodes. This is a common approach in neural mass models,
particularly when neural tract data is leveraged to construct
the connectivity matrix35–38. This assumption is often adopted
to prevent individual nodes from becoming saturated due to
excessive input or quiescent due to insufficient input, thereby
facilitating a more equitable comparison of relative strengths
between different brain regions37,38. As noted above, this
assumption also enables the system to exhibit synchronous
solutions39 and is necessary to facilitate direct comparison
with the results of Pinder et al.40,41.

C. Numerical methods

We use the dde23 routine in MATLAB to simulate the sys-
tem (1) with absolute and relative tolerances set to 10−5. Nu-
merical continuation was performed using DDE-BIFTOOL, a
MATLAB package for the numerical bifurcation analysis of
DDEs42.

To compute the maximal Lyapunov exponent, we follow
the approach of Sprott43 and represent the system in (1) by
the following infinite-dimensional system of ODEs:

ẋ0 = f(x0,xM,xN),

ẋi = N(xi−1 −xi)/τ,
(6)

where 1 ≤ i ≤ N → ∞ and f(x(t),x(t − τ),x(t −ρ)) denotes
the RHS of the delay-differential system in (1). In the above
we have that xM and xN denote respectively the delayed state
variables x(t − τ) and x(t −ρ). Throughout, we assume that
the intra-nodal delay, τ , is always smaller than the inter-
nodal delay, ρ . We can then compute the maximal Lyapunov
exponent by solving the associated variational equations in
the usual manner44. In all of our experiments, the value of
h = τ/N = 0.01 was taken, where h is the grid spacing of our
discretisation.

To quantify mean synchrony and metastability within the
model, we deploy the Kuramoto order parameter

R(t) =

∣∣∣∣∣1n n

∑
j=1

eiθ j(t)

∣∣∣∣∣ .
Synchrony is then calculated as the mean of R over time, and
metastability, SR, as the standard deviation of R over time.
The temporal variability of the order parameter reflects tran-
sient fluctuations in neural activity and has previously been
employed in both theoretical and empirical investigations to
quantify metastability in brain networks45,46. Computing the
order parameter requires us to extract the instantaneous phase
θ j(t) of each node, which can be computed by applying
the Hilbert transform (implemented in MATLAB using the
hilbert routine – see47 for further details) and reading out
the angle of the complex output.

D. Network topologies considered

To investigate the impact of network topology on the dy-
namics of (1) we deploy a range of model network configura-
tions as well a representation of the cortical architecture of the
Macaque monkey25. More specifically, we consider four toy
network structures: a path network, a cycle network, a square
lattice and a complete network, all on N = 16 nodes. Illus-
trations of these networks are shown in Figure 1. We chose
N = 16 since it is large enough to observe network effects but
small enough to be computationally efficient (similar results
have been observed on larger networks – results not shown).
Basic structural properties for each of the toy network models
are given in Table I.
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
(a) Path

(b) Cycle (c) Lattice (d) Complete

FIG. 1. Illustrations of the toy network models used in our numerical simulations for N = 16. We consider (a) path network; (b) cycle network;
(c) lattice network; and (d) complete network.

Networks N M ⟨k⟩ ⟨l⟩ ⟨C⟩ σ

Path 16 15 1.875 5.667 0 0.0021
Cycle 16 16 2 4.2667 0 0
Lattice 16 24 3 2.667 0 0.0041
Complete 16 120 15 1 1 0

TABLE I. Structural properties for the toy network architectures considered in this paper.
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FIG. 2. Structural connectivity network of the Macaque monkey.
Node (47 regions of interest) sizes are proportional to degree. Nodes
are labelled using standard anatomical abbreviations (see25 and ref-
erences therein for further details).

The BNM we consider is composed of Wilson-Cowan
nodes coupled according to the adjacency matrix A describing
the corticocortical connectivity of the Macaque monkey. Fig-
ure 2 displays the Macaque network structure with nodes pro-

Network N M ⟨k⟩ ⟨l⟩ ⟨C⟩ σ

Macaque 47 313 13.32 1.85 0.64 0.09

TABLE II. Structural properties of the Macaque cortical network.

portional to the number of connections and labelled accord-
ing to the standard anatomical atlas. Basic network measures
describing this anatomical structure are provided in Table II.
It is worth noting that the Macaque network architecture dif-
fers markedly from that of the toy networks displayed in Fig-
ure 1 in that it simultaneously displays both the small-world
property30 and relatively high levels of heterogeneity29.

III. DYNAMICAL REGIMES

In this section, we present a sample of results from the
thorough numerical experiments undertaken on the delayed
Wilson-Cowan model in (1). We begin by reviewing syn-
chronous solutions of (1), which are seen to be independent
of network structure, before proceeding to more complicated
network-dependent solutions.
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0.5 1.5 2.5

0.2

0.3

0.4

FIG. 3. Two-parameter bifurcation diagram in (ρ,ε) plane for the
self-coupled node in (7). The remaining parameter values are as
stated in the text. Solid black lines denote supercritical Hopfs and
dashed black lines subcritical Hopfs, whilst red circles and black cir-
cles denote Bautin and double Hopf bifurcations, respectively. The
red curve shows a saddle node of periodic orbits branch emanating
from the Bautin bifurcation and the green curve a branch of torus bi-
furcations emanating from the double Hopf.

A. The synchronous solution and the single, self-coupled
node

The model in (1) admits a synchronous solution (ui,vi) =
(us(t),vs(t)), i = 1, . . .n, such that the functions (us(t),vs(t))
satisfy the single isolated node with delayed self-coupling
equation

du
dt

=−u+ f (c1u(t − τ)+ c2v(t − τ)+ εu(t −ρ)+P)),

dv
dt

=−v+ f (c3u(t − τ)+ c4v(t − τ)+Q),

(7)

where we have omitted the subscript s for brevity. It fol-
lows that synchronous solutions of (1) can be understood by
analysing the behaviour of the simplified model in (7). For ex-
ample, the point (u∗,v∗) is an equilibrium of (7), independent
of the delays ρ and τ , if

P= f−1(u∗)−c1u∗−c2v∗−εu∗, Q= f−1(v∗)−c3u∗−c4v∗,

where f−1(z) = β−1 ln(z/(1− z)). We can use direct numer-
ical simulation and numerical continuation techniques to de-
termine solution branches and bifurcations for synchronous
solutions of (1).

Figure 3 shows bifurcations for the single, self-coupled
node using ε and ρ as parameters of interest. The result is
a set of Andronov-Hopf (AH) bifurcations of fixed points in
the (ρ,ε) parameter plane corresponding to solutions of (7).
Solid black lines correspond to supercritical AH bifurcations
and dashed black lines correspond to subcritical AH bifurca-
tions, with changes in criticality separated by Bautin bifur-
cations, which are labelled with red circles. The AH curve

is restricted to ε ∈ [0.3125,0.3705] and possesses a repetitive
looping structure (experiments not shown) as ρ is increased;
only one such loop is evident from Figure 3. Note that this
looping structure results in self-intersections of the AH curve,
with each crossing resulting in a double Hopf bifurcation,
which we mark by a black circle in Figure 3. The presence
of these higher dimensional bifurcations is known to result
in increasingly complex dynamics such as mixed mode os-
cillations and chaos. Saddle node of periodic orbits (SNPO)
and torus (TB) bifurcation sets emanating from these higher
dimensional bifurcations are displayed by the red and green
curves, respectively. It can be shown (experiments omitted)
that the system in (7) displays chaotic synchronous dynamics
for parameter values within the region bounded by the torus
branches, which manifests through the destabilisation of the
stable periodic orbit born at the AH branch via a torus bifur-
cation; this route to chaos is well documented48. Outside of
this region, the dynamics are either mono- or bi-stable, con-
verging either to a steady state or to a stable periodic orbit,
depending upon the choice of the parameters (ρ,ε). For a
more detailed description of the bifurcation structure and dy-
namics of the self-coupled model in (7), we recommend the
interested reader consult the recent paper by Pinder et al.41

Note that the above bifurcation analysis exposes the net-
work’s synchronous behaviour, but its relevance depends on
whether the network structure inherently disrupts this syn-
chronised state (by inducing instabilities transverse to the sy-
chronous manifold), leading to richer spatiotemporal dynam-
ics. In the remainder of this paper, we aim to broaden our
understanding of the system in (1) by examining how network
configuration affects the stability of synchronised states un-
der heterogeneous perturbations across diverse network struc-
tures.

B. Toy models

To quantify global network dynamics, we measure, for each
network, the global level of network synchrony and its varia-
tion, i.e. metastability, as a function of the network coupling
strength, ε , and inter-nodal delay, ρ . The first two columns
of Figure 4 depict these two key features of the network dy-
namics for each of the toy networks considered. As noted
earlier, we measure synchronisation as the difference in phase
between oscillators, with a score of ⟨R⟩= 1 denoting complete
synchrony and a score of ⟨R⟩= 0 denoting incoherent, desyn-
chronised behaviour. The variation in average synchronisation
across the simulation, quantified by ⟨SR⟩, serves as a proxy
for metastability. Higher values indicate a more dynamic or
transitional regime, where the system fluctuates between pe-
riods of synchronised and desynchronised behaviour. To fur-
ther highlight regions of parameter space in which complex
dynamic behaviours exist, the third column in Figure 4 dis-
plays, for each toy network, the average maximal Lyapunov
exponent (LE) over 100 randomly chosen initial conditions
for each choice of (ρ,ε).

The first point to note is that for large couplings, all net-
works are monostable, with convergence to a stable steady
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(b) Cycle
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(c) Lattice
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(d) Complete

FIG. 4. Global measures of network dynamics for toy network architectures. Left: mean Kuramoto order parameter,⟨R⟩; Middle: mean
standard deviation of the Kuramoto order parameter, ⟨SR⟩; and Right: mean largest Lyapanouv exponent. All averages over 100 instances.
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state guaranteed independent of the inter-nodal delay ρ .
For decreasing values of ε , there are initially two possible
(network-independent) behaviours depending upon the value
of ρ: either the fixed point loses stability through a Hopf bi-
furcation; or the system becomes bi-stable after crossing a
branch of SNPOs, such as the one displayed in Figure 3, un-
til we reach the first Hopf branch, at which point the steady
state destabilises. These regions of stability are clearly delin-
eated in the synchronisation and metastability plots displayed
in Figure 4, particularly in the case of the path and cycle net-
works. In addition to the ‘synchronous’ Hopf curve shown in
Figure 3, for networked systems, we observe additional ‘asyn-
chronous’ Hopf branches, the number of which increases with
network size (experiments not shown; for similar observations
in a six-node ring network, see the recent work by Pinder et
al.41). These additional Hopf curves are found to reside within
a narrow band of parameter space, with ε lying approximately
in the range [0.3,0.38]. Importantly, this leads to an increasing
number of branch crossings and higher codimension bifurca-
tions within this region.

For relatively weak coupling strength (ε ≲ 0.2), all exam-
ined network configurations display qualitatively similar dy-
namics throughout ρ −ε parameter space, with a central band
of high synchronicity and low metastability, as indicated by
red and blue areas in the first and second columns of Figure
4, respectively. This regime corresponds to robust, complete
synchronisation with very little variability in the case of the
lattice and complete networks; whereas the path and cycle
networks display moderate levels of synchrony and metasta-
bility reflecting fluctuations of the network states as a func-
tion of time. Interestingly, in all cases this region of high
synchronicity is trapped between two areas of low synchro-
nisation. The boundaries between the highly synchronised re-
gion and the low-synchronisation zones are marked by regions
of weak chaos (i.e., small, positive LEs), as revealed by the
Lyapunov exponent analysis (column three in Figure 4). Our
numerical simulations indicate that the synchronous solutions
observed in this central region destabilise via a torus bifurca-
tion and that the chaotic boundaries emerge from the break-
down of said torus. This route to chaos is well documented48.

Intermediate values of coupling strength (0.2 ≲ ε ≲ 0.4)
lead to increasingly complex, delay-dependent behaviors, as
evidenced by regions of intermediate ⟨R⟩ and ⟨SR⟩ values
and areas of positive maximal LEs. In this region, we ob-
serve a heightened sensitivity of the system and a growing
coexistence of both stable and unstable periodic orbits as
well as more complex aperiodic motions, for all networks
except for the complete network. Solutions of the com-
plete network are synchronous for large regions of param-
eter space, which aligns with Conti and Van Gorder’s re-
cent observation22 that well-connected, uniform networks dis-
play high synchrony levels regardless of delay or coupling
strength. Within our chosen parameter range, the complete
network fails to generate complex spatiotemporal patterns. In-
stead, non-synchronised activity manifests as either antiphase
or out-of-phase oscillations. Note that the observed increase
in network dynamics complexity (see Figure 4) is a natural
consequence of the aforementioned Hopf branch crossings.

These crossings are known to trigger a cascade of higher-
order bifurcations, such as the double Hopf and Bautin bi-
furcations observed in Figure 3. Furthermore, the presence
of these codimension-two bifurcations generically leads to
the emergence of additional branches, which leads to compli-
cated basin boundary structures and increasingly multistable
behaviours.

C. Macaque cortical network topology

In this section, we simulate functionally realistic dynam-
ics by deploying the known large-scale cortical architecture
of the Macaque monkey alongside the neural mass model in
(1) to model the dynamics in each node (or brain region). Our
results are shown in figures 5, 6 and 7.

Building on our previous experiments, Figure 5 displays the
results for the cortical network. We plot the mean synchrony
and metastability scores and the maximum Lyapunov expo-
nent as functions of the parameters ε and ρ . These values
represent the averages obtained over 100 independent sim-
ulations, each initialised with a different random configura-
tion. In addition, we have superimposed the lower envelope
of the Hopf bifurcation branches (both synchronous and asyn-
chronous), which separates the parameter space in to regions
were the system either converges to a stable equilibrium or
limit cycle (multi-stability can arise via a SNPO bifurcation
as in Figure 3) from regions characterised by unstable equi-
libria, limit cycles and more complicated behaviours. No-
tably, the findings for the cortical network exhibit a striking
resemblance to those observed for the complete network (Fig-
ure 4(d)), but with two major differences. First, for the cortical
network we identify regions of parameter space (as shown in
the maximal LE plot of Figure 5(c)) that allow for chaotic dy-
namics. Second, we observe an island of heightened metasta-
bility located just above the Hopf envelope and towards the
center of the picture.

Exemplar solutions for three different choices of parame-
ter values (ρ,ε) as well as a snapshot of the instantaneous
phases are displayed in Figure 6. In Figure 5(a), we high-
light by a circle, square and triangle, the parameter values cor-
responding to the simulated solutions shown in figures 6(a),
6(b), and 6(c), respectively. The first two panels in Figure
6 depict contrasting out-of-phase behaviors: panel (a) shows
an approximate antiphase solution, while panel (b) displays
an incoherent out-of-phase solution. Panel (c) depicts a so-
lution generated using parameters selected from the afore-
mentioned high-metastability region. Crucially, the solutions
with these parameter values exhibit time-dependent behaviors
unique to the cortical network. In contrast to other config-
urations, for these parameter values we observe oscillations
in which phases are tightly clustered but amplitudes remain
desynchronised (as shown in Figure 6(c), left panel). More
specifically, the network nodes appear to form phase-cluster
states (or cluster synchronisation49) whereby groups of nodes
exhibit different yet approximate synchronised phase dynam-
ics within each group (Figure 6(c), right panel).

To investigate the observed phase clustering, which is in-
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FIG. 5. Global measures of network dynamics for the Macaque connectome. (a) mean Kuramoto order parameter, ⟨R⟩; (b) mean standard
deviation of the Kuramoto order parameter, ⟨SR⟩; and (c) mean largest Lyapanouv exponent. All averages over 100 instances.

dicative of the modular brain connectivity structures typically
observed in contemporary imaging studies50, we constructed
a model of functional connectivity (FC) using mean phase co-
herence. This method quantifies synchrony levels between the
simulated activity of each cortical region and is defined as the
temporal mean of the difference in instantaneous phases be-
tween each brain region (see the paper by Mormann et al.47

for further details). Figure 7(a) shows a space-time plot for
the excitatory variable ui(t) with network nodes ordered from
lowest to highest value of ui at a fixed time, which results in
temporally coherent wave-like patterns that exhibit negligible
spatial spread. While Figure 7(b) provides a visual represen-
tation of the FC matrix derived from the time series data pre-
sented in Figure 7(a). To focus on stable network behaviors,
the initial period of the simulation (t < 100) was excluded
from the analysis of the FC matrix. This ensures the FC
reflects a long-term, consistent pattern rather than capturing
temporary fluctuations present at the beginning of the simula-
tion.

From Figure 7(b) we observe clusters of highly correlated
nodes in the brain network. Importantly, this type of segre-
gation was not evidenced in any of our simulations for the
mathematically constructed networks, suggesting that the het-
erogeneity manifest within the real-world cortical connectiv-
ity structure is crucial for creating the dynamic conditions
that allow for these partially synchronised patterns to emerge.
Moreover, for this choice of parameter values we find that the
network is capable of attaining a range of functional configu-
rations upon variation of the initial conditions. Some indica-
tive examples are shown in Figure 8. The identified region
appears to promote a set of dense highly variable functional
states, organised across multiple hierarchical levels, that are
readily accessible, thereby supporting the brain’s necessary
ability to switch easily between a variety of states. This is a
manifestation of the heightened levels of metastability in this
region of parameter space and provides evidence of the neces-
sary interplay between network structure and time delay that
supports the brain’s flexible and dynamic repertoire of higher
brain function.

D. Chaotic nodes

For the Macaque network we also considered the case in
which individual nodes (i.e. uncoupled with ε = 0) displayed
chaotic behaviour. In order to do this, we changed the follow-
ing parameters:

c1 = c4 =−6, c2 = c3 = 2.5, P = Q = 0.2 and τ = 0.1.

This choice of parameters has been shown to induce chaotic
behaviour in a single delayed Wilson-Cowan node33. All
other parameters remain unchanged.

It has previously been reported in the case of toy net-
work models that delays can induce a regularising effect in
the dynamics22, and it is of interest to consider whether
these results are replicated in the case of a cortical network.
Figure 9(a,b,c) shows respectively the mean order parame-
ter, metastability and maximal LE for the Macaque network
with parameters chosen so that the uncoupled system displays
chaotic behaviour. The first point of note is that stronger
coupling is required to trigger significant self-organised syn-
chronisation in a cortical network comprised of chaotic nodes.
However, for sufficiently strong coupling we observe large re-
gions of robust synchronisation, i.e., areas of parameter space
in which ⟨R⟩ is high and ⟨SR⟩ is low, as well as intermittent
regions of parameter space that present moderate levels of
synchrony and fluctuations, as measured by ⟨R⟩ and ⟨SR⟩ –
see figures 9(a, b). Moreover, as evidenced by Figure 9(c),
the resultant sychronised signals are generally chaotic, with
parameter space dominated by extensive regions of positive
LEs. Nevertheless, for very strong levels of coupling strengths
(ε ≥ 3), variations in the inter-nodal delay (ρ) give rise to in-
termittent periods of weak chaotic behavior and coherent os-
cillatory patterns. Furthermore, a localised region of stability
emerges at the center of the parameter plane, as most clearly
illustrated in the LE plot (Figure 9(c)). Solutions from this
region are defined by the presence of a stable limit cycle that
emerges for the cortical topology under variation of the pa-
rameters (ρ,ε).

Exemplar solutions for three different choices of parameter
values (ρ,ε) as well as a snapshot of the instantaneous phases
are displayed in Figure 10. In Figure 9(c), we highlight by a
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FIG. 6. Left: exemplar solutions of (1) for three different choices of parameter values (ρ,ε) and connectivity structure given by the Macaque
connectome. Right: for each of the solutions, we plot a snapshot of the instantaneous phase on the unit circle.
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FIG. 7. (a) Space-time plot of the excitatory variable ui with (ρ,ε) = (1.75,0.37). Oscillators are reordered from the lowest to the highest
value of ui at a fixed time. (b) Functional connectivity network obtained by computing the mean phase coherence of the time series displayed
in (a).
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FIG. 8. Simulated functional connectivity matrices with specific parameter values (ρ,ε) = (1.75,0.37), which are highlighted by a triangle
in Figure 5. For these parameter values the network is capable of attaining a range of functional configurations, (a)-(c), under variation of the
initial conditions.

square, circle and triangle, the parameter values correspond-
ing to to the simulated solutions shown in figures 10(a), 10(b)
and 10(c), respectively. The first two panels in Figure 10 de-
pict two contrasting chaotic behaviours: panel (a) illustrates
an unsynchronised chaotic solution, while panel (b) show-
cases an approximately synchronised chaotic solution. Panel
(c) depicts a solution in which the network dynamics have
synchronised and dynamic regularity has been recovered.

These results suggest that cortical structure can regulate
aperiodic network behavior via a balanced interplay between
coupling strength and delays, thus extending the results of
Conti and Van Gorder22 to empirical brain networks. This
observation is of relevance to the neuroimaging application
that is our focus here, since it suggests that network delays
may play a key role in preventing the appearance and spread
of pathological dynamics, such as those observed in seizure
disorders.

IV. DISCUSSION

The intricate network architecture observed in the brain
(complex network topology) poses a challenge to understand-
ing its function. To address this, we compared the dynamic
behavior of a network based on real, structural neural con-
nections obtained from tracer studies with various theoretical
network models. Our brain network model, based on the de-
layed Wilson-Cowan framework for individual node activity,
revealed a surprisingly consistent pattern of dynamic behavior
across all network structures investigated. These regimes en-
compassed fully synchronised states, partially synchronised
states with fluctuating coherence, and even irregular activ-
ity reminiscent of chaos. At low coupling strengths, the pa-
rameter space exhibits a repetitive striping pattern, indepen-
dent of the network structure. These alternating stripes indi-
cate regions where brain activity is either synchronised (equal
phases and amplitudes) or non-synchronised (out of phase).
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FIG. 9. Global measures of network dynamics for the Macaque connectome with parameters chosen so that the uncoupled system displays
chaotic behaviour. (a) mean Kuramoto order parameter,⟨R⟩; (b) mean standard deviation of the Kuramoto order parameter, ⟨SR⟩; and (c) mean
largest Lyapanouv exponent. All averages over 100 instances.

The interfaces between these striped regimes are delineated
by regions exhibiting weak chaos (see figures 4 and 5). Nu-
merical simulations suggest that this weak chaos originates
from transverse instabilities within the synchronisation man-
ifold due to a torus breakdown. For similar results on a 6-
node ring network, see the recent paper by Pinder et al.41. In-
creasing the coupling strength reveals a progressively intricate
dynamical landscape. This arises from intersections of Hopf
branches alongside branches originating from higher-order bi-
furcations associated with the Hopf bifurcations themselves.
Consequently, this regime exhibits intricate multistable dy-
namics across all network configurations except the complete
network, which exhibits a high propensity for synchronisa-
tion.

As well as the cortical network of the Macaque monkey,
we considered four toy network structures, namely path, cy-
cle, lattice and complete networks. We observed that sparsely
connected networks with low clustering coefficients (path, cy-
cle, and lattice) exhibit reduced synchronisation capabilities
compared to densely connected networks (complete network
and cortical network). These results corroborate the findings
of Conti and Van Gorder22, who demonstrated the instability
of sparsely connected networks, as well as numerous previ-
ous studies on both model and empirical networks (see Arenas
et al.34). We found the complete network, with its increased
density of connections, served as the closest model for the
synchrony observed in the cortical network; the brain’s struc-
ture, however, goes beyond simple synchrony. It additionally
supports novel wave forms and other intricate patterns not ob-
served in the toy networks. For the cortical network, we iden-
tified an operational region conducive to flexible brain opera-
tions. This region harbours a dense, hierarchically organised
set of distinct functional states that are readily accessible, fa-
cilitating the type of state-switching essential for higher cog-
nitive function. The observed modular FC patterns closely re-
semble those found in imaging studies and, crucially, were not
replicated in any of the toy network simulations. These segre-
gated FC patterns likely arise from the inherent modular het-
erogeneity of the brain’s structural connectivity, as described

by Sporns et al.51.Notably, the brain also exhibits incoherent,
chaotic-like dynamics, a property absent in the complete net-
work. In fact, the complete network is the only structure lack-
ing this behaviour. This can be attributed to the inherent ho-
mogeneity of its degree distribution, where all nodes possess
identical connection numbers.

To isolate the impact of inter-nodal delays, we initially fo-
cused on networks with local dynamics exhibiting a single-
frequency oscillation. However, we also investigated how
these findings translate to a more realistic cortical network
with chaotic local dynamics, thus extending the work of Conti
and Van Gorder22 to a more physiologically realistic setting.
While chaotic behavior (both synchronised and unsynchro-
nised) dominated our observations, we found that careful cal-
ibration of coupling strength and inter-nodal delay could still
promote regularised neural network dynamics. This result
is particularly interesting from a neuroscience perspective,
since, despite its chaotic nature, our brain network model was
still capable of achieving ‘coordinated function’, which is sug-
gests that delays can play a role in preventing the appearance
of pathological spreading behaviour.

Future research will investigate how to integrate additional
physiological details into the model. This includes accounting
for the heterogeneity of signal transmission velocities across
connections based on factors like distance, myelination levels,
and axon thickness. It would also be interesting to see how our
results are altered under a signal transmission model that rep-
resents more accurately the behaviour of a neural unit, such
as the Jansen-Ritt8 or next-generation models10,52–54, which
are better equipped to capture the intricacies of neuronal syn-
chronisation. Moreover, given the relatively low heterogene-
ity of the toy networks studied here, it would be valuable to
extend this research to compare synchrony dynamics in brain
network models with those of more complex network mod-
els, such as the Watts-Strogatz small-world model and ran-
dom network models that preserve degree structure. Finally,
a small number of recent studies have emphasised the impor-
tance of properly accounting for network directionality55–57,
and so it would be of great interest to investigate the impact of
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FIG. 10. Network dynamics for the Macaque connectome with parameters chosen so that the uncoupled system displays chaotic behaviour.
Left: exemplar solutions under variation of the inter-nodal delay, ρ , and coupling strength, ε . Right: for each of the solutions, we plot a
snapshot of the instantaneous phase on the unit circle.
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network directionality on the results presented in this work.
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