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ABSTRACT: Among the most active areas of chemistry research
today is that of carbon dioxide utilization: an area of research that
was viewed as futile and commercially impractical not so long ago
due to the energetic stability of the CO2 molecule. The
breakthroughs that largely began in earnest in the 1990s have
accelerated and now make up a diverse and plentiful portfolio of
technological and scientific advances and commercialized tech-
nologies. Here, “The CO2 Tree” is presented as a tool to illustrate
the breadth of potential products from CO2 utilization and to
communicate the potential of these chemical breakthroughs to
address the greatest challenge that society faces today: climate
change. It is intended to be useful for scientists, engineers,
legislators, advocates, industrial decision-makers, policy makers,
and the general public to know what is already possible today and what may be in the near future.
KEYWORDS: CO2 transformation, green chemistry, green innovation, climate change

1. INTRODUCTION
How can we reduce atmospheric CO2? It may well be that
decades into the future, one of the most positively impactful
and highly regarded inventions of the current generation will
be the conversion of carbon dioxide into valuable products.1

Transforming what may be the biggest threat to many living
things due to rapidly accelerating climate change2,3 into one of
our greatest solutions could not only save future generations
from the devastating impacts of climate change, but would be
worthy of recognition.
Carbon capture, utilization, and storage (CCUS) has

garnered increased interest across academia, industry, and
government in recent decades due to the need to limit the
global temperature increase to ensure climate stability. Despite
this societal shift toward CCUS due to increased emissions, it
remains absolutely vital to, first, avoid the generation of CO2
from fossil sources. However, this is by no means a “war on
carbon” as a whole, but rather the origin of that carbon, since
the future of civilization will continue to rely heavily on
carbon-based products and services. Reducing the increase of
CO2 levels from the use of fossil resources needs to be
addressed simultaneously by three synergistic actions: avoiding
CO2 generation, implementing CO2 mitigation, and utilizing
CO2 as carbon source. In this realm, CO2 utilization presents a
readily applicable and potentially cost-effective option.4 As

fossil-based carbon is phased out of the economy, as it
ultimately must be, changing this gigantic and essential “value
chain” of carbon across industries such as energy, pharma-
ceuticals, textiles, and manufacturing into a closed anthro-
pogenic carbon cycle requires a drastic paradigm shift. Rather
than accepting CO2 as the inevitable waste once the carbon,
even when originating from renewable sources, has fulfilled its
function, it needs to be viewed as valuable feedstock. To put it
succinctly, carbon dioxide can be the ultimate source of
carbon, whether sourced as CO2 or through renewable
feedstocks, for humanity in the postfossil era.5

The intellectual and technological transition to realize this
future state should not be underestimated. Analyzing CO2-
conversion within a framework that is largely identical to
today’s petrochemical industry often results in challenges based
on key aspects such as economic feasibility, large-scale
potential, or long-term carbon sequestration.4 However,
these criteria mainly arise from viewing CO2 utilization
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primarily as a method for carbon dioxide mitigation rather than
the way forward toward “de-fossilization”. To a first
approximation, the vast majority of people associated with
developing the field of CO2 utilization were trained at a time
when it was virtually impossible, but certainly impractical, for a
chemist to attempt to convert CO2 at significant scale. As
carbon dioxide has an enthalpy of formation (ΔHf°) of −393.5
kJ/mol,6 it was understood to simply be at too low an energy
state; too stable to even bother considering. After all, the
reason it is able to persist in the atmosphere and contribute to
global climate change is due to its inherent chemical stability.
It is important to distinguish the energetic balance of carbon

dioxide-based processes from the need to “activate” the CO2
molecule to engage in chemical transformations. While the
energetic balance reflects the thermodynamic stability, the
reactivity is governed by the kinetics of bond-breaking and
bond-forming events. The energy input to render CO2-based
reactions thermodynamically feasible can be provided by
energy-rich reactants such as H2 or by means of electrical or
photochemical driving forces, ultimately stemming from
nonfossil primary sources to arrive at net zero or even carbon
negative balances. The reactivity of CO2, however, can be

steered largely by the use of catalysts that enable elementary
steps that are kinetically hindered or even impossible. Notably,
the role of the catalyst is in many cases to generate highly
reactive intermediates from the coreagents rather than
“activating” the CO2 molecule itself.7,8 Thus, the catalyst
opens the desired reaction channel, but its energetic balance is
governed by the energy content of reagents and products. It is
obvious that chemical transformations based on CO2 will
therefore require more primary energy input than reactions
starting from fossil feedstocks. However, this simply reflects
the stored sunlight embedded in the hydrocarbons over
millions of years. In the context of climate change, a
comparison of CO2-based processes versus petrochemical
processes is misleading if based on reaction energies only. In
contrast, the carbon intensity or carbon dioxide emission of the
overall process is the key performance indicator.9

While CO2 transformations have typically been viewed as
something only accomplished by plants and not replicable by
humans, scientific advances have enabled synthetic CO2
utilization chemistry. The early modern work of carbon
dioxide conversion has resulted in detailed reviews and books
that highlight this rich history that became accelerated in the

Figure 1. The CO2 Tree highlighting the classes (branches) of compounds (fruits) that have been made from carbon dioxide from lab scale to
commercial scale.
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1990s.7,10−14 A partial treatment of this revolutionary work
would be a disservice to the pioneers and so we refer the
readers to these excellent comprehensive resources.7,10−18 The
direct result of that momentum has allowed for green
chemistry to emerge at the forefront of research efforts,
specifically within carbon capture and utilization.
The impacts of this increased interest are consequential in

the development of climate change solutions. 2023 was
regarded as the warmest year since global records began in
1850 and 2024 is currently on track to top even 2023,
measuring 1.35 and 1.54 °C above the preindustrial average,
respectively.19,20 In addition, the petroleum company, BP
projected in 2024 that the IPCC-defined “carbon budget” to
remain within 2 °C global warming would be exceeded by the
early 2040s on the current trajectory.21 Taken together, it is
clear that the need for carbon utilization is dire. Without the
ability to transform carbon dioxide into value-added materials,
it would remain a waste with significant adverse environmental
and social implications.22−25 But nearly more importantly, it
would also be a costly economic loss. To reverse these
environmental, social, and economic losses requires taking
what was once viewed as science fiction and making it become
science reality.
In chemistry, the tree as an illustrative metaphor has been

used for at least a century, such as the “Petroleum Tree”
diagram,26 which was used to visualize the many products that
could be derived from a barrel of crude oil at the time. It
served to communicate how even then, petroleum touched
almost all aspects of everyday life. The tree imagery was also
used in “The Chlorine Tree” that communicated the utilization
of chlorine in manufacturing processes as well as in many
common chemical products. Most recently, the tree image was
used as the “Green ChemisTREE”27 to showcase all of the
various scientific and technological breakthroughs realized or
extended since the advent of green chemistry in 1998.
In this review, we again harness the tree metaphor and its

compelling imagery to effectively represent the chemical
breakthroughs and future potential of carbon dioxide
utilization. As trees naturally undertake a significant portion
of natural CO2 transformation, the “CO2 Tree” (Figure 1) is an
appropriate way to illustrate the immense power of using
carbon dioxide. While the topic of CO2 capture is outside the
scope of this review, one can imagine it derives from
nonabatable emissions, biomass utilization, end-of-life of
products, or the atmosphere. The implementation of CCUS
from these sources, among others, will make CO2 an economic
driver to advance climate change solutions as it is available in
appreciable quantity and purity.16 The breadth of the work that
has been demonstrated is immense and will only be exceeded
by further discoveries, inventions, innovations, enhancements,
and scaling yet to be achieved. Meanwhile, this review focuses
on the breadth of demonstrated chemical pathways of CO2
utilization to highlight the state of knowledge and future
implications toward defossilization of essential products and
services, and hence reducing the impacts of climate change.
Notably, we recognize the obvious power of biological
methods to convert CO2 as demonstrated by nature on a
daily basis at scale, however, this review focuses exclusively on
chemical pathways for CO2 utilization and conversion to useful
products.
Here, the branches of the CO2 Tree represent the various

chemical classes that can be directly accessed via CO2
utilization from completely reduced carbon (Figure 2, left)

all the way to fully oxidized carbonates (Figure 2, right). Each
fruit then represents an important chemical product (e.g.,
methanol) or product category (e.g., polycarbonates), with an
additional branch representing nontransformative CO2 uti-
lization including, for example, as a solvent or in food
processing. Each branch will include a general chemical
mechanism, how the transformations have been demonstrated,
and what types of products can be generated. In Section 3, a
discussion of the current technological state of the various
pathways and their potential for reducing atmospheric CO2 is
included. In this endeavor, the reader will understand that due
to the interconnectedness of molecules in their manufacturing,
there will be unavoidable double-counting and so it would not
be an appropriate analysis to simply add up the various
contributions toward a reduction of CO2 emissions. Never-
theless, a number of chemical utilization pathways have been
evaluated thoroughly confirming their greenhouse gas
reduction potential.9

While this review incorporates a large variety of chemical
reactions that incorporate CO2, it is impossible for this
representation to be comprehensive. Rather, we seek to
provide a useful overview of the status of CO2 transformation
science and the future potential of this critically important
endeavor that is complementary to recent articles in this
area.1,4,16,28−33 In this way, the mechanistic aspects governing
the scientific advancements will be highlighted before a
discussion of the technical implementation potential. It is the
sincerest hope of the authors that this representation is soon
out of date with new scientific and technological advances.
However, we do believe that the CO2 Tree represents a
potentially important and lasting construct that will serve as a
guide of what we can strive toward in the coming years.
Finally, it is an important admonition that while the range of

science presented in this review identifies the many trans-
formations of CO2 that currently can be done, the decisions
about what should be done must address more complex
criteria. Many of these considerations, including the origins of
the CO2, types of catalysis employed, energy balance, and
other life-cycle factors, have already been enumerated in a
2017 perspective paper.34 Ignoring these important factors can
result in “doing the right things wrong,” in other words,
converting waste CO2 into valuable products but simulta-
neously creating unintended consequences.

Figure 2. Graphical representation of the organization of the CO2 tree
from left to right based on the number of bonds between the primary
carbon and electronegative oxygen (“reduction level”)18 for the
variety of chemical classes included in this paper. Note: sugars and
starches can be either 1 or 2.
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2. CO2 UTILIZATION PATHWAYS
Among the various utilization pathways, the thermal (reverse
water gas shift, RWGS35) or electrochemical (coelectrolysis36)
conversion of CO2 to carbon monoxide or carbon monoxide-
hydrogen mixtures, also known as syngas, enables entry into
existing petrochemical technologies. Some of the examples
discussed in this review involve such transformations as an
implicit part of the mechanism or as an explicit process step
and their scientific and industrial implications are certainly
relevant to the topic of climate change solutions. However, the
important body of work regarding syngas and carbon
monoxide catalysis in state-of-the-art technologies is not
within the scope of this paper.
In addition to the applications described here that involve

CO2 as the single carbonaceous substrate, a large array of
chemical reactions couple CO2 with one or several coreagents.
In this frame, CO2 can be used as a building block to generate
functional groups (e.g., in carboxylation reactions37−40), but
also as an oxidant (e.g., in oxidative dehydrogenations and
couplings of alkanes41,42). These transformations, while out of
the direct scope of this review and surveyed elsewhere,37−42

represent notable utilizations of CO2 as a sustainable feedstock
in the chemical sector.
2.1. Carbon. Conversion of carbon dioxide to carbona-

ceous materials such as graphene, graphite, carbon nanotubes,
or diamond requires the transfer of four electrons per carbon
atom. To achieve the necessary transfer of electrons,
commonly used reducing agents include alkali metals, alkaline
earth metals,43 or NaBH4,

43,44 often at increased temperature
and pressure, which has the added benefit that a supercritical
state of CO2 can be reached. The primary pathways for CO2
reduction involve metal reductants via combustion,45 and
electrolysis.46,47 Metal-based combustion methods commonly
employ extreme temperatures (450−1000 °C) and pressures
(80−1000 MPa), thereby resembling metallurgical processes.45

Conversely, electrochemical processes commonly employ solid
electrolyte oxidizers48 or molten salt electrolytes45,49 to
facilitate CO2 reduction to carbonaceous materials. Such
electrochemical methods are often more energy efficient than
their thermal counterparts and can take advantage of
renewable electricity sources; however, they are not flaw-
less�solid carbon buildup can “coke” catalysts and hamper
active sites,50 and gas-to-solid kinetics are slow.51 While these
processes usually yield a variety of solid products, reaction
conditions and parameters can be tuned to drive selectivity of
conversion from CO2 to carbonaceous materials including
graphite, graphene, carbon nanotubes, and even diamond, and
reviews on the topic can be found in literature.45,52,53

Graphene, first isolated by Novoselov and Geim in 2004 and
honored with the Nobel Prize in Physics in 2010,54 is a
desirable target due to its high electron mobility coupled with
high Young’s modulus, rendering it an attractive material for
electronic applications.55,56 Several 3D and near-2D graphene
materials have been obtained from direct CO2 reduction,57

with numerous 3D graphene topologies achievable by tuning
the specific synthetic methodology.58 Reduction of CO2
generally yields 3D graphene that falls into one of three
loose classifications: coral-like,59 flower/fungus-like,60−62 and
honeycomb-like.63 These reductions can be achieved both via
combustive59−62 and electrocatalytic63 pathways. Conversely,
there have also been syntheses of near-2D graphene materials
from CO2. A two-step electrolytic process using a molten

electrolyte composed primarily of Li2CO3 at 770 °C generated
carbon nanoplatelets of approximately 25−125 graphene layers
from CO2, which were then converted into graphene of 1−5
layers thickness via an electrochemical exfoliation process.64 In
another study, a combustion process at 750 °C was reported to
generate near-2D graphene in situ in molten magnesium metal
following ultrasonication of the reaction melt and H2SO4
etching of residual Mg. The obtained graphene material was
then shown to exhibit good capacity cycling performance.65

Graphite is composed of stacked layers of graphene and is a
sought-after synthetic target as it is the primary anode material
in commercial lithium-ion batteries.66 A recent one-step
reaction between carbon dioxide and lithium aluminum
hydride at subcritical temperatures (126 °C) and pressures
(10 MPa) directly yielded pure graphite at 99.988 wt % purity
in the form of submicroflakes, the performance of which
rivaled commercial materials and purity (99.996%).67 Graphite
has also been generated from flue gas, a blend of CO2 and SO2,
through a molten electrolytic process in Li2CO3−Na2CO3−
K2CO3−Li2SO4 when above 775 °C.68 The authors demon-
strated that at temperatures >775 °C, very little sulfur could be
found in the produced graphite material, but graphite purity
was not reported.
Carbon nanotubes (CNT) are cylinders made from “rolled”

graphene sheets and can be single- or multiwalled. CNTs are
highly sought-after due to their high tensile strength, thermal
conductivity, and potential for carrying currents.58,69 Combus-
tive methods include the use of metallic Li, Na, Mg, and Ca
alongside either dry ice in an autoclave, or flowing gaseous
CO2 through a tube furnace at temperatures ranging from
550−1000 °C, followed by an acidic workup that usually
includes the removal of formed metal carbonates before
isolation of CNT byproducts.52,70−72 Examples for the
electrocatalytic pathway include the synthesis of linear or
tangled CNTs from CO2 in molten Li2CO3 or Li2CO3−Li2O
at 750 °C.73 Both materials were shown to be useful as
electrode materials in battery applications, with the tangled
CNTs demonstrating an increasing capacity over time.73 Other
studies have explored the effect of using mixed carbonate
electrolytes for converting CO2 to CNTs and found that
partially substituting Li2CO3 with the alkali carbonate Na2CO3
does yield CNTs at 770 °C, but not K2CO3,

74 and that molten
Li2CO3-MCO3 (M = Ca, Sr, Ba) electrochemical systems at
750 °C yielded CNTs with increased thickness.75 When
graphene sheets are “imperfectly” arranged, carbon nanofibers
(CNF) can be produced in a similar electrochemical system
from CO2 using molten carbonates.76 Finally, there also exist
reports of generating CNTs from CO2 using a hybrid reactor
of dielectric barrier discharge and solid oxide electrolyzer.77

Other carbonaceous materials generated directly from CO2
include the formation of C60 fullerene and diamond using dry
ice and metallic Li or K in an autoclave system at high
temperature and pressure. One study reported isolating C60
fullerene using metallic Li at a temperature of 700 °C and
sufficient amounts of dry ice to reach pressures of ∼100 MPa
for 10h.78 Another study reported isolating diamonds of 4−
450 μm in size using metallic K or Li at 460 °C and sufficient
dry ice to reach a pressure of approximately 83 MPa for 10h.79

2.2. Hydrocarbons. Hydrocarbons including methane,
ethane, ethylene, and aromatics (benzene, toluene, xylene)
contain carbon in its most reduced state. The direct use of
CO2 as a feedstock for hydrocarbon production has gained
interest due to their high demand and compatibility with
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modern fossil fuel-based energy infrastructure.80 The con-
version of CO2 to hydrocarbons has been demonstrated
electrochemically,81 photocatalytically,82 and via plasmonic
catalysis.83 To achieve the necessary electron transfer, platinum
group and transition metals such as palladium, copper, and
iron have been employed. To ensure the reduction will occur,
hydrogen gas is required for thermocatalytic conversion and is
frequently generated in situ during electrocatalytic reduc-
tion.84,85 As mentioned in Section 3.1, electrochemical
methods combine the use of renewable electricity with a
high potential for energy efficiency in the reduction of carbon
dioxide.
Methane is the shortest (C1) hydrocarbon constituting

>90% of natural gas,86 which in turn provides more than 20%
of the world’s primary energy.87 The gas and liquid fuel
infrastructure have been a strong driver for the Sabatier
reaction or CO2 methanation, which is the catalytic conversion
of CO2 and hydrogen to methane. A plethora of catalysts,
reactor designs, and conditions have already been proposed in
this concept, termed “Power-to-Gas”.88 For example, a
commonly reported CO2 reduction reaction to methane
features a high temperature solid oxide electrolysis cell
(SOEC) with (multi)-metallic heterogeneous catalysts (Figure
3, top).89−91 On the other hand, electrochemical pathways

have utilized NixGay-based catalysts to reduce CO2 to a
mixture of methane, ethane, and ethene with 0.1 M Na2CO3
acidified to a pH of 6.8 with 1 atm CO2.

92

The saturated C2 building block ethane can be obtained
electrochemically from CO2 using nanostructured Pd-doped
Cu-catalysts,81 as well as more recently, using Fe2O3-catalysts
with 42% Faradaic efficiency (FE).93 The use of Cu2O as the
working electrode has been shown to produce ethylene and
ethanol at FE of 32.1% and 16.4%, respectively.81 The addition
of PdCl2 to the system shifted the reaction toward ethane
(30.1% FE), significantly reducing the production of ethylene
to 3.4% FE.81 However, ethylene makes up over 200 million
metric tons (MMT) of polymer precursor in today’s society.94

Endeavors to convert CO2 directly to ethylene usually employ
electrocatalytic methods, wherein Cu-based materials are
almost exclusively employed.95 Research efforts are increas-
ingly moving toward optimizing the (nano)structuration of the
catalyst, better understanding the microenvironment of the
electrode and more generally, toward optimizing the design of
the electrolyzer.96,97 These endeavors have led to the

development of lab-scale devices reaching faradaic efficiencies
>60% and current densities >200 mA/cm2,98,99 which are
important thresholds for industrial production. However, to
achieve economic viability, further improvements such as an
increase in energy efficiency by abating operating cell voltage
and CO2 loss are important to reach a target price of $1000 per
ton of ethylene. Another recent example of CO2 to ethylene
conversion is a reaction cascade, linking the CO2-to-CO
conversion in an electrochemical cell with a membrane
electrode assembly for the CO-to-ethylene transformation.100

Many other approaches to produce ethylene from CO2-
containing feeds have been reviewed in detail101 and private
actors have expressed interest in electrolytic CO2-to-ethylene
technology.102 Coupling a multireactor setup with a cascade of
electrocatalytically generated H2O2 resulted in the oxidization
of ethylene to ethylene glycol, opening up another avenue for
CO2 utilization.

103

A particularly impactful area of CO2 conversion lies in the
production of Sustainable Aviation Fuel (SAF), as it accounts
for roughly 2.5% of global greenhouse gas (GHG)
emissions.106 SAF is a mixture of varying chain length
hydrocarbons alongside important additives to ensure
compatibility with current turbines. To utilize SAF in jet
engines, the fuel must pass stringent standards including
combustion efficiency, stability, energy capacity, and deposi-
tion rate standards.107 SAF preparation from CO2 generally
employs transition metal catalysts, hydrogen as a reductant,
and renewable energy sources. Two distinct approaches are
currently under commercial development:

(1) The electrochemical reduction of CO2 to CO followed
by a biological fermentation and subsequent thermo-
chemical upgrading step has been explored by national
laboratories across the U.S.108 While this process has
been shown to achieve olefin selectivity up to 81%, this
pathway will not be further discussed due to its syngas
intermediate.108 Not surprisingly, the vast majority of
CO2-to-SAF pathways involve the Fischer−Tropsch
process109 or RWGS.105,110,111

(2) A more direct approach, developed by Air Company,
utilizes fixed bed reactors in a single-step process for the
production of alcohols and paraffins from CO2 (Figure
3, middle).105 As this process has been developed
commercially, specific details are confidential. In general,
this process combines CO2 with H2 gas in a catalytic
fixed-bed reactor to convert >90% of inlet CO2 to a suite
of paraffinic products.105 The thermocatalytic processes
typically involve earth-abundant metal catalysts, like Fe
or Co, that bypass the CO intermediate by combining
H2 and CO2 at elevated pressure (∼10 MPa) and
increased temperature (275−350 °C) to produce a suite
of C9 − C24 hydrocarbons with >90% conversion.105,112

Both methodologies are based on groundbreaking
studies describing the synthesis of alcohols or simple
hydrocarbons from CO2, which were eventually refined
to allow for the preparation of SAF.113,114

The direct conversion of CO2 to benzene, toluene, and other
aromatic compounds has been achieved through catalyst
development. For example, a system containing Zn/ZrO-
zeolite tandem catalysts (Figure 3, bottom) proved to generate
hydrocarbon fractions with up to 73% aromatic content.104 A
related catalyst featuring Zn/AlOx and zeolites was optimized
for the generation of fractions particularly rich in xylenes.115

Figure 3. Adapted reaction pathways diagram highlighting mecha-
nisms from CO2 to (top) methane, ethane, and ethylene; (middle)
SAF, paraffins, and alcohols; and (bottom) aromatics. Figure adapted
with permission from ref 90 (Copyright 2014 American Chemical
Society), ref 104 (Copyright 2018 Elsevier Inc.), and ref 105
(Copyright 2022 American Chemical Society). ZSM-5�zeolite
socony mobil-5.
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Newer catalyst systems featuring Fe and Cu in combination
with zeolites resulted in lighter aromatic fractions including
benzene (<5% selectivity), xylene (≤72% selectivity), and
toluene (≤40% selectivity) due to mass transfer limitations of
heavy aromatics (C5+) out of the zeolite.116

Ongoing research on direct CO2-hydrocarbon transforma-
tions is of particular interest, since sidestepping reaction
pathways involving CO as an intermediate represents great
potential in terms of process efficiency.117 The direct light-
driven conversion of CO2 to hydrocarbons is of particularly
high interest, as l83ight-driven transformations only minimally
depend on electrical grids and battery storage systems, and can
take full advantage of sunlight, water, and CO2, thereby
emulating nature’s photosynthesis.118

2.3. Alcohols and Ethers. Alcohols and ethers can serve as
versatile fuel additives or replacements and can act as chemical
intermediates for producing polycarbonates as well as other
chemicals.119−124 Alcohols including methanol,125 etha-
nol,126,127 butanol,121,122 and propanol122,128 as well as ethers
(dimethyl ether120,129,130 (DME), methyl tert-butyl ether,131

ethyl tert-butyl-ether,131 and polyoxy dimethyl ethers
(OMEn)

132−134) are formed from the reduction of CO2 with
sufficient H2 equivalents. The primary pathways for CO2
conversion to alcohols and ethers are electrocatalytic,135−139

photocatalytic,137,140−142 and thermocatalytic reduction.143−148

Green production of methanol is extensively studied due to
its versatility as a fundamental precursor for olefins used to
make polymers, jet fuel, gasoline, aromatics, formaldehyde,
acetic acid, and even ethers. Its central role in existing and
future applications, such as in the polymer industry is
highlighted in Figure 4. Apart from its wide application
potential, methanol is a C1 alcohol and known as one of the
easiest alcohols to produce.121,124,125,146 While photocatalytic
and electrocatalytic processes hold promise for the future, they
currently face selectivity and catalyst degradation challenges
complicating technology upscaling, whereas thermocatalytic
reduction currently offers higher energy density, more efficient
mass transfer, and more effective catalytic efficiency.124

Traditional methanol production utilizes syngas and the
RWGS reaction,144 however, this has been defined as outside
the scope of this review. Instead, Figure 5 highlights the direct
hydrogenation of CO2 to methanol with the addition of H2.
Additionally, ethanol can effectively be produced as an
intermediate after direct hydrogenation to methanol in the
ultimate synthesis of butanol (Figure 5).124,149,150 The figure
illustrates the conversion of CO2 to butanol via methanol,
DME, and ethanol, which are desirable products in their own
right. Catalysis research has been pivotal in enhancing the yield
and selectivity of direct CO2 hydrogenation with reduced
energy consumption. Catalysis research in the area is ongoing,
resulting in a wide range of uniquely designed catalyst
materials spanning Al, Co, Cu, In, Cr, La, Rh, Si, Ti, Zr, Pd,

and Zn.151−155 Despite these heterogeneously catalyzed
processes, significant progress has been made using homoge-
neous liquid-phase molecular catalysts, such as alkali bases, to
hydrogenate CO2 to methanol, targeting high selectivity and
activity at lower temperatures,156,157 the avoidance of precious
metals,158,159 and integrated carbon capture with utiliza-
tion.160,161

The first pilot plant aiming to produce methanol through
direct hydrogenation was constructed in 1994 by German
company LurgiAG,162,163 which found high pressure (6 MPa)
and low temperatures (260−270 °C) to favor methanol
formation over CO at 35% − 45% yield using a commercial
copper−zinc-alumina (CZA) catalyst. Merely two years later,
the National Institute for Resources and Environment (NIRE)
and the Research Institute of Innovative Technology for the
Earth (RITE) demonstrated conversion of CO2 to methanol
through direct hydrogenation with 99.7% selectivity at the
slightly milder conditions of 250 °C and 5 MPa.164 While
additional pilot scale CO2 hydrogenation plants have been
developed since the turn of the 21st century,165−169 all operate
off the same basic principles with modification in catalyst
material or hydrogen source. With a capacity of 4000 tons per
year (t/yr), Carbon Recycling International based in Grind-
avik, Iceland operates the current largest-scale plant utilizing
flue gas from a geothermal plant at the mildest conditions of
225 °C and 5 MPa.170,171 Most recently, Air Company has
demonstrated single-step production of alcohols and paraffins
utilizing captured CO2 and H2 obtained via water electrol-
ysis.114 While this process is currently optimized for ethanol
production, its product streams include high-purity ethanol (13
t/yr), methanol (10 t/yr), and n-propanol (9 t/yr).105,114,172

This implicates that Air Company’s technology has the
potential to produce a range of short chain alcohols with
slight modifications in operating conditions or catalyst.

Figure 4. Overview of the reaction pathways utilizing methanol as a central CO2-based intermediate for applications in the polymer industry across
chemical classes. MTO = methanol-to-olefins; MTA = methanol-to-aromatics.

Figure 5. Reaction scheme for the multistep conversion of CO2 to
butanol. Figure partially adapted with permission from ref 122.
Copyright 2018 Elsevier Ltd.
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Dimethyl ether (DME) is also known to be among the most
valuable and adaptable chemicals that can be produced from
CO2. Apart from serving as a crucial precursor for methylation
agents, DME is attractive as a fuel substitute for diesel engines
and gas turbines, with production primarily via methanol
dehydration, which is currently considered state-of-the-art for
renewable DME production.119,120,130,173,174 Recently, the one-
step direct synthesis of DME has gained attention due to its
versatility. This process relies on hybrid/bifunctional catalysts
that incorporate metal sites for CO2 hydrogenation to
methanol and Bro̷nsted acid sites for subsequent methanol
dehydration to produce DME. While Cu−Zn sites have shown
high activity for CO2 hydrogenation, conventional Cu/ZnO
catalysts have been shown to also catalyze the RWGS
reaction.120 Instead, the addition of zeolitic and other
modifiers, such as HZSM-5, have been found to increase
DME selectivity up to 75% compared to catalysts without
HZSM-5 (0% DME selectivity).129 Additional ethers, includ-
ing oxymethylene dimethyl ether (OME1), currently derived
from the reaction of methanol with formaldehyde, can also be
produced from CO2 hydrogenation with H2 in the presence of
methanol.175−177 This homogeneously catalyzed reaction
shows favorable economic potential with applications for
OME1, for example, as a fuel additive.178

2.4. Sugars and Starches. Sugars and starches are an
often overlooked class of molecules used, for example, across
the textile, surfactant, and plastic industries.179 The use of
carbon dioxide in the formation of sugar and starch molecules
has been studied since the identification of photosynthesis in
the 1600s.180,181 The discovery of the formose reaction to
convert formaldehyde to sugars in 1861182 has motivated the
recent transition toward abiotic synthesis of glucose, xylose,
and sorbitol with carbon dioxide.183−186 Pathways from CO2
toward molecules larger than three carbons face unique
multistep, high-energy challenges.184 For this reason, the
majority of CO2 to sugar pathways involve CO, formaldehyde,
or methanol intermediates before continued thermal or
electrochemical transformation to sugars.184,185 Further work
has also taken this reaction beyond simple sugars to produce
amylose, amylopectin, and glyoxylate as larger sugar
polymers.187 The use of chemical methodologies can accelerate
reaction rates from days (biologically) to hours (chemi-
cally).184,187

Developing abiotic methods for direct conversion of CO2 to
sugars is generally considered challenging due to the need for
sequential reactions to form the specific arrangement of
carbon−carbon and carbon−oxygen bonds of saccha-

rides.184,188 For that reason, studies have focused on the
development of efficient reaction cascades in which CO2 is first
converted to formaldehyde to then undergo the formose
reaction to various ugars.188 The formose reaction converts
formaldehyde (“form-”) to a mixture of sugars (“-ose”) by
using a divalent cation (typically calcium) as a catalyst.182,189

Conversion of CO2 to formaldehyde has been extensively
reported in the literature; however, this process suffers from
low yields, which limits scalability.184,188 Formaldehyde
production is further discussed in Section 3.5. Moreover,
studies have shown that using glycolaldehyde as an organic
initiator is required to achieve substantial sugar-generation
rates.184,189

A recent study compared CO2 to formaldehyde and
glycolaldehyde experimental methods to determine key
parameters in the subsequent conversion to sugars.184 The
key finding was that electrochemical CO2 conversion with a B-
doped diamond electrode resulted in insufficient formaldehyde
productivity levels to sustain the formose reaction.184 The use
of Cu-nanoparticles, on the other hand, resulted in peak
glycolaldehyde production of 12 μg/h at −0.80 V versus
RHE.184 Interestingly, the authors found that increasing
negative potential coupled with a Cu-nanoparticle catalyst
over-reduced the resultant aldehydes after C−C coupling.184

While there have been significant advancements in the
conversion of CO2 to sugars,126 the maturity of abiotic CO2-
to-sugars technology is still in the early phase of development,
barring significant challenges with reaction yield and
selectivity.130

Another particular challenge is the potential formation of
non-natural formose sugars, which have been shown to cause
death in rats due, in part, to their branched structures not
found in nature.188,189,191 To address this, significant research
effort has been placed in determining suitable formose reaction
conditions targeting digestible sugars including glucose,
fructose, and sucrose.188 Achieving high stereoselectivity is
also an important factor for the commercial viability of the
cascade from CO2 to sugars. Research on the use of
stereospecific ligands to increase the yield of D-glucose in the
formose reaction has been reported.188,190 In addition, few
studies have explored the conversion of CO2 to methanol
followed by cell-free enzymatic pathways to synthesize D-
glucose or starch (Figure 6).187,190 Recently, a hybrid
electrochemical/biotic reaction platform was developed to
convert CO2 to acetic acid followed by reaction with
engineered S. cerevisiae to glucose at 8.9 μmol/g yeast per
hour.192

Figure 6. Example of an enzymatic pathway from CO2 to carbohydrates (here: hexoses). Figure modified with permission from ref 190. Copyright
2023 Science China Press. AOX = alcohol oxidase; FLS = formolase; DhaK = dihydroxyacetone kinase; FSA = fructose 6-phosphate aldolase.
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2.5. Aldehydes and Ketones. Ketones and aldehydes
have applications across the industrial landscape due to the
ubiquity of the carbonyl (C = O) group among product
classes. Research on CO2 conversion to aldehydes and ketones
has focused on thermal hydrogenation,193 photocatalysis,1

biochemical transformations,194 and electrocatalysis.195 Semi-
nal studies on electrochemical CO2 reduction have suggested
that Cu is the only monometallic electrode material that can
convert CO2 into hydrocarbons and multicarbon oxygenates,
an assertion that still holds true three decades later.196−198 CO2
to aldehyde/ketone pathways continue to be plagued by
unwanted cascading reactions due to C = O reactivity. This
results in wide product distributions and low selectivity.195 To
combat this challenge, research is focused on the development
of novel alternative materials that can exclusively produce the
desired carbonyl-containing compound, such as formalde-
hyde,199 acetone, or glycolaldehyde.200

Formaldehyde is the smallest aldehyde and serves as both a
preservative and a precursor for resins in plastic production.199

As the only C1 aldehyde or ketone in existence, formaldehyde
does not involve the challenging C−C coupling reactions that
are required to produce larger aldehydes and ketones, resulting
in its prevalence in literature. Early research on electrochemical
formaldehyde production from CO2 found boron-doped
diamond (BDD) electrodes effective, capable of achieving a
Faradaic efficiency (FE) of 62% in a 0.1 M NaCl electrolyte
solution, and an FE of 74% in CO2-saturated methanol.201

However, BDD electrodes are expensive and made under
extreme conditions.200 More recently, researchers have
leveraged the known reduction abilities of Cu202 as well as
its relative accessibility to integrate into photoelectrochemical
(PEC) regimes to selectively target products requiring more
than two electron transfers.203 The use of a Cu electrode has
been shown to improve formaldehyde FE to 85.1% in a system
equipped with a (040)-faceted BiVO4 photoanode and −0.9 V
overpotential.204 Unique technical combinations can enable
drastic enhancements in performance, so different PEC
configurations may soon be pivotal in tackling deficiencies in
current CO2 reduction methods.
While much scholarship on formaldehyde production from

CO2 utilizes electrochemistry, novel research pathways have
explored the use of unique thermo-, biochemical, and catalytic
systems. Rather, these processes take inspiration from
biological systems and photosynthetic transformations to
create high-value chemicals. Photochemical reduction of CO2
to formaldehyde tends to incorporate cobalt nanomaterial-
based semiconductor cocatalysts on photoactive titania
supports due to the relatively small band gap of Co as well
as its ability to efficiently absorb visible light.205−207 In
particular, 90.8% selectivity toward formaldehyde from CO2
was found to result from the use of 1 wt % Co-oxide embedded

within tunnel-structured potassium titanates (K2Ti6O13)
exposed to 40 W broadband visible light irradiation (290−
900 nm) at ambient temperature and pressure.205 Further-
more, the use of immobilized enzymes208 and microbes209 on
metallic surfaces have been explored, finding that formate
dehydrogenase and formaldehyde dehydrogenase in tandem
with mercaptopropyl-functionalized mesostructured cellular
foams produced 24 μmol/gcat of formaldehyde in 1 h (37
°C, 0.5 MPa).208 These nonelectrochemical pathways serve as
proposed low-energy alternatives to sustainable aldehyde and
ketone production.
Simpler strategies are modeled after current industrial

reactor setups that use heat and metal catalysts for C1
production. The direct hydrogenation of CO2 in liquid
methanol was found to selectively produce formaldehyde
with Pt−Ni bimetallic catalyst at room temperature with 7
MPa of 16:1 H2:CO2 gas.193 While 100% selectivity toward
formaldehyde remains a noble goal, overall product yields
remain low (1.8 mM/gcat) for this reaction.

193 More recently, a
Ru-nanostructured catalyst (0.5 wt %) anchored on reduced
layered double hydroxide was reported to increase CO2
reduction activity to formaldehyde 200-fold.210 This process
utilized a 1:1 H2:CO2 mixture (2 MPa) at 30 °C in DI water to
produce formaldehyde with a maximum yield of 58.7%.210

As the size of the desired aldehyde increases, the process
necessitates more electrons and CO2 molecules. In addition to
benefits of Cu to electrochemically produce formaldehyde, the
need for additional electron transfer, the more energetically
taxing C−C bond formation required for acetaldehyde
production,211 and the unregulated oxophilicity of Cu all
contribute to decreased acetaldehyde FEs.212 To attempt to
mitigate this effect, researchers developed a bimetallic CuAg
electrode which showed a maximum acetaldehyde FE of ∼14%
at 20% Ag concentration (Figure 7a).213 This electrode also
increased the FE for the production of other aldehydes,
including glyoxal and propionaldehyde, bringing the total FE
for this functional group to 20%, a 4-fold increase compared to
monometallic Cu.213

Furthermore, glyoxal represents an interesting C2 dialdehyde
product often consumed as an intermediate215 with a high
energy storage capacity of 143 kJ/C.195 Unfortunately, due to
its consumption as an intermediate, reported FEs are typically
less than 1%.195 Despite low glyoxal yields, Cu-based catalysts
have proven to be effective in suppressing the parasitic
hydrogen evolution reaction (HER) and increasing selectivity
toward C2 products.

195

To convert CO2 into ketones such as acetone, more
energetically costly C−C bond couplings must occur (Figure
7b). Mechanistic investigations have determined that acetone
and hydroxyacetone formation over Cu surfaces is most likely
dependent on CO-glycolaldehyde/glyoxal coupling.214 Re-

Figure 7. Reaction scheme for (a) the electrochemical production of acetaldehyde from CO2 and (b) the production of acetone and 1,2-
propanediol from carbon dioxide. Figure adapted with permission from ref 214 (Copyright 2023 American Chemical Society) and ref 213
(Copyright 2023 American Chemical Society).
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searchers employed a Cu mesh electrode alongside a 0.1 M
KHCO3 electrolyte to tune the reduction activity, finding
hydroxyacetone as a minor product (<0.1% FE), that increased
to ∼2.2 μmol per Coulomb with the addition of CO to the
reaction, indicating CO−CO coupling limitations.214 Further
advancements utilizing single-atom Cu catalysts dispersed on
N-doped carbon substrates resulted in acetone as the major
product, boasting a 36.7% FE.211 This result was attributed to
stabilizing effects induced by Cu-pyrrolic metal−support active
sites.211 The broad array of uses for aldehydes and ketones
necessitates further research to refine the electrocatalytic
reduction of CO2 to acetone and other, larger ketones,
particularly methyl ethyl ketone and multiple pentanedione
isomers recently detected in electrochemical flow cells.216

2.6. Acids, Esters, and Acetates. The reduction of CO2
to acids and esters is one of the widest studied CO2
transformations.217 While there are a plethora of methods
that incorporate CO2 into larger organic molecules,39,217,218

especially salicylic acid,219 there are also several acids and
esters that can be formed exclusively from CO2 including
acetate,220 acetic acid,221,222 and formate.223,224 The most
ubiquitous of these is formic acid, wherein the reversible
reaction of 1 equiv of CO2 + 2e− + 2H+ also serves to make
formic acid a suitable carbon-neutral hydrogen storage and
production source.225 The key pathway to formic acid and its
alkyl esters (Figure 8, Path A1) first involves the reduction of
CO2 to formate, which is most often realized electrochemi-
cally,224,226−228 but thermal229 and photochemical230,231

methods have also been reported. Formate ions can then be
further protonated to formic acid and esterified to alkyl
formates. Recently, formic acid production from CO2 in flue
gas has been demonstrated in a pilot plant at 82% yield and 92
wt % purity at a scale of 10 kg per day.232 In the study, the
authors found that production costs could be reduced by 37%
and the global warming potential reduced by 42% when
compared to conventional formic acid (5) production.232

Oxalic acid (overall: 2 equiv of CO2 + 2e− + 2H+) is an
important chemical in cleaning applications but there is
growing interest for its use as a C2 building block.

233 There are

3 potential pathways from CO2 to oxalic acid; a direct route via
direct reduction of CO2 (Figure 8, Path B), most often
achieved electrochemically, which proceeds via the coupling of
2 equiv of the CO2

•‑ radical anion,234,235 or by two indirect
routes via formate236 or oxidative carbonylation of CO237

(Figure 8, Path A2 or C, respectively). The transformation of
formate to oxalate dates back to 1882 and often requires
elevated temperatures and anaerobic conditions. More
recently, focus has switched to the use of carbonite dianions
(generated via hydride238 or a base233,239) as strong
nucleophiles which can then react with formate or CO2 to
yield the desired oxalate which is subsequently acidified to
oxalic acid.
2.7. Carbonates. Carbonates, both inorganic and organic,

serve as valuable building blocks for industrial applications and
as a key component of carbon sequestration strategies.
Inorganic carbonates including CaCO3,

240 MgCO3,
241 and

Na2CO3
242 are traditionally synthesized through thermochem-

ical mineral carbonation, precipitation, or injection into
geologic formations with the use of metal oxides or
hydroxides.243−246 Mineral carbonation is a common industrial
route that reacts CO2 with a metal hydroxide such as Ca(OH)2
or Mg(OH)2, resulting in precipitation of metal carbonates.247

The most well-known example of this are cement based
materials (CBM).248 Sodium carbonate (Na2CO3), also known
as soda ash, is an important glass and detergent precursor
produced through the Solvay process, wherein CO2 is reacted
with sodium chloride and ammonia in the presence of
limestone, resulting in the precipitation of Na2CO3.

249,250

Sodium bicarbonate (NaHCO3), on the other hand, can be
synthesized through the reaction of sodium carbonate with
additional CO2 for use as an antacid, as baking soda, and for
water treatment purposes.243 Carbonates of potassium,251

lithium,252 and barium253,254 are produced through similar
processes that involve the reaction of CO2 with their respective
metal hydroxides or oxides, and find use as fertilizers, drying
agents, batteries, pharmaceuticals (mood stabilizers), and other
applications.243,252,255,256

Figure 8. Complementary pathways to formic acid (Path A1) and oxalic acid from direct (Path B) and indirect (Paths C and A2) CO2 conversion.
HAT − hydrogen atom transfer.
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Organic carbonates are typically produced through oxidative
carbonylation processes both thermochemically257 and electro-
chemically.258−261 Two organic carbonates that have been
demonstrated from transformation of CO2 are dimethyl- and
diethyl carbonate (DMC, DEC), which represent economically
valuable and versatile molecules for use as solvents or
methylation agents to replace highly toxic phosgene.259,262

Both DMC and DEC have been synthesized from CO2 with
the respective alcohols in a range of different ways that include
alkali metal alkoxides or catalytic organic bases.263 One of the
most promising pathways is the nonreductive transformation
with the respective alcohol in the presence of a metal oxide
catalyst, such as CeO2 (Figure 9).264 These thermochemical

reactions typically require temperatures between 80−160 °C
and 5−20 MPa pressure.264 CeO2-based catalysts have been
reported to reach up to 92.4% methanol conversion with 99%
DMC selectivity,264 whereas the use of choline hydroxide as a
base catalyst resulted in only 0.6% methanol conversion,
despite a high (95.2%) selectivity toward DMC.265 One
limitation of these reactions is that the reaction equilibrium lies
in favor of the starting alcohol and CO2, as the water produced
as a byproduct reacts in the presence of a catalyst to
decompose the dialkyl carbonate. Often to facilitate a high
conversion, such as seen with CeO2, the addition of a
dehydrating agent is required to shift the equilibrium in the
favor of desired dialkyl carbonate.257,261,264 Although in the
early stages, DMC and DEC can also be synthesized through
redox-neutral electrochemical conversion,261 where DMC can
be produced from CO2 and MeOH with up to 60% FE
utilizing a Pd/C catalyst, gold cathode, and NaBr supporting
electrolyte.261

Cyclic carbonates are the thermodynamic products of the
cycloaddition of epoxides (usually not CO2-derived) with CO2
in the presence of a catalyst, such as metal complexes or
organic bases, .266,267 ε-caprolactone is a cyclic carbonate with
biomedical applications that has been demonstrated to
undergo rapid polymerization to poly(carbonate-block-ester)
in the presence of CO2 and cyclohexene oxide as an epoxide
with a Zn-based catalyst.268 Diaryl carbonates have also been
synthesized through the oxidative carbonylation of phenols
with CO or CO2,

269,270 and the resulting diphenyl carbonates
can be employed as monomers for polycarbonate synthesis, as
demonstrated in the Asahi Kasei process.269,271 More recently,
a novel method was reported to synthesize polycarbonates
directly from CO2 and diols, using a CeO2 catalyst and a
sacrificial dehydrating agent (i.e., 2-furonitrile).272

The reaction of epoxides with CO2 can also lead to
polymeric carbonate products in a reaction typically involving
the rate-limiting ring-opening of the epoxide with the addition

of a metal catalyst before CO2 is inserted into the metal-alkoxy
bond.273−275 While industrial developments have primarily
focused on propylene and ethylene oxide as epoxide sources
due to their prevalence in plastic manufacturing,276 natural
epoxides, such as limonene oxide (Figure 10), can also be

effectively polymerized.277 Research into polyethercarbonates
from CO2 has revealed double metal cyanides and dinuclear
Zn-complexes as effective catalysts, resulting in maximum CO2
incorporation at 43 wt %.276 Technologies for CO2-based
polyols have been developed at the kiloton scale by Novomer
(later sold to Saudi Aramco),278 Covestro,279 and Econic
Technologies. A life cycle assessment (LCA), completed by
Covestro, reported that a 19% reduction in greenhouse
emissions can be achieved through the substitution of
petroleum-based polyols with CO2-based polyols.280

2.8. Nontransformative Utilization. While CO2 trans-
formations via chemical reactions offer an alternative to
sequestration, nontransformative use of CO2 (Figure 11) has
the potential to realize chemical and economic benefits on its

Figure 9. Reaction schemes for the conversion of CO2 to (a)
dimethyl carbonate (DMC) and (b) diethyl carbonate (DEC). Figure
adapted with permission from ref 257. Copyright 2022 American
Chemical Society.

Figure 10. Representative synthesis pathways of polycarbonates (a)
poly(propylene carbonate), (b) poly(cyclohexene carbonate), and (c)
poly(limonene carbonate) from CO2 and epoxides.

Figure 11. Schematic highlighting the breadth of uses for non-
transformative use of carbon dioxide. Copyright Adobe Stock.
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own across sectors. The climate change benefits of non-
transformative use are reduced compared to transformative
pathways, especially in the case of fossil-based CO2, however,
nonfossil CO2 can still have a positive impact when used in the
following ways. The International Energy Agency (IEA)
reports ∼230 million tonnes (Mt) of CO2 as gas, liquid, dry
ice, and even in its supercritical form,281 are already used every
year across industries,282 such as beverage and food processing,
fire suppression, urea manufacturing, enhanced oil recovery
(EOR), metal fabrication, and in agriculture for stimulation of
plant growth or pest control.33,281−284 Further, CO2 is utilized
in medicine,285−287 electricity-generating turbines,288 and in its
supercritical form as an efficient and versatile green solvent.289

Carbon dioxide’s accessible critical point (31 °C, 7.4 MPa)
and significant physical property (temperature, density)
tunability around the critical point make it advantageous to
deploy as a supercritical fluid, both as a solvent and as a
working fluid for power generation.290−293 Supercritical fluid
extraction (SFE) technology utilizes CO2 as a nontoxic solvent
for extracting flavors and essential oils or decaffeinating coffee,
that offers additional benefits including improved permeability,
tunable extraction capabilities, and reusability.289 By altering
the temperature and pressure of CO2, the density and
subsequent solvent polarity varies drastically, which can result
in enhanced selectivity. This key feature of SFE has been
applied in biorefineries, including the sequential extraction of
triglycerides at lower density and polarity (642 mg/mL)
followed by xanthophyll at higher density and polarity (971
mg/mL).294 The application of supercritical CO2 as solvent for
chemical reactions under continuous-flow operation is
receiving significant interest295 and its practical implementa-
tion has been demonstrated on a technical scale.296 Super-
critical CO2 is beneficial for use in power generation turbines
due to its density, which is nearly twice as dense as steam.288

This, in turn, leads to thermal efficiency improvements greater
than 10% and a 10x reduction in the required physical
footprint of CO2 turbines compared to steam turbines.297

The food and beverage industry utilizes 11 Mt/yr283 of food-
grade CO2 (99.9% v/v purity) to produce carbonated drinks,
deoxygenated water, and milk products, as well as in food
preservation.283 To enhance product longevity, CO2 acts as a
highly efficient inert shield during food production, capable of
displacing air in the canning process to enhance product
longevity.298 CO2 is also used as dry ice to keep food items
cool during transportation217 as well as to facilitate rapid
freezing.33,281

In medicine, medical-grade CO2 (>99.5% v/v purity299) has
been employed as a therapeutic treatment for more than a
century, owing to its antioxidative and anti-inflammatory
attributes, as well as its broad-spectrum virucidal and
antimicrobial efficacy.287 A recent study even discussed the
potential for moist, warm CO2 around the temperature and
humidity of human lungs, as an effective viral inactivation
treatment for the SARS-CoV-2 virus.287 CO2 has also been
used in carboxytherapy as a direct injection or bolus injection
into differing layers of the skin to address skin irregularities by
reacting with intracellular water to form carbonic acid and
release oxygen.285 Additionally, it has been shown effective as a
contrast agent in diagnostic procedures such as cavography,
arteriography, and venography due to its lack of renal toxicity
and anaphylactic response.286

Enhanced oil recovery is a process that injects CO2 as a
miscible flooding agent to increase crude oil recovery from

depleted conventional or shale oil wells by decreasing the
viscosity of the oil for easier extraction and as a displacement
agent.284 This technology has been used for decades for
improving oil recovery and estimates suggest that up to 5% of
total US crude oil is produced using the CO2-EOR process.284

While traditionally, maximum oil and CO2 recovery has been
the goal, “EOR+” is emerging as a coexploitation method to
further increase oil recovery while sequestering CO2 under-
ground.284,300 However, without direct CO2 capture and with
the advance of other carbon conversion and storage solutions,
its benefits are dubious at best and can lead to a net increase in
CO2 emissions.284

In chemical process applications, CO2 can also be used to
tune the properties of appropriately designed solvents and
materials to facilitate separation and purification pro-
cesses.291,301 For example, CO2 reacts reversibly with amine-
functionalized solvents to form carbonate and bicarbonate
salts, which can be phase-separated by sharply switching
polarity.302 In catalysis, the reversible hydrogenation of CO2 to
formic acid and formate species has been exploited to develop
adaptive catalytic systems303 which reactivity can be controlled
in a reversible, rapid, and robust manner simply by switching
the feed gas composition from pure H2 to a mixture of H2 and
CO2. For example, Ru nanoparticles immobilized on amine-
and guanidine-functionalized support materials catalyzed the
full hydrogenation of furanic ketones and bicyclic hetero-
aromatics under H2, and their partial hydrogenation under
H2+CO2.

304−306 For CO2-responsive materials and catalysts,
CO2 is not converted into value-added chemicals but serves as
an environmentally benign molecular trigger to control
physicochemical properties and catalytic performance in a
reversible manner, and is thus released at the end of the
process. However, such approaches using recycled greenhouse
gas have the potential to provide significant benefits in terms of
energy and process efficiency, thereby decreasing greenhouse
gas emissions.

3. OUTLOOK AND CONCLUSIONS
The CO2 Tree is a representation of current approaches and
future potential to exploit carbon dioxide as a raw material for
valuable products and molecular building blocks or for other
chemical functions. This is often discussed in the context of the
necessary phase-out of fossil-based feedstocks that are the
current basis of the chemical industry. By virtue of being a
thermodynamically stable molecule, there will always be a
cheap and plentiful supply of carbon dioxide to use as the basis
of a future chemical industry to serve the needs of an ever-
growing human population. Knowing how to use and
transform this molecule both efficiently from a chemical
perspective, and effectively from a broader systems perspective
will be essential to the sustainability and resiliency of a closed
anthropogenic carbon cycle. In other words, CO2 utilization
offers the potential to “harvest” renewable energy into the
material world.
The various branches and products found on the CO2 Tree

vary widely in terms of when and how they can be expected to
be commercially relevant at scale.246,307−310 The multitude of
relevant factors that impact the pace and magnitude of the
commercialization process go far beyond the chemistry and
engineering processes and include matters of government
policy, geopolitics, investment trends, business environment,
and industrial inertia.
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The classical technology readiness levels (TRLs) of a
process are used to assess the maturity of a particular
technology on a nine point scale based on certain
parameters.311 At the early stage, a TRL of 1 indicates that
scientific research is just beginning, whereas a TRL of 9
corresponds to a process that has been “proven” through
successful large-scale operation.310,311 While technology read-
iness levels are of greatest use for individual companies and of
more limited utility accounting for all of the circumstances that
influence the scaling of technology on an economy-wide
application, it is useful as a snapshot of the current situation. In
this way, Figure 12 highlights the range of TRLs reported for

varying CO2 conversion technologies for 11 chemicals or
chemical classes included in the CO2 Tree.246,307−310

Technologies for methane, methanol, and DMC production
from CO2 all result in an average TRL > 7. On the other hand,
some chemicals, such as DME, remain at low TRL (∼4) due to
the prevalence of the methanol dehydration pathway over the
direct CO2 hydrogenation route.312,313 Poly(oxymethylene)
ethers (OMEn) similar to DME result in TRLs at or below
4,132−134 indicating the need for further scale-up and
optimization−and/or enabling social, political, and economic
conditions−to realize commercialization. In general, polymer
production processes using CO2 as building blocks have also
reached TRL levels >7. Within the chemical classes, alcohols
and ethers, followed by acids, esters, and acetates have the
highest average technology readiness levels.
It is imperative that proposed CO2 utilization pathways

balance potential CO2 offsets with the energy and chemical
requirements necessary for its transformation. For example, the
conversion of CO2 to carbon materials (e.g., graphene)
currently requires extreme temperatures and pressures,
possibly leading to more CO2 emitted than utilized as
feedstock. And while methane from CO2 boasts an average
TRL of 7, this process is currently based on the use of solid
oxide electrolysis cells operating at around 800 °C using rare
metal catalysts such as iridium (Earth crustal abundance =

0.000037 ppm).314 Here, methanation converts CO2 and H2
into natural gas at lower exergy and economic value. While it
may help to temporarily store renewable electricity in a
practical energy carrier, the hydrogenation of CO2 to lower
reduction levels (i.e., further to the right on the CO2 tree,
Figure 1) such as methanol, formaldehyde, or syngas would
seem more attractive for subsequent chemical use of CO2.To
truly embody the principles of green chemistry, future research
in this area must prioritize transformation pathways with low
energy inputs, the use of abundant, low-cost reagents and
catalysts, and those that achieve high atom economy to prevent
additional waste generation.
As important as it is to reflect on those current trans-

formations that can be realized in the near term, it remains
critically important to develop new approaches to scaling the
emerging transformations discussed throughout this review.
This will require a diversity of approaches and may include a
mix of process-intensified systems, modular systems, flow
systems, distributed processes, or integrated systems. As in
silico screening of catalysts becomes more powerful and
algorithm-based mining of experimental and computational
data shows its potential, moving from analytical to predictive
for the design of fully catalytic systems may come into reach.
The linear scale of the TRL concept is not fully capable of
mapping out such intertwined innovation cycles and “out-of-
the-box” leapfrog innovations. Therefore, its application as a
framework for public funding in research and development
should be critically challenged to avoid lock-in effects in
mainstream developments. The innovation in the thinking
required to exploit the necessary discoveries covered in this
paper goes beyond the fundamental chemistry to include not
only engineering design and plant operation, but also the
relevant enabling policies and economic environments to make
this necessary transformation viable.
While a review of any scientific or technological advance

will, of necessity, be a snapshot in time, in the case of CO2
utilization this is even more exaggerated due to the extremely
dynamic nature of the field. This review explicitly focused on
the direct products and applications of CO2 itself; however, as
we imagine the future importance of CO2 as a feedstock it will
necessarily include derivative products where CO2 further
reacts with products obtained from CO2 transformations. This
includes explicitly building blocks from biomass where nature
has already upgraded CO2 with the help of renewable energy.
This cascade multiplies as we envision the array of products
from the “air refinery” where products from nitrogen and water
vapor combine with the products of CO2 to realize the vast
majority of current organic products as well as many yet to be
conceived. What the CO2 Tree portrays is an image of what is
possible and has been demonstrated today that was often
viewed as impractical or impossible by many people in the
past. The difference between possible versus impossible is
infinite while the progression up the optimization ladder is
incremental. In addition to meeting the imperative of phasing
out of fossil carbon, the work of CO2 utilization is essentially a
driver of innovation to create new molecules, new trans-
formations, new functionality, and new performance for the
future. Like all wise innovation, it is not simply about
improving on the flaws of the old but creating the excellence
of the new. While recognizing that challenges are real, Nelson
Mandela observed, “It always seems impossible until it is
done.”

Figure 12. Technology readiness level (TRL) ranges and averages for
the conversion of CO2 to select products across chemical classes.
Figure adapted with permission from ref 246 (Copyright 2020 Wiley-
VCH GmbH), ref 307 [Copyright 2023 American Chemical Society],
ref 308 (2020 Elsevier B.V.), ref 309 (Copyright 2020 Royal Society
of Chemistry), and ref 310 (Copyright 2024 Elsevier B.V.).
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