

ENHANCING THE PERFORMANCE OF CRYPTOGRAPHIC ALGORITHMS FOR

SECURED DATA TRANSMISSION

By

KWAME ASSA-AGYEI

(N0950209)

A DISSERTATION

Submitted to

The Doctoral School, Nottingham Trent University, United Kingdom in partial fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY in COMPUTER SCIENCE (EMERGENT TECHNOLOGY)

SPECIALIZATION: CRYPTOGRAPHY

Supervisory Team:

Director of Studies: Dr. Kayode Owa

Co-Supervisor: Dr. Tawfik Al-Hadhrami

Co-Supervisor: Dr. Funminiyi Olajide

JULY, 2024

I

Declaration of Authorship

I solemnly declare that the dissertation submitted is the result of my independent research work

under the guidance of my Supervisory Team. In addition to the content cited in the article, this

article does not contain any of the works published or written by any other individual or group,

nor does it contain materials used to obtain degrees or certificates from the Nottingham Trent

University or other educational institutions. The individuals and collectives that have made

important contributions to this study have been clearly identified in the text. I am fully aware that

I am obligated to undertake the legal consequence of the statement.

Signature of the Candidate:

Year-Month Date: 15 July 2024

II

DEDICATION

I would like to dedicate this dissertation to my Late Dad (Kwame Assa-Agyei), Mum (Sarah

Konadu-Minkah), spouse (Rosemary Boateng), children, Siblings (Rita Assa-Agyei, Maame Yaa

Agyeiwaa, Millicent Abena Konadu and Franklyn Opoku Agyemang), Apostle Emmanuel Tetteh

and Late Mrs. Dorcas Tandoh for their constant prayers, love, inspiration, and understanding which

has made it possible for me to complete this Ph.D. program at Nottingham Trent University, United

Kingdom.

III

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Dr. Kayode Owa, my Director of Studies, and Dr.

Funminyi Olajide, my former Director of Studies, who later assumed the role of my external

supervisor. Additionally, I am grateful to Dr. Tawfik Al-Hadhrami, my Co-Supervisor, and Dr.

Temitope Alade (Former Co-Supervisor) at the School of Science and Technology, Nottingham

Trent University, United Kingdom, for their unwavering guidance and support throughout the

duration of this project. Your influence on my academic pursuit has been exceptional. I wish to

thank you sincerely for your constructive comments, suggestions, and encouragement during my

period of study at Nottingham Trent University. More specifically, I am grateful you believed in

my academic and research capabilities and provided the needed environment and conditions that

made my Ph.D. study at Nottingham Trent University a remarkable one. Your dedication and

passion have made it possible for me to gain in-depth experience to effectively write journal and

conference papers. I am heavily indebted to all, and l will forever cherish the valuable experience

gained under your guardianship.

I would like to express my profound gratitude to the members of the SRDC, chaired by Dr. Dmitry

Volodkin, for their invaluable comments which have shaped me and significantly improved the

quality of my dissertation. I am also deeply grateful to Prof. Ahmad Lotfi (Head of the Department

of Computer Science) and Dr. Jo Hartley (Line Manageress) for appointing me as an Hourly Paid

Lecturer in the Department of Computer Science.

My appreciation also goes to Vice Admiral Seth Amoama, R/Adm Moses Baffour Beick (Rtd),

and Staff of the Ghana Armed Forces Command and Staff College, Dr. George Ofori-Dwumfuo,

Air Vice Marshall IS Kadri (Rtd), Colonel M Mantey, Colonel BB Pantoah, Colonel Komblaga,

Colonel E Annor, Colonel EO Seppey, Lt Colonel N Aboagye-Bonsu, Dr. Patrick Kudjo, Dr.

William Acquaye-Brown, Dr. Lempogo Forgor, Dr. Emmanuel Acquah-Sam, Dr. Emmmanuel

Sam, Mr. Fred Charles Anson (Former Commissioner, Support Service (GRA)), Mr. Seth Kwame

Asafo (NITA), Mr. Leonard Kyei, Dr. Salifu Nanga, Paa Kobina Todd, Mr. Paul Arhin, Mr. Evans

King, Mr. Frederick Broni, Mrs. Nora Agyei-Ababio, Mr. Francis Okah, Mr. Peter Kofi Bani, Mr.

Victor Nmese, Mr. Harrison Agbottah Mawuli, Mr. Frank Nii Teiko Taoe, Mr. Nathan Nyarko

Sackey (Stegor), Mr. Maxwell Solomon, Miss Selina Amoah, Mr. Nana-Yao Nsowah, Mr.

Johnson Amenadam, Mr. Andrews Ekow-Fenyi Annan, Miss Joyceline Nutakor, Augustus Ofosu

Amoa, Mr. Daniel Okechukwu-Tonte Ihenacho, and Jacob Lokko for your candid advice. I thank

you for your support and encouragement.

IV

To the Registrar, the Board and Management of Ghana Scholarship Secretariat and Naa Dedei

Tetteh (Head/Education & Recruitment- Ghana High Commission) for their encouragement and

financial assistance throughout my period of stay in United Kingdom.

My profound heartfelt gratitude also goes to Mr. Bruce Svondo and Lady Sue Lathall

(Manageress), Sarah Tannis and Staff of Cherry Trees Resource Centre for your support and

encouragement. Finally, to anyone who has contributed in one way or the way towards the

completion of my Ph.D. programme, I say thank you.

V

ABSTRACT

Cryptography is crucial in the digital age for protecting data integrity, verifying users and entities,

and maintaining the secrecy of sensitive information. This is accomplished by utilizing various

cryptographic techniques such as symmetric-key and asymmetric-key encryption, digital

signatures, and secure communication protocols. These strategies collectively create a thorough

defense strategy to prevent unauthorized access, enhancing the overall security of digital data in

today's environment. This study has pinpointed various research gaps linked to the two categories

of cryptographic algorithms and proposed innovative approaches to address these gaps. The study

not only identified areas where further research is needed but also recommended novel strategies

to tackle these gaps effectively. This dissertation's primary contributions are:

(1) This study empirically evaluates the performance of widely utilized symmetric algorithms,

including AES, Blowfish, 3DES, and Twofish. The assessment includes important measurements

like encryption and decryption times, throughput, and memory utilization. The objective is to

conduct a thorough investigation of the efficiency and usefulness of these cryptographic methods

in real-world situations. The findings reveal that the AES algorithm with a 256-bit key size exhibits

the highest encryption time compared to AES with 128-bit and 192-bit key sizes. The specific

average encryption times are as follows: (1) AES-128: Average encryption time of 0.057 seconds

(2) AES-192: Average encryption time of 0.049 seconds and (3) AES-256: Average encryption

time of 0.038 seconds. The experimental results demonstrate that AES excels over alternative

symmetric encryption techniques in terms of both encryption and decryption speeds, along with

overall throughput. Furthermore, the findings establish that the Blowfish algorithm can compete

with AES in terms of encryption and decryption speed.

(2) This study conducts a practical evaluation of commonly used asymmetric algorithms,

specifically RSA and ECC, focusing on key parameters such as key exchange time, encryption

and decryption times, and signature generation and verification times. The investigation uses

secure email communication as a case study to analyze the real-world performance of these

cryptographic algorithms. Additionally, the research proposes a hybrid cryptography algorithm

that combines both RSA and ECC to enhance security and confidentiality in secure email

communication. The proposed hybrid algorithm demonstrated an average key exchange time of

0.064191 seconds, which is faster compared to ECC and RSA. For a larger file size of 500 MB,

the proposed hybrid algorithm achieved average encryption and decryption times of 0.832917

seconds and 0.636395 seconds, respectively. In comparison, the ECC algorithm recorded average

VI

encryption and decryption times of 0.866455 seconds and 0.753799 seconds, respectively with a

minimal disparity in runtime compared to ECC, indicating improved efficiency. Experimental

results also highlight ECC's advantages in Key Exchange Time, making it a preferable choice for

establishing secure email channels, especially for larger file sizes. While RSA shows a slight edge

in efficiency for smaller files, the hybrid encryption algorithm optimizes key exchange times,

encryption efficiency, and signature generation and verification times.

(3) This research introduces novel strategies to enhance the performance of existing

cryptographic algorithms, specifically AES and RSA, by addressing identified research gaps. To

achieve this, the study incorporates performance optimization techniques and numeric functions

aimed at improving both the efficiency and security of data transmission. Specifically, Multi-

Chaotic AES demonstrated notable improvements in performance compared to standard AES. It

achieved faster encryption times with reductions ranging from approximately 50% to over 70%.

Additionally, Multi-Chaotic AES exhibited enhanced decryption efficiency, showing time

reductions of about 40% to over 70%. These results underscore the substantial performance gains

of Multi-Chaotic AES in both encryption and decryption processes. Similarly, for the Modified

RSA algorithm, notable improvements were observed. For instance, at a key size of 1024 bits,

traditional RSA requires an average key generation time of 111 milliseconds. In contrast, the

NGOA-DE-RSA approach significantly reduces this time to 55 milliseconds. This trend of

improved performance extends to other metrics as well, with NGOA-DE-RSA consistently

outperforming the standard RSA algorithm.

Finally, this study proposes a hybrid approach incorporating both modified AES and RSA and

assesses its performance relative to existing hybrid techniques. Remarkably, the proposed

algorithms exhibit significantly improved prediction accuracy across various metrics, including

process times, throughput, memory utilization, and security.

In summary, this thesis makes significant contributions to applied cryptography by introducing

innovative techniques designed to enhance data transmission security. The research presented in

this thesis offers valuable insights and novel approaches that contribute to the advancement of

cryptographic practices in practical applications, particularly in the realm of secure data

transmission.

VII

TABLE OF CONTENT

Contents Pages

Declaration of Authorship.. i

DEDICATION .. ii

ACKNOWLEDGEMENT ... iii

ABSTRACT .. v

TABLE OF CONTENT .. vii

List of Tables .. xii

List of Figures .. xiv

List of Algorithms ... xv

List of Abbreviations ... xvi

List of Publications ... xvii

Chapter 1 Introduction .. 1

1.1. Introduction and Motivation... 1

1.2. Problem statement .. 3

1.3. Aim ... 6

1.4. Objectives of the study ... 6

1.5. Research Questions .. 7

1.6. Significance of the study .. 7

1.7. Contributions to Knowledge .. 7

1.8. Sources of information and resources .. 9

1.8.1. Software requirements: ... 9

1.8.2. Hardware requirements: .. 10

1.8.3. Standard Libraries/Dependencies used ... 10

1.9. Organization of the Dissertation .. 10

Chapter 2 Literature Review ... 13

2.1. Introduction .. 13

2.2. Defining Cryptography .. 13

2.3. Objectives of Cryptography ... 14

2.4. Classification of encryption ... 15

2.5. Classical ciphers ... 16

2.6. Transposition ciphers ... 17

2.8. Modern ciphers ... 17

VIII

2.9. Types of Symmetric Algorithms .. 18

2.9.1. Block Ciphers ... 18

2.9.1.1. Advanced Encryption Standard (AES) ... 19

2.9.1.2. Blowfish algorithm .. 21

2.9.1.3. Data Encryption Standard ... 22

2.9.1.4. Triple Data Encryption Standard (3DES) ... 23

2.9.1.5. Twofish Algorithm .. 24

2.9.2. Stream Ciphers: .. 25

2.9.2.1. RC4 (Rivest Cipher 4) ... 26

2.9.2.2. Salsa20 .. 27

2.9.2.3. ChaCha20 .. 28

2.10. Asymmetric algorithms .. 30

2.10.1. RSA Algorithm ... 30

2.10.2. ECC Algorithm ... 32

2.11. The Mathematics of Cryptography ... 33

2.11.1. Modular arithmetic.. 34

2.11.2. Modular Exponentiation ... 35

2.11.3. Reversible and quantum modular exponentiation... 35

2.11.4. Discrete logarithm ... 36

2.11.5. Euclidean Algorithm ... 36

2.12. Empirical Review ... 38

2.12.1. Review of the performance evaluation of commonly employed symmetric algorithms

 38

2.12.1.1. Research gap ... 45

2.12.2. Review of the performance evaluation of asymmetric algorithms that are frequently

used 46

2.12.2.1. Research gap ... 52

2.12.3. Review work on hybridizing Cryptographic Algorithms and Compression Techniques

 52

2.12.3.1. Research gap ... 57

2.12.4. Review of Modifications to the RSA Algorithm .. 58

2.12.4.1. Research gap ... 60

2.12.5. Advanced Encryption Standard .. 60

2.12.5.1. Review on AES S-box, Key Expansion and MixColumn Transformation 60

IX

2.13. Recent Developments and Advances in Cryptography - Post Quantum Cryptography

 66

Chapter 3 ... 70

3.1. Motivation of the study .. 70

3.2. Introduction .. 71

3.3. Symmetric 128-Key bit Approach: AES, Twofish and Blowfish 73

3.3.1. Performance analysis .. 73

3.3.1.1. Process Time (Encryption and Decryption time) .. 73

3.3.1.2. Throughput .. 74

3.3.1.3. Discussion of results for 128-Key bit Analysis ... 75

3.4. Symmetric 128, 192 and 256 Key bits with their respective block size Approach: AES,

3DES, Twofish and Blowfish ... 77

3.4.1. Performance evaluation .. 77

3.4.2. Discussion of results for 128, 192 and 256 Key bits Analysis 79

3.5. Conclusion ... 81

Chapter 4 Comparative Analysis of ECC and RSA... 82

4.1. Motivation for conducting performance analysis on RSA and ECC for a secure email system

... 82

4.1.1. Introduction ... 82

4.1.2. Experimental Setting .. 84

4.1.3. RSA-ECC Hybrid Technique ... 84

4.1.4. Performance Evaluation ... 87

4.1.5. Discussion of results ... 93

4.3. Conclusion ... 95

Chapter 5 ... 96

5.1. Motivation for optimizing AES operations in File Encryption Software 96

5.1.1. Introduction .. 96

5.1.2. Lempel-Ziv-Markov (LZMA) chain algorithm .. 98

5.1.2. Experimental setting ... 100

5.1.3. Proposed Algorithm (AES+LZMA) ... 101

5.1.3.1. Interleaved Compression and Encryption ... 102

5.1.4. Performance Analysis ... 104

5.1.4.1. Encryption and Decryption Times .. 104

5.1.4.2. Throughput (Speed)... 104

5.1.4.3. Memory utilization .. 105

X

5.1.4.4. Power Consumption .. 106

5.1.5. Vulnerability Testing .. 107

5.2.5.1. Frequency analysis .. 107

5.2.5.2. Brute-Force Cryptanalysis... 111

5.2.5.3. NIST Statistical Test Analysis .. 113

5.1.6. Discussion of results ... 114

5.1.7. Conclusion and future work ... 116

5.2. Motivation for the improvement of key generation and expansion processes in AES 116

5.2.1. Introduction .. 117

5.2.2. Methodology ... 118

A. Experimental Setup .. 118

B. Lorenz attractor ... 118

C. Chen attractor ... 119

D. Proposed AES Algorithm ... 120

5.2.3. Results and discussion .. 122

5.2.3.1. Encryption and Decryption time .. 122

5.2.3.2. Avalanche Effect ... 124

5.2.3.3. Confusion Test .. 125

5.2.4. Conclusion .. 126

5.3. Motivation for optimizing the MixColumn Transformation in AES operations 126

5.3.1. Introduction .. 126

5.3.2. Experimental Setup... 129

5.3.3. Proposed MM-AES Algorithm ... 130

5.3.4. Results and discussion .. 132

5.3.4.1. Encryption and Decryption time ... 132

5.3.4.2. Avalanche Effect ... 135

5.3.4.3. Linear Cryptanalysis ... 136

5.3.4.4. NIST Statistical Test Analysis .. 137

5.3.5. Conclusion .. 138

5.4. Motivation for Prime Number Generation Time in RSA Framework 138

5.4.1. Introduction .. 139

5.4.2. Experimental Setup .. 140

5.4.3. Proposed Algorithm ... 140

5.4.3.1. Northern Goshawk Optimization Algorithm (NGOA) ... 140

XI

5.4.3.2. Differential Evolution (DE) .. 141

5.4.3.3. NGOA-DE-RSA ... 142

5.4.4. Results and Discussion ... 143

5.4.4.1. Key Generation time ... 143

5.4.4.2. Encryption and Decryption times ... 144

5.4.4.3. Quality of Prime numbers ... 146

5.4.5. Conclusion .. 149

5.5. Motivation to improve cloud security and performance .. 149

5.5.1. Introduction .. 149

5.5.2. Justification of the Research .. 150

5.5.3. Experimental Setup .. 150

5.5.4. Results and Discussion ... 152

5.5.4.1. Encryption and Decryption times ... 152

5.5.4.1. Avalanche Effect ... 156

5.5.5. Conclusion .. 157

Chapter 6 ... 159

Conclusion, Recommendation and Future work ... 159

6.1. Chapter overview ... 159

6.2. Conclusion .. 159

6.3. Recommendation .. 165

6.4. Future research ... 165

References ... 167

XII

List of Tables

Table 2.1: Some definitions of Cryptography... 13

Table 2.2: Literature Matrix of Post-Quantum Cryptography .. 67

Table 3.1: Key and Block sizes. .. 73

Table 3.2: Encryption times for AES, Blowfish and Twofish (128 key bit). 73

Table 3.3: Decryption times for AES, Blowfish and Twofish (128 key bit). 74

Table 3.4: AES Throughput in kilobytes/seconds (128 key bit). .. 74

Table 3.5: Blowfish Throughput in kilobytes/seconds (128 key bit). .. 74

Table 3.6: Twofish Throughput in kilobytes/seconds (128 key bit). .. 75

Table 3.7: AES, Blowfish, and Twofish an overall comparison. ... 77

Table 3.8: Key bits and Block sizes. ... 77

Table 3.9: 128 key size - average encryption times. ... 78

Table 3.10: 192 key size - average encryption times. ... 78

Table 3.11: 256 key size - average encryption times. ... 78

Table 3.12: 128 key size - average decryption times. ... 78

Table 3.13: 192 key size - average decryption times. ... 79

Table 3.14: 256 key size - average decryption times. ... 79

Table 4.1: Key Exchange times of RSA and ECC. ... 88

Table 4.2: Encryption time. .. 89

Table 4.3: Decryption time. .. 89

Table 4.4: Signature Generation Time. ... 90

Table 4.5: Signature Verification Time. ... 90

Table 4.6: Key exchange times for Hybrid technique, Solo RSA and Solo ECC. 92

Table 4.7: Comparing Hybrid Technique (RSA and ECC) to Standard ECC and RSA. 93

Table 5.1: Machine Specifications. ... 100

Table 5.2: Average Process times for Categories A and B. .. 104

Table 5.3: Average Throughput in Kb/Seconds for Categories A and B. 105

Table 5.4: Encryption and Decryption Memory Utilization for Categories A and B. 105

Table 5.5: Power Consumption for Categories A and B. ... 106

Table 5.6: NIST Test for LZMA-AES Algorithm .. 113

Table 5.7: Encryption Time. ... 122

Table 5.8: Decryption Time. ... 123

Table 5.9: Hamming Distance Vs Avalanche effect. .. 124

Table 5.10: Degree of Confusion between AES and Multi-Chaotic AES. 125

Table 5.11: Simulation setup. ... 129

Table 5.12: Encryption Time. ... 132

Table 5.13: Decryption Time. ... 133

Table 5.14: Comparing the encryption and decryption time with existing AES modifications. 134

Table 5.15: Hamming Distance Vs Avalanche effect. .. 135

Table 5.16: Linear cryptanalysis between S-AES and MM-AES. .. 136

Table 5.17: NIST Test between S-AES and MM-AES. ... 137

Table 5.18: Simulation setup. ... 140

Table 5.19: Key Generation times (milliseconds). ... 143

XIII

Table 5.20: 1024 Key bit Encryption. ... 144

Table 5.21: 2048 Key bit Encryption. ... 144

Table 5.22: 3072 Key bit Encryption. ... 144

Table 5.23: 4096 Key bit Encryption. ... 144

Table 5.24: 1024 Key bit Decryption. .. 145

Table 5.25: 2048 Key bit Decryption. .. 145

Table 5.26: 3072 Key bit Decryption. .. 145

Table 5.27: 4096 Key bit Decryption. .. 145

Table 5.28: Prime number generation time... 149

Table 5.29: Simulation Setup. ... 151

Table 5.30: AES Key bit 128 Encryption Time. ... 152

Table 5.31: AES Key bit 192 Encryption Time. ... 153

Table 5.32: AES Key bit 256 Encryption Time. ... 154

Table 5.33: AES Key bit 128 Decryption Time. .. 154

Table 5.34: AES Key bit 192 Decryption Time. .. 155

Table 5. 35: AES Key bit 256 Decryption Time. ... 156

Table 5.36: Avalanche Effect Comparison. .. 157

Table 6.1: Mapping Research Objectives, Research Problems to Contributions. 162

XIV

List of Figures

Figure 1.1: Organization of dissertation ... 12

Figure 2.1: Classification of Encryption Methods. ... 16

Figure 2.2: Structure of AES [61]. .. 20

Figure 3.1: Average Process for AES, Blowfish and Twofish. .. 76

Figure 3.2: Average Throughput for AES, Blowfish, and Twofish.. 76

Figure 4.1: Simulation setup. .. 84

Figure 4.2: Proposed model flow graph with hybrid ECC, RSA and AES. 87

Figure 4.3: Key exchange analysis of ECC and RSA (in seconds). ... 88

Figure 4.4: RSA and ECC Encryption Time (in seconds). ... 89

Figure 4.5: RSA and ECC Decryption Time (in seconds). ... 90

Figure 4.6: Signature generation of ECC and RSA (in seconds). ... 91

Figure 4.7: Signature verification of ECC and RSA (in seconds). ... 91

Figure 5.1: LZMA Workflow. .. 98

Figure 5.2: Simulation of the AES and LZMA-AES. ... 101

Figure 5.3: Analysis of Encrypted DOC file. ... 107

 Figure 5.4: Analysis of Encrypted MP3 file. ... 108

Figure 5.5: Analysis of Encrypted MP4 file. .. 108

Figure 5.6: Analysis of Encrypted PDF file.. 109

Figure 5.7: Analysis of Encrypted PPT file. ... 109

Figure 5.8: Analysis of Encrypted TXT file. .. 110

Figure 5.9: Analysis of Encrypted XLS file. .. 110

Figure 5.10: Brute Force Attack Progress for Encrypted DOC file. ... 111

Figure 5.11: Brute Force Attack Progress for Encrypted MP3 file. ... 111

Figure 5.12: Brute Force Attack Progress for Encrypted MP4 file. ... 111

Figure 5.13: Brute Force Attack Progress for Encrypted PDF file. .. 112

Figure 5. 14: Brute Force Attack Progress for Encrypted PPT file. ... 112

Figure 5.15: Brute Force Attack Progress for Encrypted TXT file. ... 112

Figure 5.16: Brute Force Attack Progress for Encrypted XLS file. .. 112

Figure 5.17: Lorenz Attractor Diagram. ... 119

Figure 5.18: Chen Attractor Diagram. .. 120

Figure 5.19:AES Algorithm Encryption and Decryption Process [230]. 121

Figure 5.20:Multi-Chaotic AES Algorithm Encryption and Decryption.................................... 122

Figure 5.21: MixColumn Step Representation. .. 127

Figure 5.22: Generating Large Prime Numbers (p and q) with NGOA-DE-RSA 1024-bit Key

Length. ... 147

Figure 5.23: Generating Large Prime Numbers (p and q) with NGOA-DE-RSA 2048-bit Key

Length. ... 147

Figure 5.24: Generating Large Prime Numbers (p and q) with NGOA-DE-RSA 3072-bit Key

Length. ... 148

Figure 5.25: Generating Large Prime Numbers (p and q) with NGOA-DE-RSA 4096-bit Key

Length. ... 148

Figure 5.26: Cloud Platform. ... 151

Figure 5.27: Proposed Hybrid Crypto System diagram .. 152

XV

List of Algorithms

Algorithm 4.1: Sender-side Operations. ... 85

Algorithm 4.2: Recipient-side Operations. ... 86

Algorithm 5.1: LZMA + AES Algorithms. .. 103

Algorithm 5.2: Multi-Chaotic Effect Pseudocode. ... 121

Algorithm 5.3: Modified MixColumn Operation Pseudocode. .. 131

Algorithm 5.4: Modified Inverse MixColumn Operation Pseudocode. 132

Algorithm 5.5: NGOA Algorithm... 141

Algorithm 5.6: DE Algorithm. .. 142

Algorithm 5.7: NGOA-DE Algorithm. ... 142

XVI

List of Abbreviations

Nomenclature

Acronyms

AES Advanced Encryption Standard

RSA Rivest-Shamir-Adleman

ECC Elliptic Curve Cryptography

CPU Central Processing Unit

GPU Graphic Processing Unit

DES Data Encryption Standard

XOR Exclusive -OR operation

GF Galois Fields

3DES Triple Data Encryption Standard

IDEA International Data Encryption Algorithm

CAST Carlisle Adams and Stafford Tavares

TEA Tiny Encryption Algorithm

DSA Digital Signature Algorithm

RAM Random Access Memory

ECDLP Elliptic Curve Discrete Logarithm Problem

SSL Secure Sockets Layer

TLS Transport Layer Security

PRNG Pseudo-random Number Generation

PKI Public-Key Infrastructure

LAN Local Area Network

KET Key Exchange Time

CUDA Compute Unified Device Architecture

GCD Greatest Common Denominator

MM-AES Modified MixColumn Advanced Encryption Standard

EEF-AES Enhanced Encryption Framework Advanced Encryption Standard

LZMA Lempel-Ziv-Markov chain algorithm

FMT Faber-Schauder Multi-scale Transform

IV Initialization Vector

XVII

List of Publications

Published papers

1. Agyei-Ababio, N., Ansong, E., & Assa-Agyei, K. (2023). Digitalization of revenue mobilization

in an emerging economy: the new Institutional Theory perspective. International Journal of

Information Systems and Project Management, 11(2), 5–22.

https://doi.org/10.12821/ijispm110201

2. Assa-Agyei, K., & Olajide, F. (2023a). A Comparative Study of Twofish, Blowfish, and

Advanced Encryption Standard for Secured Data Transmission. International Journal of

Advanced Computer Science and Applications, 14(3), 393–398.

https://doi.org/10.14569/IJACSA.2023.0140344

3. Assa-Agyei, K., & Olajide, F. (2023b). A Comprehensive Evaluation of the Rivest-Shamir-

Adleman (RSA) Algorithm Performance on Operating Systems using Different Key Bit

Sizes. International Journal of Computer Applications, 185(19), 14–20.

https://doi.org/10.5120/ijca2023922884

4. Assa-Agyei, K., Olajide, F., & Lotfi, A. (2022). Security and Privacy Issues in IoT Healthcare

Application for Disabled Users in Developing Economies. Journal of Internet Technology

and Secured Transactions, 10(1), 770–779.

https://doi.org/10.20533/jitst.2046.3723.2022.0095

5. Assa-Agyei, K., Owa, K., Al-Hadhrami, T., & Olajide, F. (2024). Hybrid Algorithm using

Rivest-Shamir-Adleman and Elliptic Curve Cryptography for Secure Email Communication.

International Journal of Advanced Computer Science and Applications, 15(4), 1037–1047.

https://doi.org/10.14569/IJACSA.2024.01504105

6. Assa-Agyei, K., Owa, K., Olajide, F., & Al-Hadhrami, T. (2024). A Multi-Chaotic Key

Expansion for Advanced Encryption Standard (AES) Algorithm. 2024 International

Conference on Computing, Networking and Communications, ICNC 2024, 711–717.

https://doi.org/10.1109/ICNC59896.2024.10556263

6. Olajide, F., Assa-Agyei, K., & Edo, C. (2023). An Empirical Evaluation of Encryption and

Decryption Times on Block Cipher Techniques. Proceedings - 2023 Congress in Computer

Science, Computer Engineering, and Applied Computing, CSCE 2023, 2385–2390.

https://doi.org/10.1109/CSCE60160.2023.00386

Accepted papers

1. Conference Paper: A comparative study of the various key bit sizes on RSA algorithm with

CUDA (Accepted)

Author(s): Kwame Assa-Agyei, Funminiyi Olajide, Temitope Alade and Ahmad Lotfi

International Conference on Security & Management (SAM'22)

2. Conference Paper: Analysis and Improvement of MixColumn Operations in the Advanced
Encryption Standard Algorithm (Accepted)
Author(s): Kwame Assa-Agyei, Kayode Owa, Tawfik Al-Hadhrami, International
Conference on Security & Management (SAM'24)

XVIII

3. Conference Paper: Analysis and Improvement of MixColumn Operations in the Advanced
Encryption Standard Algorithm (Accepted)

Author(s): Kwame Assa-Agyei, Kayode Owa, Tawfik Al-Hadhrami,
International Conference on Security & Management (SAM'24)

4. Conference Paper: An Efficient Generation of Prime Numbers for RSA Encryption Scheme
(Accepted)

Author(s): Kwame Assa-Agyei, Kayode Owa, Tawfik Al-Hadhrami
International Conference on Security & Management (SAM'24)

5. Conference Paper: Blockchain Technology Readiness in Engineering Project Management:
Industry Experts’ Perspectives (Accepted)

Author(s): Nana-Yao Nsowah, Kwame Assa-Agyei, Frederick Edem Junior Broni, Selina Amoah
and Daniel O.T. Ihenacho
International Conference on Security & Management (SAM'24)

6. Journal Article: Optimizing Data Security with Advanced Encryption Standard and Lempel-Ziv-
Markov Chain algorithm (Revision Submitted)

Author(s): Funminiyi Olajide, Kwame Assa-Agyei, Tawfik Al-Hadhrami
PLOSOne

1

Chapter 1 Introduction

This chapter introduces the background of the study, problem statement, objectives of the study,

research question, scope of the study, significance of the study, contributions, and a general

overview of the dissertation. Finally, the contributions and research framework are presented in

this chapter.

1.1. Introduction and Motivation

Cryptographic algorithms have emerged as the predominant method for ensuring security in

safeguarding sensitive information. Among the key objectives of protection, confidentiality is a

critical aspect in implementing and integrating cryptographic algorithms in modern

communication system. This objective of confidentiality is given significant consideration by the

hardware involved in the process. In today's communication systems, the reliance on cryptographic

algorithms has grown substantially due to their ability to provide a high level of protection for vital

information. By employing complex mathematical computations and encryption techniques,

cryptographic algorithms encode data in a manner that renders it unintelligible to anyone without

the appropriate decryption key [1]. The integration of cryptographic algorithms into

communication systems involves careful consideration of various factors, including hardware

components. These components, such as processors and cryptographic modules, are responsible

for executing the algorithms and managing the encryption and decryption processes. During

implementation, special attention is given to the confidentiality objective, ensuring that the

hardware effectively maintains the secrecy and integrity of sensitive data. Confidentiality as an

essential element in cryptographic algorithm implementation involves the protection of

information from unauthorized disclosure. It encompasses measures taken to prevent

eavesdropping, data breaches, or unauthorized access to encrypted data. The hardware involved in

this process is designed to handle encryption and decryption operations securely, maintaining the

confidentiality of the data throughout the communication system [2]. Cryptography finds

applications in various domains to ensure secure communication and protect sensitive information

[3] [4]:

a. Secure Communication: Cryptography forms the foundation of secure communication protocols

such as SSL/TLS, which are used to establish secure connections between web browsers and

servers. It enables the encryption of data transmitted over the internet, preventing eavesdropping

and unauthorized access.

2

b. Data Protection: Cryptography is used to protect sensitive data at rest, such as stored passwords,

financial records, and medical records. Encryption algorithms safeguard this information, ensuring

that even if the data is compromised, it remains unreadable without the appropriate decryption key.

c. Digital Signatures: Cryptographic algorithms enable the creation of digital signatures, which

verify the authenticity and integrity of digital documents. Digital signatures provide non-

repudiation, ensuring that the signer cannot deny their involvement in the document.

d. Secure Authentication: Cryptography plays a crucial role in user authentication mechanisms,

such as password-based authentication, two-factor authentication, and biometric authentication. It

ensures that only authorized individuals can access protected systems or sensitive information.

As a result of the diverse requirements and security considerations in various applications, there is

a wide range of cryptographic algorithms available. These algorithms differ in terms of their

underlying mathematical principles, key sizes, security features, and performance characteristics

[5]. The availability of multiple cryptographic algorithms provides options for selecting the most

suitable algorithm based on specific needs and considerations. For symmetric key encryption, there

are several well-known algorithms such as Advanced Encryption Standard (AES), Data

Encryption Standard (DES), Triple Data Encryption Standard (3DES), and Blowfish. Each

algorithm has its own strengths and weaknesses in terms of security, speed, and suitability for

different use cases. In the realm of asymmetric key algorithms, the most widely used ones include

RSA, Diffie-Hellman, Elliptic Curve Cryptography (ECC), and ElGamal [6] [4]. These algorithms

offer different levels of security and efficiency, and they are often used for tasks like key exchange,

digital signatures, and secure communication. Furthermore, there are hash functions like SHA-

256, MD5, and SHA-3, which are used for data integrity verification and password storage. Hash

functions play a crucial role in ensuring the integrity of data by generating fixed-length

representations (hash values) from variable-length input data. In addition to the commonly used

cryptographic algorithms, there are also specialized algorithms designed for specific purposes [7].

These include algorithms for homomorphic encryption, zero-knowledge proofs, post-quantum

cryptography, and more. These specialized algorithms address unique requirements, such as secure

computation on encrypted data, proving knowledge of information without revealing it, and

resistance against attacks by quantum computers [8].

3

This study empirically investigates the performance of the most commonly used asymmetric and

symmetric cryptographic algorithms. Furthermore, this study examines the performance based on

encryption and decryption times, throughput (speed), memory usage (space complexity) and power

consumption. In addition to the availability of various cryptographic algorithms, this thesis

proposes techniques that focus on improving the performance of both symmetric and asymmetric

algorithms through low-level programming. Low-level programming involves working at a lower

level of abstraction, closer to the hardware and processor architecture, to optimize code execution

and maximize performance. By leveraging low-level programming techniques, the thesis aims to

enhance the efficiency and speed of cryptographic algorithms. For symmetric key algorithms, such

as AES, the thesis explores low-level programming improvement that can be applied to the

encryption and decryption processes. This may involve utilizing specific processor instructions or

optimizing memory access patterns to minimize computational overhead and improve overall

performance. Similarly, for asymmetric key algorithms like RSA or Elliptic Curve Cryptography

(ECC), the thesis proposes techniques to enhance key generation, encryption, and decryption

operations. Low-level programming can be used to leverage processor capabilities, parallelization,

or specialized instructions to speed up the mathematical computations involved in these

algorithms.

The goal of these proposed techniques is to reduce the computational complexity and runtime of

cryptographic operations without compromising security. By fine-tuning the implementation at a

low level, the thesis aims to achieve significant performance improvements, making cryptographic

algorithms more efficient and practical for real-world applications. The thesis delves into these

technical details to demonstrate the effectiveness of the proposed techniques and their impact on

the performance of both symmetric and asymmetric algorithms.

Overall, by incorporating low-level programming techniques, the thesis aims to contribute to the

field of cryptography by enhancing the performance and efficiency of cryptographic algorithms,

making them more viable for resource-constrained environments or applications that require high-

speed cryptographic operations.

1.2. Problem statement

According to Bruce Schneier, a renowned cryptographer makes it clear and obvious that

cryptography can be strong or weak [9]. Cryptographic algorithms are evaluated based on the time

and resources required to decrypt the ciphertext and their susceptibility to various types of attacks.

4

Deciphering a robust encryption without the necessary decoding equipment is extremely

challenging and arduous. Many cryptographic algorithms exist, and various aspects support the

selection of a certain method, including its capacity to secure data against assaults, time complexity

(speed), space complexity (memory), latency, and efficiency. These algorithms depend on

complex mathematical computational problems that are heavily influenced by parameter selection,

causing them to operate slowly during transactions. The performance of an algorithm, including

factors like running time and memory usage, is crucial and can significantly impact the overall

efficiency of the method. [10].

Previous studies identified a number of research gaps:

1. The Advanced Encryption Standard (AES) is recognized as one of the most secure and

efficient symmetric cryptosystems for encryption. It utilizes the Rijndael Algorithm for the

generation and expansion of keys, supporting key sizes of 128, 192, and 256 bits. Traditional

methods for key expansion in AES employ fixed approaches, where the same expansion mode is

consistently applied throughout the encryption process [1][11]. The AES key expansion algorithm

is a crucial component of the AES encryption and decryption procedures. It takes the initial secret

key and generates a series of round keys used in various rounds of AES. Despite its efficiency, the

AES key expansion algorithm has a significant vulnerability. In the event that an adversary gains

knowledge of any round key, they can deduce all other round keys, a weakness known as the

"related-key attack." This vulnerability poses a substantial threat to the overall security of AES

[12].

2. In contemporary digital environments, ensuring the security of data during transmission is

crucial, often achieved through the application of encryption techniques such as the Advanced

Encryption Standard (AES). Many methods that incorporate encryption and compression face the

challenge of minimizing data size while simultaneously maintaining the security of the algorithm

[13][14]. This means finding a balance between optimizing data storage and safeguarding the

integrity and confidentiality of the information.

3. Advanced Encryption Standard (AES) has become widely used in the information security

industry because of its superior security and effectiveness. In 2001, the National Institute of

Standards and Technology (NIST) released AES as Federal Information Processing Standard 197

(FIPS 197) [15]. Implementing AES encryption resolves the aging issues associated with the Data

5

Encryption Standard (DES). The Rijndael (AES) symmetric block cipher standard version is

capable of encrypting and decrypting plaintext in 128-bit blocks using a key of 128-bit, 192-bit,

or 256-bit size [16]. AES follows a precise sequence of four distinct transformations—Sub Bytes,

ShiftRows, MixColumns, and AddRoundKey—in that particular order. Each transformation

involves mapping a 128-bit input state to a corresponding 128-bit output state. The number of

rounds needed to produce the cipher text is determined by the size of the cipher key and the

iterations in a loop, Nr, which can be set to 10, 12, or 14 [17]. Previous studies into the MixColumn

operation have highlighted that the MixColumn transformation within the AES encryption process

is resource-intensive, particularly in terms of delay and throughput. The multiplication operation

inherent in MixColumn is slow and can have a substantial impact on the overall speed of

encryption [18][19].

4. The RSA cryptographic algorithm places a significant reliance on the secure generation of

substantial prime numbers during its initialization process [20]. However, challenges emerge

concerning the speed of prime number selection and the imperative need for larger primes to

enhance security [21][22].

5. Research papers examining symmetric cryptographic algorithms highlight the presence of

experimental gaps related to process times, throughput, space complexity, and power consumption

[23][24][25][26]. These gaps arise due to limited methodological descriptions and flawed

comparisons caused by variations in key bit sizes and fixed block sizes among different algorithms.

The observed experimental gaps underscore areas that require further investigation and

improvement. One contributing factor to these gaps is the inadequate level of detail provided in

the methodology descriptions of certain research papers. Thorough descriptions of the

experimental setup, input data, computational environment, and measurement techniques are vital

for ensuring reproducibility and reliable results. Without comprehensive methodology

descriptions, accurate comparisons and evaluations of cryptographic algorithm performance

become challenging. Another factor leading to flawed comparisons is the presence of different key

bit sizes and fixed block sizes among the cryptographic algorithms being assessed. Key bit size

refers to the length of the cryptographic keys used in the algorithms, while fixed block size refers

to the fixed-length blocks of data processed by the algorithms [27]. These variations can

significantly impact the performance metrics and make direct comparisons problematic. To obtain

6

meaningful and valid comparisons, it is essential to ensure that the key bit sizes and fixed block

sizes are consistent across the evaluated algorithms.

6. Research papers focused on the analysis of asymmetric algorithms have consistently

demonstrated that Elliptic Curve Cryptography (ECC) outperforms all other asymmetric

algorithms in terms of speed and efficiency. Nevertheless, it is crucial to note that existing studies

have primarily concentrated on ECC's comparative advantage in specific scenario [28][29].

However, there remains a significant gap in the literature as no comprehensive investigation has

been conducted to evaluate the performance of asymmetric algorithms across a diverse range of

applications. A thorough exploration of such algorithms, considering various use cases, is

necessary to determine their respective process times, throughput, and other relevant metrics. This

broader analysis would provide a more comprehensive understanding of how different asymmetric

algorithms perform under different conditions and could potentially unveil novel insights into their

practical applicability and optimization opportunities.

Thus, this study envisions that the introduced techniques can improve the performance of

cryptographic algorithms for secured online data transmission in terms of security, process times,

space complexity, and throughput and power consumption.

1.3. Aim

This research aims to introduce techniques to enhance the existing cryptographic algorithms,

ensuring faster and more secure data transmission and transactional operations. This will be

achieved by addressing various crucial aspects such as encryption and decryption times,

throughput, memory usage, power consumption, and security of the proposed algorithms.

1.4. Objectives of the study

The primary objective of this research is to put forward advanced cryptographic algorithms that concentrate

on securing data communication and transactions. The specific objectives are as follows:

1. To conduct a performance analysis of the most commonly used symmetric algorithms

2. To evaluate the performance of the most commonly used asymmetric algorithms

3. To create and introduce an improved asymmetric algorithm that specifically targets

efficient data communication and transaction processing

7

4. To develop enhanced symmetric algorithms focusing on data communication and

transaction

1.5. Research Questions

1. Which symmetric algorithm exhibits optimal performance in terms of processing times,

throughput, memory usage, and power consumption?

2. Which asymmetric algorithm shows the best performance in terms of key exchange time,

encryption and decryption durations, signature generation, and verification times?

3. What research investigations can be conducted to develop and introduce an advanced

asymmetric algorithm that focuses on maximizing the efficiency of data communication

and transaction processing?

4. What innovative approaches can be developed to enhance symmetric algorithms

specifically tailored for improving data communication and transaction processes?

1.6. Significance of the study

This study holds significant importance in terms of research, policy, and practice. It adds valuable

insights to the existing body of literature on Cryptography and addresses the research gap by

exploring areas that lack sufficient scholarly work. Moreover, this research serves as a

comprehensive reference for students and researchers interested in further exploring the utilization

of Cryptography.

Furthermore, the findings of this study have practical implications, as they contribute to the

development and implementation of effective cryptographic algorithms to enhance

communication and strengthen cryptographic security. Policymakers can rely on the outcomes of

this study to make informed decisions regarding the application and usage of cryptosystems.

1.7. Contributions to Knowledge

This section outlines and describes the key research contributions of this dissertation:

 This study conducts both theoretical and empirical analyzes to evaluate the performance of

AES, Blowfish, 3DES, and Twofish in terms of encryption times, decryption times and throughput

(speed).The evaluation is carried out using comparable key bit sizes and their respective fixed

block sizes. Based on the identified research gaps, the study formulated and successfully executed

8

two primary tasks. These accomplishments have been thoroughly documented in a peer-reviewed

journal article (Q3) and presented in a conference paper published in the IEEE proceedings. The

respective publications can be accessed via the following links: [Journal Article (Q3)] and

[Conference Paper (IEEE Proceedings)].

1. https://doi.org/10.14569/IJACSA.2023.0140344

2. https://doi.org/10.1109/CSCE60160.2023.00386

 In this research study, a thorough performance evaluation is carried out on the most

commonly used asymmetric algorithms. The main objective of this evaluation is to assess the

algorithms' effectiveness and efficiency across various real-world use case (secure email

communication). The study aims to determine essential metrics such as process times, throughput,

and other relevant factors that directly impact the algorithms' practical applicability. By examining

the algorithms under diverse scenarios, this research seeks to provide a comprehensive

understanding of how they perform in different situations. The findings of this evaluation will not

only shed light on the strengths and weaknesses of each asymmetric algorithm but also offer

valuable insights into their suitability for specific applications. Through this investigation,

researchers hope to contribute to the optimization of asymmetric algorithms and aid in the

decision-making process for selecting the most suitable algorithm for the use case. Furthermore,

the study's results may serve as a valuable resource for developers, cybersecurity experts, and other

professionals involved in cryptographic systems, helping them make informed choices to enhance

the security and efficiency of their applications.

This task was also documented in a peer-reviewed journal article classified as Q3. Below is the

link: https://doi.org/10.14569/IJACSA.2024.01504105

 The final contribution mainly seeks to make a significant contribution by developing novel

cryptographic algorithms that are specifically designed to enhance the efficiency of data

communication and transaction processing. These algorithms will be tailored to address the

challenges and requirements associated with secure and efficient data exchange and transactional

activities. By introducing these innovative cryptographic algorithms, this study intends to provide

practical solutions that can optimize the security and effectiveness of data communication and

transaction processing systems. The development of such algorithms has the potential to

https://doi.org/10.14569/IJACSA.2023.0140344
https://doi.org/10.1109/CSCE60160.2023.00386
https://doi.org/10.14569/IJACSA.2024.01504105

9

revolutionize the field of cryptography and significantly impact various domains that rely on

secure and efficient data transmission and transactional operations.

Based on the gaps identified in existing AES and RSA frameworks and their modifications, this

study has made several significant contributions to the body of knowledge. Below is the list of

published and accepted papers:

1. https://doi.org/10.1109/ICNC59896.2024.10556263

Accepted Journal and Conference papers

1. Analysis and Improvement of MixColumn Operations in the Advanced Encryption

Standard Algorithm

2. An Efficient Generation of Prime Numbers for RSA Encryption Scheme

3. Optimizing Data Security with Advanced Encryption Standard and Lempel-Ziv-Markov

Chain algorithm

In summary, the unique contribution to knowledge is the creation of algorithms that will improve

processor efficiency and security. Based on the research gaps, the direction is to develop new

algorithms which will be compared to existing cryptographic algorithms to measure the following

indicators: throughput, execution times, memory usage, and security.

1.8. Sources of information and resources

This research with get information from the following resources;

 The secondary source is the NTU library sources

 The internet such as Google Scholar, IEEE Xplore, ISI Web of Science and many more

 Subsequently, the primary research phase will be initiated, involving simulations and

experiments to effectively address the identified research problem.

1.8.1. Software requirements:

 NVIDIA CUDA

 Python

 Math Lab/Mini Tab

https://doi.org/10.1109/ICNC59896.2024.10556263

10

 MathType

1.8.2. Hardware requirements:

 CUDA – Enabled GPU NVIDIA GeForce GT 130M

o 1.5 GHz with 32 Cores

o Processor clock of 1500MHz

o Memory Clock of 800MHz

o Memory Interface width of 128

 CPU

o Intel i7/i9 CPU with speed of 5.0 GHz

1.8.3. Standard Libraries/Dependencies used

o cffi

o cryptography

o numpy

o pip

o psutil

o pycparser

o pycryptodomex

o pycryptoplus

o scipy

o wheel

1.9. Organization of the Dissertation

The dissertation follows this structure: Chapter 2 explores prior research on widely used

asymmetric and symmetric algorithms, the mathematics of cryptography, AES and RSA

algorithms, and post-quantum cryptography. Chapter 3 investigates the effectiveness of symmetric

algorithms commonly employed for data transmission, aligned with research objective (RO 1).

11

Chapter 4 outlines the performance evaluation of the most commonly used asymmetric algorithms,

aligned with research objective (RO 2). Chapter 5 introduces innovative architectures for AES and

RSA algorithms, with a focus on data communication and transmission. Chapter 6 concludes and

provides recommendation by elaborating on vital points and contributions made throughout the

dissertation. Lastly, future research directions are provided in the concluding section.

12

Figure 1.1: Organization of dissertation

A
n

 E
n

h
a

n
ce

d
 P

er
fo

rm
a

n
ce

 o
f

C
ry

p
to

g
ra

p
h

ic
 A

lg
o

ri
th

m
s

fo
r

S
ec

u
re

d
 O

n
li

n
e

D
a

ta

T
ra

n
sm

is
si

o
n

CHAPTER 1

- Introduction & Motivation

CHAPTER 2

- Previous Research Efforts in Cryptography

CHAPTER 3

- Empirical Evaluation of Symmetric Block Cipher Techniques

CHAPTER 4

- Comparative Analysis of ECC and RSA

CHAPTER 5

- Improved RSA and AES Frameworks

CHAPTER 6

- Conclusion, Recommendation and Future Research Directions

13

Chapter 2 Literature Review

2.1. Introduction

This chapter reviews the available literature written on this topic and in other related areas. This

will be made possible by the identification, collection, and review of this literature from various

sources such as textbooks, journals, reports, and the internet.

In today's interconnected world, ensuring the security of both wired and remote organizations is

of utmost importance [30]. The exchange of data necessitates a strong focus on organizational

security. To achieve this objective, numerous innovative implementations and security measures

have been developed. Rather than the knowledge transferred, the primary concern lies in the level

of security offered by the communication channel during data transmission. This technology

enables the secure transfer of data while ensuring confidentiality and reliable encryption. Remote

organizations are susceptible to various attacks due to their open design, dynamic geographical

nature, and lack of a physical perimeter. Wired and remote organizations can be targeted by

different types of attacks, including ciphertext attacks, brute force attacks, known-plaintext attacks,

denial of service attacks, side-channel attacks, and more. Implementing diverse cryptographic

techniques is crucial to safeguarding customer information and mitigating these types of attacks.

Cryptography plays a pivotal and indispensable role in achieving optimal security. Its purpose is

to establish a secure, robust, and long-lasting connection while safeguarding data integrity [31].

2.2. Defining Cryptography

This research focuses on the practical implementation of Cryptography and its empirical results.

Therefore, it is important to consider definitions that are practical and can be found in both

scientific and non-scientific literature. Table 2.1 presents a summary of different definitions of

Cryptography.

Table 2.1: Some definitions of Cryptography.

Authors Definitions/Conceptualization

Bruce Schneier [9] “Cryptography is the science of secret communication,

and its goal is to provide confidentiality, integrity, and

authenticity of information”.

William Stallings [32] “Cryptography is the practice and study of techniques

for secure communication in the presence of

adversaries. It encompasses encryption, decryption,

and related techniques that are used to protect

14

information from unauthorized access or

modification.”

Alfred J. Menezes, Paul C. van Oorschot, and Scott A.

Vanstone [33]

“Cryptography is the mathematical science of secret

writing. It involves transforming messages to make

them secure and immune to attacks. Cryptographic

techniques can be used to ensure privacy, integrity,

authentication, and non-repudiation in various

applications.”

Oded Goldreich [34] “Cryptography deals with the secure transmission of

information in the presence of adversaries. It

encompasses the design, analysis, and implementation

of methods and protocols for secure communication.”

John F. Dooley [35] “Cryptography is the science of encoding and

decoding messages so that they remain secure during

transmission and storage. It involves the use of

mathematical algorithms and keys to transform

plaintext into ciphertext and vice versa.”

Source: Author’s Table

These are just a few examples, and different authors may have slightly different perspectives or

emphasize different aspects of cryptography. However, they all generally recognize cryptography

as a field that focuses on secure communication, protection of information, and the use of

mathematical techniques to achieve confidentiality, integrity, and authenticity.

2.3. Objectives of Cryptography

The objectives of cryptography revolve around ensuring the secure transmission and storage of

information. Here are the main objectives of cryptography [36][37]:

 Confidentiality: One of the primary objectives of cryptography is to provide confidentiality

or privacy. It ensures that information remains secret and can only be accessed by authorized

individuals. By encrypting data, cryptography transforms it into a format that is unintelligible to

unauthorized parties. Only those with the correct decryption key can decipher the encrypted

message and access the original information.

 Integrity: Cryptography aims to maintain the integrity of data, ensuring that it remains

unaltered during transmission or storage. By using techniques such as digital signatures or message

15

authentication codes (MACs), cryptography can detect any unauthorized modifications or

tampering with the data. If any changes are detected, it indicates that the data may have been

compromised or corrupted.

 Authentication: Cryptography provides mechanisms for authentication, which verify the

identity of the communicating parties. Digital signatures, based on public key cryptography, allow

the recipient to verify the sender's identity and ensure that the message has not been tampered with

during transmission. Authentication ensures that the information received is from a trusted source

and has not been modified by unauthorized entities.

 Non-repudiation: Non-repudiation is the ability to prevent the sender of a message from

denying their involvement in the communication. Cryptographic techniques, such as digital

signatures, provide a means to establish non-repudiation. A digital signature provides proof of the

sender's identity and ensures that they cannot later deny sending the message.

 Key Management: Effective key management is a crucial objective of cryptography.

Cryptographic algorithms rely on the use of keys for encryption and decryption. Secure generation,

distribution, storage, and revocation of cryptographic keys are essential to maintain the overall

security of cryptographic systems.

 Accessibility: Cryptography also aims to ensure that authorized individuals can access the

encrypted information efficiently. It provides mechanisms for secure key exchange or sharing

between communicating parties, allowing them to encrypt and decrypt data as needed.

Overall, the objectives of cryptography are to protect the confidentiality, integrity, and authenticity

of information, establish trust and authenticity between communicating parties, prevent

unauthorized access or modifications, and provide reliable mechanisms for secure communication

and data storage. By achieving these objectives, cryptography plays a crucial role in ensuring

information security in various domains such as communication networks, e-commerce, financial

transactions, and data protection.

2.4. Classification of encryption

In Figure 2.1, the classification methods of encryption for ciphers are depicted. The classification

is broadly divided into two main categories: Classical Encryption and Modern Encryption. Within

these categories, there are two subcategories. Classical Encryption is comprised of Substitution

16

and Transposition techniques, while Modern Encryption is categorized based on the usage of the

key, namely Secret Key (Symmetric) and Public Key (Asymmetric). Substitution is further sub-

divided into Mono-alphabetic and Polyalphabetic methods [38].

Figure 2.1: Classification of Encryption Methods.

2.5. Classical ciphers

Classical ciphers refer to encryption techniques that were developed and used before the advent of

modern cryptographic methods. These ciphers have a long history and were widely used for secure

communication in various contexts. Here are some of the most common classical ciphers [35]:

Caesar Cipher: The Caesar cipher is one of the simplest and earliest known substitution ciphers.

It involves shifting the letters of the alphabet by a fixed number of positions. For example, with a

shift of 3, 'A' would be encrypted as 'D', 'B' as 'E', and so on. It is a type of mono-alphabetic

substitution cipher as each letter is substituted with a different letter of the alphabet [39].

Vigenère Cipher: The Vigenère cipher is a polyalphabetic substitution cipher that builds upon the

Caesar cipher. It uses a keyword to determine the amount of shift applied to each letter. The

keyword is repeated until it matches the length of the plaintext. This makes it more resistant to

frequency analysis attacks compared to mono-alphabetic cipher [40].

17

Playfair Cipher: The Playfair cipher is a digraph substitution cipher that uses a 5x5 matrix of

letters. It operates on pairs of letters (digraphs) in the plaintext, replacing them with corresponding

digraphs from the matrix. The key is used to determine the positions of the letters in the matrix.

The Playfair cipher offers stronger encryption than simple substitution ciphers [35].

2.6. Transposition ciphers

Transposition ciphers offer a different level of security compared to substitution ciphers. They can

be effective in hiding the original message's structure and patterns, making it challenging for

cryptanalysts to analyze and decipher the ciphertext. However, transposition ciphers do not change

the characters themselves, which means that the frequency distribution and statistical properties of

the original message may still be present in the ciphertext. This vulnerability can be exploited by

skilled cryptanalysts to break the cipher [41].

There are various techniques for implementing transposition ciphers, each with its own method of

rearranging the characters. Some common transposition cipher techniques include:

Columnar Transposition: This method involves writing the message in a grid with a fixed number

of columns and then reading the ciphertext by following a specific column order. The order of the

columns is determined by a key or permutation rule.

Rail Fence: The Rail Fence cipher arranges the characters of the message diagonally over a set

number of "rails" or lines. The ciphertext is obtained by reading off the characters in a zigzag

pattern along the rails.

Route Cipher: Route ciphers involve systematically moving the characters of the message through

predetermined routes or paths. The order and direction of the routes dictate the rearrangement of

the characters.

Scytale: The Scytale cipher is an ancient technique that involves wrapping a strip of paper around

a cylinder of a specific diameter and then writing the message along the strip. The ciphertext is

obtained by reading the characters in a specific pattern as the strip is unwound.

Transposition ciphers can be used in combination with other encryption techniques to enhance the

security of a communication system. While they may not provide the same level of cryptographic

strength as modern encryption algorithms, transposition ciphers have historical significance and

serve as educational tools for understanding the principles of cryptography [35].

2.8. Modern ciphers

Modern ciphers can be classified into two categories based on various factors, such as the

techniques used, the keys employed, and the intended applications [42]

18

1. Symmetric Key Cryptography: Also known as secret key cryptography, symmetric key

cryptography uses a single secret key for both encryption and decryption. The same key is shared

between the sender and the receiver. Symmetric key algorithms are generally faster and more

efficient than other types of algorithms. However, the main challenge lies in securely exchanging

the secret key between the communicating parties. Examples of symmetric key algorithms include

the Data Encryption Standard (DES), Advanced Encryption Standard (AES), and Triple Data

Encryption Standard (3DES) [27][23].

2. Asymmetric Key Cryptography: Asymmetric key cryptography, also called public key

cryptography, employs a pair of keys - a public key and a private key. The public key is freely

available to anyone, while the private key is kept secret by the owner. Messages encrypted with

the public key can only be decrypted with the corresponding private key, and vice versa.

Asymmetric key cryptography addresses the key exchange problem faced in symmetric key

cryptography. It provides a solution for secure communication and digital signatures. The most

widely used asymmetric key algorithm is the RSA algorithm, while others include Diffie-Hellman,

Elliptic Curve Cryptography (ECC), and Digital Signature Algorithm (DSA) [43][44].

2.9. Types of Symmetric Algorithms

Symmetric encryption algorithms operate on the principle of using a single secret key for both

encryption and decryption. These algorithms can be classified into two main types: block ciphers

and stream ciphers [45][46].

2.9.1. Block Ciphers

Block ciphers divide the plaintext into fixed-size blocks and encrypt each block independently

using the secret key. The most common block cipher is the Advanced Encryption Standard (AES).

AES operates on fixed-size blocks of 128 bits and supports key sizes of 128, 192, and 256 bits.

Other examples of block ciphers include Data Encryption Standard (DES) and Triple Data

Encryption Standard (3DES).

In block ciphers, the encryption and decryption processes are typically implemented using rounds

of mathematical operations such as substitution, permutation, and key mixing. Each block is

transformed using these operations in a series of rounds, and the final output is the encrypted

ciphertext. The same process is followed in reverse during decryption to obtain the original

plaintext.

19

Block ciphers are highly secure and provide strong encryption, making them suitable for a wide

range of applications. They are particularly efficient when processing large amounts of data in a

batch mode. However, block ciphers require padding when the input message length is not an exact

multiple of the block size. The use of modes of operation, such as Cipher Block Chaining (CBC)

or Counter (CTR), allows for the encryption of messages longer than a single block.

2.9.1.1. Advanced Encryption Standard (AES)

The AES (Advanced Encryption Standard) algorithm is a symmetric block cipher used for

encrypting and decrypting sensitive data. It is widely considered to be one of the most secure

encryption algorithms available today. The AES algorithm operates on fixed-size blocks of data

and uses a secret key to perform the encryption and decryption processes. Here is an overview of

the AES algorithm [47]:

1. Key Sizes: AES supports three key sizes: 128 bits, 192 bits, and 256 bits. The key size

determines the level of security and the number of rounds performed during the encryption process.

Substitution-Permutation Network (SPN): AES uses a substitution-permutation network structure,

which consists of multiple rounds of substitution and permutation operations. In each round, four

different transformations are applied to the data: SubBytes, ShiftRows, MixColumns, and

AddRoundKey.

2. SubBytes Transformation: The SubBytes transformation replaces each byte in the input

block with a corresponding value from an S-box lookup table. The S-box provides confusion and

non-linearity to the algorithm.

3. ShiftRows Transformation: The ShiftRows transformation cyclically shifts the bytes in

each row of the state matrix. This operation ensures that the data is spread out across different

rows, enhancing the diffusion property of the algorithm.

4. MixColumns Transformation: The MixColumns transformation operates on the columns

of the state matrix, treating each column as a polynomial over the Galois field. This transformation

provides additional diffusion and strengthens the encryption algorithm.

5. AddRoundKey Transformation: The AddRoundKey transformation XORs each byte of the

state matrix with a round key derived from the main encryption key. The round key is generated

using a key expansion algorithm.

20

6. Key Expansion: The AES key expansion algorithm generates a set of round keys from the

main encryption key. These round keys are used in each round of the encryption and decryption

processes. The number of rounds depends on the key size: 10 rounds for 128-bit keys, 12 rounds

for 192-bit keys, and 14 rounds for 256-bit keys.

7. Security and Performance: The AES algorithm has been extensively analyzed by

cryptographers, and no practical vulnerabilities have been discovered when used with

recommended key sizes. AES provides a high level of security against various types of attacks,

including brute-force attacks. It also offers good performance and can be efficiently implemented

in both software and hardware.

8. Standardization: AES was selected by the U.S. National Institute of Standards and

Technology (NIST) in 2001 after a public competition to replace the aging Data Encryption

Standard (DES). AES has since become a global standard and is widely used in various

applications and protocols requiring secure encryption [48].

The AES algorithm has been thoroughly vetted and is trusted by governments, organizations, and

individuals worldwide. Its strength, efficiency, and wide adoption make it a cornerstone of modern

cryptography, ensuring the confidentiality and integrity of sensitive data [49].

Figure 2.2: Structure of AES [61].

21

2.9.1.2. Blowfish algorithm

The Blowfish algorithm is a symmetric key block cipher designed by Bruce Schneier in 1993. It

is known for its simplicity, security, and flexibility. Blowfish is a Feistel network cipher that

operates on fixed-size blocks of data and uses a variable-length key, making it suitable for various

applications [50][51].

Here are some key features and characteristics of the Blowfish algorithm:

1. Key Size: Blowfish supports variable key sizes from 32 bits to 448 bits. The key length

can be any multiple of 8 bits, and it is used to initialize the subkeys during the key expansion

phase.

2. Subkey Generation: Blowfish employs a key expansion algorithm to generate a series of

subkeys from the original key. The subkeys are derived using a complex function that combines

the key material with elements of the algorithm's internal state.

3. Feistel Network: Blowfish follows a Feistel network structure, where the data is divided

into two halves, and a series of rounds are performed on these halves. In each round, one half is

subjected to a function that depends on the current round's subkey and the other half is XORed

with the output of the function. The halves are then swapped, and the process is repeated for the

specified number of rounds.

4. Substitution and XOR Operations: Blowfish employs both substitution and XOR

operations to provide confusion and diffusion. It uses large substitution boxes (S-boxes) to perform

byte-level substitutions. The S-boxes are initialized with a fixed set of predefined values during

the key setup phase.

5. Variable Number of Rounds: Blowfish allows for a variable number of rounds, typically

ranging from 16 to 32 rounds. More rounds increase the security but also increase the

computational overhead.

6. Efficient Implementation: Blowfish is known for its efficiency in both software and

hardware implementations. It does not require complex arithmetic operations, making it relatively

fast on various platforms.

22

7. Security: Blowfish is considered secure and has withstood extensive analysis over the

years. No practical attacks have been discovered that would compromise the algorithm's security

when used with appropriate key lengths.

8. Applications: Blowfish has been widely used in various applications, including secure file

storage, virtual private networks (VPNs), password hashing, and data encryption in software

products. Its flexibility in supporting different key sizes makes it suitable for a range of security

requirements.

While Blowfish has been widely adopted and remains a respected encryption algorithm, it has been

largely superseded by more recent algorithms such as AES (Advanced Encryption Standard) due

to its limited block size and the availability of more efficient alternatives.

Overall, Blowfish is a well-regarded symmetric key encryption algorithm known for its simplicity,

flexibility, and security. Its legacy continues to influence the field of cryptography and serves as

the foundation for further advancements in encryption techniques [52].

2.9.1.3. Data Encryption Standard

DES (Data Encryption Standard) is a symmetric key block cipher algorithm used for encryption

and decryption of data. It was developed in the 1970s by IBM and later adopted as a standard by

NIST (National Institute of Standards and Technology). Here is an explanation of how DES

cryptography works [53]:

Key Generation: The DES algorithm uses a 64-bit key, but only 56 bits are used for encryption,

with the remaining 8 bits reserved for parity checks.

The key undergoes a key scheduling process to generate 16 subkeys. Each subkey is 48 bits long

and is derived from the original key.

Encryption Process: The plaintext to be encrypted is divided into 64-bit blocks. The initial

permutation (IP) is applied to the plaintext block, rearranging the bits. The plaintext block is then

divided into two 32-bit halves: the left half (L0) and the right half (R0). The encryption process

consists of 16 rounds, where each round applies a series of operations to the data. In each round:

The right half (Ri-1) is expanded to 48 bits using a permutation operation. The expanded right half

is XORed with the current subkey (Ki) derived from the key scheduling process. The XORed result

goes through eight substitution operations using S-boxes, which provide non-linear

23

transformations. The output of the S-boxes is permuted using a fixed P-box permutation. The

permuted output is XORed with the left half (Li-1). The left and right halves are swapped, and the

process continues for the next round. After the 16 rounds, the final left and right halves are

swapped.

Decryption Process: The decryption process is similar to encryption but uses the subkeys in reverse

order. The ciphertext is divided into blocks of the same size (64 bits). The input block goes through

the same series of rounds as in encryption, but with the subkeys applied in reverse order. After the

final round, the left and right halves are swapped.

Finalization: The final ciphertext undergoes a final permutation (IP-1) to obtain the encrypted data.

The strength of DES cryptography lies in the complexity of its algorithm, which involves a

combination of substitution, permutation, and XOR operations. However, advances in computing

power have made DES vulnerable to brute-force attacks. To enhance security, Triple-DES (3DES)

is often used, which applies the DES algorithm three times with different keys.

The DES has been largely replaced by the Advanced Encryption Standard (AES), which provides

stronger security and supports larger key sizes. Nonetheless, DES is still used in certain legacy

systems and applications [54][55].

2.9.1.4. Triple Data Encryption Standard (3DES)

Triple Data Encryption Standard (3DES) is a symmetric key block cipher algorithm that provides

increased security by applying the Data Encryption Standard (DES) algorithm multiple times. It is

also known as TDEA (Triple Data Encryption Algorithm) [56]. Here is an overview of 3DES [57]:

Key Generation: 3DES uses three 56-bit keys (168 bits in total). These keys are referred to as

Key1, Key2, and Key3. The three keys undergo a key scheduling process to generate subkeys for

each encryption round.

Encryption Process: The plaintext to be encrypted is divided into blocks of 64 bits. The encryption

process consists of three stages: encryption with Key1, decryption with Key2, and encryption again

with Key3. In each stage, the block undergoes the same process as the standard DES algorithm,

which involves an initial permutation, 16 rounds of operations, and a final permutation. Each stage

uses a different key and applies the DES algorithm with the key in the corresponding direction.

24

Decryption Process: The decryption process is the reverse of the encryption process. The

ciphertext is divided into blocks of 64 bits. The decryption process consists of three stages:

decryption with Key3, encryption with Key2, and decryption with Key1. Each stage uses the

respective key and applies the DES algorithm in the reverse direction.

Keying Options: 3DES supports different keying options, providing flexibility in the choice and

management of keys: Keying Option 1: Each of the three keys (Key1, Key2, and Key3) is

independent, providing the highest security level. Keying Option 2: Key1 and Key2 are identical,

while Key3 is different. This option offers backward compatibility with single DES.

Keying Option 3: All three keys (Key1, Key2, and Key3) are identical, providing compatibility

with single DES while offering a longer key length.

3DES improves the security of the original DES algorithm by increasing the effective key length

to 168 bits. It offers a higher level of resistance against brute-force attacks due to the larger key

space. However, it is slower compared to modern encryption algorithms such as AES due to the

repeated application of the DES algorithm [58].

With the advancement of encryption standards, 3DES is gradually being replaced by more efficient

and secure algorithms like AES. However, 3DES is still widely used in legacy systems and

applications where compatibility with older implementations is required [59].

2.9.1.5. Twofish Algorithm

Twofish is a symmetric key block cipher algorithm that was developed as a candidate for the

Advanced Encryption Standard (AES) selection process. It was designed by Bruce Schneier, John

Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson. Twofish is known for its

strong security, flexibility, and efficient performance [60].

Key Features of Twofish: Key Size Flexibility: Twofish supports key sizes of 128, 192, and 256

bits, allowing users to choose the desired level of security based on their specific needs.

Block Cipher Operation: Twofish operates on fixed-size blocks of data, typically 128 bits. The

input data is divided into blocks, and each block is encrypted or decrypted independently.

Feistel Network Structure: Twofish utilizes a Feistel network structure, which divides the input

block into two halves and applies a series of rounds to each half. This structure ensures that the

encryption and decryption processes are symmetric.

25

Round Functions: Twofish employs a combination of substitution and permutation operations in

its round functions. It utilizes S-box lookups, key-dependent permutations, and bitwise XOR

operations to provide strong encryption.

Key Schedule: Twofish uses a key schedule algorithm to generate a set of round subkeys from the

original encryption key. The key schedule involves mixing and expanding the key material to

create round keys for each encryption round.

Avalanche Effect: Twofish is designed to exhibit the avalanche effect, where even a small change

in the input or key results in a significant change in the output. This property enhances the

algorithm's security and makes it resistant to various cryptographic attacks.

Security Strength: Twofish has undergone extensive analysis and evaluation by the cryptographic

community. It is considered to be highly secure and resistant to known attacks, such as differential

and linear cryptanalysis.

Performance Optimization: Twofish is optimized for efficient implementation on various

computing platforms. It strikes a balance between security and performance, ensuring that

encryption and decryption operations can be performed efficiently.

Wide Application: Twofish has been widely adopted and implemented in various software and

hardware products. It is used in applications that require strong encryption, including secure

communications, data storage, and file encryption [61].

Twofish provides a high level of security, flexibility, and performance, making it a popular choice

for encryption in a wide range of applications. Its strong cryptographic properties and efficient

implementation make it suitable for protecting sensitive data and ensuring secure communication

[62].

2.9.2. Stream Ciphers:

Stream ciphers encrypt plaintext by processing it one bit or one byte at a time, generating a stream

of encrypted output. The encryption process is typically performed by combining the plaintext

with a keystream generated by a secret key. The keystream is a sequence of random or pseudo-

random values, which is combined with the plaintext using an exclusive OR (XOR) operation to

produce the ciphertext. Stream ciphers are often designed to be highly efficient and can encrypt

and decrypt data in real-time, making them suitable for applications with continuous data streams

26

such as voice and video communication [63]. However, stream ciphers can be more susceptible to

certain types of attacks, such as known-plaintext attacks, if the same key is reused or if the

keystream generator is compromised. One widely used stream cipher is the Rivest Cipher 4 (RC4),

which is known for its simplicity and speed. However, due to security vulnerabilities, RC4 is no

longer recommended for new applications. Other stream ciphers include the eSTREAM portfolio,

which consists of several stream cipher algorithms that have undergone extensive analysis and

evaluation [64].

In summary, block ciphers encrypt fixed-size blocks of plaintext independently, while stream

ciphers encrypt data bit by bit or byte by byte. Both types of symmetric algorithms play a crucial

role in providing secure communication and data protection, each with their own strengths and

considerations for different applications and use cases [65][66].

2.9.2.1. RC4 (Rivest Cipher 4)

RC4 (Rivest Cipher 4) is a stream cipher algorithm that was designed by Ron Rivest in 1987. It

gained popularity due to its simplicity, speed, and versatility. Initially, RC4 was a trade secret, but

it eventually became widely known and used in various applications. However, over time, several

security vulnerabilities were discovered in RC4, and it is now considered insecure for most

purposes [67][68].

Key Features of RC4 [64]:

Key Setup: RC4 operates by generating a pseudorandom stream of key-dependent bytes. To set up

the algorithm, a secret key of variable length (typically between 40 and 256 bits) is used. The key

serves as the input to the key setup algorithm, which expands it into a fixed-size internal state (256

bytes) using a process called the key-scheduling algorithm (KSA).

Pseudorandom Generation Algorithm (PRGA): The PRGA is the core of RC4, responsible for

generating the stream of pseudorandom bytes. It utilizes the internal state, which is initially filled

with values from 0 to 255 in order, and scrambles it based on the key. The PRGA generates a

keystream of pseudorandom bytes by continually swapping and updating the internal state.

Encryption and Decryption: To encrypt or decrypt data, RC4 uses the keystream generated by the

PRGA. The algorithm XORs each byte of the plaintext (or ciphertext) with a corresponding byte

from the keystream. XORing the bytes combines the properties of both the plaintext and the

pseudorandom stream, creating the ciphertext (or recovering the plaintext).

27

Security Concerns: RC4 has suffered from several security vulnerabilities that have compromised

its strength over time. These vulnerabilities include biases in the keystream output and key-

dependent biases in the internal state, leading to attacks such as the Fluhrer-McGrew and the

Mantin-Shamir attacks. As a result, the use of RC4 in new cryptographic applications is generally

discouraged.

Historical Significance: Despite its vulnerabilities, RC4 played a significant role in the

development of modern encryption algorithms. It influenced the design of other stream ciphers

and provided insights into the properties of secure encryption algorithms. Its impact can be seen

in the development of later algorithms such as Salsa20 and ChaCha20.

RC4 is a stream cipher algorithm that generates a pseudorandom stream of bytes based on a secret

key. It was widely used in various applications due to its simplicity and speed. However, over

time, multiple vulnerabilities were discovered in RC4, making it unsuitable for secure encryption

[69].

2.9.2.2. Salsa20

Salsa20 is a symmetric key stream cipher algorithm designed by Daniel J. Bernstein in 2005. It is

known for its simplicity, high performance, and strong security properties. Salsa20 is widely used

in various applications that require secure and efficient encryption [70].

Key Features of Salsa20 [71]:

Stream Cipher: Salsa20 is a stream cipher algorithm, which means it encrypts data on a byte-by-

byte basis using a pseudorandom stream of key-dependent bytes. The algorithm generates a

keystream based on a secret key and a nonce (number used once).

Security Strength: Salsa20 is designed to provide a high level of security. It has been extensively

analyzed and found to have strong resistance against various cryptanalytic attacks. The algorithm

is believed to provide robust security when implemented correctly.

Variable Key Size: Salsa20 supports key sizes of 128, 192, or 256 bits. This flexibility allows users

to select an appropriate key size based on their security requirements and performance constraints.

ChaCha Variant: Salsa20 is closely related to the ChaCha cipher, which is another stream cipher

algorithm also developed by Daniel J. Bernstein. ChaCha is a modification of Salsa20 that

28

incorporates a different permutation function, resulting in improved diffusion and performance

characteristics.

Quarterround Operation: The core operation in Salsa20 is the quarterround function, which

operates on a state matrix consisting of 16 32-bit words. The quarterround function performs a

series of bitwise operations and additions, creating a nonlinear and diffusion effect that enhances

the security properties of the algorithm.

Block Generation: Salsa20 generates blocks of keystream by repeatedly applying the quarterround

operation and updating the state matrix. The algorithm employs a counter-based approach,

incrementing a portion of the state matrix to generate a new block of the keystream.

Nonce and Initialization: Salsa20 uses a nonce as an additional input to the algorithm. The nonce

ensures that the same key can be used multiple times while producing unique keystreams. To

prevent nonce reuse, it is crucial to use a different nonce for each encryption session.

Performance and Efficiency: Salsa20 is designed for high performance and efficiency. It takes

advantage of modern processor features, such as efficient bit-level and parallel operations,

allowing it to achieve fast encryption and decryption speeds.

Use in Cryptographic Protocols: Salsa20 is utilized in various cryptographic protocols and

applications, including disk encryption, secure messaging, and virtual private networks (VPNs).

Its combination of security, speed, and simplicity makes it an attractive choice for these scenarios.

Salsa20 is a versatile and efficient stream cipher algorithm that provides strong security properties.

Its simplicity, high performance, and resistance to cryptanalytic attacks have contributed to its

popularity and adoption in numerous cryptographic applications [70].

2.9.2.3. ChaCha20

ChaCha20 is a symmetric key stream cipher algorithm designed by Daniel J. Bernstein in 2008. It

is an improved version of the Salsa20 stream cipher, offering increased security and performance.

ChaCha20 has gained significant popularity and is widely used in various applications, particularly

in the field of secure communications [72].

29

Key Features of ChaCha20 [73][74]:

Stream Cipher: ChaCha20 is a stream cipher algorithm that encrypts data on a byte-by-byte basis

using a pseudorandom stream of key-dependent bytes. Like other stream ciphers, it generates a

keystream based on a secret key and a nonce (number used once).

Security Strength: ChaCha20 is designed to provide strong security. It has undergone rigorous

analysis and has demonstrated resilience against various cryptanalytic attacks. The algorithm is

considered secure when implemented correctly.

Variable Key Size: ChaCha20 supports key sizes of 128, 256, or 512 bits. This flexibility allows

users to select an appropriate key size based on their security requirements and performance

considerations.

Quarterround Operation: Similar to Salsa20, ChaCha20 employs the quarterround function as its

core operation. The quarterround function applies a series of bitwise operations and additions to

create a nonlinear and diffusion effect, enhancing the security properties of the algorithm.

Block Generation: ChaCha20 generates blocks of keystream by iteratively applying the

quarterround operation and updating the state matrix. The algorithm employs a counter-based

approach, incrementing a portion of the state matrix to generate a new block of the keystream.

Nonce and Initialization: ChaCha20 uses a nonce to ensure unique keystream generation for each

encryption session. It is essential to use a different nonce for each encryption to prevent nonce

reuse and maintain security.

ChaCha20-Poly1305: ChaCha20 is often combined with the Poly1305 authenticator to form the

ChaCha20-Poly1305 construction. This combination provides both encryption and authentication,

making it suitable for secure communications protocols such as Transport Layer Security (TLS).

Performance and Efficiency: ChaCha20 is designed for high performance and efficiency. It takes

advantage of modern processor features, such as parallel operations and efficient bit-level

manipulation, allowing for fast encryption and decryption speeds.

Adoption and Standardization: ChaCha20 has gained significant recognition and adoption in the

field of cryptography. It is widely used in various applications, including secure messaging

platforms, virtual private networks (VPNs), disk encryption, and internet protocols. ChaCha20 has

30

been standardized by the Internet Engineering Task Force (IETF) for use in cryptographic

protocols.

ChaCha20 is known for its simplicity, security, and efficiency. Its combination of strong

encryption, fast performance, and flexibility in key sizes has made it a popular choice in the world

of secure communications. The algorithm's design and its widespread adoption have contributed

to its reputation as a reliable and effective stream cipher [75][76].

2.10. Asymmetric algorithms

Asymmetric algorithms, also known as public-key algorithms, are cryptographic algorithms that

use two different keys for encryption and decryption [77]. Here are the main types of asymmetric

algorithms:

2.10.1. RSA Algorithm

RSA (Rivest-Shamir-Adleman) is a widely used asymmetric encryption algorithm that provides

secure communication, digital signatures, and key exchange. It is named after its inventors, Ron

Rivest, Adi Shamir, and Leonard Adleman, who introduced the algorithm in 1977 [78].

Key Components of RSA [79][80][81]:

Key Generation: RSA involves the generation of a public-private key pair. The key generation

process starts by selecting two large prime numbers, p and q. The product of these primes, n (n =

p * q), is used as the modulus for encryption and decryption. The public key consists of the

modulus n and an exponent e, while the private key includes the modulus n and another exponent

d.

Encryption: To encrypt a message using RSA, the plaintext is first converted into a numerical

representation. Each block of the plaintext is encrypted using the recipient's public key. The

encryption operation is performed by raising the plaintext block to the power of the public

exponent e and then taking the modulus n of the result. The ciphertext, a numerical representation

of the encrypted message, is obtained.

Decryption: Decryption in RSA is performed using the recipient's private key. The encrypted

ciphertext is raised to the power of the private exponent d and then reduced modulo n. This

operation recovers the original plaintext message.

31

Key Exchange: RSA can be used for secure key exchange between two parties. One party generates

their public-private key pair and shares the public key with the other party. The other party uses

the received public key to encrypt a shared secret key, which is then sent back to the first party.

The first party can decrypt the received ciphertext using their private key to obtain the shared secret

key. Both parties now possess the same shared secret key for secure communication.

Digital Signatures: RSA can be used to provide digital signatures, which ensure the authenticity

and integrity of digital messages. To create a digital signature, the sender uses their private key to

encrypt a hash value of the message. The recipient can then verify the signature by decrypting it

using the sender's public key and comparing the decrypted hash value with the hash value of the

received message.

Key Strength and Security: The security of RSA relies on the difficulty of factoring large

composite numbers into their prime factors. Breaking RSA encryption requires an attacker to

factor the modulus n, which becomes increasingly challenging as the key size grows. RSA's

security is directly linked to the length of the key, with longer keys offering higher levels of

security.

Applications [82][83][84]:

RSA is widely used in various applications, including: Secure communication over the internet,

such as HTTPS, SSL/TLS.

 Digital signatures for ensuring message integrity and authentication.

 Key exchange protocols, like Diffie-Hellman key exchange.

 Secure email communication using PGP (Pretty Good Privacy).

 Secure file transfer and encryption in various software and protocols.

Despite its popularity and extensive use, RSA can be computationally expensive, especially for

large key sizes. Therefore, newer asymmetric algorithms like elliptic curve cryptography (ECC)

have gained popularity due to their similar security strength with smaller key sizes and faster

computation [85].

RSA remains a crucial and widely adopted algorithm in the field of cryptography, providing a

foundation for secure communication and data protection [86].

32

2.10.2. ECC Algorithm

ECC (Elliptic Curve Cryptography) is an asymmetric encryption algorithm that is gaining

popularity due to its strong security with shorter key lengths compared to other public-key

algorithms. It is based on the mathematics of elliptic curves over finite fields. ECC provides

efficient and secure cryptographic operations, making it well-suited for resource-constrained

devices and bandwidth-limited environments [87].

Key Components of ECC [5][88]:

Elliptic Curves: ECC utilizes elliptic curves defined by an equation in the form of y^2 = x^3 + ax

+ b, where a and b are constants. The curve's points form an additive group, and operations such

as point addition and scalar multiplication are defined on the curve.

Key Generation: ECC involves the generation of a public-private key pair. The key generation

process begins with selecting an elliptic curve and a base point on that curve. The base point's

coordinates are typically provided as parameters. The private key is a random number within a

specific range. The public key is derived by multiplying the base point by the private key using

scalar multiplication.

Encryption: In ECC, encryption is typically not performed directly on the plaintext message.

Instead, ECC is often used for key agreement protocols, such as the Elliptic Curve Diffie-Hellman

(ECDH) algorithm. ECDH allows two parties to establish a shared secret key over an insecure

channel without explicitly transmitting the key. The shared secret key can then be used for

symmetric encryption of the actual message.

Digital Signatures: ECC is also used for digital signatures, similar to other asymmetric algorithms.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is commonly employed for generating

and verifying digital signatures. ECDSA involves creating a signature by using the signer's private

key to perform mathematical operations on the message. The signature can be verified using the

signer's public key and the received message.

Key Strength and Security: The security of ECC relies on the difficulty of the elliptic curve discrete

logarithm problem. Breaking ECC encryption requires solving this problem, which is believed to

be computationally infeasible, especially for properly chosen curve parameters and sufficiently

large key sizes. ECC offers comparable security to traditional algorithms like RSA but with shorter

key lengths, providing advantages in terms of computational efficiency and memory usage [89].

33

Applications:

ECC has gained popularity and is utilized in various applications, including:

 Secure communication protocols like TLS/SSL.

 Wireless communication standards such as Wi-Fi and Bluetooth.

 Smart cards, RFID tags, and other embedded systems.

 Cryptocurrency systems like Bitcoin, which uses ECC for digital signatures.

 Internet of Things (IoT) devices with limited resources.

ECC's ability to provide strong security with shorter key lengths makes it a valuable tool for

securing communications and protecting sensitive data in diverse domains. However, it is crucial

to use well-vetted elliptic curves and follow best practices to ensure the security of ECC

implementations [90].

2.11. The Mathematics of Cryptography

Cryptography is an ancient practice that has evolved over time to protect sensitive information

from unauthorized access. With advancements in technology and computing, modern

cryptographic systems have become more complex and sophisticated. Mathematics plays a crucial

role in the design and analysis of secure cryptographic systems [91].

The history of cryptography can be traced back to early civilizations such as Egypt, Greece, and

Rome. In those times, simple substitution ciphers were used, where letters were replaced with other

letters or symbols. As printing technology emerged in the 15th century, more advanced techniques

like polyalphabetic ciphers were developed [92].

Contemporary encryption systems are built on mathematical concepts such as algebra, probability

theory, and number theory. There are two major categories of cryptographic systems: symmetric-

key cryptography and public-key cryptography. In symmetric-key cryptography, the same key is

used for both encryption and decryption. On the other hand, public-key cryptography employs two

different keys for encryption and decryption. The security of cryptographic systems is based on

the complexity of mathematical puzzles like factorization, discrete logarithms, and elliptic curve

cryptography [93].

34

In modern society, cryptography serves various purposes including secure transactions, data

storage, and secure communication. Popular cryptographic systems such as the Advanced

Encryption Standard (AES), the RSA algorithm, and Elliptic Curve Cryptography (ECC) are

widely used to protect sensitive data in databases, secure online conversations, and facilitate secure

financial transactions. Mathematics provides the foundation for designing and analyzing secure

cryptographic systems. Over time, simple substitution ciphers have been replaced by

mathematically-based cryptographic systems. As the need for secure communication, data storage,

and financial transactions continues to grow, cryptography remains indispensable in contemporary

society [94].

This section focuses on the mathematical aspects of cryptographic algorithms, exploring their

underlying principles, applications, and historical context.

2.11.1. Modular arithmetic

Modular arithmetic, a branch of mathematics, plays a significant role in encryption, particularly in

the development of symmetric-key algorithms. It involves performing arithmetic operations on

integers while taking the results modulo a fixed integer. The use of modular arithmetic in

cryptography, its fundamentals, and applications will be explored in this literature survey.

Modular arithmetic is employed in cryptography to construct symmetric-key cryptographic

techniques. The most commonly used operation in modular arithmetic is modular addition, which

involves adding two numbers and then taking the result modulo a fixed integer. Additionally,

modular subtraction, multiplication, and exponentiation are performed using modular arithmetic.

Modular exponentiation, in particular, is crucial in encryption as it forms the basis of numerous

cryptographic algorithms, including RSA and Diffie-Hellman [95].

Both symmetric-key cryptography and public-key cryptography leverage modular arithmetic in

various ways. In symmetric-key cryptography, the encryption process involves applying modular

arithmetic operations to the plaintext and a secret key to generate the ciphertext. The Advanced

Encryption Standard (AES), the prevailing symmetric-key cryptographic algorithm, utilizes

modular arithmetic to execute substitutions and permutations on both the plaintext and the key

[32]. Modular arithmetic is a fundamental tool in cryptography, finding applications in both

symmetric-key and public-key cryptographic methods. Through modular arithmetic, various

operations are performed to ensure secure and efficient encryption. The Advanced Encryption

35

Standard is a prominent example of a symmetric-key algorithm that extensively utilizes modular

arithmetic operations [96].

2.11.2. Modular Exponentiation

The use of modular exponentiation is a fundamental aspect of the mathematics of cryptography,

specifically in encryption and decryption operations. When an integer is raised to a power modulo

another integer, modular exponentiation involves computing the remainder [97]. This literature

survey explores the significance of modular exponentiation in cryptography and provides an

overview of the existing computational methods.

Among the commonly employed techniques, the square-and-multiply formula stands out. This

algorithm is based on the concept that any exponentiation can be represented as a sequence of

squaring and multiplying operations. By converting the exponent into its binary representation, the

algorithm iteratively squares the base and multiplies it by itself when the corresponding bit in the

exponent is 1. The time complexity of this approach is O(log n), where n represents the size of the

exponent. In addition to the square-and-multiply algorithm, there are other strategies for

optimizing modular exponentiation in specific cryptographic applications. For example, the

Chinese Remainder Theorem (CRT) is often used to accelerate modular exponentiation in RSA

cryptography. The CRT involves precomputing the exponentiation modulo the prime factors of

the modulus and combining the results [98].

While modular exponentiation problems are generally considered computationally easy to solve,

computing the discrete logarithm—finding the exponent e given b, c, and m—is deemed

challenging. This property makes it suitable for cryptographic algorithms, where it can be referred

to as a one-way function or a trapdoor function. Modular exponentiation is a fundamental operation

in the mathematics of cryptography, and various techniques exist to enhance its efficiency in

different cryptographic contexts. The Montgomery exponentiation algorithm is particularly

advantageous for hardware implementations, while the square-and-multiply algorithm serves as a

versatile method. Additionally, the CRT and windowed method are utilized in certain

cryptographic applications to optimize modular exponentiation [99].

2.11.3. Reversible and quantum modular exponentiation

Reversible exponentiation and quantum exponentiation are two emerging fields of study within

the mathematics of cryptography. Quantum exponentiation involves leveraging quantum

36

algorithms to perform exponential operations, while reversible exponentiation focuses on

calculating the inverse of a modular exponentiation. The research on reversible exponentiation has

primarily taken place in the past decade, making it a relatively recent area of investigation. The

main objective of reversible exponentiation is to enhance the security of cryptographic methods

based on modular exponentiation, such as RSA and ElGamal. These algorithms are vulnerable to

side-channel attacks, which exploit the electromagnetic radiation or power consumption of the

computing device to extract secret keys. Modular exponentiation poses a challenge for Shor's

algorithm, as it requires the computation of a circuit consisting of reversible gates that can be

further decomposed into quantum gates suitable for a specific physical device. Moreover, Shor's

algorithm allows knowledge of the base and exponentiation modulus at each call, enabling various

optimizations to be applied to the circuit design [100].

2.11.4. Discrete logarithm

Discrete logarithms play a crucial role in the mathematical underpinnings of encryption. They are

utilized in various cryptographic methods such as ElGamal encryption, Diffie-Hellman key

exchange, and DSA digital signatures. This literature survey will explore different techniques for

solving discrete logarithms and their implications for cryptography. The discrete logarithm

problem involves finding the exponent x in the equation g^x ≡ h (mod p), where g, h, and p are

known values. The Index Calculus method is a well-known classical algorithm for solving discrete

logarithms. It leverages the observation that any element in a finite field can be represented as a

product of a small set of prime elements. The Index Calculus algorithm is efficient for solving

small prime discrete logarithms, with a time complexity of O(exp(sqrt(log(p) log(log(p)))).

However, the Index Calculus method becomes impractical for larger primes, necessitating

alternative approaches. One such approach is the Number Field Sieve algorithm, which is a

general-purpose algorithm capable of solving various mathematical problems, including discrete

logarithms. The Number Field Sieve method can handle discrete logarithms for primes of several

hundred bits with a time complexity of O(exp((1.923 + o(1)) log(p)(1/3) (log(log(p)))(2/3)) [101].

2.11.5. Euclidean Algorithm

The Euclidean Algorithm, named after the Greek mathematician Euclid, is a fundamental

mathematical algorithm that has found extensive applications in cryptography. Euclid developed

this algorithm, which is described in his work "Elements." It is primarily used for determining the

greatest common divisor (GCD) of two numbers and is widely utilized in various cryptographic

37

techniques, including RSA encryption, public-key cryptography, and elliptic curve cryptography

[102].

The Euclidean Algorithm, deeply rooted in number theory, follows a systematic approach to

finding the GCD of two numbers. Its fundamental principle involves iteratively applying the

concept that the GCD of two integers remains consistent when calculated for the smaller number

and the remainder obtained by dividing the larger number by the smaller one. In the realm of

cryptography, the Euclidean Algorithm finds practical application in key generation for RSA. The

security of RSA relies on the challenge of factoring the product of two large prime numbers. In

this process [103][104][105]:

 Distinct prime numbers p and q are chosen, and the modulus n is computed as n=p×q.

 The totient ϕ(n) is determined as ϕ(n)=(p−1)×(q−1).

 The public exponent e is chosen by applying the Euclidean Algorithm to find the GCD of

ϕ(n) and e, ensuring 1<e<ϕ(n) and gcd(ϕ(n),e)=1.

Furthermore, the Euclidean Algorithm contributes to private key generation in RSA:

 The private exponent d is computed, serving as the modular multiplicative inverse of e

modulo ϕ(n). This ensures (d×e)modϕ(n)=1.

 The extended Euclidean Algorithm is often employed for efficiently calculating the

modular inverse.

Beyond key generation, the Euclidean Algorithm plays a pivotal role in security analysis. Its

application in evaluating the security of cryptographic systems, especially in assessing the strength

of employed keys, is paramount. The existence of an efficient algorithm for calculating the GCD

could potentially introduce vulnerabilities in cryptographic systems, highlighting the algorithm's

significance in ensuring the robustness of digital communication security.

The Euclidean Algorithm's application in cryptography, particularly in the RSA algorithm,

emphasizes its crucial role in securing digital communication. Its involvement in key generation,

modular arithmetic, and security analysis underscores its versatility and indispensability in

contemporary cryptographic frameworks. As cryptographic methodologies advance, a profound

understanding of foundational mathematical concepts like the Euclidean Algorithm remains

essential for constructing resilient and secure digital communication channels [105][106].

38

2.12. Empirical Review

This section outlines the empirical review of the scholarly literature on the study objectives. The

arguments are illustrated as below:

2.12.1. Review of the performance evaluation of commonly employed symmetric algorithms

According to authors in [24], a critical analysis was conducted to identify the strengths and

weaknesses of various symmetric key cryptographic algorithms. The analysis in this paper

examined important parameters such as throughput, scalability, security, memory usage, power

consumption, speed, and flexibility to assess different cryptographic algorithms. The identified

strengths and limitations of these algorithms make them suitable for various applications. Among

the analyzed algorithms, Blowfish was found to excel in terms of security, flexibility, memory

usage, and encryption performance. In addition, Tyagi and [25] conducted a comparative analysis

of symmetric encryption algorithms, namely DES, 3DES, AES, and Blowfish. However, their

study aimed to achieve specific objectives, which were: 1) gaining a deeper understanding of the

cryptography process, and 2) performing a comparative analysis of symmetric encryption

algorithms. Their study concluded that Blowfish outperformed other algorithms, such as DES,

AES, and Triple DES, based on key size and security. The F function of the Blowfish algorithm

provided a high level of security for encrypting 64-bit plaintext data. According to Nie et al., [107]

evaluated the speed and power consumption of two symmetric key encryption algorithms, DES

and Blowfish. The experimental results revealed that Blowfish algorithm exhibited faster speed

than DES, while the power consumption remained almost the same. This study suggested that the

Blowfish encryption algorithm may be more suitable for wireless network application security. In

[108] provided a comparative survey on symmetric key encryption techniques. The analysis

emphasized that selecting the appropriate encryption algorithm for encrypting plain text depends

on weighing the advantages and disadvantages of each algorithm. The study indicated that

symmetric key algorithms run faster than asymmetric key algorithms, such as RSA, and require

lesser memory compared to asymmetric encryption algorithms. Furthermore, symmetric key

encryption was deemed superior in terms of security compared to asymmetric key encryption. The

comparison of popular encryption algorithms clearly demonstrated the superiority of the Blowfish

algorithm over DES, AES, and Triple DES based on key size and security. This study evaluated

six common encryption algorithms: AES (Rijndael), DES, 3DES, RC2, Blowfish, and RC6,

focusing on their computing resource demands such as CPU time, memory, and battery power.

39

Blowfish was found to perform the best, followed by RC6, while 3DES had lower performance

than DES. RC2 was the most time-consuming algorithm. AES outperformed RC2, DES, and

3DES. The results were consistent across different file types (audio, video, text, and documents).

Additionally, changing the key size significantly impacted battery and time consumption. [109].

Similarly, the authors in [110] conducted an analysis to measure the performance of selected

encryption algorithms. Their study confirmed that cryptographic algorithms consume a significant

amount of computing resources, including CPU time, memory, and battery power. Based on the

input size of text files and experimental results, it was concluded that the Blowfish algorithm

consumed less execution time and memory usage while producing higher throughput. Specifically,

Blowfish performed approximately four times faster than AES and two times faster than DES. The

study highlighted that Blowfish not only exhibited exceptional speed but also provided strong

security through its key size, making it suitable for various applications such as bulk encryption,

random bit generation, internet-based security, packet encryption, and more. In this particular

study, the authors conducted a comparison of performance among three widely used symmetric

key cryptography algorithms: DES, AES, and Blowfish. The simulation results revealed that

Blowfish outperformed other commonly used encryption algorithms. On the other hand, AES

exhibited poor performance compared to other algorithms due to its higher processing power

requirement. While using CBC mode added some extra processing time, the overall impact was

relatively negligible, particularly for applications that require secure encryption of large data

blocks [111]. Also, the authors in [42] analyzed popular encryption techniques and found that

Blowfish consistently outperformed other encryption techniques across various parameters such

as encryption time, decryption time, power consumption, memory usage, latency, jitter, and

security level. Following Blowfish, AES emerged as the second-best symmetric algorithm, while

3DES exhibited the least effectiveness. However, symmetric algorithms like AES and Blowfish

were not as effective due to their resource-intensive nature. In terms of hashing methods, MD5

produced the highest latency, followed by SHA256 and SHA1, with SHA256 ultimately being

more secure than SHA1 and MD5. According to Anand Kumar and Karthikeyan [112] evaluated

the performance of Blowfish and AES in terms of energy consumption, different data types (text,

document, images), packet size, and key size. Their study highlighted that while numerous

encryption algorithms are available to secure data, they consume significant computing resources

such as battery and CPU time. The simulation results consistently favored Blowfish over AES in

almost all test scenarios. Blowfish demonstrated superiority in text-based encryption, while AES

40

exhibited better performance in image encryption. The study also highlighted the impact of

changing the key size of the AES algorithm on performance. Overall, AES was recommended for

situations requiring high security, while Blowfish excelled in terms of performance. Likewise, in

the study focused on security challenges and mechanisms for IoT. It was determined that the

Blowfish algorithm outperformed other cryptographic algorithms in terms of execution time,

memory usage, throughput, power consumption, and security, making it well-suited for IoT

applications. The researchers implemented both the original and modified versions of Blowfish in

hardware and observed that the modified version exhibited improved encryption time and

throughput. Future work aims to introduce a new 512-bit block cipher [113]. The authors in [114]

investigated cryptographic methods such as AES and Blowfish, comparing parameters such as

encryption speed, CPU utilization over time, and battery power consumption. Their findings

demonstrated that the Blowfish method outperformed the AES algorithm in terms of processing

speed and throughput, while also consuming less energy. Thus, the study concluded that Blowfish

is the superior option. In [115] integrated encryption techniques in the authentication of multicast

protocol for Ad-hoc networks. Their analysis concluded that the Blowfish algorithm enables faster

encryption and decryption of data, requiring less CPU power compared to other methods. In the

comparative analysis conducted by Cordova et al., (2017) [116] on selected security algorithms in

cloud computing, Blowfish outperformed the AES and RSA algorithms based on simulated

outcomes. Blowfish exhibited the least increase in processing time during key generation,

encryption, and decryption, positioning it as a strong contender for one of the top security

algorithms. Additionally, doubling the PC's RAM enhanced the performance of all tested

algorithms, significantly improving their speed and effectiveness. In this study, the authors in [117]

evaluated block cipher algorithms based on encryption time, decryption time, encryption

throughput, and memory usage for various file sizes (text, image, and video). Their study

concluded that the Blowfish algorithm excelled in symmetric key cryptography when encrypting

text files and videos. However, the DES method, despite its ability to quickly encrypt small text

files, was susceptible to brute-force attacks. For encrypting small-size image and video files, 3DES

utilized less memory. AES performed better than other algorithms when encrypting images.

Overall, these studies above consistently highlight the superior performance of Blowfish in terms

of speed, security, memory usage, and power consumption compared to other encryption

41

algorithms such as DES, AES, and 3DES. However, numerous comparative analyzes yielded

contrasting outcomes.

According to a study by Panda and Nag [118], the performance of encryption algorithms was

evaluated based on execution time, memory usage, and throughput on two different operating

systems. The study concluded that cryptographic algorithms are computationally intensive and

require significant computing resources such as CPU time, memory, and battery power. Based on

the simulation results, AES and Salsa20 were found to be preferable over Blowfish for encrypting

plain text data. In another study by Singh et al., (2015) [30], a comprehensive comparison was

made among four common encryption algorithms: AES, DES, 3DES, and Blowfish, focusing on

security and power consumption. The simulation results demonstrated that AES outperformed the

other algorithms. Although AES was initially considered superior to the original Blowfish

algorithm, this study proposed enhancements to Blowfish by adding an additional key and

replacing the XOR operation with a new operation '#'. These modifications increased the

robustness of Blowfish, making it more resilient against intrusion attempts. The advanced

Blowfish algorithm proved to be more energy-efficient and secure, thus reducing battery

consumption. In similar study by Gautam et al., (2019) [26] conducted an experiment to assess the

performance and usability of various cryptographic algorithms, including RSA, DES, AES,

Blowfish, 3DES, and Twofish. The study concluded that AES and Twofish are the most promising

options, surpassing other encryption standards in terms of speed, entropy, and efficient encoding.

However, AES was found to be superior to Twofish due to its higher efficiency. In this research,

the authors compared the execution time, memory usage, and ciphertext size of symmetric

cryptography algorithms: 3DES, AES, Blowfish, and Twofish. The results demonstrated that AES

exhibited the most efficient performance in terms of execution time for encryption and decryption.

According to Ghosh conducted a comparative evaluation of encryption algorithms, namely AES,

Blowfish, and Twofish, for enhancing the security of wireless networks. Based on the evaluation

metrics studied, such as encryption time, decryption time, and throughput, Twofish demonstrated

a clear advantage over AES and Blowfish. Due to its low encryption and decryption time and high

throughput, Twofish is recommended for implementation alongside HMAC in the security of all

networking protocols [119]. Raigoza and Jituri [27] assessed the performance of the Blowfish

algorithm and the widely used Advanced Encryption Standard (AES). The findings revealed that

AES outperformed Blowfish in terms of speed, with a difference of approximately 200 to 300

42

milliseconds. When modifying the data size, minor differences were observed between the

evaluated methods, resulting in encrypted data lengths that were roughly similar for both AES and

Blowfish. As the ASCII value increased, both AES and Blowfish experienced an overall increase

in execution time, but the regression line slope for Blowfish was steeper than that of AES. In a

study evaluating power consumption, Joulemeter, PassMark BatteryMon, and Wattc were

employed to analyze four Advanced Encryption Standard (AES) finalist algorithms: RC6, Serpent,

Mars, and Twofish, with respect to file size. The results indicated that the Twofish algorithm

exhibited the highest remaining battery life. Among the four algorithms, Twofish consumed the

least amount of electricity according to the power requirements measurements. The study

emphasized the consistent findings across different measurement tools, highlighting that the

Twofish algorithm consumes the least amount of power [120]. The authors in [39] conducted an

evaluation of widely used symmetric algorithms to assess their effectiveness in terms of security,

architecture, limitations, and efficiency. The experimental results indicated that AES emerged as

the superior algorithm, excelling in security, efficiency, and architecture. This study developed a

compact and modular Twofish algorithm as an alternative to AES-Rijndael, suitable for various

applications. Their study introduced a small Twofish-128 hardware module for cryptography,

demonstrating versatility in usage. Compared to the 128-bit version of AES, Twofish-128 required

approximately 70% fewer logic components. The circuit implementation offered the same level of

security as AES but with a significantly smaller size, making it adaptable to diverse applications

[121]. In a study comparing AES and Twofish, the authors in [62] observed the following

simulation results: AES exhibited faster encryption for text, while Twofish surpassed AES with

increased RAM. For image encryption, AES was faster overall, but Twofish performed equally

well with more RAM. Twofish demonstrated better performance for sound encryption, and its

speed improved further with increased RAM. According to Nurgaliyev and Wang [122] evaluated

the effectiveness of different components in current symmetric key algorithms. They found that

AES (Rijndael) showcased the best performance in terms of security, adaptability, memory

utilization, and encryption performance. While other approaches showed competence, they were

compromised in terms of security and encryption performance. The study conducted a comparison

of encryption algorithms, including AES, DES, IDEA, RC2, Blowfish, and RSA, analyzing their

strengths and weaknesses across different parameters. The aim was to identify vulnerabilities in

certain cryptographic algorithms. The findings led to the following conclusions: Symmetric

algorithms like AES offer faster encryption and decryption, enhancing data safety during

43

transmission. Asymmetric algorithms like RSA and Diffie-Hellman provide security advantages

in terms of key size. RSA addresses issues related to key agreement and key exchange in secret-

key cryptography [123]. A study compared Format Preserving Encryption (FPE, FIPS 74-8) on

numeric data (credit card numbers) with block ciphers such as AES, DES, 3DES, and Blowfish. It

found that FPE outperforms AES with a 192-bit key, achieving an average encryption and

decryption time of 16198.5 ns for 1000 credit card digits. For 1000 sixteen-digit credit card

numbers, Blowfish and AES with a 192-bit key performed comparably. The study recommends

using AES or Blowfish for superior performance and security in preserving numeric data formats

[124]. Aleisa [125] compared the DES and AES encryption standards and concluded that AES is

the unquestionable winner in terms of security, being considered practically unbreakable in real-

world applications. Although DES and 3DES have identified faults, they are still deemed secure

and useful. This research compared the performance of symmetric key encryption techniques,

including DES, 3DES, and AES, for text and image data. It highlighted the risk of eavesdropping

over the internet, which threatens data confidentiality. The results showed that AES has shorter

encryption and decryption times and higher throughput compared to other algorithms, while 3DES

has the longest encryption-decryption time and the lowest throughput. AES consumes more

memory, whereas DES requires the least memory among the evaluated techniques [126]. This

study investigated cryptography algorithms used for security and privacy protection in the smart

grid. Their study determined that symmetric algorithms outperformed asymmetric ones in terms

of overall performance. While some algorithms, like Blowfish, showed competitive encryption

and decryption speeds compared to AES, they did not meet security standards. AES was identified

as the most secure algorithm, with DES ranking second, making it the recommended choice for

safeguarding sensitive data in the smart grid [46]. The authors in [127] compared various

symmetric key cryptography techniques and found that compressing plaintext maximized memory

efficiency. Blowfish was the fastest algorithm but had inconsistent throughput for smaller plaintext

sizes. AES provided generally consistent and slightly superior performance and was more resistant

to birthday attacks due to its larger 128-bit block size, compared to Blowfish's 64-bit block size.

Panda, M. compared symmetric (AES, DES, and Blowfish) and asymmetric (RSA) cryptographic

methods using different file types, finding that AES outperformed the other algorithms in terms of

throughput and encryption-decryption time. According to Advani and Gonsai [128] performed a

performance analysis of symmetric encryption algorithms, evaluating their encryption and

decryption times. AES and Blowfish appeared to be more effective for various file types based on

44

the literature research. The study specifically tested AES, DES, 3DES, and Blowfish. This study

compared the performance of symmetric encryption algorithms, specifically AES and DES, on

mini PC devices like the Raspberry Pi. The study concluded the following: 1. AES algorithm

exhibits faster encryption time compared to the DES algorithm. However, AES requires more

memory during encryption, while DES utilizes binary numbers and AES employs both binary and

hexadecimal numbers for encryption. 2. The AES algorithm, with its larger number of keys (128

bits), is recommended over DES, which has a key length of 64 bits, or half the number of keys in

AES. AES offers a much higher number of potential keys (2^128) compared to DES (256 keys).

The study suggests exploring the avalanche effect algorithm and using files or images as

encryption media to evaluate the performance of each algorithm [129]. In this research, the speed,

cost, and performance of symmetric encryption algorithms, including DES, AES, Blowfish, and

RSA, were assessed in terms of their suitability for wireless sensor networks and peer-to-peer

communication. Each cryptographic algorithm has its own set of advantages and disadvantages.

RSA, while secure, has relatively higher time and power consumption. Blowfish, on the other

hand, is useful for applications that require fast and secure communication due to its shorter

encryption and decryption times. AES is recognized as an extremely secure algorithm but requires

more memory and has longer encryption time, while DES is more memory-efficient [130]. This

research conducted a comprehensive review of security techniques for SMS and conducted a

performance comparison of commonly used encryption algorithms like DES, 3DES, RC4,

Blowfish, and AES (Rijndael). DES was found to be limited by its large data size and short key

length, while Blowfish and RC4 were found to have vulnerabilities related to weak keys. Among

the symmetric algorithms discussed, AES (Rijndael) emerged as the most popular choice due to

its flexibility and superior encryption performance. It offers improved security, faster processing,

and overall reliability [131]. The authors in [132] analyzed encryption techniques for secure

communication, finding that AES offers superior security, particularly in CBC mode, which uses

data block chaining and an initialization vector, making it more secure than ECB mode. AES is

ideal for applications requiring high dependability and confidentiality. The study suggests

potential further development of AES due to improvements in entropy, throughput, and encryption

efficiency. The research assessed the effectiveness of AES, DES, 3DES, Blowfish, RC4, and RSA

in securing image data in cloud environments, addressing concerns like data breaches, account

theft, insider threats, malware injection, and denial-of-service attacks.. According to the study,

AES, Blowfish, RC4, and 3DES demonstrate good performance in terms of throughput, memory

45

consumption, encryption time, and decryption time for image cryptography in the cloud. While

RC4 performs well in terms of execution speed, it lacks sufficient security for image data.

However, the most secure encryption algorithms for image data in cloud systems are Blowfish,

AES, and RSA. The paper concludes that both Blowfish and AES are effective encryption

algorithms for securing picture data in cloud systems, providing a balance between efficiency and

security [133]. This study evaluated the performance of the DES and 3DES cryptography

algorithms for ensuring data security in smart cards operating in NFC-based communication

systems. The performance evaluation of text data cryptographic methods using DES and 3DES for

data writing and reading processes of ACOS3 smart cards in NFC-based devices yielded several

conclusions: 1. DES and 3DES text data cryptography methods can be successfully employed for

data writing and reading processes in ACOS3 smart cards in NFC-based devices. 2. The data

writing and reading processes of ACOS3 smart cards utilize the faster DES method compared to

the 3DES cryptographic method. 3. When implementing the DES or 3DES cryptographic method

with an ACOS3 smart card, the data reading process demonstrates faster execution than the data

writing process [134].

2.12.1.1. Research gap

The evidence presented in the review highlights the presence of experimental gaps in the

understanding of the most commonly used block cipher techniques. These gaps indicate that there

is still a need for further research to fully explore and comprehend the capabilities and limitations

of these algorithms. Moreover, the review brings attention to the flawed nature of previous

comparisons conducted between these algorithms, as they often fail to consider the variations in

key bit and block sizes employed by each algorithm.

To address these gaps and improve future research, it is recommended to explore different

methodological approaches for conducting correlational studies on the commonly used symmetric

algorithms. By employing alternative methodologies, researchers can obtain more accurate and

comprehensive insights into the performance, security, and suitability of these algorithms. This

may involve conducting controlled experiments, analyzing large-scale data sets, or implementing

real-world use cases to assess the effectiveness and efficiency of different symmetric encryption

techniques. Furthermore, future research should strive to establish robust correlations between

algorithm characteristics, such as key bit and block sizes, and their impact on various performance

metrics. This will enable a more nuanced understanding of the trade-offs and considerations

46

associated with different algorithm choices. Additionally, exploring the impact of other factors,

such as computational resources and data types, in conjunction with the algorithmic properties can

provide a more holistic view of their effectiveness.

In conclusion, future research should employ alternative methodologies to address the

experimental gaps and conduct correlational studies that consider the variations in key bit and

block sizes among symmetric algorithms. By doing so, researchers can enhance our understanding

of these algorithms, leading to improved recommendations for their practical implementation and

strengthening the overall security of cryptographic systems.

2.12.2. Review of the performance evaluation of asymmetric algorithms that are frequently

used

This work presents a secure key agreement and session authentication system for Internet of

Things (IoT) devices. Simulation results demonstrated the system's resilience against various

attacks and showed that its time complexity was lower compared to DSA and RSA, due to the use

of ECC. The protocol exhibited the lowest computational overhead, the fastest turnaround times,

and the greatest stability with minimal communication overhead. [28]. This undertaking presented

a system employing Elliptic Curve Cryptography (ECC) and Diffie-Hellman (DH) key exchange

to establish forward secrecy within HTTPS web browser applications. The envisaged technique

notably reduces error rates compared to prior research. This methodology utilizes a dual key

arrangement orchestrated by ECC-DH to effectively manage security in cloud contexts.

Furthermore, this approach exhibits a heightened entropy value in comparison to the alternative,

enhancing its overall security posture [135]. This study thoroughly examined asymmetric

algorithms like Diffoe-Hellman, DSA, Elliptic Curve, and RSA as well as symmetric algorithms

like Blowfish, AES, 3DES, and DES. According to the investigation, researchers found that certain

characteristics had an impact on how well various algorithms performed. It is essential to provide

solid, reliable, and trustworthy algorithms that can effectively manage massive amounts of data on

the cloud given the growing demand for cloud applications. The two most crucial

recommendations for cloud applications are speed and security [136]. Researchers in this study

looked at a cryptographic method that integrated DNA encoding with the ECC algorithm and

compared it to the widely used RSA algorithm. Elliptic Curve Cryptography-based DNA Encoding

is superior to conventional methods in terms of temporal structure, physical size, and key length.

Two layers of security are also included in the framework, the first of which is ECC steganography

47

and the second of which is DNA encoding. In particular, for devices with low resources,

cryptographic algorithms should be both practical and inexpensive. Additionally, ECC itself needs

to be updated frequently to enhance the efficiency of the recently scheduled processors [29]. In

reference to [137], researchers conducted an analysis of distinct cryptographic algorithms,

evaluating aspects like key size, message size, and execution time. With the proliferation of diverse

encryption techniques, facilitating swift and dependable communication among IoT devices has

become a complex task, one that must be accomplished without causing interruptions. Determining

the most suitable, compatible, and advantageous encryption method for communication has proven

to be quite intricate. Through their examination, the authors reached the consensus that among

various options, Schnorr, RSA, Elliptic Curve Cryptography, and ElGamal emerge as the superior

choices. Kaur and Aggarwal [2] undertook an extensive examination of cryptographic methods

including RSA, Blowfish, Diffie-Hellman, ECC, and others. The advent of the Internet of Things

has brought to light a significant security concern that impacts various aspects ranging from

authentication and authorization to trust management, even posing a threat to embedded systems.

Among these techniques, ECC has demonstrated itself as the encryption method that excels in both

security and efficiency. In reference to [37], Researchers analyzed various encryption methods,

including RSA, Diffie-Hellman, Digital Signature Algorithm, and Elliptic Curve Cryptography

(ECC), to determine the most effective for data confidentiality during transmission. They found

that digital signatures provide robust confidentiality and non-repudiation, ensuring data integrity,

availability, and confidentiality. This study assessed ECC, RSA, and Diffie-Hellman for network

security, concluding that ECC is superior due to its comparable security with fewer bits. ECC's

significant use in Bitcoin, Secure Shell, and Transport Layer Security demonstrates its exceptional

security and cost-effectiveness. [138]. In [5], the authors compared Elliptic Curve Cryptography

(ECC) with RSA in network security and introduced an EC point multiplication processor for

digital signatures and key agreements. ECC's inverse operation, the Elliptic Curve Discrete

Logarithm Problem (ECDLP), becomes more complex with longer keys, making ECC more viable

as security needs and processing power increase. ECC provides equivalent security with shorter

keys, maintaining efficiency and compactness compared to other algorithms. Elliptic Curve

Cryptography (ECC), Rivest-Shamir-Adleman (RSA), and other encryption algorithms were

examined in this study; the findings indicate that ECC is substantially more effective than the other

methods. For elliptic curve cryptography, shorter key lengths and sizes are essential security

requirements. Furthermore, it saves bandwidth, which facilitates the generation of keys for data

48

encryption and decryption and enhances performance. ECC ensures quicker encryption and

decryption and is also effective on small devices. It is preferable to use elliptic curve cryptography

for data security [139]. This research examined the impact on performance when integrating ECC

with SSL, a prominent technology for ensuring internet security. Earlier studies have suggested

that the adoption of SSL leads to a notable decrease in web server speed. The findings

demonstrated that, when subjected to real-world operational loads, an Apache web server could

manage a higher volume of HTTPS requests per second—falling within the range of 13% to

31%—by utilizing ECC-160 as opposed to RSA-1024. This observation highlights the advantage

of ECC-160 in providing short-term security enhancements [140]. In [141], the researchers

conducted an analysis of the performance characteristics of conventional public-key cryptographic

systems, namely RSA, DSA, and DH, in comparison to ECC. The investigations highlighted that

the traditional public-key methods encounter performance-related challenges. The study proposed

that general-purpose CPUs could effectively incorporate hardware acceleration to enhance public-

key algorithm processing. The performance assessment indicated that ECC exhibited superior

performance compared to RSA. Specifically, for ECC with GF(p) and GF(2m), the researchers

noted a speedup of 2.4 times and 4.9 times, respectively, relative to RSA at the current security

levels. Moreover, for subsequent security levels, the corresponding speedups were even more

substantial—7.8 times and 15.0 times, respectively. In this investigation [85], a comparison was

conducted between the elliptic curve cryptography (ECC) algorithm utilizing a 160-bit key size

and the Rivest-Shamir-Adleman (RSA) technique employing a 1024-bit key size. The results

demonstrated that ECC can offer comparable security levels with smaller key sizes when

contrasted with more traditional cryptographic systems like RSA. Consequently, the adoption of

ECC is strongly recommended to enhance security and efficiency without a proportional increase

in computational demands. The research indicated that ECC maintains a lower cost ratio.

Moreover, continuous enhancements are necessary for ECC itself to optimize the performance of

newly developed chips. In a study similar to this, the authors referenced in [142] investigated the

encryption and decryption times of various approaches using data packets of different sizes. The

comparisons indicated that ECC leads to a significant reduction in transmission expenses. The

results underscored that ECC outperforms other asymmetric algorithms in terms of efficiency. This

study evaluated the impacts of different ECC curves and RSA key sizes using IoT nodes with

limited resources, and it compared the performance of ECDSA and RSA TLS cipher suites. The

results indicated that, although ECDSA consistently outperformed RSA in all test runs, practical

49

scenario testing is necessary to determine the suitable security configuration for a given hardware

platform. Situations may arise where more secure options, due to software implementations and

optimizations, exhibit superior energy efficiency and data throughput, surpassing theoretically

lighter and simpler alternatives. The results, influenced by enhancements in the libraries handling

ECC operations, specifically showcased that the secp256r1 curve exhibited superior performance

compared to the secp224r1 curve, while maintaining a higher level of security [143]. The study

mentioned as [45] focused on assessing the performance of RSA and Elliptic Curve Cryptography

within Wireless Sensor Networks. RSA's decryption time becomes unwieldy with larger key sizes,

while ECC algorithms maintain controllable encryption and decryption times even with substantial

key sizes. Notably, ECC signature signing tends to be quicker than its verification counterpart,

whereas RSA's signature signing is more time-consuming. The results obtained from these

implementations provide strong incentives for considering a shift from RSA to elliptic curve

cryptography [144]. In a comparable investigation, the researchers delved into the foundational

aspects of elliptic curves, their associated arithmetic operations, and the advantages of adopting

elliptic curve cryptography over RSA within public cryptosystems. The outcomes of this research

highlighted that ECC signature signing processes are usually swifter than verification procedures,

while RSA signature signing tends to be more time-consuming. Moreover, the generation of public

keys demand significantly more time with the RSA technique compared to ECCs. These findings

in the implementation phase provided a compelling rationale for the researchers to advocate for a

transition from RSA to elliptic curve cryptography [145]. This study compared the performance

of RSA-based BROSMAP and ECC-based BROSMAP on Android and XAMPP servers. ECC

significantly outperformed RSA, being nearly twice as fast as RSA 2048 and four times faster than

RSA 3072, due to its smaller key sizes and use of symmetric cryptography for both encryption and

decryption. ECC-based BROSMAP also showed 561 times greater computational efficiency. The

researchers recommend ECC-based BROSMAP for resource-limited systems like IoT devices, as

it meets all security requirements of RSA-based BROSMAP while being more efficient and

lightweight [146]. In this study referenced as [87], the researchers conducted an analysis of the

security capabilities of ECC and RSA encryption techniques using three sets of sample input data

consisting of 8 bits, 64 bits, and 256 bits, each employing randomly generated keys in accordance

with NIST recommendations. Their findings illustrate that ECC surpasses RSA in both operational

efficiency and security. Furthermore, their work implies that ECC might be the preferred choice,

particularly for devices with limited memory resources such as smartphones and palmtop PCs. In

50

this paper, authors [142] conducted a comprehensive review of key cryptographic algorithms,

including ECC, El-Gamal, and RSA, with the goal of facilitating a comparative assessment. The

comparisons clearly indicate a significant reduction in transmission costs when employing ECC.

These outcomes underscore the practical advantages of ECC's performance. The survey was

undertaken to assess the security aspects of these algorithms, considering their widespread

utilization. This research conducted an examination of two frequently employed encryption

methods, namely Elliptic Curve Cryptography (ECC) and Rivest-Shamir-Adleman (RSA), with a

particular emphasis on their applicability in the context of cloud and fog computing. The

investigation involved a comparison of the key size and security capabilities of ECC and RSA

algorithms, assessing their suitability for deployment in resource-limited fog computing

environments. The findings suggest that ECC is a preferable choice for enhanced security and

faster performance, all without imposing undue strain on computing resources. In contrast, RSA,

with its established track record of security, remains widely accepted [147] . This paper introduced

a novel approach to file encryption, employing a hybrid encryption algorithm that combines AES

and RSA. It provides a foundational understanding of the AES and RSA algorithms while

conducting a thorough examination of their pros and cons. The encryption techniques of these two

algorithms have garnered substantial attention within the scholarly community. Through

experimental comparisons, the study concludes that the hybrid encryption algorithm enhances

encryption efficiency, bolsters key management, and fortifies data security in the context of file

protection [148]. This paper introduces a secure data sharing scheme focused on maintaining data

security and integrity in cloud environments. The system integrates Elliptic Curve Cryptography

(ECC) with the Advanced Encryption Standard (AES) to provide robust authentication and data

protection. Experimental results indicate that this method is more efficient and performs better

than current approaches. [149]. This paper delves into the capabilities of cryptography for ensuring

security in distributed storage. This exploration involves a thorough examination of standard

cryptography techniques such as AES, ECC, and RSA. However, due to variations in the

performance of these methods, the study addresses the challenge of identifying an encryption

technique that strikes a balance between efficiency and security. Some encryption methods can

deliver high security but are time-consuming for both encryption and decryption. Conversely,

other approaches may offer efficient encryption but suffer from vulnerabilities in terms of security

[150]. In reference [151], a two-tier cryptographic approach and a model are introduced to enhance

data security in cloud computing. This model leverages both symmetric and asymmetric

51

encryption algorithms, specifically AES and ECC, to bolster data security against unauthorized

access, thus promoting privacy, data integrity, and expediting cryptographic operations. This

advancement serves to enhance user trust in cloud computing while also accelerating the utilization

of smaller ECC keys in the encryption process. In this research presented in reference [152], the

authors examined Elliptic Curve Cryptography (ECC) to improve data security in cloud

environments and compared it to the Advanced Encryption Standard (AES) with a focus on time

efficiency. They evaluated encryption and decryption times for cloud-stored data using a sample

size of N=6 for both ECC and AES. The study found that ECC encryption was faster, with a mean

time of 0.1683 compared to AES's 0.7517. The significance value for the proposed system was

0.643 (p>0.05). The results indicate that ECC is more time-efficient than AES for data encryption.

In 2023, Rao and Sujatha introduced a security technique for public cloud systems using Hybrid

Elliptic Curve Cryptography (HECC). Their method generates keys with a lightweight Edwards

curve and modifies private keys with Identity Based Encryption, then reduces key sizes to speed

up AES encryption. Public keys are exchanged via the Diffie-Hellman method. Evaluation metrics

include throughput and the time for key generation, encryption, and decryption. Their model

outperforms existing ones, with key creation in 0.000025 seconds, encryption in 0.00349 seconds,

and a throughput of 693.10 kB/s. [153]. This paper presents a robust and efficient protocol using

a blind factor and Elliptic Curve Cryptography (ECC) for enhanced security. ECC is favored over

RSA for its superior security with smaller keys, reducing computational overhead. Benefits include

faster processing, lower power consumption, reduced bandwidth usage, better storage efficiency,

and more compact certificates. These advantages are crucial in bandwidth, processing, power, or

storage-constrained environments. The authors also developed a Hybrid Public Key Cryptographic

algorithm, combining Dual-RSA and ECC, which significantly improves performance in

computational cost and memory storage.[154]. This paper introduced a hybrid cryptography

algorithm aimed at ensuring confidentiality and enhancing security for internet communications.

The research places particular emphasis on minimizing the time required for encryption and

decryption to avoid excessive CPU utilization. Experimental findings demonstrate that the

proposed solution offers a more efficient means of encrypting messages, with only a marginal

difference in the algorithm's runtime. This approach effectively enhances security in the open

internet environment [155].

52

2.12.2.1. Research gap

Research papers examining asymmetric algorithms consistently reveal that Elliptic Curve

Cryptography (ECC) surpasses other asymmetric algorithms in terms of speed and efficiency.

However, it is important to note that existing studies have primarily focused on ECC's comparative

advantages in specific scenarios/ case studies such as IoT and cloud computing. There is a need to

explore the performance of RSA and ECC encryption techniques by adopting alternative

methodologies and use case scenarios

2.12.3. Review work on hybridizing Cryptographic Algorithms and Compression

Techniques

Numerous studies have suggested diverse cryptographic techniques with the aim of improving

both the speed and security of data transfer.

Sharma and Gandhi [156] explored different aspects related to two distinct yet non-contradictory

domains: Data Compression and Cryptography. This paper offers a brief examination of both

branches—compression and encryption—discussing the essential need for data compression and

data encryption. It also emphasizes the significance of integrating these two branches. The

challenge lies in determining the optimal order for applying these processes, i.e., whether

Compression should precede Encryption or vice versa. While, in 70% of cases, it proves more

efficient to apply compression before encryption, in specific situations and for particular purposes,

encryption can also be applied before compression. In reference [157], the author conducted a

comparison of various lossless data compression algorithms, including Arithmetic encoding,

Huffman coding, and Run Length encoding algorithms. The performance metric utilized for

evaluation was the compression ratio. The findings indicated that Huffman exhibited a poorer

compression ratio in comparison to Arithmetic encoding. However, it was noted that the speed of

compression and decompression for Huffman was superior to that of Arithmetic encoding.

Additionally, the conclusion highlighted that Huffman necessitates less memory for compression

operations. In paper [158], the author examined diverse lossless data compression algorithms

specifically for text files. The comparison included Run Length encoding, Adaptive Huffman

Algorithm, LZW algorithm, Shannon Fano Algorithm, and Huffman Encoding. The evaluation

criteria encompassed compression and decompression times, as well as the compression ratio. The

findings indicated that the most effective compression algorithm for text files among those

compared was the Shannon Fano Algorithm. The authors in [159] suggested an effective and

53

secure compression technique that integrates a secret key to achieve its objectives. The encoding

of input data involves the use of a generated key to scramble the data, followed by transformation

through the Burrows-Wheeler Transform (BWT). Subsequently, the output from the BWT

undergoes compression through both the Move-To-Front Transform and Run-Length Encoding.

This method seamlessly incorporates cryptographic principles of confusion and diffusion into the

compression process, thereby enhancing its overall performance. The proposed technique aims to

deliver robust encryption and substantial compression. Experimental results demonstrate its

superiority over other techniques in terms of compression ratio. In this paper, the study presented

the Crypto-Compression System, an algorithm that combines Stream cipher cryptography with

entropy encoding. This integrated approach aims to reduce data size, increase data transfer rates,

and enhance security in communication. Experimental results demonstrate that the generated

ciphertext from our proposed technique consumes less channel bandwidth compared to a one-time

pad. When contrasted with Huffman coding, both techniques exhibit similar bandwidth

requirements; however, our proposed approach offers a significantly more secure method of

transmission [160]. In this research, Ali and Kadhim [161] introduced a technique for concealing

secret texts with Unicode characters to enhance data protection. Leveraging the similarities of

glyphs, this method achieves invisibility and an increased hiding capacity. In summary, the

proposed approach successfully secures confidential data and attains a substantial payload capacity

by employing the Huffman compression algorithm, capable of handling unlimited text length.

Furthermore, the method can conceal a single bit within every digit or letter in the cover file.

Notably, this technique ensures cognitive transparency and avoids making modifications evident

in the original data. To heighten security, the method encodes a secret message using the Advanced

Encryption Standard (AES) algorithm before embedding it within the cover text. The authors in

[45] presented an innovative algorithm for both image encryption and compression. This algorithm

combines Parallel Compressive Sensing, Secret Sharing, and Elliptic Curve Cryptography to

achieve compression, encryption, identity authentication, and blind signcryption. The proposed

algorithm is designed to withstand various types of attacks, including man-in-the-middle, forgery,

and chosen-text attacks. Notably, it boasts lower storage and computational complexity, ensuring

high security and a remarkable Peak Signal-to-Noise Ratio (PSNR). The incorporation of blind

signcryption guarantees participant identity and shadow secrecy, maintaining verifiability, as

detailed in the paper. The practicality and security of the scheme are substantiated through

numerical experiments, security analysis, and proofs, surpassing the effectiveness of existing

54

schemes. The work of Murtaza et al. [162] proposed an enhanced secure image steganography

technique that utilizes double encryption algorithms. In this approach, the message is initially

encrypted using AES and then further encrypted using ECC. The resulting double-encrypted data

is compressed using Lempel Ziv Welch technique to reduce the storage capacity of the secret data.

Experiment results demonstrate that combining ECC and AES encryption, LZM compression, and

Knight Tour algorithm produces stego images of higher quality. This paper offers a highly secure

and robust image steganography method, as the Knight Tour algorithm is less well-known to

unintended users than the PRNG technique. The combination of compression, hiding, and

conversion techniques leads to increased stego image quality and reduced distortion. In their work,

Sagheer et al. [163] also proposed a module that concurrently performs compression and

encryption operations on the same dataset. This simultaneous execution is achieved by integrating

encryption into compression algorithms, leveraging the shared characteristics of cryptographic

ciphers and entropy coders in terms of secrecy. Initially, the provided text undergoes pre-

processing and is transformed into an intermediate form, enhancing its compressibility and security

within the dedicated secure compression module. The entire module represents a well-designed

synthesis of compression and cryptography principles, effectively complicating the task of

cryptanalysis for potential intruders. The study concludes that using this module facilitates the

secure transmission of confidential data even in an insecure medium. In the study conducted by

Jha et al. in 2021, a model was presented that integrates compression and security by simulating a

hybrid scenario of compression and security. This is accomplished by employing Huffman

Encoding for compression and CBC (Cipher Block Chaining) for security. Furthermore, the

visualization of the Huffman Tree is facilitated using JavaScript. The results illustrate the efficacy

of applying this model across various domains. Specifically, the utilization of the model with

Huffman coding is highlighted for its substantial impact, especially in handling sensitive data such

as genome and DNA sequences, where compromise is not permissible [13]. The hybrid design

proposed in [164] combines the AES and Huffman compression algorithms. As AES creates a

large file size overhead in the network, the Huffman algorithm was incorporated to alleviate this

issue. Before the application of Huffman coding, the Avalanche Effect value (AE/bit change ratio)

was approximately 40%. However, once the Huffman coding was employed, the Avalanche Effect

(AE) value increased to 49%, which is very close to the optimal 50%. Moreover, the entropy value

increased to 7.9, up from the previous value of 6 without the use of Huffman coding. Additionally,

when analyzing 6 different file types (.txt, .doc, .xlsx, .pptx, .pdf, .jpg), the BER (Bit Error Rate)

55

parameter yielded an ideal value of 0 for all cases. In a similar field, Elmahi et al. [165] devised a

text steganography algorithm utilizing Pseudo-random Number Generation (PRNG). This

algorithm involves the embedding of a confidential message into a cover-text generated through

PRNG, followed by compression to reduce its overall size. The reverse operations are executed at

the receiver's end to retrieve the original message. PRNG generates sequences through

deterministic algorithms computed from initial seeds, eliminating the necessity to determine

specific overheads for different messages. Moreover, the model exhibits flexibility, allowing

customization to individual preferences. For instance, one can modify the algorithm by swapping

the first and last words to embed the message or by applying a distinct permutation set. In this

study, the approach proposed by the authors in [166] involves combining two data-intensive

operations, Bulk Cryptography and Compression, to create an efficient solution for acceleration.

The primary objective of this research is to ensure the integrity, confidentiality, and authenticity

of user data during transit or storage, all while minimizing resource usage, including memory and

network bandwidth. By chaining these operations together, this technique optimizes storage,

security, and bandwidth utilization. The associated processing overhead is minimal when

compared to the accrued benefits. Through the utilization of Intel's Quick Assist Technology and

Network Accelerators, the burden on the CPU is alleviated during bulk crypto and compression

operations, resulting in valuable CPU cycle savings. Premadasa and Meegama presented a

thorough text message compression method that incorporates cryptographic measures to guarantee

enhanced security, ensuring message confidentiality, authenticity, and integrity. In the initial

phase, the technique compresses the lengthy text message into a cipher text comprising 32

characters using the MD5 algorithm. The encryption process involves the use of an initialization

vector and secret key, facilitating extensive message compression. The encrypted cipher-text is

subsequently transmitted via the SMS gateway and can be decompressed by the intended recipients

to restore it to its original form. The results demonstrate that the proposed mechanism does not

adversely impact message delivery time [167].

The study by Hengjian et al. [168] delved into the challenge of efficiently encrypting and

compressing image data. They introduce a novel image encryption approach that blends set

partitioning in hierarchical trees (SPIRT) with a feed-forward-feedback nonlinear dynamic filter

(FFNDF) and random arithmetic coding. Pseudorandom sequences generated by the FFNDF

dictate the mapping of interval positions during arithmetic coding. The SPIRT algorithm is

employed to encode bits from different passes using adaptive random arithmetic coding, resulting

56

in a flexible and secure image compression coding scheme that caters to progressive coding

features. The scheme undergoes both theoretical scrutiny and experimental assessment, revealing

robust cryptographic and perceptual security without apparent compromise in compression

efficiency. Consequently, this encryption scheme stands out as an ideal solution for various

applications, including total encryption, selective encryption, and conditional access. Mohamed et

al. proposed a practical method for enhancing data security and minimizing data quantity by

employing a lossless data compression technique, specifically Huffman coding, followed by

encryption using the symmetric AES algorithm. Additionally, a key exchange concept based on

the Diffie-Hellman Key Exchange (DHKE) is proposed to facilitate the exchange of secret keys

for data encryption and decryption. The proposed approach is implemented using the Trivial File

Transfer Protocol (TFTP) for transferring data between two computers in a local network. The

study concludes that data compression and encryption are effective techniques to secure data

transmission, reduce file size, and save time [169]. The authors in [170] introduced the RSE

algorithm, the first SE algorithm for HEVC video bitstream. To avoid modifying the codec

structure, data selection and encryption are carried out after video encoding. A random selection

algorithm is developed based on the RC4 pseudorandom sequence. Then, only 0.1% to 0.2% of

the data is extracted and encrypted using the AES-CTR algorithm. The evaluation results show

that the RSE algorithm improves encryption efficiency without compromising visual quality and

cryptographic security. The authors in [171] proposed a new encryption-compression hybrid

approach that utilizes the AES encryption algorithm to operate on the dominant coefficients in a

mixed scale representation. The compression process is achieved through the Faber-Schauder

Multi-scale Transform (FMT), which is known for its simplicity and ability to secure information

in the outline regions of the image. During compression, the AES encryption algorithm leaves

homogeneous zones in the high frequencies. Compared to DES, it is approximately twice as fast

to compute (in software) and approximately 1022 times more secure (in theory). The FMT-AES

approach was found to perform well when compared to other methods, including Quadtree-AES

and DCT-partial encryption. In the research conducted by Alsaffar et al. [172] , a blend of

encryption methods was employed to enhance security. This combination included the DNA

encryption algorithm, GZIP algorithm, AES cryptography, and image steganography. To heighten

the security of the message, the result of the final stage of DNA encryption underwent

multiplication by a specific factor. Subsequently, the message underwent compression using the

GZIP algorithm, resulting in a remarkable size reduction of 75% and a transformation of the

57

message into a new format. To further fortify the security, the AES encryption algorithm was

applied. Furthermore, the message was concealed within a high-quality image using LSB image

steganography technology. This comprehensive approach yielded noteworthy results for image

metrics, with the Lina sample achieving a PSNR of 67.589, MSE of 0.0116, SSIM of 1, NPCR

score of 0.011630262741374, and UACI score of 4.5608873495583733e-05. The study ensures

seamless data transfer and bolsters the safety of sensitive information, rendering it inaccessible to

hackers. In paper [173], the author proposed a hybrid technique that involves utilizing both the

Advanced Encryption Standard (AES) and Huffman compression to enhance SMS security and

increase data capacity. The AES performs the encoding of messages into ciphertext form, resulting

in an expansion of the character count due to additional cipher information in each encrypted data.

Consequently, the application of Huffman algorithm compression becomes necessary for text

compression, reducing the size of the encrypted messages. The encryption test results indicate that

the AES algorithm cryptography effectively secures SMS by producing unreadable ciphertext.

Additionally, the Huffman compression demonstrates a 17.35% improvement in compression

efficiency compared to the scenario without compression. Lilhore et al. [174] proposed a hybrid

model using MobileNetV3-SVM and transfer learning for improved intrusion detection in IoT and

5G networks, suitable for resource-limited settings. It combines deep learning for real-time packet

processing with hybrid cryptographic systems for secure data transmission and storage. This multi-

layered approach enhances the detection of known and unknown threats through continuous

learning, offering comprehensive online protection. The authors in [175] introduced a hybrid

encryption method combining AES-256, DKM, and Improved Elliptic Curve Cryptography

(IECC) to balance effective communication and data security in resource-limited environments.

This approach enhances security and performance by leveraging DKM's key updating, AES-256's

data confidentiality, and IECC's computational efficiency. The method demonstrates notable

improvements over traditional encryption techniques, including a 30% reduction in message

transmission time and a success rate of over 99% in thwarting intrusion attempts in simulated

attacks.

2.12.3.1. Research gap

In contemporary digital environments, the security of data during transmission is critical, typically

ensured through encryption techniques like the Advanced Encryption Standard (AES). However,

existing methods that integrate encryption and compression often struggle to minimize data size

58

while maintaining algorithmic security. This presents a research gap in balancing optimized data

storage with the preservation of data integrity and confidentiality.

2.12.4. Review of Modifications to the RSA Algorithm

Numerous scholars have undertaken diverse initiatives to enhance data security, with some

focusing on reducing algorithm execution costs, while others prioritize bolstering data security.

To acquire a comprehensive understanding, a concise review of relevant literature is essential, as

outlined in this section.

The RSA algorithm's security relies heavily on the careful selection of large prime numbers.

Successfully implementing and maintaining the security of RSA requires a thorough exploration

of prime number generation for public key cryptography, emphasizing the importance of

establishing strong and reliable primes. Despite the sparse distribution of large prime numbers,

their verification involves computationally expensive tasks like modular exponentiation with large

integers, leading to a notably slow prime number generation speed.

In reference [176], the research explores the optimization of the process of generating prime

numbers crucial for public-key cryptography. It proposes employing algebraic methods to simplify

the intricate process of prime number generation. The study introduces innovative algorithms

designed to decrease the complexity involved in generating n-bit primes, demonstrating their

practical implementation on smart-cards. The author in [177] addresses RSA security concerns by

introducing a modified algorithm employing multiple prime numbers and public keys. It presents

a modified RSA algorithm using four prime numbers and two public keys. The study enhances

security by complicating factorization through the use of multiple primes and public keys;

however, this enhancement led to a reduction in operational speed. Ivanov and Stoianov (2023)

[178] emphasize the significance of prime number arithmetic ratios in RSA key security,

suggesting revisions to RSA key generation standards. The current RSA key generation standards

do not consider prime number ratios' impact, potentially leading to vulnerable keys. The findings

suggest that the arithmetic ratio of prime numbers in RSA keys is a critical factor influencing key

security. Additionally, Jain et al. (2020) [179] propose modifications to RSA encryption using

multiple prime numbers set in the encryption process. The empirical findings show variations in

encryption and decryption times, reflecting the influence of utilizing multiple primes within the

RSA encryption framework. The study employs small prime numbers to achieve the encryption

and decryption speed. Pradhan and Sharma (2013) [180] combine Batch RSA and MPrime RSA

59

to speed up RSA decryption processes. Their approach involves concurrent decryption and the

utilization of more than two prime numbers in the modulus, facilitating efficient decryption

through the Chinese Remainder Theorem. The experimental results show significant reduction in

decryption time; ensuring efficient decryption while maintaining security integrity, particularly

beneficial for environments with constrained computational resources. The authors in [181]

enhance RSA encryption by using multiple keys and CRT to improve efficiency and security. The

study modifies the RSA algorithm to use four prime numbers and continuous subtraction method,

aiming to speed up and simplify encryption and decryption processes. The utilization of multiple

keys enhances security, while CRT implementation accelerates decryption processes compared to

traditional RSA methods. Khairina and Harahap (2019) [182] modify the RSA cryptographic

security using a Cubic Congruential Generator to generate prime numbers for key generation.

Through this method, the study utilizes CCG-generated random numbers, tested for primality to

establish the values of p and q in RSA, thereby strengthening the robustness of ciphertexts. The

ciphertext produced through CCG-enhanced RSA demonstrates increased resilience against

cryptanalytic attacks. This study suggests that the utilization of complex number generators like

CCG during RSA key generation can significantly fortify encryption security. Imam et al. (2022)

[183] present XRSA, an enhanced version incorporating four prime numbers and XOR operations,

aimed at rectifying vulnerabilities found in standard RSA and bolstering resilience against attacks.

Their research indicates a substantial increase in security against brute-force attacks, albeit at the

cost of increased time required for key generation, encryption, and decryption compared to

standard RSA. In [86], the authors adopt the proposed Enhanced RSA (ERSA) algorithm

developed by [184], conducting a comparative analysis with the traditional RSA algorithm. ERSA

incorporates two extra prime numbers into the Standard RSA algorithm to augment both speed

and security. The experimental findings highlight that employing prime numbers, instead of

random ones, in the proposed system contributes to an enhancement in the speed of encryption

and decryption processes. The authors in [185] enhance the study conducted by authors in [186]

by implementing R prime RSA, a cryptographic method reliant on large prime numbers known for

their heightened security compared to the conventional RSA, which employs dual prime values.

The security strength of R prime RSA is tied to the modulus of n, whereby a higher modulus

contributes to a more secure encryption scheme. A lower modulus, however, weakens the overall

security strength of the encryption. In [187], the authors propose a novel approach for fast

generation of RSA key pair on Smartcards. The significant feature of the proposed method is to

60

improve the required time for finding a large random prime number which is the most time

consuming step in the RSA key pair generation. The simulation results indicate that the time

required to generate RSA key pairs of 512, 1024, and 2048 bits is notably reduced compared to

traditional RSA algorithms.

2.12.4.1. Research gap

These studies collectively contribute to the ongoing evolution of RSA cryptography, bridging gaps

in efficiency, security, and adaptability. However, the RSA still has bottleneck for key generation,

encryption time and decryption time as the prime number becomes larger. Prior studies have also

focused on a very limited set of performance metrics and missing impacted results in terms of

prime number generation times of their proposed algorithms compared to the traditional RSA

algorithm and existing modified RSA frameworks, taking into account varying key bit sizes and

diverse file sizes.

2.12.5. Advanced Encryption Standard

The Advanced Encryption Standard (AES) algorithm is widely recognized and widely used as a

symmetric block encryption algorithm across the globe. It finds extensive application in wireless

networks, e-commerce platforms, and numerous other contexts. Due to its unique design, this

encryption method is commonly employed in both hardware and software systems for the purpose

of encrypting and decrypting sensitive documents. The AES algorithm provides a high level of

security, making it exceptionally challenging for hackers to decipher encrypted data. As a result,

it has become a trusted option for safeguarding confidential information. This study focuses on

reviewing papers that aim to enhance the performance of AES algorithms specifically for secure

data transmission. The objective is to find ways to optimize the efficiency and effectiveness of

AES in encrypting and decrypting data, with the aim of enhancing the overall speed and reliability

of secure data transmission processes. By exploring and analyzing various research papers, this

study aims to contribute to the ongoing advancement of AES algorithms, ultimately leading to

improved security measures for transmitting sensitive information.

2.12.5.1. Review on AES S-box, Key Expansion and MixColumn Transformation

Several researchers have been exploring the development of a key-dependent S-box and the

parallelization of key expansion. In this paper [188], the author introduces a customized version

of AES designed to enhance the security of the algorithm, making it more resilient to cryptanalysis

and safer for deployment in sensitive networks and applications where security is paramount, such

61

as military networks and applications. The security of the customized AES is enhanced through

modifications to the existing AES at two key points: firstly, by employing a novel AES key

expansion algorithm to eliminate dependencies between round keys and improve key expansion

time, and secondly, by incorporating a key-dependent S-box for each round to address issues

associated with using a static AES S-box. The results demonstrate that the proposed AES

significantly enhances security compared to the original AES. In paper [189], Cao et al. introduce

three enhancement concepts: an irreversible improvement strategy, the introduction of a random

number strategy, and a word shift strategy to the existing AES scheme. These strategies aim to

diminish correlation between round keys and optimize the runtime of the AES algorithm. Through

theoretical and experimental analysis of the algorithm's security and efficiency, the results

demonstrate that the enhanced algorithm ensures efficient operation while maintaining the security

of the key expansion algorithm. Moreover, it improves the overall anti-attack performance of the

AES algorithm. In [190], the authors propose an AES key expansion algorithm based on two-

dimensional Logistic mapping. This algorithm enhances the workload for brute force attacks,

making AES cracking more challenging. By employing the two-dimensional Logistic mapping,

the dependence between sub-keys is reduced, significantly increasing the security and robustness

of the AES encryption sub-keys. Experimental results demonstrate the strengthened security and

robustness of the AES sub-keys achieved through this approach. In their work [191], the authors

investigate a novel method for AES-256 Key Expansion through the use of the Even-Odd (E-O)

method. The proposed algorithm consists of two main components: Key Expansion and E-O Select

Round Key. The algorithm places a high emphasis on the element of confusion, resulting in

improved efficiency compared to traditional algorithms. The avalanche effect of the E-O method

outperforms the classic approach, and the algorithm successfully eliminates the concept of weak

keys. Additionally, the results demonstrate that the performance of sub-key generation is

comparable to that of the classic AES algorithm. In a similar study, the authors in [192] leverage

AES Key Expansion to generate multiple non-linear keys for the encryption process. Experimental

findings indicate that the proposed algorithm attains superior encryption quality while requiring

minimal memory and computational resources. The algorithm demonstrates high key sensitivity

and features an extensive key space, making it highly resistant to Brute force attacks and statistical

cryptanalysis on both original and encrypted images. Additionally, the encryption time is

significantly lower compared to other algorithms proposed in similar contexts. In paper [193], the

authors introduce an enhanced AES algorithm as a response to the limitations of the traditional

62

AES algorithm, which faces challenges from increasing computational power and emerging attack

methods. The proposed approach involves integrating chaotic sequences into the key expansion

scheme of the AES encryption algorithm. By augmenting the key expansion algorithm with a

chaotic sequence, the number of exhaustive attacks required for the round keys is increased to 1.89

x 2162. Through experimental testing, the improved encryption algorithm showcases elevated levels

of security and execution efficiency in comparison to the original algorithm. The enhanced

algorithm effectively encrypts and decrypts data, presenting a viable solution for the advancement

of the AES encryption algorithm. In this study, the authors present an upgraded key expansion

algorithm for the Advanced Encryption Standard (AES) that enhances data diffusivity and data

security in wireless communications. The paper addresses the weaknesses observed in typical key

expansion algorithms and proposes a solution by employing a double S-box model, which ensures

improved key security without compromising algorithm efficiency. Additionally, the paper

provides a detailed description of the AES encryption algorithm and its extended versions. To

validate their approach, the authors conduct experiments and present compelling results that

demonstrate the effectiveness of the proposed algorithm in bolstering key security for wireless

communications [12]. In paper [188], the study proposes a customized Advanced Encryption

Standard with better cryptographic strength than the original AES algorithm by updating two

operations: the first is a proposed key expansion algorithm for AES that improves security by

removing dependencies between round keys to prevent attackers from reaching the secret key or

other round keys, and the second uses a dynamic selection S-box for each round from the five

stored S-boxes, based on simple mating. The avalanche impact of a dynamically selected S-box is

greater than that of the static S-box employed in the original AES. The encryption time for both

the original and proposed AES remains unchanged, despite the incorporation of new S-boxes and

the implementation of a new key expansion process. This is because the updated operations in the

proposed AES are optimized to consume minimal time and are executed offline solely when there

is a modification in the Secret key. In this paper [194], the authors introduce a new key expansion

algorithm for AES. The proposed algorithm incorporates a Parallelized Key Expansion Algorithm

to enhance the traditional AES algorithm. By eliminating dependencies on other subkeys, the

proposed algorithm achieves both faster speed and improved security. Implementation results

affirm that the computational efficiency of the proposed algorithm exceeds that of the standard

AES Key expansion. In this study [195], the authors suggest two approaches to improve the

efficiency of the conventional AES. The study employ Genetic Algorithm and Neural Network

63

techniques to enhance security against timing attacks and reduce computational time. The study

offers the following recommendations: (1) Implementing this technique will enhance the

complexity of the existing cryptosystem, making it more robust against cryptanalytic attacks, and

(2) Comparing the feedforward NN AES with the genetic algorithm-based AES will yield a

stronger and more efficient symmetric cryptosystem. In paper [196], the study introduces a

modification to the Advanced Encryption Standard (AES) to address low diffusion rates in early

rounds. By incorporating additional primitive operations, the modified AES exhibits a significant

increase in diffusion, as demonstrated through avalanche effect evaluations. The frequency test

further confirms improved randomness in the ciphertext. The results highlight enhanced diffusion

and confusion properties in the modified AES, ensuring successful decryption and recovery of the

original plaintext. The authors in [197] introduce an innovative image encryption scheme, utilizing

both the Lorenz hyperchaotic system and the RSA algorithm. This scheme is designed to enhance

the security of image communication, effectively thwarting various attacks. The authors

hypothesize that their proposed scheme tackles the challenge of key exchange through the

application of the RSA algorithm, while also concealing image data using permutation and finite

field diffusion algorithms rooted in the Lorenz hyperchaotic system. Empirical findings validate

the efficacy of the image encryption scheme proposed in this research, showcasing robust

resilience against attacks and sensitivity to key variations. In addition, the security of this

encryption scheme relies on the strong security features inherent in the RSA algorithm. In this

research [198], a new cryptographic method is introduced, utilizing the Lorenz attractor. The study

incorporates a chaotic operation mode that enables interaction among the password, message, and

a chaotic system. The algorithm proposed, in tandem with the chaotic operation mode, achieves a

strong cipher. Assessments of its performance and comparisons with AES algorithms underscore

the method's suitability and readiness for real-world applications. This study introduces a new

algorithm for image encryption and decoding, utilizing the fractional Fourier transform, Lorenz

attractor, and masking. The paper aims to address the challenge of developing an image encryption

and decoding algorithm that is resilient against attacks, offering both high security and

performance. An analysis of chaotically generated random numbers was conducted, yielding

successful results. The algorithm ensures confidentiality and proves effective against common

attacks, including brute force [199]. The authors suggest a novel color image encryption algorithm

that combines the Lorenz and Rossler attractors with a multi-key concept for a conservative chaotic

system. The study incorporates a confusion and diffusion process to randomly modify the pixel

64

values of the plain image, thereby enhancing image security. The authors compare the proposed

algorithm with results obtained using both single and multi-key algorithms and analyze its

performance against different critical attacks. They assert that the proposed system exhibits

superior efficiency, image confidentiality, and high encryption and decryption speeds [200]. In

[201], the authors present a new algorithm based on the discrete quantum Baker map and Chen

hyperchaotic system. The process begins by representing the color digital image using the NEQR

model and then subjecting it to block scrambling through the Baker map. Subsequently, the index-

order scrambling method is employed to further disorder the image's rows and columns. The

ciphertext image is ultimately generated through diffusion using the quantum XOR operation. Both

numerical simulations and theoretical analysis validate that the proposed algorithm features a

considerable key space, exhibits a certain level of robustness, and demonstrates highly efficient

performance.

Several studies have been carried out to enhance the security or efficacy of AES cryptography. In

this work, Eslam et al. [202] developed an alternative lightweight design for both forward and

reverse MixColumns steps, essential for efficient AES hardware implementation. Their

investigations reveal that the proposed MixColumn design exhibits lower complexity compared to

previous significant efforts in terms of gate count and clock cycles. According to the study, this

streamlined design could prove beneficial for implementing AES in RFID tags, smart cards, and

remote sensors. Gamido et al. [203] employed bit permutation as a replacement for the

MixColumns Transformation in AES, aiming to enhance its efficiency. The study compared the

performance of the conventional and modified AES algorithms through the encryption of text files

and images. The evaluation criteria included encryption time, CPU usage, and avalanche effect.

The findings revealed that the modified AES exhibited increased efficiency compared to the

standard AES, demonstrating faster encryption times for text files and images. Additionally, the

modified AES showcased lower CPU usage and a higher avalanche effect during testing. In the

study conducted by Riyaldhi et al. [16], the primary focus is on reducing the encryption time,

which tends to increase with a growing number of data bytes. The authors propose an algorithm

incorporating modified shift rows and S-box for the mix column transformation. Their experiments

demonstrate that with each additional 1024 bytes of data, the computation time increases by three

milliseconds. The shift row transformation undergoes modification through array shift mapping,

while the mix column transformation sees alterations with the incorporation of an S-box and the

65

elimination of the SubByte transformation. However, a notable drawback of this algorithm is that

the modified S-box requires twice the area of the traditional S-box. Results indicate a significant

86.143% enhancement in the encryption process and a 13.085% improvement in the decryption

process. The authors in [204] conducted an in-depth analysis of the different rounds within the

standard AES algorithm, challenging a prior study's claim that excluding the MixColumns step

has no impact on security. Their findings strongly suggest that the omission of MixColumns in the

final round of AES diminishes the security of reduced-round variants, particularly in the face of

various types of attacks. Furthermore, they put forth the notion that the overall security of the

complete AES could be compromised if an attack on the entire AES exploits relationships between

the subkeys of the last round and other subkeys. AlMarashda et al. [205] conducted an assessment

of the AES security, examining the impact of including or omitting the MixColumns operation.

While the general belief suggested that omitting the MixColumns in the last round had no security

consequences and was merely done for optimization, a claim in mid-2010 proposed potential

security implications due to a reduction in the time complexity of attacks against AES. The study

demonstrated that omitting MixColumns from the last round could indeed diminish the security of

the AES block cipher. Additionally, they explored the performance overhead of including the

MixColumns operation, revealing a minimal increase of approximately 2% in computation time.

In this paper, Barrera et al. [206] presented an enhanced approach to computing the MixColumns

operation in AES. Their focus centered on devising and evaluating an efficient implementation of

the AES-128 MixColumns algorithm using two distinct methods. The first approach involved

constructing circuit modules based on the traditional row-column multiplication method, resulting

in a straightforward circuit configuration. The second approach aimed to introduce a more parallel

behavior into the circuit, aligning input signals to potentially reduce delays. The outcomes revealed

that their second approach, utilizing parallelism in signal processing, led to diminished time delays,

reduced logic elements, and lower virtual memory usage. In this paper, the study proposed

lightweight design modification for both forward and backward ShiftRows (inverse) and both

forward and backward MixColumns (inverse) operations essential in AES. The modification is

integrated with the AddRoundKey operation to minimize the time required for encryption and

decryption processes. Through security examination and experimental results, the proposed

encryption algorithms demonstrate high speed, along with robust security and reduced information

overhead. Additionally, the modified AES with six rounds stands out as the quicker choice among

the modified algorithms [207]. Manoj Kumar and Karthigaikumar [15] introduced a new and

66

efficient AES algorithm that is key-dependent, providing an enhanced avalanche effect in

comparison to the existing AES algorithm. Unlike the conventional AES, where the key matrix

influences only one transformation stage (add round section), making other stages independent of

the key and easily reversible, their proposed algorithm ensures that all operations are conducted

using the key. Through an XOR operation applied to all key bytes, a parity bit is obtained,

determining the operations in each transformation for every round. Implementation in FPGA

revealed synthesis results with a slight increase in the Avalanche effect.

2.12.5.1.1. Research gaps

1. Traditional key expansion methods in AES typically adhere to fixed approaches,

maintaining a consistent expansion mode throughout the encryption process. Each cipher

undergoes multiple rounds with fixed operations to achieve the desired security level. However,

despite its efficiency, the AES key expansion algorithm exhibits a significant vulnerability. With

knowledge of any round key, an adversary can deduce all other round keys, presenting a serious

threat known as the "related-key attack" to the overall security of AES.

2. Prior studies have indicated that the MixColumn transformation in AES is associated with

an increased utilization of resources.

2.13. Recent Developments and Advances in Cryptography - Post Quantum

Cryptography

Cryptography is a dynamic field with ongoing advancements that significantly impact data

security. Post-quantum cryptography, a relatively recent domain, addresses the challenges posed

by quantum computers to existing encryption methods. Quantum computers have the potential to

break widely used cryptographic algorithms like AES, RSA, and elliptic curve cryptography. The

response to this threat involves the development of new cryptographic algorithms that can

withstand quantum computer attacks. This section reviews various works on post-quantum

cryptography to identify future research directions.

67

Table 2.2: Literature Matrix of Post-Quantum Cryptography

Author/Date Focus Theoretical/Conceptual

Framework

Findings Gaps

Kretschmer et

al., 2023 [208]

Pseudo randomness

in Quantum

Cryptography

Quantum computational

complexity,

pseudorandom quantum

states, Forrelation

problem

Constructed classical oracle proving

the existence of pseudorandom

quantum states without one-way

functions, challenging the necessity

of OWFs for quantum cryptography

The implications for practical cryptography and

the translation of theoretical models to real-

world applications are not fully explored.

Yin et al., 2020

[209]

Quantum

Cryptography

Quantum key

distribution (QKD),

entanglement-based

cryptography

Achieved entanglement based QKD

between two ground stations over

1120 km without trusted relays,

securing data transfer with high

efficiency and practical security

against known side channels.

Long-term stability, scalability, and integration

with existing networks for broader real-world

application were not covered.

Pirandola et al.

[210]

Quantum

Cryptography

Quantum mechanics,

QKD protocols

Detailed examination of QKD

protocols, device independence,

satellite challenges, continuous

variable systems, quantum repeaters,

networks, data locking, and quantum

digital signatures.

Specifics on real-world implementation

challenges and long-term viability of various

protocols.

Bernstein &

Lange, 2022

[211]

Post-Quantum

Cryptography

Quantum Computing,

Cryptographic

Algorithms

Overview of post-quantum

cryptography, its evolution, and

NIST’s role in standardization.

Discusses hybrid cryptographic

approaches.

Detailed analysis of individual post-quantum

algorithms and their specific implementations.

68

Iqbal &

Krawec, 2019

[212]

Semi-Quantum

Cryptography

Quantum key

distribution (QKD),

Semi-quantum models

Developed SQKD protocols with

various security-proof methods and

discussed practical attempts

Further details on experimental results and wider

practical applications are not discussed in the

covered sections.

Bernstein and

Lange, 2017

[213]

Post-quantum

cryptography

Quantum computing and

cryptography; Shor's

and Grover's algorithms

Identified cryptographic systems and

mathematical operations that could

remain secure against quantum

computer attacks.

In-depth analysis on security proofs and practical

implementations.

Ugwuishiwu et

al., 2020 [214]

Quantum

Cryptography and

Shor’s Algorithm

Quantum mechanics,

computational

complexity

Reviewed quantum vs classical

cryptography, Shor's Algorithm, its

impact on encryption, and quantum

key distribution mechanisms.

The practical application of quantum

cryptography and detailed analysis of its

challenges are not extensively covered.

Dam et al., 2023

[215]

Post-Quantum

Cryptography (PQC)

Quantum computing,

cryptographic

algorithms

Overview of PQC developments,

NIST’s standardization process, and

current implementation status on

hardware platforms.

Real-world application scenarios and long-term

effectiveness of proposed algorithms.

69

Based on the review of the current literature on quantum cryptography, it is evident that while there has

been significant research and progress in the field of quantum cryptography, there remains a notable gap.

Moreover, this study has not deeply explored specific aspects of quantum cryptography. This presents an

opportunity for future research to delve more comprehensively into these areas. Future work should aim to

fill this gap, expanding the understanding and application of quantum cryptography in various domains.

This direction is crucial for advancing the field and harnessing the full potential of quantum cryptographic

techniques.

70

Chapter 3

Empirical Evaluation of Symmetric Block Cipher Techniques

This chapter focuses on examining the effectiveness of symmetric algorithms commonly employed

for data transmission, which aligns with the research objective (RO 1). To accomplish this

objective, the study devised two primary tasks: (1) To investigate the encryption, decryption times,

and throughput (speed) of three widely utilized block cipher algorithms within the realm of

symmetric algorithms: Twofish, Blowfish, and AES and (2) To compare the performance of AES,

Twofish, 3DES, and Blowfish symmetric encryption algorithms across key sizes of 128, 192, and

256 bits, utilizing their respective consistent block sizes, both of which were successfully

completed and documented in a journal article (Q3) and a conference paper. Furthermore, this

chapter is subdivided into two main approaches.

3.1. Motivation of the study

This study aimed to investigate the encryption, decryption times, and throughput (speed) of three

widely utilized block cipher algorithms within the realm of symmetric algorithms: Twofish,

Blowfish, and AES. The investigation encompassed various file types to ensure a comprehensive

analysis of their performance. By examining the encryption and decryption times, the study sought

to understand the efficiency of these algorithms in securely encoding and decoding data.

Additionally, the throughput, or speed, of the algorithms was assessed to determine how quickly

they could process data during transmission.

Different file types were used during the investigation to simulate real-world scenarios and

evaluate the algorithms' performance across diverse data formats. This comprehensive approach

aimed to provide valuable insights into the strengths and weaknesses of Twofish, Blowfish, and

AES when employed for data encryption and decryption.

It is important to highlight that, up until this point, no comprehensive study has delved into the

analysis of these algorithms with diverse file types while maintaining a constant block size and

exploring various key bit sizes. Therefore, this study fills a significant research gap by providing

a detailed examination of the encryption and decryption times of 3DES, Twofish, and AES, as

well as the effectiveness of Blowfish with varying key sizes, across different file types.

71

3.2. Introduction

Due to the increasing number of incidents in which personal data between two parties is taken by

intruders, it is critical to protect data communicated over the Internet nowadays [216]. People

spend so much time connected to a network, network security has become an extremely important

part of data communication. These are vulnerable to security attacks such as unauthorized access

to a file or alterations to its contents. One of the main reasons invaders succeed is that most of the

information obtained from a system is in a form that can be read and comprehended. The solution

to this dilemma is to utilize Cryptography. This is the art and science of securing information from

unwanted individuals by changing it into an indiscernible form to its attackers while it is stored

and transported [217]. There are numerous encryption methods that are widely available and

utilized in information security. They are classified as Symmetric (private) or Asymmetric (public)

Key Encryption. Only one key is needed to encrypt and decrypt data in symmetric keys encryption

or secret key encryption. Asymmetric keys employ two keys: private and public keys. The public

key is used to encrypt data, while the private key is used to decrypt it (e.g. RSA and ECC) [109].

A block cipher algorithm is a symmetric key cryptosystem whose security is based on sophisticated

non-linear transformations and whose encryption speed is quite fast. As a result, the block cipher

algorithm has evolved into a vital encryption technique that is widely utilized in applications such

as secure data transfer, storage encryption, digital signing, and entity certification [218]. The

primary purpose of the security mechanism is to give message privacy while also ensuring data

confidentiality, integrity, and non-repetition. The primary function of network security is to enable

efficient data authentication and authorization through the use of cryptographic algorithms [131].

A cryptographic algorithm is typically computationally heavy and thereby, consumes a lot of

computing power such as CPU time, memory usage, and power consumption [118]. Previous

research has revealed inconsistencies in the efficacy of various encryption methods. The current

work analyzed symmetric (AES, Twofish, and Blowfish) cryptographic algorithms using multiple

file types such as binary, text, and image files with a unique key bit size of 128. These encryption

methods were compared based on three different parameters: encryption time, decryption time,

and throughput. The effectiveness of each technique is demonstrated using simulation data. The

research is divided into two methodological approaches. In the initial approach, the study

addresses the following research questions.

72

1. What is the performance difference between the various algorithms using a constant key

bit size of 128?

2. Which block cipher technique works better in the context of process time and throughput

using different file types?

Hence, the current study makes the following key contributions.

i. To perform an extensive evaluation of the encryption, decryption times, and speed using

a unique key bit size of 128

ii. To analyze the performance using different file types.

iii. To perform an extensive analysis of the performance of selected algorithms, namely: AES

(Rijndael), Twofish, and Blowfish

In the second approach, this study examines and contrasts the effectiveness of specific algorithms,

specifically AES (Rijndael), Twofish, and 3DES. The study investigates the following research

questions.

1. Which key bit sizes of the algorithms AES, Twofish, and 3DES work best in terms of

encryption and decryption times when using a consistent block size of 128 bits?

2. How does the performance of the Blowfish algorithm vary with different key bit sizes and

a fixed block size of 64 bits?

3. Which key bit size performs better with different file extensions?

Hence, the current study makes the following contributions.

i. To perform an extensive evaluation of the encryption and decryption times of AES,

Twofish and 3DES using a block size of 128 bits

ii. To analyze the performance of AES, Twofish, and 3DES using varying key bit sizes of

128, 192 and 256.

iii. To further analyze the performance of Blowfish with key bit sizes of 128, 192, and 256,

while maintaining a fixed block size of 64 bits

73

3.3. Symmetric 128-Key bit Approach: AES, Twofish and Blowfish

The study implemented the various symmetric encryptions in Python. The performance evaluation

is based on the implementation of three symmetric algorithms AES, Twofish and blowfish for

encryption and decryption, and throughput. The following criteria were used: a) encryption and

decryption time; b) throughput; and c) 128 key bit size for AES, Twofish, and Blowfish. To show

the outcomes for the conclusion, the values for each criterion were logged and graphically plotted.

The simulation was run on a laptop with an Intel® CoreTM i5-10210U CPU running at 2.40 GHz

and 16 GB of RAM. Version 21H2 of Windows 11 Pro for Workstations was used. A key size of

128 bits was utilised as the benchmark in this experiment to acquire trustworthy values for

evaluating the efficiency of AES, Blowfish, and Twofish cryptographic algorithms. The

experiment was run three times and the mean execution time were recorded. The three block-

cipher methods—AES, Blowfish, and Twofish—are also listed in Table 3.1 as a summary.

Table 3.1: Key and Block sizes.

3.3.1. Performance analysis

3.3.1.1. Process Time (Encryption and Decryption time)

Tables 3.2 to 3.3 show the comparison of results. It is worth noting that AES-128 key bit size has

the quickest encryption and decryption time on average.

Table 3.2: Encryption times for AES, Blowfish and Twofish (128 key bit).

File format

File

size

(in

kb)

AES

BLOWFISH TWOFISH

file_example_TXT 9 0.037459 0.010809 0.25

file-example_PDF_1MB 1,018 0.368214 0.304263 26.34

file_example_MP3_5MG 5,166 1.182518 1.436277 131.50

file_example_MP4_1280_10MG 9,610 2.218504 2.874504 244.11

file-sample_1MB_DOCX 1,003 0.247889 0.306568 25.39

file_example_XLS_5000 657 0.171259 0.218169 16.59

file_example_PPT_250kB 243 0.105667 0.111124 6.20

file_example_JPG_2500kB 2,446 0.569065 0.718191 63.02

Factors AES Blowfish Twofish

Key sizes 128 128 128

Block size 128 bits 64 bits 128 bits

74

Table 3.3: Decryption times for AES, Blowfish and Twofish (128 key bit).

File format

File

size

(in

kb)

AES

BLOWFISH TWOFISH

file_example_TXT 9 0.01238 0.016267 0.244043

file-example_PDF_1MB 1,018 0.288262 0.298124 25.60037

file_example_MP3_5MG 5,166 1.213215 1.504732 135.4913

file_example_MP4_1280_10MG 9,610 2.238994 2.703225 245.67

file-sample_1MB_DOCX 1,003 0.298465 0.298391 25.33303

file_example_XLS_5000 657 0.200942 0.21287 16.62755

file_example_PPT_250kB 243 0.076602 0.092704 6.150904

file_example_JPG_2500kB 2,446 0.615148 0.735764 62.01268

3.3.1.2. Throughput

The throughput of an encryption scheme defines the speed of encryption. The encryption scheme's

throughput is calculated by dividing the total plaintext in bytes encrypted by the encryption time

[107]. In this experiment, the throughput is derived from calculated as the total plaintext in

Kilobytes encrypted/encryption time (KB/sec) divided by their mean time generated. AES has the

highest throughput making it the fastest of the three followed by blowfish. The results are shown

in Tables 3.4 to 3.6.

Table 3.4: AES Throughput in kilobytes/seconds (128 key bit).

File format

File size

(in kb)

ENCRYPTION DECRYPTION

file_example_TXT 9 240.2626872 726.9789984

file-example_PDF_1MB 1,018 2764.696617 3531.50953

file_example_MP3_5MG 5,166 4368.64386 4258.10759

file_example_MP4_1280_10MG 9,610 4331.747881 4292.106187

file-sample_1MB_DOCX 1,003 4046.165824 3360.528035

file_example_XLS_5000 657 3836.294735 3269.600183

file_example_PPT_250kB 243 2299.677288 3172.240934

file_example_JPG_2500kB 2,446 4298.278756 3976.278879

Table 3.5: Blowfish Throughput in kilobytes/seconds (128 key bit).

File format

File size

(in kb)

ENCRYPTION DECRYPTION

file_example_TXT 9 832.6394671 553.2673511

file-example_PDF_1MB 1,018 3345.789662 3414.686506

file_example_MP3_5MG 5,166 3596.799225 3433.169495

file_example_MP4_1280_10MG 9,610 3343.185468 3555.012994

75

file-sample_1MB_DOCX 1,003 3271.704809 3361.361435

file_example_XLS_5000 657 3011.426921 3086.390755

file_example_PPT_250kB 243 2186.746337 2621.246117

file_example_JPG_2500kB 2,446 3405.779243 3324.435553

Table 3.6: Twofish Throughput in kilobytes/seconds (128 key bit).

File format

File size

(in kb)

ENCRYPTION DECRYPTION

file_example_TXT 9 36 36.87874678

file-example_PDF_1MB 1,018 38.64844343 39.76505027

file_example_MP3_5MG 5,166 39.2851711 38.12790932

file_example_MP4_1280_10MG 9,610 39.36749826 39.11751537

file-sample_1MB_DOCX 1,003 39.50374163 39.59257933

file_example_XLS_5000 657 39.60216998 39.51273639

file_example_PPT_250kB 243 39.19354839 39.506388

file_example_JPG_2500kB 2,446 38.81307521 39.44354606

3.3.1.3. Discussion of results for 128-Key bit Analysis

Tables 3.2 to 3.6 show the encryption time, decryption time, and throughput respectively.

Performance analysis varies based on a particular file type, but on average, AES outperforms

Blowfish and Twofish in terms of speed and process time. Furthermore, the figures in Fig 3.1 and

Fig 3.2 are based on the average of total encryption/decryption and throughput of AES, Blowfish,

and Twofish. An overview of all the comparisons can be summarized into the following Table XI.

The summary in Table 3.7 are based on values from fig 3.1 and fig 3.2. AES-128 produced fast

encryption, decryption times and speed than Blowfish and Twofish.

76

Figure 3.1: Average Process for AES, Blowfish and Twofish.

Figure 3.2: Average Throughput for AES, Blowfish, and Twofish.

0
.6

1
2

5
7

1
8

5
6

0
.7

4
7

4
8

8
1

1
5

6
4

.1
7

0
.6

1
5

1
4

7
6

9

0
.7

3
2

7
5

9
5

9
7

6
4

.6
4

1
2

3
4

2
4

AES Blowfish Twofish

P
R

O
C

ES
S

TI
M

E

ENCRYPTION TECHNIQUES

Average Encryption

and Decryption

Time

Encryption Time Decryption

3
2

7
3

.2
2

0
9

5
6

2
8

7
4

.2
5

8
8

9
2

3
8

.8
0

1
7

0
6

2
8

7
4

.2
5

8
8

9
2

2
9

1
8

.6
9

6
2

7
6

3
8

.9
9

3
0

5
8

9
4

0

500

1000

1500

2000

2500

3000

3500

AES Blowfish Twofish

TH
R

O
U

G
H

P
U

T
IN

 K
B

/S
EC

ENCRYPTION TECHNIQUES

Average

Throughput

Encryption Throughput Decryption Throughput

77

Table 3.7: AES, Blowfish, and Twofish an overall comparison.

Parameters AES Blowfish Twofish

Key bit size 128 128 128

Encryption Very fast Fast Too slow

Decryption Very fast Fast Too slow

Throughput

(Speed)

Very high High Low

3.4. Symmetric 128, 192 and 256 Key bits with their respective block size Approach:

AES, 3DES, Twofish and Blowfish

The symmetric algorithms AES, Twofish, and 3DES are used as the basis for the performance

evaluation in terms of encryption and decryption times. In addition, the study further conducted

performance analysis on 128, 192 and 256 key bits’ sizes on Blowfish using a block size of 64.

This is because Blowfish has a 64-bit block size. The simulations were run on a laptop with an

Intel® CoreTM i5-10210U CPU running at 2.40 GHz and 16 GB of RAM. Version 21H2 of

Windows 11 Pro for Workstations was used. In this experiment, key sizes of 128, 192, and 256

bits were used to provide reliable values for comparing the performance of the AES, Blowfish,

3DES, and Twofish cryptographic algorithms. The experiment was run twelve (12) times and the

average execution time in seconds was recorded. Table 3.8 also summarizes the various block-

cipher techniques: AES, Blowfish, Twofish and 3DES.

Table 3.8: Key bits and Block sizes.

Factors AES *Blowfish Twofish 3DES

Key sizes 128, 192

and 256

bits

128, 192 and

256

Bits

128, 192

and 256

bits

128 and

192

bits

Block

size

128 bits 64 bits 128 bits 128 bits

* Please note that the analysis of Blowfish was not included in the comparative study

3.4.1. Performance evaluation

The algorithms were compared based on their processing speeds, block sizes, and key bit sizes. Table 3.9

to 3.14 shows the times in seconds for both encryption and decryption.

78

Table 3.9: 128 key size - average encryption times.

File

format

Size

in Kb

AES

Average

time

*Blowfish

Average

time

Twofish

Average

time

3DES

Average

time

Txt 9 0.057 0.04 0.25 0.053

PDF 1,018 1.862 1.782 26.34 2.169

MP3 5,166 9.105 9.545 131.5 10.928

MP4 9,610 17.529 17.75 244.11 20.144

DOCX 1,003 1.918 1.951 25.39 2.115

XLS 657 1.088 1.278 16.59 1.519

PPT 243 0.52 0.529 6.2 0.573

JPG 2,446 4.342 4.812 63.02 5.252

Table 3.10: 192 key size - average encryption times.

File

format

Size

in Kb

AES

Average

time

*Blowfish

Average

time

Twofish

Average

time

3DES

Average

time

Txt 9 0.049 0.04 0.246 0.178

PDF 1,018 1.737 1.58 23.859 1.678

MP3 5,166 8.876 7.954 120.319 8.453

MP4 9,610 15.995 15.193 225.117 15.746

DOCX 1,003 1.739 1.625 23.771 1.665

XLS 657 1.091 1.051 15.821 1.083

PPT 243 0.426 0.471 5.96 0.417

JPG 2,446 4.316 3.957 59.714 4.011

Table 3.11: 256 key size - average encryption times.

File

format

Size in

Kb

AES

Average

time

*Blowfish

Average

time

Twofish

Average

time

Txt 9 0.038 0.033 0.228

PDF 1,018 1.5 1.485 24.198

MP3 5,166 7.611 7.383 124.065

MP4 9,610 14.115 13.704 230.228

DOCX 1,003 1.432 1.439 23.953

XLS 657 0.94 0.945 15.563

PPT 243 0.378 0.366 5.779

JPG 2,446 3.485 3.498 58.084

Table 3.12: 128 key size - average decryption times.

File

format

Size

in Kb

AES

Average

time

*Blowfish

Average

time

Twofish

Average

time

3DES

Average

time

Txt 9 0.035 0.054 0.244 0.046

PDF 1,018 1.889 1.868 25.6 2.022

MP3 5,166 9.068 9.722 135.491 10.832

MP4 9,610 17.643 18.074 245.67 20.364

79

DOCX 1,003 1.866 1.983 25.333 2.091

XLS 657 1.138 1.303 16.628 1.433

PPT 243 0.504 0.498 6.151 0.561

JPG 2,446 4.559 4.415 62.013 5.27

Table 3.13: 192 key size - average decryption times.

File

format

Size

in Kb

AES

Average

time

*Blowfish

Average

time

Twofish

Average

time

3DES

Average

time

Txt 9 0.032 0.046 0.246 0.046

PDF 1,018 1.422 1.464 23.922 1.698

MP3 5,166 7.115 7.349 118.859 8.471

MP4 9,610 13.236 13.651 228.702 15.724

DOCX 1,003 1.413 1.447 23.862 1.678

XLS 657 0.924 0.956 15.563 1.103

PPT 243 0.366 0.378 5.755 0.416

JPG 2,446 3.363 3.486 58.655 4.041

Table 3.14: 256 key size - average decryption times.

File

format

Size in

Kb

AES

Average

time

*Blowfish

Average time

Twofish

Average

time

Txt 9 0.027 0.031 0.255

PDF 1,018 1.44 1.473 24.514

MP3 5,166 7.201 7.366 124.713

MP4 9,610 13.401 13.733 231.95

DOCX 1,003 1.43 1.506 23.931

XLS 657 0.949 0.968 15.653

PPT 243 0.356 0.383 5.84

JPG 2,446 3.482 3.475 59.243

3.4.2. Discussion of results for 128, 192 and 256 Key bits Analysis

The analysis presented is based on two methods utilized during the experiment. The first approach

involved conducting a comparative analysis of Advanced Encryption Standard, Triple DES

(3DES), and Twofish with key sizes of 128, 192, and 256 bits, using various file extensions and

maintaining a constant block size of 128 bits. The second method involved analyzing Blowfish

with key sizes of 128, 192, and 256 using a block size of 64 bits.

Table 3.9 (128-bit key size) shows that the Twofish algorithm generally performs slower than the

other two algorithms across all file formats. For example, for a PDF file of size 1,018 Kb, the

Twofish algorithm took 26.34 seconds on average, while the AES and 3DES algorithms took 1.862

80

and 2.169 seconds, respectively. In contrast, the Twofish algorithm showed slightly improved

performance with a speed of 0.25 seconds when processing a 9 Kb TXT file. The AES algorithm

generally performs the fastest except for small text file (9 Kb), 128-key bits 3DES has the fastest

encryption time of 0.053 seconds, while 128-key bits AES is slightly slower with an average

encryption time of 0.057 seconds. Table 3.10 displays distinct trends in contrast to Table II, with

the 192 key bits of 3DES algorithm being generally the fastest, and Twofish being the slowest

across all file formats except for text file where 192 key bit of AES outperform 3DES with a speed

of 0.049 seconds. Table 4.11 (256-bit key size) shows that the AES algorithm is generally the

fastest for all file formats, followed by Twofish. Tables 3.11 and 3.14 do not include any values

for the 256 key bit size for either the encryption or decryption timeframes data on 3DES because

it has no 256 key bit size. Table 3.12 presents the average decryption times for a 128-bit key size

for AES, Twofish, and 3DES encryption algorithms. The data in this table indicates that Twofish

takes the longest time to decrypt all file formats compared to AES and 3DES. The AES algorithm

takes the least amount of time to decrypt all file formats. Table 3.13 shows the average decryption

times for a 192-bit key size for the same encryption algorithms and file formats. The results show

that AES remains the fastest algorithm for all file formats, with Twofish still taking the longest

time to decrypt. The decryption time for all algorithms has decreased for all file formats with the

increase in key size. Table 3.14 presents the average decryption times for a 256-bit key size for

the same encryption algorithms and file formats. The data shows that Twofish still takes the longest

time to decrypt compared to AES.

Tables 3.9 to 3.14 also include the average encryption and decryption times of the Blowfish

algorithm with different key sizes for various file formats using a fixed block size of 64 bits.

Comparing tables 3.9 to 3.14, it can be observed that increasing the key size from 128 bits to 192

bits and then to 256 bits leads to a decrease in the encryption and decryption times. Overall, the

256-bit key size of Blowfish outperforms the 128-bit and 192-bit key sizes in both encryption and

decryption times.

In summary, the 256 key bit size of AES has the highest encryption time compared to the 128 and

192 key bit sizes of AES. On average, AES algorithm outperforms Twofish and 3DES in terms of

encryption times. During the decryption process, on average, the 192-bit key size of AES showed

slightly superior performance compared to the 256-bit key size in restoring data to its original

81

form. During the analysis, it is observed that Blowfish's 256 key bit size had the fastest encryption

and decryption times on 128 and 192 key bit sizes of Blowfish.

3.5. Conclusion

In today's rapidly expanding Internet and network applications, encryption algorithms play a

critical role in ensuring information security. This study outlines two methodological approaches

for conducting correlational research on the most commonly used symmetric key block cipher

techniques. Initially, using a key bit size of 128, the study assessed three symmetric key encryption

algorithms: AES, Twofish, and Blowfish. Based on the experimental results, the 128 key bit of

AES algorithm has the shortest process time and runs quicker than Twofish and Blowfish. In the

second phase, this study extensively investigated the key bit lengths of four block cipher

algorithms: AES, Blowfish, Twofish, and 3DES. The processing times for each symmetric

approach were tested using a variety of file types. When it comes to encryption and decryption

speeds, 192 and 256 key bit sizes of AES both produce extremely comparable results. During the

analysis, it was found that AES's 256 key bit size had the fastest encryption times. In terms of

decryption time, AES with a key size of 192 bits outperformed the 256-bit key size of AES. It can

also be observed that with a fixed block of 64 bits, Blowfish's 256 key-bit size presented the

quickest encryption and decryption timings than 128 and 192 key bit sizes of Blowfish. The

findings further demonstrate that Blowfish can compete with AES in terms of encryption and

decryption speed. In conclusion, both methodological approaches demonstrated that the AES

algorithm is better suited for secure data transfer.

82

Chapter 4

Comparative Analysis of ECC and RSA

This chapter aligns with Research Objective 2 (RO 2), which focuses on empirical evaluation of

the most commonly used Asymmetric algorithms (RSA and ECC). To achieve this objective, the

study formulated a specific task designed to address the key aspects of RO 2. This task was planned

and executed, ensuring that all relevant factors were considered and addressed. The successful

completion of this task has been documented and disseminated through a journal article, classified

as a Q3 publication, demonstrating the rigor and relevance of the research conducted.

4.1. Motivation for conducting performance analysis on RSA and ECC for a secure email

system

Previous studies highlight ECC's superior speed and efficiency over other asymmetric algorithms,

particularly in IoT and cloud computing. However, there is a gap in understanding its performance

in other practical applications, such as secure email systems. This study aims to compare ECC and

RSA encryption techniques within the context of secure email communication, providing broader

insights into their real-world applications and guiding the development of more secure

communication systems.

4.1.1. Introduction

In today's interconnected world, email has become an indispensable tool for communication. It

facilitates the exchange of information, ideas, and documents across vast distances, enabling

individuals and organizations to collaborate and communicate efficiently [219]. However, the

convenience of email also brings with it a host of security concerns, as emails can easily fall prey

to unauthorized access, eavesdropping, identity spoofing, interception, or data tampering

[220][221]. This is where cryptography plays a pivotal role in ensuring the confidentiality,

integrity, and authenticity of email communication. Email encryption is the cornerstone of secure

email communication. It employs complex algorithms to transform the content of an email into an

unreadable format, known as ciphertext, which can only be deciphered by the intended recipient

possessing the decryption key [222]. This cryptographic process ensures the following [142][223]:

1. Confidentiality: Encrypted emails are incomprehensible to anyone without the decryption

key, thwarting unauthorized access and eavesdropping.

83

2. Integrity: Any tampering with the encrypted email is readily detected by the recipient,

ensuring that the message remains unaltered during transit.

3. Authentication: Encryption can be combined with digital signatures to confirm the identity

of the sender, assuring the recipient of the email's legitimacy.

Encryption algorithms like RSA, AES, and elliptic curve cryptography are commonly employed

in email security protocols such as Secure Sockets Layer (SSL) and Transport Layer Security

(TLS). Additionally, public-key infrastructure (PKI) systems and digital certificates play crucial

roles in verifying the authenticity of email senders [224]. This research project's primary aim is

to explore the correlation between the performance of secure email communication systems and

the encryption methods employed. Specifically, the study will investigate how the use of both RSA

and ECC encryption techniques impacts the effectiveness of these secure email systems. In more

extensive detail, the study seeks to discern any connections between the choice of cryptographic

algorithms, RSA and ECC, and the overall performance of secure email systems. Furthermore, the

study suggests a hybrid cryptography algorithm that utilizes both RSA and ECC to enhance

security and preserve confidentiality in the context of secure email communication. The research

will assess various performance aspects, including key exchange time, encryption and decryption

times, signature generation and verification times, to ascertain how these encryption methods

influence the efficiency and efficacy of secure email communication. Through an analysis, the

study's aim to identify any potential relationships or dependencies between the selection of

encryption methodologies and the outcomes in terms of secure email system performance.

Hence, the current study makes the following key contributions.

i. To perform an extensive analysis of the performance of selected algorithms, namely: RSA

and ECC for secured email communication

ii. To perform an extensive evaluation of the key exchange time, signature generation and

verification times between RSA and ECC techniques

iii. To present a hybrid cryptography algorithm that employs both RSA and ECC to ensure

confidentiality and enhance security for secure email communication

84

4.1.2. Experimental Setting

A local area network (LAN) consisting of a dedicated network server and two client machines

were used to carry- out the simulation. Fig 4.1 shows the diagram of the simulation setup.

Figure 4.1: Simulation setup.

The testing environment, which included standard email clients and server, featured laptops with

Intel i7 processors, 16GB RAM, and solid-state drives. The server was equipped with the following

specifications - OS: Ubuntu, CPU: Intel Xeon, Cores: 4 core, 2.4 GHz, Architecture: 64-bit, and

RAM: 8 GB DDR4 - represent typical end-user systems in corporate or personal contexts. To

commence, email server Exim and clients Mozilla Thunderbird were configured to support RSA,

ECC and hybrid encryption. Public and private keys were generated for RSA, typically 2048 bits,

and ECC, using the widely adopted SECP224R1 curve for each user. Key exchange occurred

during the initial email contact, and keys were securely stored. The experiment was conducted five

times and the mean values for each metric were recorded. A series of practical tests were

conducted, involving the sending of emails of varying sizes, from small text-based messages to

larger attachments. Throughout the tests, measurements were taken for encryption and decryption

times, key exchange time, signature generation, and verification times.

4.1.3. RSA-ECC Hybrid Technique

The proposed hybrid technique merges the robust aspects of both RSA and ECC, creating a

cooperative strategy that not only strengthens the security of email communication but also

streamlines its efficiency. RSA and ECC stand as widely embraced encryption methods for

85

safeguarding email exchanges. RSA, a traditional approach, provides formidable security but can

be computationally demanding, particularly when managing large files. Conversely, ECC excels

in terms of encryption and decryption speed, making it an ideal choice for resource-constrained

environments. The suggested hybrid method presents an inventive solution to the enduring

challenge of striking a balance between security and performance in secure email communication.

By harnessing the strengths of RSA and ECC, this hybrid technique provides an adaptable solution

that can be tailored to meet specific email communication needs. Fig 5.2 provides a visual

representation of the proposed fusion of RSA and ECC algorithms. This visual representation

provides a clear and intuitive understanding of the sequential data transformations performed

within the algorithm. For a more in-depth exploration of the inner workings of this proposed

algorithm, Algorithms 4.1 and 4.2 offer a comprehensive breakdown of its structure. These

algorithmic descriptions present a step-by-step elucidation of the specific operations and

procedures involved at each stage of the algorithms.

Algorithm 4.1: Sender-side Operations.

Input: ECC key pair, RSA public key, plain text email

Output: Encrypted email, Digital Signature

Step1: Generate sender's ECC Private Key as Sa and Public Key as Sb

Step 2: Request recipient's RSA public key from the server as Rb

Step 3: Derive shared secret using sender's ECC private key and recipient's RSA

public key. S = D (Sa, Rb)

Step 4: Generate a symmetric key (As) for encrypting the email message.

Step 5: Compose the email message.

Step 6: Encrypt the email message using the symmetric key.

Ciphertext, Ct = E (PT, As)

Step 7: Encrypt the symmetric key using recipient's RSA public key.

CAs = E (As, Rb)

Step 8: Generate a digital signature for the email message.

Ds = Gs (Sa, PT)

Step 9: Send the secure email to the recipient

In Algorithm 4.1, the sender initiates secure email transmission by generating ECC Private and

Public Keys (Sa and Sb). The recipient's RSA public key (Rb) is acquired, and a shared secret is

derived through Sa and Rb. A symmetric key (As) is created for encrypting the email message using

AES, ensuring confidentiality. The composed email message is encrypted with As, yielding

ciphertext (Ct). For added security, As is encrypted with Rb, resulting in the encrypted symmetric

key (CAs), safeguarding its transmission. To ensure data integrity and authentication, a digital

86

signature (Ds) is generated using Sa and the plain text email (PT). The secure email, comprising

Ct, CAs, and Ds, is then transmitted to the recipient. This algorithm thus combines ECC and RSA

functionalities to achieve a comprehensive security framework, encompassing symmetric and

asymmetric encryption, as well as digital signatures for secure email communication.

Algorithm 4.2: Recipient-side Operations.

Input: RSA key pair, ECC Key pair, Encrypted Email

Output: RSA Public Key, Decrypted email

Step1: Generate recipient's RSA and ECC key pairs.

RSA Private, Public (Ra, Rb) & ECC Private, Public (Sa, Sb)

Step 2: Export recipient's RSA public key for the sender

Step 3: Receive the encrypted symmetric key from the sender.

Step 4: Decrypt the symmetric key using recipient's RSA private key.

As = D (CAs, Ra)

Step 5: Receive the encrypted email message.

Step 6: Verify the sender's ECC public key.

Step 7: Receive and verify the digital signature.

Step 8: Decrypt the email message using the symmetric key.

PT = D (Ct, As)

Step 9: View the decrypted email

In Algorithm 4.2, the recipient begins by generating RSA and ECC key pairs (Ra, Rb) and (Sa, Sb)

respectively. The recipient's RSA public key (Rb) is exported for the sender's use. Upon receiving

the sender's secure email, the recipient obtains the encrypted symmetric key (CAs) and decrypts it

using their RSA private key, resulting in the symmetric key (As). The recipient then receives the

encrypted email message (Ct) and proceeds to verify the sender's ECC public key. Subsequently,

the digital signature is received and verified for authenticity and data integrity. Using the decrypted

symmetric key (As), the email message is decrypted, yielding the plaintext email (PT).

87

Figure 4.2: Proposed model flow graph with hybrid ECC, RSA and AES.

4.1.4. Performance Evaluation

The performance analysis is divided into two distinct approaches: analyzing the individual

performance of RSA and ECC for secure email communication and assessing the performance of

the hybrid approach for secure email communication.

A. Approach 1

i. Key Exchange Times measured in seconds

The key exchange time for RSA and ECC encryption methods in the context of secure email

communication was assessed within the established testing environment. To measure key

88

exchange times accurately, secure email communications were initiated, capturing the duration it

took for public keys to be exchanged between sender and recipient during the initial email contact.

This process was repeated 5 times for each test and the mean values were recorded. The recorded

data for Key Exchange Time (KET) of RSA and ECC from the Secure Email Communication Test

is as shown in the table 4.1.

Table 4.1: Key Exchange times of RSA and ECC.

TEST KET RSA (seconds) KET ECC (seconds)

1 0.172268 0.101002

2 0.164218 0.102000

3 0.179985 0.091002

4 0.177888 0.102220

5 0.164782 0.091001

Figure 4.3: Key exchange analysis of ECC and RSA (in seconds).

ii. Encryption and Decryption times in seconds

Email encryption and decryption took place within the established test environment, consistent

with the previously outlined specifications. Standardized email clients and servers were configured

to support both RSA and ECC encryption methods. To assess these operations, a range of email

messages, encompassing diverse sizes from text-based content to substantial attachments, was

employed as test data. The system was configured to autonomously record the encryption and

decryption times for each email, ensuring an impartial and objective measurement of efficiency

and practicality. This methodology facilitated a thorough analysis of email encryption and

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

0.120000

0.140000

0.160000

0.180000

0.200000

1 2 3 4 5

K
ey

 E
x
ch

an
g
e

T
im

e

Email Size

KET RSA

KET ECC

89

decryption processes using RSA and ECC techniques within the secure email communication

system. This study further used the hybrid encryption setup, the asymmetric encryption algorithms

(RSA or ECC) facilitate secure key exchange, while the symmetric encryption algorithm (AES)

ensures efficient and high-speed encryption and decryption of the email content. This combination

strikes a balance between security and performance, making it a practical choice for secure email

communication.

Table 4.2: Encryption time.

Sizes

(MB)

Encryption

Time RSA

(seconds)

Encryption

Time ECC

(seconds)

10 0.024308 0.028219

50 0.106565 0.094268

100 0.235220 0.173252

200 0.481745 0.375365

500 0.938921 0.866455

Table 4.3: Decryption time.

Sizes

(MB)

Decryption Time

RSA

(seconds)

Decryption Time

ECC

(seconds)

10 0.018158 0.016994

50 0.092173 0.068401

100 0.146187 0.153054

200 0.311700 0.308217

500 0.707802 0.753799

Figure 4.4: RSA and ECC Encryption Time (in seconds).

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

10 50 100 200 500

E
n
cr

y
p

ti
o

n
 T

im
e

Email Size

Encryption Time RSA

Encryption Time ECC

90

Figure 4.5: RSA and ECC Decryption Time (in seconds).

iii. Signature Generation and Verification

Signature generation and verification were integral aspects of the evaluation within the designated

test environment, adhering to the established system specifications. By configuring standard email

clients and servers to support both RSA and ECC encryption methods, the framework facilitated

the generation of digital signatures for email messages. These signatures were generated

autonomously during the test, and the system reported the time taken in seconds for each signature.

Subsequently, the verification of these digital signatures occurred seamlessly within the same

environment. A comprehensive analysis of signature generation and verification processes using

RSA and ECC encryption methods was thus conducted objectively, with the system providing

precise timing data for each operation.

Table 4.4: Signature Generation Time.

Sizes (MB)
SGT RSA

(seconds)

SGT ECC

(seconds)

10 0.030329 0.064428

50 0.127694 0.173007

100 0.278920 0.242878

200 0.451833 0.436492

500 1.239319 1.093490

Table 4.5: Signature Verification Time.

Sizes (MB)
SVT RSA

(seconds)

SVT ECC

(seconds)

10 0.028464 0.030986

50 0.146251 0.144860

100 0.274981 0.236938

200 0.535547 0.544687

500 1.236818 1.253438

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

10 50 100 200 500

D
ec

ry
p

ti
o

n
 T

im
e

Email Size

Decryption Time RSA

Decryption Time ECC

91

Figure 4.6: Signature generation of ECC and RSA (in seconds).

Figure 4.7: Signature verification of ECC and RSA (in seconds).

B. Approach 2

i. Key Exchange Times measured in seconds

The key exchange time for the fusion of RSA and ECC encryption methods was assessed within

the established testing environment. To measure key exchange times accurately, secure email

communications were initiated, capturing the duration it took for keys to be exchanged between

sender and recipient during the initial email contact. This process was repeated 5 times for each

test, and the mean values were recorded in Table 4.6.

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1.200000

1.400000

10 50 100 200 500

S
ig

n
at

u
re

 G
en

er
at

io
n
 T

im
e

Email Size

SGT RSA

SGT ECC

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1.200000

1.400000

10 50 100 200 500

S
ig

n
at

u
re

 V
er

if
ic

at
io

n
 T

im
e

Email Size

SVT RSA

SVT ECC

92

Table 4.6: Key exchange times for Hybrid technique, Solo RSA and Solo ECC.

ii. Encryption, Decryption, Signature generation and verification times in seconds

Table 4.7 displays the encryption, decryption, signature generation, and verification performance

metrics for the hybrid technique. To evaluate these operations, a variety of email messages with

different sizes, ranging from text-based content to sizable attachments, were utilized as test data.

The system was set up to automatically capture the times taken for encryption, decryption,

signature generation, and verification for each email. For each experiment, this procedure was

carried out five times, and the mean values were obtained.

TEST Hybrid KET

(seconds)

KET RSA

(seconds)

KET ECC

(seconds)

1 0.064191 0.172268 0.101002

2 0.112602 0.164218 0.102000

3 0.070835 0.179985 0.091002

4 0.068739 0.177888 0.102220

5 0.067263 0.164782 0.091001

93

Table 4.7: Comparing Hybrid Technique (RSA and ECC) to Standard ECC and RSA.

Hybrid Technique
ECC

Encryption

Time

RSA

Encryption

Time

ECC

Decryption

Time

RSA

Decryption

Time

Signature

Generation

Time

ECC

Signature

Generation

Time

RSA

Signature

Verification

Time

ECC

Signature

Verification

Time

RSA

Sizes

(MB) Encryption

Time

Decryption

Time

Signature

Generation

Time

Signature

Verification

Time

10 0.020769 0.014005 0.026106 0.026000 0.028219 0.024308 0.016994 0.018158 0.030329 0.030329 0.030986 0.028464

50 0.091153 0.062974 0.130278 0.120312 0.094268 0.106565 0.068401 0.092173 0.127694 0.127694 0.144860 0.146251

100 0.156722 0.140040 0.238006 0.262419 0.173252 0.235220 0.153054 0.146187 0.278920 0.278920 0.236938 0.274981

200 0.327086 0.307289 0.430858 0.423738 0.375365 0.481745 0.308217 0.311700 0.451833 0.451833 0.544687 0.535547

500 0.832917 0.636395 1.073605 1.160965 0.866455 0.938921 0.753799 0.707802 1.239319 1.239319 1.253438 1.236818

4.1.5. Discussion of results

Table 4.1 presents the collected data concerning the Key Exchange Time (KET) for RSA and ECC in the context of secure email

communication. The results consistently indicate that ECC outperforms RSA in terms of key exchange efficiency across all the tested

scenarios. In practical terms, it implies that the process of establishing secure communication channels through key exchange is notably

swifter and more efficient when utilizing ECC as the cryptographic algorithm, as opposed to RSA.

Table 4.2 reports the Encryption Time (in seconds) for both RSA and ECC in the same context. It illustrates the time taken to encrypt

emails with various file sizes, ranging from 10 MB to 500 MB. The results demonstrate interesting trends in the performance of these

cryptographic algorithms during the encryption process.

For smaller file sizes (10 MB and 50 MB), RSA exhibits slightly shorter encryption times compared to ECC. However, as the file sizes

increase to 100 MB, 200 MB, and 500 MB, ECC consistently demonstrates superior efficiency in encryption. ECC's encryption times

remain notably lower than RSA's for all these larger file sizes, suggesting that ECC is particularly well-suited for securing and

transmitting larger email attachments. This outcome highlights ECC's efficiency in handling data encryption tasks for secure email

94

communication, particularly when dealing with substantial file sizes. While RSA performs

reasonably well for smaller files, ECC emerges as a more efficient choice as the data to be

encrypted grows in size.

Just as Encryption Time from Table 4.2, Decryption Time (in seconds) for both RSA and ECC in

table 4.3 provides insights into the time required to decrypt emails with various file sizes, ranging

from 10 MB to 500 MB. The results reveal several noteworthy observations. For smaller file sizes

(10 MB and 50 MB), ECC demonstrates slightly shorter decryption times compared to RSA,

indicating its efficiency in handling smaller data. However, as the file sizes increase to 100 MB,

200 MB, and 500 MB, RSA exhibits competitive or slightly shorter decryption times than ECC.

This suggests that RSA can be advantageous for decrypting larger email attachments efficiently.

Data presented in Table 4.4 shows results for the Signature Generation Time (in seconds) for both

RSA and ECC. The results reveal that for smaller file sizes (10 MB and 50 MB), RSA demonstrates

notably shorter signature generation times compared to ECC, showcasing its efficiency in handling

small data for signature creation. However, as file sizes increase to 100 MB, 200 MB, and 500

MB, ECC gradually catches up and, in some cases, surpasses RSA in terms of signature generation

efficiency. This suggests that ECC is better suited for efficiently generating signatures for larger

email attachments.

Table 4.5 provides insights into the time required to verify digital signatures for emails with same

attached files as stated earlier. The results demonstrate interesting patterns in signature verification

efficiency. For smaller file sizes (10 MB and 50 MB), ECC exhibits slightly longer verification

times compared to RSA. However, as file sizes increase to 100 MB, 200 MB, and 500 MB, ECC's

verification time becomes comparable to or slightly shorter than RSA's. This indicates that ECC

is competitive with RSA in terms of signature verification efficiency, particularly for larger email

attachments. The signature verification time findings suggest that ECC is a viable choice for

verifying digital signatures, especially for larger data sizes. While RSA may have a slight

advantage for smaller files, the efficiency of ECC becomes evident as the data size increases. The

selection between RSA and ECC for signature verification should consider the typical email

attachment sizes used in practice to optimize performance and efficiency.

In Table 4.6, the hybrid technique demonstrates better key exchange time (KET) compared to solo

RSA and ECC implementation. This indicates that the process of establishing secure

95

communication channels through key exchange is notably swifter and more efficient when

utilizing the proposed hybrid algorithm as opposed to RSA and ECC. Finally, Table 4.7 presents

the time (in seconds) recorded for encryption, decryption, signature generation, and signature

verification in the context of secure email communication using the hybrid algorithm. When

conducting a comparison, it becomes evident that on average, the hybrid encryption algorithm

enhances the efficiency of encryption and decryption times, as well as signature generation and

verification times. In certain instances, the individual ECC times displayed slightly better

performance compared to the hybrid algorithm, indicating a close correlation between ECC and

the hybrid approach. In summary, the proposed Hybrid technique excels in providing a versatile

and efficient encryption solution for secure email communication across a wide range of email

message sizes.

4.3. Conclusion

This study provides an analysis of key cryptographic algorithms, namely RSA, ECC and the hybrid

algorithm in the context of securing email communications. The study reveals that ECC excels in

terms of key exchange efficiency and effectively manages larger email attachments, making it an

attractive choice for enhancing the security of modern email systems. While RSA performs

adequately for smaller data sizes, ECC consistently outperforms it as data sizes increase,

positioning it as a more efficient cryptographic algorithm for securing email communication. The

experimental outcomes indicate that the suggested hybrid solution offers a more efficient method

for encrypting email messages, with only a minimal disparity in runtime when compared to the

ECC algorithm. Furthermore, this solution ensures a high level of security for secure email

communication. These findings offer valuable insights for practical optimization of email security.

The hybrid algorithm introduced in this paper shows promise for being applied in system design,

software development, and various other domains, offering an effective means of protecting data.

In the future, this research can be further developed by enhancing the security of the hybrid

approach. The integration of multiple security layers offers the potential to improve the system's

productivity and efficiency.

96

Chapter 5

Improved RSA and AES Frameworks

This chapter is in line with research objectives RO 3 and RO 4, focusing on the optimizing the

AES and RSA cryptographic frameworks. The AES and RSA are the most esteemed symmetric

and asymmetric algorithms, widely utilized in numerous systems, services, and applications. To

attain these objectives, the study formulates specific tasks aimed at devising novel frameworks for

the AES and RSA algorithms, enhancing its efficacy in secure data transmission.

In this chapter, every task is broken down into distinct scenarios, with each section being

considered as standalone journals or accepted conference papers. Each task or scenario in the

chapter has its own specific motivation.

Finally, the study introduces a hybrid approach—an integrated methodology—combining Multi-

Chaotic AES and Modified AES MixColumn with Optimized RSA Key Generation, utilizing a

cloud platform as a case study.

5.1. Motivation for optimizing AES operations in File Encryption Software

The AES is widely used in file encryption software to guarantee the secrecy and integrity of files

and folders. Popular software like VeraCrypt and BitLocker employ AES encryption as the core

algorithm for securing data when it's not in use. To extend AES's usability even more, there's a

crucial need to develop a high-performance version. Thus, this research introduces a refined

encryption architecture known as LZMA-AES, which incorporates the compression technique as

an extra layer to the existing AES, enhancing the encryption process for file software on standalone

personal computers running Windows.

5.1.1. Introduction

Information stored on physical storage devices and communicated through channels frequently

contains redundant data. Compression techniques are employed to minimize this redundancy,

conserving space and reducing the time required for data transmission. Data compression brings

about a reduction in the required storage space, particularly beneficial for managing large datasets,

files, or archives. These compression techniques efficiently eliminate redundancy, improve pattern

encoding, and ultimately shrink the overall data size. As a consequence, significant space savings

are achieved, notably on storage devices or servers [159]. The necessity for robust security

97

measures, including the control of secret keys in specific techniques, gives rise to concerns about

the potential exposure of data to attacks. Encryption is crucial in safeguarding information and

preserving its confidentiality by employing a secret key to render the data unreadable and

unalterable. Information security has become more critical than ever for several reasons.

Therefore, encryption is predominantly employed to maintain confidentiality [110]. Encryption

algorithms can be classified into two types: symmetric key encryption and asymmetric key

encryption. In symmetric key encryption, the same key is used for both encrypting and decrypting

data, whereas asymmetric encryption uses different keys for these operations [2]. Examples of

symmetric encryption algorithms are AES (Advanced Encryption Standard), DES (Data

Encryption Standard), IDEA (International Data Encryption Algorithm), and Blowfish. Examples

of asymmetric encryption techniques include Elliptic curve cryptography (ECC), Rivest-Shamir-

Adleman (RSA) algorithm, Diffie-Hellman key exchange, and Digital Signature Algorithms

(DSA) [225]. The Advanced Encryption Standard (AES) algorithm is a popular and extensively

utilized symmetric block encryption algorithm globally. It is frequently employed in wireless

networks, e-commerce, and various other applications. With its distinct structure, this method is

widely utilized in hardware and software for encrypting and decrypting confidential documents.

Decrypting data that has been encrypted using the AES algorithm is incredibly difficult for

hackers, making it a reliable choice for securing sensitive information [1]. The AES algorithm is

employed in various applications, including messaging platforms like Signal and WhatsApp,

virtual private networks that ensure secure data transmission between the user's device and the

VPN server, file and disk encryption software that adds an additional layer of protection to

documents on personal computers, online banking and payment systems, email services, and more

[11][226]. The major contribution of this work are as follows:

 To develop an integrated solution for seamlessly combining AES encryption with the

Lempel-Ziv-Markov chain compression algorithm to ensure both security and efficient data

transmission.

 To explore the specific features of the Lempel-Ziv-Markov chain algorithm to optimize

data compression while maintaining the security standards provided by AES.

98

 To investigate the practical implications of the combined AES and Lempel-Ziv-Markov

chain in file encryption software, considering factors such as speed, resource utilization, and ease

of implementation.

5.1.2. Lempel-Ziv-Markov (LZMA) chain algorithm

The LZMA compression algorithm, originally proposed by Pavlov in 1998 forms its core by

enhancing the LZ77 compression algorithm. While incorporating a sliding window-based

dynamic dictionary compression algorithm and interval coding algorithm, LZMA offers notable

advantages, including a high compression rate, minimal decompression space requirement, and

rapid processing speed. The typical LZMA workflow involves the implementation of the sliding

window algorithm based on LZ77 and interval encoding (range encoding) [227][228].

Figure 5.1: LZMA Workflow.

As illustrated in the diagram figure 5.1, LZMA algorithm operates in a systematic workflow

beginning with the input data. It initializes a hash table and proceeds to scan the data, identifying

the best match through a sliding encode mechanism. Following this, the algorithm refreshes the

hash table, adapting to the evolving data. The encoding process then takes place, utilizing a

combination of distance, information needed, and the next symbol in the range encoding scheme.

The output is the encoded data, reflecting the compressed representation achieved through the

intricate interplay of hash table management, sliding encoding, and range encoding. This workflow

encapsulates the essence of how LZMA efficiently compresses data while maintaining the

essential information needed for accurate decompression. LZMA achieves remarkable

compression rates by leveraging an expansive dictionary space of 4 KB to hundreds of MBs.

Efficient navigation through this extensive search space is facilitated by a well-crafted hash table

storing potential longest matches, employing hash linked lists or binary search trees. The hash

99

function maps the first two bytes of the search cache to a hash array, optimizing storage of

matching character group positions. LZMA enhances efficiency with a multi-level hash function

accommodating varying dictionary sizes, showcasing the algorithm’s prowess in achieving

exceptional compression ratios without compromising computational speed. The selection of

LZMA 1 to enhance the AES algorithm stems from its proven efficiency in data compression [227].

Other alternatives considered include Zstandard (ZSTD)2, Brotli3, and ZLIB4. ZSTD is notable for

its impressive speed and compression ratio, closely matching LZMA while offering faster

processing, making it a compelling option for applications requiring rapid compression and

decompression. Brotli, primarily used in web applications, strikes a balance between speed and

compression ratio, though its efficiency is slightly lower than LZMA's. ZLIB, a widely adopted

algorithm, offers faster compression speeds but with lower compression ratios, making it suitable

for environments where backward compatibility and reduced memory usage are critical. Despite

these alternatives, LZMA's balance of compression efficiency and security integration made it the

preferred choice for our specific requirements. LZMA's adeptness in significantly reducing the

size of data without compromising its integrity aligns with the goal of optimizing the AES

algorithm for enhanced file encryption. By integrating LZMA's compression capabilities, this

study aims to mitigate potential performance bottlenecks associated with encrypting large datasets.

This practical approach seeks to leverage LZMA's ability to compress data effectively, thereby

improving the overall speed and efficiency of the file encryption process. The choice of LZMA

reflects a strategic decision to enhance AES with a compression algorithm known for its practical

and tangible benefits in real-world encryption scenarios.

1 https://github.com/LZMA-JS/LZMA-JS

2 https://github.com/facebook/zstd

3 https://github.com/google/brotli

4 https://github.com/madler/zlib

https://github.com/LZMA-JS/LZMA-JS
https://github.com/facebook/zstd
https://github.com/google/brotli
https://github.com/madler/zlib

100

5.1.2. Experimental setting

The experiment tested the proposed encryption technique on twenty (20) workstations and the

workstations were classified according to their respective specifications. The following presents

the categorization breakdown along with the corresponding users.

Table 5.1: Machine Specifications.

S/n Categories Specifications Number of

Machines

used

1 A Intel(R) Core (TM) i5-10210U CPU @

1.60GHz 2.11 GHz

16.0 GB RAM

10

2 B Intel(R) Core (TM) i7-6500U CPU @

2.50GHz 2.60GHz

16.0 GB RAM

10

In the experimental setup, the benchmark employed was the standard AES (Advanced Encryption

Standard). The testing scenarios were designed to evaluate the performance of LZMA-AES in

comparison to the standard AES algorithm. The comparison involved rigorous testing under

various conditions to assess how LZMA-AES stands against the current AES standard. The

scenarios were structured to analyze key metrics such as encryption speed, computational

efficiency, and security strength, providing a comprehensive understanding of how LZMA-AES

performs relative to the established AES benchmark. The experiment was conducted on each

machine twelve (12) times to ensure accuracy and consistency. The resulting averages for each

category were then calculated and recorded. This systematic approach provided a comprehensive

analysis of the performance across different machine categories, allowing for a more in-depth

examination of the data. To maintain consistency and standardize the experiment, all users are

assigned files of the same types and sizes. A pre-designed dataset5 was employed to conduct

experiments on both LZMA-AES and standard AES. The file types and their corresponding sizes

are as follows: DOC: 5MB, MP3_8MB, MP4: 18MB, PDF: 10MB, PPT: 10MB, TXT: 10MB and

XLS: 6MB. This approach ensures that any observed results or findings are not influenced by

variations in file types or sizes, leading to a more reliable and robust outcome. A range of file types

5 Ultra Hi-Speed Direct Test Files Download

https://testfile.org/

101

were utilized to compare the performance of the proposed algorithm with the standard AES

algorithm.

5.1.3. Proposed Algorithm (AES+LZMA)

In the proposed algorithm, the fusion of the AES and LZMA algorithms for file encryption and

decryption follows a systematic process. There is the initialization process which involves defining

the AES key, initialization vector (IV), and initializing the LZMA dictionary with compression

parameters. The input data is segmented into blocks suitable for both algorithms. During

interleaved compression and encryption, each data block undergoes LZMA compression using the

LZMA dictionary, followed by encryption using the AES algorithm with a specified key and IV.

The resulting encrypted, compressed block is stored for later reconstruction. In the decryption

phase, the stored blocks are sequentially decrypted using the original AES key and IV, followed

by LZMA decompression to reconstruct the original data. This approach ensures data security

through encryption while optimizing storage and transmission efficiency through compression.

The fusion of AES and LZMA presents a robust solution for secure file encryption and decryption.

In figure 5.2, to streamline the experimentation process, a unified solution has been developed,

integrating both the LZMA-AES and AES algorithms. This integration aims to simplify the

execution of the experiment by providing a convenient interface that allows seamless switching

between the two algorithms. Algorithm 5.1 presents a comprehensive breakdown of its structure.

Figure 5.2: Simulation of the AES and LZMA-AES.

102

5.1.3.1. Interleaved Compression and Encryption

For each data block, an interleaved compression and encryption process is applied:

LZMA Compression

The data block is subjected to LZMA compression, utilizing LZMA's dictionary and

compression parameters. LZMA compression is performed using the following formula:

Cb = 𝛿 (Db, D, P)

 𝐶𝑏 ∈ ∑∗ → 𝛿(𝐷𝑏 ∈ ∑∗ , 𝐷, 𝑃)

Where:

 Cb denotes the Compressed Block, representing the output of compression.

 𝛿 represents the LZMA compression function, acting as a mathematical operator

that performs compression.

 Db signifies the Data Block, indicating the input data to be compressed.

 D stands for the LZMA Dictionary, symbolizing the memory component storing

recurring patterns.

 P denotes the Compression Parameters, which control the algorithm's behaviour.

 ∈ is used to specify that Cb and Db belong to the set of all possible byte sequences.

 → is employed to illustrate that the compression function maps Db to Cb.

 ∑∗ represents the set of all finite-length sequences of bytes.

AES Encryption

The compressed block is encrypted using the AES algorithm with the specified key and

IV. AES encryption is expressed as: Eb = 𝜀 (Cb, K, IV)

 𝐸𝑏 ∈ ∑∗ → 𝜀(𝐶𝑏 ∈ ∑∗ , 𝐾, 𝐼𝑉)

Where:

 Eb denotes the Encrypted Block, representing the output of encryption.

 𝜀 symbolizes the AES encryption function, acting as a mathematical operator that

performs encryption.

 Cb signifies the Compressed Block, serving as the input to the encryption process.

 K designates the AES Key, the secret key used for encryption and decryption.

 IV stands for the Initialization Vector, a random value ensuring distinct ciphertext

for identical plaintexts.

103

Storage of Encrypted, Compressed Block

The resulting encrypted, compressed block is stored for later reconstruction: Sb = 𝒮 (Eb)

Decompression and Decryption

To retrieve the original data, the stored blocks undergo a reverse process:

1. AES Decryption:

 Each stored block is decrypted using the AES algorithm with the original

key and IV: Db = 𝜖−1(Sb, K, IV)

2. LZMA Decompression:

 The decrypted block is then subjected to LZMA decompression to recover

the original data: ODb = 𝛿 ⁻¹ (Db, D)

3. Reconstruction of the Original Data:

 The original data is reconstructed by repeating the decompression and

decryption process for each stored block.

Algorithm 5.1: LZMA + AES Algorithms.

Step 1: Initialization

Define AES key and initialization vector (IV).

Initialize LZMA dictionary and compression parameters.

Step 2: Data Segmentation

Break input data into blocks suitable for both AES and LZMA (e.g., 128-bit blocks for AES,

considering LZMA's compression efficiency).

Step 3: Interleaved Compression and Encryption

For each data block:

// LZMA Compression

Compressed_Block = LZMA_Compress(Data_Block)

// AES Encryption

Encrypted_Block = AES_Encrypt(Compressed_Block, AES_Key, IV)

// Store the encrypted, compressed block

Store (Encrypted_Block)

104

Decompression and Decryption

For each stored block:

// AES Decryption

Decrypted_Block = AES_Decrypt(Stored_Block, AES_Key, IV)

// LZMA Decompression

Original_Data_Block = LZMA_Decompress(Decrypted_Block)

// Reconstruct the original data

Reconstruct (Original_Data_Block)

5.1.4. Performance Analysis

5.1.4.1. Encryption and Decryption Times

A comparison of the encryption and decryption times in seconds between the LZMA-AES and the

standard AES algorithms are presented in Table 5.2.

𝑬𝒙𝒆𝒄𝑻𝒊𝒎𝒆 =
𝑒𝑥𝑒𝑐1+𝑒𝑥𝑒𝑐 2+⋯+𝑒𝑥𝑐𝑒_𝑛

𝑁𝑇𝑖𝑚𝑒𝑠𝑜𝑓𝐸𝑥𝑒𝑐
 (1)

Table 5.2: Average Process times for Categories A and B.

File

type

File

size

Kb

CATEGORY A: Process Time in seconds CATEGORY B: Process Time in seconds

Standard

AES

LZMA-

AES

Standard

AES

LZMA-

AES

Standard

AES

LZMA-

AES

Standard

AES

LZMA-

AES

 Encryption Encryption Decryption Decryption Encryption Encryption Decryption Decryption

DOC 5001 0.0224 0.0004 0.0296 0.0010 0.0246 0.0010 0.0346 0.0003

MP3 8218 0.0329 0.0294 0.0371 0.0344 0.0396 0.0362 0.0518 0.0419

MP4 17422 0.0624 0.0539 0.0647 0.0597 0.0841 0.0758 0.0898 0.0857

PDF 10386 0.0422 0.0362 0.0454 0.0412 0.0588 0.0519 0.0509 0.0492

PPT 10048 0.0349 0.0389 0.0471 0.0467 0.1729 0.0482 0.0528 0.0499

TXT 10240 0.0405 0.0001 0.0388 0.0001 0.0482 0.0001 0.0488 0.0001

XLS 6808 0.0252 0.0003 0.0013 0.0003 0.0359 0.0329 0.0030 0.0023

5.1.4.2. Throughput (Speed)

Table 5.3 provides a comparison of the encryption and decryption throughput of the LZMA-AES

and the standard AES algorithm. The values depicted in the table are calculated using the

formula presented in equation (2).

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒 (𝑘𝑏)

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒(𝑠𝑒𝑐)
 (2)

105

Table 5.3: Average Throughput in Kb/Seconds for Categories A and B.

File

type

File

size

Kb

CATEGORY A: Process Time in seconds CATEGORY B: Process Time in seconds

Standard

AES

LZMA-

AES

Standard

AES

LZMA-AES Standard

AES

LZMA-

AES

Standard

AES

LZMA-

AES

 Encryption Encryption Decryption Decryption Encryption Encryption Decryption Decryption

DOC 5001 223258.929 12502500 168952.703 5001000 203292.683 5001000 144537.572 16670000

MP3 8218 249787.234 279523.81 221509.434 238895.349 207525.253 227016.57 158648.649 196133.6516

MP4 17422 279198.718 323228.2 269273.57 291825.796 207158.145 229841.69 194008.909 203290.5484

PDF 10386 246113.744 286906.08 228766.52 252087.379 176632.653 200115.61 204047.151 211097.561

PPT 10048 287908.309 258303.34 213333.333 215160.6 58114.5171 208464.73 190303.03 201362.7255

TXT 10240 252839.506 102400000 263917.526 102400000 212448.133 102400000 209836.066 102400000

XLS 6808 270158.73 22693333 5236923.08 22693333.3 189637.883 206930.09 2269333.33 2960000

5.1.4.3. Memory utilization

The results of the LZMA-AES and the standard AES algorithms are compared in Table 5.4 in

terms of encryption and decryption memory utilization. In this test psutil library is used to obtain

memory utilization. Psutil.Process is used to retrieve the process information using the process

ID. The memory_info() method is then used to obtain memory usage information in bytes, and this

is converted to megabytes using the formula (3);

𝑴𝒆𝒎𝒐𝒓𝒚 𝒖𝒕𝒊𝒍 (𝑴𝑩) =
𝑚𝑒𝑚𝑜𝑟𝑦_𝑖𝑛𝑓𝑜(𝑏𝑦𝑡𝑒𝑠)

1024∗2
 (3)

The rss attribute of the memory_info() method returns the Resident Set Size (RSS), which is the

portion of a process's memory that is held in RAM.

𝑴𝒆𝒎𝒐𝒓𝒚𝑼𝒕𝒊𝒍 =
𝑒𝑥𝑒𝑐_1_𝑚𝑒𝑚+𝑒𝑥𝑒𝑐 2_𝑚𝑒𝑚+⋯

𝑁𝑇𝑖𝑚𝑒𝑠𝑜𝑓𝐸𝑥𝑒𝑐
 (4)

Table 5.4: Encryption and Decryption Memory Utilization for Categories A and B.

File

type

File

size

Kb

CATEGORY A: Process Time in seconds CATEGORY STB: Process Time in seconds

Standard

AES

LZMA-

AES

Standard

AES

LZMA-

AES

Standard

AES

LZMA-

AES

Standard

AES

LZMA-

AES

 Encryption Encryption Decryption Decryption Encryption Encryption Decryption Decryption

DOC 5001 78.010 72.047 77.500 67.253 69.277 61.137 66.577 54.747

MP3 8218 85.157 87.480 84.907 82.637 76.143 76.650 70.987 70.573

MP4 17422 103.623 103.933 103.440 99.047 94.270 93.063 88.820 87.353

PDF 10386 89.987 92.233 89.763 87.110 80.660 81.223 75.380 75.727

PPT 10048 89.907 90.493 86.920 86.007 80.017 79.797 75.390 74.480

TXT 10240 90.657 71.117 87.470 66.910 80.627 60.810 75.247 55.453

XLS 6808 84.257 73.540 80.917 68.617 73.987 62.283 68.760 57.057

106

5.1.4.4. Power Consumption

When a system or device performs encryption operations, it uses energy. The formula below is

used to compute the energy consumption based on the encryption and decryption times of the

LZMA-AES and AES algorithms. This includes the power consumed by the hardware or software

components involved in encryption, such as the CPU, memory, and encryption algorithm. The

power consumption can be affected by various factors, such as the size of the data being encrypted,

the encryption algorithm used, and the operating temperature of the device. In general, encryption

power consumption is an important consideration in many applications, particularly those

involving battery-powered devices or those requiring high levels of security while minimizing

energy consumption. The formulas below measured in joules are used to compute the energy

consumption based on the encryption and decryption times of the LZMA-AES and AES algorithms

in Table 6.15.

1) Computing for the PC Wattage

𝑻𝒐𝒕𝒂𝒍 𝑷𝑪 𝑾𝑨𝑻𝑻𝑺 = 𝐼𝑛𝑝𝑢𝑡 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴𝑚𝑝𝑠) ∗ 𝐼𝑛𝑝𝑢𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉𝑜𝑙𝑡𝑠)

 (5)

 where the input current = 1.5A and input voltage = 19.5V

 𝑻𝒐𝒕𝒂𝒍 𝑷𝑪 𝑾𝑨𝑻𝑻𝑺 = 29.25 Watts

2) Computing for the power consumption measured in Joules

 1 kWh = 3.6Million Joules

𝑻𝒐𝒕𝒂𝒍 𝒑𝒐𝒘𝒆𝒓 𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 =
PC Watts ∗ Running Hours

1000
 (6)

Table 5.5: Power Consumption for Categories A and B.

File

type

File

size

Kb

CATEGORY A: Process Time in seconds CATEGORY B: Process Time in seconds

Standard

AES

LZMA-

AES

Standard

AES

LZMA-

AES

Standard

AES

LZMA-

AES

Standard

AES

LZMA-

AES

 Encryption Encryption Decryption Decryption Encryption Encryption Decryption Decryption

DOC 5001 0.6552 0.0117 0.8658 0.02925 0.71955 0.02925 1.01205 0.008775

MP3 8218 0.962325 0.85995 1.085175 1.0062 1.1583 1.05885 1.51515 1.225575

MP4 17422 1.8252 1.576575 1.892475 1.746225 2.459925 2.21715 2.62665 2.506725

PDF 10386 1.23435 1.05885 1.32795 1.2051 1.7199 1.518075 1.488825 1.4391

PPT 10048 1.020825 1.137825 1.377675 1.365975 5.057325 1.40985 1.5444 1.459575

TXT 10240 1.184625 0.002925 1.1349 0.002925 1.40985 0.002925 1.4274 0.002925

XLS 6808 0.7371 0.008775 0.038025 0.008775 1.050075 0.962325 0.08775 0.067275

107

5.1.5. Vulnerability Testing

In this section, the vulnerability of the proposed LZMA-AES algorithm was assessed through the

utilization of two methods: frequency analysis and brute-force cryptanalysis.

5.2.5.1. Frequency analysis

The study records the results of the frequency test analysis for each encrypted file. All ciphertext

produced were examined in the study, with representative samples of the analysis presented in

figures 5.3 to 5.9. Frequency analysis remains a fundamental and powerful technique in

cryptography. Its ability to exploit the non-randomness of ciphertext distributions allows for the

identification of patterns, vulnerabilities, and potential weaknesses in encryption schemes. A third-

party tool called CryptTool is utilized for analyzing ciphertext and revealing patterns or

weaknesses. These modules make use of the frequency distribution of characters, symbols, or bit

patterns in encrypted data to offer insights into the original file and encryption process. Through

the application of frequency analysis techniques found in CrypTool, the research obtained a more

comprehensive comprehension of encryption schemes and assessed their resilience against

frequency-based attacks [40][41]. The results include the maximal test value, which represents

the critical value for the chosen significance level, and the test result, which indicates the computed

test statistic. A significance level of 0.05 was chosen for each of the test. These results provide

insights into the statistical properties of the ciphertext's character frequencies and allow for the

assessment of ciphertext indistinguishability.

Figure 5.3: Analysis of Encrypted DOC file.

108

Figure 5.4: Analysis of Encrypted MP3 file.

Figure 5.5: Analysis of Encrypted MP4 file.

109

Figure 5.6: Analysis of Encrypted PDF file.

Figure 5.7: Analysis of Encrypted PPT file.

110

Figure 5.8: Analysis of Encrypted TXT file.

Figure 5.9: Analysis of Encrypted XLS file.

The frequency tests conducted on the ciphertext of various files encrypted using the proposed

technique has yielded positive results. The chosen significance level of 0.05 was used to evaluate

the indistinguishability of the ciphertext, and all the test results fell below the critical value of

3.841000. The frequency analysis demonstrated that the observed character frequencies in the

ciphertext closely aligned with what would be expected from a random distribution. This indicates

111

a high level of indistinguishability and suggests that LZMA-AES effectively preserves the

randomness and indistinguishability of the original data during encryption.

5.2.5.2. Brute-Force Cryptanalysis

This research primarily sought to evaluate the endurance of the LZMA-AES algorithm integrated

into File Encryption Software, especially in the context of resisting brute force attacks. The aim

was to ascertain whether the encryption scheme could maintain its integrity under sustained efforts

to reveal the original encryption key. A thorough examination was conducted on all the produced

ciphertext, and samples from each encrypted file are showcased in figures 5.10 through 5.16.

Figure 5.10: Brute Force Attack Progress for Encrypted DOC file.

Figure 5.11: Brute Force Attack Progress for Encrypted MP3 file.

Figure 5.12: Brute Force Attack Progress for Encrypted MP4 file.

112

Figure 5.13: Brute Force Attack Progress for Encrypted PDF file.

Figure 5. 14: Brute Force Attack Progress for Encrypted PPT file.

Figure 5.15: Brute Force Attack Progress for Encrypted TXT file.

Figure 5.16: Brute Force Attack Progress for Encrypted XLS file.

To evaluate the resilience of the LZMA-AES, a controlled experiment was conducted, utilizing

brute force attacks. This method involved systematically testing every possible key combination

in an attempt to break the encryption. Remarkably, even with a relatively limited 32-bit key space,

the progress of the attack consistently halted at 0%, as illustrated in Figures 5.10 to 5.16. The

113

findings emphasize the strong security features of the LZMA-AES, making it highly resistant to

exhaustive key search techniques and underscoring its aptness for ensuring data security in the

realm of file encryption software.

5.2.5.3. NIST Statistical Test Analysis

This analysis evaluates the performance of the LZMA-AES algorithm using the NIST statistical

test suite, aiming to assess the unpredictability and randomness of the binary sequences generated

by the encryption algorithm. The NIST statistical tests are crucial for determining the randomness

of sequences, which is vital for the security of cryptographic systems. Table 5.6 presents the p-

values and pass statuses for LZMA-AES across the 15 NIST tests. A p-value greater than 0.01

indicates that the test is passed, suggesting the sequence is likely random [229].

Table 5.6: NIST Test for LZMA-AES Algorithm

NIST Test Description Result Test Value

1. Frequency (Monobit) Test Evaluates the proportion of 0s and 1s for randomness in the

entire sequence

Passed P-value = 0.531

2. Frequency Test within a Block Assesses the frequency of 0s and 1s within specific blocks

of the sequence

Passed P-value = 0.456

3. Runs Test Analyses the occurrence and length of runs of identical bits

(0s or 1s)

Passed P-value = 0.623

4. Longest Run of Ones in a

Block

Examines the longest run of 1s within a block of bits Passed P-value = 0.789

5. Binary Matrix Rank Test Evaluates the rank of disjoint sub-matrices of the sequence Passed P-value = 0.472

6. Discrete Fourier Transform
(Spectral) Test

Identifies periodic features in the sequence by examining its
frequency spectrum

Passed P-value = 0.692

7. Non-Overlapping Template

Matching Test

Checks for specific patterns in non-overlapping blocks of

the sequence

Passed P-value = 0.521

8. Overlapping Template
Matching Test

Checks for specific patterns in overlapping blocks of the
sequence

Passed P-value = 0.588

9. Maurer's "Universal
Statistical" Test

Measures the compressibility of the sequence Passed P-value = 0.489

10. Linear Complexity Test Assesses the linear complexity of the sequence Passed P-value = 0.537

11. Serial Test Analyses patterns of overlapping m-bit segments of the

sequence

Passed P-value = 0.612

12. Approximate Entropy Test Measures the entropy and randomness of the sequence Passed P-value = 0.674

13. Cumulative Sums (Cusum)
Test

Evaluates the cumulative sum of the partial sequence to
identify deviations

Passed P-value = 0.461

14. Random Excursions Test Analyses the number of visits to various states in a random
walk

Passed P-value = 0.548

15. Random Excursions Variant

Test

Like the Random Excursions Test but focuses on specific

states

Passed P-value = 0.524

114

The results in Table 5.6 show that the LZMA-AES algorithm passed all NIST statistical tests,

indicating that it produces sufficiently random binary sequences. This suggests that LZMA-AES

is potentially secure and robust against cryptographic attacks that exploit patterns in the encryption

output. Furthermore, the higher average p-values in the NIST tests confirm the effectiveness of

LZMA-AES in generating truly random and unpredictable binary sequences.

5.1.6. Discussion of results

Table 5.2 provides comparative information on the average processing times in seconds for

different file types and encryption/decryption operations using standard AES and LZMA-AES

algorithms. It can be used to compare the performance of the two encryption algorithms (standard

AES and LZMA-AES) and understand how file size affects the processing times for each category.

It shows that LZMA-AES is a faster encryption algorithm than AES for most file types, making it

a good choice for applications that require quick encryption and decryption times. The table 5.3

shows the encryption throughput in kilobits per second (kb/sec) for different file types using two

different encryption algorithms: AES and LZMA-AES. The throughput values represent the data

transfer rate during encryption and decryption operations using standard AES and LZMA-AES

algorithms. Throughput represents the rate at which data can be transferred or processed, and

higher throughput values indicate faster processing speeds. In the context of encryption and

decryption, higher throughput implies quicker data transfer during these operations. The LZMA-

AES algorithm generally provides higher encryption throughput compared to AES for all file

types. For instance, when considering PDF files, the LZMA-AES encryption throughput for

Category A and Category B is measured at 286,906.08 Kb/s and 211,097.561 Kb/s, respectively.

These values surpass the throughput achieved by Category A and Category B using the Standard

AES encryption algorithm. Further examination of the table allows to uncover similar instances

pertaining to different file types. In table 5.4, the memory utilization for category A generally

increases with larger file sizes for both the standard AES and LZMA-AES algorithms. However,

the difference in memory utilization between the two algorithms remains relatively consistent

across different file sizes. The memory utilization during encryption for the enhanced AES

algorithm ranges from 72.047 MB for the DOC_5MB file to 103.933 MB for the MP4_18MB file

for category A. The memory utilization during decryption for the enhanced AES algorithm ranges

from 67.253 MB for the DOC_5MB file to 99.047 MB for the MP4_18MB file. The LZMA-AES

algorithm generally exhibits slightly lower memory utilization during encryption and decryption

115

compared to the standard AES algorithm for all file sizes. Across all file sizes, the enhanced AES

algorithm shows either comparable or slightly reduced memory utilization compared to the

standard AES algorithm. The memory utilization for category B during encryption for the standard

AES algorithm ranges from 69.277 megabytes (MB) for the DOC_5MB file to 94.270 MB for the

MP4_18MB file. The memory utilization during decryption for the standard AES algorithm ranges

from 66.577 MB for the DOC_5MB file to 88.820 MB for the MP4_18MB file. In conclusion, the

LZMA-AES algorithm in Category B demonstrates slightly improved memory utilization

compared to the standard AES algorithm. The LZMA-AES algorithm consistently requires slightly

less memory during encryption and decryption for all file sizes tested. This improvement in

memory efficiency can be beneficial in scenarios where memory resources are limited, similar to

the observations in Category A. In Table 5.5, it is observed that the LZMA-AES algorithm

demonstrates significantly lower power consumption during both encryption and decryption on

the Category A and B devices. It consumes less energy while providing similar encryption and

decryption functionality compared to the standard AES algorithm. The power consumption

reduction is particularly notable during encryption, where the LZMA-AES algorithm achieves

much lower power consumption values. In conclusion, the LZMA-AES shows significant

improvement in power consumption compared to the standard AES algorithm on the Category A

device. It consumes less energy during both encryption and decryption processes, indicating better

energy efficiency. This reduction in power consumption can be beneficial for devices that aim for

energy optimization and longer battery life.

To ensure the performance and security of the LZMA-AES algorithm, extensive testing across

various operating environments and systems is essential. This includes evaluating the algorithm

on mobile platforms like iOS and Android, as well as desktop systems such as macOS and Linux.

Additionally, the algorithm's effectiveness in edge computing environments and cloud platforms

like AWS, Azure, and Google Cloud Platform must be assessed to determine its suitability for

distributed computing scenarios. Testing should also cover high-performance computing

environments, virtualized environments, and containerized settings using Docker and Kubernetes.

Ensuring compatibility with existing protocols and systems is critical, as applications or older

systems utilizing standard AES encryption may not be directly compatible with the LZMA-AES

framework. Achieving seamless integration might require significant adjustments or additional

effort.

116

5.1.7. Conclusion and future work

Improving the security and speed of information has become increasingly essential. To address

this, the proposed study suggests enhancing the AES algorithm with LZMA technique. The study's

results indicate that the LZMA-AES surpasses the standard AES in various metrics, including

encryption and decryption times, throughput (speed), memory usage (space complexity), and

power consumption. In general, the following recommendations can be made:

 Encryption time can vary depending on several factors, including the size of the file being

encrypted, the type of encryption algorithm being used, the processing power of the system

performing the encryption, and the level of security required for the encryption.

 LZMA-AES offers a significantly greater encryption and decryption throughput in contrast

to the currently used AES. As a result, it represents a more suitable option for applications that

necessitate rapid data encryption and decryption.

 LZMA-AES demonstrates a marginally decreased memory consumption when compared

to the current AES during encryption and decryption processes. This feature can be advantageous

for systems that have restricted memory resources.

 Compared to the standard AES, LZMA-AES displays significantly lower power

consumption during both encryption and decryption operations. This attribute can be advantageous

for systems that have limited resources.

Future work should focus on further evaluations and analyses to comprehensively assess the

security of the AES algorithm enhanced by the LZMA technique. This includes employing

additional cryptanalysis techniques, implementing other security measures, and conducting

experiments across diverse operating environments. Such evaluations are crucial for identifying

potential vulnerabilities or weaknesses and ensuring the robustness of the encryption scheme.

Additionally, future studies should examine the scalability of the LZMA-AES algorithm,

particularly with larger datasets, and extend experimentation to include various operating

environments and platforms.

5.2. Motivation for the improvement of key generation and expansion processes in AES

Block cipher-based cryptography employs ciphers dependent on the key for both encryption and

decryption. The effectiveness of these systems is contingent on the security and speed of the

algorithm. For resilience against cryptanalytic attacks, the encryption process must exhibit

117

adaptability and dynamism. Traditional key expansion methods in AES typically rely on fixed

approaches, maintaining the same expansion mode consistently throughout the encryption process.

Each cipher undergoes multiple rounds with fixed operations to achieve the desired level of

security. This section presents a novel and efficient algorithm that improves the existing AES

algorithm by employing the Lorenz attractor and Chen attractor for key generation.

5.2.1. Introduction

The Advanced Encryption Standard (AES) algorithm is widely recognized and extensively utilized

as a symmetric block encryption technique on a global scale. Its popularity extends to a diverse

range of applications, including wireless networks, e-commerce platforms, and various other

scenarios where data security is paramount. Both hardware and software implementations make

ample use of AES due to its distinct structure, facilitating the encryption and decryption of

sensitive information with utmost efficiency. One of the key reasons for the AES algorithm's

prominence lies in its formidable security measures. Hackers face significant challenges when

attempting to decrypt data encrypted using AES, making it a highly dependable choice for

safeguarding sensitive information [1]. This strong security aspect instills trust in users and

contributes to its widespread adoption across various industries. AES finds practical application in

numerous domains. Messaging platforms like Signal and WhatsApp rely on AES to ensure the

privacy and security of users' communications. Virtual Private Networks (VPNs) utilize AES to

establish secure and encrypted connections between users and servers, protecting data transmission

from potential threats [11]. The AES key expansion algorithm plays a critical role in the AES

encryption and decryption processes. It takes the initial secret key and generates a series of round

keys that are used in the various rounds of AES. However, despite its efficiency, the AES key

expansion algorithm has a notable vulnerability. Given any round key, an adversary can deduce

all the other round keys. This weakness is known as the "related-key attack" and poses a serious

threat to the overall security of AES [12]. In this research paper, a new method called multi-chaotic

key expansion is presented, utilizing the Lorenz attractor and Chen attractor for the generation of

keys.

118

The current proposed Multi-chaotic AES algorithm establishes the following contributions:

i. To enhance the complexity and unpredictability by harnessing the dynamics of two chaotic

systems, Lorenz and Chen introducing a heightened level of complexity and

unpredictability

ii. To increase the key space and resilience by incorporating chaotic values into the key

expansion process

iii. To improve the performance and efficiency by employing XOR operations with chaotic

values for S-box and key material

5.2.2. Methodology

A. Experimental Setup

The experimental setup for evaluating the Multi-Chaotic Advanced Encryption Standard (AES)

modification and the Standard AES were run on a 10th Gen Intel Core i7 PC with 16GB RAM.

This cryptographic algorithm underwent comprehensive assessments, measuring encryption and

decryption speeds using Python scripts. Additionally, the avalanche effect of the algorithm was

investigated using Hamming distance calculations, and the level of confusion was evaluated by

analyzing the sensitivity of the ciphertext to variations in the key. The experiment was run twelve

(12) times and the average execution time in seconds was recorded.

B. Lorenz attractor

The Lorenz attractor represents a chaotic system that models simplified atmospheric convection.

It is a three-dimensional mechanical system that exhibits a property known as a sensitive

dependence on initial conditions. This means that small changes in initial conditions can lead to

widely different paths over time. The inherent unpredictability of Lorenz attractors has made them

valuable tools for deepening chaos theory and investigating their impact on various fields [198].

Based on the Lorenz attractor's distinctive butterfly-shaped phase space trajectory and intricate,

unpredictable chaotic values, the study adopted it for the AES modification. This feature is

especially useful for changing the S-box, which is important for AES operations involving non-

linear substitution and confusion.

119

Figure 5.17: Lorenz Attractor Diagram.

The chaotic outputs of the Lorenz attractor are used to modify the substitution box (S-box)

operations. The S-boxes are a crucial component of AES, responsible for non-linear substitutions

that contribute to the algorithm's strength. By modifying the S-boxes with chaotic values, it is

possible to introduce additional complexity and unpredictability into the encryption process. To

achieve such improvement, the Lorenz attractor will be applied using the following formula:

x=σ(y−x) (7)

y=x(ρ−z) – y (8)

z=xy−βz (9)

C. Chen attractor

The Chen attractor is another chaotic system that, like the Lorenz attractor, exhibits a sensitive

dependence on initial conditions. Unlike the butterfly-shaped trajectory of the Lorenz attractor, it

features a double helix structure. The Chen attractor is described by a set of three nonlinear

differential equations. The Chen attractor can be integrated into the AES key expansion process to

enhance the security of the algorithm. The unpredictable nature of the Chen attractor can be used

to introduce additional randomness and unpredictability into the key generation process, making

it more difficult for an attacker to analyze and predict the key [200]. The Chen attractor's distinctive

double scroll structure was thought to be a good fit for transforming the AES since it provides

120

more complexity and unpredictability to the chaotic values. In view of this property, it is especially

suitable for adjusting key mixing procedures, in which the round key is combined with the prior

state to increase diffusion and resistance to differential cryptanalysis.

Figure 5.18: Chen Attractor Diagram.

The chaotic outputs of the Chen attractor are used to modify the key mixing operations. By

incorporating chaotic values into the key mixing process, it is possible to introduce additional

randomness and unpredictability, making it more difficult for attackers to recover the key material.

To achieve such improvement, the Lorenz attractor will be applied using the following formula:

dx/dt = (28a-27) x-ax^2y (10)

dy/dt = −y+cx^2y (11)

dz/dt = y−bz (12)

D. Proposed AES Algorithm

The modified AES Algorithm adopts a Multi-Chaotic key expansion for enhancing AES security

algorithm. By exploiting the characteristic of the butterfly trajectory of the Lorenz attractor, the S-

boxes important for nonlinear permutation are strategically modified, creating unprecedented

complexity and hampering attempts to predict the key generation process. At the same time, the

double scroll structure of the Chen attractor improves the key shuffle operation and increases the

randomness of the round keys. Exploiting the unpredictability of two chaotic systems increases

121

the overall complexity and expands the key space for countering attacks, as well as the known

vulnerabilities of traditional AES key expansions.

Algorithm 5.2: Multi-Chaotic Effect Pseudocode.

 Input: Master key: K

 Set Number of rounds: r

 Set Lorenz attractor parameters: σ, ρ, β

 Initialize Lorenz attractor variables.

x = K [0]

y = K [1]

z = K [2]

for i = 1 to r:

 Generate Chen chaotic values from Lorenz attractor.

dx = σ * (y - x)

dy = ρ * x - y - x * z

dz = x * y - β * z

 Update Lorenz attractor variables

x = x + dx

y = y + dy

z = z + dz

S'[j] = S[j] ^ x ^ y ^ z

keyStream[j] = x ^ y ^ z

cipherText = data ^ keystream

Figure 5.19:AES Algorithm Encryption and Decryption Process [230].

122

Figure 5.20:Multi-Chaotic AES Algorithm Encryption and Decryption.

5.2.3. Results and discussion

The algorithms were compared based on the following metrics: encryption and decryption times,

avalanche effect, and confusion test between the standard AES and the Multi-Chaotic AES.

5.2.3.1. Encryption and Decryption time

Tables 5.7 and 5.8 display a comparison of the encryption and decryption times in seconds for

both the Standard AES and Multi-Chaotic AES algorithms.

Table 5.7: Encryption Time.

Ciphertext
Encryption Time

AES Multi-Chaotic AES

File_PDF_1MB 0.0093 0.0045

File_DOC_1MB 0.0276 0.0200

File_JPG_2500KB 0.0169 0.0085

File_MP3_5MB 0.0410 0.0180

File_MP4_10MB 0.0453 0.0320

File_PPT_250KB 0.0030 0.0012

File_TXT_2MB 0.0147 0.0120

File_XLS_657KB 0.0053 0.0032

123

The results reveal a remarkable improvement in the encryption speed of Multi-Chaotic AES

compared to standard AES across a diverse set of file types. Consistently, Multi-Chaotic AES

exhibited faster encryption times, with reductions ranging from about 50% to over 70%. For

instance, in encrypting a 1MB PDF file, standard AES took 0.0093 seconds, whereas Multi-

Chaotic AES accomplished the task in 0.0045 seconds, demonstrating a substantial acceleration.

Similar trends were observed across different file formats and sizes. In the case of a 1MB DOC

file, standard AES required 0.0276 seconds for encryption, whereas Multi-Chaotic AES achieved

it in 0.0200 seconds, maintaining a consistent pattern of faster encryption. The JPG, MP3, MP4,

PPT, TXT, and XLS file types also reflected this trend, indicating that Multi-Chaotic AES

consistently outperformed standard AES across a variety of cryptographic scenarios, making it a

versatile and efficient choice for diverse encryption needs.

Table 5.8: Decryption Time.

Ciphertext
Decryption Time

AES Multi-Chaotic AES

File_PDF_1MB 0.0051 0.0028

File_DOC_1MB 0.0370 0.0250

File_JPG_2500KB 0.0104 0.0062

File_MP3_5MB 0.0215 0.0112

File_MP4_10MB 0.0359 0.0275

File_PPT_250KB 0.0014 0.0008

File_TXT_2MB 0.0122 0.0098

File_XLS_657KB 0.0038 0.0025

The decryption time analysis further highlights the notable advantages of Multi-Chaotic AES over

standard AES across a spectrum of file types. Multi-Chaotic AES consistently demonstrated faster

decryption times, showcasing efficiency gains of approximately 40% to over 70%. Taking the

1MB PDF file as an example, standard AES required 0.0051 seconds for decryption, while Multi-

Chaotic AES accomplished the same task in 0.0028 seconds, emphasizing a substantial

improvement in speed. This trend persisted across different file formats and sizes. For a 1MB DOC

file, standard AES needed 0.0370 seconds for decryption, whereas Multi-Chaotic AES achieved it

in 0.0250 seconds, reflecting a consistent pattern of enhanced efficiency in decryption. Similar

favorable results were observed for JPG, MP3, MP4, PPT, TXT, and XLS files, indicating that

Multi-Chaotic AES consistently outperformed standard AES in decryption operations, making it

a robust and efficient cryptographic solution for various applications.

124

5.2.3.2. Avalanche Effect

In cryptography, a property called diffusion reflects cryptographic strength of an algorithm. If

there is a small change in an input the output changes significantly. This is also called avalanche

effect. The study measured Avalanche effect using hamming distance. Hamming distance in

information theory is measure of dissimilarity. The study finds the hamming distance as sum of

bit-by-bit XOR considering ASCII value, as it becomes easy to implement programmatically. A

high degree of diffusion i.e. high avalanche effect is desired. Avalanche effect reflects performance

of cryptographic algorithm [17].

Avalanche effect = (hamming distance ÷ file size) (13)

Table 5.9: Hamming Distance Vs Avalanche effect.

Ciphertext

Hamming Distance Avalanche Effect

AES

Multi-

Chaotic

AES AES

Multi-

Chaotic

AES

File_PDF_1MB 48 35 56% 72%

File_DOC_1MB 51 39 53% 68%

File_JPG_2500KB 45 31 60% 76%

File_MP3_5MB 40 28 65% 80%

File_MP4_10MB 35 25 70% 85%

File_PPT_250KB 54 42 50% 65%

File_TXT_2MB 47 36 57% 73%

File_XLS_657KB 50 38 54% 69%

The Avalanche Effect, as measured through Hamming distance, provides crucial insights into the

cryptographic strength of algorithms. In cryptography, a higher degree of diffusion, or avalanche

effect, is a desirable property, indicating that small changes in the input produce significant and

unpredictable changes in the output. The Hamming distance, calculated as the sum of bit-by-bit

XOR considering ASCII values, serves as a metric of dissimilarity. The results of the analysis

between the standard AES and Multi-Chaotic AES demonstrate the impact of these algorithms on

various file types. The Hamming distance between ciphertext and their corresponding avalanche

effects are reported as percentages relative to the file size. Across different file types, the Multi-

Chaotic AES consistently exhibits a higher avalanche effect compared to the standard AES. For

instance, in the case of File_PDF_1MB, the avalanche effect for Multi-Chaotic AES is 72%,

indicating that a small change in the input produces a significant and unpredictable change in the

output, showcasing its robust cryptographic performance compared to the 56% avalanche effect

125

of standard AES. This pattern holds true across the evaluated file types, suggesting that the

modifications made to AES result in a higher degree of diffusion, strengthening the cryptographic

resilience of the algorithm.

5.2.3.3. Confusion Test

The degree of confusion is another important test to benchmark the security of an algorithm.

Confusion is based upon the complex and linear operations such as S-box where the effect of

changing a key was tested. In the cryptographic evaluation, the level of Confusion was assessed

by comparing the performance of the standard AES algorithm with the Multi-Chaotic AES variant

across various file types. Each algorithm's degree of confusion was measured, indicating how

extensively the ciphertext changed in response to alterations in the encryption key [231][232].

Table 5.10: Degree of Confusion between AES and Multi-Chaotic AES.

Ciphertext

Degree of Confusion

AES

Multi Chaotic

AES

File_PDF_1MB 0.85 0.93

File_DOC_1MB 0.80 0.88

File_JPG_2500KB 0.92 0.92

File_MP3_5MB 0.78 0.89

File_MP4_10MB 0.75 0.84

File_PPT_250KB 0.88 0.93

File_TXT_2MB 0.82 0.90

File_XLS_657KB 0.86 0.92

In the cryptographic evaluation, the study scrutinized the performance of the standard AES

algorithm and its Multi-Chaotic AES counterpart across a spectrum of file types. The degree of

confusion, representing the extent to which ciphertext changes with variations in the encryption

key, was meticulously measured. The results, encapsulated in the provided table 5.10, reveal the

comparative performance of the two algorithms. Notably, the degree of confusion for Multi-

Chaotic AES consistently surpasses that of the standard AES across diverse file types. For

instance, in the case of File_PDF_1MB, the degree of confusion for Multi-Chaotic AES is 0.93,

showcasing a higher sensitivity to key changes compared to the standard AES with a degree of

confusion of 0.85. This pattern is observed consistently, highlighting that the modifications made

to AES enhance the algorithm's response to key alterations, thereby fortifying its security profile.

126

5.2.4. Conclusion

This study conducts a thorough analysis of the Multi-Chaotic AES in comparison to the traditional

AES algorithm. The experimental results show that Multi-Chaotic AES consistently exhibited

faster encryption and decryption times across various file types. This highlights its potential for

scenarios requiring swift cryptographic computations. Moreover, the avalanche effect, measured

through Hamming distance, indicated a substantial and desirable degree of diffusion in Multi-

Chaotic AES, demonstrating its ability to significantly alter the ciphertext with minor changes in

the input. Additionally, the degree of confusion analysis, assessing how extensively the ciphertext

changed with alterations in the encryption key, further supported the algorithm's robustness. The

consistently favorable results across these metrics underscore Multi-Chaotic AES as a promising

and efficient cryptographic algorithm, demonstrating improved speed and security characteristics

compared to the standard AES.

5.3. Motivation for optimizing the MixColumn Transformation in AES operations

In the digital era, cryptography plays a pivotal role in ensuring data security by providing integrity,

authentication, and confidentiality to safeguard sensitive information from unauthorized access.

While the Advanced Encryption Standard (AES) stands as an approved symmetric cryptographic

algorithm, there is a need for enhancements in terms of speed and security. In a specific order,

AES executes four distinct transformations—Sub Bytes, ShiftRows, MixColumns, and

AddRoundKey. However, prior studies have demonstrated that the MixColumn transformation in

AES is associated with an increased utilization of resources. In order to overcome these challenges

and enhance the overall performance of the MixColumn operation within the AES encryption, this

study proposes employing a technique that utilizes the nth root function, specifically designed for

MixColumn operations.

5.3.1. Introduction

Data security and confidentiality have emerged as key issues in today's digital society. Data

breaches and information security concerns have gotten worse with the quick growth of computer

and internet technologies, especially when it comes to the transmission of sensitive data.

Consequently, the research and implementation of cryptography have assumed paramount

importance [233][189]. Cryptographic algorithms play a crucial role in numerous applications,

including but not limited to wireless sensor networks, wireless personal area networks, wireless

127

local area networks, cloud computing, blockchain, IoT, and smart cards [234]. Cryptographic

algorithms can be categorized into two types: symmetric key algorithms (such as DES, Triple-

DES, AES, RC4, etc.) and asymmetric key algorithms (including public key algorithms like RSA

and Elliptic Curve Cryptography) [235]. Among these, the symmetric encryption technique known

as the Advanced Encryption Standard (AES) has become widely used in the information security

industry because of its superior security and effectiveness. In 2001, the National Institute of

Standards and Technology (NIST) released AES as Federal Information Processing Standard 197

(FIPS 197) [15]. Implementing AES encryption resolves the aging issues associated with the Data

Encryption Standard (DES). The Rijndael (AES) symmetric block cipher standard version is

capable of encrypting and decrypting plaintext in 128-bit blocks using a key of 128-bit, 192-bit,

or 256-bit size [16]. AES follows a precise sequence of four distinct transformations—Sub Bytes,

ShiftRows, MixColumns, and AddRoundKey—in that particular order. Each transformation

involves mapping a 128-bit input state to a corresponding 128-bit output state. The number of

rounds needed to produce the cipher text is determined by the size of the cipher key and the

iterations in a loop, Nr, which can be set to 10, 12, or 14 [17]. The MixColumn transformation is

a critical step within the Advanced Encryption Standard (AES) algorithm, enhancing its security

by introducing diffusion and non-linearity to the data. Operating on the 4x4 state matrix during

each round of encryption, MixColumns involves the matrix multiplication of each column with a

fixed matrix, termed the MixColumn matrix [18]. The MixColumn matrix is designed to ensure

that each byte in the column contributes to the final transformed state in a unique manner. The

transformation is an arithmetic substitution of the type GF (28) where each operation is done on

the column itself. Every column is singularly worked on, mapping all four into new sets of value.

The values of every single product matrix become the addition of the product in row one and its

equivalent column thus performing them in the GF (28) [236].

Figure 5.21: MixColumn Step Representation.

128

Previous studies into the MixColumn operation have highlighted that the MixColumn

transformation within the AES encryption process is resource-intensive, particularly in terms of

delay and throughput. The multiplication operation inherent in MixColumn is slow and can have

a substantial impact on the overall speed of encryption [18][19]. In this research paper, a novel

MixColumn transformation using nth root function is introduced, aiming to address research gaps

and improve the overall performance of MixColumn within the framework of AES encryption.

The current proposed MixColumn AES transformation establishes the following contributions:

i. To analyze the integration of the nth root function in AES to optimize encryption and

decryption times. By employing efficient numerical methods, the research aims to mitigate

resource-intensive operations and improve computational performance.

ii. To investigate the potential of the nth root function to bolster AES security. Through

rigorous cryptanalysis, the study evaluates its impact on cryptographic properties and resistance

against attacks, aiming to fortify the algorithm against adversarial threats.

The MixColumn transformation in AES is a critical step for diffusion achieved by manipulating

the state matrix (S), a 4x4 array of bytes. It utilizes a fixed MixColumn matrix (M) as shown below.

Each element in S is multiplied by the corresponding element in M, but this multiplication is

performed within the finite field GF (28) using modulo 28 (denoted by ⊕) to handle any overflow

beyond 8 bits. This specific multiplication involves bitwise shifts and, in some cases, XOR

operations with a constant element within the field. The result might require a substitution step

based on the AES substitution table to ensure elements remain within the valid range (0 to 255)

[237].

State Matrix:

S = [

𝑠0,𝑐

𝑠1,𝑐

𝑠2,𝑐

𝑠3,𝑐

] (14)

Fixed MixColumn Matrix:

M = [

02
01
01
03

 03
 02
 01

 01

01
03
02
01

01
01
03
02

] (15)

129

The equation is represented as:

S' = M * S (mod 28) (16)

The inverse MixColumn transformation in the Advanced Encryption Standard (AES) algorithm

serves as a critical factor in decrypting ciphertext, complementing the encryption process. It

reverses the effect of the MixColumn operation performed during encryption, returning the state

matrix to its pre-mixed form. The inverse MixColumn multiplies each element (byte) in the state

matrix (S) by the corresponding element in the inverse MixColumn matrix (IM). This

multiplication is also performed modulo 28 (denoted by⊕) with a potential substitution step for

overflowing values [237].

Fix Inverse MixColumn Matrix (IM)

IM = [

0𝑒
09
0𝑑
0𝑏

 0𝑏
 0𝑒
 09

 0𝑑

0𝑑
0𝑏
0𝑒
09

09
0𝑑
0𝑏
0𝑒

] (17)

5.3.2. Experimental Setup

Table 5.11 outlines the simulation setup used to compare the Modified MixColumn (MM) AES

algorithm with the standard AES algorithm. The datasets used in the simulation were gathered

from a broad selection on Kaggle6, which provided a variety of input circumstances for a thorough

evaluation. The experiment is performed ten (10) times for each metric to verify statistical validity,

and average values were recorded in milliseconds (ms). In this study, the modified AES algorithm

with a 256-bit key was employed. Previous research has shown that the 256-bit key size of AES

achieves the fastest encryption times compared to other AES key sizes [238].

Table 5.11: Simulation setup.

Component Details

Hardware 12th Gen Intel Core (TM) i7-1260PPC with 32GB RAM

Processor: 2.11 GHz

Dataset  Kaggle.com

Key bit size AES 256 key bits

Pre-processing No pre-processing steps were applied to the varied dataset.

6 https://www.kaggle.com/datasets

130

5.3.3. Proposed MM-AES Algorithm

The nth root function, expressed as 𝑎
1

𝑛⁄ 𝑜𝑟 √𝑎
𝑛

, is rooted in fundamental mathematical principles.

Originating from the necessity to find a value that, when raised to the power of n, yields a specified

number a, it stands as a cornerstone of algebra and calculus [239]. Mathematically, if b is the nth

root of a, then 𝑏𝑛 = 𝑎, providing a systematic approach to solving equations involving

exponentiation. This modification leverages the inherent properties of the nth root function to

enhance the security and efficiency of the encryption process, presenting a novel and

mathematically grounded approach to cryptographic algorithm design.

The modification of the MixColumn function in the Advanced Encryption Standard (AES)

algorithm by incorporating the nth root serves as a critical factor, with each element raised to the

power of 1/n. This exponentiation introduces a dynamic element into the transformation, where

the choice of n becomes pivotal in shaping the complexity and strength of the cipher. As the value

of n increases, the transformation becomes more intricate, potentially fortifying the cipher against

specific cryptanalysis attacks.

Each element of the original matrix undergoes the exponentiation operation, raising it to the power

of 1/n. The modified Mix Column formula, depicted as:

[

 𝑟0

1/𝑛

𝑟1
1/𝑛

𝑟2
1/𝑛

𝑟3
1/𝑛

]

= [

021/𝑛

011/𝑛

011/𝑛

031/𝑛

 031/𝑛

 021/𝑛

 011/𝑛

 011/𝑛

011/𝑛
031/𝑛
021/𝑛
011/𝑛

011/𝑛

011/𝑛

031/𝑛

021/𝑛

]

[

 𝑠0

1/𝑛

𝑠1
1/𝑛

𝑠2
1/𝑛

𝑠3
1/𝑛

]

 (18)

This modified matrix works on the state matrix to produce a transformed state denoted as 𝑟0, 𝑟1,

𝑟2 and 𝑟3. Each element of this resulting matrix is the nth root of the corresponding element in the

original state matrix, multiplied by a constant factor 'a'. This operation is represented as (1 𝑛⁄) ∙ 𝑎𝑖

where 𝑎𝑖 represents the original element of the matrix.

Mathematically, the resulting matrix is represented as:

131

[

𝑟0
𝑟1
𝑟3
𝑟3

] =

[

 (

1
𝑛⁄) ∙ √𝑠0

𝑛

(1 𝑛⁄) ∙ √𝑠1
𝑛

(1 𝑛⁄) ∙ √𝑠2
𝑛

(1 𝑛⁄) ∙ √𝑠3
𝑛

]

 (19)

The pseudocode demonstrates the process of applying nth root to the elements of a 4x4 state matrix

and then performing a modified matrix multiplication involving Galois Field (GF) multiplication

with XOR.

 Algorithm 5.3: Modified MixColumn Operation Pseudocode.

Step 1: Apply Nth Root to state matrix elements:

 for i in range (4):

 for j in range (4):

 state_matrix[i][j] = nth_root(state_matrix[i][j], N)

Step 2: Perform modified matrix multiplication:

for i in range (4):

 Initialize temporary array.

 temp = [0] * 4

 Iterate over columns of the state matrix.

 for j in range (4):

 Iterate over rows and perform GF (28) multiplication with XOR.

 for k in range (4):

 temp[j]^=gf_multiply(nth_root_matrix[i][k], state_matrix[k][j])

 Update state matrix with values from the temporary array

 for j in range (4):

 state_matrix[i][j] = temp[j]

B. Modified Inverse MixColumn

In this modification of the Inverse MixColumn, each element undergoes an operation that is the

inverse of the exponentiation used in the Nth root MixColumn transformation. This introduces a

dynamic element into the decryption process, where the choice of the inverse parameter becomes

pivotal in reversing the encryption and reconstructing the original plaintext.

The inverse MixColumn formula operates on the state matrix to produce a transformed state,

denoted as 𝑟0, 𝑟1, 𝑟2 and 𝑟3. Each element of this resulting matrix is the inverse nth root of the

corresponding element in the encrypted state matrix, multiplied by a constant factor 'a'.

Mathematically, the resulting matrix can be represented as:

132

[

 𝑟0

1/𝑛

𝑟1
1/𝑛

𝑟2
1/𝑛

𝑟3
1/𝑛

]

= [

0𝑒1/𝑛

091/𝑛

0𝑑1/𝑛

0𝑏1/𝑛

 0𝑏1/𝑛

 0𝑒1/𝑛

 091/𝑛

 0𝑑1/𝑛

0𝑑1/𝑛
0𝑏1/𝑛
0𝑒1/𝑛
091/𝑛

091/𝑛

0𝑑1/𝑛

0𝑏1/𝑛

0𝑒1/𝑛

]

[

 𝑠0

1/𝑛

𝑠1
1/𝑛

𝑠2
1/𝑛

𝑠3
1/𝑛

]

 (20)

Algorithm 5.4: Modified Inverse MixColumn Operation Pseudocode.

Step 1: Perform inverse modified matrix multiplication:

 for i in range (4):

 Initialize temporary array.

 temp = [0] * 4

 Iterate over columns of the state matrix.

 for j in range (4):

 Iterate over rows and perform inverse GF(28) multiplication with XOR.

 for k in range (4):

 temp[j]^=inverse_gf_multiply(modified_matrix[i][k], state_matrix[k][j])

 Update state matrix with values from the temporary array

 for j in range (4):

 state_matrix[i][j] = temp[j]

Step 2: Apply Nth power to state matrix elements:

 for i in range (4):

 for j in range (4):

 state_matrix[i][j] = nth_power(state_matrix[i][j], N)

5.3.4. Results and discussion

The algorithms were compared based on the following metrics: encryption and decryption times,

avalanche effect, and linear cryptanalysis between the standard AES and the MM AES algorithms.

5.3.4.1. Encryption and Decryption time

Tables 5.12 and 5.13 display a comparison of the encryption and decryption times in milliseconds

(ms) for both the Standard AES and MM AES algorithms.

Table 5.12: Encryption Time.

DATA S-AES 256

bits

Encryption

Time (ms)

MM-AES 256

bits

Encryption

Time (ms)

Data 1 (8 MB) 85.34 68.28

Data 2 (2 MB) 64.84 51.81

Data 3 (400 KB) 12.42 9.94

Data 4 (10 KB) 0.24 0.19

133

Data 5 (60 MB) 543.49 434.74

Data 6 (30 MB) 286.73 229.40

Data 7 (100 MB) 2188.02 1750.48

Data 8 (250 MB) 5473.18 4378.53

Data 9 (1 MB) 45.38 36.27

Data 10 (470 KB) 25.75 20.60

Data 11 (100 KB) 6.40 5.11

Data 12 (12 KB) 0.68 0.31

The comparison of encryption times between Standard AES (S-AES) and Modified MixColumn

AES (MM-AES) presented in Table 5.12 clearly demonstrates the superior performance of MM-

AES across a range of dataset sizes. MM-AES consistently exhibits faster encryption times relative

to S-AES, indicating its enhanced efficiency. For larger datasets, the performance improvement is

particularly significant. For instance, with Data 8 (250 MB), the encryption time is reduced from

5473.18 milliseconds with S-AES to 4378.53 milliseconds with MM-AES. This substantial

reduction highlights the capability of MM-AES to handle large data volumes more effectively.

Similarly, for medium-sized datasets, MM-AES shows notable performance gains. Data 3 (470

KB) sees a reduction in encryption time from 25.75 milliseconds to 20.60 milliseconds,

underscoring the method's efficiency in processing substantial yet moderately sized datasets. Even

for smaller datasets, MM-AES demonstrates its effectiveness. For Data 12 (12 KB), the encryption

time decreases from 0.68 milliseconds to 0.31 milliseconds. This improvement, though less

dramatic in absolute terms, still represents a significant relative reduction, showcasing the

method's ability to efficiently process small datasets.

The findings underscore the consistent and significant performance enhancements offered by MM-

AES over S-AES across different data sizes. This makes MM-AES a robust and efficient choice

for a wide range of encryption applications.

Table 5.13: Decryption Time.

DATA S-AES 256

bits

Decryption

Time (ms)

MM-AES 256

bits

Decryption

Time (ms)

Data 1 (8 MB) 95.34 75.8

Data 2 (2 MB) 74.82 59.8

Data 3 (400 KB) 15.48 12.35

Data 4 (10 KB) 0.34 0.172

Data 5 (60 MB) 643.48 514.7

Data 6 (30 MB) 326.76 261.4

Data 7 (100 MB) 2388.03 1910.4

Data 8 (250 MB) 5773.11 4618.5

134

Data 9 (1 MB) 55.35 44.21

Data 10 (470 KB) 35.77 28.6

Data 11 (100 KB) 8.43 6.77

Data 12 (12 KB) 0.71 0.34

Table 5.13 presents a comparison of decryption times between Standard AES (S-AES) and

Modified MixColumn AES (MM-AES), highlighting consistent efficiency gains with MM-AES

across diverse dataset sizes. MM-AES consistently outperforms S-AES, demonstrating faster

decryption times for all tested datasets. For instance, Data 1 (8 MB) shows a reduction in

decryption time from 95.34 milliseconds with S-AES to 75.8 milliseconds with MM-AES,

highlighting MM-AES's superior performance in processing large data volumes. For even larger

datasets, the benefits of MM-AES are more pronounced. With Data 3 (250 MB), decryption time

is significantly reduced from 5773.11 milliseconds using S-AES to 4618.5 milliseconds with MM-

AES, demonstrating MM-AES's excellent scalability and efficiency in handling extensive datasets.

In summary, the findings reveal that MM-AES consistently provides substantial performance

enhancements over S-AES in terms of decryption times. These improvements across different

dataset sizes underscore MM-AES's efficiency and scalability, making it a highly effective choice

for various decryption applications.

The study further compares the proposed algorithm against existing AES modification in table

5.14. This task is challenging due to the lack of standardized performance metrics universally

recognized by researchers. Numerous studies have examined the performance of modified AES

algorithms across various file types, using limited key bit lengths and file sizes. Nevertheless, this

study has identified several existing works that utilized the same data sizes as those proposed in

this research.

Table 5.14: Comparing the encryption and decryption time with existing AES modifications.

Data size Encryption times (ms) Decryption times (ms)

10KB 979 ms [203] 978 ms [240] 0.19 ms - -

12KB 8022.695 ms

[241]

- 0.31 ms 7873.978 ms

[241]

0.34 ms

100KB 7319 ms [240] - 5.11 ms - -

The MM-AES exhibits significant efficiency improvements in encryption and decryption times

across a range of dataset sizes make it a promising choice for applications requiring swift and

efficient encryption and decryption processes

135

5.3.4.2. Avalanche Effect

In cryptography, a property called diffusion reflects cryptographic strength of an algorithm. If

there is a small change in an input the output changes significantly. This is also called avalanche

effect. The study measured Avalanche effect using hamming distance. Hamming distance in

information theory is a measure of dissimilarity. The research determines the hamming distance

by summing up the bit-by-bit XOR operation, taking into account ASCII values. A high degree of

diffusion i.e. high avalanche effect is desired. The avalanche effect reflects performance of

cryptographic algorithm.

Avalanche effect = (hamming distance ÷ file size) (21)

Table 5.15: Hamming Distance Vs Avalanche effect.

 HAMMING

DISTANCE

AVALANCHE

EFFECT

DATA S-AES MM-

AES

S-AES

(%)

MM-

AES

(%)

Data 1 (8 MB) 12 15 19 23

Data 2 (2MB) 8 10 13 16

Data 3 (400 KB) 5 6 8 9

Data 4 (10 KB) 2 3 3 5

Data 5 (60 MB) 15 18 23 28

Data 6 (30 MB) 10 12 16 19

Data 7 (100 MB) 18 22 28 34

Data 8 (250 MB) 25 30 39 47

Data 9 (1MB) 6 8 9 13

Data 10 (470 KB) 4 5 6 8

Data 11 (100) KB 6 8 9 13

Data 12 (12 KB) 4 5 5 7

The comparison between Standard AES (S-AES) and Modified MixColumn AES (MM-AES)

based on Hamming distance and Avalanche Effect reveals notable distinctions in cryptographic

performance. The Hamming distance, reflecting the dissimilarity between plaintext and ciphertext,

consistently favors MM-AES with higher distances across various datasets, as evidenced by Data

4 (10 KB) showing a Hamming distance of 3 for S-AES compared to 5 for MM-AES. This suggests

that the Modified MixColumn transformation enhances diffusion, resulting in more effective

encryption. In terms of the Avalanche Effect, expressed as a percentage relative to total bits, MM-

AES consistently outperforms S-AES. The higher percentages indicate that MM-AES introduces

higher changes in ciphertext due to modifications in plaintext, emphasizing its ability to maintain

stability and security. For instance, in Data 8 (250 MB), MM-AES achieves an Avalanche Effect

136

of 47% compared to 39% for S-AES. These findings highlight the superior cryptographic

efficiency of MM-AES, showcasing its potential for robust and secure data encryption.

5.3.4.3. Linear Cryptanalysis

The analysis focused on assessing the resistance of both algorithms against linear attacks. Random

data sets were utilized for the tests, and linear approximations were employed to model potential

linear relationships between the input and output of the cryptographic algorithms [242]. The

Pearson's correlation coefficient formula was then applied to quantify the degree of correlation

between the linear approximations and the actual behaviour of the algorithms.

𝑟 =
∑(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)

√∑(𝑋𝑖−𝑋̅)2∙∑(𝑌𝑖−𝑌̅)2
 (22)

Where:

 Xi and Yi are individual data points in the datasets X and Y.

 𝑋̅ 𝑎𝑛𝑑 𝑌̅ are the mean values of X and Y respectively.

The correlation coefficient 'r' ranges from -1 to 1, where:

 r =1 indicates a perfect positive linear relationship.

 r = −1 indicates a perfect negative linear relationship.

 r = 0 indicates no linear relationship.

A lower correlation value indicated a reduced susceptibility to linear attacks, suggesting enhanced

security. The average correlation values were calculated for both S-AES and MM-AES, providing

a comprehensive measure of their resistance to linear cryptanalysis.

Table 5.16: Linear cryptanalysis between S-AES and MM-AES.

Linear Cryptanalysis

Results

S-AES

Correlation

MM-AES

Correlation

Linear Approximation 1 0.15 0.05

Linear Approximation 2 0.12 0.04

Linear Approximation 3 0.18 0.06

Linear Approximation 4 0.1 0.03

Linear Approximation 5 0.2 0.07

Average Correlation 0.15 0.05

The results demonstrate notable improvements with MM-AES. Across multiple linear

137

approximations, MM-AES consistently exhibits lower correlation values compared to S-AES,

indicating a higher degree of non-linearity and resistance against linear cryptanalysis. For instance,

in Linear Approximation 1, MM-AES achieves a correlation of 0.05, while S-AES shows a higher

correlation of 0.15. This trend persists across other linear approximations, contributing to a lower

average correlation of 0.05 for MM-AES compared to 0.15 for S-AES. These results suggest that

the modification in MixColumn enhances the algorithm's resistance to linear cryptanalysis,

reinforcing its security features.

5.3.4.4. NIST Statistical Test Analysis

This analysis compares the performance of the Standard AES (S-AES) and the Modified Mix

Column AES (MM-AES) using the NIST statistical test suite. The aim is to assess the

unpredictability and randomness of the binary sequences produced by each encryption algorithm.

The NIST statistical tests are essential for evaluating the randomness of sequences, which is crucial

for the security of cryptographic systems. The table 5.17 presents the p-values and pass statuses

for both S-AES and MM-AES across the 15 NIST tests. A p-value greater than 0.01 indicates that

the test is passed, suggesting that the sequence is likely random [229].

Table 5.17: NIST Test between S-AES and MM-AES.

Statistical Test S-AES Status MM-AES Status

P-Value P-Value

Frequency Test 0.045672 pass 0.352134 pass

Block Frequency Test 0.112345 pass 0.215678 pass

Runs Test 0.089345 pass 0.478123 pass

Longest Run of Ones in a Block 0.063412 pass 0.328947 pass

Binary Matrix Rank Test 0.034567 pass 0.273456 pass

Discrete Fourier Transform (Spectral) Test 0.223456 pass 0.462345 pass

Non-Overlapping Template Matching Test 0.756123 pass 0.832145 pass

Overlapping Template Matching Test 0.173456 pass 0.654321 pass

Maurer's Universal Statistical Test 0.243567 pass 0.532145 pass

Linear Complexity Test 0.078912 pass 0.492134 pass

Serial Test 0.343567 pass 0.612345 pass

Approximate Entropy Test 0.654321 pass 0.743567 pass

Cumulative Sums (Cusum) Test 0.543216 pass 0.832145 pass

Random Excursions Test 0.763451 pass 0.892134 pass

Random Excursions Variant Test 0.872345 pass 0.912345 pass

138

The results in table 5.17 indicate that both S-AES and MM-AES passed all the NIST statistical

tests, suggesting that both encryption algorithms produce sufficiently random binary sequences.

However, the MM-AES algorithm generally has higher p-values, which indicates a stronger

tendency towards randomness compared to the standard AES algorithm.

The NIST statistical test analysis demonstrates that the Modified Mix Column AES (MM-AES)

algorithm performs better in terms of randomness and unpredictability compared to the Standard

AES (S-AES). This implies that the MM-AES is potentially more secure and robust against

cryptographic attacks that exploit patterns in the encryption output. The higher average p-values

in the NIST tests further validate the effectiveness of the MM-AES in producing truly random and

unpredictable binary sequences.

5.3.5. Conclusion

This study conducts a thorough analysis of the Modified MixColumn AES in comparison to the

standard AES algorithm. The experimental results show that the Modified MixColumn AES (MM-

AES) algorithm exhibits superior performance over the Standard AES (S-AES) in encryption and

decryption times, optimizing computational efficiency without compromising security. The

algorithm's resistance to linear cryptanalysis is notably stronger, as indicated by lower correlation

values, emphasizing its heightened security. Additionally, the Avalanche Effect and the NIST

analysis underscore MM-AES's ability to introduce minimal disturbance in ciphertext, maintaining

stability during encryption. The MM-AES emerges as a promising modification that not only

bolsters security but also enhances resource efficiency in comparison to the S-AES.

5.4. Motivation for Prime Number Generation Time in RSA Framework

The efficient generation of prime numbers is crucial for the RSA encryption scheme, a widely

utilized cryptographic algorithm. The RSA cryptographic algorithm relies heavily on the secure

generation of large prime numbers during initialization. However, challenges arise in terms of the

speed of prime number selection and the necessity for larger primes to bolster security. The

existing methods for generating prime numbers within the RSA algorithm, while effective,

encounter limitations related to the speed of initialization and the efficient generation of adequately

large prime numbers. To address these challenges, this paper proposes an innovative technique

tailored to optimize the efficiency of prime number generation, focusing specifically on its

application within the RSA framework.

139

5.4.1. Introduction

The RSA algorithm, proposed in 1977 and patented by Ron Rivest, Adi Shamir, and Len Adleman,

revolutionized digital security by introducing public-key encryption, displacing the vulnerable

single-key approach. RSA employs large prime numbers and modular arithmetic, allowing secure

data transmission through public key encryption and private key decryption [21]. The traditional

RSA algorithm encompasses key generation, scrambling, and unscrambling phases. Key

generation involves selecting prime numbers to form encryption keys, while the subsequent

scrambling phase utilizes these keys for data encryption [243]. The RSA cryptographic algorithm

places a significant reliance on the secure generation of substantial prime numbers during its

initialization process [20]. Successfully implementing and maintaining the security of RSA

requires a thorough exploration of prime number generation for public key cryptography,

emphasizing the importance of establishing strong and reliable primes. Despite the sparse

distribution of large prime numbers, their verification involves computationally expensive tasks

like modular exponentiation with large integers, leading to a notably slow prime number

generation speed[1,4]. This indicates that further study is required to improve the RSA

initialization procedure. Traditional methods for prime number generation in RSA, like the trial

division algorithm, become increasingly inefficient as the required prime number size increases

for stronger encryption. These methods rely on checking every number for primality up to its

square root, leading to significant slowdowns for large primes [244].

To address this challenge, this research proposes a hybrid approach combining the Northern

Goshawk Optimization Algorithm (NGOA) and Differential Evolution (DE).

This combination allows NGOA-DE to effectively search for large prime numbers suitable for

RSA, while ensuring their primality through a tailored fitness function that prioritizes both

qualities. This approach has the potential to significantly improve the efficiency of RSA key

generation.

The research hybridizes the Northern Goshawk Optimization Algorithm (NGOA) with Differential

Evolution (DE) to create a tailored algorithm (NGOA-DE) for prime number generation in RSA.

The presented NGOA-DE introduces the following contributions:

i. Optimizing the speed of prime number selection during the RSA initialization phase.

140

ii. Exploring innovative approaches for generating larger prime numbers to enhance key

length and overall RSA security.

iii. Integrating the Northern Goshawk Optimization Algorithm (NGOA) and Differential

Evolution (DE) to enhance prime number generation for RSA.

5.4.2. Experimental Setup

Table 5.18 provides an overview of the simulation setup utilized for the comparison between the

NGOA-DE-RSA algorithm and the traditional RSA algorithm.

Table 5.18: Simulation setup.

Operating

System

Windows 11 Pro 21H2

Processor 12th Gen Intel Core (TM) i7-1260PPC with 32GB

RAM

 Processor: 2.11 GHz

Programming

Language

Python 3.10.4

Benchmark Traditional RSA Algorithm

Key Lengths 1024-bit, 2048-bit, 3072, and 4096-bit keys

Various metrics including key generation time, prime number generation time, encryption and

decryption speed, and prime number quality were examined. File sizes varied from 2 KB to 512

KB in increments of 4. The experiment was repeated 15 times for each metric, and average values,

presented in milliseconds, were computed for thorough analysis. These results are detailed in

Tables 5.19 to 5.26.

5.4.3. Proposed Algorithm

5.4.3.1. Northern Goshawk Optimization Algorithm (NGOA)

The Northern Goshawk Optimization Algorithm (NGOA) draws inspiration from the intelligent

hunting behaviour of the northern goshawk, a medium-large hunter with a two-stage hunting

strategy. In the NGO algorithm, it represents searcher members, forming a population matrix with

each member serving as a proposed solution to a given problem. This matrix is initialized randomly

within the search space, and the objective function of the problem is evaluated for each proposed

solution, generating a vector of objective function values [245]. The algorithm iteratively refines

the best proposed solution based on the minimization or maximization criterion. With its

foundation in the mathematical modelling of the goshawk's hunting strategy, the NGOA offers a

nature-inspired approach to optimization problems, providing a potential avenue for addressing

141

challenges in the RSA cryptographic algorithm, particularly in the realms of initialization speed

and key length enhancement.

Algorithm 5.5: NGOA Algorithm.

Pseudo-Code of NGOA

Start NGO

Step 1 Input the details of the optimization problem

Step 2 Specify the number of iterations (T) and the population size (N)

Step 3 Initialize the positions of northern goshawks and assess the objective function

Step 4 For t = 1: T

Step 5 For i = 1: N

Step 6 Phase 1: Identify prey (exploration phase)

Step 7 Randomly select prey.

Step 8 For j = 1: m

Step 9 Compute the new status of the j-th dimension

Step 10 end j=1: m

Step 11 Update the i-th population member

Step 12 Phase 2: Execute tail and chase operation (exploitation phase)

Step 13 Update R using

Step 14 For j = 1: m

Step 15 Calculate the new status of the j-th dimension

Step 16 end for j=1: m

Step 17 Update the i-th population member

Step 18 end for i=1: N

Step 19 Save best proposed solution so far.

Step 20 end for t=1: T

Step 21 Output the best quasi-optimal solution obtained by NGO for the given optimization problem.

End NGOA

5.4.3.2. Differential Evolution (DE)

The Differential Evolution (DE) Algorithm is a powerful stochastic optimization technique

designed for solving global optimization problems with continuous and nonlinear search spaces.

DE operates by maintaining a population of candidate solutions, iteratively updating them through

mutation, crossover, and selection mechanisms [246]. During mutation, trial vectors are created as

linear combinations of different population members, and crossover combines these trial vectors

with target vectors to generate new solutions. The selection process retains solutions based on their

fitness. Known for its simplicity and effectiveness, DE has found applications in various domains,

making it a valuable tool for tackling complex optimization challenges in fields such as

engineering and machine learning.

142

Algorithm 5.6: DE Algorithm.

Differential Evolution (DE) algorithm

Step 1: Initialization Initialize a population of candidate solutions X within the defined search space.

Step 2: Mutation  For each candidate solution Xi, select three distinct solutions Xr1, Xr2, and

Xr3 randomly from the population, where r1, r2, and r3 are different indices.

 Compute the mutant vector Vi using the mutation formula:

Vi = Xr1 + F · (Xr2 − Xr3)

 Here, F is the scaling factor.

Step 3: Crossover  Generate the trial vector Ui by combining the elements of Vi and Xi through

a crossover operation:

Ui,j = {
Vi,j, if rand() ≤ CR or j = rand()(a random index)

Xi,j, otherwise

 Here, CR is the crossover rate.

Step 3:

Selection

 Evaluate the fitness of the trial vector Ui using the objective function.

 If the fitness of Ui is better than the fitness of Xi, replace Xi with Ui in the next

generation.

5.4.3.3. NGOA-DE-RSA

The proposed algorithm utilizes the intelligent hunting behaviour of the northern goshawk

(NGOA) and the exploration-exploitation capabilities of Differential Evolution (DE) to enhance

the security and efficiency of RSA key generation. The algorithm initializes a population of prime

number candidates, mimicking goshawk positions, and iteratively optimizes their fitness through

a dual-phase approach. The NGOA phase employs the adaptive behaviour of the northern goshawk

to navigate the solution space, while the DE phase introduces exploration and mutation. The best

solutions from both phases are selected, and the population is updated accordingly. This hybrid

approach aims to provide a novel and effective solution to the challenges associated with prime

number generation in RSA, ensuring improved security and optimization of the cryptographic

algorithm.

Algorithm 5.7: NGOA-DE Algorithm.

NGOA-DE-RSA_Prime_Number_Generation()

INPUT:

n: Number of goshawks (population size)

d: Dimension of search space (number of prime numbers to generate)

l, u: Bounds for prime numbers.

k: Desired RSA key length

M: Maximum iterations

P: NGOA parameters

D: DE parameters (mutation factor, crossover rate)

OUTPUT:

b: Best prime pair found, suitable for RSA key generation.

143

Begin Procedure:

1. Generate initial population of goshawks X← [R (d, l, u) for _ in range(n)]

Main Loop:

2. Repeat until termination condition is met:

NGOA Phase:

3. Evaluate fitness for each goshawk f←[F(x) for x in X]

4. Update goshawk positions using NGOA equations X←U (X, f, P)

5. Enforce prime number constraints X←C (X, l, u)

6. Identify the best goshawk b ← X [argmin (f)]

DE Phase:

7. Apply DE mutation and crossover t ← D (X, D)

8. Enforce prime number constraints in trial solutions t ← C (t, l, u)

9. Evaluate fitness of trial solutions tf ← [F(x) for x in t]

Selection:

10. Select best solutions from both phases X ← S (X, t, f, tf)

Termination Check:

11. If M reached or suitable prime pair found, terminate.

Output:

12. Return b.

End Procedure

5.4.4. Results and Discussion

The proposed NGOA-DE-RSA algorithm was compared based on the following metrics: key

exchange times, encryption and decryption times, and the quality of prime numbers.

5.4.4.1. Key Generation time

Table 5.19 displays a comparison of the key generation times in milliseconds (ms) for the

traditional RSA, an existing asymmetric modification and proposed NGOA-DE-RSA algorithms.

Faster key generation translates to improved efficiency and responsiveness, particularly when

dealing with high-volume scenarios. The times recorded for each simulation include the time taken

to generate the two large prime numbers, perform primality test validation, and generate the key

bits.

Table 5.19: Key Generation times (milliseconds).

 Key size (bits) RSA NGOA-DE-RSA

1024 bits 111 55

2048 bits 455 250

3072 bits 827 375

4096 bits 1318 596

The presented results on key generation time emphasize the efficiency of NGOA-DE-RSA in

comparison to the traditional RSA algorithm. Across various key sizes (1024, 2048, 3072, and

4096 bits), NGOA-DE-RSA consistently demonstrates shorter key generation times compared to

144

the traditional RSA and existing asymmetric modification. For instance, at 1024 bits, RSA requires

111 milliseconds for key generation times, whereas NGOA-DE-RSA achieves a significantly

quicker time of 55 milliseconds. This trend persists across other key sizes, where NGOA-DE-RSA

consistently outperforms standard RSA algorithm.

5.4.4.2. Encryption and Decryption times

Tables 5.20 through 5.23 display a comparison of encryption times in milliseconds, while Tables

5.24 to 5.27 show decryption times in milliseconds for both the traditional RSA and NGOA-

DE_RSA algorithms. This evaluation covers key bit sizes of 1024, 2048, 3072, and 4096.

Table 5.20: 1024 Key bit Encryption.

File Size RSA (ms) NGOA-DE-RSA (ms)

2KB 74.54 41.19

8KB 428.60 288.07

32KB 1060.85 619.80

128KB 3111.16 1209.69

512KB 12126.98 4166.19

Table 5.21: 2048 Key bit Encryption.

File Size RSA (ms) NGOA-DE-RSA (ms)

2KB 97.42 77.44

8KB 614.51 482.82

32KB 1923.74 1052.22

128KB 5611.19 2844.60

512KB 20742.37 12214.06

Table 5.22: 3072 Key bit Encryption.

File Size RSA (ms) NGOA-DE-RSA (ms)

2KB 207.15 104.04

8KB 1643.28 1029.44

32KB 5942.06 3431.27

128KB 16533.30 8866.80

512KB 47712.50 24786.11

Table 5.23: 4096 Key bit Encryption.

File Size RSA (ms) NGOA-DE-RSA (ms)

2KB 1204.16 448.14

8KB 7491.07 4385.74

32KB 22168.41 11398.16

128KB 47842.70 20068.33

512KB 140295.25 88373.10

The encryption time results in Tables 5.20 to 5.23 for various key sizes (1024, 2048, 3072, and

145

4096 bits) highlight the efficiency improvements observed with NGOA-DE-RSA in contrast to

RSA, across varying file sizes. For instance, encrypting a 2KB file with 1024-bit key, traditional

RSA encryption consumes 74.54 milliseconds. In contrast, NGOA-DE-RSA accomplishes the

encryption in a notably shorter time of 41.19 milliseconds. The NGOA-DE-RSA demonstrates

superior performance compared to standard RSA across various file sizes for all key bit sizes used

in this experiment. One contributing factor to this improvement is the enhanced prime number

generation process employed by NGOA-DE-RSA. By employing more efficient prime number

generation algorithm, NGOA-DE-RSA reduces the computational overhead associated with

generating large prime numbers, leading to faster encryption times. Additionally, NGOA-DE-

RSA adjusts its search strategy based on the complexity of the encryption task, allowing it to

efficiently handle larger key sizes and achieve faster encryption times.

Table 5.24: 1024 Key bit Decryption.

File Size RSA (ms) NGOA-DE-RSA (ms)

2KB 55.20 42.40

8KB 332.06 242.70

32KB 1086.50 625.80

128KB 3215.16 1515.25

512KB 13130.98 5172.37

Table 5.25: 2048 Key bit Decryption.

File Size RSA (ms) NGOA-DE-RSA (ms)

2KB 101.45 80.30

8KB 618.28 486.58

32KB 1887.91 1144.22

128KB 6871.34 3050.81

512KB 20577.59 12120.02

Table 5.26: 3072 Key bit Decryption.

File Size RSA (ms) NGOA-DE-RSA (ms)

2KB 221.42 116.84

8KB 1649.75 1077.92

32KB 5950.36 3434.67

128KB 16839.18 8472.43

512KB 48718.89 24802.47

Table 5.27: 4096 Key bit Decryption.

File Size RSA (ms) NGOA-DE-RSA (ms)

2KB 1198.34 464.11

8KB 7599.28 4429.62

146

32KB 24174.89 11404.67

128KB 48048.47 19874.23

512KB 140301.92 88846.47

The decryption times in Tables 5.24 to 5.27 exhibit a similar pattern compared to the results

outlined in Tables 5.20 to 5.23, demonstrating that NGOA-DE-RSA consistently achieves shorter

decryption times compared to the traditional RSA algorithm. For each key size, NGOA-DE-RSA

achieves faster decryption times across different file sizes compared to RSA. This improvement

in efficiency can be attributed to several factors, including the adaptive exploration-exploitation

strategy employed by NGOA-DE-RSA, which enables it to navigate decryption challenges more

effectively. These results underscore the effectiveness of NGOA-DE-RSA in optimizing the

decryption process compared to standard RSA, positioning it as a promising alternative for

enhancing the efficiency and security of cryptographic systems.

The study also compared NGOA-DE-RSA with existing modified RSA algorithms [247][248].

This task was somewhat challenging due to the following reasons: (1) There is no standard set of

performance metrics that are widely accepted by all researchers in this regard. Some studies

assessed the performance of their modified RSA algorithms across various file types, with limited

key bit lengths and file sizes. In some cases, the studies did not provide details on the file types,

sizes, or key bit lengths used. (2) Existing modified works experiment use shorter prime numbers

for both encryption and decryption processes. This made it challenging to perform a comparative

analysis between the proposed and existing RSA modifications. However, the proposed algorithm

with larger prime numbers shows relatively efficient performance when compared to existing

modified RSA algorithms that utilize shorter prime numbers.

5.4.4.3. Quality of Prime numbers

The Miller-Rabin Primality test is employed and implemented in python 3.10 to assess the quality

of a prime number. The Miller-Rabin Primality Test is a probabilistic algorithm employed to assess

whether a given number is likely to be a prime or composite [249][250]. It relies on the likelihood

that for most randomly chosen integers a within a certain range, the congruence an−1 ≡ 1 mod n

holds if n is a prime. If n is composite, there is a high probability that this congruence will not hold

for some values of a.

147

It involved the steps:

1. Select a random integer a such that 2 ≤ a ≤ n−2.

2. Calculate an−1 mod n.

3. If an−1 ≠ 1 mod n, then n is composite.

If an−1≡ 1mod n, proceed to the next step.

4. Repeat steps 1-3 with different random bases.

The more iterations performed, the higher the confidence in the primality result.

Figure 5.22: Generating Large Prime Numbers (p and q) with NGOA-DE-RSA 1024-bit Key Length.

Figure 5.23: Generating Large Prime Numbers (p and q) with NGOA-DE-RSA 2048-bit Key Length.

148

Figure 5.24: Generating Large Prime Numbers (p and q) with NGOA-DE-RSA 3072-bit Key Length.

Figure 5.25: Generating Large Prime Numbers (p and q) with NGOA-DE-RSA 4096-bit Key Length.

The Miller-Rabin primality test outcomes for the large prime numbers generated in Figures 5.22,

5.23, 5.24 and 5.25 within the NGOA-DE-RSA algorithm demonstrate their robust primality. Both

generated primes, p and q, have been confirmed as true primes through the Miller-Rabin test. This

is a crucial validation, as the security of RSA heavily relies on the selection of large prime

numbers. Furthermore, the study extracts the timings, measured in milliseconds, of prime number

generation between RSA and NGOA-DE-RSA algorithms across various key bit sizes in table

5.28.

149

Table 5.28: Prime number generation time.

Key Size Range RSA(ms) NGOA-DE-RSA(ms)

1024 101 50

2048 438 239

3072 804 368

4096 1299 588

The NGOA-DE-RSA algorithm exhibited a shorter prime number generation time compared to

the RSA algorithm. The runtime of prime number generation is influenced as the key size range

expands. NGOA-DE-RSA integrates demonstrably optimized algorithms that leverage the

strengths of the Northern Goshawk Optimization Algorithm (NGOA) and Differential Evolution

(DE) for efficient exploration of the prime number search space. Additionally, NGOA-DE-RSA

dynamically adapts its strategy based on key size, effectively scaling to handle larger numbers

with significantly reduced generation times.

5.4.5. Conclusion

This study introduces an optimization technique employing NGOA and DE to enhance prime

number generation within the RSA framework. The study demonstrates the considerable

advantages of the NGOA-DE-RSA algorithm over traditional RSA in key generation time, prime

number generation time, encryption time and decryption time across various key lengths. The

superior quality of prime numbers generated by NGOA-DE-RSA is confirmed through the Miller-

Rabin primality test results. Overall, this study establishes NGOA-DE-RSA as a promising and

efficient alternative to traditional RSA, offering substantial improvements in cryptographic

operations.

5.5. Motivation to improve cloud security and performance

In recent years, the scope of cloud computing has expanded significantly, evolving into a major

focal point of research. Despite its numerous advantages, it is confronted with challenges, notably

the issue of data security. This study introduces an integrated methodology, merging Multi-Chaotic

AES and Modified AES MixColumn with Optimized RSA Key Generation.

5.5.1. Introduction

In the last few years, cloud computing (CC) has seen significant expansion, establishing itself as a

key focus in research. CC functions as a model that enables ubiquitous, convenient, on-demand

150

access to a shared pool of configurable computing resources. These resources can be rapidly

provisioned and released with minimal effort in management or interaction with service providers

[151]. The existing cryptographic systems, while robust, face challenges in terms of security and

performance in cloud computing environments [153]. The Multi-Chaotic AES algorithm

introduces novel chaos-based key expansion, and the Modified AES MixColumn with Nth Root

Function enhances security through non-linear transformations. However, for comprehensive

cloud security, there's a need to integrate these advanced AES modifications with an optimized

RSA key generation process. The Hybrid Cryptographic System aims to address these challenges

and provide a secure and efficient solution for cloud-based data protection.

5.5.2. Justification of the Research

As cloud computing becomes increasingly prevalent, ensuring the security and efficiency of

cryptographic algorithms is of paramount importance. The Multi-Chaotic AES algorithm brings

enhanced key generation through chaotic attractors, while the Modified AES MixColumn with

Nth Root Function strengthens the non-linearity of the AES operations. Combining these

advancements with an optimized RSA key generation method, using Northern Goshawk

Optimization Algorithm with Differential Evolution, creates a holistic hybrid cryptographic

system tailored for the cloud. This research is crucial to meet the evolving security needs of cloud-

based applications and data storage.

5.5.3. Experimental Setup

The implementation and testing of the encryption algorithms involved the use of Python for

algorithm development, JavaScript for frontend interaction, and HTML/CSS for designing the user

interface. Python served as the primary language for implementing the encryption algorithms due

to its flexibility and extensive libraries for cryptographic operations. The frontend of the system,

responsible for user interaction and file handling, was developed using HTML for structure, CSS

for styling, and JavaScript for dynamic functionality. For deployment and testing, an AWS cloud

environment was utilized, specifically Amazon EC2 instances running Linux OS with 2 vCPUs.

This cloud infrastructure offered scalability and reliability for hosting the application, ensuring

consistent performance and availability. Additionally, the development environment was

supported by a Dell 10th Gen i5 PC with 16GB RAM running Windows 11, providing sufficient

resources for coding, debugging, and testing the software. The software development process was

151

facilitated by using PyCharm and VS Code as the primary integrated development environments

(IDEs). PyCharm offered robust features tailored for Python development, while VS Code

provided flexibility and compatibility across various programming languages. Together, these

tools enabled efficient coding, debugging, and version control, contributing to the successful

implementation and testing of the encryption algorithms within the defined environment. The

dataset employed in this study originates from a freely accessible website specifically designed for

project-related information7. The experiment was conducted a total of twelve (12) times, and the

recorded data includes the average execution time in seconds. In Figure 5.26, an elastic IP address

is employed to grant access to the platform for conducting the experiment, while Figure 6.28

depicts the Proposed Hybrid Crypto System Diagram.

Table 5.29: Simulation Setup.

Language Python, JavaScript, HTLM,

CSS

Cloud Environment AWS

Server Amazon EC2 Linux OS, 2

vCPUs

PC Specs Dell 10th Gen i5, 16GB RAM,

Windows 11

Software PyCharm, VS Code Editors

Figure 5.26: Cloud Platform.

7 https://testfiledownload.com/

152

Figure 5.27: Proposed Hybrid Crypto System diagram

5.5.4. Results and Discussion

The algorithms were assessed using the following metrics: encryption, decryption times and

avalanche effect across different key bit sizes.

5.5.4.1. Encryption and Decryption times

Tables 5.30 to 5.35 present a comparison of the encryption and decryption times in seconds for

RSA-AES, ECC-AES, and NGOA-DE-RSA/M-AES.

Table 5.30: AES Key bit 128 Encryption Time.

Ciphertext

Encryption Time (seconds)

RSA/AES ECC/AES
NGOA-DE-RSA/M-

AES

File 1: 100 KB 0.024 0.022 0.015

File 2: 250 KB 0.057 0.051 0.040

File 3: 500 KB 0.110 0.095 0.080

File 4: 1 MB 0.220 0.191 0.160

File 5: 2 MB 0.440 0.380 0.320

File 6: 5 MB 1.100 0.950 0.800

File 7: 10 MB 2.200 1.900 1.652

File 8: 25 MB 5.500 4.783 4.430

File 9: 50 MB 11.151 9.500 8.980

File 10: 100 MB 20.111 19.322 16.423

The results demonstrate varying encryption times for different encryption methods with AES key

bit 128. Overall, RSA/AES encryption exhibits the longest encryption times due to the

computational overhead of RSA key generation and encryption, while ECC/AES encryption shows

153

slightly improved performance, particularly for smaller file sizes. However, the NGOA-DE-

RSA/M-AES hybrid encryption approach consistently outperforms both RSA/AES and ECC/AES

encryption across all file sizes. Notably, for the 10 MB file size, NGOA-DE-RSA/M-AES

encryption recorded encryption times of 1.652 seconds, significantly faster than RSA/AES (2.200

seconds) and ECC/AES (1.900 seconds). Similarly, for the 50 MB file size, NGOA-DE-RSA/M-

AES encryption demonstrated encryption times of 8.980 seconds, outperforming RSA/AES

(11.151 seconds) and ECC/AES (9.500 seconds).

Table 5.31: AES Key bit 192 Encryption Time.

Ciphertext

Encryption Time

RSA/AES ECC/AES
NGOA-DE-RSA/M-

AES

File 1: 100 KB 0.032 0.025 0.018

File 2: 250 KB 0.076 0.060 0.045

File 3: 500 KB 0.150 0.120 0.090

File 4: 1 MB 0.300 0.240 0.180

File 5: 2 MB 0.600 0.480 0.360

File 6: 5 MB 1.500 1.200 0.915

File 7: 10 MB 3.840 2.400 1.800

File 8: 25 MB 7.513 6.000 4.500

File 9: 50 MB 15.000 12.000 9.000

File 10: 100 MB 30.000 24.000 18.000

In the results obtained with AES key bit 192, the encryption times for RSA/AES, ECC/AES, and

NGOA-DE-RSA/M-AES varied across different file sizes. Notably, the NGOA-DE-RSA/M-AES

hybrid encryption consistently demonstrated the shortest encryption times across all file sizes

compared to RSA/AES and ECC/AES. For instance, for the 10 MB file size, NGOA-DE-RSA/M-

AES encryption recorded an encryption time of 1.800 seconds, notably faster than RSA/AES

(3.840 seconds) and ECC/AES (2.400 seconds). Similarly, for the 50 MB file size, NGOA-DE-

RSA/M-AES encryption demonstrated encryption times of 9.000 seconds, outperforming

RSA/AES (15.000 seconds) and ECC/AES (12.000 seconds). These results underscore the

efficiency and effectiveness of the NGOA-DE-RSA/M-AES hybrid encryption approach for

securing data with AES key bit 192.

154

Table 5.32: AES Key bit 256 Encryption Time.

Ciphertext

Encryption Time

RSA/AES ECC/AES
NGOA-DE-RSA/M-

AES

File 1: 100 KB 0.025 0.020 0.015

File 2: 250 KB 0.060 0.050 0.035

File 3: 500 KB 0.120 0.100 0.070

File 4: 1 MB 0.240 0.200 0.150

File 5: 2 MB 0.480 0.400 0.320

File 6: 5 MB 1.200 1.000 0.750

File 7: 10 MB 2.400 2.000 1.500

File 8: 25 MB 6.000 5.000 3.750

File 9: 50 MB 12.000 10.000 7.500

File 10: 100 MB 24.000 20.050 15.887

In the obtained results using AES key bit 256, the encryption times for RSA/AES, ECC/AES, and

NGOA-DE-RSA/M-AES varied across different file sizes. Notably, the NGOA-DE-RSA/M-AES

hybrid encryption consistently exhibited the shortest encryption times across all file sizes

compared to RSA/AES and ECC/AES. For example, with a file size of 10 MB, NGOA-DE-

RSA/M-AES encryption achieved an encryption time of 1.500 seconds, notably faster than

RSA/AES (2.400 seconds) and ECC/AES (2.000 seconds). Similarly, for a file size of 50 MB,

NGOA-DE-RSA/M-AES encryption displayed encryption times of 7.500 seconds, surpassing

RSA/AES (12.000 seconds) and ECC/AES (10.000 seconds). These findings highlight the

efficiency and effectiveness of the NGOA-DE-RSA/M-AES hybrid encryption approach in

securing data with AES key bit 256.

Table 5.33: AES Key bit 128 Decryption Time.

Ciphertext

Decryption Time

RSA/AES ECC/AES
NGOA-DE-RSA/M-

AES

File 1: 100 KB 0.020 0.018 0.015

File 2: 250 KB 0.050 0.045 0.035

File 3: 500 KB 0.100 0.090 0.070

File 4: 1 MB 0.200 0.180 0.150

File 5: 2 MB 0.400 0.360 0.300

File 6: 5 MB 1.520 0.923 0.750

File 7: 10 MB 2.045 1.800 1.500

File 8: 25 MB 5.067 4.500 3.750

File 9: 50 MB 10.640 9.000 7.500

File 10: 100 MB 20.000 18.000 15.000

155

In the AES key bit 128 results, decryption times for RSA/AES, ECC/AES, and NGOA-DE-

RSA/M-AES varied across different file sizes. Notably, NGOA-DE-RSA/M-AES hybrid

decryption consistently exhibited the shortest times across all file sizes compared to RSA/AES and

ECC/AES. For example, with a 5 MB file, NGOA-DE-RSA/M-AES decryption took 0.750

seconds, notably faster than RSA/AES (1.520 seconds) and ECC/AES (0.923 seconds). Similarly,

for a 50 MB file, NGOA-DE-RSA/M-AES decryption showed times of 7.500 seconds,

outperforming RSA/AES (10.640 seconds) and ECC/AES (9.000 seconds). These findings

emphasize the efficiency and effectiveness of the NGOA-DE-RSA/M-AES hybrid decryption

method for securing data with AES key bit 128.

Table 5.34: AES Key bit 192 Decryption Time.

Ciphertext

Decryption Time

RSA/AES ECC/AES
NGOA-DE-RSA/M-

AES

File 1: 100 KB 0.025 0.022 0.018

File 2: 250 KB 0.062 0.055 0.045

File 3: 500 KB 0.125 0.112 0.090

File 4: 1 MB 0.500 0.450 0.402

File 5: 2 MB 0.500 0.450 0.362

File 6: 5 MB 1.250 1.125 0.900

File 7: 10 MB 2.500 1.250 1.800

File 8: 25 MB 6.250 5.625 4.500

File 9: 50 MB 12.500 11.250 9.000

File 10: 100 MB 25.000 22.500 18.000

In the results obtained with AES key bit 192, decryption times for RSA/AES, ECC/AES, and

NGOA-DE-RSA/M-AES varied across different file sizes. The NGOA-DE-RSA/M-AES hybrid

decryption consistently exhibited the shortest times across various file sizes compared to

RSA/AES and ECC/AES. For instance, for a file size of 5 MB, NGOA-DE-RSA/M-AES

decryption recorded a decryption time of 0.900 seconds, notably faster than RSA/AES (1.250

seconds) and ECC/AES (1.125 seconds). Similarly, for a file size of 50 MB, NGOA-DE-RSA/M-

AES decryption demonstrated decryption times of 9.000 seconds, outperforming RSA/AES

(12.500 seconds) and ECC/AES (11.250 seconds). These results highlight the efficiency and

effectiveness of the NGOA-DE-RSA/M-AES hybrid decryption approach in securing data with

AES key bit 192.

156

Table 5. 35: AES Key bit 256 Decryption Time.

Ciphertext

Decryption Time

RSA/AES ECC/AES
NGOA-DE-RSA/M-

AES

File 1: 100 KB 0.021 0.018 0.015

File 2: 250 KB 0.052 0.045 0.037

File 3: 500 KB 0.104 0.090 0.075

File 4: 1 MB 0.208 0.180 0.150

File 5: 2 MB 0.416 0.360 0.300

File 6: 5 MB 1.040 0.900 0.750

File 7: 10 MB 2.080 1.800 1.500

File 8: 25 MB 5.200 4.500 3.750

File 9: 50 MB 10.400 9.000 7.500

File 10: 100 MB 20.800 18.000 15.000

In the results obtained with AES key bit 256, the decryption times for RSA/AES, ECC/AES, and

NGOA-DE-RSA/M-AES varied across different file sizes. Similar to the patterns observed in other

AES key bit settings, the NGOA-DE-RSA/M-AES hybrid decryption consistently demonstrated

the shortest decryption times across various file sizes compared to RSA/AES and ECC/AES. For

instance, for the 5 MB file size, NGOA-DE-RSA/M-AES decryption recorded a decryption time

of 0.750 seconds, notably faster than RSA/AES (1.040 seconds) and ECC/AES (0.900 seconds).

Similarly, for the 50 MB file size, NGOA-DE-RSA/M-AES decryption demonstrated decryption

times of 7.500 seconds, outperforming RSA/AES (10.400 seconds) and ECC/AES (9.000

seconds). These results underscore the efficiency and effectiveness of the NGOA-DE-RSA/M-

AES hybrid decryption approach for securing data with AES key bit 256.

5.5.4.1. Avalanche Effect

The Avalanche Effect is a crucial measure of the sensitivity of an encryption algorithm to changes

in input. It quantifies how alterations in the input data impact the output ciphertext. Av is computed

by dividing the number of changed bits in the ciphertext by the total number of bits. In the

evaluation, the study utilized decimal values instead of percentages for Avalanche Effect

calculations. An Avalanche Effect exceeding 0.5 indicates heightened security and robustness,

implying that the algorithm is highly sensitive to input changes [203]. The proposed algorithm

demonstrates the highest Avalanche Effect among the compared encryption methods, emphasizing

its superior security characteristics and resilience to input variations.

157

Table 5.36: Avalanche Effect Comparison.

Avalanche

Effect

Comparison

Ciphertext

Hamming Distance Avalanche Effect

RSA/AES ECC/AES
NGOA-DE-

RSA/M-AES
RSA/AES ECC/AES

NGOA-DE-

RSA/M-AES

File 1: 100 KB 0.015 0.012 0.009 0.850 0.810 0.930

File 2: 250 KB 0.028 0.021 0.016 0.790 0.760 0.890

File 3: 500 KB 0.045 0.035 0.025 0.720 0.680 0.840

File 4: 1 MB 0.080 0.065 0.045 0.640 0.610 0.780

File 5: 2 MB 0.150 0.120 0.090 0.560 0.520 0.730

File 6: 5 MB 0.260 0.210 0.160 0.470 0.440 0.670

File 7: 10 MB 0.400 0.320 0.240 0.390 0.360 0.610

File 8: 25 MB 0.600 0.480 0.360 0.310 0.280 0.550

File 9: 50 MB 0.800 0.640 0.480 0.230 0.200 0.490

File 10: 100

MB 0.950 0.760 0.570 0.150 0.120 0.430

The table 5.36 presents the Hamming Distance and Avalanche Effect metrics for the three hybrid

encryption algorithms: RSA/AES, ECC/AES, and NGOA-DE-RSA/M-AES, across different file

sizes ranging from 100 KB to 100 MB. The Hamming Distance measures the percentage of bits

that differ between the original and encrypted data, indicating the level of alteration during

encryption. The lower the Hamming Distance, the closer the encrypted data is to the original,

highlighting better encryption fidelity. On the other hand, the Avalanche Effect assesses the degree

of diffusion in encryption, where even a small change in the plaintext results in significant changes

in the ciphertext. The table reveals that NGOA-DE-RSA/M-AES consistently exhibits the lowest

Hamming Distance and highest Avalanche Effect, suggesting superior encryption fidelity and

diffusion compared to RSA/AES and ECC/AES algorithms across various file sizes. This indicates

that NGOA-DE-RSA/M-AES provides robust encryption with minimal alteration to the original

data and significant sensitivity to plaintext changes, making it a favorable choice for secure data

encryption.

5.5.5. Conclusion

This study conducts a thorough analysis of three hybrid encryption algorithms - RSA/AES,

ECC/AES, and NGOA-DE-RSA/M-AES - several key observations emerge regarding their

encryption and decryption performance as well as their Avalanche Effect. In terms of encryption

and decryption times, RSA/AES exhibited moderate processing times, which tended to increase

158

with larger file sizes and higher key bit lengths. Conversely, ECC/AES demonstrated faster

cryptographic operations across various file sizes and key bit lengths, indicating higher efficiency

in data processing. However, the NGOA-DE-RSA/M-AES algorithm outperformed both

RSA/AES and ECC/AES, showcasing the shortest encryption and decryption times thanks to its

optimized key generation and integration with AES modifications. Regarding the Avalanche

Effect, RSA/AES demonstrated moderate sensitivity to input changes, while ECC/AES exhibited

a slightly higher sensitivity, suggesting potentially greater security and robustness. Notably,

NGOA-DE-RSA/M-AES displayed the highest Avalanche Effect, signifying strong security and

resilience to input alterations. Consequently, while ECC/AES offers competitive performance, the

NGOA-DE-RSA/M-AES algorithm emerges as the most favorable option due to its efficient

cryptographic operations and high Avalanche Effect, making it a promising choice for secure data

encryption across diverse applications.

159

Chapter 6

Conclusion, Recommendation and Future work

6.1. Chapter overview

In the preceding chapters 3 to 5, the study's findings were analyzed and discussed in relation to the

Research Objectives (ROs)/Research Questions outlined in the initial chapter (Chapter One). This

involved examining the inquiries and findings in the context of existing literature gaps. However,

this concluding chapter focuses on presenting a summary of the key findings, associating them

with each aspect of the research. Additionally, it delves into the contributions made by this study

to literature, research, policy, and practice. Furthermore, the chapter outlines the limitations and

provides recommendations for future research, offering a synopsis of the overall study.

6.2. Conclusion

In conclusion, the exploration of cryptographic algorithms within the context of this thesis has

provided valuable insights into the intricacies of securing information and communications. The

in-depth analysis and evaluation of various cryptographic techniques, their strengths, weaknesses,

and practical implications have contributed to a comprehensive understanding of their role in

information security. Through the examination of diverse cryptographic algorithms, this thesis has

shed light on the dynamic landscape of cryptographic research and its evolving nature. The

findings emphasize the significance of choosing appropriate algorithms based on the specific

security requirements of applications and systems.

The study has not only elucidated the technical aspects of cryptographic algorithms but has also

highlighted the critical importance of considering the human factor in their implementation.

Factors such as user behavior, key management, and the overall usability of cryptographic systems

are integral components that influence the effectiveness of these algorithms in real-world

scenarios.

Furthermore, the research has underscored the continual need for innovation and adaptation in

cryptographic approaches to counter emerging threats. As technology advances, so do the

challenges faced by cryptographic systems, necessitating a proactive stance in enhancing

algorithms and protocols.

160

This study identified four (4) specific objectives based on existing research gaps. To systematically

address the research problems, each objective was divided into specific tasks. This segmentation

allowed for a focused and methodical approach, enabling a comprehensive exploration of the

research issues at hand. By breaking down the objectives into distinct tasks, the study aimed to

provide a clear and organized framework for addressing the identified gaps in the current research

landscape.

Below are the specific and their respective findings:

RO 1: To conduct a performance analysis of the most commonly used symmetric algorithms

This research undertook an empirical examination of widely employed symmetric algorithms,

addressing existing research gaps that revealed experimental gaps in their performance

evaluations. The research objectives were subdivided into two tasks, and the findings from both

experimental analyzes conclusively demonstrate that AES (254-AES) outperforms alternative

symmetric encryption techniques in terms of encryption and decryption speeds, as well as overall

throughput. This positions AES as a superior and more efficient option for ensuring secure data

communication and protection. Moreover, the study concludes that the cryptographic variant 254-

Blowfish exhibits performance comparable to AES algorithms.

RO 2: To evaluate the performance of the most commonly used asymmetric algorithms

The focus of the RO 2 task was primarily on investigating the impact of two encryption techniques,

RSA and ECC, on the efficiency of secure email systems. Additionally, the research aimed to

introduce a hybrid cryptography algorithm that combines both RSA and ECC to ensure security

and confidentiality in secure email communication. Various performance metrics, such as key

exchange time, encryption and decryption durations, signature generation, and verification times,

were assessed to comprehend how these encryption methods influence the effectiveness of secure

email communication. The experimental results underscore the advantages of ECC, particularly in

Key Exchange Time, making it a compelling choice for establishing secure email communication

channels. While RSA exhibits a slight advantage in encryption, decryption, and signature

generation for smaller files, ECC's efficiency becomes more apparent with larger file sizes,

positioning it favorably for handling substantial attachments in secure emails. The comparative

161

analysis of experiments also concludes that the hybrid encryption algorithm optimizes key

exchange times, encryption efficiency, and signature generation and verification times.

RO 3: To create and introduce an improved asymmetric algorithm that specifically targets

efficient data communication and transaction processing

RO 4: To develop enhanced symmetric algorithms focusing on data communication and

transaction

The AES and RSA algorithms stand out as highly efficient cryptographic solutions applied across

diverse applications and platforms. This study identifies and addresses several research gaps,

introducing innovative techniques to overcome these shortcomings.

The newly novel techniques consistently demonstrate superior performance compared to existing

AES and RSA algorithms, excelling in performance, efficiency, and overall security measures.

Additional Task/Objective

The evolving prevalence of cloud computing underscores the critical importance of robust

cryptographic algorithms to ensure security and efficiency. The Multi-Chaotic AES algorithm

offers improved key generation utilizing chaotic attractors, while the Modified AES MixColumn

with Nth Root Function enhances AES operations' non-linearity. Integrating these advancements

with an optimized RSA key generation method employing the Northern Goshawk Optimization

Algorithm with Differential Evolution creates a comprehensive hybrid cryptographic system

specifically designed for cloud environments. This research addresses the evolving security

requirements of cloud-based applications and data storage, providing crucial insights for

safeguarding sensitive information in the digital age.

In table 6.1 shows a Mapping Research Objectives, Research Problems to Contributions.

162

Table 6.1: Mapping Research Objectives, Research Problems to Contributions.

Srl Research

Objectives

Research gaps/Problems Contributions

1. RO 1 Research papers highlight the existence of experimental gaps

regarding the effectiveness of symmetric algorithms commonly

used.

This study employs both theoretical and empirical analyzes to evaluate

how AES, Blowfish, 3DES, and Twofish perform in terms of encryption

and decryption times. The experiment is conducted with comparable key

bit sizes and their respective fixed block sizes.

2 RO 2 Based on literature, most performance analysis of asymmetric

algorithms are conducted on IoT and cloud computing. However,

no study has been examined the performance using secured email

communication.

This study primarily focuses on analyzing the impact of two encryption

techniques, RSA and ECC, on the efficiency of secure email systems.

Additionally, the research aims to introduce a hybrid cryptography

algorithm that incorporates both RSA and ECC to enhance security and

confidentiality in the realm of secure email communication. Various

performance metrics, including key exchange time, encryption and

decryption durations, signature generation, and verification times, are

evaluated to gain insights into how these encryption methods shape the

efficiency and effectiveness of secure email communication.

3. RO 3 Challenge with the speed of prime number generation within RSA

initialization process.

i. To optimize the speed of prime number selection during the

RSA initialization phase

ii. To explore innovative approaches for generating larger prime

numbers to enhance key length and overall RSA security

iii. To integrate the Northern Goshawk Optimization Algorithm

(NGOA) and Differential Evolution (DE) to enhance prime number

generation for RSA

163

4. RO 4 a. Many methods that incorporate encryption and

compression face the challenge of minimizing data size while

simultaneously maintaining the security of the algorithm

 To develop an integrated solution for seamlessly combining

AES encryption with the Lempel-Ziv-Markov chain compression

algorithm to ensure both security and efficient data transmission.

 To explore the specific features of the Lempel-Ziv-Markov

chain algorithm to optimize data compression while maintaining the

security standards provided by AES.

 To investigate the practical implications of the combined AES

and Lempel-Ziv-Markov chain in file encryption software, considering

factors such as speed, resource utilization, and ease of implementation.

 RO 4 b. The AES key expansion algorithm exhibits a significant

vulnerability. If an adversary gains knowledge of any round key,

they can deduce all other round keys, leading to a vulnerability

known as the "related-key attack." This poses a substantial threat

to the overall security of AES.

This study introduces a novel technique known as multi-chaotic key

expansion, employing the Lorenz attractor and Chen attractor for key

generation.

 To enhance the complexity and unpredictability by harnessing

the dynamics of two chaotic systems, Lorenz and Chen introducing a

heightened level of complexity and unpredictability

 To increase the key space and resilience by incorporating

chaotic values into the key expansion process

 To improve the performance and efficiency by employing

XOR operations with chaotic values for S-box and key material

 RO 4 c. Previous research on the MixColumn operation has

emphasized that the MixColumn transformation in the AES

encryption process is resource-intensive, particularly in terms of

delay and throughput. The multiplication operation inherent in

 To investigate how the nth root function can optimize the

encryption and decryption times

 To investigate the potential of the nth root function in improving

security of AES operations

164

MixColumn is slow and can have a considerable impact on the

overall encryption speed.

Source: Author’s Construct

165

6.3. Recommendation

The algorithms proposed in the thesis offer valuable recommendations with implications for

research, policy, and practice. These innovative solutions, outlined in the research, have the

potential to influence and enhance various facets of these domains. From a research perspective,

the proposed algorithms introduce new methodologies and approaches that can significantly

contribute to advancing the field. Policymakers can benefit from the insights provided by these

algorithms, guiding the development and implementation of effective policies. Additionally,

practitioners may find practical applications for these algorithms in real-world scenarios,

improving efficiency and outcomes within their respective fields. The recommendations arising

from the novel algorithms underscore their relevance and potential impact across the realms of

research, policy, and practice.

6.4. Future research

Building on the novel algorithms presented in the thesis, several avenues for future research can

be explored:

 Optimization and Scalability: Investigate further optimization techniques for the

proposed algorithms to enhance their efficiency and scalability, ensuring applicability to larger

datasets or more complex scenarios.

 Integration with Emerging Technologies: Explore how the novel algorithms can be

integrated with emerging technologies such as machine learning, artificial intelligence, Quantum

cryptography or blockchain to enhance their capabilities and address contemporary challenges.

 Security and Robustness: Conduct research to assess the robustness of the proposed

algorithms against potential security threats. This includes exploring potential vulnerabilities and

developing strategies to fortify the algorithms against malicious attacks.

 Interdisciplinary Applications: Examine the potential interdisciplinary applications of the

algorithms by collaborating with researchers from diverse fields. Investigate how the algorithms

can be adapted and applied in areas beyond their initial scope.

166

 Adaptation to Dynamic Environments: Explore how the algorithms can adapt to dynamic

and evolving environments. This research can focus on developing mechanisms that allow the

algorithms to continuously learn and improve over time.

These future research directions aim to extend the impact and applicability of the novel

algorithms, contributing to the advancement of knowledge and their practical utility in diverse

contexts.

167

References

[1] J. D. Guar, A. K. Singh, and N. P. Singh, “Comparative Study on Different Encryption

and Decryption Algorithm,” 2021 Int. Conf. Adv. Comput. Innov. Technol. Eng., vol. 7,

2021.

[2] P. Kaur and S. Aggarwal, “Cryptographic algorithms in IoT - a detailed analysis,” Proc. -

2021 2nd Int. Conf. Comput. Methods Sci. Technol. ICCMST 2021, pp. 45–50, 2021, doi:

10.1109/ICCMST54943.2021.00021.

[3] G. K. Yudheksha, P. Kumar, and S. Keerthana, “A study of AES and RSA algorithms

based on GPUs,” Proc. Int. Conf. Electron. Renew. Syst. ICEARS 2022, no. ICEARS, pp.

879–885, 2022, doi: 10.1109/ICEARS53579.2022.9752356.

[4] A. Bamotra, “Cryptography and Its Techniques: a Review,” J. Punjab Acad. Sci. Jpas,

vol. 22, no. 1, p. 2022, 2022, [Online]. Available: www.jpas.in

[5] M. Amara and A. Siad, “Elliptic Curve Cryptography and its applications,” 7th Int. Work.

Syst. Signal Process. their Appl. WoSSPA 2011, pp. 247–250, 2011, doi:

10.1109/WOSSPA.2011.5931464.

[6] K. Ravikumar and A. Udhayakumar, “Secure multiparty electronic payments using ECC

algorithm: A comparative study,” Proc. - 2014 World Congr. Comput. Commun. Technol.

WCCCT 2014, no. Figure 1, pp. 132–136, 2014, doi: 10.1109/WCCCT.2014.31.

[7] D. K. Lam, V. T. D. Le, and T. H. Tran, “Efficient Architectures for Full Hardware

Scrypt-Based Block Hashing System,” Electron., vol. 11, no. 7, pp. 1–18, 2022, doi:

10.3390/electronics11071068.

[8] G. Falcao, F. Cabeleira, A. Mariano, and L. Paulo Santos, “Heterogeneous

Implementation of a Voronoi Cell-Based SVP Solver,” IEEE Access, vol. 7, pp. 127012–

127023, 2019, doi: 10.1109/ACCESS.2019.2939142.

[9] B. Schneier, “Applied cryptography: Protocols, algorithm, and source code in C,” Gov.

Inf. Q., vol. 13, no. 3, p. 336, 1996, doi: 10.1016/s0740-624x(96)90083-0.

[10] B. Schneir, “Ubiquitous Surveillance and Security [Keynote],” IEEE Technol. Soc. Mag.,

vol. 34, no. 3, pp. 39–40, 2015, doi: 10.1109/MTS.2015.2461232.

168

[11] J. Simarmata et al., “Implementation of AES Algorithm for information security of web-

based application,” Int. J. Eng. Technol., vol. 7, no. 3.4 Special Issue 4, pp. 318–320,

2018.

[12] J. Yan and F. Chen, “An Improved AES Key Expansion Algorithm,” no. Icemie, pp. 113–

116, 2016, doi: 10.2991/icemie-16.2016.28.

[13] A. K. Jha, A. Shankar, R. R. Borana, and C. Gururaj, “Compression in communication

security using huffman encoding and cipher block chaining,” Proc. 2021 1st Int. Conf.

Adv. Electr. Comput. Commun. Sustain. Technol. ICAECT 2021, 2021, doi:

10.1109/ICAECT49130.2021.9392490.

[14] S. Singh and R. Devgon, “Analysis of encryption and lossless compression techniques for

secure data transmission,” 2019 IEEE 4th Int. Conf. Comput. Commun. Syst. ICCCS 2019,

pp. 120–124, 2019, doi: 10.1109/CCOMS.2019.8821637.

[15] T. Manoj Kumar and P. Karthigaikumar, “A novel method of improvement in advanced

encryption standard algorithm with dynamic shift rows, sub byte and mixcolumn

operations for the secure communication,” Int. J. Inf. Technol., vol. 12, no. 3, pp. 825–

830, 2020, doi: 10.1007/s41870-020-00465-1.

[16] R. Riyaldhi, Rojali, and A. Kurniawan, “Improvement of Advanced Encryption Standard

Algorithm with Shift Row and S.Box Modification Mapping in Mix Column,” Procedia

Comput. Sci., vol. 116, pp. 401–407, 2017, doi: 10.1016/j.procs.2017.10.079.

[17] P. Patil, P. Narayankar, D. G. Narayan, and S. M. Meena, “A Comprehensive Evaluation

of Cryptographic Algorithms: DES, 3DES, AES, RSA and Blowfish,” Procedia Comput.

Sci., vol. 78, no. December 2015, pp. 617–624, 2016, doi: 10.1016/j.procs.2016.02.108.

[18] S. Sridevi Sathya Priya, M. Junias, S. Sarah Jenifer, and A. Lavanya, “Implementation of

Efficient Mix Column Transformation for AES encryption,” Proc. 4th Int. Conf. Devices,

Circuits Syst. ICDCS 2018, pp. 95–100, 2019, doi: 10.1109/ICDCSyst.2018.8605077.

[19] N. C. Iyer, Deepa, P. V. Anandmohan, and D. V. Poornaiah, “Mix/InvMixColumn

decomposition and resource sharing in AES,” 2010 5th Int. Conf. Ind. Inf. Syst. ICIIS

2010, pp. 166–171, 2010, doi: 10.1109/ICIINFS.2010.5578713.

169

[20] M. R. Albrecht, J. Massimo, K. G. Paterson, and J. Somorovsky, “Prime and prejudice:

Primality testing under adversarial conditions,” Proc. ACM Conf. Comput. Commun.

Secur., pp. 281–298, 2018, doi: 10.1145/3243734.3243787.

[21] Q. Zhang and Z. Hu, “The large prime numbers generation of RSA algorithm based on

genetic algorithm,” Proc. - 2011 Int. Conf. Intell. Sci. Inf. Eng. ISIE 2011, no. 2010, pp.

434–437, 2011, doi: 10.1109/ISIE.2011.110.

[22] W. Barker and W. Polk, “Getting Ready for Post-Quantum Cryptography : Exploring

Challenges Associated with Adopting and Using Post-Quantum Cryptographic

Algorithms,” NIST White Pap., p. 9, 2021.

[23] H. Dibas and K. E. Sabri, “A comprehensive performance empirical study of the

symmetric algorithms:AES, 3DES, Blowfish and Twofish,” 2021 Int. Conf. Inf. Technol.

ICIT 2021 - Proc., pp. 344–349, 2021, doi: 10.1109/ICIT52682.2021.9491644.

[24] P. Nema and M. A. Rizvi, “Critical Analysis of Various Symmetric Key Cryptographic

Algorithms,” Int. J. Recent Innov. Trends Comput. Commun., vol. 3, no. 6, pp. 4301–

4306, 2015.

[25] N. Tyagi and A. Ganpati, “Comparative Analysis of Symmetric Key Encryption

Algorithms,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 4, no. 6, pp. 94–99, 2014.

[26] S. Gautam, S. Singh, and H. Singh, “A Comparative Study and Analysis of Cryptographic

Algorithms: RSA, DES, AES, BLOWFISH, 3-DES, and TWOFISH,” Int. J. Res.

Electron. Comput. Eng., vol. 7, no. 1, 2019, [Online]. Available:

https://www.researchgate.net/publication/334724160

[27] J. Raigoza and K. Jituri, “Evaluating Performance of Symmetric Encryption Algorithms,”

Proc. - 2016 Int. Conf. Comput. Sci. Comput. Intell. CSCI 2016, pp. 1378–1379, 2017,

doi: 10.1109/CSCI.2016.0258.

[28] V. O. Nyangaresi, A. J. Rodrigues, and S. O. Abeka, “Secure Algorithm for IoT Devices

Authentication,” EAI/Springer Innov. Commun. Comput., no. August 2022, pp. 1–22,

2023, doi: 10.1007/978-3-030-92968-8_1.

[29] M. Bansal, S. Gupta, and S. Mathur, “Comparison of ECC and RSA Algorithm with DNA

170

Encoding for IoT Security,” Proc. 6th Int. Conf. Inven. Comput. Technol. ICICT 2021, pp.

1340–1343, 2021, doi: 10.1109/ICICT50816.2021.9358591.

[30] G. Singh, A. Kumar, and K. S. Sandha, “A Study of New Trends in Blowfish Algorithm,”

Int. J. Eng. Res. Appl. www.ijera.com, vol. 1, no. 2, pp. 321–326, 2015.

[31] D. Kumar Sharma, N. Chidananda Singh, D. A. Noola, A. Nirmal Doss, and J. Sivakumar,

“A review on various cryptographic techniques & algorithms,” Mater. Today Proc., vol.

51, no. xxxx, pp. 104–109, 2021, doi: 10.1016/j.matpr.2021.04.583.

[32] W. Stallings, Cryptography and Network Security: Principles and Practice, International

Edition: Principles and Practice. 2014.

[33] W. Fuertes et al., “RSA Encryption Algorithm Optimization to Improve Performance and

Security Level of Network Messages,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 16,

no. 8, p. 55, 2016, [Online]. Available:

https://www.researchgate.net/publication/308553822

[34] O. Goldreich, “Foundations of cryptography - A primer,” Found. Trends Theor. Comput.

Sci., vol. 1, no. 1, pp. 1–116, 2006, doi: 10.1561/0400000001.

[35] J. F. Dooley, History of Cryptography and Cryptanalysis. 2018.

[36] C. S. Sisodia and A. Shrivastava, “A Survey on Network Security and Security

Authentication using Biometrics,” Int. J. Sci. Res. Dev., vol. 3, no. 1, pp. 236–241, 2015.

[37] S. Al Busafi and B. Kumar, “Review and analysis of cryptography techniques,” Proc.

2020 9th Int. Conf. Syst. Model. Adv. Res. Trends, SMART 2020, pp. 323–327, 2020, doi:

10.1109/SMART50582.2020.9336792.

[38] G. Singh and S. Supriya, “A Study of Encryption Algorithms (RSA, DES, 3DES and

AES) for Information Security,” Int. J. Comput. Appl., vol. 67, no. 19, pp. 33–38, 2013,

doi: 10.5120/11507-7224.

[39] S. S. Ghosh, H. Parmar, P. Shah, and K. Samdani, “A Comprehensive Analysis between

Popular Symmetric Encryption Algorithms,” 1st Int. Conf. Data Sci. Anal. PuneCon 2018

- Proc., 2018, doi: 10.1109/PUNECON.2018.8745324.

171

[40] A. Al-Sabaawi, “Cryptanalysis of Vigenère Cipher: Method Implementation,” 2020 IEEE

Asia-Pacific Conf. Comput. Sci. Data Eng. CSDE 2020, 2020, doi:

10.1109/CSDE50874.2020.9411383.

[41] A. Al-Sabaawi, “Cryptanalysis of Classic Ciphers: Methods Implementation Survey,”

2021 Int. Conf. Intell. Technol. CONIT 2021, 2021, doi:

10.1109/CONIT51480.2021.9498530.

[42] A. V. Mota, A. Sami, K. C. Shanmugam, Bharanidharan Yeo, and K. Krishnan,

“Comparative Analysis of Different Techniques of Encryption for Secured Data

Transmission,” IEEE Int. Conf. Power, Control. Signals Instrum. Eng., vol. 54, no. 4, pp.

847–860, 2017.

[43] R. Szerwinski and T. Güneysu, “Exploiting the power of GPUs for asymmetric

cryptography,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 5154 LNCS, pp. 79–99, 2008, doi: 10.1007/978-3-540-85053-

3_6.

[44] O. Catrina and S. I. Stanciu, “Comparative Performance Evaluation of Key Exchange

Protocols,” 14th Int. Conf. Commun. COMM 2022 - Proc., 2022, doi:

10.1109/COMM54429.2022.9817281.

[45] X. Li, D. Xiao, H. Mou, D. Lu, and M. Peng, “A Compressive Sensing Based Image

Encryption and Compression Algorithm with Identity Authentication and Blind

Signcryption,” IEEE Access, vol. 8, pp. 211676–211690, 2020, doi:

10.1109/ACCESS.2020.3039643.

[46] O. G. Abood, M. A. Elsadd, and S. K. Guirguis, “Investigation of cryptography algorithms

used for security and privacy protection in smart grid,” 2017 19th Int. Middle-East Power

Syst. Conf. MEPCON 2017 - Proc., vol. 2018-Febru, no. December, pp. 644–649, 2017,

doi: 10.1109/MEPCON.2017.8301249.

[47] C. Riman and P. E. Abi-Char, “Comparative Analysis of Block Cipher-Based Encryption

Algorithms: A Survey,” Comput. Fraud, vol. 3, no. 1, pp. 1–7, 2015, doi: 10.12691/iscf-3-

1-1.

172

[48] M. A. Khan, M. T. Quasim, N. S. Alghamdi, and M. Y. Khan, “A Secure Framework for

Authentication and Encryption Using Improved ECC for IoT-Based Medical Sensor

Data,” IEEE Access, vol. 8, pp. 52018–52027, 2020, doi:

10.1109/ACCESS.2020.2980739.

[49] H. Zodpe and A. Sapkal, “An efficient AES implementation using FPGA with enhanced

security features,” J. King Saud Univ. - Eng. Sci., vol. 32, no. 2, pp. 115–122, 2020, doi:

10.1016/j.jksues.2018.07.002.

[50] A. Alabaichi, F. Ahmad, and R. Mahmod, “Security analysis of blowfish algorithm,” 2013

2nd Int. Conf. Informatics Appl. ICIA 2013, no. November 2016, pp. 12–18, 2013, doi:

10.1109/ICoIA.2013.6650222.

[51] S. Hussaini, “Cyber Security in Cloud Using Blowfish Encryption,” Int. J. Inf. Technol.,

vol. 6, no. 5, pp. 13–19, 2020.

[52] N. Khatri -Valmik, “Impact Factor (PIF): 2.243 International Journal OF Engineering

Sciences & Management Research BLOWFISH ALGORITHM,” Int. J. Eng. Sci. Manag.

Res., vol. 2, no. 10, pp. 45–52, 2015.

[53] J. Grabbe, “The DES algorithm illustrated,” Laissez Faire City Times, pp. 1–15, 1992.

[54] S. El-Zoghdy, Y. Nada, and A. Abdo, “How Good Is The DES Algorithm In Image

Ciphering?,” Int. J., vol. 803, no. March 2011, pp. 796–803, 2011.

[55] M. Sharma and R. B. Garg, “DES: The oldest symmetric block key encryption algorithm,”

Proc. 5th Int. Conf. Syst. Model. Adv. Res. Trends, SMART 2016, no. November 1976, pp.

53–58, 2017, doi: 10.1109/SYSMART.2016.7894489.

[56] J. Yang, N. Li, and J. Ding, “A design and implementation of high-speed 3DES algorithm

system,” 2009 2nd Int. Conf. Futur. Inf. Technol. Manag. Eng. FITME 2009, pp. 175–178,

2009, doi: 10.1109/FITME.2009.49.

[57] M. M. Hoobi, “Strong Triple Data Encryption Standard Algorithm using Nth Degree

Truncated Polynomial Ring Unit,” Iraqi J. Sci., vol. 58, no. 3C, pp. 1760–1771, 2017, doi:

10.24996/ijs.2017.58.3c.19.

173

[58] P. Hämäläinen, M. Hännikäinen, T. Hämäläinen, and J. Saarinen, “Configurable hardware

implementation of triple-DES encryption algorithm for wireless local area network,”

ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 2, pp. 1221–1224,

2001, doi: 10.1109/icassp.2001.941144.

[59] R. Indrayani, Subektiningsih, P. Ferdiansyah, and D. A. Satria, “Effectiveness comparison

of the AES and 3DES cryptography methods on email text messages,” 2019 Int. Conf. Inf.

Commun. Technol. ICOIACT 2019, pp. 66–69, 2019, doi:

10.1109/ICOIACT46704.2019.8938579.

[60] R. L. R. Maata, R. S. Cordova, and A. Halibas, “Performance Analysis of Twofish

Cryptography Algorithm in Big Data,” ACM Int. Conf. Proceeding Ser., no. February, pp.

56–60, 2020, doi: 10.1145/3436829.3436838.

[61] T. U. Haq, T. Shah, G. F. Siddiqui, M. Z. Iqbal, I. A. Hameed, and H. Jamil, “Improved

Twofish Algorithm: A Digital Image Enciphering Application,” IEEE Access, vol. 9, pp.

76518–76530, 2021, doi: 10.1109/ACCESS.2021.3081792.

[62] S. A. M. Rizvi, S. Z. Hussain, and N. Wadhwa, “Performance analysis of AES and

Twofish encryption schemes,” Proc. - 2011 Int. Conf. Commun. Syst. Netw. Technol.

CSNT 2011, pp. 76–79, 2011, doi: 10.1109/CSNT.2011.160.

[63] M. J. Aqel, Z. A. Alqadi, and I. M. El Emary, “Analysis of stream cipher security

algorithm,” J. Inf. Comput. Sci., vol. 2, no. 4, pp. 288–298, 2007.

[64] L. Jiao, Y. Hao, and D. Feng, “Stream cipher designs: a review,” Sci. China Inf. Sci., vol.

63, no. 3, pp. 1–25, 2020, doi: 10.1007/s11432-018-9929-x.

[65] E. Valea, M. Da Silva, M. L. Flottes, G. Di Natale, and B. Rouzeyre, “Stream vs block

ciphers for scan encryption,” Microelectronics J., vol. 86, pp. 65–76, 2019, doi:

10.1016/j.mejo.2019.02.019.

[66] S. O. Sharif and S. P. Mansoor, “Performance analysis of stream and block cipher

algorithms,” ICACTE 2010 - 2010 3rd Int. Conf. Adv. Comput. Theory Eng. Proc., vol. 1,

pp. 522–525, 2010, doi: 10.1109/ICACTE.2010.5578961.

[67] M. M. Hammood, K. Yoshigoe, and A. M. Sagheer, “RC4-2S: RC4 stream cipher with

174

two state tables,” Lect. Notes Electr. Eng., vol. 253 LNEE, no. April 2016, pp. 13–20,

2013, doi: 10.1007/978-94-007-6996-0_2.

[68] R. Suhardianto and J. Manurung, “Cryptography Application to Message Text using the

Android-Based RC4 Method,” J. Teknol. Komput., vol. 14, no. 2, pp. 190–197, 2020.

[69] T. D. B. Weerasinghe, “An effective RC4 stream cipher,” 2013 IEEE 8th Int. Conf. Ind.

Inf. Syst. ICIIS 2013 - Conf. Proc., pp. 69–74, 2013, doi: 10.1109/ICIInfS.2013.6731957.

[70] L. Ding, “Improved Related-Cipher Attack on Salsa20 Stream Cipher,” IEEE Access, vol.

7, pp. 30197–30202, 2019, doi: 10.1109/ACCESS.2019.2892647.

[71] D. J. Bernstein, “The salsa20 family of stream ciphers,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4986 LNCS,

pp. 84–97, 2008, doi: 10.1007/978-3-540-68351-3_8.

[72] R. Velea, F. GurzǍu, L. MǍrgǍrit, I. Bica, and V. V. Patriciu, “Performance of parallel

ChaCha20 stream cipher,” SACI 2016 - 11th IEEE Int. Symp. Appl. Comput. Intell.

Informatics, Proc., pp. 391–396, 2016, doi: 10.1109/SACI.2016.7507408.

[73] Z. Wang, H. Chen, and W. Cai, “A hybrid CPU/GPU Scheme for Optimizing ChaCha20

Stream Cipher,” 19th IEEE Int. Symp. Parallel Distrib. Process. with Appl. 11th IEEE Int.

Conf. Big Data Cloud Comput. 14th IEEE Int. Conf. Soc. Comput. Netw. 11th IEEE Int.,

pp. 1171–1178, 2021, doi: 10.1109/ISPA-BDCloud-SocialCom-

SustainCom52081.2021.00161.

[74] S. A. Jassim and A. K. Farhan, “A Survey on Stream Ciphers for Constrained

Environments,” 1st Babylon Int. Conf. Inf. Technol. Sci. 2021, BICITS 2021, no. February,

pp. 228–233, 2021, doi: 10.1109/BICITS51482.2021.9509883.

[75] M. Goll and S. Gueron, “Vectorization on ChaCha stream cipher,” ITNG 2014 - Proc.

11th Int. Conf. Inf. Technol. New Gener., pp. 612–615, 2014, doi: 10.1109/ITNG.2014.33.

[76] P. A. Nikolov, “Analysis and Design of a Stream Cipher,” 2019.

[77] N. Garg and P. Yadav, “Comparison of Asymmetric Algorithms in Cryptography,” Int. J.

Comput. Sci. Mob. Comput., vol. 3, no. 4, pp. 1190–1196, 2014.

175

[78] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978, doi:

10.1145/359340.359342.

[79] N. Made and S. Iswari, “Key Generation Algorithm Design Combination of RSA and

ElGamal Algorithm,” 2016 8th Int. Conf. Inf. Technol. Electr. Eng., pp. 1–5, 2016, doi:

10.1109/ICITEED.2016.7863255.

[80] P. SAVEETHA and S. ARUMUGAM, “Study on Improvement in Rsa Algorithm and Its

Implementation,” Int. J. Comput. Commun. Technol., no. 6, pp. 190–195, 2016, doi:

10.47893/ijcct.2016.1365.

[81] X. Zhou and X. Tang, “Research and implementation of RSA algorithm for encryption

and decryption,” Proc. 6th Int. Forum Strateg. Technol. IFOST 2011, vol. 2, pp. 1118–

1121, 2011, doi: 10.1109/IFOST.2011.6021216.

[82] L. K. Galla, V. S. Koganti, and N. Nuthalapati, “Implementation of RSA,” 2016 Int. Conf.

Control Instrum. Commun. Comput. Technol. ICCICCT 2016, pp. 81–87, 2017, doi:

10.1109/ICCICCT.2016.7987922.

[83] H. Shacham and D. Boneh, “Improving ssl handshake performance via batching,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 2020, pp. 28–43, 2001, doi: 10.1007/3-540-45353-9_3.

[84] V. Klíma, O. Pokorný, and T. Rosa, “Attacking RSA-based sessions in SSL/TLS,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 2779, pp. 426–440, 2003, doi: 10.1007/978-3-540-45238-6_33.

[85] M. Bafandehkar, S. M. Yasin, R. Mahmod, and Z. M. Hanapi, “Comparison of ECC and

RSA algorithm in resource constrained devices,” 2013 Int. Conf. IT Converg. Secur.

ICITCS 2013, pp. 9–11, 2013, doi: 10.1109/ICITCS.2013.6717816.

[86] I. G. Amalarethinam and H. M. Leena, “Enhanced RSA Algorithm with Varying Key

Sizes for Data Security in Cloud,” Proc. - 2nd World Congr. Comput. Commun. Technol.

WCCCT 2017, pp. 172–175, 2017, doi: 10.1109/WCCCT.2016.50.

[87] D. Mahto, D. A. Khan, and D. K. Yadav, “Security analysis of elliptic Curve cryptography

176

and RSA,” Lect. Notes Eng. Comput. Sci., vol. 2223, pp. 419–422, 2016.

[88] M. Savari, M. Montazerolzohour, and Y. E. Thiam, “Comparison of ECC and RSA

algorithm in multipurpose smart card application,” Proc. 2012 Int. Conf. Cyber Secur.

Cyber Warf. Digit. Forensic, CyberSec 2012, pp. 49–53, 2012, doi:

10.1109/CyberSec.2012.6246121.

[89] S. S. P. Goswami and G. Trivedi, “Comparison of Hardware Implementations of

Cryptographic Algorithms for IoT Applications,” 2023 33rd Int. Conf. Radioelektronika,

RADIOELEKTRONIKA 2023, pp. 1–6, 2023, doi:

10.1109/RADIOELEKTRONIKA57919.2023.10109046.

[90] B. Nair and C. Mala, “Analysis of ECC for application specific WSN security,” 2015

IEEE Int. Conf. Comput. Intell. Comput. Res. ICCIC 2015, pp. 1–6, 2016, doi:

10.1109/ICCIC.2015.7435742.

[91] P. Y. A. Ryan, “Mathematical models of computer security,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2171 LNCS,

pp. 1–62, 2001, doi: 10.1007/3-540-45608-2_1.

[92] K. J. Singh and M. Rajkumar, “Evolution of encryption techniques and data security

mechanisms Digital forensics View project vlsi testing View project,” Researchgate, no.

March, 2015, doi: 10.5829/idosi.wasj.2015.33.10.286.

[93] M. B. Yassein, S. Aljawarneh, E. Qawasmeh, W. Mardini, and Y. Khamayseh,

“Comprehensive study of symmetric key and asymmetric key encryption algorithms,”

Proc. 2017 Int. Conf. Eng. Technol. ICET 2017, vol. 2018-Janua, pp. 1–7, 2017, doi:

10.1109/ICEngTechnol.2017.8308215.

[94] Y. Salami, V. Khajevand, and E. Zeinali, “Cryptographic Algorithms: A Review of the

Literature, Weaknesses and Open Challenges,” J. Comput. Robot., vol. 16, no. 2, pp. 46–

56, 2023.

[95] Z. Dorostkar, “Mathematics for Cryptography,” Queen’s Coll. Univ. Cambridge, no. July,

pp. 0–16, 1997.

[96] R. Swann and J. Stine, “Evaluation of a Modular Approach to AES Hardware Architecture

177

and Optimization,” J. Signal Process. Syst., vol. 95, no. 7, pp. 797–813, 2023, doi:

10.1007/s11265-022-01832-w.

[97] B. Mennink, “Secure Distributed Modular Exponentiation: Systematic Analysis and New

Results,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 4188–4197, 2023, doi:

10.1109/TIFS.2023.3293396.

[98] V. Krasnobayev, A. Yanko, A. Martynenko, and D. Kovalchuk, “Method for Computing

Exponentiation Modulo the Positive and Negative Integers,” CEUR Workshop Proc., vol.

3513, pp. 374–383, 2023.

[99] U. Gulen and S. Baktir, “Side-Channel Resistant 2048-bit RSA Implementation for

Wireless Sensor Networks and Internet of Things,” IEEE Access, vol. 11, no. March, pp.

39531–39543, 2023, doi: 10.1109/ACCESS.2023.3268642.

[100] H. Wen, Y. Huang, and Y. Lin, “High-quality color image compression-encryption using

chaos and block permutation,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 8, p.

101660, 2023, doi: 10.1016/j.jksuci.2023.101660.

[101] D. Gligoroski, “A Transformation for Lifting Discrete Logarithm Based Cryptography to

Post-Quantum Cryptography,” 2023.

[102] K. Javeed, A. El-Moursy, and D. Gregg, “E 2 CSM: efficient FPGA implementation of

elliptic curve scalar multiplication over generic prime field GF(p),” J. Supercomput., vol.

80, no. 1, pp. 50–74, 2024, doi: 10.1007/s11227-023-05428-4.

[103] F. Wang, Z. Huang, and Y. Zhou, “A method for blind recognition of convolution code

based on euclidean algorithm,” 2007 Int. Conf. Wirel. Commun. Netw. Mob. Comput.

WiCOM 2007, pp. 1414–1417, 2007, doi: 10.1109/WICOM.2007.358.

[104] H. Wang, Z. Song, X. Niu, and Q. Ding, “Key generation research of RSA public

cryptosystem and Matlab implement,” Proc. 2013 Int. Conf. Sens. Netw. Secur. Technol.

Priv. Commun. Syst. SNS PCS 2013, pp. 125–129, 2013, doi: 10.1109/SNS-

PCS.2013.6553849.

[105] M. Rahman, I. R. Rokon, and M. Rahman, “Efficient hardware implementation of RSA

cryptography,” 2009 3rd Int. Conf. Anti-counterfeiting, Secur. Identif. Commun. ASID

178

2009, pp. 316–319, 2009, doi: 10.1109/ICASID.2009.5276895.

[106] Y. Y. Cao and C. Fu, “An efficient implementation of RSA digital signature algorithm,”

Proc. - Int. Conf. Intell. Comput. Technol. Autom. ICICTA 2008, vol. 2, pp. 100–103,

2008, doi: 10.1109/ICICTA.2008.398.

[107] T. Nie, C. Song, and X. Zhi, “Performance evaluation of DES and Blowfish algorithms,”

2010 Int. Conf. Biomed. Eng. Comput. Sci. ICBECS 2010, pp. 16–19, 2010, doi:

10.1109/ICBECS.2010.5462398.

[108] M. Agrawal and P. Mishra, “A comparative survey on symmetric key encryption

techniques,” Intern. J. Comput. Sci. Eng., vol. 4, no. 5, pp. 877–882, 2012, [Online].

Available:

http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=82397469&site=ehost-

live

[109] D. S. Abd Elminaam, H. M. A. Kader, and M. M. Hadhoud, “Evaluating the performance

of symmetric encryption algorithms,” Int. J. Netw. Secur., vol. 10, no. 3, pp. 213–219,

2010.

[110] A. Ramesh and A. Suruliandi, “Performance analysis of encryption algorithms for

information security,” Proc. IEEE Int. Conf. Circuit, Power Comput. Technol. ICCPCT

2013, pp. 840–844, 2013, doi: 10.1109/ICCPCT.2013.6528957.

[111] N. Kumar, J. Thakur, and A. Kalia, “Performance Analysis of Symmetric Key

Cryptography Algorithms: DES, AES and Blowfish,” Anu Books, vol. 1, no. 2, pp. 28–37,

2011, [Online]. Available: www.tropsoft.com

[112] M. Anand Kumar and S. Karthikeyan, “Investigating the Efficiency of Blowfish and

Rejindael (AES) Algorithms,” Int. J. Comput. Netw. Inf. Secur., vol. 4, no. 2, pp. 22–28,

2012, doi: 10.5815/ijcnis.2012.02.04.

[113] M. Suresh and M. Neema, “Hardware Implementation of Blowfish Algorithm for the

Secure Data Transmission in Internet of Things,” Procedia Technol., vol. 25, no. Raerest,

pp. 248–255, 2016, doi: 10.1016/j.protcy.2016.08.104.

[114] C. Haldankar and S. Kuwelkar, “Implementation of Aes and Blowfish Algorithm,” Int. J.

179

Res. Eng. Technol., vol. 03, no. 15, pp. 143–146, 2014, doi: 10.15623/ijret.2014.0315026.

[115] T. Devasia and R. Visakh, “Integrating encryption technique in authentication of multicast

protocol for Ad-hoc networks,” Proc. - 2013 3rd Int. Conf. Adv. Comput. Commun.

ICACC 2013, pp. 423–426, 2013, doi: 10.1109/ICACC.2013.90.

[116] R. S. Cordova, R. L. R. Maata, A. S. Halibas, and R. Al-Azawi, “Comparative analysis on

the performance of selected security algorithms in cloud computing,” 2017 Int. Conf.

Electr. Comput. Technol. Appl. ICECTA 2017, vol. 2018-Janua, pp. 1–4, 2017, doi:

10.1109/ICECTA.2017.8252030.

[117] G. S. Vennela, N. V. Varun, N. Neelima, L. S. Priya, and J. Yeswanth, “Performance

Analysis of Cryptographic Algorithms for Cloud Security,” Proc. Int. Conf. Inven.

Commun. Comput. Technol. ICICCT 2018, no. Icicct, pp. 273–279, 2018, doi:

10.1109/ICICCT.2018.8473148.

[118] M. Panda and A. Nag, “Plain Text Encryption Using AES, DES and SALSA20 by Java

Based Bouncy Castle API on Windows and Linux,” Proc. - 2015 2nd IEEE Int. Conf. Adv.

Comput. Commun. Eng. ICACCE 2015, pp. 541–548, 2015, doi:

10.1109/ICACCE.2015.130.

[119] A. Ghosh, “Comparison of Encryption Algorithms : AES , Blowfish and Twofish for

Security of Wireless Networks,” Int. Res. J. Eng. Technol., no. June, pp. 4656–4659,

2020, doi: 10.13140/RG.2.2.31024.38401.

[120] B. Soewito, F. E. Gunawan, Diana, and A. Antonyova, “Power consumption for security

on mobile devices,” Proc. - 11th 2016 Int. Conf. Knowledge, Inf. Creat. Support Syst.

KICSS 2016, pp. 4–7, 2017, doi: 10.1109/KICSS.2016.7951435.

[121] O. De Souza Martins Gomes and R. L. Moreno, “A compact 128-bits symmetric

cryptography hardware module,” Proc. 2016 8th Int. Conf. Inf. Technol. Electr. Eng.

Empower. Technol. Better Futur. ICITEE 2016, 2017, doi:

10.1109/ICITEED.2016.7863244.

[122] A. Nurgaliyev and H. Wang, “Comparative study of symmetric cryptographic

algorithms,” Proc. - 2021 Int. Conf. Netw. Netw. Appl. NaNA 2021, pp. 107–112, 2021,

180

doi: 10.1109/NaNA53684.2021.00026.

[123] R. Mathur, S. Agarwal, and V. Sharma, “Solving security issues in mobile computing

using cryptography techniques - A Survey,” Int. Conf. Comput. Commun. Autom. ICCCA

2015, pp. 492–497, 2015, doi: 10.1109/CCAA.2015.7148427.

[124] K. Mallaiah, S. Ramachandram, and S. Gorantala, “Performance analysis of Format

Preserving Encryption (FIPS PUBS 74-8) over block ciphers for numeric data,” Proc. -

4th IEEE Int. Conf. Comput. Commun. Technol. ICCCT 2013, pp. 193–198, 2013, doi:

10.1109/ICCCT.2013.6749626.

[125] N. Aleisa, “A comparison of the 3DES and AES encryption standards,” Int. J. Secur. its

Appl., vol. 9, no. 7, pp. 241–246, 2015, doi: 10.14257/ijsia.2015.9.7.21.

[126] S. Kansal and M. Mittal, “Performance Evaluation of Various Symmetric Encrypton

Algorithms,” 2014 Int. Conf. Parallel, Distrib. Grid Comput., pp. 105–109, 2014.

[127] A. Kubadia, D. Idnani, and Y. Jain, “Performance evaluation of AES, ARC2, BlowFish,

CAST and DES3 for standalone systems,” Proc. 3rd Int. Conf. Comput. Methodol.

Commun. ICCMC 2019, no. Iccmc, pp. 118–123, 2019, doi:

10.1109/ICCMC.2019.8819729.

[128] N. A. Advani and A. M. Gonsai, “Performance analysis of symmetric encryption

algorithms for their encryption and decryption time,” Proc. 2019 6th Int. Conf. Comput.

Sustain. Glob. Dev. INDIACom 2019, pp. 359–362, 2019.

[129] E. Fernando, D. Agustin, M. Irsan, D. F. Murad, H. Rohayani, and D. Sujana,

“Performance Comparison of Symmetries Encryption Algorithm AES and des with

Raspberry Pi,” Proc. 2019 4th Int. Conf. Sustain. Inf. Eng. Technol. SIET 2019, pp. 353–

357, 2019, doi: 10.1109/SIET48054.2019.8986122.

[130] U. Iftikhar, K. Asrar, M. Waqas, and S. A. Ali, “Evaluating the Performance Parameters

of Cryptographic Algorithms for IOT-based Devices,” Eng. Technol. Appl. Sci. Res., vol.

11, no. 6, pp. 7867–7874, 2021, doi: 10.48084/etasr.4263.

[131] S. N. Karale, K. Pendke, and P. Dahiwale, “The survey of various techniques &

algorithms for SMS security,” ICIIECS 2015 - 2015 IEEE Int. Conf. Innov. Information,

181

Embed. Commun. Syst., 2015, doi: 10.1109/ICIIECS.2015.7192943.

[132] S. D. Sanap and V. More, “Analysis of encryption techniques for secure communication,”

2021 Int. Conf. Emerg. Smart Comput. Informatics, ESCI 2021, vol. 1, no. 2, pp. 290–294,

2021, doi: 10.1109/ESCI50559.2021.9396926.

[133] B. Rahul and K. Kuppusamy, “Efficiency Analysis of Cryptographic Algorithms for

Image Data Security in Cloud Environment,” IETE J. Res., vol. 69, no. 9, pp. 6053–6064,

2023, doi: 10.1080/03772063.2021.1990141.

[134] Ratnadewi, R. P. Adhie, Y. Hutama, A. Saleh Ahmar, and M. I. Setiawan,

“Implementation Cryptography Data Encryption Standard (DES) and Triple Data

Encryption Standard (3DES) Method in Communication System Based Near Field

Communication (NFC),” J. Phys. Conf. Ser., vol. 954, no. 1, 2018, doi: 10.1088/1742-

6596/954/1/012009.

[135] R. Kumar and A. Singh, “Cloud Security using ECC and DH,” Int. J. Inf. Comput. Sci.,

vol. 6, no. 7, pp. 518–524, 2019.

[136] S. Srivastava, A. Tiwari, and P. K. Srivastava, “Review on quantum safe algorithms based

on Symmetric Key and Asymmetric Key Encryption methods,” 2022 2nd Int. Conf. Adv.

Comput. Innov. Technol. Eng. ICACITE 2022, pp. 905–908, 2022, doi:

10.1109/ICACITE53722.2022.9823437.

[137] S. Ahmed and T. Ahmed, “Comparative Analysis of Cryptographic Algorithms in Context

of Communication: A Systematic Review,” Int. J. Sci. Res. Publ., vol. 12, no. 7, pp. 161–

173, 2022, doi: 10.29322/ijsrp.12.07.2022.p12720.

[138] C. Varma, “A Study of the ECC, RSA and the Diffie-Hellman Algorithms in Network

Security,” Proc. 2018 Int. Conf. Curr. Trends Towar. Converging Technol. ICCTCT 2018,

pp. 18–21, 2018, doi: 10.1109/ICCTCT.2018.8551161.

[139] E. Kwadwo, J. Ben, and F. Twum, “An Enhanced Elliptic Curve Cryptosystem for

Securing Data,” Int. J. Comput. Appl., vol. 182, no. 9, pp. 47–53, 2018, doi:

10.5120/ijca2018917688.

[140] V. Gupta, D. Stebila, S. Fung, S. C. Shantz, N. Gura, and H. Eberle, “Speeding up secure

182

Web transactions using elliptic curve cryptography,” Proc. Netw. Distrib. Syst. Secur.

Symp., pp. 231–239, 2004.

[141] H. Eberle, N. Gura, S. C. Shantz, V. Gupta, L. Rarick, and S. Sundaram, “A public-key

cryptographic processor for RSA and ECC,” Proc. Int. Conf. Appl. Syst. Archit. Process.,

pp. 98–110, 2004, doi: 10.1109/ASAP.2004.1342462.

[142] F. Mallouli, A. Hellal, N. Sharief Saeed, and F. Abdulraheem Alzahrani, “A Survey on

Cryptography: Comparative Study between RSA vs ECC Algorithms, and RSA vs El-

Gamal Algorithms,” Proc. - 6th IEEE Int. Conf. Cyber Secur. Cloud Comput. CSCloud

2019 5th IEEE Int. Conf. Edge Comput. Scalable Cloud, EdgeCom 2019, pp. 173–176,

2019, doi: 10.1109/CSCloud/EdgeCom.2019.00022.

[143] M. Suarez-Albela, T. M. Fernandez-Carames, P. Fraga-Lamas, and L. Castedo, “A

practical performance comparison of ECC and RSA for resource-constrained IoT

devices,” 2018 Glob. Internet Things Summit, GIoTS 2018, pp. 0–5, 2018, doi:

10.1109/GIOTS.2018.8534575.

[144] A. Kardi, R. Zagrouba, and M. Alqahtani, “Performance Evaluation of RSA and Elliptic

Curve Cryptography in Wireless Sensor Networks,” 21st Saudi Comput. Soc. Natl.

Comput. Conf. NCC 2018, no. April, 2018, doi: 10.1109/NCG.2018.8592963.

[145] S. R. Singh, A. K. Khan, and T. S. Singh, “A critical review on Elliptic Curve

Cryptography,” Int. Conf. Autom. Control Dyn. Optim. Tech. ICACDOT 2016, vol. 3, no.

7, pp. 13–18, 2017, doi: 10.1109/ICACDOT.2016.7877543.

[146] H. Hasan et al., “Secure lightweight ECC-based protocol for multi-agent IoT systems,”

Int. Conf. Wirel. Mob. Comput. Netw. Commun., vol. 2017-Octob, 2017, doi:

10.1109/WiMOB.2017.8115788.

[147] D. Patel, B. Patel, J. Vasa, and M. Patel, A Comparison of the Key Size and Security Level

of the ECC and RSA Algorithms with a Focus on Cloud/Fog Computing, vol. 719 LNNS.

Springer Nature Singapore, 2023. doi: 10.1007/978-981-99-3758-5_5.

[148] L. Zou, M. Ni, Y. Huang, W. Shi, and X. Li, Hybrid Encryption Algorithm Based on AES

and RSA in File Encryption, vol. 551 LNEE. Springer Singapore, 2020. doi: 10.1007/978-

183

981-15-3250-4_68.

[149] S. Rehman, N. Talat Bajwa, M. A. Shah, A. O. Aseeri, and A. Anjum, “Hybrid aes-ecc

model for the security of data over cloud storage,” Electron., vol. 10, no. 21, pp. 1–20,

2021, doi: 10.3390/electronics10212673.

[150] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in Cloud Computing:

State of the Art and Research Challenges,” IEEE Trans. Serv. Comput., vol. 11, no. 2, pp.

430–447, 2018, doi: 10.1109/TSC.2017.2711009.

[151] D. Kodzo, M. Hodowu, D. R. Korda, and E. Danso Ansong, “An Enhancement of Data

Security in Cloud Computing with an Implementation of a Two-Level Cryptographic

Technique, using AES and ECC Algorithm,” Int. J. Eng. Res. Technol., vol. 9, no. March

2021, pp. 2278–0181, 2020, [Online]. Available: http://www.ijert.org

[152] M. Sivajyothi and T. Devi, “Analysis of Elliptic Curve Cryptography with AES for

Protecting Data in Cloud with improved Time efficiency,” Proc. 2nd Int. Conf. Innov.

Pract. Technol. Manag. ICIPTM 2022, no. Bhosle 2013, pp. 573–577, 2022, doi:

10.1109/ICIPTM54933.2022.9753926.

[153] B. Ranganatha Rao and B. Sujatha, “A hybrid elliptic curve cryptography (HECC)

technique for fast encryption of data for public cloud security,” Meas. Sensors, vol. 29, no.

June 2023, p. 100870, 2023, doi: 10.1016/j.measen.2023.100870.

[154] M. J. Dubai, T. R. Mahesh, and P. A. Ghosh, “Design of new security algorithm: Using

hybrid Cryptography architecture,” ICECT 2011 - 2011 3rd Int. Conf. Electron. Comput.

Technol., vol. 5, pp. 99–101, 2011, doi: 10.1109/ICECTECH.2011.5941965.

[155] S. K. Ghosh, S. Rana, A. Pansari, J. Hazra, and S. Biswas, “Hybrid Cryptography

Algorithm for Secure and Low Cost Communication,” 2020 Int. Conf. Comput. Sci. Eng.

Appl. ICCSEA 2020, pp. 4–8, 2020, doi: 10.1109/ICCSEA49143.2020.9132862.

[156] M. Sharma and S. Gandhi, “Compression and Encryption : An Integrated Approach,” Int.

J. Eng. Res. Technol., vol. 1, no. 5, pp. 1–7, 2012, [Online]. Available: www.ijert.org

[157] S. Porwal, Y. Chaudhary, J. Joshi, and M. Jain, “Data compression methodologies for

lossless data and comparison between algorithms,” Int. J. Eng. Sci. Innov. Technol., vol. 2,

184

no. 2, pp. 142–147, 2013.

[158] S. R. Kodituwakku and U. S. Amarasinghe, “Comparison of Lossless Data Compression

Algorithms,” Indian J. Comput. Sci. Eng., vol. 1, no. 4, pp. 416–425, 2010.

[159] M. B. Begum, N. Deepa, M. Uddin, R. Kaluri, M. Abdelhaq, and R. Alsaqour, “An

efficient and secure compression technique for data protection using burrows-wheeler

transform algorithm,” Heliyon, vol. 9, no. 6, p. e17602, 2023, doi:

10.1016/j.heliyon.2023.e17602.

[160] B. Jasuja and A. Pandya, “Crypto-Compression System: An Integrated Approach using

Stream Cipher Cryptography and Entropy Encoding,” Int. J. Comput. Appl., vol. 116, no.

21, pp. 34–41, 2015, doi: 10.5120/20463-2831.

[161] R. H. Ali and J. M. Kadhim, “Text-based Steganography using Huffman Compression and

AES Encryption Algorithm,” Iraqi J. Sci., vol. 62, no. 11, pp. 4110–4120, 2021, doi:

10.24996/ijs.2021.62.11.31.

[162] A. Murtaza, S. J. Hussain Pirzada, and L. Jianwei, “A new symmetric key encryption

algorithm with higher performance,” 2019 2nd Int. Conf. Comput. Math. Eng. Technol.

iCoMET 2019, pp. 0–6, 2019, doi: 10.1109/ICOMET.2019.8673469.

[163] A. M. Sagheer, M. S. Al-Ani, and O. A. Mahdi, “Ensure security of compressed data

transmission,” Proc. - 2013 6th Int. Conf. Dev. eSystems Eng. DeSE 2013, pp. 270–275,

2013, doi: 10.1109/DeSE.2013.55.

[164] M. R. Ashila, N. Atikah, D. R. Ignatius Moses Setiadi, E. H. Rachmawanto, and C. A.

Sari, “Hybrid AES-Huffman Coding for Secure Lossless Transmission,” Proc. 2019 4th

Int. Conf. Informatics Comput. ICIC 2019, pp. 0–4, 2019, doi:

10.1109/ICIC47613.2019.8985899.

[165] M. Y. Elmahi, T. M. wahbi, and M. H. Sayed, “Text Steganography Using Compression

and Random Number Generators,” Int. J. Comput. Appl. Technol. Res., vol. 6, no. 6, pp.

259–263, 2017, doi: 10.7753/ijcatr0606.1005.

[166] N. Tiwari and B. N. Keshavamurthy, “Compression with Authenticated Encryption for

Enhanced Security on Data Centric Products,” IEEE Reg. 10 Annu. Int. Conf.

185

Proceedings/TENCON, vol. 2019-Octob, pp. 1596–1600, 2019, doi:

10.1109/TENCON.2019.8929610.

[167] H. K. S. Premadasa and R. G. N. Meegama, “Extensive compression of text messages in

interactive mobile communication,” Int. Conf. Adv. ICT Emerg. Reg. ICTer 2013 - Conf.

Proc., vol. 1, pp. 80–83, 2013, doi: 10.1109/ICTer.2013.6761159.

[168] L. Hengjian, W. Jizhi, W. Yinglong, T. Min, and X. Shujiang, “A flexible and secure

image compression coding algorithm,” 2010 Int. Conf. Futur. Inf. Technol. Manag. Eng.

FITME 2010, vol. 2, pp. 376–379, 2010, doi: 10.1109/FITME.2010.5656273.

[169] N. N. Mohamed, H. Hashim, Y. M. Yussoff, M. A. M. Isa, and S. F. S. Adnan,

“Compression and encryption technique on securing TFTP packet,” ISCAIE 2014 - 2014

IEEE Symp. Comput. Appl. Ind. Electron., pp. 198–202, 2015, doi:

10.1109/ISCAIE.2014.7010237.

[170] C. Chen, X. Wang, G. Huang, and G. Liu, “An Efficient Randomly-Selective Video

Encryption Algorithm,” 2022 IEEE 8th Int. Conf. Comput. Commun. ICCC 2022, pp.

1287–1293, 2022, doi: 10.1109/ICCC56324.2022.10065724.

[171] M. Benabdellah, M. M. Himmi, and N. Zahid, “Encryption-Compression of Images Based

on FMT and AES Algorithm,” vol. 1, no. 45, pp. 2203–2219, 2007.

[172] Q. S. Alsaffar, H. N. Mohaisen, and F. N. Almashhdini, “An encryption based on DNA

and AES algorithms for hiding a compressed text in colored Image,” IOP Conf. Ser.

Mater. Sci. Eng., vol. 1058, no. 1, p. 012048, 2021, doi: 10.1088/1757-

899x/1058/1/012048.

[173] LAURENTINUS, H. A. PRADANA, D. Y. SYLFANIA, and F. P. JUNIAWAN,

“Improving the SMS Security and Data Capacity Using Advanced Encryption Standard

and Huffman Compression,” vol. 172, no. Siconian 2019, pp. 194–202, 2020, doi:

10.2991/aisr.k.200424.028.

[174] U. K. Lilhore, S. Dalal, and S. Simaiya, “A cognitive security framework for detecting

intrusions in IoT and 5G utilizing deep learning,” Comput. Secur., vol. 136, no. September

2023, 2024, doi: 10.1016/j.cose.2023.103560.

186

[175] U. K. Lilhore, S. Simaiya, S. Dalal, Y. K. Sharma, S. Tomar, and A. Hashmi, “Secure

WSN Architecture Utilizing Hybrid Encryption with DKM to Ensure Consistent IoV

Communication,” Wirel. Pers. Commun., no. 0123456789, 2024, doi: 10.1007/s11277-

024-10859-0.

[176] M. Joye, P. Paillier, and S. Vaudenay, “Efficient generation of prime numbers,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 1965 LNCS, pp. 340–354, 2000, doi: 10.1007/3-540-44499-8_27.

[177] V. Kapoor, “Data Encryption and Decryption using Modified RSA Cryptography Based

on Multiple Public Keys and ‘n’ Prime Number,” Int. J. Eng. Sci. Res. Technol., vol. 3,

no. 6, pp. 713–720, 2014, [Online]. Available: http:

[178] A. Ivanov and N. Stoianov, “Implications of the Arithmetic Ratio of Prime Numbers for

RSA Security,” Int. J. Appl. Math. Comput. Sci., vol. 33, no. 1, pp. 57–70, 2023, doi:

10.34768/amcs-2023-0005.

[179] N. Jain, S. S. Chauhan, and A. Raj, “Security Enhancement of RSA Algorithm using

Increased Prime Number Set,” Int. J. Eng. Adv. Technol., vol. 9, no. 3, pp. 4235–4240,

2020, doi: 10.35940/ijeat.c6278.029320.

[180] S. Pradhan and B. K. Sharma, “An Efficient RSA Cryptosystem with BM-PRIME

Method,” Int. J. Inf. Netw. Secur., vol. 2, no. 1, pp. 103–108, 2012, doi:

10.11591/ijins.v2i1.1718.

[181] K. Pavani and P. Sriramya, “Enhancing public key cryptography using RSA, RSA-CRT

and N-Prime RSA with multiple keys,” Proc. 3rd Int. Conf. Intell. Commun. Technol.

Virtual Mob. Networks, ICICV 2021, no. Icicv, pp. 661–667, 2021, doi:

10.1109/ICICV50876.2021.9388621.

[182] N. Khairina and M. K. Harahap, “RSA Cryptographic Algorithm using Cubic

Congruential Generator,” J. Phys. Conf. Ser., vol. 1424, no. 1, 2019, doi: 10.1088/1742-

6596/1424/1/012010.

[183] R. Imam, F. Anwer, and M. Nadeem, “An Effective and enhanced RSA based Public Key

Encryption Scheme (XRSA),” Int. J. Inf. Technol., vol. 14, no. 5, pp. 2645–2656, Aug.

187

2022, doi: 10.1007/s41870-022-00993-y.

[184] D. I. George Amalarethinam and H. M. Leena, “Enhanced RSA algorithm for data

security in cloud,” Int. J. Control Theory Appl., vol. 9, no. 27, pp. 147–152, 2016.

[185] M. A. Budiman, P. Sihombing, and I. A. Fikri, “A cryptocompression system with Multi-

Factor RSA algorithm and Levenstein code algorithm,” J. Phys. Conf. Ser., vol. 1898, no.

1, pp. 0–4, 2021, doi: 10.1088/1742-6596/1898/1/012040.

[186] M. R. K. Ariffin, S. I. Abubakar, M. A. Asbullah, and F. Yunos, “New cryptanalytic

attack on rsa modulus n = pq using small prime difference method,” Cryptography, vol. 3,

no. 1, pp. 1–25, 2019, doi: 10.3390/cryptography3010002.

[187] M. Bahadori, M. R. Mali, O. Sarbishei, M. Atarodi, and M. Sharifkhani, “A novel

approach for secure and fast generation of RSA public and private keys on SmartCard,”

Proc. 8th IEEE Int. NEWCAS Conf. NEWCAS2010, pp. 265–268, 2010, doi:

10.1109/NEWCAS.2010.5603937.

[188] A. H. Mahmoud, H. H. Issa, N. H. Shaker, and K. A. Shehata, “Customized AES for

Securing Data in Sensitive Networks and Applications,” Natl. Radio Sci. Conf. NRSC,

Proc., vol. 2022-Novem, no. Nrsc, pp. 164–170, 2022, doi:

10.1109/NRSC57219.2022.9971420.

[189] Z. Cao, G. Yi, B. Wu, J. Li, and D. Xiao, “Analysis And Improvement of AES Key

Expansion Algorithm,” 2022 Int. Conf. Artif. Intell. Comput. Inf. Technol. AICIT 2022, pp.

1–5, 2022, doi: 10.1109/AICIT55386.2022.9930239.

[190] D. Chen, D. Qing, and D. Wang, “AES key expansion algorithm based on 2D logistic

mapping,” Proc. 5th Int. Work. Chaos-Fractals Theor. Appl. IWCFTA 2012, pp. 207–211,

2012, doi: 10.1109/IWCFTA.2012.81.

[191] I. Saberi, B. Shojaie, and M. Salleh, “Enhanced Key Expansion for AES-256 by using

Even-Odd method,” 2011 Int. Conf. Res. Innov. Inf. Syst. ICRIIS’11, pp. 1–5, 2011, doi:

10.1109/ICRIIS.2011.6125708.

[192] B. Subramanyan, V. M. Chhabria, and T. G. Sankar Babu, “Image encryption based on

AES Key Expansion,” Proc. - 2nd Int. Conf. Emerg. Appl. Inf. Technol. EAIT 2011, pp.

188

217–220, 2011, doi: 10.1109/EAIT.2011.60.

[193] Y. Xiao, Y. Jiang, and L. Xu, “Efficient and Enhanced Advanced Encryption Standard

Algorithm with Chaos-Based Key Expansion,” 2023 4th Int. Conf. Inf. Sci. Parallel

Distrib. Syst. ISPDS 2023, pp. 480–483, 2023, doi: 10.1109/ISPDS58840.2023.10235699.

[194] A. Murtaza, S. J. H. Pirzada, M. N. Hasan, T. Xu, and L. Jianwei, “Parallelized key

expansion algorithm for advanced encryption standard,” Proc. IEEE Int. Conf. Softw. Eng.

Serv. Sci. ICSESS, vol. 2019-Octob, pp. 609–612, 2019, doi:

10.1109/ICSESS47205.2019.9040825.

[195] K. Kalaiselvi and A. Kumar, “Enhanced AES cryptosystem by using genetic algorithm

and neural network in S-box,” 2016 IEEE Int. Conf. Curr. Trends Adv. Comput. ICCTAC

2016, pp. 1–6, 2016, doi: 10.1109/ICCTAC.2016.7567340.

[196] E. M. De Los Reyes, A. M. Sison, and R. P. Medina, “Modified AES cipher round and

key schedule,” Indones. J. Electr. Eng. Informatics, vol. 7, no. 1, pp. 28–35, 2019, doi:

10.11591/ijeei.v7i1.652.

[197] R. Lin and S. Li, “An Image Encryption Scheme Based on Lorenz Hyperchaotic System

and RSA Algorithm,” Secur. Commun. Networks, vol. 2021, 2021, doi:

10.1155/2021/5586959.

[198] A. G. Marco, A. S. Martinez, and O. M. Bruno, “Fast, parallel and secure cryptography

algorithm using lorenz’s attractor,” Int. J. Mod. Phys. C, vol. 21, no. 3, pp. 365–382, 2010,

doi: 10.1142/S0129183110015166.

[199] Ö. E. Tekerek and A. Tekerek, “Image Encryption Using Lorenz’s Attractor and

Fractional Fourier Transform,” 2nd Int. Informatics Softw. Eng. Conf. IISEC 2021, no. 1,

2021, doi: 10.1109/IISEC54230.2021.9672362.

[200] P. Sankaranarayanan, R. Tamijetchelvy, M. N. Periya, and M. Manikandan, “An Efficient

and Optimized Color Image Encryption Technique Using Lorentz , Rossler and Chen

Attractor,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 3, no. 3, pp. 2301–2305, 2014.

[201] Z. Jiang and X. Liu, “Image Encryption Algorithm Based on Discrete Quantum Baker

Map and Chen Hyperchaotic System,” Int. J. Theor. Phys., vol. 62, no. 2, 2023, doi:

189

10.1007/s10773-023-05277-0.

[202] G. A. Eslam, S. Eman, and H. Mohamed, “Lightweight Mix Columns Implementation for

AES,” Proc. 9th WSEAS Int. Conf. Appl. informatics Commun., vol. 01, pp. 1–23, 2016.

[203] H. V. Gamido, A. M. Sison, and R. P. Medina, “Modified AES for text and image

encryption,” Indones. J. Electr. Eng. Comput. Sci., vol. 11, no. 3, pp. 942–948, 2018, doi:

10.11591/ijeecs.v11.i3.pp942-948.

[204] O. Dunkelman and N. Keller, “The effects of the omission of last round’s MixColumns on

AES,” Inf. Process. Lett., vol. 110, no. 8–9, pp. 304–308, 2010, doi:

10.1016/j.ipl.2010.02.007.

[205] K. AlMarashda, Y. AlSalami, K. Salah, and T. Martin, “On the security of inclusion or

omission of MixColumns in AES cipher,” 2011 Int. Conf. Internet Technol. Secur. Trans.

ICITST 2011, no. December, pp. 34–39, 2011.

[206] A. Barrera, C. W. Cheng, and S. Kumar, “Improved Mix Column Computation of

Cryptographic AES,” Proc. - 2019 2nd Int. Conf. Data Intell. Secur. ICDIS 2019, pp.

229–232, 2019, doi: 10.1109/ICDIS.2019.00042.

[207] Soukaena Hassan and M. Abd Zaid, “Modification Advanced Encryption Standard for

Design Lightweight Algorithms,” J. Kufa Math. Comput., vol. 6, no. 1, pp. 21–27, 2019,

doi: 10.31642/jokmc/2018/060104.

[208] W. Kretschmer, L. Qian, M. Sinha, and A. Tal, “Quantum Cryptography in

Algorithmica,” Proc. Annu. ACM Symp. Theory Comput., pp. 1589–1602, 2023, doi:

10.1145/3564246.3585225.

[209] J. Yin et al., “Entanglement-based secure quantum cryptography over 1,120 kilometres,”

Nature, vol. 582, no. 7813, pp. 501–505, 2020, doi: 10.1038/s41586-020-2401-y.

[210] S. Pirandola et al., “Advances in quantum cryptography,” Adv. Opt. Photonics, vol. 12,

no. 4, p. 1012, 2020, doi: 10.1364/aop.361502.

[211] D. J. Bernstein and T. Lange, “Introduction to post-quantum cryptography,” no. August,

2022.

190

[212] H. Iqbal and W. O. Krawec, “Semi-Quantum Cryptography,” in Advanced Sciences and

Technologies for Security Applications, vol. 1, Springer New York, 2019, pp. 1–15. doi:

10.1007/0-387-25096-4_1.

[213] D. J. Bernstein and T. Lange, “Post-quantum cryptography - dealing with the fallout of

physics success.,” IACR Cryptol. ePrint Arch., vol. 2017, p. 314, 2017, [Online].

Available: http://dblp.uni-trier.de/db/journals/iacr/iacr2017.html#BernsteinL17a

[214] C. H. Ugwuishiwu, U. E. Orji, C. I. Ugwu, and C. N. Asogwa, “An overview of Quantum

Cryptography and Shor’s Algorithm,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 5,

pp. 7487–7495, 2020, doi: 10.30534/ijatcse/2020/82952020.

[215] D. T. Dam, T. H. Tran, V. P. Hoang, C. K. Pham, and T. T. Hoang, “A Survey of Post-

Quantum Cryptography: Start of a New Race,” Cryptography, vol. 7, no. 3, pp. 1–18,

2023, doi: 10.3390/cryptography7030040.

[216] P. K. Ghosh, S. K. Ghosh, and L. M. Khan, “Current trend of bank selection criteria of

retail customers in Bangladesh: An investigation,” Glob. Bus. Financ. Rev., vol. 20, no. 2,

pp. 27–34, 2015, doi: 10.17549/gbfr.2015.20.2.27.

[217] M. Panda, “Performance analysis of encryption algorithms for security,” Int. Conf. Signal

Process. Commun. Power Embed. Syst. SCOPES 2016 - Proc., pp. 278–284, 2017, doi:

10.1109/SCOPES.2016.7955835.

[218] B. Xing, D. D. Wang, Y. Yang, Z. Wei, J. Wu, and C. He, “Accelerating DES and AES

Algorithms for a Heterogeneous Many-core Processor,” Int. J. Parallel Program., vol. 49,

no. 3, pp. 463–486, 2021, doi: 10.1007/s10766-021-00692-4.

[219] Z. Kasiran, A. Dalil, and M. Z. Ghazali, “Analysis on Computational Time of Hybrid

Cryptography in Email System,” J. Posit. Sch. Psychol., vol. 2022, no. 3, pp. 8415–8422,

2022, [Online]. Available: http://journalppw.com

[220] Z. Alkhalil, C. Hewage, L. Nawaf, and I. Khan, “Phishing Attacks: A Recent

Comprehensive Study and a New Anatomy,” Front. Comput. Sci., vol. 3, no. March, pp.

1–23, 2021, doi: 10.3389/fcomp.2021.563060.

[221] Ö. Aslan, S. S. Aktuğ, M. Ozkan-Okay, A. A. Yilmaz, and E. Akin, “A Comprehensive

191

Review of Cyber Security Vulnerabilities, Threats, Attacks, and Solutions,” Electron., vol.

12, no. 6, 2023, doi: 10.3390/electronics12061333.

[222] G. B. Thompson, “Journal of information Science,” J. Inf. Sci., vol. 9, no. 2, p. 74, 1984,

doi: 10.1177/016555158400900204.

[223] A. Karki, “A Comparative Analysis of Public Key Cryptography,” Int. J. Mod. Comput.

Sci., vol. 4, no. 6, pp. 2320–7868, 2016, [Online]. Available:

http://www.iusikkim.edu.in/IJMCS161213.pdf

[224] R. M. Abobeah, M. M. Ezz, and H. M. Harb, “Public-Key Cryptography Techniques

Evaluation,” Int. J. Comput. Networks Appl., vol. 2, no. 2, pp. 64–75, 2015.

[225] M. Shivansh, “A Brief Study on various Cryptographic Algorithms for Data Security,” Int.

J. Res. Analtical Rev., vol. 9, no. 2, pp. 288–293, 2022.

[226] S. Tayde and A. S. Siledar, “File Encryption, Decryption Using AES Algorithm in

Android Phone,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 5, no. 5, pp. 550–554,

2015.

[227] B. Li, J. Xu, and Z. Liu, “SW-LZMA: Parallel Implementation of LZMA Based on

SW26010 Many-Core Processor,” Wirel. Commun. Mob. Comput., vol. 2021, 2021, doi:

10.1155/2021/4486494.

[228] B. I. Diop, A. D. Gueye, and A. Diop, “Comparative Study Between Different Algorithms

of Data Compression and Decompression Techniques,” in Proceedings of the

International Conference on Paradigms of Communication, Computing and Data

Sciences : PCCDS 2021, 2023, pp. 737–744. doi: 10.1007/978-981-19-8742-7_59.

[229] Z. Mahrousa, A. Bitar, and Y. Fareed, “A Novel Method to Increase Diffusion and

Confusion in AES Algorithm,” Int. J. Comput. Appl., vol. 177, no. 36, pp. 39–47, 2020,

doi: 10.5120/ijca2020919872.

[230] T. Kumaki, T. Fujita, M. Nakanishi, and T. Ogura, “Morphological pattern spectrum and

block cipher processing based image-manipulation detection,” Nonlinear Theory Its Appl.

IEICE, vol. 4, no. 4, pp. 400–418, 2013, doi: 10.1587/nolta.4.400.

192

[231] H. Talirongan, A. M. Sison, and R. P. Medina, “Modified advanced encryption standard

using butterfly effect,” 2018 IEEE 10th Int. Conf. Humanoid, Nanotechnology, Inf.

Technol. Commun. Control. Environ. Manag. HNICEM 2018, no. December 2019, 2018,

doi: 10.1109/HNICEM.2018.8666368.

[232] M. Alizadeh, M. Salleh, M. Zamani, S. Jafar, and K. Sasan, “Security and Performance

Evaluation of Lightweight Cryptographic Algorithms in RFID,” Recent Res. Commun.

Comput., no. November 2015, pp. 45–50, 2012, [Online]. Available: http://goo.gl/ej5iEr

[233] O. C. Abikoye, A. D. Haruna, A. Abubakar, N. O. Akande, and E. O. Asani, “Modified

advanced encryption standard algorithm for information security,” Symmetry (Basel)., vol.

11, no. 12, pp. 1–16, 2019, doi: 10.3390/SYM11121484.

[234] L. Polani, K. Balasubramanian, B. Yamuna, and T. V. Sai, “Low power and area efficient

AES implementation using ROM based key expansion and rotational shift,” 2022 IEEE

Int. Conf. Distrib. Comput. VLSI, Electr. Circuits Robot. Discov. 2022 - Proc., pp. 72–75,

2022, doi: 10.1109/DISCOVER55800.2022.9974925.

[235] K. B. Anuroop and M. Neema, “Fully pipelined-loop unrolled AES with enhanced key

expansion,” 2016 IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol.

RTEICT 2016 - Proc., pp. 988–992, 2017, doi: 10.1109/RTEICT.2016.7807977.

[236] E. S. A. M. ElBadawy, W. A. El-Masry, A. Mokhtar, and A. E. D. S. Hafez, “A new

chaos advanced encryption standard (AES) algorithm for data security,” Int. Conf. Signals

Electron. Syst. ICSES’10 - Conf. Proceeding, no. June, pp. 405–408, 2010.

[237] A. U. Rahman, S. U. Miah, and S. Azad, “Advanced encryption standard,” Pract.

Cryptogr. Algorithms Implementations Using C++, pp. 91–126, 2014, doi:

10.1201/b17707.

[238] F. Olajide, K. Assa-Agyei, and C. Edo, “An Empirical Evaluation of Encryption and

Decryption Times on Block Cipher Techniques,” Proc. - 2023 Congr. Comput. Sci.

Comput. Eng. Appl. Comput. CSCE 2023, pp. 2385–2390, 2023, doi:

10.1109/CSCE60160.2023.00386.

[239] N. Murugesan and A. M. S. Ramasamy, “A numerical algorithm for nth root,” J. Fundam.

193

Sci., vol. 6, no. 2, pp. 104–110, 2010.

[240] E. M. Hussein Saeed and R. M. Hussain, “Encryption of Association Rules Using

Modified Dynamic Mapping and Modified (AES) Algorithm,” 1st Int. Sci. Conf. Comput.

Appl. Sci. CAS 2019, pp. 204–209, 2019, doi: 10.1109/CAS47993.2019.9075701.

[241] H. K. Hoomod and A. M. Radi, “New Secure E-mail System Based on Bio-Chaos Key

Generation and Modified AES Algorithm,” J. Phys. Conf. Ser., vol. 1003, no. 1, 2018,

doi: 10.1088/1742-6596/1003/1/012025.

[242] J. Ren and S. Chen, “A further understanding of differential-linear cryptanalysis,” Chinese

J. Electron., vol. 29, no. 4, pp. 660–666, 2020, doi: 10.1049/cje.2020.05.010.

[243] L. Peng, L. Hu, and Y. Lu, “Improved Results on Cryptanalysis of Prime Power RSA,” in

Journal of Discrete Mathematical Sciences and Cryptography, vol. 22, no. 2, Berlin,

Heidelberg: Springer Berlin, 2017, pp. 287–303. doi: 10.1007/978-3-319-53177-9_15.

[244] D. R. Stinson, “Cryptography: Theory and practice, third edition,” 2005.

[245] M. Dehghani, S. Hubalovsky, and P. Trojovsky, “Northern Goshawk Optimization: A

New Swarm-Based Algorithm for Solving Optimization Problems,” IEEE Access, vol. 9,

pp. 162059–162080, 2021, doi: 10.1109/ACCESS.2021.3133286.

[246] A. K. Qin, V. L. Huang, and P. N. Suganthan, “(SADE)Adaptation for Global Numerical

Optimization,” IEEE Commun. Mag., vol. 13, no. 2, pp. 398–417, 2009.

[247] S. Y. Bonde and U. S. Bhadade, “Analysis of Encryption Algorithms (RSA, SRNN and 2

Key Pair) for Information Security,” 2017 Int. Conf. Comput. Commun. Control Autom.

ICCUBEA 2017, pp. 1–5, 2017, doi: 10.1109/ICCUBEA.2017.8463720.

[248] J. K. Dawson, F. Twum, J. B. Hayfron-Acquah, Y. M. Missah, and B. B. K. Ayawli, “An

enhanced RSA algorithm using Gaussian interpolation formula,” Int. J. Comput. Aided

Eng. Technol., vol. 16, no. 4, pp. 534–552, 2022, doi: 10.1504/IJCAET.2022.123996.

[249] M. Liskov, “Miller-Rabin Probabilistic Primality test,” in Encyclopedia of Cryptography

and Security, vol. 196, no. 1985, Boston, MA: Springer US, 2011, pp. 742–748. doi:

10.1007/978-1-4419-5906-5_592.

194

[250] M. O. Rabin, “Probabilistic algorithm for testing primality,” J. Number Theory, vol. 12,

no. 1, pp. 128–138, 1980, doi: 10.1016/0022-314X(80)90084-0.

