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Abstract

The evaporation of multiple droplets is an interesting and abundant phenomena in na-

ture and industry and as a result has many applications. Most research to this point has

focused on studying the isolated case but in reality it is rare for droplets to evaporate

on their own. Droplets evaporating in close proximity to each other interact and their

dynamics are influenced by this. To study them the evaporation rates must be extracted

from each droplet in the array. Traditionally for isolated droplets the volume and evapo-

ration rate has been established by imaging the droplet from the side and measuring its

profile, however for multiple sessile droplets in two dimensional arrays not all droplets

can be seen simultaneously. A solution to this is to image the arrays from the top but

without knowing the droplet heights or contact angles, the volumes cannot be established.

In addition to this, it is difficult to dispense droplets repeatably and accurately before

they evaporate. Both these challenges have prevented authors from conducting careful ex-

perimental investigations of the evaporation. Because of this, theoretical work has moved

ahead of experimental work, with several recent analytical models for the evaporation

being proposed [1, 2]. In this thesis a technique is developed, validated and optimised

to image the droplets simultaneously (chapter 2). Experimental data is then taken for

multiple droplets and compared to these analytical models evaluating their performance

and demonstrating their limitations. It is found that the theory works well for small ar-

rays of droplets (chapter 3) but cannot capture the dynamics of large arrays or arrays

on heated substrates (chapter 4). Exhaled breath droplets are then investigated and it is

found that whilst the array is evaporating the larger droplets grow due to the Kelvin effect

[3]. The diffusive theory is modified to account for this and a simple mean field model

is proposed, capturing the experimental array dynamics well (chapter 5). Finally, direct

numerical simulations (DNS) of multiple droplets are conducted and it is shown that the

model qualitatively captures the droplet evaporation rates (chapter 6). These simulations

make future investigations of the vapour and thermal dynamics of the arrays possible,

which are challenging to image and measure experimentally.
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Chapter 1

Introduction

Evaporating multiple droplets are abundant in nature (e.g. raindrops, sweat on skin,

clouds and condensation from warm air) and industry (e.g. spray coating, ink-jet printing,

surface patterning and evaporative cooling) so understanding their dynamics has many

potential applications. There are many studies on the evaporation of droplets in isolation

[7], however there is much less work on how they evaporate collectively. Despite this,

droplets almost always appear in groups (arrays) and their individual evaporation is no

longer sufficient to explain their dynamics.

Multiple droplet evaporation has attracted recent public interest due to the coronavirus

COVID-19 pandemic. The droplets exhaled within breath contain and transport the

viruses. It is thought that the droplet carrying the virus extends its survival time [8] and

therefore understanding and enhancing the multiple droplet evaporation is key to reducing

transmission.

The evaporation of isolated droplets gives rise to many interesting secondary effects,

for example its evaporative flux controls the internal flow. When the droplet also contains

non-volatile solute, this flow leads to its transport and famously to the coffee ring effect

[9]. In ink-jet printing these rings are seen as undesirable as they aim to build images from

a series of homogeneous circular stains left behind by the ink-droplets after it evaporates.

Multiple droplet evaporation can be used to influence the evaporative flux and therefore

represents a method in which the internal flow could be controlled. By placing sacrificial

droplets around an evaporating ink droplet, it is possible that the shape of the stain could

be adapted and the resolution of the printers could be enhanced. This has been shown to

be possible by Pradhan and Panigrahi [10], with the data shown to agree well with theory
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developed by Wray et al. [11].

Multiple droplets are also formed by drop-wise condensation. This process is impor-

tant for the formation of clouds [12]. Understanding how the growth of cloud droplets are

influenced by inter-droplet interactions has applications in cloud seeding and in meteo-

rological predictions of precipitation. Fuel injection systems also study multiple droplets

as they evaporate, in order to optimise engine efficiency [13]. Droplets are also used to

enhance efficiency in industrial processes, using them to cool hot components [14]. These

applications make multiple droplet research important.

In the remaining sections of this chapter the important physics relevant to this thesis

is explained. The existing work on the subject of multiple droplets is presented to put the

thesis in is research context.

1.1 Diffusion

Physical quantities (such as temperature and concentration) often vary spatially across

solids, liquids and gases. In many cases these quantities spread over time often until they

become completely homogeneous. This spreading is called diffusion and it originates from

asymmetric collisions between molecules. An example of a spatially varying quantity of

this sort might be concentration in binary gas mixtures. If you open a bottle of perfume

after some time the perfume can be smelt a distance away from the lid and therefore must

have been transported. Just after the lid has been opened the concentration of perfume

molecules around it increases, whilst far away from the lid the number of molecules is

zero, giving rise to a gradient. Because of this gradient, molecules of perfume are more

likely to collide with other perfume molecules from the direction in which the gradient is

larger. This increased probability results in a net movement of the molecules away from

the container. At a continuum level this movement is described by Fick’s law [15]

j = −D(c, T )∇c (1.1)

where j is a mass flux (kg s−1m−2), c is the concentration of the diffusing substance and

T is temperature. The magnitude of j depends on the specific substance and is captured

by the diffusion coefficient, D which can be a function of both c and T . The change in the

value of c at a specific point in space is described by the diffusion equation and depends
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on the divergence of the flux (∇ · j)

∂c

∂t
= −∇ · (D(c, T )∇c). (1.2)

In cases where D is weakly dependent on c and the diffusion can be considered isothermal

(constant T ) eq. 1.2 can be simplified to

∂c

∂t
= −D∇2c. (1.3)

It is also the case that heat diffuses in the same way and c can be replaced by T in eq. 1.3.

A good empirical fit to the variation of D with temperature for some quantities is given

by

D(T ) = D(0)(1 + 0.007T ) (1.4)

over −10 < T (◦C) < 50 [16]. Where D(0) is a coefficient specific to the diffusing quantity

(see table 1.1).

Quantity D(0) (m2s−1)

water vapour 2.12× 10−5

heat 1.89× 10−5

Table 1.1: The quantity specific diffusion coefficient, taken from Monteith and Unsworth
2013 [16].

1.2 Convection

Flow within a fluid is referred to a convection. The extent to which a fluid is influenced

by convection compared to diffusion is given by the Peclet number (Pe) defined as

Pe =
UL

D
, (1.5)

where U is the characteristic velocity and L is a characteristic length scale. When con-

vection is caused by external movement (i.e. a fan or a door closing in a room), this is

called forced convection. Convection can also be caused by, density differences within the

fluid leading to flow caused by gravity, which is called natural convection. A parcel of less

dense fluid will be displaced if it is beneath a parcel with higher density. This is because
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gravity exerts a stronger force on the dense parcel, causing a flow which circulates them

around each other. Regions of circulating flow are called convection cells and the upward

and downward motion of the less and more dense parcels (respectively) are referred to as

convective plumes [17]. Density differences (∆ρ) in fluids are often caused by variations

in temperature or composition. In these cases the convective flow has to compete with

the viscous dissipation of the parcels moving through the liquid which acts to prevent the

development of convective cells. Therefore the amount of gravitational potential energy

(GPE) must be enough to overcome the viscous dissipation. An example of where con-

vection is observed is above evaporating bodies of water (like oceans or lakes), as humid

air is less dense than dry air. The arrows in fig. 1.1 depict the cells and plumes which can

form over evaporating liquids. The Pe can be used to characterise both or a combination

of natural and forced convection. When a system is dominated by natural convection the

Pe can be written in a more specific form as the Grashof number (Gr), defined as

Gr =
∆ρ

ρ

gR3

ν2
=

buoyancy forces

viscous forces
. (1.6)

Where R is a length scale which depends on the geometry of the system, ν is the kinematic

viscosity and ρ is the density of the bulk. This dimensionless number describes this

competition between gravity and viscosity. Convection can also be mediated by diffusion,

for example consider a plume consisting of a higher concentration of a less dense fluid.

As it rises, diffusion acts to increase its density, as it generates a mass flux between the

plume and the surrounding fluid. If the timescale for this diffusion is comparable to that

of the convective flow the amount of GPE obtained will be reduced as their densities will

equilibrate.

Taller cells will provide the most GPE but will also have greater diffusive flux, due

to the larger vertical contact area between the adjacent plumes. Shorter plumes however

will suffer from greater dissipation relative to the amount of GPE. Therefore, the rate

of diffusion influences the size and shape of the convective plumes [18]. The ratio of the

momentum diffusivity or viscosity (ν) to the mass diffusivity (D) is called the Schmidt

number (Sc)

Sc =
ν

D
. (1.7)

In systems in which convection is predominantly mediated by diffusion (and not viscous
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1

Figure 1.1: Diagram of the convection cells and plumes which can form above liquid or
heated surfaces. The arrows represent a flow caused by convective plumes.

dissipation), the Gr can by multiplied by Sc resulting in the Rayleigh number (Ra)

Ra =
∆ρR3g

µD
, (1.8)

noting that µ = νρ. The Ra therefore compares the buoyancy driven natural convection

to the mass diffusion in the system. Eq. 1.8 predicts that convective transport is enhanced

for large length scales and variations in density.

In this thesis ‘convection’ is used to refer to natural convection and ‘advection’ refers

to forced convection.

1.3 Droplet geometry

The geometry of droplets which form on surfaces is characterised by an equilibrium contact

angle (θ) which measures the internal angle between the substrate and the tangent to the

interface at the contact line labelled in fig. 1.2. The value for θ can be calculated according

to the ‘Young’ equation

cos(θ) =
γSG − γSL

γLG
(1.9)

and is dependent on the three surface energies (γ) between the substrate (S), liquid (L),

gas (G). These surface energies can be considered as forces acting to move the contact line.
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a
h

CR

CA

Figure 1.2: Droplet diagram showing the radius of curvature (r), base radius (a), height
(h) and contact angle (θ) of two droplets which are evaporating in CA and CR mode.

Therefore if γSG is dominant or γLG is large, then the contact line gets pulled outward

leading to very small contact angles and eventually liquid films. These substrates are

referred to as ‘hydrophilic’ because of the equilibrium contact angle formed by water and

correspond to the range 0 ≤ θ < π/2 radians. Hydrophobic substrates with dominant

γSL, refer to substrates which result in contact angles between π/2 ≤ θ ≤ π radians.

A static droplet’s shape is determined by a balance between the (Laplace) pressure

built inside the droplet and the hydrostatic pressure caused by gravity. The ratio of these

forces is the Bond number (Bo)

Bo =
∆ρgh2

γLG
. (1.10)

The length scale which balances these forces (i.e. Bo = 1) is named the capillary length

(λc =
√
γLG/∆ρg). When the height of the droplets (h) is much less than λc and surface

tension dominates (Bo � 1), surface tension acts to minimise the surface area of the

interface and as such the shape is spherically capped. For larger droplets with h � λc,

gravity dominates (Bo� 1) and droplets become puddles, flattened in the centre.

The volume of a spherical cap (V ) is well known and is related to a number of geometric

measurements, namely the base radius (a), radius of curvature (r) as well as the previously

mentioned h and θ. Knowledge of any two of these measurements provides a complete

description. In chapter 2 of this thesis the most commonly measured parameters are a

and h, the expression relating these to V is

V =
π

6
(3a2h+ h3). (1.11)
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In chapter 4 and 5 the most commonly measured parameters are θ and r, the expression

relating these to V is

V =
π

3
r3(2 + cos θ)(1− cos θ)2. (1.12)

1.4 Evaporation

When a liquid is evaporating there is a phase change happening at the interface. Molecules

which obtain enough energy are able to overcome the energy potential created by the inter-

molecular attractions which maintain the liquid. The energy to facilitate evaporation is

called the latent heat of vaporisation and is supplied as heat from the surroundings. When

the liquid is contained within a low-pressure environment the evaporation is largely limited

by the supply of latent heat. At low-pressure it is therefore possible for evaporation to

consume all of the available latent heat, reducing the liquid’s temperature until it is cold

enough to freeze. The Hertz-Knudsen relation [19] describes the maximum molar flux

(mol m−2s−1) from the interface

jM =
p0 − p√
2πMRgT

(1.13)

where Mw is the molar mass, Rg is the universal gas constant, p0 is the vapour pressure of

the liquid and p is the surrounding gas pressure, with p = 0 corresponding to a perfect vac-

uum. In many cases however liquids evaporate at standard temperatures and atmospheres,

and evaporation becomes inhibited by the surrounding gas. The vapour molecules exiting

at the interface (vaporising) will collide with the gas molecules, moving in a random walk.

Some of these molecules will re-enter the liquid (condensing). Once the interface region

becomes saturated the number of molecules vaporising and condensing will be equal and

a dynamic equilibrium is reached, with the volume of the liquid not changing [20]. If the

surrounding gas is unsaturated a concentration gradient exists normal to the interface,

leading to diffusion (governed by eq. 1.3 discussed in section 1.1). This diffusion acts to

reduce the saturation at the interface, lowering the number of condensing molecules and

increasing the number of vaporising molecules until the saturation equilibrium is reached

again. In general it is assumed that the interface is always at saturation and the net

amount of molecular flux across the interface is that which sustains this [21].
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This saturation concentration (c∞) is given by the ideal gas law

c∞ =
psatMw

RgT
(1.14)

where psat is the saturation vapour pressure, which can be calculated with the semi-

empirical Antoine equation

psat = 10A−
B

C+T . (1.15)

A, B and C are tabulated, empirically obtained constants for a specific liquid. The values

for water for 0 ≤ T (◦C) ≤ 100 are given in table. 1.4.

Both c∞ and p∞ are used interchangeably to quantify the volatility of a liquid.

A B C

8.07131 1730.63 233.426

Table 1.2: Antoine coefficients for water.

1.5 Isolated Droplet Evaporation

The evaporation rates of sessile isolated droplets of low volatility liquids (e.g. water) at

standard pressure and temperature are well described by existing theory. These rates

have been shown to be limited by diffusive transport of its vapour into the surrounding

environment. The concentration of vapour surrounding a droplet is therefore governed

by eq. 1.3 (as described in section 1.1). If the timescale for diffusion (L2/D) is small in

comparison to the lifetime of the droplet, the evaporation can be assumed to be quasi-

steady. This means that the the concentration (c) does not vary in time and ∂c
∂t

= 0.

Substituting this into eq. 1.3 shows the vapour concentration is given by the Laplace

equation

∇2c = 0. (1.16)

The exact solution to eq. 1.16 around an equi-convex lens was solved by N.N Lebedev [22]

as an electrostatics problem. Jackson showed that close to the contact line this flux (j),

radially over the interface (rc) of the lens (droplet) varies with its contact angle [23],

j ∝ (a2 − r2c )
π

2(π−θ)−1. (1.17)
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This function predicts: at θ = π/2 radians, homogeneous flux on the interface; between

0 < θ < π/2 radians, enhanced flux near the contact line (rc → a); and between π/2 <

θ < π radians, suppressed flux near the contact line [24]. Integrating j over the surface of

the droplet gives the total volumetric evaporation rate (m3s−1) according to the diffusion

limited model [25]

ρl
dVT
dt

= aπDc∞(φsat − φ)f(θ), (1.18)

where φ = camb/c∞ is the fractional ambient humidity at rc = ∞. φsat is saturation

fraction at the interface. f(θ) is a function representing the effect of the substrate which

depends on the contact angle. Several simplified expressions for f(θ) have been proposed

[25–27], one example which is continuous and defined over 0 ≤ θ ≤ π radians is

f(θ) =
2√

1 + cos θ
, (1.19)

as reported by Hu, Wu, and Liu [28] 1

1.5.1 Thermal effects and internal flow

As discussed in section 1.4 liquids require latent heat to evaporate, which is sourced from

its environment and the liquid itself. In this section the flux over a droplet’s interface was

described to be in general non-uniform and therefore the amount of latent heat required

to sustain this lead to differential cooling on the interface. Due to the low thermal con-

ductivity (κ) of gases (for air κ ≈ 26× 10−3 W m−1K−1) [30]) in comparison to solids (for

glass κ ≈ 1 W m−1K−1) [31]), heat is largely supplied by conduction from the substrate.

The rate at which the latent heat can be transported to different points on the interface

depends on the conductivity of the droplet (for water κ = 0.586 W m−1K−1) [32]) and the

height of the droplet interface over which it must be conducted. The conduction distance

and the non-uniform evaporative flux are both dependent on the contact angle. For flat

droplets, the difference in height at the apex and near the contact line is similar but the

evaporative flux is pronounced near the contact line and therefore the cooling should be

greatest in this region. For droplets with higher contact angles (θ > π/2) the temperature

should be lowest near the apex, because it is both furthest from the substrate and also

the region with the largest flux.

1After the submission of this thesis Wray and Moore published a more accurate expression to eq. 1.19
[29], which could be used in future work.
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The flow inside droplets has been studied in detail by many authors, for example

Deegan et al. [9] who showed that the coffee ring effect is caused by radial outward flow

as a result of a pinned contact line. Further theoretical work has since been carried out

modelling these flows more generally [2, 33]. In addition to flow driven by evaporation,

the variations in flux leads to further considerations. For example, the surface tension (γ)

of the droplet depends on temperature and the non-uniform cooling on the surface can

therefore result in Marangoni flows. This is discussed in detail by Ristenpart et al. [34],

connecting these flows to the temperature profiles and shapes of the droplets. Marangoni

flows can also be generated by different components with dissimilar volatilities, binary

droplets of this sort have very complex flow patterns due to both Marangoni effects and

density driven flow [35, 36].

1.6 Condensation

As described in section 1.4, air can become saturated with the vapour which evaporates

from a liquid. This occurs when the amount of vapour molecules condensing reaches a dy-

namic equilibrium with those vaporising. The specific equilibrium condensation depends

on its temperature (see eq. 1.14). If saturated air is cooled quickly the amount of vapour

within the air is greater than the equilibrium. Air in this state is referred to as supersatu-

rated. This often occurs near to a cold surface, which will cool the immediately adjacent

air, leading to condensation onto the surface. This continues until the concentration is

reduced and equilibrium is restored. The condensation can either be film-wise or drop-

wise which depends on the specific properties of the surface and the contact angle the

liquid forms onto it (described by eq. 1.9). Typically, impurities on the substrate act as

nucleation sites for droplet condensation [37]. Arrays of these droplets of ∼ µm size over

a surface are often referred to as breath figures and there is much work on the formation

and applications of them, see the book by Rodŕıguez-Hernández and Bormashenko [38].

The growth of a single droplet due to a supersaturated environment can be predicted by

eq. 1.18 where (φsat − φ) < 0. In drop-wise condensation the growth of each droplets can

also be due to water absorption onto the substrate, coalescence of adjacent droplets or by

direct droplet deposition from the air [39–41].
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1.7 The Kelvin effect

Liquid interfaces which are sufficiently curved have a higher vapour pressure than flat

interfaces. A molecule at a curved interface has fewer neighbouring molecules than at a

flat interface. Therefore the inter-molecular forces exerted and the latent heat required

to vaporise it are less. As a result of this, there is an increased amount of molecules

escaping and the concentration of vapour molecules at the interface must be greater,

before the dynamic equilibrium between condensation and vaporisation is re-balanced.

The increase in saturation concentration at the interface due to its curvature, is called the

Kelvin effect [42]. The reverse is also true, with concave interfaces having lower saturation

concentration.

For clouds to form, droplets must be able to grow from pure vapour due to conden-

sation. However the vapour pressure over droplets with a small radius of curvature (r)

will have large vapour pressures and will therefore not be stable in saturation conditions.

Non-volatile impurities (solute) can aid in the process of droplet growth, by reducing the

vapour pressure of these small droplets and acting as nucleation sites [43]. This is called

the Raoult effect.

The Raoult effect and the Kelvin effect can be combined [44] to show how the ratio of

the vapour pressure of droplets of different radii (p(r)) to psat varies and is given by

p(r)

p∞
= exp

(
rk
r
− 3nM

4πρlr3

)
. (1.20)

Where rk = 2Mγ/RTρl is the Kelvin radius, n is the number of moles of solute and

p(r)/p∞ = φsat in eq. 1.18. The first term in the brackets represents the Kelvin effect and

the second the Raoult effect.

1.8 Multiple droplets

When droplets evaporate within an array they do not evaporate as the sum of their

isolated constituents, instead they evaporate with group dynamics each influencing their

neighbours and altering their individual evaporation rates. There are several possible

ways in which droplets in close proximity could influence one another including thermally,

through precursor films or by changing local vapour concentrations.
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1.8.1 Diffusive evaporation

For sessile isolated droplets of low volatility liquids (e.g. water) at standard pressure

and temperature, it has been reported that the superimposition of the vapour fields sur-

rounding each droplet is a significant part of these interactions [45–49]. In these cases the

evaporation is found to be diffusion limited and the local increase in vapour concentration

near the interface due to the presence of neighbours, is found to slow the evaporation rate

compared to the isolated case. This is because vapour mutually diffuses into the regions

of air between the droplets, leading to it becoming saturated. Therefore the rate limiting

process for phase change at the interface is the time it takes for the vapour to be diffused

away and for ‘space’ to be created near the interface for molecules to escape the liquid.

This is often called the ‘Shielding effect’ as multiple droplets shield the evaporation of

their neighbours. Similar diffusive interactions have also been observed for the case of

dissolution [50–53]. A series of analytical models have been proposed to capture the dy-

namics of these vapour interactions [1, 45, 54, 55]. A specific description of each model is

given in the following sections (1.8.3, 1.8.4 and 1.8.5).

Multiple droplet evaporation is also investigated in reverse, in drop-wise condensation

literature, the formation and dynamics of which, are described in section 1.6. Similar

diffusive interactions are observed for multiple droplet condensation, as droplets in close

proximity do not grow as fast due to local depletion of the vapour around the droplets

[56–58].

1.8.2 Convective evaporation

In addition to diffusion, natural convection has also been observed by Carrier et al. [45]

and Kelly-Zion et al. [59] to enhance the evaporation rate of droplets. Kelly-Zion et al.

placed single flat droplets of different R on pinned aluminium surfaces and measured their

evaporation. Carrier et al. conducted experiments with filled beakers of water also at

different length scales (R). Both authors found a transition in which evaporation rate

increased from dV
dt
∝ R1 to dV

dt
∝ R>1. They both attributed this enhanced evaporation to

natural convection of the vapour and showed the transition is predicted by Ra. The effect

of natural convection above dissolving liquid droplets was reported by Laghezza et al. [51],

who conducted experiments and simulations, showing that this enhanced evaporation can

overcome the diffusive shielding effect and enhance the droplet evaporation in the array,

16



to even greater than that of the isolated case. Dietrich et al. [60] experimentally imaged

the flow around dissolving droplets finding the formation of a convective plume above the

droplets transporting the dissolving liquid away from them. A theoretical expression was

derived by Dollet and Boulogne [61] to describe the enhanced evaporation as a result of

the formation of a single plume by separating the droplet into an edge and intermediate

zone. The edge has a similar flux to that of an isolated droplet (see eq. 1.17). In the

intermediate zone the formation of a slender boundary layer with flow towards the centre

of the droplet is assumed and a flux in this region is given as

j =
D(csat − camb)Gr1/5

R3/5(R− rc)2/5
. (1.21)

Simulations conducted by Chong et al. [53] demonstrated that these plumes also appear

above droplets dissolving, with individual plumes merging into one.

1.8.3 Carrier et al

Carrier et al. [45] developed an analytical model for the evaporation of an array of droplets.

The authors noticed that the combined vapour concentration field around multiple droplet

has similarities to that of a single droplet. The inter-droplet regions will quickly saturate

and in the centre of the array, the evaporation will largely be governed by diffusion of

vapour above and at the edge of the array. Therefore the evaporative flux is similar to

that of a single flat ‘superdroplet’ which spans over the entire array. The flux over its

surface is therefore predicted by eq. 1.17 with θ = 0, giving

j ∝ (R2 − r2c )−1/2. (1.22)

This simplification allows the authors to combine the individual droplet contributions and

derive an approximate expression, characterising the total evaporation rate of an array of

N droplets with individual base radius a as a single ‘superdroplet’ with radius R, as

dV

dt
=

4ρlπNacsatR

R + πNa
. (1.23)

It is important to note that this expression doesn’t give evaporation rates for the individual

droplets, but does give a prediction for the entire array.
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1.8.4 Diffusive interactions of flat droplets

Fabrikant [54] proposed an analytical model for the diffusive transport of a species through

a porous membrane. An expression for the flux through each pore is derived, affected by

the number and size of the neighbouring pores. Wray, Duffy, and Wilson [1] recognised the

similarity of the problem to that of multiple droplets, then applied this model to predicting

the evaporation of flat sessile droplets (no contact angle). Successfully re-deriving the

Fabrikant expression and comparing to the experiments of Khilifi et al. [62]. The theory

models the shielding effect caused by the diffusive vapour fields which form around each

of the individual droplets (as described in section 1.5). Because of the use of the Laplace

equation the theory assumes that the vapour is quasi-static and that the transient time

is too short to influence the evaporation. For the theory these transient transitions occur

instantly, both for the initially development of the vapour and when a droplets disappears

within the array. The evaporation rate of a kth droplet is the evaporation of the same

droplet in isolation
(
dV
dt

)∗
reduced by its interactions with its neighbours as

(
dV

dt

)
k

=

(
dV

dt

)∗
k

−
N∑
n=1
n6=k

(
dV

dt

)
n

ψkn, (1.24)

where the last term is the summation of the interactions of the kth droplet with the nth

over the N droplets in the array. These interactions depend on the evaporation rate of

the nth droplet and ψ0,kn given as

ψkn =
2

π
arcsin

(
ak
skn

)
, (1.25)

containing the influence of the base radius (a) and separation between kth and nth droplets

(skn).

1.8.5 Diffusive interactions of spherical cap droplets

An alternative but similar approach to Wray et al [1] is that of Masoud et al [55] who

redrived some of Fabrikant later work [63]. The model can be written in the same form

as eq. 1.24 but differs in its calculation of the interaction term (ψkn). The model still

captures the diffusion limited interactions but extends to droplets with θ > 0. To do this

the interaction term is instead inferred from the spherical cap vapour concentration field
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around the kth droplet in isolation. Evaluating it at a distance skn from the centre of

the kth droplet to the centre of the nth droplet. The value of the evaluated point in the

concentration field is given by

ψkn = 4I1
an
skn

+ (I1 + 4I2)
a3(s2kn − 3h2k)

s5kn
(1.26)

where I1 and I2 are integrals defined as

I1 =

∫ ∞
0

[
1 +

cosh ((2π − θ)τ)

cosh (θτ)

]−1
dτ (1.27)

and

I2 =

∫ ∞
0

[
1 +

cosh((2π − θ)τ)

cosh(θτ)

]−1
τ 2dτ. (1.28)

For both the Wray et al and Masoud et al models eq. 1.24 can be written in matrix

form as [
dV

dt

]
Ψ =

[
dV

dt

]∗
, (1.29)

where
[
dV
dt

]∗
is a N × 1 matrix with elements equal to the known isolated evaporation

rates of each droplet. Ψ is an N × N matrix with the element at k, n representing the

interaction of the kth droplet with the nth.

For both forms of the interaction term the diagonal elements equal unity, and the off

diagonal elements are calculated by eq. 1.25 or 1.26 for the Fabrikant-Wray et al and for

the Masoud et al models respectively.
[
dV
dt

]
is an N × 1 matrix with elements equal to

the unknown evaporation rates of each droplet in the array. By inverting Ψ the system of

equations can be solved for the N unknown evaporation rates accounting for the diffusive

interactions. [
dV

dt

]
=

[
dV

dt

]∗
Ψ−1. (1.30)

Therefore by specifying the droplet positions and radii, eq. 1.30 allows for general pre-

dictions of the individual evaporation rates for any arbitrary configuration of multiple

droplets. The matrix of isolated values
[
dV
dt

]∗
can be measured or theoretically predicted

by eq. 1.18.

The models of Carrier et al. [45], Fabrikant-Wray, Duffy, and Wilson [1, 54] and

Masoud, Howell, and Stone [55] are compared against repeatedly in this thesis and will

be henceforth be referred to as the Carrier et al, Wray et al and Masoud et al models
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respectively.

It is also noticed that a similar model, published before that of Wray et al and Ma-

soud et al was developed by Annamalai, Ryan, and Chandra [64] who used a point source

method (PSM), treating each droplet as a vapour point source to obtain a similar expres-

sion for the interaction term in eq. 1.25. They found good agreement with a full calculation

of the problem. These PSM models are widely used in the field of fuel combustion [65].

Future work utilising these models will be discussed further in chapter 7, section 7.6.

1.9 One-sided model

In addition to diffusion limited evaporation other models exist to describe evaporation with

phase change being the rate limiting process. These models are referred to as the one-sided

models [66] and are important when diffusion becomes fast enough to no longer limit the

rate at which molecules can escape the surface. In this case the evaporative flux over the

interface of a droplet depends on the amount of heat supplied to the interface and therefore

the interfacial temperature. This model is applicable to droplets on heated substrates, for

evaporation into low pressure environments and when the liquid is contaminated with

solute which increases the latent heat of vaporisation [67, 68].
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Chapter 2

The Pattern Distortion technique

To capture the evaporation dynamics and characterise the droplet-droplet interactions, the

size of each droplet in an array must be measured throughout the evaporation process. The

most common method when studying isolated droplets is a side camera which captures

images of the droplet’s profile. Calibrated measurements of the radius and height in

these images provide enough information to calculate a volume assuming the droplet is

radially symmetric (has a circular contact line) and is a spherical cap. For multiple

droplets (specifically 2D arrays) side cameras are unable to image every droplet, as central

droplets are obscured by those at the edge. Top cameras have been used to view droplets

simultaneously however on their own they provide no information about the droplet’s

height (or equivalently contact angle). Global evaporation rates for the entire array can

be measured with a mass balance but cannot resolve individual droplets and is incapable

of studying droplet-droplet interactions.

Clearly these limitations demonstrate the need for a new technique which is suited to

experimental multiple droplet research. This chapter explains the development, validation

and optimisation of a new ‘Pattern Distortion’ (PD) technique, which does not suffer from

the aforementioned restrictions.

The technique is a top camera approach which treats droplets as liquid lenses and relies

on geometrical optics to relate its optical properties to its shape. A situation where this

effect can be observed is when raindrops land on phone screens. The droplet acts as a

lens and the embedded pixels act as the object imaged by this lens. The different images

which are formed by various droplets geometries in this situation can be seen in fig. 2.1.

Qualitatively it can be observed that the image which forms is very sensitive to the lens
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Figure 2.1: iPhone 11 phone screen with different shaped water droplets forming images
of the underlying pixels.

which created it and the magnification of the pixels is largest in the smallest droplets. The

aim of this chapter is to understand the connection of a spherical cap droplet geometry

and the resulting image formed.

2.1 Matrix transfer optics

In order to quantify how the magnification by a droplet is related to its geometry we apply

an optical transfer matrix method. The method traces paraxial rays through an optical

system by combining matrices corresponding to how they propagate through it. One such

matrix describes translation events through a uniform medium of thickness d and can be

described by the matrix 1 d

0 1

 (2.1)
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The rays can also refract at curved interfaces between two refractive indices ni and nf ,

which is model by the matrix  1 0

ni−nf
rnf

ni
nf

 . (2.2)

Where r is the radius of curvature of the interface, which is negative if it is concave. When

the interface is flat r → ∞ and the bottom left element of matrix. 2.2 becomes nil. The

matrices 2.1 and 2.2 can be used individually to describe single events or consecutively

to describe composite optical systems. In either case the matrix (matrices) acts as an

operator (χ) mapping points in the object plane to points in the image plane. The height

(yobj) and angle (φobj) of each ray in the object plane with respect to the optical axis is

transformed by χ to the final height (yim) and angle (φim) in the image plane as follows

yim
φim

 = χ

yobj
φobj

 =

χ11 χ12

χ21 χ22

yobj
φobj

 . (2.3)

By multiplying out eq. 2.3 you obtain

yim = χ11yim + χ12φobj, (2.4)

for the final height of the ray and

φim = χ21yobj + χ22φobj, (2.5)

for the final angle of the ray. If χ is a single translation (eq. 2.1), then by substitution

eq. 2.4 becomes

yim = yobj + dφobj, (2.6)

where the small angle approximation has been used such that φobj ≈ tan(φobj) =
yobj−yim

d
,

and eq. 2.5 becomes

φim = 0 + φobj. (2.7)

In other words the height of the ray can change but its angle of propagation remains the

same. Equally, if eq. 2.2 is substituted in the same way (representing a single refraction),

yobj = yim and the angle changes according to Snell’s law. Making the paraxial approxi-

mation here means that the width of the lens (or collection of lenses in the case of multiple
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Figure 2.2: Diagram tracing real (black) and virtual (grey) ray paths from the pattern
(d1, nG), through the substrate (d2, nS) and droplet (h,nL), to the (virtual) image plane
(d3), for a time t0 (left) and t0 + ∆t (right, of the optical axis). yim is the height of the
image formed and f is the focal point of the droplet.
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Figure 2.3: Replotting the LHS of fig. 2.2 with numbered translation (circled) and refrac-
tion (squared) events of the paraxial rays.

droplets) must be sufficiently small compared to the perpendicular distance to the imaging

camera. For our sessile droplet optical system χ in eq. 2.3 is a series of refractions and

translations (see fig. 2.2). The rays of light originate from a point on the object plane

then undergo four translations and three refractions, namely:

1. Transfer a distance, d1 through the air beneath the substrate.

2. Refract from the air of refractive index, nG into the substrate of refractive index,

nS.

3. Transfer through the substrate of thickness, d2.

4. Refract from the substrate into the liquid of refractive index, nL.

5. Transfer through the droplet of height, h.

6. Refract at the droplet interface of radius of curvature r, back into the air.

7. Transfer through air to the image plane at position, d3.

For clarity the LHS of fig. 2.2 has been replotted in fig.2.3 with the translations and

refractions numbered corresponding to the above list. These seven events result in the
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following seven matrices,

χ =

1 d3 − h

0 1

 1 0

nL−nG
rnG

nL
nG

1 h

0 1

1 0

0 nS
nL


1 d2

0 1

1 0

0 nG
nS

1 d1

0 1

 =

χ11 χ12

χ21 χ22

 .

(2.8)

Here nG, nS, nL denote the refractive indices of the gas, substrate and liquid respectively.

Matrix multiplication of eq. 2.8 reduces χ to a single 2× 2 matrix describing how points

in the object plane (yobj) are mapped onto the image plane (yim). In order for an image

to form, all rays from the object plane must come to a single point on the image plane.

Therefore, the final height of each ray on the image plane yim cannot depend on the initial

angle of the rays at the object plane φobj. Consequently at the position where the image

is formed the element χ12 is equal to zero. For our situation of seven matrices this leads

to

χ12 = d1 + (d3 − h)

[
(nL − nG)(d1 + hnG

nL
+ d2nG

nS
)

rnG
+ 1

]
+
hnG
nL

+
d2nG
nS

= 0.

(2.9)

Rearranging, results in an expression for the position of the image plane (d3)

d3 = h−

 rnG

(
d1
nG

+ h
nL

+ d2
nS

)
(nL − nG)

(
d1
nG

+ h
nL

+ d2
nS

)
+ r

 . (2.10)

For thick lenses under the paraxial approximation the image plane is measured from the

principle point of the interface which forms the image. For the spherical cap (plano-

convex) droplet (lens) the principle point of the curved interface lies at the apex and so

the image distance is d3 − h. Recognising this, eq. 2.10 can be written into the form of a

standard lens equation

(
nG − nL
nG

)
1

r
=

1

d3 − h
+

1

nG

(
d1
nG

+ h
nL

+ d2
nS

) . (2.11)
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Where the LHS can be shown to be the plano-convex 1/f from the Lens-maker’s equation.

The term χ11 in eq. 2.8 represents the linear magnification of the system and

yim
yobj

= χ11 = M =
(d3 − h)(nL − nG)

rnG
+ 1. (2.12)

Eq. 2.10 can be used to substitute for the unknown d3, which after rearrangement yields

an expression relating M to the radius of curvature of the droplet’s interface in terms of

known distances d1 and d2 and refractive indices nL, nG and nS,

M =
rnG

rnG −
(
d1 + hnG

nL
+ d2nG

nS

)
(nG − nL)

. (2.13)

If the droplet is undistorted by gravity i.e. Bo� 1, its shape can be considered a spherical

cap and r can be related to the height, h and base radius, a by

r = −h
2 + a2

2h
. (2.14)

By substituting into eq. 2.13

M =
h2 + a2

(2n− 1)h2 − 2nlh+ a2
, (2.15)

where

n =
nG
nL

(2.16a)

l =
nL − nG

n

(
d1
nG

+
d2
nS

)
. (2.16b)

The term l has units of length and captures the various optical and geometric parameters

of the setup. This definition also simplifies the form of eq. 2.15.

By expressing h in terms of the contact angle (θ), eq. 2.15 can be rewritten as

M =
tan2

(
θ
2

)
+ 1

(2n− 1) tan2
(
θ
2

)
− 2n

(
l
a

)
tan
(
θ
2

)
+ 1

. (2.17)

In fig. 2.4, eq. 2.17 is used to plot the calculated values of M for a range of l/a and

θ values, which can be used to optimise the experimental setup to provide the largest

sensitivity to changes in the droplet’s shape. The white region represents high magnifi-
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Figure 2.4: The magnification M mapped over θ and l/a. Dashed line indicates M =∞.
The black cross at [θi, (l1/ai)] indicates the approximate initial position of the droplets in
fig. 2.7 and 2.8 (in section 2.3), the vertical and horizontal lines show the evolution of M
for CA and CR evaporation respectively.

cation, with the black dashed line indicating an infinitely magnified image, determined

mathematically by setting the denominator in eq. 2.17 equal to zero. The length-scale l

emerges as the radius of a droplet with contact angle θ = 90◦ that forms an image with

infinite magnification.

2.2 Image processing

To extract the magnification from the top images, a MATLAB circle detection script (avail-

able at: https://doi.org/10.6084/m9.figshare.26587522.v1) was written to place a

region of interest (ROI) over the central portion of each droplet and measure the median

diameter of the dots inside the droplet in each frame. The size of this region is chosen

based on the following considerations: if the region is made too big the magnification of

the distorted dots at the edge lead to increased certainty in the measured diameter and

consequently the height. Additionally magnifications will vary across this ROI due to

the fact the interface is curved therefore an average of the magnification would give an
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average height of the interface within the ROI. Determining the volume of a spherical cap

requires the height at the apex and so for larger ROI the volume can be made artificially

smaller. Within these considerations the largest ROI is optimum as it provides averages

to be taken to reduce uncertainty in determination of dot sizes.

The raw images are made binary by performing an Otsu threshold and inverting. The

MATLAB function bwconncomp is used to find connected pixel components (the dots) in

the image. This function detects a component if eight or more black pixels in the binary

image are connected by their edges or corners. The regionprops function is then called

to extract positional information for each component as well as a radius, calculated by

fitting an ellipse and averaging its minor and major axes. Trigonometry is then used to

extract only the components which lie completely within the ROI specified by the user.

The median or mean radii of the detected dots is computed and the process is repeated

across each frame. Fig. 2.5 shows an example of a raw (left) and processed (middle)

image along with the corresponding feature extraction (right) determined by the code.

The median dot radius for each frame is divided by the median radius in the final frame

(when the droplet has evaporated), to calculate M . The mean also returns similar values

and has a statistical advantage in images with minimal noise and artefacts but the median

was used in this case because it is found to be less susceptible to uncertainty caused by

misdetections.

Figure 2.5: An example of the image processing and dot detection process used to deter-
mine the magnification in each frame of the Pattern Distortion data. In the right panel
the blue circles represents dots detected within the ROI indicated by the red circle.
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Figure 2.6: A method for selectively hydrophobising a surface by using laser cut tape to
mask the substrate before coating.

2.3 Validation

In order to validate the technique, a single high resolution repeating hexagonal dot pattern

is used as the object. Alternatively, single features could be placed under each droplet

however this requires careful alignment such that they are placed directly under the apexes

of each droplet. For this reason a repeating pattern is used, ensuring there is always a

feature near the centre of the droplet. The pattern is purchased from JD Photo Data

and is manufactured by printing chrome dots lithographically on soda-lime glass (item:

SL12) with a diameter of 100.0 ± 0.4µm and a pitch of 150µm with a cumulative ac-

curacy of ±2µm over 70.7 mm. To ensure the droplets maintain a known circular base

radius throughout evaporation, the contact line is pinned. To achieve this, a clean glass

slide in (nS = 1.46) is covered with polyimide tape and a 10 W UV 355 nm (TRUMPF,

SCIII10SL) laser is used to make circular incisions in the tape. The outer part of the

tape is then removed and the slide is hydrophobised by spray coating with Glaco Mirror

Coat Zero [SOFT99], baked for 12 mins at 50◦C and left then to cure for 10 mins at

room temperature. Finally, the remaining circular pieces of tape are removed, revealing

uncoated hydrophilic glass regions, surrounded by the hydrophobic coating. See fig. 2.6

for a diagram of this process. Controlling the size and position of these circular incisions

means bespoke templates can be created which pin the location and contact lines of the

droplets for approximately 80% of their drying time.

De-ionised (DI) water was produced with an 18 MΩcm PURELAB Chorus 1 ELGA

system. A DI water droplet (nL = 1.33) with a = 1.06± 0.04 mm, θ ≈ 97◦ and V0 ≈ 3µL
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is deposited by hand into the hydrophilic region of the prepared substrate of thickness

d2 = 1.05±0.01 mm with the pattern placed directly beneath (d1 = 0 mm). To prevent air

currents the droplets were contained within an acrylic box (W = 722 mm, H = 510 mm,

D = 473 mm) with an ambient fractional humidity (RH) of 38± 5% and temperature (T )

of 22.9± 1.0◦C. Images are taken simultaneously by a top camera with a ×0.3 rectilinear

lens and side camera with a ×4 objective lens to measure the magnification and height

respectively. The magnification is extracted as described in section 2.2. By rearranging

eq. 2.15 the quadratic can be solved for the two roots and M is converted to a height, h.

The appropriate root can be determined by knowing if the image is virtual/real, as the

positive root is the larger/smaller value of h,

h =
Mnl ±

√
(Mnl)2 − a2(M(2n− 1)− 1)(M − 1)

M(2n− 1)− 1
. (2.18)

The height determined from top camera magnification and eq. 2.18 (htop) is plotted against

the height measured directly by a side camera (hside) in fig. 2.7. The grey region represents

the variation in htop within the uncertainty of the measured base radius. The uncertainty

in the base radius comes from the technique which is used to pin the droplets contact

line and is therefore not a limit of Pattern Distortion itself. If this pinning technique was

improved, the uncertainty in the measurement of height would be set by the measurement

of the size of the dots within the resolution limits of the camera. Therefore it is possible

to more accurately determine h (or equivalently θ). Regardless, the data agrees well with

the black line (htop = hside), confirming the Pattern Distortion (PD) technique’s ability to

capture the shape of the droplet from its magnification.

To further validate the PD technique the same method was applied to a three-droplet

line. In fig. 2.8 htop is plotted against hside for the left (L, blue), middle (M, green) and

right (R, red) droplets with initial base radii of aL = 0.99±0.03 mm, aM = 1.03±0.04 mm

and aR = 0.98 ± 0.05 mm respectively, and a centre to centre separation of s = 4a. For

this multiple droplet system the PD data again agrees closely with the side camera heights

for the blue and red series. The slight non-circularity of the middle droplet’s contact line

results in the topology of the liquid interface diverging from a spherical shape. As a result,

the imaged dots become marginally distorted which causes the minor discrepancy seen in

the green series and highlights the sensitivity of the method to the shape of the contact

line. The extension to non-circular contact lines and non-spherical droplets is discussed in
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Figure 2.7: Height determined by the top camera (htop) by substitution of M into eq. 2.18
against side camera height (hside) for an isolated droplet. The surrounding insets show
three top and side frames during evaporation. The shaded regions are the variation in htop
due to the uncertainty in the base radius (a).
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section 2.5.4. By plotting the data in this way the difference in evaporation rate cannot

be seen however the middle droplet took 11% longer (∼ 200 s) to evaporate.

Figure 2.8: Height determined by the top camera (htop) by substitution of M into eq. 2.18
against side camera height (hside) for a three droplet line with the left (L), middle (M) and
right (R) coloured blue, green and red respectively. The surrounding insets show the first
experimental frames from the top and side cameras. The filled regions are the variation
in htop due to the uncertainty in the base radius (a).

The uncertainty due to the paraxial approximation is < 1% for these experiments.

The ratio of the distance of the droplet from the centre of the FOV and the distance of

the camera from the substrate was 1/10. This ratio must remain small for the paraxial

approximation to be valid.

2.4 Optimisation

To experimentally measure the magnification, an object placed beneath each droplet must

be imaged from above using a fixed top-down camera. For repeating patterns the maximum

absolute magnification |M+| should be chosen such that each droplet has at least one
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Figure 2.9: Repeating fig. 2.4 highlighting CA evaporation trajectories.

measurable dot initially within the analysed region of interest (ROI). This is because the

magnification generally decreases monotonically during evaporation and will ensure one

or more dot is always visible. The ROI should be centred on the droplet apex avoiding

the distorted features near the contact line. The values d1 (the gap beneath the substrate)

and d2 (the thickness of the substrate), contained within the parameter l, can be used

to manipulate the initial magnification. The sign of M+ corresponds to whether a real

(inverted) or virtual (upright) image is formed and makes it possible to prevent droplets

crossing the dashed line in fig. 2.4, when the magnification will become too large to be

analysed. The choice of which side of the dashed line an experiment should start is

determined by the droplet’s mode of evaporation: for a constant contact radius (CR),

evaporation trajectories move from right to left on fig. 2.4 from an initial coordinate

[θi, l1/ai]. To avoid crossing into the red region, l can be selected to place the droplet

in the blue region (forming a virtual image). It can also be utilised to ensure monotonic

variation in magnification. For a constant contact angle (CA), evaporation will result in

an upward trajectory and therefore a better choice of l on fig. 2.4 is l2 commencing in the

red region (forming a real image). Fig. 2.4 (repeated in fig. 2.9) allows optimal design of

the experimental setup, tailored to specific droplet geometries.
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2.4.1 Magnification change due to image plane movement

An important experimental consideration is the movement of the image plane, located at

d3(t), along the optical axis during evaporation. This movement can lead to the image

of the dots shifting outside the depth of field (DOF) of the CCD camera. The resulting

blur in the image makes identifying the size of each droplet ambiguous and gives rise to

an uncertainty in M . To investigate the effect of the dot edge becoming de-focused, the

variation in dot diameter ε was measured as it was translated a distance δ from the focal

plane of the CCD camera. Fig. 2.10 shows δ plotted against ε/εδ=0. To compare this to how

far the image plane moves as the droplet lens changes shape, the maximum displacement

of d3 for a droplet evaporating in CR mode with a = 1 mm, for initial contact angles

θ0 = 90◦, 145◦ and 165◦ is also plotted. It can be seen from the position of the blue bars

that for higher values of θ0, it is important to ensure that the dot pattern is perfectly in-

focus midway through evaporation, in order to minimise the uncertainty overall. The blue

bars are therefore centred on δ = 0 and positioned horizontally at the point of intersection

with the de-focusing curve of the lens (black data points). The x-axis intercept indicated

by the dotted blue lines therefore represent the uncertainty in M due to the movement of

the image plane. For the droplets used in this chapter and thesis, this corresponds to a

variation of ≈ 4%.

The movement of the image plane formed by the droplets is the object which is imaged

by the camera. When an object is moved on the optical axes of a standard lens its

magnification changes due to the angular nature of the FOV. Again for large contact

angles this may become significant and lead to uncertainty in measuring M and therefore

determining the droplet geometry. Telecentric lenses provide the possibility of eliminating

the uncertainty due to this effect as they are insensitive to this movement of the image

plane. These lenses use carefully placed apertures to capture only rays of light which are

parallel to the optical axis. Because of this they do not have an angular field of view

and therefore objects moving along the optical axis do not change size [69]. Telecentricity

could therefore be utilised to eliminate this. Lenses of this sort also tend to have large

usable DOFs addressing the de-focusing discussed in section 2.5.3.
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Figure 2.10: Variation in normalised dot diameter (ε/εδ=0) translated a distance δ from
the imaging plane of the CCD camera. The blue bars represent the range of movement in
the image plane, for complete evaporation from three initial contact angles (θi). The bars
are positioned horizontally to encompass the maximum magnification data point within
this range when centred vertically at δ = 0. The increase in M due to de-focusing is
therefore indicated by the dashed lines.
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2.5 Extensions and other applications

This section lists some possible extensions of the technique which have not been the focus of

this project but represent future directions to improve it, as well as additional applications

which Pattern Distortion could be applied to.

2.5.1 Liquid lenses

In addition to evaporation experiments, fig. 2.11 can assist the design of adaptive liquid

lenses. Much of the existing research in this area focuses on methods of controlling the

position of liquid interfaces, known as actuation techniques (see Zhu et al. [70] for a review)

but not the effect this control has on the optical properties. The theory can predict the

range of magnifications which can be achieved by different liquid lens geometries. The

curved solid lines plot the magnification by liquid lenses of constant volume (CV) whose

shape is controlled by means of actuation techniques (e.g. electro-wetting). The curve

CV1 represents the possible values for a droplet with V = 3.0µL and l1 = 0.32 mm, which

are the experimental values of the droplets presented within this chapter. The second

curve (CV2) illustrates the possible magnifications for a smaller lens of V = 0.1µL, which

is capable of forming both real and virtual images.

2.5.2 Bubbles and composite lenses

When dispensing droplets it was noticed that occasionally a bubble can get trapped within

the droplet and has an interesting effect on the magnification. This represents a composite

lens system with different shaped optical components and refractive indices. Recent work

has shown liquid composite lenses can be effective at adaptively forming images [71]. By

making a slight modification to the matrices in eq. 2.8 we are able to use the PD technique

to determine the size of a bubble trapped at the apex of a droplet. To do this the matrices

in eq. 2.8 need to be adapted. The distances in the first and third translation matrices are

adjusted by the diameter of the bubble (2rB) and the radius of curvature in the second

refraction matrix is now +rB due to the bubble’s concave surface, rather than the convex
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Figure 2.11: The magnification M mapped over θ and l/a. Dashed line indicates M =∞.
The curved lines indicate the magnifications which can be traversed by an actuated liquid
lens of constant volume CV1 = 10µL and CV2 = 0.1µL.

38



B
e
fo
re

Top Side

A
ft
e
r

a)i

a)ii

b)i

b)ii

Figure 2.12: a) Top and b) side camera images of a droplet-bubble composite lens i) before
and ii) after popping.
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The upper surface of the bubble was omitted as it was assumed to be uniform and

thin thus having an insignificant effect on the optics. As a result mathematically the rays

refract at the lower interface of the bubble and then translate directly to the image plane.

An equation relating M to rB was then derived as described previously. To create the

droplet-bubble composite liquid lens, a droplet of DI water with a volume of 1.3µL was

deposited onto a clear acrylic substrate of thickness d2 = 0.8 ± 0.01 mm and refractive

index nS = 1.489. A bubble of air was then injected inside the droplet using a pipette.

The droplet-bubble was recorded simultaneously with top (fig. 2.12 a) and side (fig. 2.12

b) cameras until the bubble popped.
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To calculate its size the magnification of dots is first measured just outside the bubble

(M = 1.39± 0.01) to obtain the height of the droplet, h = 0.76± 0.04 mm by substituting

into eq. 2.18. Then by analysing the reduced magnification (M = 0.56± 0.08) (in fig. 2.12

a), caused by the concave lower interface of the bubble we calculate a predicted value for

its radius of curvature of rB = 0.29±0.06 mm, entirely from top camera measurements. If

the bubble is assumed spherical this value can be verified by using a side camera to infer

rB. To do this we measure the change in volume of the droplet just before (fig. 2.12 b i)

and just after the bubble pops (fig. 2.12 b ii), yielding rB = 0.35 ± 0.12 mm. Comparing

these two values demonstrates the PD technique can successfully be applied to composite

lenses as well as to measure and study bubbles. Fig. 2.12 a also shows how the precision in

the technique can be significantly enhanced for applications which do not require a large

field of view when a higher magnification lens is used.

Because of the measurement of magnification adjacent to the droplet these dots are not

at the apex and the associated height is therefore slightly lower than the actual value. This

error will become larger, as the bubble size or the droplet’s contact angle increases and

will eventually become a limitation. Another challenge is the image formed just outside

the bubble and dots inside the bubble being formed at different positions. This leads to

an uncertainty in determining M .

The theory also assumes that the bubble is located exactly at the apex of the droplet

which is not always easy to ensure as can be seen in fig 2.12. This could have been caused

by the substrate not being completely flat, or the presence of smaller bubbles preventing

free movement to the apex.

Because of these measurement uncertainties further experimental provisions would

need to be made to minimise these values and improve the accuracy of the determined r.

2.5.3 Reducing error due to de-focussing

As discussed in section 2.4 the changing geometry of evaporating liquid lenses means

that the focal length of the lens is changing. Because of this the image distance (d3)

changes during evaporation and the image is formed in different places. If this movement

is significant it can move outside of the lenses DOF and the resulting de-focused image

leads to an uncertainty in the measurement of M . This is most apparent with droplets

with large θ. The easiest solution to this problem is to ensure that the lens used has a
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sufficient DOF to avoid significant de-focusing however this may be costly and difficult

for certain droplet geometries. One alternative suggestion for extending the technique

to avoid/reduce the uncertainty caused by motion of the image plane is to calibrate the

effect of de-focusing on the measurement of magnification for the droplets and lens used

experimentally. A technique for resolving the size of image features which are out of focus

is described by Sharma et al. [72] which might make it possible to address this issue.

2.5.4 Non-spherical interfaces

Currently the technique has only addressed spherically shaped droplets which is a valid

assumption for water droplets with approximately h < 1.5 mm. Above this the interface

becomes distorted by gravity and flattens in the centre. Expressions exist which describe

the shape of these gravity flatten droplets [73–75] which could in principle be substituted

in to the theory in place of eq. 2.14. The problem is that magnification is not sensitive

to the h alone when the interface is flat. One possible solution would be to interpret the

image formed at the very edge of the droplet which always remains curved. This would

likely require considerations of the distortions which occur this close to the edge of the

lens.

Another possible extension would be to surfaces which do not have axial symmetry but

do have a dimension in which the curvature is spherically capped. For example a rivulet

has an almost infinite r in its direction of flow and magnification in this direction would

be minimal however perpendicular to this, the curvature may be a circular cap (again

depending on the associated Bo number). The magnification could then be extracted

from this perpendicular dimension alone and the height profile in the direction of the flow

could be determined. This 1D magnification extraction could also be used to determine

multiple radii of curvature of droplets with certain non-circular contact line shapes. For

example an ovular contact line would distort the circular dot features into ovals and

extraction of the magnification in the major and minor axes separately could be related

to the equivalent major and minor axis of the ellipsoidal cap droplet.

Other surfaces which have a complex 2D topology would require a different method to

resolve the height variation. One such method which attempts this is Wildeman [76].

41



2.5.5 Measuring evaporating binary droplet composition

Because the Pattern Distortion technique relies on the optical properties of the lens like

the refractive index of the liquid (nL), M depends on this property as can be seen in

eq. 2.13. Because of this the refractive index must be constant and known in order for the

geometry to be determined. However if the value of nL is not known (for example if the

droplet has multiple volatile components) then it may be possible to use the technique’s

sensitivity to nL in a different way, to measure the variation in concentration during

evaporation. To do this the geometry of the lens would need to be established by other

means (i.e. side cameras/mass balances). Once this geometry is known eq. 2.13 can

be solved for nL. To test the sensitivity of M to this parameter consider a single binary

droplet with known components of unknown concentration with different refractive indices.

With a side camera capturing its geometry and a top camera taking Pattern Distortion

measurements of the magnification through the droplet. The possible ranges of θ and a

can be assumed and magnifications of first (M1) and second (M2) components in pure

form can be calculated. If the refractive index of for the binary mixture (nL) lies between

n1 and n2 [77], the maximum variation is |∆M | = |M1 −M2|. The expected value of nL

for different concentrations can also be predicted theoretically using the mixing rules [78]

or determined experimentally [79]. |∆M | is plotted for two different binary mixtures of

water-ethanol (M1 = Mwater, M2 = Methanol) and water-propylene glycol (M1 = Mwater,

M2 = MPG) against θ in fig. 2.13. It can be seen that greater differences in M are

observed for the water-PG mixture because of the greater distinction in refractive index.

The different series represent different value of l/a. The graph shows that for low contact

angles (θ < 150◦) ∆M varies monotonically and is enhanced at high θ or by increasing

l/a.

The challenge of the method will be measuring the variation in magnification with high

enough accuracy as the changes will be very small. In order to achieve this sensitivity,

l/a will have to be increased which practically means changing the optical setup distances

d1 and d2 (again see fig. 2.2). Increasing this parameter can result in the magnification

becoming too large for the pattern to be viewed inside the droplet. In this case a smaller

pattern would be required which would be difficult to make. Additionally because of the

large sensitivity to M required, high magnification lenses will be needed limiting the FOV

and number of viewable droplets.
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Figure 2.13: Absolute magnification difference (|∆M |) between pure water (nwater = 1.33)
and two other pure liquids: Ethanol (nethanol = 1.36) and Propylene Glycol (nPG = 1.44),
solid and dashed lines respectively. Against θ for different l/a values (coloured series).

There are other possible ways to measure n including refractometers [79], interferom-

eters [80] and Optical Coherence Tomography (OCT) [81] which may be better suited to

single droplet applications.

2.6 Conclusions

A Pattern Distortion technique was developed to measure the absolute volumes of mul-

tiple droplets in arbitrary configurations. Matrix transfer theory was developed to make

predictions of the magnification of the liquid lenses. Experiments were then conducted

alongside a traditional side camera technique to validate its predictions. The matrix trans-

fer theory also allowed for the optimisation of the technique to enhance its sensitivity to

different droplet sizes. The technique was also shown to be informative to the design of

liquid lenses, as it connects the droplet’s shape to the resulting image. The uncertainty
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in the technique was also quantified and considerations of how to minimise these were

described. Finally, extensions of the technique were discussed including: measuring re-

fractive index of binary liquids, studying bubbles, designing composite lenses and imaging

with nonspherical interfaces.
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Chapter 3

Diffusive Evaporation

In this chapter the experimental comparisons of multiple droplet arrays to the analytical

diffusive theories are made for the first time. Firstly instantaneous flux values for multiple

droplet arrays are measured using interferometry and compared to the Wray et al. model

(described in section 1.8.4) in section 3.1. The agreement is shown to be very good.

Because of the successful initial comparisons further experiments were conducted cap-

turing the experimental transient volume dynamics using the Pattern Distortion technique

presented in section 3.2. One of the assumptions made by the theory is that the vapour

transitions quasi-steadily (and the Laplace equation can be used as described in section

1.8.4). This assumption is valid when the vapour field around the droplets develops to a

steady state very quickly (in comparison to the overall evaporation) and this is important

to validate for multiple droplets. It has been shown that this assumption is acceptable for

isolated droplets however for multiple droplets the transient dynamics are likely to take

longer initially due to the increased number of droplets having a larger vapour cloud and

cases where droplets disappear. In the theory, the interactions of a droplet with its neigh-

bours will disappear sharply when it has completely evaporated, consistent with its vapour

cloud turning off like a light bulb. Experimentally there will always be residual vapour

and the transition will be smoother. Whether these sharp transitions are important as

they accumulate in multiple droplet arrays, needs to be tested. These measurements test

the theory’s ability to model the dynamic evaporation process including when droplets

completely evaporate and the array transitions to a new geometry. Good agreement is

found suggesting that the quasi-steady assumption remains valid for the range of arrays

tested.
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Section 3.2 also gives the first side-by-side comparisons of the Wray et al. and Masoud

et al theories, again showing the agreement to be very good within the experimental

uncertainties. This agreement for transient arrays is important, as it demonstrates the

models can be used to make accurate predictions for the complete evaporation of an array

in addition to instantaneous evaporation rates.

The results are also fitted to the Carrier et al. model to demonstrate what is meant by

the radius of the so called ‘superdroplet’. The comparisons focus on small droplet arrays

of N ≤ 21, initially for monodisperse droplets and finally for a polydisperse array (section

3.3).

3.1 Evaporative flux

I was provided with the experimental data in this section, measured using a Mach-Zehnder

interferometer and captured by Dr. Andrew Edwards. The contribution of this thesis

consists of the analysis of the recorded images and comparison with theoretical predictions.

To compare the evaporation of multiple droplets to the existing diffusive theory a

Mach-Zehnder interferometer was used to capture the change in each droplet height (dh
dt

),

evaporating in CR mode. As droplets evaporate the interference fringes at the apex of the

droplet oscillate as the optical path length of the sample arm reduces. The period (∆t)

of these oscillations correspond to successive reductions of ∆h = λ/(n − 1) = 1.905µm

in the path length. By extracting the time between peaks and/or troughs or computing

a time windowed FFT, ∆h/∆t ≈ dh
dt

can be extracted. In order to do this the signal

was obtained from the images, by selecting a region over the central fringe at the apex of

each droplet. The average intensity in this region was calculated for each droplet in every

frame and plotted against time. The MATLAB function findpeaks is used to determine

corresponding times of the peaks and troughs. The mean time between peaks and troughs

was calculated. The signal was analysed between 50 s and 250 s after initial deposition,

which allows the interferometer time to stabilise. This 200 s window represents a maximum

13% of the total evaporation time.

The volume (V ) of a spherical cap is related to its height, h by eq. 1.11. Differentiating

with respect to time gives how the droplet evaporation rate is related to the change in

droplet height
dV

dt
=
π

2
(a2 + h2)

dh

dt
. (3.1)
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Noting that the surface area of a spherical cap is S = π(a2 + h2), the change in droplet

height can be related to the droplet’s interface averaged evaporative flux, J (m s−1)

J =

(
dV

dt

)
/S =

1

2

dh

dt
. (3.2)

Typically evaporation is reported as a volumetric of mass loss however this it difficult to

determine from our measurements as interferometers measure changes in height and not

absolute heights. To make comparisons to Wray et al, eq. 1.24 must be rewritten in terms

of J . The total evaporation rate can be obtained by integrating the flux over the surface

of the droplet (
dV

dt

)
=

∫
S

jds = Jπa2. (3.3)

By substitution of eq. 3.3 into 1.24 and simplifying, remembering that the Wray et al

theory is for flat droplets with surface area πa2, one obtains

Jk = J0k −
2

π

N∑
n=1
n6=k

(
a2n
a2k

)
Jn arcsin

(
ak
skn

)
. (3.4)

If the droplet array is monodisperse (ie. ak = an = a) then this can be further simplified

to

Jk = J0k −
2

π

N∑
n=1
n6=k

Jn arcsin

(
ak
skn

)
. (3.5)

By experimentally measuring dh
dt

with the Mach-Zehnder interferometer, half of this value

is J (eq. 3.2), which can be directly compared to calculated theoretical values for the array,

by writing in matrix form and inverting the N ×N interaction matrix.

All comparisons assume isothermal evaporation in a constant ambient humidity. Con-

sequently, single values of D(T ) and c∞(T ) are calculated according to eq. 1.4 and 1.15

respectively, where T and φ are measured at the beginning of each experiment. These as-

sumptions are valid as the experimental data is analysed over 200 seconds which is much

shorter than the timescale for significant changes in the environmental conditions.

For simplicity, we average our interferometric measurements of flux obtained with

the peak to peak (J̄p), trough to trough J̄t and FFT (JFFT) methods, using Jexp =(
J̄p + J̄t + JFFT

)
/3. This measured flux is then used to colour the left half of each droplet

in fig. 3.1. The right half is coloured by the corresponding Wray et al prediction (Jth).
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Figure 3.1: Experimental images of evaporating 2-D droplet arrays. Coloured overlays
show; measured average evaporation flux (Jexp) and Wray et al’s theoretically predicted
evaporation flux (Jth), on the left and right hand semi-circle over each droplet respectively,
for between 50 s to 250 s after final droplet deposition. a-c) Pentagon. d-f) Cross. g)
Hexagon ring. h) Triangle. i) 7 Hexagon. j) 3 × 3 Square. k) Random. l) 4 × 4 Square.
m-n) 19 Hexagon. o) 5 × 5 Square. Images have been histogram equalised. Figure from
Edwards et al. [4].

48



As expected, the effect of shielding on a droplet, and therefore its evaporation flux, is

determined by its position within the array, number of neighbouring droplets and their

proximity (which we term the droplet’s ‘confinement’). Droplets in equivalent/symmetric

positions have the same confinement and so experience identical shielding effects from

neighbouring droplets. Because of this they evaporate at the same rate. Droplets at the

corners are the least confined, so evaporate faster than those at the edges, with droplets in

the centre evaporating the slowest. Overall the colours of the semi-circles on each droplet

are quite similar, indicating good agreement between the Wray et al. theory and the

experimental measurements.

Fig. 3.1 a shows the measured evaporation flux for droplets arranged in a pentagon

where the average evaporation flux varies by no more than 7% between droplets. This

follows from the symmetry of the pentagon providing identical confinement conditions for

each droplet. In comparison to an isolated droplet, co-operative shielding reduces the flux

of each droplet by approximately 62%. Rearranging the five droplets into a cross formation

(fig. 3.1 d-f) creates two confinement conditions: the points and the centre. The points of

the cross being the least confined have the highest evaporation flux (a reduction of only

33± 5% compared to an isolated droplet) while the evaporation flux of the centre droplet

has reduced by 50%. The triangle formation in fig. 3.1 h illustrates that droplets at the

corners of the triangle (two nearest neighbours) are less confined than those on the edges

(four nearest neighbours), with the former evaporating approximately 20% faster than the

latter.

The dense droplet array configurations in fig. 3.1 l, m and n again show that the

evaporation flux is highest from the least confined droplets at the corners and decreases

with increasing confinement. Interestingly, within the filled hexagon (fig. 3.1 m and n) we

find that the six inner ring droplets evaporate around 50% slower than the outer droplets;

however, the centre droplet evaporates only 8% slower than the inner ring. This suggests

that the influence of the edge of the pattern only extends a certain distance into the array;

further inwards the evaporation rate is almost constant. This is because as the distance

to the edge of the array increases the surrounding gas is more and more saturated and

diffusion of the vapour around these droplets is predominantly in the vertical direction.

Fig. 3.1 k shows a random arrangement of evaporating droplets where each droplet has a

unique confinement, similar to a spray pattern.
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3.2 Transient dynamics

Furthermore detailed comparisons of the Wray et al. theory can also be conducted by use

of the Pattern Distortion technique as well as to the Masoud et al model. The development

of this method makes it possible to extract absolute volumes, rather than just flux. In

addition, it is easier to make comparisons over a longer period of the array’s evaporation

time including the situation when droplets begin to disappear and the interaction matrix

must be updated. A transient implementation of this theory is written in Python and

described in Appendix B.

To determine each droplet’s absolute volume we employ the Pattern Distortion tech-

nique (described in chapter 2). In the experiments, 2.00 ± 0.25µL droplets of de-ionised

water (PURELAB Chorus 1 – ELGA) with surface tension γ = 72.75 mN/m were placed

into an acrylic box (W = 722 mm, H = 510 mm, D = 473 mm) to prevent air currents in-

fluencing the evaporation. Each droplet will evaporate saturating 1.09×10−4 m3 of air, for

9 droplets (the maximum dispensed in this section) this represents an increase in relative

humidity of 0.56% for a perfectly sealed enclosure. For an isolated droplet this corresponds

to a maximum variation in evaporation of 10%. But, given the enclosure will not be per-

fectly sealed and the humidity will not increase this much. Selectively hydrophobised

soda-lime glass substrates with a thickness of 0.982 mm were prepared for each pattern to

pin the contact line of each droplet with a base radius of a = 0.97± 0.07 mm for approx-

imately 80% of the drying time. The initial contact angle of the droplets was θ0 ≈ π/2

radians, with Bo ≈ 0.13. The relative humidity and temperature were recorded with two

DHT22 sensors with temperature varying < 1% and humidity by < 5% in all cases. The

maximum uncertainty in the measurements of temperature and humidity being ±0.5◦C

and ±5% respectively. In this section a lot of the experimental data and theoretical results

are normalised to make comparisons. The reason the data was not left in standard units

is that droplets are very sensitive to their environmental conditions (substrate tempera-

ture, ambient humidity and temperature). Therefore unless these quantities are carefully

controlled and measured, small variations lead to expected differences in droplet evapora-

tion. Many single droplet studies have been conducted demonstrating that if the ambient

environment and substrate temperature are controlled then the theory works very well to

capture the evaporation [27]. Therefore to simplify the experiments and to eliminate the

variation of these quantities between experiments, normalisation is used.
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Fig. 3.2 depicts a time series of experimental images (columns) for four separate droplet

configurations (rows). It can be seen that the magnification of the dots monotonically de-

creases indicating a monotonic decrease in h. By analysing as described in section 2.2 and

substitution of M(t) into eq. 2.18, hk(t) can be obtained and the spherical cap volume

is calculated with eq. 1.11. Fig. 3.3 plots the theoretical (lines) predictions for the Wray

et al (solid) and Masoud et al (dashed) models for the ‘Square’ arrangement depicted

in the top row of fig. 3.2 and evaporation is assumed isothermal and in a constant hu-

midity environment. In each case the three lines represent the three distinct confinement

conditions at the corner, edge and centre. The sharp corners on the theoretical curves

are instantaneous changes in evaporation rate when other droplets in the array disappear.

Physically these corners are likely to be smoother, their sharpness in the theory is inherent

in the assumption of quasi-steady vapour. The experimental data are also plotted (black

markers) and represent V averaged across symmetrical confinement for three repeat ex-

periments: corners (twelve droplets), edges (twelve droplets) and centres (three droplets).

In both cases V is normalised by its initial value (V0) and t normalised by the the time

(t∗) for the fastest evaporating droplet to reach V0/2. This normalisation ensures that

the fastest evaporating droplets in both the predictions and data pass through the point

y = 0.5 and x = 1. Good agreement is obtained with the data falling between the two

theoretical models. The data points visually appear to be in closer agreement with the

Wray et al model however this will vary with different choices of normalisation. The best

way to interpret the graph is to compare the spacing between the lines which capture the

position dependant evaporation rates of each of the droplets. In order to accurately com-

pare the two theories comparisons would need to be made without normalisation (absolute

values). To achieve this, experiments would need to be conducted in a temperature and

humidity controlled environment, due to the sensitivity of their evaporation. Additionally

since the difference between the theories is in accounting for the contact angle this could

be maximised by improving the pinning technique to allow droplets to have higher initial

θ. Alternatively a superhydrophobic substrate could be used such that droplets evaporate

in a CA mode. The large value of θ would enhance the difference between the theoretical

predictions and comparisons would reveal the extent of the improvement made by inclu-

sion of the interactions dependence on θ. Alternatively experiments could be conducted on

droplets with low contact angles which would determine which analytical form performs

the best.
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Figure 3.2: Experimental images of droplet arrays magnifying a pattern of dots (ordered
vertically by the number of droplets N) as a function of time for the triangle, cross,
pentagon and square configurations. The legend indicates the droplet’s scale, initial (t = 0)
contact angle (θ0), and volume (V0). The nearest droplets in each arrangement have s = 3a.
Figure adapted from Iqtidar et al. [6].
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Figure 3.3: Experimental data of a 3×3 square array compared to the predictions of Wray
et al. [1] (solid) and Masoud et al. [55] (dashed) of the normalised volume (V/V0) against
normalised time (t/t∗). From Kilbride et al. [5].
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The full temporal volume dynamics for the experiments in fig. 3.2 compared to Masoud

et al. are plotted in fig. 3.4. In each case the agreement is very good. It can be observed

that in general the model predicts that the evaporation rates of droplets in different con-

finements, are more spread out than measured experimentally. One possible explanation

for this is that after the data is truncated because the droplets have de-pinned, a has

reduced. This would result in these evaporating slower than assumed by the theory due

to the linear dependence of
(
dV
dt

)∗
on a (see eq. 1.18). This de-pinning will also increase

the distance between the droplets which will also enhance the evaporation rates. This

effect is mostly visible in panels b) and d) as the evaporation rate of the central droplet

increases as the surrounding droplets are truncated. Theoretically it is also assumed that

the atmosphere is quiescent and that no forced convection occurs. This is difficult to

ensure and quantify experimentally as it would require imaging of the airflow around the

droplets. Small air flows could exist due to drafts in the surrounding enclosure. Air flows

are also generated at the beginning of the experiment by the motion of dispensing and

sealing the enclosure which may take time to arrest. Another assumption made by the

theory is that the transients times for the vapour field to develop is small in comparison

to the total evaporation time. For multiple droplets this assumption may start to break

down as the time required to develop the quasi-steady vapour field composed of each of

the droplet’s individual contributions will be greater. It is also true that the total evapora-

tion time for these multiple droplets is greater, but how the initial transient time and the

array’s lifetime scale are unknown. Xu et al. [82] detailed how the ratio of the transient

time to lifetime (τT ) scale for isolated droplets in different situations giving the following

expression

τT = 687.4
(1− φ)csat

θρl
, (3.6)

which must be � 1 for the approximation to hold. Calculating the value for a charac-

teristic droplet in this section gives τT = 0.0033, which would imply the approximation is

reasonable if these droplets were isolated, however eq. 3.6 does not account for more than

one droplet and it is not clear how to extend this to their combined vapour field. The

level of agreement in fig. 3.3 demonstrates that this approximation is still valid but might

explain small discrepancies, indicating this assumption may not hold for larger arrays

with more droplets. In addition to the initial transients the theory also assumes the time

taken for the vapour to transition to an updated steady state when droplets disappear
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is instant. For droplets evaporating in CR mode this transition could take a significant

amount of time, increasing and accumulating with the number of droplets which evaporate

within the array’s lifetime. It is difficult to establish the extent of this effect from the data

as the droplets de-pin and are truncated, masking the point they disappear. This de-

pinning will also make the transient periods less significant as the evaporation rate of the

droplets monotonically decreases to zero and the vapour field naturally transitions to the

steady state, when the droplet disappears, as it shrinks. If the droplets remained perfectly

pinned the evaporation rate would drop to zero very rapidly and the vapour replenishing

the steady-state would too. In this case there would be much more residual vapour at the

point of complete evaporation and the time for it to be diffused away as it moves to its

new state would be longer. In the theory this residual vapour would vanish instantly.

The diffusive timescale can also be examined to quantify how quickly the vapour can

be transported by calculating a characteristic diffusion coefficient for the experiments.

From eq. 1.4 for T = 21◦C, D = 2.43× 10−5 m2s−1 for water vapour in air. The timescale

is therefore τD = L2
D/D where LD is a diffusive length scale. Over the distance between

droplets of LD = 0.001 m, it takes τD = 0.04 s before the droplets start interacting.

This is the most convincing explanation for the divergences between the theory and

data in addition to the measurement uncertainties of the technique. Another possible

explanation might be that the experiments are starting to realise non-diffusive effects which

are amplified by the presence of multiple droplets. These include thermal interactions

through the substrate in which the evaporative cooling of the droplets becomes significant

enough that the process cannot be considered isothermal.

The data was also compared to the ‘superdroplet’ model proposed by Carrier et al. For

non-circular arrays it is not clear which radius to use to predict its global evaporation rate,

therefore an experimental (dVT
dt

) was fit to the data to obtain a predicted Rc in eq. 1.23.

Fig. 3.5 shows the linear fit to VT over t. Eq. 1.23 can be rearranged to

Rc =

(
dVT
dt

)
ρlπNR

4DπNRcs − dVT
dt
ρl
. (3.7)

The gradient of the fit is then substituted into 3.7. The corresponding ‘superdroplet’

radius is plotted on top of the array in the inset of fig. 3.5. The contact line aligning well

with the outer extent of the array. The same comparisons can be applied to the three other

experimental configurations and the resulting Rc values are plotted in fig. 3.6. The two
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Figure 3.4: Experimental volumes (V/V0) of the (a) triangle, (b) cross, (c) pentagon and
(d) square in fig. 3.2 compared to the predictions of Masoud et al. [55] (dashed lines)
against normalised time (t/t∗). Taken from Iqtidar et al. [6].
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Figure 3.5: Experimental data of a 3×3 square compared to the radius (Rc = 5.13 mm)
of a ‘superdroplet’ (blue circle) obtained by fitting the total nine droplet volume (VT ) to
the theory of Carrier et al. [45].

blue lines in each panel indicate uncertainty from repeated experimental measurements.

It can be seen that Rc aligns with the outer extent of the array for each arrangement.

In all three cases the minimum radius which encloses all of the droplets is R = 4 mm

and the radius which passes through the centre of the outer droplets is Rc = 3 mm.

These comparisons argue for selection of Rc somewhere between these two points. The

consistency of this across the different arrangements demonstrates that the choice of Rc for

making theoretical predictions is not sensitive to the specific positioning of each droplet

nor the number of droplets contained within the radius. Therefore ‘superdroplet’ theory

can be used to make predictions for the small arrays in fig. 3.6, however as the arrays

become bigger it would be expected that it would only be suited to arrays which have a

circular shape.
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Figure 3.6: The ‘superdroplet’ radius (Rc) blue circles for the cross (Rc = 3.89±0.56 mm),
pentagon (Rc = 3.71± 0.12 mm) and triangle (Rc = 3.92± 0.25 mm) arrangements. The
two lines indicate the maximum and minimum Rc due to the standard error over repeat
experiments or uncertainty in experimental measurements.

3.3 Polydisperse Arrays

In addition to testing the theories for the monodisperse case predictions can also be made

for polydisperse droplet arrays. In order to generate on demand arrays of different sizes

with accuracy, a Liquidyn P-Jet CT jetting dispenser was mounted onto a CNC step

motorised translation stage (Zero 4). Dispensing and movement were programmed with

Gcode generated by an in-house Python script. A droplet of desired volume could then

be dispensed at a desired location approximately every 0.9 seconds. A tempered glass

screen protector (4youquality) was used as the substrate, first cleaned with ethanol and

dried with an air gun. The substrate has an equilibrium contact angle of θ = π/2 and

droplets were found to evaporate in a CA mode. The nozzle of the dispenser was positioned

approximately 10 mm above the substrate reducing the production of satellite droplets.

A 4 × 4 square arrangement of droplets with alternating volumes of 1.36 ± 0.01µL

then 5.40± 0.04µL with a separation of s = 5 mm was printed and left to evaporate. The

lifetime of each droplet (τ) was extracted and compared to the predictions of Masoud et

al. Fig. 3.7 plots the experimental (τexp) and theoretical (τth) lifetimes normalised by the

time for the last droplet to evaporate (τ̂ = τ/τmax). The data falls on the τth = τexp line

(blue) indicating good agreement with the model with only a small amount of scatter.

To understand the origin of the scatter the data can be replotted in fig. 3.8 showing the

positions of the droplets coloured by normalised lifetime for experiment (left) and theory

(middle). Note that grey indicates the droplets with the longest lifetime. The rightmost

panel plots the array with the colour indicating the difference between the experiment

and theory. The difference demonstrates that one side of the array evaporates 10% faster
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Figure 3.7: Maximum normalised theoretical (τ̂th) and experimental (τ̂exp) lifetimes each
droplet in a 4× 4 square polydisperse array.
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Figure 3.8: 4 × 4 square polydisperse array. The colourbars indicating the maximum
normalised experimental (left panel), theoretical (central panel) and differential (right
panel) lifetimes for each droplet.

than the theory and the other 10% slower than the theory, indicating the presence of an

external bias limiting and enhancing the diffusion on each side. The origin of this bias is

discussed and investigated further in chapter 4 section 4.1.

The normalised lifetimes in fig. 3.7 and 3.8 can be plotted against the radial distance

from the centre in fig. 3.9. Both the theory and experiment group together in six clusters

on the graph. The reason for this is, there are three distinct radial positions within the

4 × 4 array and therefore three distinct confinements. In each confinement can either be

a big or small droplet, leading to a bifurcation of τ .
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Figure 3.9: The maximum normalised lifetimes (τ̂) for the Masoud et al theory (blue) and
experiment (black) for a 4 × 4 square polydisperse array as a function of radial distance
from the centre of the array (rc).

3.4 Conclusions

In this chapter two experimental methods were implemented to take data from multiple

droplet arrays. Flux data measured with a Mach-Zehnder interferometer was found to be

in good agreement with the Wray et al diffusive model for a series of small droplet arrays

of different shapes. The model was further validated along with the Masoud et al model

for volume data measured with the Pattern Distortion technique. The two models are also

compared showing similar agreement and performance. Further Pattern distortion exper-

iments again show the Masoud et al model’s ability to capture the evaporation dynamics

of different shaped small arrays.

The data was also compared with the Carrier et al model and was used to inform the

size of the corresponding ‘superdroplet’ radius.

Finally the lifetimes of an initially polydisperse array of droplets (with different base

radii) were compared to the Masoud et al theory. The agreement was also shown to be

very good for this array and validates the theory for polydisperse arrangements.
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Chapter 4

Non-diffusive dynamics

In chapter 3 the evaporation of small arrays of droplets was shown to agree well with the

diffusive theory of Masoud et al. [55]. The arrays considered so far had N ≤ 21 with

R . 20 mm (in section 3.1), N ≤ 9 with R . 6 mm (in section 3.2) and N = 16 with

R . 11 mm (in section 3.3). The radius range of the droplets was 0.6 < a < 1.78 mm.

The good agreement implies that the dominant method of interactions for these droplet

arrays is the diffusive interactions through the vapour. In this chapter the aim will be to

find when the limits of the theory and when droplet evaporation begin to diverge from

the diffusive theory. It is found that this happens (for millimetre sized droplets) when the

array becomes sufficiently large and/or when the array is on a heated substrate.

4.1 Large arrays

In everyday life droplet arrays nearly always extend over larger areas than studied so far

in this thesis. The effect of increasing the length scale of the arrays and its impact on

the agreement with the diffusive dynamics can be investigated. It is expected that more

droplets could result in an amplification of non-diffusive dynamics which may lead to a

divergence from the diffusive theory.

4.1.1 Method

To minimise the dispensing time of arrays with many droplets, the droplet printing setup

described in section 3.3 was used. For the larger arrays a 12.9 inch iPad screen protector

(JETech) was used as the substrate. This was because it provided a large enough clean
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continuous hydrophobic surface which prevented the contact line pinning and ensured close

to CA evaporation and a circular contact line. The droplets were assumed to evaporate at

the equilibrium θ = π/2. Evaporation during the dispensing time was further minimised

by printing arrays from the centre to the edge such that the first droplets printed were the

most confined. Droplets were left to evaporate inside an acrylic enclosure (X=722mm,

Y=510mm, Z=473mm) to limit external air currents and maintain a quiescent (still)

environment (see fig. 4.1). The screen protector substrates are placed on the base of the

box on top of 1 inch sheet of wood. The droplets were illuminated through the top of the

enclosure with a LED ring light (Pnitri) with an outer radius of 12.6 inches. Images were

taken intermittently through the acrylic roof of the box with a Nikon D750 DSLR camera

with an AF-P DX NIKKOR 18-55mm f/3.5-5.6G VR lens. The humidity and temperature

inside the box was measured throughout evaporation with two DHT22 sensors wired to

and controlled by an external Arduino. All electrical components were kept outside of the

box to avoid them thermally influencing the evaporation.

To analyse the videos the droplet lifetime was extracted by the Python program ‘Mea-

sure Droplet Lifetime’ (see Appendix C for a description). These droplet lifetimes are

then compared to those predicted by the Masoud et al. theory.

The Pattern Distortion technique described in chapter 2 and implemented in chapter 3

section 3.2, was not used in this section due to the challenges associated with the analysis

of the magnification inside each droplet with sufficient camera resolution and FOV. In

addition to this the droplets evaporate with moving contact lines which would therefore

require each of these to be tracked. Despite this, it is possible, and development of analysis

code to capture both these quantities for large numbers of droplets would provide valuable

information and be the focus of future work. Furthermore smaller sections of the arrays

as well as individual droplets could also be studied. Lots of interesting dynamics can be

inferred purely from the droplet lifetimes and this will be the focus in this chapter.

4.1.2 Results and Discussion

The data can be plotted against the Masoud et al. predictions for a number of experi-

ments in which the length scale and inter-droplet spacing were varied. But before these

experiments were carried out predictions were made using Masoud et al to determine the

most suitable array to print to maximise sensitivity to non-diffusive effects.
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Figure 4.1: Diagram of the experimental setup of the array of radius R evaporating inside
the enclosure of dimensions X, Y, Z. The array centre is positioned at distances Lx and
Ly from walls of the enclosure. The position of the two temperature humidity sensors are
indicated as s1 and s2.
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4.1.3 Array sensitivity to non-diffusive evaporation

The top panel of fig. 4.2 plots the normalised lifetimes (τ̂ = τ/τmax) of the droplets in

four different array shapes against their radial position from the centre (rc). These shapes

were: circle (black series), triangle (blue) and hexagon (green) (each with hexagonally

packed droplets) and a square (red) (with square packing). The length scale of each array

was kept approximately the same but was chosen arbitrarily. Fig. 4.2 also presents the τ̂

heat-maps for each array shape in the four lower panels, revealing how τ̂ varies spatially.

Due to the diffusive shielding effect the least confined droplets will evaporate first. These

are the droplets along the edge of the array with the ones at the corners having the

fewest neighbours and therefore evaporating first according to the theory. Because of this,

shapes with vertices are slowly rounded off and regularly spaced arrays of mono-disperse

droplets like the hexagon, square and triangle in fig. 4.2 become circular. The transition

of each array can be seen in the lower panels of fig 4.2, with the different colours showing

the corners gradually disappearing with the red and white regions approaching the same

circular shape. The top panel demonstrates the perturbation which these vertices make

to the smooth τ̂(rc) profile, initially very large with droplets evaporating at similar times

over a wide rc range but slowly decaying over time as the array becomes more and more

circular. The point in which each array becomes circular is indicated by the coloured

arrows. The three non-circular arrays converge to the (black) steady-state circular array

which does not have these features because it lacks any vertices and droplets at similar rc

have similar confinement. The shape with the largest perturbation from this steady-state

is the triangle as it is the furthest from a circle. The extent to which a certain array will

perturb can be quantified by the roundness (o) defined as

o =
4πA

P 2
, (4.1)

where P is the perimeter of the array and A is the area it covers on the substrate. For

a circle o = 1 and for all other shapes o < 1. The triangle, square and hexagon have

roundnesses of o = 0.698, 0.785 and 0.907, explaining the decreasing perturbations for the

blue, red and green series respectively. To confirm that eq. 4.1 can be used to predict the

length of this transition generally, some irregular shaped arrays would need to be tested.

In these cases, it is possible that the specific shape of the array outline varies how long

it takes for the array to become circular for arrays with the same o. It will also probably
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depend on the packing density of the droplets within the array.

For now however, to maximise the sensitivity of the experiments to non-diffusive effects

a circular shape array is chosen, as any divergences from it will indicate non-diffusive

dynamics. Within this circle the droplets could either be dispensed in a hexagonal or

concentric circle arrangement however the former is preferred due to the greater packing

efficiency, which provides the possibility for a greater experimental range of droplet density.

4.1.4 Investigating and correcting for array bias

As was observed in section 3.3 larger arrays can start to experience biases with one side

of an array evaporating faster than the other. As the arrays begin to increase in droplet

number and size this becomes a significant feature of their dynamics. To investigate the

origin and effect these biases have on the droplet evaporation lifetimes, an experiment is

conducted with an array placed asymmetrically nearer to one side of the enclosure in the

X dimension and centred between them in the Y dimension as defined by fig. 4.1. In the

asymmetric dimension the array was a distance Lx = 2.75R = 0.14X (from the centre of

the array) on one side and 15.6R from the other. The N = 649 droplets were dispensed

hexagonally into a circular array with R = 40 mm and left to evaporate. Mathematically

diffusion limited theory assumes there are no walls and the concentration approaches the

ambient value at infinity. By introducing a wall this boundary condition is no longer

satisfied. Effectively droplets can be thought of as evaporating into different ambient

conditions depending on their position within the array.

The lifetimes of the droplets can be seen in fig. 4.3 (left panel) with the corresponding

Masoud et al. predictions (middle panel). The two panels maintain a reasonably circular

evaporation however droplets with the longest lifetimes (coloured white) are shifted and

not located at the centre as predicted by the theory. The rightmost panels showing the

difference in these lifetimes reveal droplets evaporate faster on one side of the array and

slower on the other. This strong bias is due to the asymmetry in the position of the array

with the local humidity on one side of the of the enclosure causing a slower evaporation on

this side. To visualise the agreement in different ways the data can be plotted as a single

series of τ̂th against τ̂exp for each droplet or as two series against rc. For the former data

points which lie on y = x represent perfect agreement and for the latter the two series

should lie on top of each other. These graphs can be seen in fig. 4.4 and in both cases
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Figure 4.2: Masoud et al. maximum normalised lifetimes (τ̂) for a circle (black), triangle
(blue), hexagonal (green) and square (red) array plotted against rc (top panel). The
droplets evaporated in CA mode with θ = π/2. The arrows indicate the point in which
each array becomes circular. The number in the legend represents roundness (o) define by
eq. 4.1. The τ̂ colourmaps for each array plotted in the below panels.
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there is poor agreement with large scatter. The origin of the scatter will at least partly be

caused by the enhanced bias. This is because experiments without any bias would predict

that droplets at a particular radial distance from the centre would evaporate at similar

times, as seen previously for the circle in fig. 4.2. The bias however distorts this and in

fig. 4.4 introduces a scatter in the τ̂ values for each value of rc (right panel). It is because

of this scatter that there is an offset at rc = 0, as the droplet in the centre of the array

is not the one which evaporates last. The limit of the fastest evaporating droplet at any

rc is set by the droplet on the side of the bias where the vapour concentration is lowest.

Interestingly this bias is not directly normal to the nearest wall (at Ly = 0 in fig. 4.1)

but also faster nearer to the door of the enclosure (at Lx = X). The side of the array

near the wall also evaporates faster, where it would be expected that vapour is stopped

by the boundary. This indicates that there are gaps between the base of the container

and the walls, leading to small airflows (leaks) which are depleting the vapour on this

side. Because of this as the array evaporates the array moves away from the near wall

and the asymmetry should reduce. If there were no leaks underneath the walls the edge

furthest from the wall would evaporate first and this asymmetry would be maintained.

Furthermore, the action of closing the door at the beginning generates a small amount of

forced convection, advecting the vapour away from the door. In addition to confinement

asymmetries and air currents, thermal gradients in either the substrate or air could also

cause biases of this sort.

The biasing is a problem when searching for non-diffusive effects not included in the

theory, as it hides their presence. Attempts have been made to minimise this bias experi-

mentally however this is challenging as the droplets appear to be very sensitive to minor

asymmetries and the direction in which the bias presents varies between experiments.

To improve the agreement the theory can be modified to account for this directionally

dependant bias and improve the agreement. The theoretical values of dV
dt

can be enhanced if

nearer to one side of the array and reduced if nearer to the other. Since the specific ambient

humidity does not affect the agreement (due to normalisation), this should improve the

agreement of the normalised lifetime as long as the bias is linear. The magnitude of this

correction depends on the component of the radial distance vector (rc) in the direction

of the bias (rb). To determine the direction of the bias the centre of mass of the last

three droplets to evaporate is calculated and labelled the bias point (xb, yb). This point is

marked with a cross in fig. 4.5 which plots the same array as the asymmetric confinement
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Figure 4.3: 649 droplet hexagonal array within R=40mm. The colourbars indicate the
normalised experimental (left panel), theoretical (central panel) and differential (right
panel) normalised lifetimes for each droplet. The side of the nearest wall is indicated on
the left experimental panel.

Figure 4.4: Evaporation lifetimes for an N = 649 circular array of radius R = 40 mm
with hexagonal packing spaced s = 3.0 mm. The left panel plots theoretical (τ̂th) against
experimental (τ̂exp) lifetimes with the black dashed line indicating τ̂th = τ̂exp. The right
panel plots τ̂th (blue) and τ̂exp (black) against rc.
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θb

θc

Figure 4.5: Normalised bias (b̂) applied to the array in fig. 4.3. The black arrow indicates
the direction of the bias. The red cross is the centre of mass of the last three droplets and
the red circle is the centre of mass of the full array. Bias angle is labelled θb (defined by
eq. 4.2). θc is an example of the angle to a specific droplet, circled in black here.

experiment discussed above. Without the presence of a bias this point would be at the

origin, xb = x0, yb = y0 which is marked with a circle in fig. 4.5. The angle of the x axis is

set by the arbitrary horizontal direction in the experimental images. The angle between

the x-axis and the vector connecting the bias and origin points is given by

θb = arctan2

(
yb − y0
xb − x0

)
(4.2)

and the angle is indicated in fig. 4.5. Where arctan2 represents the two argument arc-

tangent (−π ≤ θb ≤ π). The same angle can be calculated to any droplet centre (xc, yc)

in the array for example the black circle indicated in fig. 4.5 shows an example droplet,

the angle is given by

θc = arctan2

(
xc − y0
xc − x0

)
. (4.3)
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The distance along the bias vector for any droplet is then

rb = rc cos(θb − θc). (4.4)

The normalised value of rb for each droplet is indicated by the colourbar in fig. 4.5, with

the black arrow pointing in the direction of the bias. Eq. 4.4 can then be used to calculate

a coefficient (b) which alters the evaporation rates

b = 1−mbrb (4.5)

where mb is a positive value having dimensions of [L−1], representing the gradient of the

correction bias. b is then used to calculate the corrected evaporation rates
(
dV
dt

)
corr

of each

droplet from its uncorrected rate
(
dV
dt

)
as

(
dV

dt

)
corr

= b

(
dV

dt

)
. (4.6)

Droplets along the central line of the array perpendicular to the bias direction, have

rb = 0 (white droplets in fig. 4.5) and the rate is unchanged
(
dV
dt

)
corr

=
(
dV
dt

)
as b = 1.

The magnitude of b varies linearly with rb, decreasing when rb > 0 (red droplets) and

increasing when rb < 0 (blue droplets) according to eq. 4.5.

Fig. 4.6 demonstrates how increasing mb (the steepness of the correction) helps reduce

the scatter and improves the agreement with the τ̂th = τ̂exp indicated by the black dashed

line. The bottom panel plots the mean absolute difference (δτ̂) of each series from the

black dashed line. The choice of mb has an optimum value (mb ≈ 10 m−1, green for this

experiment) which minimises δτ̂ . Beyond this the data begins to diverge again (as in the

mb = 15 m−1, blue).

The lifetime colourmap can be re-plotted (in fig. 4.7) for the bias yielding the best fit

in fig. 4.6 (mb = 10 m−1) and the theoretical prediction looks qualitatively better with the

slowest evaporating droplets (in white) now approximately located at the same non-central

position. The rightmost panel showing the spatial difference in the droplet lifetimes has

reduced to a maximum of ∼ 15%, from ∼ 30% without the correction. It is clear that

despite this correction there is still some disagreement. Some of this disagreement may be

caused by the limitation in the assumption that the bias is linear. The extent to which

this assumption is true is shown by the rightmost panel of fig. 4.3 and fig. 4.5. The white
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Figure 4.6: Left panel shows the maximum normalised theoretical (τ̂th) and experimental
(τ̂exp) lifetimes for different bias correction gradients (mb). The right panel shows the
linear bias (b) applied in the direction of the bias. The lower panel indicates the mean
absolute difference of the experiment from the theory (δτ̂) for each value of mb.
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Figure 4.7: Re-plotting fig. 4.3 with the linear bias correction added to the theory panel.

region in the centre of the array is not straight in the former but is completely straight

in the latter. This means that there could be an additional dependence on rc which is

not accounted for. The challenge of improving the correction is differentiating between

this and other causes of disagreement, namely non-diffusive effects. It is also possible that

the non-linearity of the bias and the blue data points in the top left panel of fig. 4.6 are

in fact divergences caused by the onset of a length scale dependant non-diffusive effect.

This non-linearity is only visible because of the reduced scatter resulting from the imposed

correction.

4.1.5 Characterising non-diffusivity

With the knowledge that these biases impose a scatter to the data the origin of the non-

linearity in fig. 4.6 is investigated. Three separate experiments of different size arrays are

conducted to understand how it influences the non-linearity. For each experiment τ/τmean

is plotted against rc alongside their corresponding theory in fig. 4.8. The black data

represents the experiments and the blue their corresponding Masoud et al predictions. The

scatter in these experiments is much reduced as the arrays were centred in the enclosure

at Lx = X/2 and Ly = Y/2 in fig. 4.1 and bias was minimised experimentally as much

as possible. In each case you can see the lifetimes decreasing towards the edge of the

array (rc → R), with the longest lifetimes at the centre (rc → 0) as expected for diffusive

evaporation.

For the first (top) panel the agreement is very good and the data and Masoud et al
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lifetimes lie on top of each other. For the middle and lower panels however the data points

diverge from one another. The largest array (lower panel) having the worst agreement.

The divergence of the experimental data suggests the experiments are starting to evaporate

with additional non-diffusive effects which depend on the length scale, not captured by

the theoretical model and not correctable by introducing a bias. To characterise the non-

diffusive profile an equation is fit to the data. The diffusion limited evaporative flux profile

over a flat droplet (θ = 0) with a = R (given by eq. 1.17) is

1

j
∝ (R2 − r2c )1/2. (4.7)

Carrier et al. [45] showed that droplet arrays evaporate as flat ‘superdroplets’, therefore the

local flux on the ‘superdroplet’ interface is inversely proportional to the droplets lifetime

(τ(rc) ∝ 1/j(rc)). This expression can be written into a more general form in order

to allow it to fit the different shape of the experimental results, as well as the diffusive

theoretical results. The expression used to do this is

τ(rc) ∝ ε(Rn − rnc )1/n + τmin. (4.8)

In eq. 4.8 the quantity n captures the profile shape and allows the profile to bend

further. When n = 2 the profile takes the original diffusive form. As n decreases from 2

the profile flattens reaching a straight line at n = 1. For n < 1 the profile curves in the

other direction. If n is very large the profile approaches a square shape dropping off very

quickly close to rc = R. The term τmin(= τ(rc = R)) can be varied to shift the profile

on the y axis, physically representing the environment’s effect on the overall evaporation

times as well to correct for the fact that lifetimes do not go to zero at the edge of the array

(R = rc). The coefficient ε = τmin/τmax varies the difference in lifetime at the edge and

centre. When ε = 0 the τ(rc) = τmin and the lifetime is independent of droplet position

in the array. Physically this would represent when the droplets are not interacting for

example when evaporation is completely limited by phase change. The best fit obtained

by varying the parameters n, ε and τmin for the data and theory in fig. 4.8 are plotted as

solid lines in the same colour. Since the Masoud et al theory is purely diffusive, n should

equal 2 for the blue data points such that eq. 4.8 reduces to the diffusive eq. 4.7. The

optimum n (given in the legend) is found to be slightly less than n = 2 for each of the blue
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series. This is because eq. 4.7 does not account for the fact that the ‘superdroplet’ array

is effectively evaporating in CA mode and R is decreasing as the edge droplets disappear

(note that if the droplets themselves were evaporating in CR mode, the ‘superdroplet’

would still be evaporating in CA mode). Additionally τ represents a temporally averaged

value of the flux from each droplet over the course of its lifetime and not an instantaneous

flux. Eq. 4.7 does not account for any changes in flux due to the droplets changing size

(i.e. becoming smaller towards the edge of the array). This therefore explains why n is

not exactly 2. Despite this, the general shape of the Masoud theory is captured well by

eq. 4.8 and n being slightly less than 2 is accounting for these limitations.

As previously mentioned, the experimental radial lifetime profiles (black series) show

varying levels of agreement, indicating that the diffusive theory is no longer correctly cap-

turing the experimental radial lifetime profiles for these larger arrays. The fit of eq. 4.8 to

the experimental data (black lines) is very good in each panel and therefore the parameter

n allows the fit to capture the diverging shape of the experimental radial lifetime profile.

The three panels show that as the arrays become larger the curvature of the experimental

profiles in fig. 4.8 becomes more pronounced. This curvature describes a flattening of the

lifetimes in the centre of the array with a sharper decrease in lifetimes near the edge. The

fit of eq. 4.8 can be used to measure this curvature with the parameter n allowing the

equation to match this curved shaped. The values of n = 1.60, 2.32 and 3.50 correspond

to arrays of radius R = 14, 30 and 55 mm respectively and so n (the curvature) increases

with the length scale of the array. It is also true that the value of n increases for the diffu-

sive theory which may be explained by the aforementioned limitations of eq. 4.7. Despite

this, n does not increase as significantly as for the experimental data. This curvature is

associated with the extent of the disagreement and therefore the amount of non-diffusivity

in each experiment.

It is important to note that, the scatter of the experimental data in fig. 4.8 is largely

caused by experimental bias, as observed previously in section 4.1.4. The determination of

the fitting parameters are expected to be unaffected by the scatter (experimental bias) as

it is symmetric about the centre of the lifetime profile. As such if the bias were reduced and

there was less scatter the optimum fitting parameter values would not change significantly.

To establish which explanation is the most convincing a montage of the evaporation

behaviour is plotted in fig. 4.9 for the largest array in fig. 4.8 (R = 55 mm). It can be

seen that majority of the evaporation < 225 mins (of 339 mins) the droplets evaporate
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Figure 4.8: lifetime (τ) normalised by mean droplet lifetime (τmean) against radial distance
from the centre of the array (rc). Black data represents experimental data and blue the
corresponding Masoud et al theoretical predictions with the fit to eq. 4.8 represented by
lines in the same colour.
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0 mins 225 mins

315 mins 332 mins

Figure 4.9: Evaporation montage of a N = 685 circular array of radius R = 55 mm
with hexagonal droplet packing separated by s = 4 mm. Images have been processed as
described in Appendix C for clarity.
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in the order expected for diffusion, with the least confined near the edge of the array

disappearing first. In the late stages of evaporation this changes and droplets evaporate in

a non-diffusive order with the central droplets (the most confined) evaporating before edge

droplets. These ‘hot spots’ could be consistent with natural convection which predicts

the development of cells and plumes in the vapour due to the difference in buoyancy

between ambient air and saturated air (their formation was described in section 1.2).

The convective plumes would transport saturated air away from certain regions effectively

decreasing the confinement of the affected droplets. The density of dry air (ρdry) and water

vapour saturated air (ρsat), differs by ≈ 1% with that of saturated air being less dense

than dry air. As a result the saturated air is convected upward away from the droplets and

unsaturated parcels of air are convected downward to replace it. These plumes have been

observed above pools of water and in droplet dissolution by other authors as described

in section 1.8. In each case the work describes the formation of an individual plume at

the centre of the array or pool. In fig. 4.9 multiple ‘hot-spots’ appear and this could

indicate the generation of multiple convection cells. These results could therefore be the

first observation of convection above evaporating droplets and also the first observation

of the formation of multiple convection cells. For comparison a similar montage of the

smallest array in fig. 4.8 is plotted in fig. 4.10. These images do not show the same ‘hot-

spot’ evaporation and the array evaporates in the expected circular manner expected for

diffusion. These montages therefore indicate that the non-diffusive behaviour depends on

the length scale of the array.

To characterise the convection the dimensionless numbers in section 1.2 can be used.

Since it is thought that the flow above the droplets is natural convection, it can be char-

acterised by the Rayleigh number (Ra), comparing the relative importance of diffusion

and buoyancy driven flow. Ra was preferred to Gr as Sc ≈ 0.6 and diffusion is dominant

over viscous dissipation. The Pe number could be considered a more general alterna-

tive, also capturing forced convection which other authors have observed changing droplet

evaporation rates [83–85]. Despite this, it is not expected that air current velocities are sig-

nificantly changing for the different experiments in fig. 4.8 and therefore forced convection

is ruled out as an explanation for the disagreement. The convective numerator depends

on the length scale (L) and Ra predicts that increasing the size of the array promotes

convective transport. Convection is also enhanced with an increasing density difference

(∆ρ) between the species. For a pool of liquid this density difference is between ρsat and
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Figure 4.10: Evaporation montage of a N = 85 circular array of radius R = 15 mm
with hexagonal droplet packing separated by s = 3 mm. Images have been processed as
described in Appendix C for clarity.
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ρdry. For a multiple droplet array of the same size as the pool, the density required for

significant convection might be expected to be higher as the area covered by liquid is less.

As a result the average vapour concentration above the droplets will be lower due to the

increased volume it is able to diffuse into between the droplets. It is therefore proposed

here that the standard definition of Ra can be modified from eq. 1.6 to account for this

such that the Ra varies with the inter-droplet spacing. In the limit where the inter-droplet

spacing tends to zero the modified Ra number (Ra∗) should recover the original definition.

Therefore an area fraction (f) is defined as

f =
Nπa2

πR2
=

area covered by droplets

area covered by array
. (4.9)

For a pool of liquid f = 1 and for multiple droplets array f < 1, with higher inter-droplet

spacing decreasing the value of f . f can then be used to effectively lower the value of ∆ρ

and therefore a higher value of R is required for the onset of convection. Eq. 4.9 can be

substituted into the original definition of Ra to give

Ra∗ = f

∣∣∣∣ρsat − ρambρamb

∣∣∣∣ (gR3

νD

)
. (4.10)

Here Ra∗ varies linearly with f which not necessarily true but has been assumed for

simplicity as it is not obvious how the average concentration above the droplets varies

with the inter-droplet spacing. A series of experiments was then conducted with different

R and f values (summarised in table. 4.1). In fig. 4.11 the value of Ra∗ for each array is

then plotted against the fitting parameter n, from fig. 4.8, to characterise the level of non-

diffusivity. The black and blue series represent the value of n for the experimental data

and Masoud et al. diffusive predictions respectively. The error bars represent the limits of

Ra∗ due to the variation in T and φ during the experiment. There is a linear relationship

between the variables, with a coefficient of determination of 0.877, indicating that as Ra∗

increases the value of n increases. The Masoud et al data (blue) demonstrates that the

parameter n is not expected to correlate as strongly for pure diffusive evaporation. With

this figure it is possible to predict whether droplet arrays will evaporate non-diffusively.

For Ra∗ > 103 the value of n rises above that of the diffusive Masoud et al predictions.

Therefore this can be considered a critical Ra∗ for the onset of non-diffusive evaporation.

For thermal Rayleigh-Bernard convection the typical critical Ra is ∼ 2×103 [86], which is
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Figure 4.11: Non-diffusive parameter (n) against modified Ra number (Ra∗) for the Ma-
soud et al model predictions (blue) and the experimental data (black). Errorbars represent
the uncertainty in the fit to n and the experimental variation in T and φ for the y and x
axes respectively.
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s(mm) R(mm) N

3.0 40 649
5.0 50 361
6.0 60 361
3.5 30 265
3 30 361

3.5 40 475
5.0 45 295
3.5 40 475
5 30 121
6 40 163

4.0 30 199
3.0 15 85
4.1 40 349
3.1 40 661
4 55 685

Table 4.1: Summary of the droplet separation (s), array radius (R) and number (N) for
the data presented in fig. 4.11.

similar to that found from fig. 4.11. A breath figure (like those presented in the upcoming

chapter 5) has Ra∗ ∼ 10−3 and should evaporate diffusively. Conversely a round garden

table with a radius of 0.5m covered in rain droplets would have a Ra ∼ 106 and should

evaporate non-diffusively.

The existing convection work does not mention the quantity n and this is the first

instance of using it to characterise non-diffusivity. The mechanism which is responsible

for this, as shown in fig. 4.9 could be convection. Dollet and Boulogne [61] developed a

model containing the evaporative flux over a pool of liquid accounting for convection (see

section 1.2 for a description) and also compared to experiment in the same paper. The

authors found good agreement between their model and the global evaporation rate of their

pool of water. However, they did not compare the prediction of the model to the flux over

the surface. This is likely because this quantity is difficult to measure experimentally over

a pool of water. Multiple droplets have an advantage when studying flux, as each droplet

acts as a sensor with its evaporation providing information about the vapour immediately

above it. As above since τ ∝ 1/j the corresponding droplet lifetimes of this convective

flux (eq. 1.21) can be compared to the diffusive lifetimes of eq. 4.7 (shown to be applicable

to multiple droplets by Carrier et al., see section 1.8.3) in fig. 4.12. It can be seen that the

flux accounting for convection (blue) acts to straighten the radial τ profile in comparison

to the τ profile for the diffusive flux. It could be that the non-diffusive effects presented
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Figure 4.12: The radial lifetimes with a hypothetical ‘superdroplet’ according to diffusive
theory (black series) Carrier et al. [45] and convective (blue series) theory.
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in fig. 4.8 are not convection and must be explained by other means. Alternatively the

Dollet and Boulogne model may not correctly characterise the convective flux as this was

not validated by experiments in their work. Therefore it may need modification.

4.1.6 The effect of box saturation

In addition to convection there is another possible mechanisms which could be responsible

for the the disagreement between the theory and experiment; a number of experimental

limitations could lead to potential divergences. For example, the theoretical prediction

assumes that the droplets evaporate in a semi infinite half space above the droplets and

the vapour is unimpeded by any boundaries. Experimentally this means that the walls of

the enclosure, preventing externally driven forced convection, must be placed sufficiently

far away. To determine if this is being achieved the relative humidity inside the box should

not increase significantly as this indicates a build up of vapour concentration at the walls of

the enclosure. Inside the same size enclosure this effect would become more significant for

larger droplet arrays, due to the increased vapour they generate leading to a higher degree

of saturation. The amount of liquid required to saturate the enclosure at temperature T

can be calculated by substitution of the saturation vapour pressure (psat) given by eq. 1.15

and the volume of the acrylic box into the ideal gas law (eq. 1.14). At room temperature

(T = 21◦C) with an initial ambient humidity of φ(t = 0) = 0.4, assuming the box is

perfectly sealed, ≈ 1.9 mL of water must evaporate before φ = 1. One droplet in the

experiments for this chapter (V = 2.72µL) represents an increase in humidity of 0.085%

and therefore ≈ 700 droplets are required for saturation. Measurements of the humidity

throughout evaporation indicate that φ rises significantly and vapour is increasing above

its initial value at the walls. The most extreme rise in φ happens for the array with

the most droplets (N = 685), the bottom panel in fig. 4.8. The measurement of the

humidity (bottom panel) and temperature (top panel) throughout evaporation of this

array is presented in fig. 4.13 for two sensors s1 (blue) and s2 (red) (the positions of which

are indicated in fig. 4.1). It can be seen that φ does not increase as much as predicted

theoretically for a perfectly sealed container and therefore there is an unknown leak in

the box. The rate of this leak is likely dependent on the average concentration inside the

box, as increases in vapour concentration will increase the internal pressure inside the box.

This leak also indicates that air is still permeating the box which could explain the bias
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Figure 4.13: φ (bottom panel) and T (top panel) as measured by two sensors s1 (blue
series) and s2 (red series) during evaporation. t = 0 is when the camera begins recording.
The black dashed line (τmax) represents the total evaporation time of the array.
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discussed previously. Saturation of the container would however be expected to increase

τ towards the centre of the array as these droplets would be evaporating into a higher φ.

It would not be expected to cause the curved shape seen in fig. 4.8. To demonstrate the

expected shape the value of φ can be calculated dynamically in the Masoud et al theory

for the N = 685 droplet array, increasing the ambient humidity according to the amount

of phase change in each timestep. To do this eq. 1.15 is used to calculate psat and is

substituted into eq. 1.14 to give

msat =
psatVboxMw

RgT
. (4.11)

This calculates the mass of vapour required to saturate the volume of the enclosure (Vbox =

0.174 m3) into which the droplets evaporated. The ratio of the mass of vapour evaporated

in each timestep ∆mevap to msat gives the incremental increase in fractional humidity to

be

∆φ =
∆mevap

msat

= ∆mevap
RgT

psatVboxMw

. (4.12)

With an initial φ(t = 0) = 0.25 the concentration rises steadily to φ(t = tmax) ≈ 0.75. This

represents a greater increase that seen experimentally which is expected as the dynamic

humidity is modelled assuming the box is completely sealed. Regardless, the resulting τ

(red data) can be seen to diverge from the (black) experimental data in fig. 4.14. The con-

stant humidity (blue) data provides a better agreement as the dynamic humidity extends

the lifetime of the droplets in the centre of the array. This straightens the dependence of

τ on rc and therefore cannot explain the curving observed in the experimental data.

4.1.7 Droplet volume variations

Another consideration which might explain the curved shape of the experimental curves

is the variation in droplet volume due to the increased printing times. As mentioned,

droplets are printed from centre to edge such that the droplets which are on the substrate

for the longest during printing, are the ones which are most confined. Because these

droplets have the slowest evaporation, this minimises their reduction in volume. In the

Masoud et al theory the droplets are assumed to have the same volume (V = 2.09µL) at

t = 0. If centre droplets are larger at the edge, their lifetimes would be expected to be

longer compared with the monodisperse Masoud et al predictions. This is a feature of the
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Figure 4.14: The influence of ambient φ on the radial dependence of τ/τmax. The black
data points show the experimental. The blue and red data plot τ/τmax for a constant φ
and dynamic φ respectively.
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Figure 4.15: Measured base radius (a) of a random selection of droplets at different radial
distances from the centre of the array (rc), for the largest array in table. 4.1. The errorbars
represent the uncertainty in determination of the contact line, due to the resolution limits
of the camera.

larger arrays (middle and lower panel) of fig. 4.8. To quantify the affect of this, droplets

are measured manually from the first frame, for a series of droplets at difference radial

positions from the centre, for the largest array in fig. 4.8 (R = 55 mm). Fig. 4.15 plots

these measurements with the data points demonstrating the best subjective measurement

of a. The errorbars represent the uncertainty due to the resolution limits of the camera.

Despite the errors being too large to statistically prove there is a gradient in the droplet

volumes, the data points suggest that droplets near the edge are larger than at the centre.

The maximum difference in droplet radius between the centre and edge, accounting for

measurement uncertainty is ±0.1 mm. However in reality the discrepancy is likely less

than this.

To determine the possible influence of this variation, the droplet size is varied linearly

in the Masoud et al predictions between 0.9 ≤ a ≤ 1.1 mm (1.53 ≤ V ≤ 2.79µL). The

droplets at the edge being initialised with the largest radii and the smallest at the centre.

The results of these predictions are plotted in fig. 4.16. By comparing this with the

monodisperse comparison in the lower panel of fig. 4.8, it can be seen that although this
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Figure 4.16: The lifetimes (τ/τmean) of the droplets against their radial positions (rc). For
the experimental (black series) and Masoud et al predictions, accounting for variations in
droplet volume.

improves the agreement it is not enough to explain the amount of curving observed. In

conclusion variations in droplet volume due to the extended printing times of large arrays

are not enough to explain the non-diffusive evaporation observed in section 4.1.5.

4.2 Heated substrates

In this section the evaporation of multiple droplets is studied on heated substrates. It is

shown that the dynamics and evaporation again diverges from the diffusive predictions.

The evaporation is found to be very sensitive to small temperature differences across the

substrate. Other mechanisms are considered for their possible influence on the evapo-

ration including, the presence of thermally driven convection and phase-change limited

evaporation.
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4.2.1 Methods

To investigate the influence of the substrate temperature on the evaporation of multiple

droplets, N = 469 droplets of V = 2.74 ± 0.02µL were dispensed into a hexagonal (13

droplet sided) array with s = 3.5 mm (these values were unchanged for all experiments

presented in this section). The substrate was a polished N-type < 100 > silicon (Si) wafer

with a radius of 50 mm and thickness of 5 ± 0.1 mm. The equilibrium contact angle is

found to be θ ≈ π/2 radians and the droplets evaporate in a CA mode. The substrate

was cleaned before each experiment firstly by wiping with ethanol and then drying with

an air gun. Each array was dispensed as described in section 3.3 taking approximately 7

minutes. After dispensing, the silicon wafer and droplets are placed onto an IKA RCT

basic hotplate located inside the setup described in section 4.1 and recorded in the same

way. The hotplate was preheated to different temperatures prior to placing the droplets

on top and has a maximum quoted uncertainty of ±5◦C at 100◦C. The Si wafer, initially

at room temperature, quickly heats up due to thermal conduction through its contact with

the hotplate.

4.2.2 Results and Discussion

The evaporation of the array appeared to be non-circular and therefore non-diffusive.

These effects were amplified as Ts was increased. Fig. 4.17 shows a montage of three

experiments at different Ts as they evaporate in time. In all cases the outline of the

array becomes irregularly shaped, with this irregularity increasing for larger Ts. The

diffusive models (as discussed in section 4.1, see fig. 4.2) predicts the hexagonal array will

transition to having a circular outline and therefore indicates the presence of other non-

diffusive effects. It was observed that experiments at Ts > 40◦C resulted in condensation

forming at the top of the box directly above the array. This condensation did not appear

on the closer vertical sides of the box and therefore is not driven by enhanced diffusion,

which would be equal in all directions. The presence of this condensation above the

array indicates enhanced upward transport of warmer water saturated buoyant air due to

thermally driven natural convection, coming into contact with the cooler roof of the box.

This condensation obscured the camera’s view of the droplets and the dynamics could not

be recorded. To remedy this a thin layer of sunflower oil was spread directly under the

lens of the camera on the inside roof of the box. This was found to successfully discourage
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Figure 4.17: Evaporation dynamics montage for three different experiments at Ts = 21,
40 and 85◦C. Time increases left to right and is indicated in the top left of each image.
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condensation. The layer of oil is the reason for the blurring of the images in experiments

at Ts > 40◦C. Convection in the air could explain the irregular evaporation patterns

observed as thermally buoyant plumes transport vapour away from certain regions.

One possible other consideration is the homogeneity of Ts over the substrate, which

could induce faster local evaporation around hotter parts of the plate. Fig. 4.18 shows

a montage of four separate experiments with Ts = 75◦C and Ts = 85◦C at a similar

amount of time into their evaporation. It can be seen that the irregular shape is formed

repeatably across experiments, with small variations accounted for by the Si wafer and

droplets not being placed in exactly the same position with respect to the hot-plate cen-

tre. The repeatability of these patterns indicate a consistent inhomogeneous temperature

distribution across the hotplate. This could be caused by limitations of the hot-plate’s

temperature uniformity or internal impurities inside the silicon wafer leading to spatially

varying thermal conductivity. This, in addition to natural convection could contribute

to the observed irregular patterns, however this repeatability would be surprising in the

case of convection. This is because the position of the convection cell is likely to be very

sensitive to small perturbations. Despite this, some irregularity can be seen even when the

hotplate is at Ts = 21◦C (unplugged, room temperature) and as such convection cannot

be excluded. Where Ra∗ ≈ 3568 for this array and would be predicted to be non-diffusive

by fig. 4.11.

To characterise the variation in temperature across the Si substrate a thermochromic

liquid crystal (TLC) sheet (Edmund Optics PN:83-904) with a bandwidth of 35◦C to 40◦C,

was adhered to the surface of the hotplate. The hotplate was place inside an acrylic box to

avoid air currents causing temporal variations. The temperature was set on the hotplate

to a value within the TLC bandwidth and left to reach an equilibrium. It was found

experimentally that the hotplate needed to be set between 35 and 38 ◦C to completely span

its colour spectrum. At each 1◦C increment in this range the colour was imaged 5 times.

The images were separated into their RGB components and the average intensity over the

TLC sheet for each channel was calculated across the five images. The standard deviation

was calculated for each image and then averaged to characterise the spatial variation

in intensity over the SI wafer at each temperature. In order to establish a relationship

between colour and temperature the RGB values were converted to a single Hue value

[87]. Fig. 4.19 shows that the Hue value varies monotonically with temperature. The grey

shaded region represents the maximum standard uncertainty in the Hue calculated by
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Figure 4.18: Four different experiments at different Ts showing similar and repeatable
evaporation patterns.
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varying the RGB values over their standard errors and taking the resulting maximum and

minimum Hue values. The variation in Hue due to spatial differences across the imaged

region is smaller than the difference between consecutive degrees. As a result the spatial

difference across the hotplate and by extension the array can be considered to be <1◦C.

The impact of these small variations presented in fig. 4.17 reveals the sensitivity of the

droplet evaporation to Ts and its spatial variation across the hotplate.

The sensitivity of global evaporation to these thermal effects can also be examined. The

left panel fig. 4.20 plots τmax for a number of experiments with different Ts. As expected

τmax reduces with Ts and becomes much less sensitive. The reason for this is that droplets

are initially at Tamb and there is a period of time required for them to reach Ts. At elevated

Ts it is possible that the transient heating time and τmax is reaching a similar order of

magnitude, which would explain the reducing sensitivity to Ts. Eventually it would be

expected that the dependence would be completely flat once the droplets were no longer

able to heat to Ts within their τmax. If the droplets were initially at Ts the droplets

would have greater sensitivity at higher values of Ts. Experimentally this is challenging as

preheating the liquid will result in greater evaporation during dispensing and would require

a controlled saturated humidity chamber enclosing the droplet dispenser. The temperature

dependence predicted by the diffusion limited model over the same temperature range can

be investigated. In this isothermal model dV
dt

only has temperature dependant properties

of the surrounding gas namely c∞ and D in eq. 1.18. These quantities are assumed

to be isothermal in both time and space and therefore do not capture the experiments.

Despite this, Tamb will be influenced by elevated values of Ts and experimentally so the

comparison is nonetheless interesting. The theoretical τmax over the same temperature

range is plotted in the right panel of fig. 4.20. The exact values of τmax are not comparable

to those measured experimentally for the reason just mentioned, as well as the fact that the

droplets were evaporating on a hotplate platform. Because of this τmax would be expected

to be shorter even if the temperatures in the gas were equal, as the theory assumes the

droplets are evaporating on an infinite plane. The shape of the graphs however appears

similar with both having a negative power law dependence. This kind of dependence is

similar to that which has been observed in single droplets [88]. The biggest divergences

appearing at the extreme temperatures.

Thermal convection in the vapour and larger values of csat and D in the air due to

the elevated Ts will result in evaporated vapour being transported away from the droplet
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Figure 4.19: Hue value of a thermochromic sheet at different temperatures. The mea-
surements are indicated by the crosses. The grey shaded region represents the maximum
uncertainty in the repeated image RGB values.

interface much faster. At some point the rate mass transfer from the liquid will not be

limited by the mass diffusion but by the rate of phase change at the interface. The latent

heat supplied to the droplet’s interface is controlled by its thermal conductivity (κ) which

for water is κw = 0.586W m−1K−1 [32]. If the rate of mass transport in the vapour is

greater than the rate at which heat can be supplied to the interface the diffusive models

will no longer be applicable.

To determine the influence of non-diffusive effects, the ratio of the last to first droplet

lifetimes (τmax/τmin) were compared against Ts in fig. 4.21.

For each experiment the system geometry and dispensed array were the same and there-

fore quasi-steady, purely diffusive, isothermal evaporation would predict no dependence of

τmax/τmin on T . This is demonstrated by the blue series in fig. 4.21 which represents Ma-

soud simulations of the same size array with varying ambient temperature, which doesn’t

depend on T . The same ratio is plotted against Ts for the experimental data (black series)

and is found to decrease significantly.

As mentioned previously, changing T (temperature of the gas phase) in the isothermal

model (in eq. 1.18) is not the same as experimentally varying Ts as the thermal conductivity
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Figure 4.20: Maximum lifetime (τmax) of droplets in array evaporating at different sub-
strate temperatures, (Ts, left panel) and ambient temperatures, (T , right panel). The left
panel is experimental data and the right is theoretical calculated according to eq. 1.18.

of air is κair = 26.23× 10−3W m−1K−1 [30] is low, and will be lower than Ts due to heat

loss. Measurements of T at the boundaries of the enclosure were only measured to be

< 4K greater than the temperature in the surrounding room. This is why the ratio found

for the theory does not intersect the black data points at room temperature, in addition

to the platform geometry of the experimental data. Irrespective of this fig. 4.21 provides

evidence of whether the isothermal models can still be applied to heated arrays.

One possible reason for the divergence could be that the assumption that the evapo-

ration is quasi-steady. If the timescale for the vapour field to develop around the array

becomes significant compared to that of the evaporation time the vapour is not correctly

described by eq. 1.16 but by eq. 1.3. Maatar et al. [89] investigated this effect numeri-

cally for isolated droplets, finding that the quasi-steady assumption can break down for

volatile droplets on substrates with low κ, observing a water droplet evaporating on 4mm

thickness aluminium substrate had a transient period of 12% of the lifetime.

Despite this, the difference between their trends demonstrates that the diffusion mod-

els assumptions are no longer valid, the decreasing value of τmax/τmin indicates that the

evaporation is beginning to have a reduced dependence on position. This would be ex-

96



Figure 4.21: Ratio of longest (τmax) to shortest (τmin) droplet lifetimes at different exper-
iments at different Ts (black) and theory at different ambient T (blue). There error bars
uncertainty in evaporation times due to the framerate of the camera.
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pected as evaporation transitions to being limited by phase change. If the flow of heat

to each droplet was equal then the evaporation rate should not depend on position and

τmax/τmin = 1. Experimentally it is likely that there would be a small radial dependence

of the heat supplied, as the local heat produced by the hotplate is shared between fewer

droplets at the edge of the array. Small perturbations in the evaporation rates of this

kind would be amplified, as the timescale for heat conduction to the interface of smaller

droplets would be less.

To summarise the divergences of the heated array experiments from standard diffusive

theory could be caused by a number of things. Firstly, the droplet evaporated on the

elevated platform of the hotplate and not the infinite plane modelled by the theory. Despite

this, the ratio τmax/τmin would not be expected to vary with T as this quantity would be

dependant solely on the geometry, which did not change. To explain the decrease in

τmax/τmin it is expected that the evaporation is transitioning to a non-diffusion limited

form of evaporation which may be caused by vapour being transported away from the

interface at an accelerated rate. This transport is likely to be a combination of thermally

driven convection and enhanced diffusion due to increases inD and c∞. These effects would

then lead to the evaporation being limited by the rate at which heat can be conducted to

the droplet’s interface to facilitate phase change.

4.3 Conclusions

In this chapter the limitations of the Masoud et al. model is demonstrated for large

arrays and heated arrays of millimetre sized droplets. It is shown for large arrays that the

evaporation becomes very sensitive to the surrounding environment, with boundaries and

air currents leading to biases in the array evaporation. The theory was modified to account

for these biases empirically leading to better agreement. It is also shown that larger denser

arrays exhibit non-diffusive evaporation. Circular arrays provide the greatest sensitivity

to this non-diffusivity and it is argued that natural convection is responsible for generating

the local hot spot evaporation within the centre of the arrays. The convection is quantified

by fitting to the evaporation lifetimes and a relationship between this parameter and the

modified Gr number is shown.

The effect of heating the substrate of the droplet arrays is then investigated. By

characterising the temperature across this substrate, multiple droplets are shown to be

98



very sensitive to small spatial variations. Heating substrates leads to the assumptions

of the diffusive evaporation models breaking down. The evaporation can no longer be

considered isothermal due to the sensitivity to variations in the substrate and because of

the influence the hotplate has on the surrounding air. The order of droplet evaporation

also indicates the onset of thermally driven convection meaning the surrounding air cannot

be considered quiescent and isothermal. Evaporation also appears to become one-sided, as

phase change is limited by heat transport to the droplets interface, rather than diffusion

of the vapour around the droplets.
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Chapter 5

Breath figures

Droplets are often so small that they cannot be seen without a microscope, for example in

breath, clouds and fog. The size of these droplets make it possible for them to carried long

distances within the air and transport viruses. The aim of this chapter is to determine

whether droplets of micron size, such as those found condensing from breath, evaporate as

predicted by diffusive models. Experiments are conducted on breath and the evaporation

of the condensed droplets will be examined. It is shown that droplets within the array can

grow whilst the whole array is evaporating and the inclusion of the Kelvin effect (described

in section 1.7) is required to explain this. The influence of the composition of the breath

is discussed and it is shown that the growing also occurs in pure DI water. A simple mean

field model is then developed and compared to the data showing excellent qualitative and

quantitative agreement. Finally, the applicability of the mean field model is discussed and

the length scale over which it is valid is determined.

Imaged area

Cuvette

Tape

Droplets

Therm
ocouples

Objective

Microscope
sample bed

Figure 5.1: Diagram of the experimental setup used to capture the evaporation of confined
breath figures.
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5.1 Methods

In order to dispense the droplets a container is breathed into from about 5 cm from the

opening and the exhaled air causes drop-wise condensation onto the internal walls. The

container is chosen to be an optical glass Hellma cuvette container with dimensions 50.13×

47.52 × 10.17mm (W×H×D) and is subsequently sealed with Scotch tape (see fig. 5.1).

The confinement of the container is found to reduce the evaporation rate such that the

droplets can be imaged before they have evaporated. The equilibrium contact angle of

pure water droplets on the surface of the glass cuvette was found to be θ = 1.73±0.01. The

cuvette was handled through multiple layers of tissue and latex gloves to avoid transferring

heat to the walls of the container. The droplets are imaged under an optical microscope

(Olympus IX81) with ×10 magnifying lens and a metal lens cage is placed on top of the

cuvette to hold it firmly in place. The microscope is focused on the inner top surface and

images an 0.61× 0.49 mm area of the pendant droplets are taken every 4 seconds, as they

evaporate. It was chosen to focus the microscope on the pendant droplets as this side of

the cuvette was not in contact with the metal microscope bed. This meant it was the

warmest face (measurements in section 5.2.1) and therefore where condensation would be

maximally inhibited. The temperature of the upper and lower walls of the cuvette are

also measured periodically with two K-type thermocouples. To track the radius of each

droplet as a function of time the python script ‘DropletTracker’ was used. A description

of the code is given in Appendix A. It is possible that the droplets arrays are dense enough

for coalescence to occur during recording. For simplicity, the imaged region is chosen such

that the droplets far enough apart to avoid this.

5.2 Results and Discussion

5.2.1 Evaporation of breath

A selection of images taken of the evaporation are presented in fig. 5.2 and show the

number of droplets decreasing over time. The experiment was conducted at an ambient

humidity of 57.6±5% and temperature of 25±2◦C. The temperatures of the thermocouples

during evaporation show the top surface (in contact with the imaged droplets) remains

at a constant temperature of 24.3 ± 0.1◦C, whilst the bottom surface cools linearly from

24.2◦C to 23.7◦C during evaporation. The micron size droplets are polydisperse and are
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Figure 5.2: Experimental breath figure montage showing their evaporation. Each frame
is 0.61× 0.49 mm.

relatively evenly distributed within the imaged region. The location in which the droplets

condense onto the substrate is controlled by impurities and defects on the surface which act

as nucleation sites for the droplets [37]. This is shown in the left of the images as droplets

are aligned along a scratch/crack on the substrate, which likely has residual impurities

trapped within it.

Fig. 5.3 shows an enlarged region of fig. 5.2. In the image it can be seen that some

droplets grow (see red arrow indicating an example) whilst others shrink. By tracking the

radius of each droplet (with ‘DropletTracker’) in fig. 5.4 it can be seen that larger droplets

grow and smaller droplets shrink.

The temporal evolution of each droplet’s radius is plotted in fig. 5.4 for the 1411

droplets detected initially. The graph clearly shows the larger droplets (' 4µm) growing

whilst the smaller droplets shrink (/ 4µm). The radius of the largest droplet increases
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Figure 5.3: Enlarged region (60 × 60µm) of fig. 5.2 showing a droplet, indicated by the
red arrow, growing initially before subsequently shrinking.

by about 17% in 400s.

5.2.2 Evaporation of artificial breath

The growth of droplets is surprising and is not predicted by the implementation of the

theory in the thesis to this point. The mechanism responsible for this growth will be

investigated in this chapter. It was also considered that the growth might be a phenomenon

which is purely a result of the composition of the breath, potentially including components

with hygroscopic properties. Other authors have observed saturated salt solutions acting

as humidity sinks [90]. To check this possibility, the experiments were repeated with

micron-sized droplets of pure water by using a pressure controller to pump air through

a chamber of saturated air. This saturated air was directed with plastic tubing to a

Petri dish placed underneath a microscope, which was used to observe the droplets. It

was found that droplets condensed onto the Petri dish and an artificial breath figure was

formed. The resulting evaporation of a 90 × 90µm region is shown in fig. 5.5. It can be

seen that the largest droplet grows from r(t = 0) ≈ 14µm (indicated by the white lines)

to r(t = 278 s) ≈ 15µm. The redistribution of droplet volumes is therefore not due to

dissolved components in the breath.

5.2.3 Significance of the Kelvin effect

The mechanisms of this growth could still be diffusive but could require the inclusion of

the Kelvin effect. In previous use of eq. 1.18 it was assumed that the droplet’s interface

103



0 100 200 300 400 500 600
t (s)

2

3

4

5

6

7

r(
μμ

)

Figure 5.4: Temporal radius of curvature tracking of 1411 droplets in fig. 5.2. Before
t ≤ 400 s the container is close to saturation and evaporation is dominated by neighbouring
droplet interactions. After t > 400 s the concentration drops rapidly due to the edge of the
array moving through the FOV, and the evaporation is dominated by these edge dynamics.
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Figure 5.5: 90 × 90µm window showing the growth of a DI water droplet in an artificial
breath figure. The white lines show how the initially r = 14µm droplet increases in size
after 278 seconds.

is not curved enough for the vapour pressure to be elevated above that of a flat interface

and φsat = 1. At micrometre length scale, the curvature may be sufficient to increase

the saturation concentration at the interface, with the smallest droplet having the largest

φsat (an explanation of the Kelvin effect is given in section 1.7). These differences could

generate concentration gradients between droplets driving condensation. Other authors

have observed a similar effect in other multi-phase systems [91], for example gas bubbles

inside liquids. The growth of the larger bubbles at the expense of the smaller is named

Oswald Ripening. In the case of air bubbles in a liquid the mechanism driving diffusive

transport of gas from small bubbles to larger is Laplace pressure. Here it is suggested

that is is driven by vapour pressure. Some observations of Oswald ripening have also been

observed between droplets in clouds [92], however the mechanism causing the smaller

droplets to be less stable is not clearly discussed.

If the Kelvin effect is the mechanism for the growth then the volume of liquid from the

neighbouring droplets should be enough to supply the required amount of liquid. Because

‘droplet 0’ had the lowest curvature it has the lowest value of φsat. As such there will

be a concentration gradient towards the smaller droplet (1-4) and a diffusive flux towards

‘droplet 0’. To check this, the amount of volume lost from the droplets labelled 1-4 in

fig. 5.6 is calculated over a period of 180 seconds, which is the time for them to completely
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Figure 5.6: Enlarged 40× 40µm region of fig. 5.2.

evaporate. The volume which ‘droplet 0’ grew by in this time was then calculated. Droplet

1-4 represented a total loss of ≈ 275µm3 and ‘droplet 0’ grew by ≈ 156µm3. Therefore

the shrinking of immediate neighbours represented more than enough volume to account

for the observed growth of ‘droplet 0’.

Because of this the Kelvin effect could be responsible for the dynamics. Different

saturation pressures on the droplet interfaces could be driving a diffusive flux into the

larger droplet.

To determine the significance of these differences in pressure/concentration for breath

droplets we can look at how much condensation would be driven by these concentration

gradients between droplets of different sizes and if this could account for the amount of

growth observed. For simplicity the fractional humidity φ will be considered a spatially

averaged value inside the container. This value will be controlled by the history of droplet

evaporation/condensation which has taken place (evaporation increasing φ and conden-

sation decreasing φ). The value of φ itself however influences the evaporation of the

droplets in a polydisperse breath figure depending on how it compares to the saturation

concentration (φsat) of each droplet. By considering the largest (rmax) and smallest (rmin)

droplet radii in the array, the influence can be divided into three distinct regimes: Firstly, if

φ < φsat(rmin) and < φsat(rmax) then all droplets will be evaporating into the sub-saturated
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environment. Conversely, if φ > φsat(rmax) and > φsat(rmin) then all droplets will be con-

densing from the supersaturated environment. And finally, if φsat(rmax) < φ < φsat(rmin)

the droplets will be in a hybrid state, some condensing and some evaporating depending

on their size. If the ratio of the amount of liquid to the size of container is large enough

then φ will be in fact controlled by the droplet dynamics in the container. Inevitably the

droplets will bring φ to the hybrid state and will depend on the specific size distribution

of droplets within the container.

The Kelvin equation [42] (described in section 1.7) can be used to relate the saturation

fraction to r as

φsat = e
rk
r (5.1)

and can be substituted into eq. 1.18, giving

ρl
dVT
dt

= aπDc∞(e
rk
r − φ)f(θ). (5.2)

The value of dV
dt

is calculated and plotted in fig. 5.7 for a range of radii of curvature

in different sub-saturated (φ < 1) and super-saturated (φ > 1) ambient environments

accounting for the Kelvin effect (solid lines). To demonstrate the requirement of including

the Kelvin effect for the prediction of hybrid dynamics (eq. 5.1), dV
dt

is also calculated

for the original φsat = 1 (dashed lines). For simplicity θ = π/2 radians so that a = r

and the evaporation is assumed to be CA, so this is always true. Additionally, the liquid

is assumed to be water. It can be seen that without the inclusion of the Kelvin effect

(dashed) the sign of dV
dt

for a single ambient φ is either positive for all possible radii (for

φ > 1), all negative (for φ < 1) or all zero (for φ = 1). This is clearly insufficient to

explain the dynamics seen in fig. 5.2 and 5.4. With the Kelvin effect (solid lines), dV
dt

can

have positive and negative sign, giving rise to the possibility of source sink dynamics for

polydisperse arrays with φsat distributed across this range. In reality the φ is a function

of space and the concentration gradients will vary between droplets. It is helpful to define

a critical droplet radius

r∗ = r|V̇=0 (5.3)

which has unchanging volume (V̇ = 0) (in equilibrium), indicated by where the lines in

fig. 5.7 intersect with the x-axis. Above r∗ droplets grow (condense) and below droplets

shrink (evaporate). r∗ is larger when φ is lower and smaller when φ is higher. In order
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Figure 5.7: Evaporation rates of different radius droplets in different ambient environments
(different series), with φsat = 1 (dashed lines) and φsat set by eq. 5.1 in eq. 5.2 (solid lines).
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Figure 5.8: Radius of curvature velocity of droplets in different ambient environments
(different series), with φsat = 1 (dashed lines) and φsat set by eq. 5.1 in eq. 5.2 (solid
lines).

to better understand the magnitude of these growth rates in relation to the droplet’s size

fig. 5.7 can be re-plotted to show the contact line velocity da
dt

in fig. 5.8. da
dt

captures the

influence of V on the measured motion of the contact line. Because V ∝ r3 a constant

condensation rate will result in a reducing contact line velocity as more condensation is

required to increase a by the same amount. For this reason it is not expected that droplets

with a � 1µm will experience any significant growth. Indeed no growth is observed in

the large droplet experiments presented in chapter 4 section 4.1 which although initially

are monodisperse become polydisperse with neighbouring droplets having different radii

of curvature. Nor is any growth observed in the large polydisperse droplets in section 3.3.

5.2.4 Mean field modelling of breath evaporation

In order to calculate the collective dynamics for droplet arrays like fig. 5.2 one could

take a similar approach to previous chapters by making use of the work of Masoud et

al. However this is difficult for breath figures for several reasons. Firstly for these large
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numbers of droplets, the interaction matrix (defined previously in eq. 1.26) is 1411× 1411

(≈ 106 elements) and must be inverted at each timestep, which is computationally difficult.

Secondly, the droplets in fig. 5.2 only represent a small region of the array and N is much

larger than the total visible droplets. Inputting their radii and positions as in previous

chapter would assume these droplets were alone, resulting in an artificial edge effect.

Initially, a simpler mean field approach is taken. Models of this kind are successfully

applied in fields such as magnetism [93]. The model assumes that the region observed

is representative of similar surrounding regions on each side and that the edges of the

FOV can be considered to have periodic boundary conditions. It also assumes that the

interactions between droplets can be replaced by interactions with a single mean field. In

this case the mean field is assumed to be the fractional humidity around the droplets and

this spatially varying quantity is replaced by a single value. Given that initially droplets

are observed growing and shrinking simultaneously, φ must lie within the hybrid state

described previously. The mean field assumption is that in this hybrid state the droplets

do not interact with each other but with the mean field (the growing droplets reducing

the mean field φ value and the small shrinking droplets increasing it). The net effect of

these dynamics will vary φ and the droplets will evaporate interacting with this value.

To implement this mathematically eq. 5.2 is rewritten for the kth droplet

ρl

(
dV

dt

)
k

= akπDc∞(e
rk
rk − φ)f(θk). (5.4)

Here φ is considered the mean field ambient environment experienced by all droplets and

the dynamics of any specific droplet will depend on the difference between the saturation

concentration on its interface and this mean field value. This approach therefore decouples

the specific neighbouring droplet interactions and is much less computationally expensive

only requiring a single calculation for each droplet. Formally this value of φ comes from

the boundary condition that at an infinite radial distance from the droplet’s interface the

concentration is at an ambient condition. Making φ a mean field value inside the container

is like saying that the droplets are not evaporating in confinement but their evaporation

can immediately effect the ambient environment everywhere, including at infinity.

The use of this diffusive isolated evaporation equation has also been successfully applied

to condensation by Sokuler et al. [94] but without including the Kelvin effect.

As discussed previously the value of φ will be controlled by the specific distribution
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of droplet radii within the container. It will therefore be a function of time (φ(t)) as the

distribution of droplets evolves. One way for this value to be time dependant is to make

it a function of the distribution of droplet radii. To understand how this could be done,

fig. 5.9 shows the temporal evolution of the droplet radii histogram for the redistribution

period of the evaporation (t ≤ 400 s). It can be seen that the distribution is initially

maximum at r ≈ 3µm. Over time the smaller droplets evaporate with the larger droplets

growing at their expense. At t ≈ 200 s a peak begins to form at r ≈ 5µm. A helpful

way to consider φ’s connection to the distribution is to think of its corresponding r∗.

This critical radius of the droplets in equilibrium (not growing) would be expected to be

somewhere in the centre of the distribution. One suitable guess for the dependence of r∗

on the distribution it to assume it is the mean (r̄(t)). The value of r̄(t) for each series in

fig. 5.9 is indicated by the scatter points (of the same colour) under the histograms (at

N = 0 purely for clarity). The points fall between the initial and final peaks and will

therefore result in the desired volume redistribution. The corresponding φ for this r∗ is

φsat(r = r∗) = φ∗. Since droplets of this radius cannot be evaporating, erk/r
∗ − φ∗ = 0 in

eq. 5.4, therefore

φ(t) = φ∗(t) = exp
(rk
r∗

)
(5.5)

and r∗ = r̄(t) from the distribution. After t = 400 s the resulting histogram drops to zero

very quickly for all r and everything completely evaporates. This is caused by the edge

of the entire array moving through the camera’s FOV. At this point the value of φ will

no longer be controlled by the distribution and the droplets will be in a sub-saturated

environment, all evaporating. Because of this, the edge regime and the redistribution

regime will be considered as two separate timescales. The point at which the edge is

considered to be dominating the dynamics is determined as the value of t when the largest

droplet in the array stops growing and has dV
dt

= 0. From fig. 5.4 this is at 400 s for this

experiment. To test the use of r̄(t) as r∗ and the mean field approach eq. 5.4 can be

written in terms of the velocity of the radius of curvature by differentiating eq. 1.12 with

respect to r and using the chain rule

dr

dt
=

akDc∞

(
e
rk
rk − φ(t)

)
f(θk)

ρlr3k(2 + cos θk)(1− cos θk)2
. (5.6)

Then by using the radius tracking results from fig. 5.4 at t = 0 the initial r and positions
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Figure 5.9: Radius of curvature histogram at different times (indicated by the colourbar)
for the evaporation of the breath figure. The points represent the corresponding mean
radius at each time.
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T (◦C) D (m2s−1) c∞ (kg m−3) M (kg mol−1) γ (mNm−1) ρl (kg m−3)
20 2.417× 10−5 0.0172 0.01802 72.75 997

Table 5.1: Constants for water used in eq. 5.6.

can be extracted. The r can then be simulated by advancing eq. 5.6 in time using the

standard Euler method, providing mean field predictions for the dynamics. The accuracy

of this method is checked by reducing the timestep until the solutions converge. The liquid

constants in eq. 5.6 are assumed to be the same as water which is expected to be the main

component which condenses on the substrate from the breath. These constants are listed

in table 5.1.

The results of the mean field model can then be plotted over the experimental images

to compare its ability to capture the redistribution dynamics. The droplet distribution

initial condition is plotted over the first image in fig. 5.10. It can be seen that the circles

in the image (determined with ‘DropletTracker’ detection code) align closely with those

in the underlying image. As such the mean field theory is initialised within a very close

approximation of the initial distribution captured in the image. Fig. 5.11 presents two

experimental frames with predicted mean field circles (overlaid and aligned) indicating

the size of the droplets after the same amount of time. The colours of the circles classified

by the colourbar, indicates the instantaneous value of dr
dt

. The agreement at 400 s is very

good with the size and density of the remaining droplets in each frame looking qualitatively

similar. It is worth noting that the small specs represent droplets with high concentrations

of solute, which are not accounted for. The agreement begins to deviate t > 400 s and the

theory overpredicts the size of the droplets at t = 600 s. This is because at t = 400 s the

largest droplet reaches its maximum size (see fig. 5.4) and the edge of the array can be

considered to be moving through with φ reducing below φsat(rmax). During this time, its

value will no longer be set by the droplet distribution but by the dynamics of the edge

of the array. It is therefore expected that the agreement diverges after this point. To

model the edge, the value of φ would have to decay down to the ambient value outside

the container. r∗ = r̄(t) will not do this and therefore would need to be modified.

To examine the overall quality of the theory’s predictions the number of droplets are

plotted against time in fig. 5.12, comparing the circle detection of the experiment and the

mean field theory. The number of droplets against time is closely predicted indicating the

choice of r∗ as the mean of the droplet’s radius distribution closely captures the temporal
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Figure 5.10: Initial droplet distribution of the mean field theory (circles) determined by
the ‘DropletTracker’ detection code. dr

dt
of each droplet is indicated by the colourbar. The

circles are overlaid and aligned on the first experimental frame.
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Figure 5.11: Mean field theory predictions (circles) with r∗ = r̄ at T = 20◦C with dr
dt

(µm/s) indicated by the colourbar. The circles are overlaid and aligned with the experi-
mental images at 400 s and 600 s.
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Figure 5.12: The number of droplets in each frame according to the mean field theory
(blue) and ‘DropletTracker’ detection code (black). For data corresponding to fig. 5.11.

dynamics of φ up to 400 s.

5.2.5 The Raoult effect

The 400 s panel in fig. 5.11 shows a slight general overprediction of droplet radius. To

understand this the radius as a function of time is measured for a number of individual

droplets chosen randomly from across the array and are presented in fig. 5.13. In each

series, a clear reduction in dr
dt

occurs after the droplet evaporates to within a range of r

indicated by the black dashed lines. This is because the droplets contain a small amount

of solute which begins to have a significant effect on the value of dV
dt

when r becomes small.

This is known as the Raoult effect which predicts a reduction in the value of φsat with

increasing concentration due to the colligative properties of solute [95] (see section 1.7).

Due to the reducing volume, the concentration of solute inside the droplets increases during

evaporation explaining the persistent small droplets in fig. 5.2. Once evaporation reduces

the value low enough, the high solute concentration prevents them from evaporating. At

this point they should no longer be contributing to the value of φ.

The amount of solute in the droplet can be calculated from the knowledge of when
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Figure 5.13: Radius of curvature of a selection of three droplets showing their evaporation
plateaus as they become small enough (range indicated by the black dashed lines).
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the droplet stops evaporating. The Raoult effect states that csat is reduced by the ratio

between molecules of solvent (water) to the total number of molecules (χ) [95], therefore

the reduced saturation fraction is

φsat(χ) = χe
rk
r . (5.7)

Because it is known (from fig .5.13) that a droplet has dV
dt
≈ 0 at 3 ≤ rs ≤ 4µm the term

φsat − φ = 0 in eq. 5.2. By substituting eq. 5.7 for φsat and rearranging, χ is given by

χ =
φ

e
rk
r

. (5.8)

By setting r = rs and the value of φ(t = 400 s) = 1.00021, (1−χ) is 0.015% for rs = 3µm

and 0.0060% for rs = 4µm. This indicates that the droplet’s evaporation rate is incredibly

sensitive to dissolved solute with only a tiny fraction necessary to make a difference in

these saturated conditions for small droplets. These dissolved solutes could either originate

directly from the exhaled breath or already be present on the substrate.

For another interesting observation of the Raoult effect see Appendix D.

5.2.6 Correcting for the presence of solute

To include this effect the droplets which are no longer evaporating could be excluded from

the calculation of r̄(t) effectively decreasing the value of r∗. This would indeed increase

|dV
dt
| for evaporating droplets and decrease |dV

dt
| for growing droplets and might improve

the over-prediction of the radii observed at t ≤ 400 s in fig. 5.11.

To test this, a cutoff value rs = 3.5µm is chosen, based on fig. 5.13. If droplets are

initially less than or evaporate below rs then these droplets are not considered. This

makes an assumption that all droplets have the same amount of solute contained within

them. An alternative assumption might be to assume that the droplets have the same

initial concentration, which would determine the size in which they stop evaporating.

Fig. 5.14 plots the initial condition of the mean field model (much like fig. 5.10) but

without considering the droplets with r < rs = 3.5µm (indicated by the blue dots).

To investigate the success of accounting for dissolved solute, fig. 5.11 is re-plotted with

the updated mean field predictions at t = 400 s with r∗ = r(r > rs)(t) in fig. 5.15. In

fig. 5.15, circles are only plotted for droplets with r(t) > rs. It can been seen that the
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Figure 5.14: Initial droplet distribution of the mean field theory (circles) with dr
dt

indicated
by the colourbar. The circles are overlaid and aligned on the first experimental frame.
Droplets with r < 3.5µm (excluded from the calculation of dr

dt
) are indicated with blue

dots.
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Figure 5.15: Mean field theory predictions (circles) with r∗ = r(r > rs)(t) at T = 20◦C
with dr

dt
indicated by the colourbar. The circles are overlaid and aligned on the experimental

frame at t = 400 s.
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agreements of the mid sized droplets has qualitatively improved as a result of excluding

droplets below rs. The predictions for the number of droplets can also be compared in

fig. 5.16 as before. The value of N is now the number of droplets with r > rs in both the

detected and theory series. The agreement is slightly worse than before with the mean

field theory under-predicting the number of droplets when compared to the experiment.

There are a number of potential reasons which might explain this, most importantly the

limitations associated with mean field theories. The mean field is assumed to represent the

inter-droplet interactions on average but does not account for small variations which will

occur in the experimental array. For example in a local region which has a large droplet

surrounded by small droplets the gradients in φ between droplets might be quite different

from that assumed by the mean field. Somewhere else in the array is a large droplet

surrounded by other large droplets, which would represent a situation where the gradients

between droplets might be smaller than predicted by the mean field. The assumption

in the model would be that these situations cancel out. In this case the quantity N

is particularly sensitive to locally enhanced gradients which would increase evaporation

rates and translate into a greater reduction of N . Because φ(t) is tied to the distribution,

variations of this sort might lead to disagreements which will compound, exaggerating

differences over time. Despite this, the general shape of the decaying number of droplets

is still captured by fig. 5.16 for t ≤ 400 s. Another possible quantity which could be used

to evaluate the agreement quantitatively is the total volume, however this also suffers from

a similar limitation to N . Whilst N is particularly sensitive to the smaller droplets, the

total volume, VT is disproportionately sensitive to the larger droplets as smaller droplets

will not make a significant difference to the value of VT . The best way to quantitatively

evaluate the improvement of excluding droplets less than r = 3.5µm is to compare the

radius of curvature predicted by the mean field theory (rMFT ) and the detected radius of

curvature extracted by ‘DropletTracker’ (rdetect). rMFT is plotted verses rdetect in fig. 5.17

at t = 400 s for when r∗ = r̄ (black data) and when r∗ = r(r > rs) (blue data). The

improvement from qualitative judgement of fig. 5.11 is supported by this figure, as the

inclusion of droplets influenced by solute did indeed result in a general overprediction of r

as can be seen by the black data lying above the rdetect = rMFT line. After these droplets

are removed from the calculation of r∗ the agreement improves and the scatter of this

blue data reduces. The mean absolute divergence between rMFT and rdetect decreases from

1.53µm (black data) to 0.31µm (blue data).
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Figure 5.16: The number of droplets in each frame according to the mean field theory
(blue) and ‘DropletTracker’ detection code (black). For data corresponding to fig. 5.15.
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Figure 5.17: radius calculated by the mean field theory (rMFT ) against that detected
by ‘DropletTracker’ (rdetect) for with (blue) and without the solute correction (black) at
t = 400 s.
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The blue data still contains some scatter, some of this will be accounted for by the

measurement uncertainty due to the resolution limits of determining the positions of the

contact line, as well as ‘DropletTracker’ misdetections. The resolution uncertainty is

measured to be approximately ±1µm. Some scatter is expected for mean field models as

it assumes each droplet is in the same mean environment which is not true for individual

droplets. This is a limitation of mean field models in general. One other explanation

for the scatter of the data is the assumption that the liquid exhaled is pure water. The

breath may also contain additional components. For example saliva is made up of proteins,

mucins, minerals and many others [96], which may be present in the droplets. In addition

to the considered of the Raoult effect, these components may change the properties of the

liquid (e.g. density). Therefore the constants corresponding to pure water in table. 5.6

will be slightly off. For example the surface tension of pure saliva has surface tension

of γ ≈ 50 mNm−1 [97] and the density is ρ ≈ 1006 kgm−3 [98]. With these quantities

the evaporation rate of an isolated droplet might reduce by ∼ 30%. This is of course

an absolute limit and the quantities will not diverge this far from water, which will be

the component principally condensing from the breath, given that it was the only volatile

component.

5.2.7 Length scale applicability of the mean field model

To understand the scale of the local effects and the region size in which droplets can no

longer be modelled by a mean field, the array in fig. 5.11 is tiled by a repeating square grid,

to divide the droplets up into cells. The overall evaporation rates
(
dV
dt

)
k

of the droplets

within each cell are summed up. This value is calculated for all cells of length (L) across

the array and divided by the area of the cell to calculate a flux within each. The flux is

then plotted as L is varied in fig. 5.18. The variation in flux between each cell reduces with

L, when more droplets are included inside each one. From this it can be concluded that the

mean field theory will break down when modelling arrays smaller than L ≈ 100µm as the

variation between cells is large and cannot be considered to be in the same environment.

This value of L ≈ 100µm is useful as it defines the minimum size region which needs to

be simulated or modelled in order for the results to be general to other places in the array.

Using this to inform simulations can reduce computation costs, as it prevents performing

calculations on an unnecessarily large number of droplets.
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Figure 5.18: The collective flux of the droplets within each L × L size square square of
the grid. The multiple data points at each L represent the summed evaporation in each
of these squares Σ

(
dV
dt

)
k

divided by L2 to give a flux.
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5.3 Conclusions

In this chapter it has been shown that the big droplets in a micron-sized distribution can

grow at the expense of their smaller neighbours. This redistribution of volume, whilst the

array is evaporating, seems to be due to the Kelvin effect which drives diffusive fluxes

leading to grow/shrink dynamics. This is surprising considering the vapour pressure of a

1µm droplet is only 0.08% bigger than a 10µm droplet. For comparison, a 1 nm droplet’s

vapour pressure is 260% bigger than a 10 nm droplet. Because of this its effect is often dis-

missed for micron droplets [99]. For example Yang et al. [12] also found that the droplet’s

curvature plays an important role in the growth of droplets in clouds, showing that it

leads to a broadening of the radius distribution. This chapter supports the importance

of the role of curvature by studying not only global properties of the distribution but by

examining the growth of individual droplets. The experimental method used to study the

droplet’s evaporation, allows the interactions through the vapour to be isolated. In other

studies the dynamics of droplet sizes and distributions are governed more significantly by

droplet coalescence and due to growth from direct deposition. This is especially true if

an airflow is used to initiate condensation. In these cases, the timescale for growth due to

the Kelvin effect is often much longer than the previously stated mechanisms and because

of this, other studies overlook its importance. Confining evaporating breath in this way

represents a method in which it can be studied.

The temporal dynamics of the growth are also connected to the instantaneous droplet

distribution and shows that the ambient concentration does not have to be set externally

in order to see condensational growth.

The diffusive theories must include the Kelvin effect in order to predict the redistri-

bution dynamics and the standard equation is modified to do this. Using a mean field

approach allows for good qualitative predictions to be made and provides an alternative to

the Masoud et al model, which is more computationally expensive. Despite the mean field

model simplifying the concentration field, it was also able to make quantitative predic-

tions, improved by accounting for solute inside droplets. The evaporation is found to be

very sensitive to small concentrations of solute in saturated environments, with them able

to completely arrest evaporation. The size of the region over which mean field predictions

are applicable are also evaluated and 100µm is revealed to be the size of the unit cell.
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Chapter 6

Direct numerical simulations

In chapter 4 experimental work was conducted investigating non-diffusive effects and their

significance on evaporation. It was shown that droplets are indeed very sensitive to a num-

ber of non-diffusive phenomena but characterising them is challenging as their dynamics

must be inferred predominantly from the influence they have on the droplet evaporation.

In this chapter initial modelling and simulations are conducted to complement experi-

ments and help realise the structures and dynamics of the non-diffusive mechanisms. The

intention is to develop a computational model which can simulate multiple droplet evapo-

ration, including the mechanisms which are experimentally difficult to measure/image and

are not part of the existing diffusive theory. These include the vapour and temperature

fields which surround the droplets. Modelling these allows for the certain mechanisms to

be investigated in more detail by solving different equations which include for example

the Kelvin effect and/or natural convection. With the ability to visualise the vapour, di-

rect connections can be made between the formation of composition and thermally driven

convective plumes, on the evaporation of the droplets. This chapter contains the progress

towards testing, validating and developing an existing model for multiple droplet evapo-

ration.

TPLS (Two-Phase Level-Set) is the first diffuse interface (DI) 3D direct numerical

simulations (DNS) model of its kind capable of simulating two phase phenomena with

heat mass transfer. It was developed by Lennon Ó Náraigh, Prashant Valluri, David

Scott, Toni Collis and Iain Bethune and Peter Spelt. TPLS solves the Cahn-Hilliard

equation for modelling the dynamics of co-exisiting phases. The model also simulates flow

by solving the Navier-Stokes equations in the liquid and gas phases. The name TPLS is
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a legacy from when the code used a level-set method to track interfaces between phases.

It is now solely a DI model. DI methods treat the interface as unsharp, associating a

thickness which allows for interfacial phenomena to be modelled more accurately as it

can be shared over multiple grid points. The DI approach is advantageous as it allow

for smooth transitions between phases and avoids sharp transitions which are difficult to

handle numerically. The DI interface also better captures curved interfaces and doesn’t

require complex interpolation, or snapping of the interface to square grids which distort

its shape. This is especially important when studying interfacial phenomena, such as

evaporation (phase change [100]). It is worth noting that this diffuse interface does not

correspond in scale or physical sense to modelling the Knudsen layer transition between

liquids and gases, which is molecularly thin [101].

TPLS is also highly optimised for large scale simulations and is parallelised for use with

multiple processors. It is also supported on supercomputers including Cirrus and Archer2.

This computational efficiency is important for multiple droplets because large numbers of

grid points are needed to simultaneously resolve the evaporation dynamics at the interface,

whilst ensuring a large enough domain. The TPLS code used in this chapter to model

multiple droplets can be found at https://doi.org/10.6084/m9.figshare.26763886.

All simulations in this chapter were conducted on the Archer2 Cray EX supercomputing

system. Information on the architecture used on the system compute nodes can be found

at archer2.ac.uk/about/hardware.html.

6.1 Methods

As mentioned previously the TPLS model was not written by myself. The changes which

have been made to the code which I have contributed to, with the help of Dr David Scott

and Prof. Prashant Valluri are limited to the calculation of phase change. Everything else

is given as a description of the code for clarity. Further details about the model and its

usage can be found in Sáenz et al.[102]. The simulations and corresponding analysis is my

own work.
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Figure 6.1: Diagram of the simulated domain in TPLS.

6.1.1 Problem statement

The problem to be solved is that of multiple droplets evaporating into a gas at standard

temperature and pressure. The model accounts for two phases namely, the liquid phase

and a mixed gas phase, containing an immiscible gas and the vaporised water vapour

see fig. 6.1. The phases have physical properties of specific heat capacity (cp), thermal

conductivity (κ), dynamic viscosity (µ) and density (ρ) and are simulated with a cartesian

domain x = (x, y, z) with the boundaries spanning x = [0, Lx], y = [0, Ly], z = [0, Lz].

The following variables are made non-dimensional as

x =
x̂

L̂z
u =

û

Ûc
p =

p̂

p̂0
(6.1)

T =
T̂ − T̂s

∆T̂
t = t̂

Ûc

ĥ0
(6.2)

where hats indicate dimensional values. Ûc = γ̂∆T̂ /µ̂l m s−1 is the thermocapillarity ve-

locity, ĥ0 is the initial height of the droplet, T̂s is the substrate temperature, û = (û, v̂, ŵ)
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is the flow velocity vector and p̂0 is the reference atmospheric pressure.

6.1.1.1 Governing equations

In TPLS the Cahn Hilliard equation is solved and the system evolves towards thermody-

namic equilibrium, depending on the specific Gibbs free energies of the phases. The two

phases are represented by volume fractions in each cell, for the liquid phase (cl) and the

mixed gas (cg) and vapour (cv) phase. The volume fractions of each component can be

related to each other by considering a control volume Vc containing some fraction of each

phase. The volume of the mixed vapour gas phase (Vmix) can be calculated as

Vmix = Vc(1− cl). (6.3)

This volume is then be separated into the gas and vapour volumes as

Vmix = cgVmix + cvVmix (6.4)

and therefore 1 − cg = cv. These volume fractions are evolved by the Cahn-Hilliard

equation modelling phase separation, the non-dimensional form is

∂cl
∂t

+∇ · (clu)− 1

PeI
∇ · (M∇Φ) = −ṁ

ρl

[
1 + cl

(
ρl
ρv
− 1

)]
, (6.5)

where M = cl(1− cl) is the mobility PeI is the interfacial Peclet number set to 2/0.5dz

with dz the dimensionless grid spacing. Sc is the Schmidt number defined as

Sc =
µ

ρD
(6.6)

where cl is an order parameter defining the volume fraction of the liquid phase. The

species equation modelling the vapour component of the mixed gas phase is given by

∂cv
∂t

+ u · ∇cv −∇2cv +
1

PeI
cl∇Φ · ∇cv −

1

ReSc

∇(1− cl) · ∇cv
(1− cl)

=
cg

(1− cl)
ṁ

ρv
. (6.7)

In both eq. 6.5 and 6.7 ṁ is a source/sink term controlling the amount of phase change,

which will be discussed in section 6.1.1.2.
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The energy equation in dimensionless form is

∂(ρcpT )

∂t
+∇ · (ρcpTu) =

1

RePr
∇ · (k∇T )− 1

Ja
ṁ. (6.8)

Where Re is the Reynolds number,

Re =
ρUL

µ
(6.9)

Pr is the Prandtl number,

Pr =
µcp
k

(6.10)

and Ja is the Jakob number,

Ja =
cp∆T

∆h
. (6.11)

Conservation of momentum is governed by the Navier-Stokes equation which describes

the bulk flow in the fluids,

∂ρu

∂t
+∇·(ρuu) = −∇p+

1

Re
∇· [µ(∇u+∇uT )]+

1

We
Φ∇cl−

1

Re
(∇T−n(n ·∇T ))|∇cl|+fb

(6.12)

here n = ∇cl/|∇cl| and We is the Weber number defined as

We =
ρU2L

γ
. (6.13)

fb is a body force term accounting for buoyancy as a result of density differences due

variations in temperature, defined as

fb = −ρ
(

1

Fr2
− Bd

Re
βT

)
ek. (6.14)

Where β is the coefficient of thermal expansion, ek is a vertical unit vector and Fr is the

Froude number defined as

Fr =
U√
gL

(6.15)

and Bd is a bond number defined as

Bd =
ρβgL2

γ
. (6.16)
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In the momentum equation the Boussinesq approximation is made and density of pure

components only vary with temperature in terms involving g (i.e. eq. 6.14).

Conservation of mass is enforced by the continuity equation

∂ρ

∂t
+∇ · (ρu) = −ṁ

(
1

ρl
− 1

ρv

)
ρ (6.17)

noting that outside the interface ṁ is zero and the term on the RHS becomes nil.

6.1.1.2 Phase change

Phase change is an interfacial phenomenon [103] and is therefore only allowed to occur

in the diffuse interface of the droplet which is identified by the grid points which lie

between a gaseous phase contour at cl = 0.3 and liquid phase contour at cl = 0.7. These

values are chosen as they are found to always enclose at least one grid point across the

interface, which is important to allow phase change to be calculated at each timestep at

all points on the droplet’s interface. The rate of this phase change (ṁ), is the rate at

which cl is converted to cv for evaporation and vice versa for condensation. The value of

ṁ is calculated with a two step iterative procedure. Firstly, the Cahn-Hilliard equation

is solved from the current timestep (i), for cv in the next timestep (i + 1) with ṁ = 0,

giving c
(0)
v . The amount of phase change for diffusion limited evaporation, according to

Maxwell’s assumption [21] is proportional to the difference between cv and its saturation

value (csv). ṁ is therefore given the following form

ṁ = V0

( ρv
∆t

)
(csv − cv) (6.18)

which has dimensions of [ML−3T−1], with the second term capturing Maxwell’s assump-

tion and V0 is a vaporisation coefficient. A first approximation for the phase change (ṁ(1))

is then calculated with eq. 6.18 with cv = c
(0)
v . The Cahn-Hilliard equation is then solved

a second time with ṁ = ṁ(1), giving c
(1)
v . Eq. 6.18 is recalculated for the updated cv = c

(1)
v

to give an ṁ correction (ṁ(2)) which either reduces or enhances phase change depending

on if c
(1)
v is greater or less than csv in the interface. The final value is then

ṁ = V0

(
ṁ(1)

V0
+ V2ṁ

(2)

)
(6.19)
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where V2 is a weight for the size of the correction. It was found that calculating ṁ in this

way, maintained cv = csv in the interface with V0 = 2/3 and V2 = 0.1. These are heuristic

values determined by trial and error.

In each calculation of eq. 6.18, ṁ is prevented from exceeding the amount of vapour

available to be condensed such that if

|ṁ|∆t
ρv

> (1− cl)cv (6.20)

then condensation is limited to

ṁ = −
( ρv

∆t

)
(1− cl)cv (6.21)

and also prevented from exceeding the amount of liquid available to be evaporated. Such

that if
|ṁ|∆t
ρv

> cl (6.22)

then evaporation is limited to

ṁ =
( ρl

∆t

)
cl (6.23)

6.1.1.3 Numerical method

TPLS uses a marker in cell grid with scalar quantities (e.g. cl, cv, T ) stored at the centre

of the cell and vector quantities stored on the faces (e.g. u, v, w). The Cahn-Hilliard

equation (6.5) is solved numerically with an implicit-explicit scheme (solving one term

explicitly and the other term implicitly) with a semi backward difference formula (SBDF)

[104]. The convective term is evaluated using a weighted essentially non-oscillatory scheme

(WENO) [105, 106]. The momentum equation (eq. 6.12) is solved with a projection method

comprising two steps: the first calculates the velocity field neglecting pressure and the

second enforces incompressability to calculate the final field. The energy eq. 6.8 is solved

using a Crank Nicholson-Adam Bashforth scheme [107].

6.1.1.4 Boundary and initial conditions

The top surface of the domain (z = Lz) has an open Dirichlet boundary condition for

cv = 0 and T = 0 and Neumann boundary conditions for ∂u
∂z

= 0 and ∂cl
∂z

= 0. On the

base of the domain at z = 0 there is a no slip and no penetration condition such that
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u = 0, ∂cl
∂z

= 0 and ∂cv
∂z

= 0. The base is the droplet substrate and is held at a constant

temperature T = Ts. On the walls of the domain the boundary conditions are periodic

taking the x = 0, Lx as an example, q(x = 0) = q(x = Lx) where q is cv, T , u and cl. The

equivalent boundary conditions are applied on the y = 0, Ly walls in the y direction.

The initial condition of the cl field is generated by first specifying the centre locations

x = xk, y = yk and radius r = rk of the N droplets, where the subscript k represents the

droplet index and r is the radial distance to the nearest droplet centre. Inside the droplet

cl = 1 and outside the droplet cl = 0 and should smoothly but quickly transition between

these values in the interface with cl = 0.5 at r = rk. One such function which achieves

this is

cl(x, y, z) = 0.5− 0.5 tanh

(
r(x, y, z)

2
√

2ε

)
(6.24)

which is the 1D solution to the Cahn-Hilliard equation and will satisfy the above conditions

providing a reasonable initial guess. The benefit of modelling the interface with a smooth

continuous function is that it avoids the problem of representing sharp interfaces on finite

grids, such as in finite element codes such as COMSOL.

For initialising the vapour phase the interface should be initially saturated (cv = csv). In

order to avoid sharp gradients leading to potential numerical problems, cv is set to csv inside

the droplet too. Although physically there is no vapour inside the droplet, numerically

this volume will tend to zero and saturating these regions will have little influence on the

simulation. Again to avoid sharp gradients outside the droplet and within the interface

cv = csv is extended such that the transition occurs at the largest value of rk (rmax) away

from each interface. A similar expression is used to initialise the transition from csv to a

lower ambient value, with the constants chosen to reduce its sharpness as

cv(x, y, z) = csv

[
0.6− 0.4 tanh

(
r(x, y, z)− rmax

5(2
√

2)ε

)]
. (6.25)

The values 0.6 and 0.4 mean the term inside the square brackets varies between 1 and

0.2 and so 0.2csv ≤ cv ≤ csv, where 0.2 is chosen as an arbitrary ambient value. The

temperature is initialised homogeneously in x and y and varies in the z dimension. To

satisfy the boundary conditions on substrate (z = 0) and top (z = Lz) of the domain the
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temperature varies from Ts to Tb respectively. The profile is given by

T (z) = (Ts − Tb) erf

(
5(rmax − z) + 1

2

)
+ Tb. (6.26)

The constants are chosen to avoid large initial variations in temperature within the inter-

face. The velocity fields are initialised as u = 0 everywhere in the domain.

These conditions are found to represent a good enough initial estimate for the simula-

tions to progress.

6.2 Results and Discussion

Initially a computational efficiency test is conducted in a domain of 400× 800× 800 grid

points. For each number of nodes (128 CPU’s per node) the simulation is run for 10

timesteps and the average time taken per iteration is reported. 16 nodes were chosen

for the simulations as it is found that it provided the maximum computational efficiency,

taking 1.76 seconds per iteration. A timestep of ∆t = 1 × 10−5 is tested and found to

be smaller than the timescales of the relevant physical processes and maintain numerical

stability.

Due to the number of grid points in the domain and the intensive computation being

carried out, the amount time and resources needed to capture a significant amount of

evaporation is prohibitively large. In order to overcome this challenge, csv is increased by

a factor of 10. This allows more phase change to be permitted from the droplet before

saturation is reached and enhances the concentration gradients surrounding the droplets

leading to a greater diffusive flux away from the interface.

With this addition the larger of the two domains in the computational efficiency test

was chosen (400 × 800 × 800) which provides finer resolution and also allows for the

boundaries to be placed further away from the edge of the array. A multiple droplet

simulation was run with a 5× 5 sessile droplet array. Each droplet had an initial contact

angle of θ = π/2 radians and a base radius of a = 20 grid points. The domain had 400×

800× 800 grid points in each dimension, with the array centred at x = Lx/2, y = Ly/2 on

the substrate at z = 0. The liquid was chosen to be water and the dimensional values were:

cp = 4180 J kg K−1, κ = 0.623 W m−1 K−1, µ = 0.000646 Pa s and ρ = 997 kg m−3. The

dimensionless values for the vapour, gas and liquid are given in table. 6.1 noting that the
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Property Liquid Gas Vapour
ĉp 1 0.2488 0.4471
κ̂ 1 0.0429 0.0316
µ̂ 1 0.0279 0.0163
ρ̂ 1 0.0011 0.0007

Table 6.1: The physical non-dimensional constants for the simulated liquid, gas and vapour
phases.

Re Pr We Ja Sc Fr
1838 4.334 2.293 0.0079 0.0228 114.6

Table 6.2: Summary of the non-dimensional numbers for the simulations conducted.

liquid phase quantities are chosen as the characteristic value used to non-dimensionalise.

These values represent water vapour and Nitrogen (at 40◦C at 1 atmosphere).

6.2.1 Interfacial dynamics

The calculated dimensionless numbers in the governing equations are summarised in ta-

ble. 6.2. Fig. 6.2 shows the position of the contact line during evaporation with t indicated

by the different coloured lines in the legend.

The droplets appear to evaporate at different rates with the final contact lines (black)

receding to a smaller area at the corners and edge of the array. This indicates that the

model captures the diffusive shielding effect observed experimentally in previous chapters.

The droplets also seem to be distorted and do not retain their spherical cap shape. The

origin of these distortions could be physical however their scale is likely to be accentuated

artificially. To reduce these artefacts the number of grid points would need to be increased

such that surface tension can be properly resolved in the droplet’s interface. For the regular

grids used in TPLS, increasing the number of grid points in the interface means increasing

the total number of grid points in the entire domain significantly. Simulations of larger

numbers of grid points are currently not possible due to current limitations of TPLS. The

development of the code to allow for larger domains is discussed further in section 7.6.

Another interesting observation of the droplets is the direction in which the droplets de-

pin. The four droplets at the corners evaporate with the contact line nearest the centre

of the array receding outwards, however the twelve edge droplets recede in the opposite

direction, with the contact line at the edge of the array receding inwards. The reason for

this is unknown and is not expected experimentally. It may also be a numerical artefact
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of not resolving the interface with high enough resolution.

To test whether these distortions and the lack of smoothness of the interface are indeed

of numerical origin, an isolated droplet can be simulated with the same size domain (to

ensure the evaporation rate is consistent), both for the same grid point density as the

droplets presented in fig. 6.2 and for a greater density. The results of these simulations

are presented in fig. 6.3. The left column shows the results for a droplet with an initial

base radius, a = 20 grid points equivalent to that for the 5 × 5 array. The right column

shows an equivalent size droplet with a = 40 grid points resulting in a greater number and

density of grid points in the droplet’s interface (both after evaporating until t = 0.05). By

comparing these two columns for a profile slice through the centre of the droplet (first row)

and top view slice through the droplet’s substrate contact area (second row), it can be

seen that the interface becomes smoother for the higher grid point density, when viewed

from both directions. This demonstrates the requirement for finer meshes in order to

eliminate these distortions. To check if these distortion would be expected at very early

times experimentally the timescale for capillarity (τγ =
√
ρlr3/γ) can be compared to the

timescale of evaporation (controlled predominately by diffusion) (τD = r2/D). For water

at standard temperature and pressure, τD ∼ 10−2 and τγ ∼ 10−7 and therefore these

distortions would be expected to be smoothed out by surface tension as τγ � τD. This

further indicates the origin of these distortions are numerical.

6.2.2 Evaporation rates

Despite this limitation, the evaporation rates of each droplet can be examined to determine

if they correspond to their local confinement within the array, as observed experimentally

in previous chapters. Fig. 6.4 plots the droplet volumes normalised by their initial values

against time. For square arrays the droplets in symmetric confinement can be distinguished

as they all have unique radial distances from the centre of the array. By calculating this

radial distance the droplets can be coloured by their distinct confinements with droplets

of the same colour expected to evaporate at the same rate. These colours are indicated by

the inset image and correspond to the same colour scatter points in the graph. Generally

the least confined at the corners and edges of the array evaporate the fastest consistent

with diffusive theory. Interestingly the light green droplets immediately adjacent to the

corners begin to overtake these yellow droplets. This is likely caused by variations in
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Figure 6.2: Position of the droplet contact lines of a 5 × 5 droplet array at different
dimensionless times t, indicated by the different colours in the legend. The axes are
labelled by the number of grid points.
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a(t=0)=20 grid points

4x106 total

a(t=0)=40 grid points

3.2x107 total
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Figure 6.3: Comparison of the interface fluctuations for an isolated droplet with an initial
base radius of 20 grid points (left column) and 40 (right column), both in a 200×400×400
domain. The profile (top row) and contact base (bottom row) slices of the droplets are
shown with red lines indicating the cl = 0.3 and 0.7 contours. The axes of the inner figures
represent the number of grid points.
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Figure 6.4: Normalised volume of each droplet in the 5 × 5 array against dimensionless
t. The droplets are coloured in the inset by their radial position in the array indicating
droplets in distinct confinements. The corresponding data points on the graph are also
coloured according to the inset.

temperature in this early stage evaporation, with the fastest evaporating droplet initially

cooling the most. At these early times each field is still adapting from its initial condition,

it would be expected that if the simulation was run for longer the yellow droplets would

return to being the fastest. It is worth noticing that the amount of volume evaporated is

only at maximum 2.5% of the initial value.

One consideration for ensuring droplet evaporation is comparable to experiment, as

shown by previous single droplet studies [35], is to prevent the droplets interacting with

the boundaries. To achieve this the boundary must be placed sufficiently far away from the

droplet to avoid significant removal or accumulation of vapour (depending on the choice

of boundary conditions). Due to limitations on the number of grid points which can be

simulated this cannot be achieved and there is accumulation of vapour at the boundaries.

This is also the reason why the simulations cannot be easily compared to the existing
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diffusive theoretical models as in previous chapters.

In order to check that the differential evaporation rates are not numerical artefacts

which are caused by being in close proximity to the boundaries, a similar simulation is

conducted for a 3 × 3 array of droplets with the boundaries placed a distance s/2 from

the edge of the array (400× 180× 180 grid points). Because the boundary conditions are

periodic this simulates nine droplets of an infinitely repeating droplet grid. Therefore all

should evaporate at the same rate, as each droplet will be in symmetric confinement, as

the array has no edge. The results of the periodic domain are presented in fig. 6.5 with the

V/V0 range on the y-axis set to the same as fig. 6.4. It can be seen that the evaporation

rates of the droplets are much lower which is expected as the droplets at the edge no

longer have additional space to evaporate into. The evaporation is purely due to vertical

vapour transport, as the space between droplets is saturated. There is no clear difference

between the droplets (the data points overlap), consistent with the droplets now being in

equivalent confinements, experiencing the same vapour shielding effect.

It is also interesting to investigate whether the asymmetric distortions observed in

fig. 6.2 are related to the boundaries or are due to droplet-droplet interactions. Fig. 6.6

shows the contact lines of each droplet in time for the same simulation. There is minimal

change in their position and the lines lie over the top of one another. Additionally there is

also no evidence of asymmetry in their shape. If the distortions were caused by proximity

to the boundaries the edge droplets should still have become asymmetric. Therefore it

can be concluded that the droplet distortions in the 5× 5 simulation above are caused by

their reduced confinement and faster evaporation. The previous asymmetries are caused

by inhomogenous phase change (ṁ) on the droplet’s interface, due to the local vapour

shielding effect. This diffusive shielding interaction is present within the model even at

early times. The results qualitatively show that which was observed experimentally in

chapter 3 (and by other authors, discussed in chapter 2 section). 1.8).

A further set of N×N simulations of droplet arrays are conducted for N = 7, 9 and 11,

with the same size domain as the 5×5 array above. The droplets are centred in the domain

and the spacing between them remained s = 3r. A top-down image of the initialised

droplets within the domain for each simulation is given in fig. 6.7. The results of these

simulations can be compared for the total amount of evaporation. The average reduction

of volume of each droplet (∆V/N2) for each simulation after t = 0.25 is plotted verses

coverage fraction of the base of the domain (N2πr2/LxLy). Fig. 6.8 shows that the average
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Figure 6.5: V/V0 of each droplet in the 3× 3 periodic array against dimensionless t. The
y axis range is set to the same as fig. 6.4 for comparison. The droplets are coloured in
the inset by their radial position in the array indicating droplets in distinct confinements.
The corresponding data points on the graph are also coloured according to the inset.
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Figure 6.6: Contact line positions against dimensionless t of the 3× 3 periodic simulation
in fig. 6.5.
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Figure 6.7: N × N initialised droplet arrays within the simulated domain. The white
circles indicate the position of each droplet.

evaporation of each droplet decreases as the number of droplets increases. This is because

the amount of free space for the vapour to diffuse into is reducing as N increases because

the droplets are approaching the periodic boundaries. The red data point represents the

3×3 array with the periodic boundaries placed s/2 from the edge of the array on both sides,

with the height of the domain kept the same. This gives the evaporation of the droplets

due purely to the vertical diffusion away from the substrate. The value of ∆V/N2 for this

point is 2.07 × 10−12 indicating that the additional space around the edge of the array

contributes most of the evaporation.

6.2.3 Maintaining interface saturation

A method to calculate the amount of phase change at each grid point in the interface was

described in section 6.1.1.2. It is important that this phase change calculation maintains

stable saturation in the interface throughout time. For the simulations conducted in this

chapter the average volume fraction of vapour across all points on the interface (c̄v) is

divided by the average saturation volume fraction in the interface (c̄sv). These values

are plotted against time (t) in fig. 6.9. It can be seen that eq. 6.19 reliably calculates

the correct amount of phase change to saturate the interface for all of the simulations.

The black dashed lines show that it achieves this to within ±0.3% of perfect saturation

(indicated by the solid black line).
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Figure 6.8: The average reduction of volume of each droplet ∆V/N2 after t = 0.25 verses
coverage fraction of the base of the domain (N2πr2)/(LxLy). Each data point represents
a simulation of an N × N array of droplets where N = 5, 7, 9 and 11 (black data). The
red data point represents N = 3 with the boundaries of the domain positioned such that
the array is infinitely repeating.
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Figure 6.9: Mean saturation in the droplet interfaces maintained by eq. 6.19 verses time,
for the simulations presented in this chapter.
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6.3 Conclusions

In this chapter direct numerical simulations of multiple droplets were conducted using a

diffuse interface model called TPLS. The phase change at the interface was successfully

modelled, constraining phase change to the interface and maintaining it at the saturation

concentration. The diffusive shielding effect was observed to be captured by the model and

droplets were shown to evaporate at different rates depending on their confinement and

proximity to the edge of the array. N ×N droplet arrays were simulated and the influence

of edge and the vertical diffusion above the droplets were investigated. It was shown that

the amount of evaporation due to reduced confinement at the edge is responsible for most

of the reduction in volume.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis the evaporation of multiple droplets has been investigated experimentally

and numerically. In order to facilitate these experiments a new technique needed to be

developed, to make capturing the volumes from arbitrary arrays of droplets possible. This

was named the Pattern Distortion technique and uses the droplet’s lens-like nature to

image a pattern of dots. The magnification was then measured and used to infer the

droplet’s geometry. Experiments exploiting this technique were compared with existing

recent theoretical models and their validity has been tested. The comparisons have shown

that the models work well for small arrays of millimetre-sized droplets, capturing the

diffusive dynamics which dominate the evaporation. It has also be shown that the diffusive

theoretical models begin to break down and can no longer make successful predictions.

This indicates the presence of non-diffusive dynamics becoming more significant and it is

shown that these are amplified by increasing the length scale of the array. The possible

non-diffusive candidates are discussed, the most likely being natural convection in the

vapour above the droplets.

In addition to this it is shown that heated arrays are also not captured by the diffusive

theories. The reason for this is again discussed, with phase change potentially becoming

the rate limiting evaporation process.

Breath figures have also been investigated containing∼ 1000, micrometre-sized droplets

evaporating in confinement. The size and dynamics of these droplets are successfully

tracked and analysed. It was shown that these droplets interact and can even redis-
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tribute their volumes through the vapour. This redistribution is explained to be caused

by the Kelvin effect, which results in concentration gradients from the smaller to the larger

droplets. These concentration gradients lead to a diffusive flux, with big droplets grow-

ing at the expense of their smaller neighbouring droplets. The redistribution dynamics in

these arrays were then modelled using a simple mean field theory (MFT) model. The MFT

couples the collective evaporative flux from each of the droplets and the ambient vapour

concentration inside the container. The rates at which the droplets grow or shrink there-

fore depend on the interactions of each of these droplets, with this ambient concentration.

Comparisons of the MFT and the experimental data captured the general redistribution

behaviour well, both qualitatively and quantitatively.

Finally, direct numerical simulations have been conducted using the TPLS model. Mul-

tiple droplet evaporation was successfully simulated with droplet volumes reducing. The

amount of phase change in the interface was modelled, maintaining saturation during evap-

oration. It is shown that the model contains the diffusive shielding effect which is present

experimentally and droplets evaporate at different rates due to their local confinement in

the array.

To summarise the evaporation mechanisms investigated in this thesis, the approximate

regimes in which they are dominant have been plotted in the phase diagram in fig. 7.1. The

diagram should be interpreted as relating the evaporation of water droplets (or arrays) on

thermally conductive surfaces. The labelled horizontal arrows indicate the mechanism(s)

which are significant over each length scale. The solid horizontal lines indicates how higher

and lower temperature regimes (compared with room temperature, T ≈ 21◦C) alters the

mechanisms controlling the evaporation. Of course the diagram is very approximate and

the exact values defining the high and low temperature regimes are unknown.
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Figure 7.1: Evaporation phase diagram indicating the dominant physical mechanisms for
different length scales (x axis) at low, room and high temperatures.

7.2 Future work

This thesis will hopefully lead to future work in many different directions. The work

contained within the thesis contains experimental work on multiple droplet evaporation

and has begun to reveal the areas in which more research is needed. These experiments

indicate where the current theories no longer correctly predict the evaporation. Future

work is needed to determine the origin of the non-diffusive mechanisms which lead to the

disagreement. The results for experiments and simulations can be combined and help

guide theoretical development of the models to account for these effects.

In the below sections specific future work both experimentally and numerically are

discussed. Each section refers to the future work which might follow each of the chapters

in this thesis.

7.2.1 Pattern Distortion technique

There are many ways in which the Pattern Distortion technique could be developed so

it can be used for different applications. These include: liquid lenses, composite lenses,

non-spherical interfaces and measuring composition of binary mixtures. These ideas are

discussed in detail in chapter 2 section 2.5.
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The Pattern Distortion technique was developed to capture arbitrary arrays of evap-

orating droplets, in either evaporation mode (CA or CR). For CR mode the technique

worked very well, however for even larger arrays of droplets, pinning the contact lines re-

liably proved difficult. Because of this the droplets evaporated in CA mode and ensuring

a circular contact line and tracking it, was not attempted. Future work could focus on

developing a pinning technique for large numbers of multiple droplets. There are sev-

eral methods which could be used to do this. For example, lithography could be used

to create hydrophilic rings onto a hydrophobic substrate and droplets could be placed

on these rings. The contact line of the droplet would want to stay inside the ring at all

times. Because the droplet would not want to spread outside the ring it would poten-

tially be able to take on very high initial contact angles. Additionally close to the end of

evaporation, the droplet would not want to recede into the hydrophobic centre and would

therefore have a very low receding angle. With this ability the droplets base radius would

be well known, which is an important parameter for determining its volume with Pattern

Distortion and for controlling its evaporation rate. An alternative approach would be to

extend the measurements to CA evaporation. As mentioned before, this would require

contact lines to be tracked and remain circular. In order to ensure this circularity, low

hysteresis substrates could be used to prevent the contact line experiencing asymmetric

pinning. These substrates include slippery liquid infused (SLIP) surfaces [108] or slippery

omniphobic covalently attached liquid (SOCAL) surfaces [109].

Precise knowledge of the droplet’s contact base radius would allow better evaluation

of the resolution limits which can be achieved using the Pattern Distortion technique.

If these limits are very high it might present a better approach to the traditional side

imaging as it measures a contact angle value from all points on the contact line. Side

cameras can only see two points on this line at any one time, making it more susceptible

to uncertainty. Development of the contact line control would then make it possible to

measure the droplet volumes from large arrays of multiple droplets. As proof of principle

of this, demonstrating the technique’s ability to extend to large arrays but without further

analysis, a 96×96 mm square array with N = 1089 droplets with a separation of s = 3 mm

was dispensed. An image of the array was taken and is presented in fig. 7.2. The zoomed

in inset shows the resolution is high enough to capture the magnified dots within each

droplet. It is therefore possible to conduct Pattern Distortion experiments of droplet

arrays of this size and extract not just lifetimes but also droplet volumes.
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Figure 7.2: First frame of a N = 1089 square array of droplets on a hexagonal dot pattern.
The magnification of the dots in each droplet can be resolved by the camera, demonstrating
extracting Pattern Distortion data from large arrays.
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7.3 Diffusive evaporation

The results of chapter 3 showed that the diffusive models work well to make predictions

of the evaporation of small arbitrary droplet arrays. Within this diffusive regime other

comparisons can be made to test the applicability of the model. One such comparison is

the evaporation of droplets which are non-spherically capped, either distorted by gravity

or taking on different contact line shapes such as triangles or ovals. Droplets which take

on these shapes are more realistic, for example rain droplets tend to have non-circular

contact lines and be greater than the capillary length in size. To do this the contact lines

can be pinned into different shapes and larger droplets can be dispensed.

In addition to this, droplet evaporation models in this thesis have been compared

by normalising the data to remove the influence of changing ambient conditions. To

compare if the models can make accurate predictions of the evaporation in physical units,

experiments could be conducted within controlled environments in which the humidity

and temperature were fixed.

7.4 Non-diffusive evaporation

In chapter 4 it was observed that arrays began to evaporate with non-diffusive dynamics.

Future work should be focused on determining the origin of these non-diffusive effects

and which assumptions made by the current diffusive models are no longer valid. It was

suggested that one such candidate was natural convection. More investigation into the

formation of convective plumes above the droplets is needed. This could be done by

rotating the experiment upside down which would reverse the direction in which gravity

advects the saturated air. In both cases it is important that the vapour concentration is

imaged and methods exist in order to achieve this. These imaging methods would allow

the formation of plumes and the distribution of vapour to be coupled with the evaporation

rates of each droplet. Previous work has shown that Mach-Zehnder interferometers [110]

are capable of measuring the concentration of vapour above evaporating liquids as well as

Schlieren imagining techniques [111].

In this chapter it was also shown that heating arrays leads to non-diffusive evaporation.

Experimental studies which vary the substrate thermal conductivity in which the droplets

evaporate from could be conducted. The transition from diffusion limited evaporation
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and one-sided evaporation could then be determined for multiple droplets. For complete

one-sided evaporation, droplets should stop experiencing the vapour shielding effect and

should therefore begin to evaporate homogeneously.

7.5 Breath figures

In chapter 5 the redistribution dynamics were attributed to the Kelvin effect. Future work

could determine the size and distribution of droplets in which no growth is observed. This

would inform when it is important to include the Kelvin effect in the theories.

As discussed previously in section 1.8.1 the sessile droplet literature seems to has

made little connection to the fuel droplet research which already exists. Fuel combustion

literature has developed Point Source Methods (PSM) of characterising evaporation of

fuel droplets. Comparisons of these models to the diffusive models of Wray et al. [1] and

Masoud et al. [55] are necessary. If PSM can accurately capture the evaporation rates

of sessile droplets, they represent an avenue for theorists to explore the extension of the

models to 3D multiple droplet evaporation [64]. Also in this chapter, the importance of

the Raoult effect to the evaporation was shown, as well as by the spider in Appendix D.

Experiments which investigated droplets with multiple components would be interesting as

the diffusive shielding effect and the Raoult effect would compete. In this case, the least

confined droplets would evaporate the fastest, reducing in volume and as this happens

the concentration of solute would increase and the Raoult effect would act to slow its

evaporation. Different concentrations could be used to control the dynamics of these two

effects and could be used to stabilise the differential evaporation rates and control their

dynamics.

7.6 Direct numerical simulations

In chapter 6 simulations which contained the diffusive shielding effect were shown. Future

development of the model to allow these simulations to match the current experiments

would provide valuable insights into quantities which are difficult to measure experimen-

tally.

With access to these fields the flow in the surrounding vapour due to natural convec-

tion can be visualised and connected to the droplet’s evaporation. The formation of the

154



plumes which form at different Ra could be investigated and compared to the experimen-

tal observations. Additionally, the temperature field would allow for the cooling effect of

the droplets to be monitored. The changing temperature could be quantified and used to

determine when droplet evaporation can no longer be considered isothermal. The velocity

field inside the droplet could also be used to investigate how multiple droplets influence

the internal flow.

To do this the model needs to be developed. Firstly, to allow for Dirichlet (fixed value)

boundary conditions on the walls of the domain. This feature would enhance the droplet

evaporation rates and allow for simulations to be run longer into the array’s evaporation

lifetime. Secondly, to allow for larger domains to be simulated. Further separating the

droplets from the boundaries would also enhance evaporation rates. This is important for

making quantitative comparisons with experiments and the diffusive theories. One of the

challenges of doing this is that as the arrays become bigger the domain has to increase

in size too. As the grid point resolution in the interface must be maintained, the total

number of grids points becomes prohibitively costly to simulate. One possible extension

of the model is to allow for adaptive grids. These grids would allow for high resolution

near the interface, required to resolve the phase change as well as the surface tension, but

sparser resolution far from the droplet where there are low concentration gradients [112].

The challenge with dynamic grids is that they require additional computation to manage

the adaption, which could be prohibitive.
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Appendix A

DropletTracker

DropletTracker (dTrack) is a Python script designed to be used in conjunction with FIJI
(ImageJ V1.54f) to track circular features (breath droplets in this thesis) between video
frames. The code is accessible from https://doi.org/10.6084/m9.figshare.26587513.
To reduce noise and misdetections of the features, the frames are first processed with the
following sequence:

1. Otsu threshold: making the image binary.

2. Fill Holes: removing backlight image from centre of each droplets.

3. Watershed: ensuring droplets remain separated.

To track the dynamics of the features (droplets), the processed images are analysed
with the function Analyse Particles and ellipses are fit to each of the droplets in every
image recording the centres and major and minor axes. dTrack is used to identify and
track the droplets through each frame. To do this the closest coordinates in consecutive
frames are assumed to be the same droplet. The droplet is considered to have evaporated
if the closest centre is more than the initial radius of the droplet.
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Appendix B

Multiple-Droplet-Theory-Models

The analytical diffusive theories of Wray, Duffy, and Wilson [1] and Masoud, Howell, and
Stone [55] were implemented to model multiple droplet evaporation in a Python script
called Multiple-Droplet-Theory-Models (DTM). These theories make predictions for the
evaporation dynamics of arbitrary droplet arrays (see chapter 2 1.8). The code is ac-
cessible from https://doi.org/10.6084/m9.figshare.26587516.v1. The code requires
the initial conditions for the array, including the droplets array geometry such as the ini-
tial centre coordinates and radii. By specifying additional environmental constants like
temperature and ambient humidity, eq. 1.18 can be evaluated to obtain the isolated evap-
oration rates for each droplet. The aforementioned matrix eq. 1.29 can then be solved,
modifying the isolated evaporation rates to account for the diffusive vapour interactions
of each droplet with their neighbours.

To implement this the theories are iterated in time by solving eq. 1.29 for the Wray et
al. and Masoud et al models. The initial

(
dV
dt

)
k

values are calculated for the initial radii
and centres of the droplets. The calculation can then be progressed in time by the Euler
method, decrementing the volume according to,

∆Vk = ∆t

(
dV

dt

)
k

(B.1)

where ∆t is a small timestep. As the volume reduces the geometry of the droplets are
updated depending on their evaporation mode. Since

(
dV
dt

)∗
depends on the in-situ droplet

geometry, the mode will influence its value differently. For a CR mode the initial base
radius (a0,k) remains constant and the new volume calculated as Vk(t+ ∆t) = Vk(t)−∆Vk
can be used to calculate the new θk(t + ∆t). Alternatively, if droplets are evaporating in
CA mode the initial contact angle (θ0) is constant and can be used with Vk(t + ∆t) to
calculate ak(t + ∆t). Eq. 1.18 is a function of a and θ and therefore in both cases must
be updated after each ∆t. If after any of the reductions, Vk ≤ 0, the interaction matrix Ψ
must be recalculated and inverted for the remaining droplets. Repeating this process until
all droplets have evaporated provides a piecewise theoretical prediction for the volume
evaporation dynamics.

The fastest and most stable method of recalculating the evaporation in Python is
found to be the Scipy module’s implementation of LU factorisation (scipy.org). This is
particularly important for large arrays of droplets.

The numerical error in the above implementation comes from ∆t inexactly capturing
the point in which Vk = 0. If ∆t is too large ∆Vk will significantly overshoot an amount
δV such that Vk = δV < 0. In this time the array is incorrectly evaporating as if the
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droplet(s) remain(s). The size of δV will increase with ∆t however the computation time
will decrease. The number of times Vk = 0 is overshot will depend on the number of sym-
metric confinements in the array (number of distinct times in which droplets evaporate). In
each case δV will augment as evaporation transitions through droplets disappearing. For
example, a circular ring of droplets contains only one confinement condition (all droplets
should evaporate at the same time) and therefore minimises the error due to overshooting.
In general, as droplet evaporate dV

dt
will increase, so overshooting will artificially prolong

evaporation.
Hexagonal arrays have an increased number confinement conditions (recalculations

of eq. 1.29) with increasing N . The influence of this overshooting will also depend on
the difference in evaporation rate before and after the interactions have been updated.
Hexagons maximise this difference in evaporation rate as the number of droplet in each
confinement condition is large and transitioning between them represents a significant
reduction in confinement for the adjacent droplets. For these reasons a hexagonal array
is a good choice for establishing a maximum numerical error. The size of the transitions
is also enhanced by choosing a minimum separation. A number of predictions are made
with different values of ∆t for a 61 droplet hexagonal array (nine confinement conditions)
with skn = 2a (touching droplets). Fig. B.1a) plots the effect of the timestep size on the
average volume overshoot for each confinement. The average volume is normalised by the
initial volume of one droplet and plotted for both CA (blue) and CR (black) modes. For
increasing timestep size (decreasing number of timesteps) the error in both cases grows
faster for the CR mode. This is expected as the evaporation rate of the droplets as V → 0
is larger and therefore so is the overshoot. In the CA mode the evaporation decreases
smoothly to zero as a → 0 and the extent of the overshoot will therefore be reduced.
Additionally the error associated with the Euler method will also be reduced as dV

dt
will

change less rapidly as droplets evaporate, again, due to dV
dt

slowly reducing to zero. As a
result of the overshoot the array lifetime (τmax) also increases for larger ∆t. This is shown
in panel b) which plots the array lifetime normalised by calculation with the greatest
number of timesteps (τ̂max). Panel a) and b) both plateau for large numbers of timesteps,
increasing the number further provides diminishing improvements in accuracy. The time
taken for these calculations to be run must be considered. The calculation run time is
plotted in panel c). It can be seen that above 103 timesteps the accuracy is not significantly
improving however the computation time is continuing to grow linearly.

Fig. B.1 shows that in general, the accuracy of this implementation depends on the
size of ∆t. In one special case however, more accurate results can be obtained for the
Wray et al model in CR mode. Recalling that the predictions are for flat droplets,

(
dV
dt

)∗
does not depend on θ and as a result are independent of time. Because of this the rates
are linear with the gradient only changing when droplets disappear. And so the amount
of time (∆t) required for the kth droplet to evaporate its entire volume (∆Vk) is given by

∆tk = ∆Vk

(
dV

dt

)−1
k

(B.2)

The droplet with the smallest evaporation time (∆tmin) can be selected as ∆t and the
uncertainty associated with overshooting can be eliminated.
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Figure B.1: Computational uncertainty in the DTM implementation. a) is the average
volume overshoot for the number of confinements in the array (δV ), compared to the
initial volume of a single droplet (V (t = 0)), b) temporal overshoot normalised by the
most accurate (τ̂max) and c) the computational run time. Each against the total number
of timesteps in the simulation. The blue series represents CA and the black CR evaporation
modes.
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Appendix C

Measure Droplet Lifetime

Measure Droplet Lifetimes (MDL) is a Python program written to extract experimental
drying times from multiple droplet arrays. The code is accessible from https://doi.

org/10.6084/m9.figshare.26587519.v1. The code requires the image coordinates of
the droplets and then processes the video to determine the individual droplet lifetimes
for the specified coordinates. The coordinates can be determined with any method (in-
cluding manually) and simple functions can be written to format the data correctly as an
input to the code. Currently a function (read imageJ coords) exists to interpret the text
data output by FIJI (ImageJ). The FIJI software’s function Analyze Particles was used
to establish the coordinates from the first frame. The centres could be determined na-
tively in Python however a general image processing algorithm would require high contrast
videos with an appreciable signal to noise ratio. The benefit of establishing the droplet
centres separately is it allows for manual user manipulation to correct for misdetections
and artefacts. Additionally, once these ROIs are specified the videos can be processed
automatically to enhance the contrast in these regions without concern for potential am-
plification of noise outside these regions. Once the coordinated are specified the program
performs a series of image processing steps on the specified video frames:

1. For each frame a difference image is calculated from the final frame, which removes
the background and enhances the droplet contrast.

2. The difference image is Otsu thresholded to create a binary image with white pixels
representing liquid and black representing background.

3. The binary image can then be dilated a number of times specified by the user to
enhance the pixel signal around each droplet.

After the images are processed, binary masks are created over the image each capturing
a circular ROI centred on each specified coordinate. The masks are iterated over and the
mean greyscale (I) is calculated in the region for each frame. The lifetime is determine by
reversing the array of greyscale values and establishing the first frame in which the mean
greyscale increases above a user specified threshold (It). This frame is then recorded as
the drying time for that specific droplet. The drying time can also be determined by not
reversing the array and finding the first frame in which I falls below It. The method of
choice depends on the video itself, if there is not a strong droplet to background contrast
when droplets become very small then the former method gives more accurate results as
the greyscale value likely oscillates above and below the threshold when a → 0. This
method prevents erroneously early drying times. However if the background in the images
is noisy (often caused by slight movement of the substrate underneath the droplets during
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evaporation being amplified by the difference image) the latter gives better drying time
estimates as it avoids late noise being interpreted as liquid presence in the reversed array.

The choice of the threshold marking the presence of liquid can be determined in FIJI
prior to running the code and often is only required once for an experimental setup with
specific lighting and background. This is because the drying time is not very sensitive to
the selection of the threshold as dI

dt
� 0 towards the end of the droplets lifetime. As a

result slight increases or decreases in It do not traverse very far on the time axis.

173



Appendix D

Spider “spit” in droplets

During an experiment from the chapter 4 section 4.1 a spider was caught drinking from
one of the droplets at the edge of the array as it evaporated. The array was N = 361
droplets hexagonally arranged within a circle of radius R = 60 mm and spaced 6.0 mm
apart.

Fig. D.1 shows a montage of the frame before (left, 22 mins), whilst (middle, 24 mins)
and after (right, 26 mins) the spider was present. On the right frame, after the spider had
departed the radius of the droplet has shrunk (as can be seen from the enlarged droplet in
the bottom right of the panel) from a = 1.00± 0.05 mm (blue circle) to 0.773± 0.05 mm
(red circle), a 22.7% reduction. Assuming a contact angle of θ = 90◦ this corresponds to
the spider drinking ≈ 1.13µL of DI water. The same droplet then took 3.88± 0.09 times
longer to evaporate with a 27% lower volume than the two droplets immediately adjacent
also at the edge of the array, in almost exactly the same confinement at the same radial
distance from the centre. Furthermore its volume was 43% of the largest (most confined)
droplets in the centre of the array, but took 2 times longer to evaporate. This is likely
because the spider introduced some impurities and other components into the droplet, here
colloquially referred to as “spit”. The slowing of the evaporation due to these impurities
can be explained by the Raoult effect decreasing the droplet’s volatility (see chapter 2
section 1.7).

It is therefore clear that the presence of small amounts of dissolved substances in the
droplets can have a significant effect on their evaporation. Droplets are so sensitive to this
that the normal diffusive order of evaporation due to confinement and droplet volume can
be overcome and even reversed.
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Figure D.1: Zoomed in region at the edge of the droplet array for three consecutive frames
before (left panel), during (middle panel) and after (right panel) a spider is drinking from
a droplet. The inset in the right frame shows an enlarged view of the affected droplet,
with the blue and red circles showing the position of the contact lines for the frame before
(left panel) and after the spider has drank respectively. The blue circle corresponds to a
base radius of a = 1.00± 0.05 mm and the red 0.773± 0.05 mm.
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