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1. Introduction

Sandwich structures are a class of engineering structures that
consist of two thin layers on their both top and bottom, strong
outer layers bonded to a lightweight, and a thick core.[1,2] These
configurations are widely used in aerospace, automotive, and

civil engineering due to their high
strength-to-weight ratio, excellent energy
absorption, and superior thermal insula-
tion properties.[3] The outer layers, often
made from materials such as metals or
fiber-reinforced polymers, provide high
stiffness and strength, while the core, typi-
cally made from lightweight materials like
foam or honeycomb, offers shear resis-
tance and helps in distributing loads.[4–7]

The innovative design and material selec-
tion of sandwich beams, a specific type
of sandwich structures, enable their appli-
cation in scenarios where both lightweight
and high performance are critical.[8–10] This
article focuses on the study of sandwich
beams fabricated using 3D-printing meth-
ods, specifically fused deposition modeling
(FDM), which introduces new possibilities
in terms of design complexity and material
efficiency.

The fabrication of sandwich beams can
be achieved through various methods
including traditional techniques such as
hand layup, resin transfer molding, and
more advanced methods like additive

manufacturing (3D printing).[11–13] Among these, 3D printing,
particularly FDM, stands out due to its ability to create complex
geometries with high precision and material efficiency. FDM
works by extruding thermoplastic filaments layer by layer to build
up the desired structure. This method allows for customization
in the design of the core geometry, which is crucial for
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the primary supervised learning scheme, the compressive behavior of these
advanced structures is predicted. The trained DFNN model demonstrates high
fidelity in capturing the stress–strain relationships, as evidenced by the close
alignment of predicted and experimental results. Key design parameters of the
cores of the sandwich beams are varied to understand their influence on the
beams’ linear, plateau, and densification regions, where higher values of design
parameters contribute to increased stiffness, prolonged plateau regions, and
higher densification points. Additionally, the impact of loading rates (1, 7, and
14 mmmin�1) on the mechanical performance is analyzed, revealing significant
rate-dependent behaviors. The decision tree algorithm exhibits superior classi-
fication performance with a 99.79% accuracy, further validating the robustness of
the predictive model. In contrast, the support vector machine algorithm with
radial basis function shows moderate accuracy at 75.12%. Through these
findings, the potential of DFNNs in predictive modeling and the importance of
design parameters and loading rates in optimizing the mechanical performance
of novel Y-shaped core sandwich beams is proposed.
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optimizing the mechanical performance of sandwich beams.[14]

Additionally, FDM enables the use of a variety of thermoplastic
materials, each offering different mechanical properties.[15,16]

In this study, we leverage the flexibility of FDM to fabricate sand-
wich beams with various symmetric core shapes. This approach
not enhances the structural performance and provides insights
into the relationship between core geometry and mechanical
behavior under compressive loads.

When it comes to reviewing the published papers in the field,
extensive research has been conducted on the design and perfor-
mance of sandwich beams with different core configurations.
Traditional core designs include honeycomb, foam, and truss
structures, each offering unique advantages in terms of stiffness,
strength, and weight.[17–20] Recent studies have explored more
complex core geometries to further optimize the mechanical
properties of sandwich beams. Specifically, Y-shaped cores have
garnered significant attention due to their potential to enhance
load distribution and energy absorption. However, the effects of
various symmetric core shapes on the compressive performance
of sandwich beams remain underexplored. This article aims to
fill this gap by investigating the compressive behavior of sand-
wich beams with different symmetric core shapes fabricated
using FDM. Our study introduces a novel aspect by focusing
on symmetric cores and examining their influence on the
stress–strain response, providing valuable insights for the design
of high-performance sandwich structures.

Accordingly, one approach by which the performance of sand-
wich beams can be analyzed is monitoring the compressive
response of sandwich beams, involving both experimental and
computational methodologies.[21,22] Traditionally, compressive
tests are conducted to obtain stress–strain curves, which provide
essential information on the material behavior under load.[23–25]

However, with advancements in computational methods,
machine learning (ML) techniques have become increasingly
popular for predicting mechanical responses, specifically super-
vised learning approaches such as regression algorithms or clas-
sification methodologies. For instance, this study could benefit
from implementing deep feed-forward neural networks
(DFNNs) to simulate the compressive response of sandwich
beams with different core geometries. DFNNs are a type of arti-
ficial neural network that excel in pattern recognition and predic-
tive analysis, making them suitable for modeling complex
mechanical behaviors.[26,27] By training the FNN on experimental
data, we can predict the stress–strain response of various core
configurations with high accuracy can be predicted. This
approach reduces the need for extensive physical testing and
provides a deeper understanding of the relationship between
core geometry and compressive performance. From another
view, ML offers robust regression schemes to forecast complex
phenomena with high accuracy.[28–31] Specifically, ML-oriented
regression methods are instrumental in predicting the mechani-
cal properties of 3D-printed sandwich beams, a critical compo-
nent in modern engineering applications.[32] These regression
models aim to identify patterns and predict outcomes under
various loading conditions, thereby optimizing the design and
performance of these structures.[33–35] Complementarily, classi-
fication methods in ML are considerable in categorizing the
behavior of sandwich beams and materials into distinct
classes.[36–38] This categorization facilitates understanding of

their response to different stressors, enabling engineers to tailor
material properties and structural configurations for enhanced
resilience and efficiency. Integrating regression and classifica-
tion techniques thus provides a comprehensive framework for
advancing the study and application of 3D-printed sandwich
beams.

In this article, we present a comprehensive study on the
fabrication and analysis of sandwich beams with novel symmet-
ric Y-shaped cores using FDM 3D-printing method. The research
begins by detailing the design and 3D-printing process for sand-
wich beams with various core geometries. Subsequently, uniaxial
compressive tests are conducted to obtain experimental stress–
strain curves for each core configuration. To enhance predictive
accuracy, DFNNs are implemented to forecast the compressive
behavior based on the experimental data. Other than the novel
geometry of the beams, another new aspect of this study is where
first ML-oriented regression is employed to predict the mechani-
cal properties of the beams and second classification algorithms
are utilized to categorize the beams’ mechanical behavior based
on the loading conditions (i.e., static and dynamic). This dual
approach of using regression and classification schemes can lead
to a detailed understanding of the beams’ performance and elab-
orates on the potential of ML in structural sciences. The findings
of this study offer new schemes for the design of sandwich struc-
tures with optimized mechanical properties, demonstrating the
advantages of integrating 3D printing with advanced predictive
modeling techniques such as prediction of the structures’
responses and classifying them, which has been less under
scrutiny.

2. Experimental Section

Using Design Expert software, the sandwich beams shown in
Figure 1 with innovative symmetric Y-shaped cores were
designed utilizing a custom method, by which four design
parameters at four levels were considered, resulting in 25 unique
beam configurations. Throughout this design process, the
length, height, and thickness of the face sheets were held con-
stant to ensure consistency in the structural parameters.
Specifically, the beams had a length of 160mm and a width
of 20mm, with a total height of 140mm. The height of the cores
was fixed at 36mm, and each face sheet had a thickness of 2mm.
Refer to Figure 1 and 2 for detailed dimensions and configura-
tions. Subsequently, the fabrication of these beams was under-
taken using an FDM 3D printer, a common method for additive
manufacturing that allows for precise control over the printing
process. For this process, 1.75mm diameter white polylactic acid
(PLA)þ filaments were selected as the primary material due to
their favorable mechanical properties and ease of use.[14]

These filaments were fed into a BRIDEþ FDM 3D printer pro-
vided by QUANTUM 3D. The printing parameters were chosen
based on a specified protocol to optimize the quality and struc-
tural integrity of the beams. The nozzle temperature was set at
215 °C, which is optimal for PLAþ filament to ensure smooth
extrusion and strong layer adhesion. The printer bed was main-
tained at 70 °C to minimize warping and ensure a stable base
during the printing process. The printing speed was set to
50mmmin�1, a balanced speed that ensured an appropriate
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compromise between printing time and detail accuracy.
Additionally, the layer height of 0.15mm was chosen to produce
fine, detailed layers that enhanced the overall mechanical prop-
erties of the printed beams, see Table 1.

To evaluate the performance of the novel Y-shaped core beams
under various loading conditions, uniaxial compressive tests
were conducted. These tests were designed to assess the behavior
of the beams under both static and dynamic conditions. For the
static tests, a crosshead speed of 1mmmin�1 was used to simu-
late a gradual application of load. For the dynamic tests, higher
crosshead speeds of 7 and 14mmmin�1 were employed to
simulate more rapid loading conditions. All the tests were carried
out in the room temperature of 25 °C, utilizing the SANTAM
STM-50 universal testing machine equipped with a 50 kN
loadcell provided by BONGSHIN (i.e., the DBBP-5t), based on
the two solid-founded standards in the case of compressive
testing of cellular structures, which were ISO 133 314:2011
and ASTM D1621.[14] It is noteworthy that the tests were contin-
ued up to the state, at which the beams became fully dense and
no more compressive deformations were experienced by the
beams. These tests provided critical data on the mechanical

response and properties of the beams, contributing to a compre-
hensive understanding of their behavior under different
scenarios.

3. Supervised Learning

In this section, elaborates on the supervised learning methodol-
ogies employed to predict the compressive responses of novel
symmetric Y-shaped core sandwich beams. Our approach
encompasses two primary supervised learning schemes: the
implementation of DFNNs and the integration of ML-oriented
regression and classification models. The DFNNs were utilized
to forecast the stress–strain diagrams of the beams based on their
design parameters and loading conditions. Subsequently, a com-
bined regression and classification model approach was adopted
to further elucidate the beams’ mechanical properties and clas-
sify their responses under static and dynamic loading scenarios.
This comprehensive examination provides a robust framework
for understanding and predicting the performance of these inno-
vative structural elements, implementing advanced ML techni-
ques to enhance accuracy and reliability.

3.1. DFNNs

In this study, DFNNs were implemented as the first supervised
learning scheme to predict the compressive response of novel
symmetric Y-shaped core sandwich beams. Six parameters were
selected as the inputs for the DFNNs, which included the design
parameters of the beams (i.e., L1, t, e, and h), all measured in
millimeters. Additionally, the adopted loading crosshead speeds
(1, 7, and 14mmmin�1) and the induced compressive displace-
ment during the tests (in mm) were also considered as inputs.
The outputs were the compressive stress and strain values.
Subsequently, a three-layer architecture was developed for the
DFNNs’ hidden layers, with varying numbers of neurons in each
layer determined through a trial-and-error process. The first hid-
den layer comprised 128 neurons, the second hidden layer had
64 neurons, and the third hidden layer contained 32 neurons, see
Figure 3. The Levenberg–Marquardt algorithm was employed as
the learning rule for the neural network due to its efficiency and
accuracy in training complex models. The dataset was split into
three parts: 70%was used for training, 15% for validation, and the
remaining 15% for testing. This allocation ensured a robust eval-
uation of the network’s performance. Also, the learning rate was
set to 0.001, a parameter carefully chosen to balance the conver-
gence speed and the stability of the training process. Finally, to
assess the performance of the deep neural networks, various met-
rics were calculated, including the absolute error (AE), mean
absolute error (MAE), mean squared error (MSE), and the coeffi-
cient of determination (R2), see Equation (1–4), in which X stands
for the parameters that are to be predicted (i.e., strain and stress),
and n is the number of data point. These metrics were crucial in
evaluating the accuracy and reliability of the predictions made by
the neural network. The goal was to ensure that the network accu-
rately predicted the compressive response without overfitting,
thus providing a reliable tool for understanding and the compres-
sive behavior of the Y-shaped core sandwich beams.

Figure 1. a) Layout of the designed sandwich beams, in which the key
design parameters of the innovative symmetric Y-shaped core sandwich
beams (i.e., L1, t, e, and h) are shown. The beams are 160mm in total
length, with a consistent width of 40mm. b) The 3D-printed sandwich
beams.
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(3)
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DFNNs

�
2

�
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Experiment

�
2 (4)

3.2. Integration of ML-Oriented Regression and Classification

3.2.1. ML-Oriented Regression

The primary step in our methodology involves building a regres-
sion model to predict the properties of sandwich beams under

Table 1. 3D-printing parameters.

Parameter Value

Number of contours 3

Raster direction Alternating 45° per layer

Printing orientation Flat on the print bed

Nozzle temperature 215 °C

Bed temperature 70 °C

Layer height 0.15 mm

Printing speed 50mmmin�1

Material White PLAþ
Diameter of the filaments 1.75 mm

Figure 2. Configurations of the designed repetitive Y-shaped unit cells for the cores of the beams. Each configuration is characterized by different design
parameters, including L1, t, e, and h, as indicated. These variations in parameters are to influence the mechanical responses of the beams under com-
pressive loading conditions.

Figure 3. Architecture of the trained DFNN, holding six features (i.e.,
design parameters of the beams, loading rates, and induced compressive
deformations during uniaxial compressive test), three hidden layers each
comprising 128, 64, and 32 neurons, and two outputs (i.e., the resultant
compressive strain and stress values).
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compressive static and dynamic loading conditions. To achieve
this, the XGBoost library in PYTHON was utilized, a powerful
and efficient implementation of gradient-boosted decision
trees.[39–41] Initially, the design parameters of the beams (i.e.,
L1, t, e, and h), the loading crosshead speeds, and the induced
compressive displacement were selected as inputs for the regres-
sion model. The outputs were the compressive properties of the
beams (i.e., plateau stress, densification strain, densification
stress, and compressive strength), critical indicators of the
beams’ mechanical performance. The dataset was preprocessed
by normalizing the input and output data over the interval of
[0-1]. The normalization values were saved for future use to
ensure consistency in scaling. The normalized data was then split
into training and validation sets using a 70–30 ratio. We
employed a multioutput regressor with an XGBRegressor as
the base estimator. Also, a grid search with cross-validation
was conducted to identify the optimal hyperparameters for the
model, which included the number of estimators, maximum
depth, learning rate, subsample ratio, and column sample by tree
ratio.

Finally, the model’s performance was evaluated using metrics
such as MSE, MAE, and the coefficient of determination. The
results indicated the accuracy and reliability of the model in pre-
dicting the compressive properties of the beams and, afterward,
the best model was used to generate predictions for a new data-
set, comprising 6000 new samples within the interval of the
design parameters. This expanded dataset provided a compre-
hensive understanding of the beams’ behavior under three load-
ing rates.

3.2.2. Classification

Following the regression analysis, a classification model was
implemented to categorize the beams into static and dynamic
classes. The classification problem was approached using sup-
port vector machines (SVMs) and decision tree algorithms.
The training dataset included predictors such as the design
parameters and mechanical properties of the beams. The
response variable was the class label indicating whether the beam
was subjected to static or dynamic loading. The training process
involved a fivefold cross-validation to ensure the robustness of
the models. Key performance metrics, including confusion
matrix, MSE, accuracy score, and receiver operating characteris-
tic (ROC) curve analysis, were used to assess the classifiers. The
decision tree classifier, implemented with a bagging classifier to
enhance its robustness, showed promising results with a high
validation accuracy. The SVM, with a radial basis function or
Gaussian kernel, was effective in handling the nonlinear bound-
aries between the static and dynamic classes.

In summary, the combination of regression and classification
models provides a comprehensive framework for predicting and
understanding the compressive response of novel symmetric
Y-shaped core sandwich beams. This integrated approach lever-
ages the strengths of both supervised learning techniques,
enabling accurate predictions and effective categorization of
the beams’ behavior under various loading conditions. The meth-
odologies and results presented in this study contribute signifi-
cantly to the field of material science and engineering, presenting

a novel modeling scheme for the design and optimization of
advanced engineering structures, especially 3D-printed sandwich
beams.

4. Results and Discussion

4.1. DFNNs

The performance of the trained DFNN, which incorporates six
input features and three hidden layers with 128, 64, and 32 neu-
rons, respectively, along with two output neurons, was analyzed
comprehensively. The trends of the MSE for the training, testing,
and validation datasets were monitored throughout the training
process, which concluded after 614 epochs. Figure 4a illustrates
these trends, demonstrating a consistent decrease in MSE values
across all datasets, indicative of the model’s effective learning
and convergence. Initially, the training error decreases rapidly
before reaching a plateau, suggesting that the network is profi-
ciently minimizing error on the training data. This rapid initial
decrease indicates that the model quickly learns the fundamental
patterns in the data, reducing large errors in the early stages of
training, based on the backpropagation algorithm. The plateau
phase suggests that the model fine-tunes its parameters to mini-
mize error further, albeit at a slower rate. The validation error
exhibits a similar trend, which is a strong indicator of the model’s
generalization capability. A similar trend in the validation error
suggests that the model is concurrently memorizing the training
data and learning patterns that generalize well to unseen data.
Additionally, the testing error decreases in parallel with the train-
ing and validation errors, implying that the model is not overfit-
ting andmaintains robust performance on unseen data. The final
MSE values are notably low (≈1e�5), which signifies high pre-
diction accuracy. This low MSE indicates that the model predic-
tions are very close to the actual values, reflecting the model’s
high fidelity.

The AE graph (Figure 4b) further elucidates the model’s per-
formance by displaying the AEs of the predictions. The AE values
oscillate around zero with minimal variance, reflecting the minor
differences between the predicted and actual values. This mini-
mal variance in AE suggests that the model’s predictions are
consistently accurate across different samples. The MAE is
remarkably low, recorded at 1.55e�5, indicating that, on average,
the predictions are exceedingly close to the actual values. This
consistent pattern of low errors without significant spikes rein-
forces the model’s accuracy. The lowMAE value emphasizes that
the average prediction error is minimal, showcasing the model’s
reliability and precision in making predictions. To further vali-
date the DFNN’s performance, a linear regression analysis of
the predictions versus the actual values was conducted. This is
visualized in Figure 4c, where the scatter plot illustrates the rela-
tionship between the compressive responses predicted by the
DFNN and the experimental values, showcasing a strong linear
correlation with a coefficient of determination (R2= 0.999). This
high R2 value underscores the model’s accuracy in predicting the
experimental outcomes. The overall linear trend in the data
aligns with expectations based on the mechanical properties of
the Y-shaped core sandwich beams. Minor deviations from
the line of best fit can be attributed to natural variability inherent
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in experimental conditions. These include slight inconsistencies
in the 3D-printing process, potential material inhomogeneity,
and the resolution limits of the testing equipment during com-
pressive tests.[42–46] The variations are common in experimental
studies and do not indicate irregularities or limitations in the pre-
dictive model. These findings further validate the reliability of the
DFNN in capturing the compressive behavior of the beams.

In summary, the near-perfect linear relationship and the high
R2 value confirm that the DFNN model accurately predicts the
compressive response of the beams. The MSE, AE, and accu-
rately predicts the compressive response of the beams. The met-
rics collectively demonstrate the model’s robustness and
reliability. The low MSE and MAE values indicate minimal pre-
diction errors, while the high R2 value showcases the model’s
ability to explain almost all the variance in the actual values.
These results highlight the DFNN’s effectiveness in capturing
the complex relationships in the data, making it a powerful tool
for predicting the compressive response of novel symmetric
Y-shaped core sandwich beams.

In the next step of assessing the trained DFNN’s performance,
mechanical responses of the beams underwent experimental
static and dynamic compressive deformations were plotted jux-
tapose compressive stress–strain curves the predicted by the
DFNN. From Figure 5, it is seen that the trained DFNN was

capable of predicting the beams compressive response under
both static and dynamic loading conditions, further proving
the previous discussions of the metrics, by which the trained
DFNN could be trusted for predicting the Y-shaped core beams’
compressive responses. Based on the stress–strain plots repre-
sented in Figure 5, it was seen that the design parameters of
the beams affected the beams response. In all the plots of
Figure 5, three regions of linear, plateau, and densification were
seen. Over the linear region, the initial part of the curves repre-
senting the elastic behavior of the structures, stress increases lin-
early with strain. Following the linear region, the second phase of
the curves, plateau region, shows a more gradual increase in
stress, indicating energy absorption through progressive defor-
mation. Lastly, densification point, where the curve rises steeply
again, indicates that the structure is fully compacted, and further
deformation results in a significant and sharp increase in stress.

As mentioned in Section 2, four design parameters of L1, t, e,
and h, all in millimeters, were considered in Design Expert soft-
ware. Accordingly, we aimed to investigate these parameters and
their effects on the beams’ mechanical responses. The first
parameter that was investigated on the beams static and dynamic
behavior was L1. Observations indicate that as L1 increases, the
stiffness of the beam also increases, leading to a steeper slope in
the linear region. This is evident in the graphs where beams with

Figure 4. Results of the trained DFNN: a) trend of the MSE over the training process for train, test, and validation data, b) calculated AE between the
predicted values and experimental data, and c) depiction of the predicted values of strain and stress versus the data obtained from uniaxial compressive
tests.
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Figure 5. Experimental and predicted stress–strain curves for the beams under both static and dynamic loading conditions. Each subplot represents a
different beam geometry, with variations in L1, t, e, and h, as shown. The legend differentiates between experimental results (Exp) and DFNN predictions
at various loading rates (i.e., 1, 7, and 14mmmin�1).
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L1= 30mm exhibit higher initial stiffness compared to those
with L1= 15mm. The thickness (i.e., the t parameter) also plays
a significant role, the beams with thicker Y-shaped core unit cells
(e.g.,= 3mm) showing higher stiffness compared to thinner
beams, in which t= 1.5 mm. The edge thickness (e) and height
(h) influence the stiffness in a more nuanced manner, contrib-
uting to the overall stability and load distribution. The plateau
region signifies the post-yield behavior where the beams undergo
plastic deformation. Beams with larger L1 values tend to have a
more extended plateau, indicating higher energy absorption
capacity. The h parameter particularly in designs with significant
heights (e.g., h= 21mm) shows a noticeable effect on the plateau
length and stress levels. For instance, beams with higher h
parameter exhibit prolonged plateaus at higher stress levels.
Additionally, variations in t and e also impact the plateau, where
increased thickness generally contributes to a higher plateau
stress. In contrast, the strain values at which densification ini-
tiates are influenced by all four parameters. Beams with larger
L1 and h values typically reach the densification point at higher
strains, indicating that these beams can undergo more deforma-
tion before densification.

Other than the design parameters, which were proved to affect
the mechanical response of the beams, in this study, we dealt
with another variable, which was considered after design of
the samples. Loading rate (1, 7, and 14mmmin�1), the parame-
ter showed up in experimental tests conducted on the 3D-printed
samples, significantly impacts the onset of densification. At
higher rates (e.g., 14mmmin�1), the densification starts earlier
due to the increased inertia effects and reduced time for structure
relaxation. The loading rate substantially affects all regions of the
stress–strain curve. At higher loading rates (14mmmin�1), the
beams exhibit higher stress levels throughout the entire curve
compared to lower rates (1 mmmin�1). This could be related
to the rate-dependent behavior of the structures, where higher
rates induce elevated stress due to inertia and strain rate sensi-
tivity. Overall, the compressive response of Y-shaped core sand-
wich beams is considerably dependent on the design parameters
L1, t, e, and h, as well as the loading rates adopted during the
conducted uniaxial compressive tests. Larger values of L1 and
h contribute to increased stiffness, prolonged plateau regions,
and higher densification points, enhancing the total energy
absorption capacity. The loading rate influences the stress levels
and the onset of densification, with higher rates resulting in
increased stresses and earlier densification.

4.2. Integration of ML-Oriented Regression and Classification

After training the DFNNs, a Python code was developed to create
a scheme for predictive modeling of the beams’ compressive
properties. Implementing the ISO 13 314:2011 standard, four
major properties of the beams (i.e., plateau stress, densification
strain, densification stress, and compressive strength) were
obtained under both static and dynamic loading conditions.
These compressive properties, loading rates, and the geometric
features of the Y-shaped cores of the beams were analyzed by
solving a regression problem using the XGBoost library in
Python, a powerful supervised learning platform. The regression
analysis yielded an MAE of 0.0244, MSE of 0.0047, and R2 of

0.93, indicating high predictive accuracy without overfitting.
Subsequently, 18 000 new samples were generated, and their
compressive properties were predicted using the trained model.
These predicted properties were then classified into two catego-
ries of static and dynamic, based on the loading rate imposed on
the beams. This classification was performed using SVM with a
radial basis function and decision tree algorithms. Specifically, a
loading rate of 1mmmin�1 was designated as the static class,
while loading rates of 7 and 14mmmin�1 were categorized as
the dynamic class.

Accordingly, the performance of the decision tree and SVM
classifiers for predicting the compressive response of symmetric
Y-shaped core sandwich beams were thoroughly evaluated, and a
detailed comparison and analysis of the results obtained from
these two classifiers have been presented in this subsection.
To elaborate, the classification performance of the two supervised
learning algorithms, decision tree and SVM, was assessed using
confusion matrices, ROC curves, and various metrics such as
precision, recall, F1 score, MSE, and accuracy, see Table 2 and 3.

The decision tree algorithm exhibited exceptional
performance across all metrics, indicating its robustness in
distinguishing between dynamic and static categories. The con-
fusion matrix in Figure 6a reveals very high true positive rates for
both dynamic and static categories. There were minimal misclas-
sifications, demonstrating the decision tree’s effectiveness in cor-
rectly classifying the majority of instances. The precision, recall,
and F1 score for the dynamic category were 0.9979, 0.9990, and
0.9984, respectively. Similarly, for the static category, these val-
ues were 0.9980, 0.9958, and 0.9969. These high values indicate
that the model is both precise and sensitive, accurately identify-
ing most positive cases while minimizing false positives and
false negatives.

The MSE for both validation and the overall dataset is low
(0.0021), reinforcing the model’s accuracy and low error rate.
Also, the overall accuracy stands at 99.79%, reflecting the

Table 2. Detailed report of the classification problem solved employing
decision tree algorithm.

Precision Recall F1
score

Support MSE Validation
accuracy

Dynamic 0.9979 0.9990 0.9984 12 042 0.0021 0.9978

Static 0.9980 0.9958 0.9969 6021 0.0021 0.9978

Macro average 0.9979 0.9974 0.9976 18 063 0.0021 0.9978

Weighted average 0.9979 0.9979 0.9979 18 063 0.0021 0.9978

Table 3. Report of assessment metrics of the classification done utilizing
the SVM.

Precision Recall F1
score

Support MSE Validation
accuracy

Dynamic 0.7712 0.8911 0.8268 12 042 0.2489 0.7512

Static 0.6839 0.4711 0.5579 6021 0.2489 0.7512

Macro average 0.7276 0.6812 0.6924 18 063 0.2489 0.7512

Weighted average 0.7421 0.7512 0.7372 18 063 0.2489 0.7512
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model’s outstanding performance in correctly predicting the
labels for the majority of the instances. The macro and weighted
averages for precision, recall, and F1 score are similarly high,
signifying that the model performs consistently well across both
categories and that the performance is balanced irrespective of
class distribution. The high metrics and low error rates con-
firmed that the decision tree algorithm was highly reliable and
effective for this classification of the 3D-printed sandwich beams’
behavior into two classes of static and dynamic.

In contrast, the SVM algorithm showed moderate perfor-
mance, which indicates room for improvement compared to
the decision tree, compare Figure 6a and b. The confusion matrix
for the SVM algorithm indicates a higher number of misclassi-
fications compared to the decision tree. The true positive rates of
dynamic and static categories were lower, suggesting the model
struggled more with accurately classifying instances. For the
dynamic category, the precision, recall, and F1 score were
0.7712, 0.8911, and 0.8268, respectively. Also, for the static cate-
gory, these metrics were lower at 0.6839, 0.4711, and 0.5579.
These results suggest that the SVM model had difficulty in bal-
ancing precision and recall, particularly for the static category.
Meanwhile, the MSE is significantly higher at 0.2489, indicating
a higher error rate and lower prediction accuracy compared to the
decision tree. The overall accuracy of the SVM algorithm is
75.12%, which, while moderate, is substantially lower than that
of the decision tree. The macro and weighted averages for preci-
sion, recall, and F1 score reflect the model’s uneven performance
across categories. The lower metrics indicate that the SVM mod-
el’s predictions were less consistent and reliable, and the
moderate performance of the SVM algorithm suggests that it
may not be as well-suited for this specific classification task as
the decision tree. The relatively lower precision, recall, F1 score,
and higher MSE indicate that the SVMmodel did not possess the
ability of effective distinguishing between dynamic and static
categories.

As the latest metric in assessing the classifiers’ performance,
we focused on the ROC curves and the area under the curve
(AUC), providing additional insights into the classification per-
formance of both models. The ROC curves for the decision tree
show that it achieves high true positive rates across various
threshold settings, with the AUC likely close to 1. This further
confirms the model’s excellent discriminative ability. The
ROC curves for the SVM suggest more moderate true positive
rates, with a lower AUC compared to the decision tree. This
aligns with the observed lower precision, recall, and F1-score
metrics, reported in Table 1 and 2, as well as the confusion matri-
ces in Figure 6 and 7.

Figure 6. Confusion matrices for the two classifiers: a) decision tree and b) SVM. The decision tree classifier demonstrates a significantly lower number of
misclassifications compared to the SVM classifier, indicating higher reliability.

Figure 7. ROC curves for the decision tree and SVM classifiers. The deci-
sion tree classifier shows superior performance with a higher true positive
rate and a lower false positive rate compared to the SVM classifier, indi-
cating better overall classification accuracy.
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As a concluding remark on the second supervised learning
scheme, in which regression and classification were integrated
for predictive modeling of the 3D-printed sandwich beams with
Y-shaped cores, the decision tree algorithm demonstrates supe-
rior performance in classifying dynamic and static categories,
with high precision, recall, F1 score, accuracy, and low MSE.
The SVM algorithm, while moderately effective, shows lower per-
formance across these metrics and higher error rates. These find-
ings suggest that for this specific classification task, the decision
tree algorithm is more reliable and accurate compared to the
SVM algorithm. Further improvements to the SVM model or
alternative algorithms may be explored to enhance classification
performance.

5. Conclusion

In conclusion, this study demonstrated the application of DFNNs
in predicting the compressive response of novel Y-shaped core
sandwich beams. The accuracy of the DFNN model, as validated
by experimental data, confirmed its effectiveness in modeling the
complex stress-strain curves under both static and dynamic load-
ing conditions. The investigation into key design parameters
(i.e., L1, t, e, and h) revealed their considerable influence on
the mechanical response, particularly in the linear, plateau,
and densification regions of the stress–strain curves. Higher val-
ues of L1 and h were found to enhance stiffness, extend plateau
regions, and delay the onset of densification, thereby increasing
the energy absorption capacity of the beams. Additionally, the
study highlighted the significant effect of loading rates, with
higher rates leading to earlier densification and increased stress
levels due to inertia effects and reduced relaxation time. The deci-
sion tree algorithm outperformed the SVM in classifying
dynamic and static loading conditions, achieving an accuracy
of 99.79%. The design and optimization of sophisticated sand-
wich structures has thus benefited greatly from these predictive
modeling schemes, which may find use in engineering applica-
tions such as construction, automotive, and aerospace where
exact mechanical performance, lightweight materials, and energy
absorption capabilities are essential.
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