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Abstract 

 

The Chinese solar greenhouse (CSG), known for its low cost of operation, is a prevalent 

greenhouse type in Northern China. Climate control of CSG is required for efficient crop 

production with high yield and quality at low energy and resource costs. However, current 

heuristic control schemes have limited success in maximising the net revenue of CSG 

cultivation. Optimal control presents a promising method for improving efficiency of 

greenhouse production, but few optimal CSG climate control systems have been developed. 

On the one hand, a well-designed and thoroughly validated integrated model of CSG climate 

and crop growth, which serves as a basis for optimal control, is unavailable. On the other 

hand, a user-friendly optimal control algorithm for climate management of a standard CSG 

without the local controller is currently unavailable. This project aims to model the crop 

production process and generate an applicable optimal climate control approach for standard 

CSGs. Firstly, this study developed a lettuce growth model that describes the effects of a 

broad range of greenhouse climates, including air temperature with extreme conditions, 

humidity, CO2 concentration, and shortwave radiation on dynamics of the single state 

variable, structural crop dry weight. Secondly, we developed and evaluated a CSG climate 

model to predict indoor radiation, temperature, humidity, and CO2 based on external weather, 

greenhouse structure, crops, and controls. Thirdly, the two developed models were 

synthesized into an integrated CSG climate-crop growth model, which was validated and 

then smoothed for control purposes. Fourthly, an optimal control system for CSG climate 

management using event-driven receding horizon design incorporated with real-time 

feedback was designed and evaluated. Performance comparisons were conducted among 

ideal optimal control, open loop optimal control, closed loop optimal control, and control 

supervised by growers. This study provides system models and an optimisation framework 

for implementing optimal control theory in practical CSG cultivation. 
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Q10,Rso Q10 value for soil respiration, - 

Q10,Г Q10 value for CO2 compensation point, - 
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R1_2 longwave radiation heat flux from object 1 to object 2, W m-2 (gro) 

R1_sky longwave radiation heat flux from an internal surface of the CSG to 

sky, W m-2 (gro) 

rb boundary layer resistance, s m-1 

rbh boundary layer resistance or aerodynamic resistance to convective 

heat transfer, s m-1 

rbv boundary layer resistance to diffusion of H2O, s m-1 

rc carboxylation resistance, s m-1 

rCO2 total leaf resistance to CO2 diffusion, s m-1 

Rd crop maintenance or dark respiration rate, kg (CH2O) m-2 (gro) s-1 

Rd,25 leaf maintenance (dark) respiration rate at a reference temperature of 

25 ℃, kg (CH2O) m-2 (gro) s-1 

Rd,gh crop maintenance respiration rate at the whole greenhouse level, kg 

(CO2) m
-2 (gro) s-1 

Rg gas constant, J mol-1 K-1 

RGRmax maximum relative growth rate that depends on temperature, s-1 

RGRmax,20 maximum relative growth rate of dry matter at 20℃, s-1 

rH2O,min minimum possible internal crop resistance to H2O, s m-1. 

RHout relative humidity of the outdoor air, - 

Rn net radiation of the crop, W m-2 

rs stomatal resistance, s m-1 

Rsm soil microbial respiration rate in greenhouse, kg (CO2) m
-2 (gro) s-1 

Rso,0 soil respiration rate at a reference temperature of 0 ℃, kg (CO2) m
-2 

(gro) s-1 

rsv stomatal resistance to diffusion of H2O, s m-1 

rt turbulence resistance, s m-1 

s slope of smoothing functions 

SLA specific leaf area of new leaves, expressing the amount of leaf area 

per unit shoot dry matter, m2 (leaf) kg-1 (leaf) 

SLAref reference SLA at the reference absorbed shortwave radiation by leaves 

IL,ref and relative humidity Xh,ref, m
2 (leaf) kg-1 (leaf) 

t time, s 

t0 initial time for optimisation 

T0,K 0 ℃ in Kelvin, = 273.15 K 

T1,K, T2,K temperatures in Kelvin of object 1 and object 2, K 

T25,K 25 ℃ in Kelvin, = (25 + T0,K) K 

tAST local time measured in hours, - 

Tc, Tcan canopy temperature, ℃ 

Tc,K canopy temperature in Kelvin, = (Tc + T0,K) K  

Tc,RGR temperature to achieve the saturation relative growth rate, ℃ 

tcover covering time of the thermal blanket, s  

Tdp dew point temperature of the outdoor air, ℃ 

tf final time for optimisation 

Tobj temperature of CSG object, ℃ 

Tout outdoor air temperature, ℃ 

Tout,K outdoor air temperature in Kelvin, K 

Tsky,K effective sky temperature in Kelvin, K 

Tso,cs constant soil temperature, ℃ 

tuncover time for rolling up the thermal blanket, s 

tvent,r,off closing time of roof vent, s 
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tvent,r,on opening time of roof vent, s 

tvent,s,off closing time of side vent, s 

tvent,s,on opening time of side vent, s 

U vector of greenhouse controls 

Ub control of position of the CSG thermal blanket, [-] 

uice presence of the ice layer, [-] 

Uvent,r control of aperture of the roof vent, ranging from 0 to 1, - 

Uvent,s control of aperture of the side vent, ranging from 0 to 1, - 

va wind speed inside the greenhouse, m s-1 

ve outdoor wind speed, m s-1 

Vgh CSG volume, m3 

X vector of model state variables determined by numerically solving 

differential equations 

Xc CO2 concentration of greenhouse air, μmol (CO2) mol-1 (air) 

Xd crop dry weight, kg m-2 (gro) 

Xd crop dry weight, kg m-2 (gro) 

Xh relative humidity of greenhouse air, - 

Xh,ref arbitrary relative humidity corresponding to SLAref, - 

Xhfw head fresh weight of the crop, kg m-2 (gro) 

Xt greenhouse air temperature, ℃ 

Xt,K indoor air temperature in Kelvin, K 

Y vector of model state variables obtained through analytical solutions 

z Auxiliary parameter to ensure differentiability 

Greek symbols  

α absorptivity to shortwave radiation, - 

αsr absorptivity of composite south roof to shortwave radiation, - 

βI relative change in SLA per unit change in absorbed shortwave 

radiation by leaves, m2 (leaf) W-1 

βsml coefficient to characterise level of soil surface moisture in CSGs, - 

βXh relative change in SLA per unit change in relative humidity, - 

γ psychrometric constant, Pa ℃-1 

Δ slope of the saturation curve of the psychrometric chart, Pa ℃-1 

δL average thickness of the crop leaves, m 

δobj thickness of the CSG object, m 

δs solar declination, ° 

ε light use efficiency by photorespiration, kg (CO2) J
-1 (absorbed) 

εobj emissivity of object, - 

ε0 light use efficiency at very high CO2 concentration in the absence of 

photorespiration, kg (CO2) J
-1 (absorbed) 

εinss porosity of the insect screen that mainly depends on the mesh count, - 

ηinf characterization of tightness of the cover to air infiltration, - 

ηinss ratio between the ventilation rate with and without an insect screen, - 

θghz azimuth angle of the CSG, ° 

θh solar altitude angle, ° 

𝜃ℎ
′  solar altitude angle without constraints in range, ° 

θi solar incidence angle for the south roof, ° 

θi,nr solar incidence angle for the north roof, ° 

θi,nw solar incidence angle for the north wall, ° 

θnr north roof angle, ° 

θnw north wall angle, ° 
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θr angle of refraction formed when solar rays pass from air into 

transparent covering, ° 

θsr south roof angle, ° 

θz solar azimuth angle, ° 

κ reflectivity to shortwave radiation, - 

κsr equivalent reflectivity of south roof to shortwave radiation, - 

κsr,0 base reflectivity of south roof to shortwave radiation, - 

λ heat conductivity coefficient, W m-1 ℃-1 

λb average thermal conductivity coefficient of thermal blanket, W m-

1 ℃-1 

λsm correction factor for soil microbial respiration, - 

λv latent heat of water vaporization, J kg-1 

λv,d latent heat for water vapour deposition, J kg-1 

πa refractive index of air, - 

πtc refractive index of transparent covering, - 

ρa air density, kg m-3 

ρc plant density, plants m-2 (gro) 

ρCO2 CO2 density, kg m-3 

ρCO2,0 CO2 density at temperature of T0,K, kg m-3 

ρL density of crop leaves, kg m-3 

ρobj density of the CSG object, kg m-3 

σ Stefan-Boltzmann constant, W m-2 K-4 

σarea scale factor of solid surface area to indoor ground area, - 

σbuf ratio of the maximum buffer capacity to crop dry weight, - 

σCO2 factor that converts unit of CO2 concentration, kg m-3 (μmol mol-1)-1 

σPAR ratio of PAR to shortwave radiation, - 

σr ratio of the root dry weight to the crop dry weight, - 

σsha shading ratio of north wall, - 

τ transmissivity to shortwave radiation, - 

τsr equivalent transmissivity of south roof to shortwave radiation, - 

τsr,0 base transmissivity of south roof to shortwave radiation, - 

Φ income by selling the harvested product of the greenhouse production 

φ local latitude, ° 

χ absolute humidity of air, kg m-3 

ψ transmittance to longwave radiation, - 

ω hour angle, ° 

Г CO2 compensation concentration, μmol (CO2) mol-1 (air) 

ГT20 reference value of the CO2 compensation point at 20 ℃, μmol (CO2) 

mol-1 (air) 

Subscripts  

1 object 1 

2 object 2 

air air inside the CSG 

b thermal blanket 

b,o outermost layer of thermal blanket 

can crop canopy 

cs soil layer with constant temperature 

e external surface 

gro indoor ground 

ice ice layer 
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in internal surface 

K temperature in Kelvin 

nr north roof 

nw north wall 

nw(j) layer ‘j’ of north wall, with ‘j’ ranging from 1 to ‘jmax’ 

obj CSG object 

out outdoor air 

sky sky 

so soil 

so(i) layer ‘i’ of soil, with ‘i’ ranging from 1 to ‘imax’ 

so,cs soil layer with constant temperature 

sr south roof 

tc transparent covering of the south roof 

Special 

characters 

 

, further limitations for the content before it 

_ from the former to the latter 

Abbreviation  

CSG Chinese solar greenhouse 

DSS decision support system 

Exp_1 Experiment 1 

Exp_2 Experiment 2 

Exp_3 Experiment 3 

GA genetic algorithm 

LAI leaf area index 

LSE LogSumExp function 

MIMO multi-input multi-output 

MPC model predictive control 

PAR photosynthetically active radiation 

PID proportional-integral-derivative 

RMSE root mean square error 

RRMSE relative root mean square error 

SISO single-input single-output 

SLA specific leaf area 

VPD vapour pressure deficit 
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Chapter 1 

 

Introduction 

 

This Chapter introduces the general background and motivation, research objective and 

research questions, and outline of the thesis. 
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1.1 General background and motivation 

 

The rapid population growth and climate change have intensified global food security 

challenges. In 2023, around 733 million people experienced hunger, equivalent to one in 

every eleven people globally (FAO, IFAD, UNICEF, WFP, & WHO, 2024). According to 

the United Nations (2024), the global population is projected to reach nearly 9.7 billion by 

2050, substantially increasing the demand for food production. However, expanding arable 

land offers limited potential to meet this demand due to constraints on land and water 

resources, along with the growing impact of extreme weather events (IPCC, 2019). A more 

promising solution lies in improving crop production efficiency on existing agricultural land. 

In this context, greenhouse horticulture, featuring the controlled environment that 

significantly boosts crop yields and resource use efficiency compared to traditional open 

field farming, is emerging as an effective strategy for mitigating current and future food 

insecurity issues. 

 

Greenhouse horticulture is a capital-, technology-, labour-, and resource-intensive industry 

characterized by high input and output (Stanghellini, van't Oosfer, & Heuvelink, 2019). 

Improving greenhouse production efficiency has always been the central theme, which 

involves increasing crop yields while simultaneously reducing energy and resource 

consumption to achieve higher net returns. These efforts ultimately contribute to ensuring a 

stable supply of high-yield crop products, enhancing the sustainability of the industry, and 

reducing carbon footprint throughout the production process. 

 

The Chinese solar greenhouse (CSG), which is featured with a low cost of operation, is a 

common greenhouse type in Northern China. It is suitable for operation by both farmers and 

enterprises and plays a pivotal role in overwinter production. In 2022, the total area of CSGs 

used for vegetable production was approximately 0.54 million hectares, representing 23.5% 

of the total greenhouse area dedicated to vegetables. Additionally, 288 hectares of CSGs 

were newly constructed in 2022 (T. Li, 2023). As a result, the annual production of protected 

vegetables in China reached 260 million tons, with over 30% contributed by CSGs. Lettuce 
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is a globally important horticultural crop, with an annual production of approximately 27 

million tons, primarily produced in Asia, North America, and Europe (FAOSTAT, 2024). 

China is the largest producer of lettuce, accounting for more than 55% of global production. 

Moreover, lettuce is one of the main crops cultivated in CSGs. For example, In the Beijing 

region, lettuce accounted for 9.6% of the total vegetable planting area, making it the most 

cultivated leafy vegetable, and CSGs covered about 37.6% of the total lettuce planting area 

(Fan et al., 2021). 

 

As shown in Figure 1.1 and Figure 1.2, The CSG has significant structural differences in 

comparison with greenhouses in the Netherlands, Israel and Spain (Pardossi, Tognoni, & 

Incrocci, 2004; Vanthoor, 2011) regarding envelope and controllable components. The 

cambered south roof, north wall, and thermal blanket enable the CSG to perform well on 

daylight access, heat storage, and insulation. 

 

 

 

Figure 1.1 Cross-section of the Chinese solar greenhouse. For a standard CSG, the envelope 

consists of a north wall, a north roof, a south roof, and two side walls. The south roof is 

covered by transparent material. Vents and the thermal blanket are essential and controllable 

structural components for climate control. 
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Figure 1.2 Outside (left) and inside (middle and right) views of the Chinese solar greenhouse. 

Soil culture is common in practical CSG production. 

 

Due to its excellent thermal insulation and heat storage properties, the CSG can produce 

vegetables and fruits in Northern China (32–43°N) mostly without additional heating (Tong, 

Christopher, & Li, 2009). The ability to produce does not necessarily imply efficiency. 

Efficient production of crop products with high yield and quality is the development trend 

of the CSG (W Sun, Zhang, Yang, Xue, & Guo, 2017). However, this is limited by 

unfavourable climate conditions inside the CSG, such as excessively high or low air 

temperature and humidity, deficient CO2 concentration, and insufficient light. The problem 

comes down to a lack of equipment and strategies for CSG climate management in practice.  

 

Recent developments in general-purpose climate conditioning equipment make it easy to 

adjust the CSG climate. Moreover, systems for active heat storage and release (Lu, Zhang, 

Fang, Ke, & Yang, 2017; W. Xu, Guo, & Ma, 2022), systems using greenhouse surplus air 

heat (X. He et al., 2022; Weituo Sun et al., 2015), and other specialised climate conditioning 

approaches for the CSG (K. Cao et al., 2019) have been investigated in view of energy saving 

and emission reduction of pollution gas. However, past research on CSG cultivation focused 

mainly on actuator development; it rarely focused on control strategies. The effects of 

operating time and positions of the thermal blanket on indoor temperature have been studied 

(Y. Liu, Ding, & Zhang, 2004; Tong, Christopher, Li, & Bai, 2010), but they do not orient to 

dynamic control. At present, most CSG climate control schemes are heuristic in practice, 

based on the experience of growers and suppliers as well as empirical horticultural research. 

They are implemented by manual operation or by simple on-off and PI-like controllers. In 
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order to obtain the expected CSG climate, growers can define and adjust the setpoints of the 

controller (Van Straten, Van Willigenburg, Van Henten, & Van Ooteghem, 2010). However, 

these settings do not account for future dynamics, resulting in poor performance of current 

CSG climate control schemes when it comes to maximising the net revenue of crop 

production (D. Xu, S. Du, & L. G. Van Willigenburg, 2018). 

 

The optimisation of greenhouse climate control involves considering the advantages of the 

marketable product in relation to the operating costs of the climate conditioning equipment 

during its operation (Van Henten, 1994a). This situation represents a classic instance of an 

optimal control issue. Differing from conventional greenhouse climate control, the optimal 

control fully exploits scientific quantitative knowledge concerning the greenhouse, 

equipment, and crop. Such knowledge is captured in a mathematical dynamic model that 

anticipates greenhouse-crop dynamics affected by control adjustments with weather 

predictions. Furthermore, the goal of the greenhouse crop production process, which usually 

comes down to maximising net profit, is also specified in a mathematical cost function. The 

greenhouse optimal control theory emerged in the 1960s in Europe and has gradually formed 

many relatively mature control systems and algorithms (Chalabi, Biro, Bailey, Aikman, & 

Cockshull, 2002a, 2002b; I Ioslovich, 2009; I Ioslovich, Gutman, & Linker, 2009; Lin, 

Zhang, & Xia, 2021; Ouammi, 2021; Tap, 2000; Van Beveren, Bontsema, Van Straten, & 

Van Henten, 2015; Van Henten, 1994a, 2003; Van Henten & Bontsema, 2009; Van Ooteghem, 

2010; Van Straten et al., 2010; D. Xu, S. Du, & G. Van Willigenburg, 2018; D. Xu, Du, & 

Van Willigenburg, 2019), which make significant gains in financial efficiency possible. 

These current optimal control systems mainly target modern muti-span greenhouses, i.e. the 

Venlo-type greenhouse. Although the CSG has a different configuration than a multi-span 

greenhouse, optimal control systems have a large potential to improve its economic 

performance and relieve growers from unnecessary tasks. However, few optimal CSG 

climate control systems have been developed, and their contribution to the possible 

efficiency improvement of CSG cultivation in terms of crop yield, energy and resources, or 

net revenue is not clear. 
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The majority of present CSGs, that is, the standard CSGs, lack additional climate 

conditioning equipment and automatic control systems (Qi, Wei, & Zhang, 2017). They only 

have roof and side vents for natural ventilation, as well as the thermal blanket for heat 

preservation, as the two kinds of essential and controllable structural components. The 

climate control in such a standard CSG is manipulated fully by hand and based on the 

grower’s experience. On the contrary, to my best knowledge, the high-tech CSGs equipped 

with multiple climate conditioning facilities with continuous adjustment and an automated 

on-line controller, as targeted in the optimal control investigation of CSG cultivation by Dan 

Xu et al. (2018), do not exist.  

 

Using a model-based control mechanism, the performance of an optimal climate control 

system for greenhouse crop production largely depends on the accuracy of its underlying 

process model, although control algorithms, such as receding horizon (Kuijpers, Antunes, 

van Mourik, van Henten, & van de Molengraft, 2022), can improve system robustness to 

some extent. As the primary control objective is to improve the economic performance of 

greenhouse cultivation (Van Henten, 1994a; Dan Xu et al., 2018), the system model must 

accurately predict greenhouse climate-crop growth dynamics affected by control 

adjustments and weather disturbances, based on which the optimal control problem solving 

can link energy consumption with crop revenue to seek optimised control trajectories. 

Meanwhile, given the unavoidable uncertainties in the system model and weather forecasts, 

achieving a global optimum across the entire crop growth cycle is impractical. Instead, 

optimal control algorithms and systems should be tailored for robust practical applications, 

fully considering the current industry landscape, specific greenhouse configurations, and 

user expectations. To apply optimal control theory in practical CSG production, an optimal 

climate control system for standard CSGs should be developed, based on an accurate system 

model and an applicable control algorithm. 

 

Therefore, on the one hand, an integrated model of CSG climate and crop growth that 

explicitly describes the entire CSG crop production process is necessary to serve as a basis. 

This integrated model should be able to anticipate indoor climate and crop dynamics based 
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on external weather, greenhouse structure, and greenhouse controls, with acceptable 

accuracy, high computational efficiency, and robust generalisation. However, such a well-

designed and thoroughly validated integrated CSG climate-crop growth model for control is 

not available. As modelling the greenhouse crop production process involves complex 

mechanism descriptions and this project takes lettuce, which is one of the most important 

horticultural crops, as the target crop, the generation of the integrated model will combine a 

lettuce growth model and a CSG climate model. First, since extreme temperatures 

frequently occur inside CSGs with limited climate conditioning capabilities, and optimal 

control of humidity attribute is crucial, the lettuce growth model should describe the effects 

of a broad range of greenhouse climates, including air temperature with extreme conditions, 

humidity, CO2 concentration, and shortwave radiation, on crop state dynamics. Second, it is 

necessary to have a process-based CSG climate model that can integratively simulate all four 

climate attributes inside CSGs, incorporating the description of crop activities for a particular 

cultivar, i.e. the lettuce. This climate model should also undergo a thorough evaluation in 

CSG lettuce production scenarios, using measured crop states and greenhouse controls. Such 

two individual models are not available in the literature. On the other hand, an optimal 

control algorithm designed for standard CSGs without local controllers is required. The 

optimal control problem definition and the overall control process planning should be 

centred around the grower, fully considering the grower’s greenhouse production objective, 

acceptable labour input, and the accuracy of manual operations. This algorithm is yet to be 

designed and evaluated. 

 

This optimal climate control system for CSG cultivation will act as a decision support system. 

By using the control strategies recommended by the system, the CSG climate management 

is anticipated to achieve more efficiency than a conventional control supervised by the 

grower, and higher net revenue can be obtained from crop production. 

 

1.2 Research objective 

 

The objective of this project is to generate and evaluate an optimal climate control system 
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for standard CSGs, including the development of required models that simulate the CSG 

crop production process and an applicable optimal control algorithm that supports decision-

making for growers. To apply optimal control theory in CSG climate management, we 

mainly address the following research questions: 

1. To what levels can the accuracy of the lettuce growth model and the CSG climate 

model based on explicit process descriptions be achieved across the entire crop 

growth cycle, and how do these accuracies change upon model integration? 

2. How much influence do current differentiating practical climate control scenarios 

have on net economic return in standard CSG cultivation? 

3. What is the potential efficiency improvement of crop production inside a standard 

CSG by using optimal control over a conventional control supervised by the 

grower, and to what degree can it be achieved in practical production? 

 

1.3 Outline 

 

The organisational structure of this thesis is shown in Figure 1.3. 

 

Chapter 2: Methodology 

 

This chapter will introduce the methodologies, data, and codes that were used throughout 

this project, focusing on experiment design and model evaluation. Three CSG lettuce 

cultivation experiments were conducted to gather data for model calibration, validation, and 

control system evaluation. The setup for these experiments, from experiment design, CSGs 

preparation, and lettuce planting to data collection, will be detailed, followed by the data 

processing for simulations and an overview of the outdoor weather conditions. Then, the 

modelling methodology, coupling strategy, model calibration and validation methods, as 

well as the method for optimal control, will be illustrated. In addition, the software and 

programming used for simulations will be presented. 

 

Chapter 3: A lettuce growth model responding to a broad range of greenhouse climates 
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No dynamic and mechanism model for lettuce growth includes the effects of air temperature 

with extreme conditions and humidity. In this chapter, a lettuce growth model that describes 

the effects of a broad range of greenhouse climates on crop dry weight dynamics will be 

developed, calibrated, and validated. Firstly, we will provide a model overview and detail 

the model equations describing lettuce growth as functions of air temperature with extreme 

conditions, relative humidity, CO2 concentration, and shortwave radiation. Then, parameter 

calibration will be performed at both sub-model and model levels, together with generating 

all the parameters. Finally, the model will be validated by comparing measured and 

simulated crop dry weights. We will further evaluate model performance in leaf area index 

(LAI) simulations, analyse the role of the model framework and hypothesis, and summarise 

the effects of humidity. In addition, model universality and limitations will be discussed. 

 

Chapter 4: A full-scale climate model of the Chinese solar greenhouse 

 

A thoroughly tested process-based CSG climate model that integratively simulates the four 

attributes of shortwave radiation, air temperature, humidity, and CO2 concentration, and 

describes crop activities targeting lettuce, is currently unavailable. This chapter will design 

and evaluate a full-scale CSG climate model that describes the effects of outdoor weather, 

greenhouse structure, cultivated crops, and greenhouse controls on the indoor climate of a 

standard CSG. Initially, the framework and assumptions of the model will be overviewed. 

Then, the model will be explicitly described from eleven subsections. Model 

parameterisation will be conducted by classifying parameters into general parameters and 

those dependent on the simulated CSG. Finally, the model performance in predicting all four 

climate factors will be evaluated, along with the exploration of contributions of energy and 

mass fluxes to indoor climates. Heat fluxes inside the north wall and indoor soil, as well as 

the ice layer formation, will also be analysed, followed by discussions on the universality, 

limitations, and perspective of the model. 

 

Chapter 5: An integrated model of Chinese solar greenhouse climate and crop growth for 

control 
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A well-designed and thoroughly validated integrated model of Chinese solar greenhouse 

climate and crop growth for control is not available. This chapter will establish and evaluate 

such an integrated greenhouse climate-crop growth model for CSG lettuce production by 

combining the two previous models developed in Chapters 3 and 4. Firstly, the model 

synthesis will be performed, followed by model smoothing, which will include constructing 

smoothed equations and determining introduced parameters. Then, the integrated model will 

be validated in terms of both indoor climate and crop state predictions. Further, the validated 

model will be used for exploratory modelling to investigate the influence of practical control 

scenarios on crop production output in standard CSGs. Finally, the performance of the 

smoothed model will be re-evaluated, followed by discussions on the applicability, 

limitations, and improvement directions of the model. 

 

Chapter 6: Event-driven receding horizon optimal control of Chinese solar greenhouse 

climate 

 

A user-friendly optimal climate control system for crop production of a standard CSG 

without the local controller is currently unavailable. This chapter will generate and evaluate 

such an optimal control system, which takes the integrated model presented in Chapter 5 as 

a basis and employs an event-driven receding horizon design with real-time feedback to 

enhance system robustness while ensuring user-friendliness. Firstly, the optimal control 

system formulation, focusing on the development of the climate control algorithm that 

includes the definition of optimal control problem and controller design, will be explicitly 

described. Next, simulation trials will be conducted among ideal optimal control, open loop 

optimal control, and control supervised by the grower, exploring the efficiency improvement 

of crop production inside standard CSGs by using optimal climate control. Then, the 

feasibility of implementing the closed loop optimal control will be investigated, along with 

answering the extent to which ‘optimal’ can be realised in practice. Finally, the costs of 

deploying the proposed control system, model simplification, and methods for solving the 

optimal control problem will be discussed. 
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Chapter 7: Conclusion 

 

This chapter will present the conclusion of the PhD research project, summarising the overall 

achievement of the research objective, application prospects of the research outputs, and 

insights from each chapter. Subsequently, it synthesises insights from the main research 

chapters to explore the contributions, potential uptake, and avenues for improvement of this 

project from both knowledge and engineering perspectives. The outlook will be discussed 

from the following three aspects: model simplification based on sensitivity analysis, setpoint 

tracking optimal control of high-tech CSGs, and optimal control of CSG climate assisted by 

data-driven method. 

 

Figure 1.3 Organisational structure of the thesis and relationships between the main chapters. 
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Chapter 2 

 

Methodology 

 

This chapter illustrates the process of data collection and processing, basic methods for 

modelling and optimal control, and coding for simulations that support the entire research. 
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2.1 Experiment design 

 

In order to obtain data for model calibration and validation, as well as for performance 

evaluation of the optimal control system, three experiments were conducted across different 

CSG systems, focusing on lettuce cultivation over different periods. These experiments were 

carried out from 9 April to 14 May 2020, from 24 November 2020 to 18 January 2021, and 

from 25 January to 16 March 2022 and were named sequentially as Experiment 1 (Exp_1), 

Experiment 2 (Exp_2), and Experiment 3 (Exp_3). They spanned warm, cold, and cold-

warm weather conditions, enabling the collected greenhouse climate cover from extremely 

low to extremely high temperatures, and involved two different CSGs. 

 

As indicated in Table 2.1, these three experiments served different purposes in various 

chapters. In Chapter 3, the lettuce growth model was studied using Exp_1, Exp_2, and Exp_3. 

The experiment performed in the cold season was used for global calibration, and the other 

two in warm and cold-warm seasons were used for model validation. Thus, Exp_2 served as 

the calibration experiment for crop model development, while Exp_1 and Exp_3 served as 

the first and second validation experiments, respectively. In Chapter 4, which focused on the 

CSG climate model, Exp_1 and Exp_3 were used for validation, considering that Exp_2 was 

dedicated to crop model calibration, while crop activity descriptions in the climate model 

were directly sourced from the crop model. Moreover, Exp_1 and Exp_3, involving both 

cold and warm weather conditions, provided sufficient representation for evaluating model 

performance and facilitated comparative analysis for potential optimisation directions. 

Chapter 5 utilised all three experiments for the evaluation of the integrated model of CSG 

climate and lettuce growth. To exclude the potential impact of crop senescence, data from 

the last five days of each experiment were uniformly discarded. Additionally, Exp_3 was 

selected to study the impact of various climate control practices on CSG production output 

through modelling exploratory. In Chapter 6, all three experiments participated in providing 

data support for case studies on the performance evaluation of the optimal control algorithms. 
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Table 2.1 Usage and naming conventions of the experiments in different chapters. 

 

Experiment Date Chapter 3: 

Crop model 

Chapter 4: 

Climate model 

Chapter 5: Integrated 

model 

Chapter 6: 

Control  

Exp_1 9 Apr 2020-14 

May 2020 

Validation Validation Validation Simulation 

trial 

Exp_2 29 Nov 2020-

18 Jan 2021 

Calibration / Validation Simulation 

trial 

Exp_3 30 Jan 2022-

16 Mar 2022 

Validation Validation Validation 

Modelling exploratory 

Simulation 

trial 

 

2.1.1 Experimental greenhouses 

 

The experimental CSGs were located in Fangshan District, Beijing, China (39.62° N, 115.96° 

E). They were oriented from east to west, consisting of the north wall, side walls, the back 

roof, and the south roof made of single-layer plastic film. The south roof had two vents that 

opened from east to west: one at the bottom and one at the top. It was covered with a thermal 

blanket at night in cold seasons. No extra energy-consuming climate conditioning equipment 

was used during the experiments.  

 

The CSG in Exp_1 (Figure 2.1A) had a ground area of approximately 585 m2, with a width 

of 7.50 m and a length of 78.0 m. The CSG used for Exp_2 and Exp_3 (Figure 2.1B) had a 

floor area of approximately 652 m2, with a width of 7.55 m and a length of 86.3 m. The 

indoor ground of CSGs for Exp_1, Exp_2, and Exp_3 was bare soil. The specific CSG 

structure, dimensions, and materials are listed in Table 2.2, based on which the greenhouse 

dependent parameters required by the CSG climate model can be obtained directly or derived. 

To aid understanding, Figure 2.2 is provided to show the main CSG dimensions in Table 2.2, 

taking the CSG used for Exp_2 and Exp_3 as an example.  

 

During the experiments, the CSG climate was regulated in accordance with the rules 

observed in typical CSG horticultural practices. The growers operated the thermal blanket 

and side and roof vents to regulate the indoor climate and optimise crop production for both 
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high yield and quality. 

 

 

 

Figure 2.1 Experimental Chinese solar greenhouses. A: used for Exp_1; B: used for Exp_2 

and Exp_3. 

 

Table 2.2 Structure, dimensions, and materials of CSGs used for model validation. 

 

NO. Item CSG for Exp_1 CSG for Exp_2 and Exp_3 

1 Azimuth angle 5 ° west of south 5 ° west of south 

2 Ridge height 3000 mm 4100 mm 

3 Horizontal projection 

distance between ridge and 

north wall 

690 mm 1320 mm 

4 CSG height at 1/6 segment 

point of south roof 

projection 

1630 mm 2000 mm 

5 CSG height at 1/2 segment 

point of south roof 

projection 

2581 mm 3300 mm 

6 CSG height at 5/6 segment 

point of south roof 

projection 

2975 mm 4010 mm 

7 Average height 2350 mm 3110 mm 

8 Span 7500 mm 7550 mm 

9 Length in east-west 

direction 

78.0 m 86.3 m 
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10 Height of north wall 2200 mm 3050 mm 

11 North wall angle 90 ° 90 ° 

12 North wall inner surface 10 mm cement mortar 10 mm cement mortar 

13 North wall outer surface 10 mm cement mortar 50 mm extruded polystyrene 

board + 2 mm cement mortar 

14 North wall interlayer 410 mm hollow brick wall 454 mm hollow brick wall 

15 Length of north roof 1055 mm 1690 mm 

16 North roof angle 49 ° 39 ° 

17 North roof inner surface 50 mm extruded polystyrene 

board + 2 mm cement mortar 

50 mm extruded polystyrene 

board + 2 mm cement mortar 

18 North roof outer surface 50 mm extruded polystyrene 

board + 2 mm cement mortar 

50 mm extruded polystyrene 

board + 2 mm cement mortar 

19 North roof interlayer 80 mm reinforced concrete 

prefabricated board 

80 mm reinforced concrete 

prefabricated board 

20 Indoor ground Bare soil Bare soil 

21 Aisle / 600 mm wide concrete aisle 

22 South roof arc length 7955 mm 8005 mm 

23 South roof angle 24 ° 33 ° 

24 Transparent covering 0.08 mm PO film 0.08 mm PO film 

25 Side wall inner surface 10 mm cement mortar 10 mm cement mortar 

26 Side wall outer surface 10 mm cement mortar 50 mm extruded polystyrene 

board + 2 mm cement mortar 

27 Side wall interlayer 370 mm hollow brick wall 423 mm hollow brick wall 

28 Thermal blanket inner 

surface 

/ 0.5 mm PE woven fabric 

(white outside, black inside) 

29 Thermal blanket outer 

surface 

/ 0.5 mm PE woven fabric 

(white outside, black inside) 

30 Thermal blanket interlayer / 20 mm black rubber-plastic 

insulation material 

31 Roof vent type Pull film controlled by thermal blanket 

32 Roof vent width 400 mm 400 mm 

33 Insect screen at roof vent 40 mesh with a wire diameter 

of 0.17 mm 

40 mesh with a wire diameter 

of 0.17 mm 

34 Side vent type Pull film Roll film 

35 Side vent width 1000 mm 1000 mm 

36 Insect screen at side vent 40 mesh with a wire diameter 

of 0.17 mm 

40 mesh with a wire diameter 

of 0.17 mm 

37 Equipment configuration 2 fans (1370×1370 mm) 

coupled with wet pad 

/ 
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Figure 2.2 Greenhouse parameters of the CSG used for Exp_2 and Exp_3 on the cross-

section (unit: mm). The blue lines are the auxiliary lines. 

 

2.1.2 Lettuce planting 

 

The cultivar of the lettuce (Lactuca sativa) selected for the experiments was Tiberius RZ 

(41-27) (produced by Rijk Zwaan, The Netherlands), which is increasingly used for 

greenhouse lettuce production in China. Lettuce plants were sown and raised in the nursery 

substrate inside a seedling greenhouse. Then, they were transplanted to soil inside CSGs. 

 

In Exp_1, the lettuce seedlings were transplanted when they had 10 main leaves. The plants 

were cultivated in east-west rows (Fig. 2.3a), which occupied parts of the greenhouse floor 

area with a length of 72.6 m and total width of 3.60 m. There were 255 plants per row, so 

the row density was 3.51 plants m-1. There were 12 rows and 3060 plants in the greenhouse, 

that is, 11.71 plants m-2 (gro). In this study, the developed model is oriented to lettuce 

cultivation with an effective cultivated area-based, instead of an arbitrary ground area-based, 

plant density. This makes the model practical and universal. The unit ground area on which 

Indoor ground

Side 

vent

South roof

Roof vent

Thermal blanket

North 

wall
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the simulated crop dry weight and other states are based is the effective cultivated area. This 

effective area depends on the upper limit of ground area occupied by a single plant. 

Considering the lettuce’s genetic characteristics and harvesting size for commercial purposes, 

the model limits the maximum ground area occupied by a single lettuce to 0.32×0.32 m 

square centred on the planting site. This limitation works in dividing the boundary of an 

effective cultivated area and preventing the density from being too low. If not, the model 

will easily overestimate crop growth and lose its universality. This is because, like most other 

models, this model assumes that the canopy infinitely spreads in the selected ground area. 

However, many blank areas exist outside the cultivation area and even between plants inside 

the greenhouse. The global calibration of the lettuce growth model below contributes to the 

implicit plant density of the model, as the density input is used solely to calculate single-

plant dry weight for determining the root-to-shoot ratio, while crop states measured for 

global calibration are based on the effective cultivation area. 

 

In Exp_2, the lettuce seedlings were transplanted when they had 4 main leaves. The plants 

were cultivated in east-west rows (Fig. 2.3b), and the cultivated area had a length of 78.1 m 

and total width of 4.50 m. There were 265 plants per row, so the row density was 3.39 plants 

m-1. There were 15 rows and 3975 plants in the greenhouse, and the plant density was 11.31 

plants m-2 (gro). In Exp_3, the lettuce seedlings were transplanted when they had 5 main 

leaves. The plants were cultivated in north-south ridges, with 4 rows of crops on each ridge 

(Fig. 2.3c). The cultivated area had a total length of 59.0 m and a width of 6.25 m. There 

were 18 plants per row; thus, the row density was 2.88 plants m-1. There were 236 rows and 

4248 plants in the greenhouse, that is 11.52 plants m-2 (gro). 

 

The greenhouse climate control during the growing period was manipulated manually 

according to the rules used in regular CSG horticulture practice. Supply of water and 

fertiliser was also in line with the growers’ experience with the control objective of being 

most beneficial to crop growth. Note that the model uses only environmental factors as 

external inputs, and it is assumed that water and fertiliser levels were adequate in the 

experiments. 
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Figure 2.3 Experimental greenhouses and lettuce cultivation. a: Exp_1; b: Exp_2; c: Exp_3. 

 

2.1.3 Data collection 

 

During the three experiments, crop growth indicators and greenhouse climate measurements 

were recorded. To ensure uniform data, buffer zones were set factitiously to mitigate the 

effects of CSG side walls and the entrance door on indoor climate and lettuce growth. The 

remaining was the sampling zone, where the lettuce samplings and climate measurements 

were performed (Figure 2.4). The sampling zone was divided into 3 blocks for destructive 

crop measurements, and an equal number of plants were randomly selected for harvest from 

each block to consider the impact of greenhouse climate gradients. Throughout the growing 

season, samples were collected every 5 days in the three experiments: 18 plants in Exp_1 

and Exp_2, and 6 plants in Exp_3. One exception was the first sampling; the samples were 

the seedlings for transplanting, and 6 plants were sampled given the uniform nursery climate. 

Dry and fresh weights of both root and shoot, leaf area, canopy diameter, and other growth 

indicators were determined for each plant. Dry weight was obtained after oven drying at 105℃ 

for 30 min and then 70 ℃ until the samples had constant weight, and it was measured by an 
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analytical balance (accuracy: 0.001 g). Leaf area was measured by a portable leaf area meter 

(LI-3000C, USA, accuracy: within ± 2% for samples >50 cm2). 

 

Greenhouse climate includes solar radiation (shortwave radiation), air temperature, relative 

humidity, and CO2 concentration at a height of 1.5 m above the CSG ground. Of which, air 

temperature, relative humidity and CO2 were measured and recorded by a portable data 

logger (ESPEC THCO2, Japan, accuracy: CO2 ± 50 ppm) with sensors (RSH-3020, Japan, 

accuracy: temperature ±0.3 ℃, relative humidity ± 2.5%). Solar radiation was measured by 

pyranometers (Kipp&Zonen CMP6, The Netherlands, sensitivity: 5-20μV/W/m²) and 

recorded by Campbell CR1000 (USA) data logger. Climatic data was recorded with a time 

step of 5 minutes. The specific layout of climate measurement points is shown in Figure 2.4.  

 

 

 

Figure 2.4 Lettuce sampling area and layout of climate measurement points (unit: m, taking 

Exp_1 for example). Measurement points of temperature, humidity and CO2 are located at 

A-E points. Measurement points of shortwave radiation are located at A-C points. Shadow 

areas denote buffer zones where lettuce is cultivated but not sampled. The model study uses 

the average values of these measuring points and samples. 

 

The outdoor weather data include horizontal solar radiation, air temperature, relative 

humidity, CO2 concentration, and wind speed. They were measured by a self-assembled 

weather station installed on top of a CSG inside the agricultural park where our experiments 

were conducted. Solar radiation was measured by a CMP6 pyranometer (Kipp&Zonen, The 

Netherlands, sensitivity: 5-20μV/W/m²). Air temperature and humidity were measured by 
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an HMP155A air temperature and relative humidity sensor (Vaisala, Finland, accuracy for 

air temperature is ± (0.226 - 0.0028 × temperature) ℃ in the range of -80 to 20 ℃ and ± 

(0.055 + 0.0057 × temperature) ℃ in the range of 20 to 60 ℃, accuracy for relative humidity 

is ± (1.0 + 0.008 × reading) % at the temperature levels of -20 to 40 ℃). Outdoor wind speed 

was measured using a 034B wind sensor (MetOne, USA, accuracy: 0.1 m s-1 when < 10.1 m 

s-1, ±1.1% of true when > 10.1 m s-1). The above data were recorded by Campbell CR1000 

(USA) data logger. The CO2 concentration of outdoor air was measured and recorded by a 

portable data logger (ESPEC THCO2, Japan, accuracy: CO2 ± 50 ppm). All outdoor weather 

data were collected in 5-minute intervals. 

 

The growers manipulated and recorded controls of the thermal blanket and side and roof 

vents. The control of vents was divided into five levels: fully closed, 1/4 open, 1/2 open, 3/4 

open, and fully open. The thermal blanket was required to be either fully open or fully closed. 

The moments of greenhouse control actions were recorded using the initial time of controls. 

 

The collected weather, climate, crop, and control data were derived from three experiments, 

differing in the CSGs used, cultivation patterns, and experimental periods. These datasets, 

in digital form, were used as inputs or outputs for calibrating and validating the lettuce 

growth model, the CSG climate model, and the integrated model under development. The 

experiments were designed with diverse greenhouse crop production scenarios to provide a 

broad range of data; if the developed models can accommodate this data variety, it would 

confirm their robust generalisation capability. The models were structured to identify and 

respond to different CSG cultivation scenarios primarily through model inputs and 

definitions. For example, structural parameters specific to each CSG and seasonal weather 

conditions were inputs for the climate and integrated models. Time-varying indoor climates 

provided inputs for the crop model. In various cultivation patterns, plant densities differed 

but served as an input for the crop model. Meanwhile, using a defined plant density based 

on effective cultivation area, the models could disregard row orientation impacts. 

Additionally, different transplanting dates were reflected by the initial crop and climate states, 

configured as input settings during simulation runs. 
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2.1.4 Crop data processing 

 

In Exp_1, performed in the warm season, the roof and side vents were almost always open, 

resulting in good ventilation and a relatively uniform climate inside the greenhouse. At the 

same time, lettuce cultivation had a great demand for irrigation in high temperatures. Due to 

the east-west cultivation pattern, in which the drip irrigation belt extended a long distance of 

half the CSG length, insufficient irrigation for some plants might occur. Therefore, the top 

12 of the 18 lettuce samples in crop dry weight were selected for model study to avoid 

potential water and fertiliser stress. In Exp_2 and Exp_3, seedlings were transplanted in the 

cold season, and the recovering period lasted for several days. In order to ensure that the data 

used for model calibration and validation were representative, the measurements of the 

second sampling performed on the fifth day from the transplanting date (Day 0) were 

selected as the initial states of model simulations. As to the analysis above, the initial crop 

states used for crop model simulations are listed in Table 2.3. 

 

The crop data processing for these three experiments and the initial states used for simulation 

are applicable to all chapters. Additionally, in the simulations of the CSG climate model and 

the integrated CSG climate-crop growth model, the initial climate states adopted the 

measured data, while other CSG object states were estimated. 

 

Table 2.3 Initial crop states used for the lettuce growth model simulations. 

 

Experiment 

number 

Plant density 

[plants m-2] 

Initial crop 

dry weight 

of individual 

plant 

[g plant-1] 

Initial crop 

dry weight  

[kg m-2 

(gro)] 

Initial leaf 

area of 

individual 

plant 

[cm2 plant-1] 

Initial leaf 

area index 

[-] 

Initial buffer 

storage 

[kg (CH2O) 

m-2 (gro)] 

Exp_1 11.71 0.3889 4.5538×10-3 146.47 0.1715 0 

Exp_2 11.31 0.1112 1.2578×10-3 37.63 0.0426 0 

Exp_3 11.52 0.1716 1.9766×10-3 86.50 0.0996 0 
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2.1.5 Outdoor climate overview 

 

The primary function of CSGs is to produce vegetables overwinter. The validation 

experiments for the climate and integrated models focused on these periods and spanned 

warm, cold, and cold-warm weather conditions, making the evaluation results more 

representative. Table 2.4 summarises the outdoor weather data, including their average 

values and standard deviations. Outdoor climate conditions differ in the three experiments, 

providing a more diverse environment and more comprehensive data for model validation. 

As previously mentioned, the experimental data used to validate the CSG climate model was 

consistent with that for the crop model, which could make it easier to compare the 

performance of the crop model, climate model, and integrated model. If no actual 

measurements were available, the assumed outdoor CO2 concentration was 400 μmol mol-1 

(ppm) (Katzin, van Mourik, Kempkes, & van Henten, 2020).  

 

Table 2.4 Averages of the outdoor weather conditions in the validation experiments for the 

CSG climate and integrated models. Numbers in the brackets are the standard deviations. 

 

Experiment Date n  

[-] 

Iout  

[MJ m-2 d-

1] 

Tout  

[℃] 

RHout  

[-] 

CO2out 

[ppm] 

ve  

[m s-1] 

Exp_1 9 Apr 2020-

14 May 2020 

100-

135 

21.1 (6.6) 18.0 (6.7) 0.50 

(0.30) 

410 (90) 1.60 

(1.16) 

Exp_2 29 Nov 2020-

18 Jan 2021 

334-

18 

8.7 (1.5) -5.5 (6.4) 0.58 

(0.25) 

458 (32) 0.81 

(0.92) 

Exp_3 30 Jan 2022-

16 Mar 2022 

30-75 13.1 (3.5) 1.2 (7.5) 0.48 

(0.22) 

400 (0) 0.85 

(1.01) 

 

2.2 Basic methods for modelling and optimal control 

 

2.2.1 Modelling methodology and coupling strategy 

 

A variety of models have been developed for simulating greenhouse climate and crop growth 
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dynamics. These models include simple statistical models such as the logistic growth forms 

(Tei, Aikman, & Scaife, 1996), mechanistic models like the greenhouse and tomato models 

developed by Vanthoor (2011), machine learning models represented by neural networks 

(Mohmed et al., 2023), computational fluid dynamics (CFD) models specialised in 

simulating airflow processes and climate distributions (Norton, Sun, Grant, Fallon, & Dodd, 

2007), and functional-structural models combining mechanistic elements with plant 

morphology and used as digital twins for simulation (Rohde & Forni, 2023). In this study, 

we focus on constructing mechanistic models based on detailed process descriptions. 

Mechanistic models, also known as process-based or explanatory models, are mathematical 

representations that simulate the fundamental biological, physical, and chemical processes 

governing a system. They explain the system behaviour at an upper integration level by 

integrating processes from lower integration levels (Reidsma & Descheemaeker, 2019). The 

choice of mechanistic models can be beneficial in four aspects. First, they are highly 

interpretable and have low dependence on extensive datasets. Second, they are expected to 

generalise better across varying conditions than data-driven models. Third, they offer higher 

computational efficiency compared to multi-dimensional models. Fourth, the modular 

structure of mechanistic models allows for seamless integration of the individual greenhouse 

climate and crop growth models to describe the entire greenhouse crop production process. 

 

The development of the lettuce growth model and the CSG climate model follows the phases 

outlined in Figure 2.5. Both models are developed for greenhouse climate control purposes 

and will eventually be coupled to describe the CSG lettuce production process. To define the 

system boundaries, the targeted system configuration, model inputs, outputs, and underlying 

assumptions should be clarified. Specifically, the crop model addresses potential production 

scenarios, where crop growth is influenced exclusively by the greenhouse shoot environment. 

The model inputs include the air temperature (including extremes), humidity, CO2 

concentration, and shortwave radiation. Crop growth dynamics are represented through 

outputs such as crop dry weight and leaf area index. Correspondingly, the CSG climate 

model targets the standard CSG configuration, relying on structural components for 

greenhouse climate regulation. It captures dynamics of the four climate attributes and other 
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CSG object states, responding to outdoor weather, greenhouse structure, crop states, and 

greenhouse controls. Further details are provided in the model assumptions, which primarily 

serve to simplify the system under study. Both mechanistic models are built upon a complete 

model framework, illustrated by a schematic diagram and further detailed in the model 

overview section. This section covers the core processes and innovative aspects that shape 

the conceptual model. While the framework introduces novel elements, the fundamental 

theories remain consistent with those of most other mechanistic models. In particular, the 

crop model relies on dry matter accumulation, calculated as the net difference between 

photosynthesis and respiration, while the greenhouse climate model is based on energy and 

mass balance principles. 

 

Transforming the conceptual model into a quantitative form involves establishing equations 

and performing parameterisation. The model equations encompass input variables, state 

variables that generally correspond to model outputs, intermediate variables such as rate 

variables, and model parameters, governed by specific rules. The simulated system is 

characterised by state variables at different time points, and their rates of change in time are 

formalised by differential equations, with time units in seconds, allowing for instantaneous 

simulation of CSG climate and crop growth. Solving these differential equations is essential 

to depict the dynamic system behaviour. Model outputs that do not require iterative 

calculations, such as indoor shortwave radiation, are determined by analytical equations. For 

model reduction, some state variables can be described by algebraic equations. Data 

gathering and processing have been detailed in Section 2.1. Methods for model programming, 

calibration, and validation will be illustrated in subsequent sections. Note that several steps 

shown in Figure 2.5 might be repeated multiple times during the model development process. 

 

The generation of the integrated model combines all state variables from the lettuce growth 

model and the CSG climate model into a unified framework, directly merging their equations 

while preserving constant parameters. During programming, careful attention must be paid 

to the conversion of model inputs and state variables between the integrated model and 

individual component models. The integrated model will subsequently be employed for 
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modelling exploratory and optimal control analysis. 

 

 

 

Figure 2.5 Phases of model development. It is adapted from the diagram by Reidsma and 

Descheemaeker (2019). 

 

2.2.2 Model calibration and validation methods 

 

The goal of model evaluation or validation is to assess the effectiveness of the model in 

achieving the objectives of the modelling project. In this study, we aim to determine whether 

the developed models have sufficient prediction accuracy to meet control requirements. To 

achieve this, all three developed models are evaluated by comparing simulation results with 
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measured data of the system behaviour at the upper integration level, utilising both graphical 

interpretation and statistical analysis. Graphical analysis compares the dynamic trends 

between simulated and observed values, qualitatively identifying periods of overestimation 

or underestimation and overall trends, while quantitative analysis employs statistical metrics. 

The selection of model output variables for comparison with measured data is based on the 

modelling objectives and data availability. 

 

In the study of the lettuce growth model, greenhouse climate data with 5-minute intervals 

were used as model inputs. Model performances were evaluated by comparing the measured 

and simulated crop dry weights, using the root mean square error (RMSE) and the relative 

root mean square error (RRMSE). The two common metrics are defined as follows, 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖

𝑚 − 𝑦𝑖
𝑠)2

𝑛

𝑖=1
 (2.1) 
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𝑛

𝑖=1
 (2.2) 

 

where 𝑦𝑖
𝑚  and 𝑦𝑖

𝑠  are measured and simulated values at the same timepoint, n is the 

number of measurements, 𝑦𝑚  is the average of measured values. While the RMSE 

measures the absolute magnitude of prediction errors, the RRMSE expresses the error as a 

percentage relative to the sample mean. The latter allows us to deal with datasets with 

different units or scales and compare the performance across crop models. Taking reference 

from the evaluation of a field crop model (Jamieson, Porter, & Wilson, 1991), the 

performance of modelling lettuce growth is considered to be excellent if RRMSE < 10%, 

good if the RRMSE is between 10% and 20%, acceptable if the RRMSE is between 20% and 

30%, and poor if RRMSE > 30%. 

 

Following the criteria for publishing crop model papers (Sinclair & Seligman, 2000), the 
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prediction of the critical crop growth indicator, LAI, throughout the simulated growth cycle 

was also considered in the model evaluation. Additionally, the simulation and presentation 

of another state variable, the amount of stored carbohydrates in the buffer, were conducted 

to assess the role of the model framework and underlying hypothesis. 

 

Similar to the evaluation of the crop model, the performance of the CSG climate model was 

also evaluated in quantitative terms using RMSE and RRMSE. Simulated shortwave radiation 

(I), air temperature (Xt), air humidity (Xh), and CO2 concentration (Xc) inside the CSG were 

compared with the measured values. The smaller the values of RMSE and RRMSE, the better 

the model performance on climate predictions. However, there are no established standards 

for defining how accurate the greenhouse climate models should be (Katzin, van Henten, & 

van Mourik, 2022), especially for models used for climate control. In the model investigation 

by Vanthoor (2011) for optimal greenhouse design, it was assumed that when RRMSE ≤ 10%, 

the model was considered to have good performance. Based on our current understanding, 

assessing the performance of CSG climate models using this criterion is challenging due to 

the complexity of the CSG system, the absence of standardised CSG construction methods, 

the highly integrated descriptions, and the required simulation over the entire growth cycle 

for control purposes. In this study, the performance evaluation for the CSG climate model 

adopts the same criteria as those used for the crop model.  

 

Predictions of the crop and climate states are integrated and jointly evaluated in the 

integrated model. Consequently, the rules for evaluating the integrated model of CSG 

climate and lettuce growth can refer to those for the individual crop and CSG climate models. 

That is, all developed models employ the same model evaluation methods. 

 

Model parameterisation is crucial for formulating a quantitative model. In this study, most 

parameters were derived from the literature, while others were determined through direct 

measurements and model calibration. Specially, the parameters of the CSG climate model or 

components are categorised into two types: general parameters and CSG-dependent 

parameters.  
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Model calibration involves adjusting parameters to ensure that simulated results agree with 

measurements as closely as possible. Typically, calibration follows a sensitivity analysis, 

which helps identify parameters that have strong influence on the model output (Wallach, 

Makowski, Jones, & Brun, 2019). However, this approach is uncommon in simulating 

greenhouse crop production processes (Katzin et al., 2022). In our study, calibration was also 

conducted without a preliminary sensitivity analysis; instead, we directly targeted newly 

introduced or other unsupported parameters. As noted by Reidsma and Descheemaeker 

(2019), ideal model calibration uses data from the lower integration level to parameterise the 

model, which corresponds to our local calibration approach. It focuses on sub-models where 

parameters are fitted using experimental data according to the prescribed equations. 

Furthermore, global calibration was conducted at a higher integration level to minimise the 

RRMSE and maximise the agreement between model outputs and observed data. This global 

calibration was applied only to the parameter estimation of the crop model. Given that only 

two parameters required global calibration, we used the grid search method for optimisation, 

which involves a systematic and exhaustive exploration of the parameter space by evaluating 

all possible combinations within specified ranges and intervals. This optimisation method is 

simple to implement and increases the likelihood of identifying the global minimum. 

 

Note that separate datasets are needed for model calibration and validation to ensure an 

unbiased assessment of model performance. While Exp_2 was used for the global calibration 

of the crop model, it could also be employed for the evaluation of the CSG climate model 

and the integrated model. This is acceptable because the latter two models incorporate 

additional components and dynamics not directly calibrated with Exp_2. 

 

2.2.3 Method for optimal control 

 

Several classic books and studies have detailed the theory of optimal control in greenhouse 

cultivation (Van Straten et al., 2010; Dan Xu et al., 2018). Here we summarise the main line 

of thought for developing the optimal control system and solving the associated optimal 
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control problem. Designing a practical, closed-loop optimal control system of greenhouse 

climate can be separated into three parts. The first task is to create a quantitative 

mathematical system model in state-space form, in our case the integrated model of CSG 

climate and crop growth. The second task is to define the optimal control problem, which 

includes specifying the system model, initial state, external inputs, control constraints, state 

constraints, and the cost function, considering a fixed final time without terminal constraints. 

The third task is to schedule the overall control process, that is to conduct the so-called 

controller design, focusing on addressing the determination of how exactly the feedback 

should take place. Together, the second and third tasks contribute to the optimal control 

algorithm to be developed in this project.  

 

Net profit is the primary concern of growers and is also the most used performance criterion 

in optimal control investigations. The objective of the optimal control is to maximise the net 

economic return of CSG lettuce cultivation, which can be described as (Van Henten & 

Bontsema, 2009): 

 

 𝐽(𝑈) = 𝛷 (𝑋(𝑡𝑓)) − ∫ 𝐿(𝑋, 𝑌, 𝑈, 𝐷, 𝑃, 𝑡)𝑑𝑡
𝑡𝑓

𝑡0

 (2.3) 

 

where, X represents state variables that appear with a time derivative in the system model, 

such as indoor air temperature, relative humidity, CO2 concentration, and crop dry weight; 

Y represents state variables that can be obtained analytically, such as indoor solar radiation; 

U represents greenhouse controls; D represents external disturbances; P represents 

parameters that clarifies the specific greenhouse structure and cultivation scenario; t is time; 

J(U) is the net economic return, also namely as cost function, objective function, or 

performance criterion, 𝛷 (𝑋(𝑡𝑓)) represents the income by selling the harvested product 

of the greenhouse production, 𝐿(𝑋, 𝑌, 𝑈, 𝐷, 𝑃, 𝑡)  represents running costs of the 

controllable objects for climate conditioning, t0 is the initial time for optimisation, and tf is 

the final time for optimisation. The period from t0 to tf is the crop growth cycle considered 
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by the open loop optimal control, where t0 can be the time of lettuce transplanting or the end 

of the recovering period, while tf corresponds to the harvest time. In the case of receding 

horizon optimal control, the initial and final times of the relatively short horizon, where 

prediction and problem solution are located, are time-varying. 

 

The solution to an optimal control problem comprises the optimal control strategy, the 

associated optimal state trajectory or system behaviour, and the minimum value of the cost 

function. Optimal control problems can be solved using various approaches. Analytical 

methods, such as the calculus of variations and Pontryagin’s Maximum Principle, provide 

theoretical frameworks for deriving necessary optimality conditions (Van Henten, 1994a). 

Numerical methods, such as gradient-based algorithms, rely on the first derivative of the 

objective function with respect to the control variables to iteratively approximate the solution. 

However, traditional analytical and gradient descent methods face significant challenges 

when applied to systems with high-dimensional state variables and nonlinear dynamics 

(Srinivasan, Palanki, & Bonvin, 2003), such as greenhouse production systems. These 

challenges include high computational complexity and a tendency to converge to local 

optima. In contrast, global optimisation algorithms, such as the genetic algorithm (GA), offer 

substantial advantages (Jin et al., 2020). GA encodes control strategies and employs selection, 

crossover, and mutation to efficiently search for optimal solutions (Lambora, Gupta, & 

Chopra, 2019). GA was selected for solving the optimal control problem in this study, 

considering that it does not require gradient information and is particularly effective for 

solving complex nonlinear systems with constraints. 

 

2.3 Source code 

 

Model implementation requires programming. The code used for the design, simulation, and 

visualisation of the lettuce growth model is available in MATLAB format (MATLAB 

R2021b, The MathWorks) at Mendeley Data (http://dx.doi.org/10.17632/r7z9ttvkyh.1). The 

inputs of this code template, including greenhouse climate, initial crop states, and plant 

density, are from Exp_3. The built-in ODE45 solver is used to solve the differential equations, 
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which employs the Runge-Kutta method with a variable time step for efficient computation. 

This open-source code allows readers to understand, use, and improve our model 

conveniently. 

 

The CSG climate model and the integrated model are also programmed with MATLAB 

software (MATLAB R2023a, The MathWorks). The differential equations are solved using 

the ODE45 solver, in which the ‘fsolve’ function is employed to address specific energy 

balance equations. 

 

In investigating the optimal control system, the optimal control problem is solved using the 

genetic algorithm function ‘ga’ provided by the Global Optimization Toolbox in MATLAB 

(MATLAB R2023a, The MathWorks), which is known for its robustness and efficiency in 

finding global optima. 
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Chapter 3 

 

A lettuce growth model responding to a broad range of 

greenhouse climates 

 

In this chapter, a lettuce growth model that describes the effects of a broad range of 

greenhouse climates, including air temperature with extreme conditions, humidity, CO2 

concentration, and shortwave radiation, on crop dry weight dynamics is developed, 

calibrated, and validated. 
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3.1 Introduction 

 

To generate an efficient optimal control system for climate management of greenhouses 

cultivating lettuce, an accurate lettuce growth model with robust generalisation is essential. 

Theoretically, the lettuce growth model should describe the complete effects of greenhouse 

climate variables. In particular, shortwave radiation, CO2 concentration, air temperature and 

humidity (Stanghellini et al., 2019). 

 

As reviewed by van Holsteijn (1980), the quantitative analysis of growth for lettuce dates 

back to the 1960s, providing valuable insights for subsequent modelling work. Current 

lettuce growth models can be generally distinguished according to two levels of production 

situation: potential production and nitrogen-limited production. Ido Seginer, Buwalda, and 

van Straten (1999) developed a lettuce model with two compartments (structure and vacuole) 

to simulate lettuce growth and nitrate content under limited nitrogen supply. This model was 

derived from their previous model for potential production (Ido Seginer, van Straten, & 

Buwalda, 1998) by introducing a nitrogen balance of the vacuoles and was subsequently 

modified to cover severe nitrogen-stress scenarios by extending a storage compartment for 

excess carbon (Ido Seginer, 2003). Its parameterisation was later optimised based on 

sensitivity and correlation analysis by Ilya Ioslovich, Moran, and Gutman (2005). The above 

‘Nicolet’ model, which describes the effects of indoor air temperature, CO2 concentration, 

and light, as well as nitrogen in the nutrient solution, can serve as the basis for greenhouse 

climate and nutrient controls to prevent excessive nitrate content in crops (I Seginer, Linker, 

Buwalda, Van Straten, & Bleyaert, 2003), as well as for rapid fault detection in hydroponic 

systems (Mathieu et al., 2006). However, optimal climate control requires the crop model to 

describe the potential production where water and nutrients are adequately provided, and 

only meteorological conditions determine the growth rate (Goudriaan & Van Laar, 1994). 

This study focuses on the simulation of lettuce growth in response to the shoot environment. 

 

Several models are available in the literature for dynamic numerical simulation of potential 

lettuce growth. Early lettuce models were primarily empirical, using logistic, Gompertz, and 
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other sigmoidal forms (Shimizu, Kushida, & Fujinuma, 2008; Stützel & Chen, 2020; Tei et 

al., 1996), and have continued to attract research attention over the last decade (Carini et al., 

2019; Q. Li, Gao, Zhang, Ni, & Mao, 2022). These simple statistical models struggle to 

explicitly account for the effects of greenhouse climate dynamics. With advances in artificial 

intelligence, more sophisticated data-driven models represented by neural networks have 

been developed for lettuce growth simulation. Their effectiveness and feasibility in 

simulating crop growth, yield, and physiological factors have been demonstrated (Chang, 

Chung, Fu, & Huang, 2021; Mohmed et al., 2023; Mokhtar et al., 2022). However, achieving 

high prediction accuracy and robust generalisation for practical applications requires vast 

amounts of data for model training, which presents a significant challenge as it often relies 

on obtaining crop growth indicators through destructive sampling. 

 

Currently, mainstream lettuce growth models are mechanistic, the most commonly used in 

formulating control systems (Rohde & Forni, 2023; Ido Seginer, Shina, Albright, & Marsh, 

1991; Van Henten, 1994a; D. Xu et al., 2018; D. Xu et al., 2019). Mechanistic crop models 

are expected to generalise better than data-driven models since their development 

specifically describes processes that influence the state dynamics based on physical, 

chemical, and biological principles. To generate and solve analytical relationships for CO2 

concentration optimisation in commercial greenhouse lettuce production, Critten (1991) 

modified an early mechanistic lettuce growth model by (Sweeney, Hand, Slack, & Thornley, 

1981), which originally included structural and storage dry weights as state variables, to a 

simplified model with one state by assuming the two weights to be equal. They mainly 

explain the effects of horizontal radiation and CO2 concentration. The original model was 

later optimised to more sensitively incorporate instantaneous and long-term effects of 

temperature dynamics on photosynthesis and was extensively validated by Pearson, Wheeler, 

Hadley, and Wheldon (1997). Van Henten (1994a) developed both one-state and two-state 

lettuce growth models for optimal greenhouse climate management. The one-state model 

uses structural dry weight as the single state variable, assuming that carbohydrates produced 

by photosynthesis are partly consumed by maintenance respiration, with the remainder used 

for growth. In contrast, the two-state model (Van Henten, 1994b) considers total dry weight 
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as comprising structural and non-structural dry weights. The growth of structural dry matter 

derives from the transformation of non-structural materials into structural components, with 

its rate dependent on temperature and the non-structural material proportion. Both models 

predict the crop dry weight and leaf area index responding to greenhouse climate attributes, 

including shortwave radiation, CO2 concentration, and air temperature within a limited range 

of 5-40 ℃. The Eldert lettuce models have been applied in optimal control studies (Van 

Henten, 1994a; Van Straten et al., 2010; Dan Xu et al., 2018) and adapted as a TRNSYS 

component for energy analysis (Talbot & Monfet, 2024). In addition, models based on the 

framework for potential growth can extend to describe nitrogen accumulation in crops using 

the turgor maintenance hypothesis (Ido Seginer et al., 1998; K. Zhang, Burns, Broadley, & 

Turner, 2003), which also fall within the scope of those supporting optimal climate control. 

Despite their strong generalisation ability and reported good performance, existing process-

based lettuce growth models, which hold potential as a basis for optimal greenhouse climate 

control, are incomplete and lack sufficient motivation for complex control scenarios, thus 

constraining their practical applicability. 

 

The first limitation of current lettuce models is the lack of describing the impact of air 

humidity on growth. Humidity is an important physical aspect of the greenhouse air that the 

crop releases water vapour via transpiration. It affects biochemical and morphogenetic 

processes, such as stomatal conductance, leaf cell elongation, and nutrient absorption 

(Bakker, 1991; Collier & Tibbitts, 1984; Monteith, 1995; Xinying Zhang et al., 2020). The 

sensitivity of crop growth to humidity levels is crop species dependent (Mortensen, 1986; 

Rawson, Begg, & Woodward, 1977). But in general, crop growth is inhibited by extreme 

humidity situations (very high or low humidity). Hence, including the effects of humidity in 

the crop growth model has considerable potential to improve model accuracy. With such a 

model, the optimal control strategies and humidity trajectories will be computed by trade-

off additionally concerning the effects of control actions on crop growth induced by humidity 

changes, leading to a control approach that is much closer to the actual optimum. In contrast, 

with a model excluding humidity effects, the humidity trajectories will be determined by 

setpoints and subject to control of other climate variables. For instance, Van Henten (1994a) 
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and Tap (2000) accomplished humidity control by requiring the greenhouse relative 

humidity to stay between a lower and an upper limit, assuming that humidity does not affect 

crop production between these limits. A sensitivity analysis of the optimal control problem 

revealed that humidity control strongly influences greenhouse climate control performance, 

highlighting the need for a detailed description of humidity effects on crop growth (Van 

Henten, 2003). 

 

Secondly, current lettuce growth models are primarily developed for typical greenhouse 

climate conditions. They cannot comprehensively account for the adverse effects of extreme 

temperatures, especially lacking a robust mechanism to fully describe growth inhibition 

beyond impacts on leaf photosynthesis, have not been tested under these extreme conditions, 

or even do not allow for such inputs. For instance, an extremely low night temperature 

benefits dry matter accumulation in their simulations due to the low consumption of 

maintenance respiration but inhibits the actual crop growth. Consequently, the optimal 

control system, in the absence of state constraints, might excessively reduce nighttime 

temperatures inside the greenhouse, potentially undermining efforts to enhance production 

efficiency. There is no doubt that crop growth will be inhibited by non-optimal temperature 

levels (Thompson, Langhans, Both, & Albright, 1998; Van Ploeg & Heuvelink, 2005; 

Volente, 2022). However, temperature fluctuations are allowed in greenhouse climate control 

to save energy and obtain higher net revenue (Körner & Van Straten, 2008; Stanghellini et 

al., 2019). Furthermore, extreme temperatures frequently occur inside greenhouses with low-

tech climate conditioning devices, such as the Chinse solar greenhouse (CSG) (Weituo Sun 

et al., 2015). Therefore, the crop model must also adequately describe the relevant crop 

processes to a wide range of greenhouse air temperatures. 

 

In addition, mechanistic crop models that describe dry matter accumulation based on the 

differences between photosynthesis and respiration often face challenges in effectively 

simulating the early stages of crop growth that are sink-limited. As stated by Tei et al. (1996), 

no successful attempt was made to explain how sink demand can limit growth. This issue 

still exists in modelling lettuce growth. The model framework and underlying hypothesis 
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designed in this study to fully describe temperature effects can implement the inhibition for 

sink-limited growth. Lastly, present lettuce models are established at the canopy level, with 

growth measured by biomass accumulation per unit ground area. However, the specific area 

for determining the default plant density has not been disclosed. The impact of plant density 

on model development will be reflected at least in model calibration. Since crop cultivation 

cannot occupy the entire greenhouse ground due to space needed for walkways, operations, 

and equipment, it is critical for the practical optimal control to measure the effective 

cultivation area, focusing on upper limits, and to ensure that the crop model component 

implies the effective cultivated area-based plant density. 

 

In greenhouse horticulture, tomatoes are another representative crop. TOMSIM and 

TOMGRO, two widely recognized mechanistic models, have been developed to simulate the 

potential growth, development, and yield dynamics of tomatoes in response to greenhouse 

temperature, CO2, and light conditions (E Heuvelink, 1999; E Heuvelink & Bertin, 1994; 

Jones, Dayan, Allen, Van Keulen, & Challa, 1991). Vanthoor, De Visser, Stanghellini, and 

Van Henten (2011) later extended the current tomato yield models with two lumped 

temperature-dependent growth inhibition functions. These tomato models, which account 

for complex processes involving developmental stages, provide valuable insights for 

developing other crop models. For instance, sink strengths of plant organs can be quantified 

by potential growth rates. However, they fall short of addressing the above gaps in lettuce 

growth modelling, including describing humidity effects, developing a robust temperature 

response mechanism, simulating early growth stages, and implementing the effective 

cultivation area-based plant density. Moreover, it is evident that the integration and 

validation of such elements in a lettuce growth model are lacking. 

 

In summary, to efficiently deploy optimal control in greenhouse climate management, a 

mechanistic lettuce growth model that completely describes the effects of greenhouse 

climate dynamics, particularly with respect to humidity and extreme temperatures, is 

currently unavailable. Therefore, this chapter aims to describe, calibrate, and validate such a 

lettuce growth model that responds to a broad range of greenhouse climates, including 
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shortwave radiation, CO2 concentration, air temperature with extreme conditions, and air 

humidity. The developed model is expected to have sufficient accuracy and robust 

generalisation. We assume that water and nutrients are readily available. Pests, diseases, and 

weeds are not considered. The model consists of a set of first-order differential equations 

and simulates instantaneous dynamics of crop growth to facilitate the link with existing 

greenhouse climate models and its integration into optimal control methods. The main 

contributions and innovations are as follows: 

 Proposing a novel model framework that performs dry matter accumulation and buffer 

evolution in parallel, along with the underlying hypothesis of virtual buffer flows and 

canopy photosynthesis inhibition, by which effects of air temperature, including extreme 

conditions, on crop growth are adequately described, and early growth stages can be 

effectively simulated. 

 Extending the description of humidity effects regarding stomatal resistance and the 

specific leaf area (SLA) of new leaves. 

 Simplifying expressions of leaf carboxylation resistance and root ratio by fitting, and 

imposing constraints on the maximum ground area occupied by a single plant for the 

implicit plant density. 

 Performing three field experiments, which cover a broad range of greenhouse climates, 

to calibrate and evaluate the model, as well as analyse the performing mechanism. 

 

3.2 Model description 

 

3.2.1 Model overview 

 

The lettuce growth model is essentially based on earlier crop growth models (Goudriaan & 

Van Laar, 1994; Spitters, Van Keulen, & Van Kraalingen, 1989; Van Henten, 1994a; Van 

Ooteghem, 2010). It is extended with a temperature-dependent growth inhibition function 

on the basis of buffer evolution, achieved by the new crop model framework (Figure 3.1), 

and a set of humidity-related equations. 
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The state of the lettuce crop is described by a single state variable, structural dry weight, that 

is, the crop dry weight. The model describes the effects of a broad range of greenhouse 

climates, including air temperature with extreme conditions, humidity, CO2 concentration, 

and shortwave radiation on lettuce growth. The model simulates instantaneous crop growth 

on a time scale of one second, requiring model inputs to be in time series marked in seconds 

but allowing for input data of different time intervals. 

 

The proposed model framework performs two parallel sets of mass flows: dry matter 

accumulation and buffer evolution. The model assumes that the lettuce has a virtual 

carbohydrate (CH2O) buffer, also namely assimilate pool, temporarily storing assimilate. 

The buffer affects crop photosynthesis through the diurnal courses of its carbohydrate 

storage. Unlike most other crop models, this buffer does not participate in dry matter 

formation as a dry matter component. Instead, it is only used for regulating photosynthesis. 

 

The processes for dry matter accumulation are as follows. The carbohydrates produced by 

canopy photosynthesis are partially used for maintenance respiration. The remaining 

carbohydrates are converted into structural material and partitioned among various plant 

organs. In conversion, part of the weight is lost by growth respiration. 

 

The rate of canopy photosynthesis serves as a basis for dry matter accumulation. It is 

calculated by integrating assimilation rates over the canopy leaf layers obtained through the 

photosynthesis-light response of individual leaves. That rate depends mainly on the radiant 

energy absorbed by the canopy, canopy temperature, CO2 concentration and air humidity 

inside the greenhouse. Since the lettuce model is supposed to work in extreme climate 

conditions where the constant leaf resistances to CO2 diffusion do not apply, a model 

including the humidity effect is used to compute the stomatal resistance. For leaf 

morphogenesis, the SLA of new leaves is defined in relation to climate factors that include 

humidity and radiation. 

 

The processes for buffer evolution are as follows. The buffer receives carbohydrates 
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produced by canopy photosynthesis. Simultaneously, the carbohydrates stored in the buffer 

flow to maintenance respiration and the process of growth conversion or partitioning. The 

partitioning of the produced dry matter is determined by the maximum growth rate (sink 

strength) of organs or the whole crop. That is the maximum growth rate of the whole crop 

described by a function of instantaneous temperature calls for an equal buffer flow rate 

towards the conversion process. As adverse air temperatures, both during the day and night, 

inhibit the partitioning, the carbohydrate flows distributed from the buffer to the conversion 

process are accordingly reduced. Then, the carbohydrate amount in the buffer is more likely 

to reach high levels during daytime photosynthesis. The photosynthesis rate is inhibited 

when the carbohydrate amount reaches the maximum storage capacity of the buffer. The 

effects of extreme temperatures, beyond their instantaneous impact on photosynthesis, are 

incorporated into the model by describing the above hypothesis of buffer flows and 

photosynthesis inhibition. 

 

For simplicity, the root ratio is described as a descriptive logarithmic function of the 

individual plant dry weight. Also, a descriptive function fitted from complex equations 

describes the leaf carboxylation resistance, enabling the model to allow temperature inputs 

in large ranges. 

 

The two parallel sets of mass flows share paths but differ in logic. In dry matter accumulation, 

there is no restriction on the mass flow to growth conversion after photosynthesis. However, 

in buffer evolution with virtual mass flows, the mass flow to growth conversion performs 

the potential growth rate of the crop. 
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Figure 3.1 Schematic diagram of the lettuce growth model using a modelling formalism of 

Forrester. The boxes are state variables of the model, valves are rate variables, circles are 

auxiliary variables, and the straight lines crossing solid circles represent input variables. The 

dashed lines represent information flows, and the solid lines represent mass flows. 
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3.2.2 Model equations 

 

3.2.2.1 Dry matter production 

 

In line with the crop growth formulation by SUCROS1 (Goudriaan & Van Laar, 1994; van 

Laar, Goudriaan, & van Keulen, 1997) and the one-state variable lettuce growth model (Van 

Henten, 1994a), the basis for calculating dry matter production is the net CO2 assimilation 

rate of the canopy. A buffer-related inhibition function is introduced to deal with particular 

growth cases caused by extreme climate conditions. This gives rise to the following 

description of the dry matter production, 

 

 
𝑑𝑋𝑑
𝑑𝑡

= 𝑐𝛽 ∙ (𝑐𝛼 ∙ 𝐴𝐶 ∙ ℎ𝑏𝑢𝑓 − 𝑅𝑑) (3.1) 

 

where Xd [kg m-2 (gro)] is the crop dry weight, AC [kg (CO2) m
-2 (gro) s-1] is the gross canopy 

assimilation rate, Rd [kg (CH2O) m-2 (gro) s-1] is the crop maintenance respiration rate, cβ [-] 

is the factor converts carbohydrates to structural material due to the growth respiration and 

synthesis, cα [-] is the factor converts assimilated CO2 into sugar equivalents in the 

photosynthesis process, hbuf [-] is the buffer dependent inhibition function for canopy 

assimilation, t [s] is the time. Eq. (3.1) asserts that the assimilates give priority to 

maintenance respiration. Then, all the remaining assimilates are used for structural dry 

matter production. In this model and most other crop growth models, AC has already 

subtracted photorespiration consumption, which is the so-called apparent gross assimilation 

rate. Accordingly, the net assimilation rate means the gross assimilation rate minus the 

maintenance respiration rate. 

 

3.2.2.2 Assimilation inhibition 

 

The buffer storage status affects canopy photosynthesis. This model assumes that when the 

carbohydrate storage approaches the maximum buffer capacity, further carbohydrates cannot 
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be stored, and photosynthesis will be inhibited. In this case, the canopy assimilation does not 

stop but offsets the instantaneous carbohydrate consumption for biomass maintenance and 

potential crop growth. The buffer dependent inhibition function hbuf is described by 

 

 ℎ𝑏𝑢𝑓 =

{
 
 

 
 

1, 𝐶𝑏𝑢𝑓 < 𝐶𝑏𝑢𝑓,𝑚𝑎𝑥

min(

𝑅𝑑 +
𝑅𝐺𝑅𝑚𝑎𝑥 ∙ 𝑋𝑑

𝑐𝛽

𝑐𝛼 ∙ 𝐴𝐶
, 1) , 𝐶𝑏𝑢𝑓 = 𝐶𝑏𝑢𝑓,𝑚𝑎𝑥 (𝐴𝐶 ≠ 0)

 (3.2) 

 

Where RGRmax [s
-1] is the maximum relative growth rate that depends on temperature, Cbuf 

[kg (CH2O) m-2 (gro)] is the amount of stored carbohydrates in the buffer, Cbuf,max [kg (CH2O) 

m-2 (gro)] is the maximum buffer capacity for diurnal assimilates storage.  

 

A two-state variable crop growth model supposes that plant dry matter can be divided into 

structure and storage. The rate of structural growth depends on the amount of storage 

substrate present (Thornley & Hurd, 1974). Our model assumes the lettuce crop only has 

structural dry matter. In the line of dry matter accumulation, there is no restriction on the 

mass flow to growth conversion after photosynthesis. While in the other parallel line of 

buffer evolution, whenever the carbohydrates in the buffer are available, they flow to growth 

conversion based on the maximum growth rate (sink strength). In other words, the structural 

growth rate for buffer design is sink determined. The maximum relative growth rate RGRmax 

is adapted from (Van Henten, 1994b) 

 

 𝑅𝐺𝑅𝑚𝑎𝑥 = {
𝑅𝐺𝑅𝑚𝑎𝑥,20 ∙ 𝑄10,𝑔𝑟

𝑇𝑐−20
10 , 𝑇𝑐 ≤ 𝑇𝑐,𝑅𝐺𝑅

𝑅𝐺𝑅𝑚𝑎𝑥,20 ∙ 𝑄10,𝑔𝑟
−
𝑇𝑐−20
10 , 𝑇𝑐 > 𝑇𝑐,𝑅𝐺𝑅

 (3.3) 

 

where RGRmax,20 [s
-1] is the maximum relative growth rate of dry matter at 20 ℃, Q10,gr [-] 

is the Q10 factor for crop growth, Tc [℃] is the canopy temperature, which is assumed to be 

equal to the air temperature Xt [℃] in this model, Tc,RGR [℃] is the temperature to achieve 

the saturation relative growth rate.  
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Vanthoor (2011) set the maximum buffer capacity to a fixed value of 20×10-3 kg (CH2O) m-

2 (gro), assuming that it is equal to the sum of carbohydrates produced at potential 

photosynthesis on a daily basis. However, a biomass-varying storage capacity is needed to 

realise the inhibition function of the buffer. According to Goudriaan, Van Laar, Van Keulen, 

and Louwerse (1985), if the plant does not have sufficient sinks, a buffer storage level rising 

above 20% on a dry weight basis will gradually diminish the carboxylation conductance and 

assimilation rate. So, in this model, the maximum buffer capacity Cbuf,max is assumed as 

 

 𝐶𝑏𝑢𝑓,𝑚𝑎𝑥 = 𝜎𝑏𝑢𝑓 ∙ 𝑋𝑑 (3.4) 

where σbuf [-] is the ratio of the maximum buffer capacity to crop dry weight. 

 

The evolution of stored carbohydrates in the buffer is determined by carbohydrate flow from 

actual photosynthesis as well as flows to maintenance respiration and growth conversion 

processes. These flows do not contribute to an empty buffer unless they can increase the 

buffer storage. The variation of the amount of stored carbohydrates in the buffer Cbuf is 

described by  

 

 
𝑑𝐶𝑏𝑢𝑓

𝑑𝑡
= 𝑐𝛼 ∙ 𝐴𝐶 ∙ ℎ𝑏𝑢𝑓 − 𝑅𝑑 −

𝑅𝐺𝑅𝑚𝑎𝑥 ∙ 𝑋𝑑
𝑐𝛽

, 0 ≤ 𝐶𝑏𝑢𝑓 ≤ 𝐶𝑏𝑢𝑓,𝑚𝑎𝑥 (3.5) 

 

3.2.2.3 Canopy Assimilation 

 

The gross canopy assimilation rate AC is described by 

 

 𝐴𝐶 = 𝐴𝐿,𝐶 ∙ 𝐿𝐴𝐼 (3.6) 

 

where AL,C [kg (CO2) m
-2 (leaf) s-1] is the gross leaf assimilation rate at a whole canopy level, 

LAI [m2 (leaf) m-2 (gro)] is the leaf area index. 
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AL,C is obtained from the weighted average assimilate rate over the horizontal leaf layers of 

the canopy. This is achieved using a three-point Gaussian integration (Goudriaan, 1986). The 

cumulative LAI at each leaf layer is used to express the canopy depth li [m
2 (leaf) m-2 (gro)] 

that locates leaf layers. From top to bottom, the canopy depth ranges between zero and LAI. 

The three selected canopy depths are  

 

 𝑙𝑖 = {0.5 − √0.15,   0.5,   0.5 + √0.15} ∙ 𝐿𝐴𝐼, 𝑖 = {1,    2,    3} (3.7) 

 

The gross leaf assimilation rate at a whole canopy level AL,C is described by  

 

 𝐴𝐿,𝐶 = 
𝐴𝐿,𝑙1 + 1.6 ∙ 𝐴𝐿,𝑙2 + 𝐴𝐿,𝑙3

3.6
 (3.8) 

 

where AL,l1, AL,l2 and AL,l3 [kg (CO2) m
-2 (leaf) s-1] are the gross leaf assimilation rates of the 

selected three leaf layers from up to down, respectively.  The integrated value is obtained 

by applying a weighting factor of 1.6 to the value at the canopy depth of 0.5·LAI and 1.0 to 

both other values. 

 

3.2.2.4 Leaf area expansion 

 

During the early stages of crop growth, leaf area expansion is mainly controlled by 

temperature, which affects cell division and elongation, rather than by the availability of 

assimilates. As a result, leaf area increases approximately exponentially over time. In the 

later stages of development, the expansion of the leaf area becomes progressively limited by 

the supply of assimilates  (Spitters et al., 1989). As reviewed by (Marcelis, Heuvelink, & 

Goudriaan, 1998), simulating leaf area on the basis of simulated leaf biomass increment and 

the SLA of new leaves has been used in several models. The crop growth in the early stages 

is essentially sink-limited, equivalent to growing in quite low temperatures and high 

radiation levels. This situation can also be described by the simulated leaf dry mass variation 

and the SLA of new leaves that imply the sink inhibition implemented by the buffer. Hence 
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LAI is uniformly described by 

 

 
𝑑𝐿𝐴𝐼

𝑑𝑡
=
𝑑𝑋𝑑
𝑑𝑡

∙ (1 − 𝜎𝑟) ∙ 𝑆𝐿𝐴 (3.9) 

 

where SLA [m2 (leaf) kg-1 (leaf)] is the SLA of new leaves, expressing the amount of leaf 

area per unit shoot dry matter for new leaves, σr [-] is the ratio of the root dry weight to crop 

dry weight. 

 

SLA was defined as a function of irradiance, ambient temperature and CO2 concentration in 

TOMGRO models (Dayan et al., 1993a; Jones et al., 1991). Further, SLA depends mainly on 

temperature and is much less affected than by irradiance and CO2 concentration (Dayan et 

al., 1993b). So Gary, Barczi, Bertin, and Tchamitchian (1994) and Gijzen et al. (1997) 

proposed to use temperature and physiological age to describe the leaf expansion rate. 

However, according to the model calibration at the sub-model level in Chapter 3.3, radiation 

shows a much stronger correlation with SLA than temperature. In addition, when air is dry, 

cell elongation is reduced, leading to smaller leaves. Larger and thinner lettuce leaves are 

produced at high relative humidity (Bradbury & Ahmad, 1996; Tibbitts & Bottenberg, 1976). 

Hence, in this model, SLA depends on radiation, humidity and a reference SLA. 

 

 𝑆𝐿𝐴 = 𝑆𝐿𝐴𝑟𝑒𝑓 ∙ 𝑓𝐼,𝑆𝐿𝐴 ∙ 𝑓𝑋ℎ,𝑆𝐿𝐴 (3.10) 

 

Where SLAref [m
2 (leaf) kg-1 (leaf)] is the reference SLA at the reference absorbed shortwave 

radiation by leaves IL,ref [W m-2 (leaf)] and the reference relative humidity Xh,ref [-], fI,SLA [-] 

is the factor accounting for the effect of radiation on SLA, fXh,SLA [-] is the factor accounting 

for the effect of air humidity on SLA. 

 

Referring to the expression form of climate determinant factor for SLA by Jones et al. (1991), 

fI,SLA is described by 
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 𝑓𝐼,𝑆𝐿𝐴 =
1

1 + 𝛽𝐼 ∙ (𝐼𝐿,𝑟𝑒𝑓 − 𝐼𝑐𝑎𝑛/𝐿𝐴𝐼)
 (3.11) 

 

where βI [m
2 (leaf) W-1] is the relative change in SLA per unit change in absorbed shortwave 

radiation by leaves, IL,ref  [W m-2 (leaf)] is an arbitrary reference absorbed shortwave 

radiation by leaves corresponding to SLAref, Ican [W m-2 (gro)] is the absorbed shortwave 

radiation by canopy. 

 

Similarly, fXh,SLA is described by 

 

 𝑓𝑋ℎ,𝑆𝐿𝐴 =
1

1 + 𝛽𝑋ℎ ∙ (𝑋ℎ,𝑟𝑒𝑓 − 𝑋ℎ)
 (3.12) 

 

where Xh [-] is the air relative humidity, βXh [-] is the relative change in SLA per unit change 

in relative humidity, Xh,ref [-] is an arbitrary relative humidity corresponding to SLAref. 

 

3.2.2.5 Photosynthesis-light response 

 

The gross assimilation rate of individual leaves AL [kg (CO2) m
-2 (leaf) s-1] can be described 

by a negative exponential photosynthesis-light response curve. See details in Appendix A. 

 

3.2.2.6 Leaf resistance 

 

The total leaf resistance for CO2 transport from ambient air to the chloroplast is determined 

by adding stomatal, boundary layer and carboxylation resistances. When the CO2 

concentration is measured above the canopy, the so-called turbulence resistance must be 

added because the CO2 concentration in free air is less variable than that within the canopy 

(Goudriaan, 1982; Yin & Van Laar, 2005). Cuticular resistance, parallel to the stomatal 

resistance (Bot, 1983), also exists. However, it is much larger than stomatal resistance 

(Monteith & Unsworth, 2013). The contribution of the cuticle to CO2 transfer is ignored in 
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this research. Then, the total leaf resistance to CO2 diffusion rCO2 is described by 

 

 𝑟𝐶𝑂2 = 𝑟𝑠 + 𝑟𝑏 + 𝑟𝑐 + 𝑟𝑡 (3.13) 

 

where rs, rb, and rc [s m-1] are the stomatal resistance, boundary layer resistance, and 

carboxylation resistance, respectively, rt [s m-1] is the turbulence resistance with an 

appropriate constant value.  

 

In the literature, the stomatal and boundary layer resistances are often assumed constant for 

photosynthesis rate simulation. However, Van Ooteghem (2010) found that the 

photosynthesis models with dynamic resistances give a better description than those with 

constant resistances. During photosynthesis, CO2 molecules follow the same path as water 

vapour (H2O) but in the opposite direction. The dynamic resistances to CO2 diffusion are 

mainly determined with an evaporation model that holds equations for the stomatal and 

boundary layer resistances to H2O by Stangheilini (1987). Then, the stomatal resistance to 

diffusion of CO2 is described by  

 

 𝑟𝑠 = 𝑐𝜁 ∙ 𝑟𝐻2𝑂,𝑚𝑖𝑛 ∙ 𝑓𝐼,𝑠 ∙ 𝑓𝑇𝑐,𝑠 ∙ 𝑓𝑋𝑐,𝑠 ∙ 𝑓𝑋ℎ,𝑠 (3.14) 

 

in which cζ [-] is the scaling factor that accounts for the faster diffusion of H2O compared to 

CO2 in crossing stomata, rH2O,min [s m-1] is the minimum possible internal crop resistance to 

H2O. 

 

And the radiation dependency fI,s is described by 

 

 𝑓𝐼,𝑠 =

𝐼𝑐𝑎𝑛
2 ∙ 𝐿𝐴𝐼 + 4.30

𝐼𝑐𝑎𝑛
2 ∙ 𝐿𝐴𝐼 + 0.54

 (3.15) 

 

The temperature dependency fTc,s is described by 
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 𝑓𝑇𝑐,𝑠 = {
1 + 0.5 ∙ 10−2 ∙ (𝑇𝑐 − 33.6)

2,              𝐼 ≤ 3 

1 + 2.3 ∙ 10−2 ∙ (𝑇𝑐 − 24.5)
2,              𝐼 > 3

 (3.16) 

 

The CO2 dependency fXc,s is described by 

 

 𝑓𝑋𝑐,𝑠 = {

1  , 𝐼 ≤ 3

1 + 6.1 ∙ 10−7 ∙ (𝑋𝑐 − 200)
2, 𝐼 > 3 ∧ 𝑋𝑐 < 1100

1.5  , 𝐼 > 3 ∧ 𝑋𝑐 ≥ 1100
 (3.17) 

 

The humidity dependency fXh,s is described by  

 

 𝑓𝑋ℎ,𝑠 =
4

(1 + 255 ∙ e−0.54∙10
−2∙𝑒𝑐,𝑎)

0.25 (3.18) 

 

where ec,a [Pa] represents leaf-to-air vapour pressure difference.  

 

Differing from absorbed PAR per leaf area for a specific leaf layer in the canopy, Ican [W m-

2 (gro)], which represents absorbed shortwave radiation by canopy, is calculated by 

 

 𝐼𝑐𝑎𝑛 = (1 − 𝑐𝑟,𝐼) ∙ 𝐼 ∙ (1 − 𝑒
−𝑘𝐼∙𝐿𝐴𝐼) (3.19) 

 

where cr,I [-] is the canopy reflection coefficient for shortwave radiation, kI [-] is the 

extinction coefficient for shortwave radiation. 

 

Since canopy temperature is assumed to be equal to air temperature and vapour pressure in 

leaves is always saturated, ec,a  is equal to vapour pressure deficit (VPD) of greenhouse air. 

Then ec,a could be described by 

 

 𝑒𝑐,𝑎 = 𝑒𝑠,𝑎𝑖𝑟 ∙ (1 − 𝑋ℎ) (3.20) 
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And the saturated vapour pressure es,air is described by (Stanghellini et al., 2019) 

 

 𝑒𝑠,𝑎𝑖𝑟 = {
10

2.7857+
9.5∙𝑋𝑡

265.5+𝑋𝑡 , 𝑋𝑡 < 0

10
2.7857+

7.5∙𝑋𝑡
237.3+𝑋𝑡 , 𝑋𝑡 ≥ 0

 (3.21) 

 

The resistance offered by the boundary layer depends on leaf dimensions and windspeed. 

The boundary layer resistance to CO2 diffusion, which is derived from that to convective 

heat transfer, is described by 

 

 𝑟𝑏 = 𝐿𝑒0.67 ∙
1174 ∙ 𝑙𝑓

0.5

(𝑙𝑓 ∙ |𝑇𝑐 − 𝑋𝑡| + 207 ∙ 𝑣𝑎2)
0.25 (3.22) 

 

where Le [-] is the Lewis number for CO2 in air at 25 ℃. Le0.67 represents the ratio of 

boundary layer resistance for CO2 diffusion to that for forced heat convection. lf [m] is the 

leaf characteristic dimension, taken as the mean leaf width in the wind direction (Schuepp, 

1993). va [m s-1] is the wind speed inside the greenhouse. 

 

Van Henten (1994a) used a second-order polynomial fitting to describe the carboxylation 

resistance. This polynomial only works within an air temperature range from 5 to 40 ℃. It 

does not apply to the optimal control that allows more extreme temperatures. The description 

of carboxylation resistance by Goudriaan and Van Laar (1994) and Van Ooteghem (2010) 

covers a wider temperature range. It is also more explanatory, since it defines the 

carboxylation resistance as the ratio of the effective Michaelis Menten constant for 

carboxylation to the maximum carboxylation rate, both of which are derived from Farquhar, 

von Caemmerer, and Berry (1980). In this model, we use a descriptive function of 

temperature like that by Van Henten (1994a) but derived from the simulation result by Van 

Ooteghem (2010) to describe the leaf carboxylation resistance rc, 
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 𝑟𝑐 = 𝑐𝑟𝑐,1 ∙ 𝑇𝑐
2 + 𝑐𝑟𝑐,2 ∙ 𝑇𝑐 + 𝑐𝑟𝑐,3 (3.23) 

 

where crc,1 [m s-1 ℃-2], crc,2 [m s-1 ℃-1], and crc,3 [m s-1] are coefficients of the second order 

polynomial fitting for the description of carboxylation resistance. 

 

3.2.2.7 Respiration 

 

Some carbohydrates generated are used in respiration to supply energy to sustain the current 

biostructures. A detailed description of the crop maintenance respiration rate Rd is provided 

in Appendix A. 

 

3.2.2.8 Shoot/ root ratio 

 

The ratio of shoot dry weight to root dry weight at some point depends on the accumulation 

of dry matter partitioning during the past growing period. The dry matter partitioning among 

plant organs is primarily regulated by the sink strengths of the organs. The sink strength is 

quantified by the maximum growth rate of the organ (Marcelis, 1996), which mainly depends 

on the development stage or heat sum (Penning De Vries & Van Laar, 1982). The 

development stages are usually distinguished based on the major phenological events, such 

as emergence (defined with a value of 0), anthesis (defined with a value of 1) and ripening 

(defined with a value of 2) (Goudriaan & Van Laar, 1994). For greenhouse climate control 

of lettuce cultivation, crop growth simulation will be located in a single development stage 

range between 0 and 1, especially from the transplanting date. Hence, Lazof, Bernstein, and 

Läuchli (1991) and Lazof and Bernstein (1999) used the leaf plastochron index (LPI) to 

define the development stage. As reviewed by Bakker, Bot, Challa, and van de Braak (1995), 

dry matter distribution towards roots generally decreases with plant size. Instead of 

calculating leaf and root dry weights by integration based on the partitioning factors that 

depend on the development stage, the root ratio σr [-] described as a function of the individual 

plant dry weight, is adopted. It is largely simplified and assumed to be accurate enough to 
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determine the shoot/ root ratio for the leafy vegetable. 

 

 𝜎𝑟 = 𝑐𝜎𝑟,1 ∙ ln (
𝑋𝑑
𝜌𝑐
) + 𝑐𝜎𝑟,2 (3.24) 

 

where cσr,1 [plants kg-1] and cσr,2 [-] are coefficients for describing root ratio, ρc is plant density, 

plants m-2 (gro). 

 

3.2.3 Parameter estimation and calibration 

 

All the parameters of the lettuce growth model, including their values and sources, are listed 

in Table 3.1. These parameters remained constant throughout the simulations and are 

expected to apply to future model applications in greenhouse management for lettuce 

cultivation. Most of them were derived directly or estimated from the literature. Some model 

parameters were determined by means of model calibration at both the sub-model and model 

levels. The others were determined from physical properties. The selection of some of the 

model parameters is justified as follows. 

 

Table 3.1 Parameterisation of the lettuce crop growth model 

 

Parameter value unit source 

cH 2.2×105 J mol-1 Farquhar et al. (1980) 

cr,I 0.22 - Goudriaan and Van Laar (1994)  

cr,PAR 0.07 - Marcelis et al. (1998)  

crc,1 0.315 m s-1 ℃-2 estimated from Van Ooteghem (2010) 

crc,2 -27.35 m s-1 ℃-1 estimated from Van Ooteghem (2010) 

crc,3 790.7 m s-1 estimated from Van Ooteghem (2010) 

cRd,25,r 1.16×10-7 
kg (CH2O) kg (dry matter) 

s-1 

van Keulen, Penning de Vries, and Drees 

(1982) 

cRd,25,sh  3.47×10-7 
kg (CH2O) kg (dry matter) 

s-1 
van Keulen et al. (1982) 

cS 710 J mol-1 K-1 Farquhar et al. (1980) 
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cα 0.68 - physical constant 

cβ 0.8 - Van Henten (1994a) 

cζ 1.6 - Goudriaan (1982) 

cσr,1  -0.026 plants kg-1 sub-model calibration 

cσr,2 -0.076 - sub-model calibration 

EJ 3.7×104 J mol-1 Van Ooteghem (2010)  

IL,ref 50.3 W m-2 (leaf) sub-model calibration 

Jmax,25 210.15  μmol (e-) m-2 (leaf) s-1 Van Ooteghem (2010)  

kI 0.48 - Van Ooteghem (2010)  

kPAR 0.9 - Van Henten (1994a) 

Le 1.47 - Monteith and Unsworth (2013)  

lf 0.1 m measurement 

MCO2 44×10-3 kg mol-1 physical constant 

Q10,gr 1.6 - Sweeney et al. (1981)  

Q10,Rd 2 - Goudriaan and Van Laar (1994) 

Q10,Г 2 - Goudriaan and Van Laar (1994)  

Rg 8.314 J mol-1 K-1 physical constant 

RGRmax,20 1.54×10-6 s-1 global calibration 

rH2O,min 82  s m-1 Stangheilini (1987)  

rt 50  s m-1 Goudriaan (1982)  

SLArf 47.93 m2 (leaf) kg-1 (leaf) sub-model calibration 

Tc,RGR 25 ℃ global calibration 

va 0.09 m s-1 Van Ooteghem (2010)  

Xh,ref 0.75 - sub-model calibration 

βI -4.74×10-3  m2 (leaf) W-1 sub-model calibration 

βXh 0.912 - sub-model calibration 

ε0 17×10-9 kg (CO2) J-1 Goudriaan et al. (1985)  

ρCO2,T0 1.98 kg m-3 physical constant 

σbuf 0.2 - estimated from Goudriaan et al. (1985) 

σPAR 0.5 - Stanghellini et al. (2019)  

ГT20 40 μmol (CO2) mol-1 (air) Goudriaan and Van Laar (1994)  
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According to Goudriaan et al. (1985), if the plant lacks adequate sinks, an increase in buffer 

storage exceeding 20% on a dry matter basis will reduce the assimilation rate. Thus, the ratio 

of the maximum buffer capacity to crop dry weight σbuf was set to 0.2. In addition, the 

primary assimilates, beyond what is needed for maintenance, are transformed into structural 

plant material. Considering the little difference in assimilate requirements to form a unit 

weight of leaves and roots (Spitters et al., 1989), the conversion factor of a lettuce crop cβ = 

0.8 was set at the whole plant level (Van Henten, 1994a). Hence, the crop growth simulation 

can take the dry matter as substrates of the partition process rather than the primary 

carbohydrates by photosynthesis, which is the actual situation.  

 

The response of leaf carboxylation resistance rc to canopy temperature Tc was described by 

quadratic polynomial fitting in the range of 0 to 50 ℃ (Figure 3.2). The temperature interval 

for fitting was 0.1 ℃, and the corresponding carboxylation resistance data were derived from 

the simulation result of the model by Van Ooteghem (2010). Coefficients of the quadratic 

term crc,1, linear term crc,2, and constant term crc,3 were estimated to be 0.315 m s-1 ℃-2, -

27.35 m s-1 ℃-1, and 790.7 m s-1. 

 

Xd /ρc [kg plant-1] represents the individual plant dry weight. With its increase, the root ratio 

decreases logarithmically (Figure 3.3). To make the model parameters more universal, data 

from three experiments were used to estimate the coefficients of the logarithmic function. 

The coefficients of cσr,1 and cσr,2 were calculated to be -0.026 m2 kg-1 and -0.076, respectively.  

 

It is not easy to measure biomass and leaf area as frequently as measuring greenhouse climate 

(e.g., sampling every 5 minutes). The available crop data for calibrating the sub-model that 

describes the SLA of new leaves were sampled every five days. Thus, the SLA and LAI data 

were taken from the difference and average of two adjacent samples, respectively. 

Accordingly, the climate data used for calibration were averaged over five days, and only 

daytime data were counted since new leaves are mainly generated under the light. 

Calibration using average climate data is accepted since, as defined by Eq. (3.11) and (3.12), 

the effects of absorbed shortwave radiation per leaf area and air humidity on SLA are 
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respectively assumed to be linear. First, linear fitting slopes were calculated as -0.227 m4 kg-

1 W-1 for radiation and 43.69 m2 kg-1 for humidity. Compared with temperature (R2 = 0.122, 

RMSE = 11.569), radiation (R2 = 0.351, RMSE = 9.947) and humidity (R2 = 0.247, RMSE = 

10.712) showed stronger correlations with SLA. Second, βI and βXh were expressed by -

0.227/SLAref [m
2 W-1] and 43.69/SLAref [-] for calibration since they make sense only for a 

specific reference SLA. Third, SLAref, IL,ref, Xh,ref were estimated to be 47.93 m2 (leaf) kg-1 

(leaf), 50.3 W m-2 (leaf), and 0.75 by fitting (Figure 3.4) in the functional form of Eq. (3.10)-

(3.12). Also, βI and βXh were determined as -4.74×10-3 m2 W-1 and 0.912. 

 

As noted by Van Henten (1994b), interpreting the maximum relative growth rate of dry 

matter at 20 ℃ (RGRmax,20) is not entirely straightforward. While his study estimated this 

rate to be 5×10-6 s-1, it would not be achieved in practice. Another parameter associated with 

the maximum relative growth rate was the temperature to achieve the saturation relative 

growth rate (Tc,RGR), which was newly introduced and lacked reference values within the 

model framework. In the absence of available data for local calibration of these two 

parameters, they were instead determined by global calibration. The global calibration, using 

data from Exp_2, aimed to minimise the RRMSE between the measured and simulated crop 

dry weights. A grid search method was used for reference to limit the range of parameters 

and traverse the parameter combinations. RGRmax,20 and Tc,RGR were calibrated to be 1.54×10-

6 s-1 and 25 ℃, achieving the minimum RRMSE of 16.8%. 

 

Figure 3.5 presents greenhouse climate inputs and the simulation result based on Exp_2 

conducted during the cold season. Although growers made great efforts to regulate the 

greenhouse climate for lettuce cultivation, extreme thermal environments frequently occur, 

which is common in current CSGs. The simulation spanned 50 consecutive days, with the 

average air temperature of 18.2 ℃ during the day and 7.9 ℃ at night. The extremely low 

temperatures below 5 ℃ constituted 16% of the period and even briefly dropped to below 

zero in two nights with a minimum of -1.0 ℃. Low temperatures were the main temperature 

stress in this calibration experiment. Over the simulation, the average humidity was 58% and 

93% in the daytime and nighttime. Extremely high humidity levels, indicated by VPD lower 
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than 0.2 kPa (Stanghellini et al., 2019), accounted for 65% of the period, whereas extremely 

low humidity, with VPD higher than 1.0 kPa, accounted for 16%. Humidity stress, especially 

high humidity stress, occupied most of this period. Daily cumulative radiation was measured 

to be 1.9-6.9 MJ d-1, with an average of 5.6 MJ d-1. CO2 was supplemented by natural 

ventilation, maintaining an average concentration of 533 ppm during the day and 614 ppm 

at night. In the early stages of lettuce growth, the daytime CO2 concentration exceeding 400 

ppm might be due to the decomposition of organic bottom fertiliser. The simulated dry matter 

weights closely mirrored the measured values, and underestimation existed except for the 

harvest timepoint. Through model calibrations at both sub-model and model levels, the 

model performance was evaluated to be good in simulating lettuce dry weight, with RRMSE 

= 16.8% and RMSE = 0.0081 kg m-2 (gro). 

 

 

  

Figure 3.2 Fitting of the leaf carboxylation resistance. R2 = 0.992, RMSE = 15.996. 
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Figure 3.3 Root ratio variation along with the individual plant dry weight. R2 = 0.726, RMSE 

= 0.028. 

 

 

 

Figure 3.4 Effects of absorbed shortwave radiation by leaves and air humidity on the specific 

leaf area of new leaves. R2 = 0.380, RMSE = 9.928. 
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Figure 3.5 Five minutes averages of the greenhouse climate measurements, as well as the 

measured and simulated crop dry weights during the calibration experiment serving the 

global calibration. The simulation is from 15:00, 29 November 2020, to 15:00, 18 January 

2021. 

 

3.3 Results and discussion 

 

3.3.1 Model validation 

 

The model was validated using the observed data from Exp_1 and Exp_3. The model 

parameters in the validation simulations were kept constant with those (Table 3.1) 

contributed by the global calibration using data from Exp_2. The model inputs included the 

greenhouse climate (I, Xc, Xt, and Xh), initial crop states (Xd, LAI, and Cbuf), and plant density 



60 

 

ρc. The initial Xd and LAI were measured values, while the initial Cbuf was set to be 0 kg m-2 

(Table 2.3). The model validation mainly compared the measured and simulated values of 

the crop dry weight, representing the state of lettuce growth in this study. 

 

Figure 3.6 presents greenhouse climate inputs and the model validation result based on 

Exp_1 conducted during the warm season. The simulation spanned 35 consecutive days, 

from lettuce transplanting to harvesting, with the average air temperature of 24.3 ℃ during 

the day and 14.1 ℃ at night. The temperatures exceeding 30 ℃ constituted 17% of the period, 

reaching a maximum of 42.6 ℃, while the extremely low temperatures below 5 ℃ 

constituted only 3%, with a minimum of -0.8 ℃. High temperatures were the primary 

temperature stress during Exp_1. Over this validation process, the average humidity was 41% 

and 65% in the daytime and nighttime. Extremely high humidity levels, indicated by VPD 

lower than 0.2 kPa, accounted for 19% of the period, whereas extremely low humidity, with 

VPD higher than 1.0 kPa, accounted for 51%. Humidity stress, especially the low humidity 

stress, dominated this period. Daily cumulative radiation was measured to be 1.7-21.3 MJ d-

1, with an average of 15.5 MJ d-1. CO2 was supplemented by natural ventilation, maintaining 

an average concentration of 396 ppm during the day and 417 ppm at night. The simulated 

dry matter weights closely agreed with the measured values, with an overall overestimation. 

The model performance was acceptable in simulating the crop dry weight of the lettuce, with 

RRMSE = 24.9% and RMSE = 0.0131 kg m-2 (gro). 

 

Figure 3.7 presents greenhouse climate inputs and the model validation result based on 

Exp_3 conducted during the cold-warm season. The simulation spanned 45 consecutive days, 

with the average air temperature of 20.9 ℃ during the day and 11.7 ℃ at night. The 

temperatures exceeding 30 ℃ constituted 4% of the period, reaching a maximum of 36.0 ℃, 

while the extremely low temperatures below 5 ℃ constituted only 1%, with a minimum of 

3.9 ℃. The greenhouse climate was generally mild in Exp_3. Over this validation process, 

the average humidity was 60% and 95% in the daytime and nighttime. Extremely high 

humidity levels accounted for 61% of the period, whereas extremely low humidity accounted 

for 21%. Humidity stress, especially the high humidity stress, occupied most of this period. 
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Daily cumulative radiation was measured to be 0.8-13.3 MJ d-1, with an average of 8.8 MJ 

d-1. CO2 maintained an average concentration of 395 ppm during the day and 490 ppm at 

night. The simulated dry matter weights closely mirrored the measured values with an overall 

underestimation. The model performance was good in simulating the crop dry weight of the 

lettuce, with RRMSE =10.5% and RMSE = 0.0070 kg m-2 (gro). 

 

Through the three lettuce cultivation experiments in different seasons and greenhouses, 

specifically including an experiment for global calibration and two for validation, the model 

performance was evaluated. These experiments covered a wide range of greenhouse air 

temperature conditions, from extremely low to extremely high. They also had extreme 

humidity levels for a large proportion of time, which would affect crop growth activities 

(Stanghellini et al., 2019). Climate inputs also included seasonally fluctuating shortwave 

radiation and CO2 concentration inside the greenhouse. Therefore, the greenhouse climate 

upon which the model evaluations were based was in a broad range, embodied in the 

complete coverage of temperature and humidity levels and climate varieties. The evaluation 

results showed that the model performance was good and acceptable. In essence, the 

developed model can precisely depict the response of lettuce growth to the broad range of 

greenhouse climates, providing a foundational crop model for optimally managing 

greenhouse climate in lettuce production. Further, it enables optimal control to be used for 

low-tech greenhouses with poor performance on climate conditioning and to bring humidity 

effects into problem-solving. 

 

However, we cannot compare the developed model to others since none of the existing 

lettuce growth models have reported the RRMSE for states. For instance, Van Henten (1994a) 

adopted assessment criteria stating that the simulated dry weight should fall within a 95% 

confidence interval of the measured values for most of the time. Instead, almost all crop 

models compared the dynamic trends between simulated and observed values, lacking a 

quantitative index basis. This situation exists in other mainstream greenhouse crop models, 

such as tomato yield modelling (Dayan et al., 1993b; Vanthoor, De Visser, et al., 2011). 

Compared with greenhouse climate dynamics (Katzin et al., 2022), crop growth processes 
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are more complex and have more challenges in accurate predictions. Meanwhile, it is 

difficult for crop models to obtain data for calibration and validation in seconds or minutes. 

The quality of destructive samplings in a limited number, especially those performed near 

the harvest time where larger deviations can occur, strongly impacts the RRMSE calculation 

and model evaluation results. For example, in Exp_1, the RRMSE for crop dry weight could 

reach 17.5% if the last two samples were excluded. These may explain the rare presentation 

of RRMSE values in current greenhouse crop models. This study provides RRMSE values 

for simulating lettuce dry weight, which will benefit future comparative studies, while a 

qualitative description of its dynamic trends throughout the growth period remains essential. 

 

Furthermore, in the global calibration aimed at minimising the RRMSE for crop dry weight, 

adjustments to model parameters tended to restrain crop growth in the early stages to prevent 

excessive growth during harvest. Consequently, the model consistently underestimated dry 

weights until lettuce harvest in Exp_2. Overestimations of crop dry weight at harvest time 

varied in all experiments. Exp_1 showed the most significant overestimation, with an RMSE 

of 0.0248 kg m-2 (gro) in the last two samples. This was primarily induced by high 

temperatures, which shortened the vegetative stage, triggering early bolting and stem 

elongation (Hao et al., 2018; Rosental, Still, You, Hayes, & Simko, 2021). Although the SLA 

related parameters were locally calibrated using the three sets of experimental data, including 

those collected as stem elongated that we observed in the experiments, the adverse impact 

of stem elongation can only be partially described. According to Eq. (3.9), the model 

assumes that shoot biomass is allocated only to leaves. Once lettuce stems grow excessively, 

the model overestimates the change rate in LAI and, thereby, crop dry weight. While this 

lettuce model is oriented towards the vegetative stage with sufficient accuracy to meet 

control requirements, it may not fully explain the effects of plant senescence. However, this 

limitation should not hinder its use in commercial greenhouses, as growers will ensure timely 

harvesting based on daily observations to maintain the quality and market value of the lettuce 

crop. 
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Figure 3.6 Five minutes averages of the greenhouse climate measurements, as well as the 

measured and simulated crop dry weights during the first validation experiment. The 

simulation for model validation is from 17:00, 9 April 2020, to 17:00, 14 May 2020. 
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Figure 3.7 Five minutes averages of the greenhouse climate measurements, as well as the 

measured and simulated crop dry weights during the second validation experiment. The 

simulation for model validation is from 15:00, 30 January 2022, to 15:00, 16 March 2022. 

 

3.3.2 Model performance of simulating LAI 

 

In this model, LAI is one of the state variables, and it affects dry matter accumulation by 

influencing the canopy photosynthesis rate. Additionally, LAI itself holds significant 

importance in greenhouse climate control as a preferred indicator for providing crop 

information feedback, since it spans the entire lettuce growth cycle and is easier to identify 

than biomass (Rahimikhoob, Delshad, & Habibi, 2023). In Exp_2 (Figure 3.8a), the 

simulated LAI values exhibited the same trend as the measurements, consistently 

underestimating until harvest time, where a slight overestimation occur. The model 
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performance was good in simulating LAI, with an RRMSE of 12.1% and an RMSE of 0.2196 

m2 (leaf) m-2 (gro). In Exp_1 (Figure 3.8b), the simulated LAI followed a similar trend to the 

measured values but showed great overestimations near harvest, resulting in an RRMSE of 

54.7% and an RMSE of 0.8164. In Exp_3 (Figure 3.8c), the simulated LAI followed the same 

trend as the measured values, with an overall underestimation. The RRMSE was 19.5%, and 

the RMSE was 0.5019, indicating a good model performance in simulating LAI. 

 

During the late stages of crop growth under high temperatures, the model overestimated LAI, 

consistent with the reasons for overestimating crop dry weight. Similarly, excluding the last 

two samples in Exp_1 reduced the RRMSE for LAI to 12.9%. Therefore, during the 

vegetative growth stage concerned by commercial production, the model performed well in 

simulating LAI dynamics, accurately predicting them with RRMSE ranging from 12.1% to 

19.5%. While the LAI and biomass interact, as Van Henten (1994a) found, their simulations 

differed in estimations, including the timing and magnitude of deviations. These differences 

are attributed to the model descriptions and samplings. 

 

This study describes SLA as a function of radiation and humidity. The calibrated relative 

changes in SLA per unit changes of greenhouse climate imply the same trend with literature 

(Bradbury & Ahmad, 1996; Carotti et al., 2021); increasing humidity and decreasing 

radiation increase SLA of the lettuce. The inclusion of SLA enables the model to describe the 

response of leaf morphogenesis to climate, which can improve modelling accuracy. However, 

there is still much room for improvement in the SLA description, considering that its 

goodness of fit (R2 = 0.380, RMSE = 9.928) has not yet reached an ideal state. Calibration 

using more data and modifying equation structure are the directions for improvement. 
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Figure 3.8 LAI simulations of the lettuce growth model using data from the calibration 

experiment (a), the first validation experiment (b), and the second validation experiment (c). 

 

3.3.3 The role of model framework and hypothesis 

 

To fully describe the effects of adverse temperature conditions, including extremely high and 

low temperatures, on crop growth, this study introduces a novel model framework that 

incorporates double parallel mass flows, along with the underlying hypothesis of buffer 

flows and canopy photosynthesis inhibition. Figure 3.9 illustrates changes in carbohydrate 

storage within the buffer. As buffer storage reaches or surpasses its maximum capacity, 

photosynthesis inhibition will happen until it falls below the capacity. During this state, the 

inhibition also becomes ineffective if the assimilation rate is lower than the combined 

respiration and potential growth rates. The model programming allows the buffer storage to 

exceed its maximum capacity at some point and then remain constant until the storage goes 

below the capacity as a result of dry matter increase, effectively practising the model 

description. In Exp_2, where the low temperature was the primary stress, photosynthesis 

inhibition lasted until the 42nd day in the simulation, constituting 41% of the total 

photosynthesis duration. In Exp_1, with high temperature as the primary stress, inhibition 

lasted until the 20th day, representing 27% of the total photosynthesis duration. In Exp_3, 

with temperatures transitioning from cold to warm, inhibition lasted until the 32nd day, 
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representing 33% of the total photosynthesis duration. Such inhibitions occur during 

vigorous photosynthesis in the daytime. 

 

The proposed model framework and hypothesis worked in simulations, effectively 

characterising the effects of extreme temperatures on crop growth. Specifically, the model 

supplements the canopy-level assimilation inhibition, going beyond the direct effects of 

temperature on leaf photosynthesis and crop respiration. It particularly addresses the 

challenge of quantifying growth inhibition by extremely low temperatures at night, which 

might be reflected by the assimilation inhibition over the next few days. In essence, the 

instantaneous extreme temperatures, whether during the day or night, achieve this inhibition 

by additionally affecting potential growth rates and buffer flows, ultimately buffer revolution 

and canopy photosynthesis. Without this inhibition, the lettuce growth model would severely 

overestimate growth, which is a limitation of existing models for extreme environments.  

 

In all three experiments, photosynthesis inhibition was lifted in the late stages of crop growth. 

This is due to the increased dry matter. On one side, the outlet buffer flows called by potential 

growth and maintenance respiration, along with buffer capacity, increase in proportion to 

crop dry weight. However, on the other side, the canopy photosynthesis, as the source flows, 

does not increase proportion to crop dry weight or LAI due to the limited light absorbed by 

the canopy within a unit ground area. The cessation of inhibition partially explains the 

tendency of the model to overestimate growth near harvest. In the calibration and two 

validation experiments, the crop dry weight leading to the complete disinhibition was 

89.748×10-3, 47.054×10-3, and 77.737×10-3 kg m-2 (gro), respectively. Higher temperatures 

resulted in shorter inhibition durations and lower crop dry weight required for complete 

disinhibition, indicating that the model shows greater tolerance to high-temperature stress 

than to low-temperature stress. This difference is further supported by the value of Tc,RGR, 

which was calibrated to be 25 ℃. 

 

We have also observed photosynthesis inhibition during the initial stages of crop growth 

when the temperature is held constant at 25°C and does not contribute to the inhibition. The 
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inhibition can occur despite buffer flows to growth conversion at the maximum achievable 

growth rate. This finding aligns with reality (Spitters et al., 1989), suggesting that the sink 

strength, instead of the photosynthesis with excess supply, dominates the initial crop growth 

and leaf area expansion. Thus, the hypothesis enables the model to effectively simulate early 

growth, which is not addressed by current models primarily focusing on the balance between 

photosynthesis and respiration. It should be mentioned that the model is sensitive to the 

parameter of RGRmax,20, according to the calibration process. We expect interested 

researchers to calibrate this parameter using additional data or further optimise the 

expression of RGRmax and explore the specific physiological implications. 

 

 

 

 

 

Figure 3.9 Buffer storage variations based on data from the calibration experiment (a), the 

first validation experiment (b), and the second validation experiment (c). 
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3.3.4 Effects of humidity on crop growth 

 

In this model, air humidity affects lettuce growth from both biochemical and morphological 

perspectives, specifically by influencing stomatal resistance and SLA, and further canopy 

assimilation. As humidity increases, stomatal resistance and the total leaf resistance decrease 

(Figure 3.10), increasing the leaf photosynthesis rate. Concurrently, SLA increases along 

with the increase in humidity (Figure 3.4), promoting the leaf area expansion. Therefore, 

higher humidity levels benefit canopy photosynthesis and dry matter accumulation. However, 

increasing humidity may induce pest and disease issues and reduce transpiration 

(Stanghellini et al., 2019), affecting water and nutrient uptake, both of which are not 

considered by the potential model of this study. 

 

 

 

Figure 3.10 Leaf resistances to CO2 diffusion as a function of Tc, Xh, Xc, and I, with Tc = 

25 ℃, Xc = 600 μmol (CO2) mol-1 (air), I = 300 W m-2 (gro), and LAI = 3 m2 (leaf) m-2 (gro). 

 

3.3.5 Universality and limitations 

 

The developed lettuce growth model belongs to the potential model category, only 

responding to the shoot environment inside the greenhouse. It has been demonstrated to 

respond to the broad range of greenhouse climates effectively and even works with sub-zero 
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temperature inputs. In all three experiments, the observed ranges of greenhouse climate 

variables were 0-915.6 W m-2 for shortwave radiation, -1.0-42.6°C for air temperature, 7%-

100% for relative humidity, and 285-762 ppm for CO₂ concentration. However, these ranges 

of input data used for model calibration and validation will not constrain the universality of 

the lettuce growth model. In theory, the model is applicable to any potential greenhouse 

environment, provided that irreversible damage to crops, such as frost injury, does not occur. 

The model accurately predicts dry matter and leaf area dynamics during growth stages of 

interest in commercial lettuce production. Most knowledge of this process-based model can 

be extended to other crops. Also, the model simulates instantaneous crop dynamics and 

shares the same time scale as greenhouse climate models, allowing for the integrated 

description of the greenhouse crop production process from external weather to crop biomass. 

These enable the model to serve as a basis for optimal control of greenhouse climate, 

including those with limited climate conditioning capabilities.  

 

Note that the right-hand sides of the differential equations are not entirely written in a 

continuously differentiable form, considering that the model usage is not restricted to control 

and not all optimisation control algorithms require continuous differentiability. For instance, 

genetic algorithms and particle swarm optimisation algorithms do not require it. Thus, we 

prefer to present the equations in their original form. However, for our subsequent integrated 

climate-crop model, we plan to use switching functions such as sigmoid and Gaussian 

functions to smooth and modify the original equations. This processing might accelerate the 

simulation and ensure that gradient-based optimisation algorithms can be employed.  

 

The climate inputs for model evaluation, derived from low-tech greenhouses, include air 

temperature and humidity with extreme values, solar radiation passing through plastic film, 

and CO2 concentration under natural ventilation. However, in modern multi-span 

greenhouses, CO2 concentration is usually maintained at 700-1000 ppm during 

photosynthesis through CO2 supplementation. This study lacks model validation under such 

high CO2 concentrations. The description of stomatal conductance adopts the parameters 

given by Stangheilini (1987) for tomato, and subsequent research is needed to determine 
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these parameters for lettuce. Using the experimental data from this study, the one-state model 

by Van Henten (1994a) significantly overestimated growth predictions. Possible reasons 

include the imposed constraints on temperature inputs, as well as the influence of different 

cultivation practices where the Eldert model was developed for soilless cultivation while 

lettuce was grown in soil in our experiments. Inspired by these findings, we also expect 

interested researchers and technicians to conduct model evaluation or parameter calibration 

for soilless cultivation scenarios and other varieties. Furthermore, we leave the sub-model 

validation and further exploration of the proposed photosynthesis inhibition hypothesis to 

botanists. To explain the effects of lettuce plant senescence and enhance prediction accuracy, 

thermal time or chronological time could be introduced to characterize the decline in 

photosynthetic capacity with plant age, as suggested by Sweeney et al. (1981) and Pearson 

et al. (1997). 

 

To use the developed model, the following preparations are necessary:  

 Providing model inputs, including greenhouse climate data (shortwave radiation I, air 

temperature Xt, humidity Xh, and CO2 concentration Xc) and initial value of crop states 

(crop dry weight Xd, LAI, and buffer storage Cbuf). 

 Identifying the recovering period, after which simulations can be performed. 

 Counting the effective cultivated area and determining plant density ρc. The model 

defaults to an effective cultivation area-based plant density, where each lettuce plant 

occupies a limited ground area at maximum. The plant density is crucial for 

determining initial crop states and root ratio, and accurately predicting biomass and 

yield within the greenhouse or a specific area together with the counted effective area. 

 

3.4 Summary 

 

In this study, a lettuce growth model that describes the effects of a broad range of greenhouse 

climates on crop dry weight dynamics was developed, calibrated, and validated. The 

developed model is for optimal climate control purposes. It simulates instantaneous crop 

dynamics for the potential situation. The broad range of greenhouse climates include air 
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temperature with extremely low and high conditions, humidity, CO2 concentration, and 

shortwave radiation. The model defaults to an effective cultivated area-based plant density, 

where a single plant occupies a limited ground area at maximum, making the model universal. 

 

The model development focused on extending crop growth responses to extreme air 

temperatures and humidity. The model framework performs two parallel sets of mass flows: 

dry matter accumulation and buffer evolution. They share paths but differ in logic. The 

former processes contribute to crop growth, where the carbohydrates produced by canopy 

photosynthesis are partly consumed in maintenance respiration, and the remaining are 

converted into structural dry matter and partitioned among organs. The latter processes are 

only used for regulating canopy photosynthesis. The buffer carbohydrates flow to growth 

conversion based on the temperature-dependent maximum growth rate (sink strength) of the 

whole crop. As extreme temperatures inhibit the partitioning, the buffer storage might 

increase, and the canopy assimilation inhibition occurs when the storage reaches the buffer 

capacity. Humidity effects are quantified by describing stomatal resistance and the SLA of 

new leaves. In addition, for simplicity, leaf carboxylation resistance and root ratio are 

described as descriptive functions. 

 

The model performance was demonstrated to be good and acceptable for a broad range of 

greenhouse climates. The simulated dry matter weights closely mirrored the measured values, 

with the RRMSE of 10.5-24.9% and the RMSE of 0.0070-0.0131 kg m-2. High temperatures 

at harvest time might induce overestimations. The model predicted the LAI dynamics with 

an RRMSE of 12.1-54.7%. However, during the vegetative growth stage concerned by 

commercial production, it is considered to perform well, with RRMSE ranging from 12.1% 

to 19.5%. The proposed model framework and underlying hypothesis worked in simulations 

that the photosynthesis inhibition time accounted for 27-41% of the total photosynthesis time. 

They effectively characterise the effects of extreme temperatures on crop growth and enable 

the model to simulate early growth. Inhibition was lifted in the late stages of crop growth 

due to the increased dry matter. Moreover, the model showed greater tolerance to high-

temperature than low-temperature stress. Higher humidity levels benefit canopy 
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photosynthesis by decreasing stomatal resistance and increasing SLA. 

 

The model can serve as a basis for optimal management of greenhouse climate, including 

those with limited climate conditioning capabilities. This study offers the open source code 

of the model. The simulation requires model inputs of greenhouse climate, initial crop states, 

and plant density, and needs to identify the recovering period. Further study is expected to 

validate the model for more lettuce cultivation scenarios and introduce the effects of lettuce 

plant senescence. 
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Chapter 4 

 

A full-scale climate model of the Chinese solar 

greenhouse 

 

In this chapter, a CSG climate model that describes the effects of outdoor weather, 

greenhouse structure, crop states, and greenhouse controls on the indoor climate of a 

standard CSG is developed and evaluated. 
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4.1 Introduction 

 

Greenhouse climate control can be made more efficient by using the theory of optimal 

control or model predictive control (W.-H. Chen & You, 2022; Tap, 2000), which fully 

exploits knowledge of the greenhouse and crop captured in dynamic models. For the CSG 

cultivation scenario, optimal climate control can improve income by 40% compared with 

conventional approaches (Dan Xu et al., 2018). To the best of our knowledge, very few 

optimal CSG climate control systems have been developed so far, and no such system has 

been applied to commercial CSG production. System model serves as a basis and determines 

the performance of the optimal control controller (Van Straten et al., 2010). In order to put 

optimal control of CSG climate into practice, it is necessary to have a suitable CSG climate 

model that can fully and accurately describe the effects of weather, greenhouse structure, 

crops, and controls on indoor climate. This model should also be able to incorporate the crop 

growth model for simulating the CSG production process. 

 

A greenhouse climate model should simulate one or more of the following climate factors: 

temperature, humidity, CO2 concentration, and radiation (Katzin et al., 2022). According to 

this principle, the number of the existing CSG climate models is approximately 50. Although 

the underlying mechanisms and some of the described processes are similar, these CSG 

climate models do not include those used for calculating heating and cooling requirements 

(M S Ahamed, H Guo, & K Tanino, 2018; Fu, Zhou, & Wang, 2020; Weituo Sun et al., 2019), 

determining surplus air heat energy (Weituo Sun, Wei, Zhou, Lu, & Guo, 2022), exploring 

thermal performance and heat transfer of CSG walls (M. Li et al., 2016; C Ma, Lu, Li, & Qu, 

2010; Tong & Christopher, 2019), external thermal blanket (C. Liu et al., 2015) and indoor 

soil (Deng, 2021), optimising design of the wall (M. Li, Zhou, & Wei, 2015), north roof (Y. 

Cao, Jing, Zhao, Zou, & Bao, 2017) and south roof (Y. Zhang & Zou, 2017), as well as 

modelling only the ventilation rate and indoor air flows (Fang et al., 2016; Q. Zhang et al., 

2012). The current CSG climate models can be generally classified into three categories, 

mechanistic (or process-based) model, data-driven model, and computational fluid dynamics 

(CFD) model. The earliest CSG climate model dates back to 1992 when D. Chen, Zheng, 
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Zhang, and Qiu (1992) developed an analytical model for calculating indoor direct solar 

radiation to assist in the transparent south roof design. Then, the CSG climate models have 

undergone rapid development for the potential purposes of model-based climate control, 

model-assisted structure design, exploratory modelling, and systems analysis. 

 

In the past decade, thanks to the development of artificial intelligence technology, the most 

emerged CSG climate models are data-driven types. They mainly focus on predicting the 

temperature and humidity dynamics of greenhouse air using different modelling methods 

such as the improved extreme learning machine (ELM) (Zou, Zhang, Yao, & He, 2015), grey 

prediction (Qin, Ma, Chu, & Wu, 2016), the least squares support vector machine (LSSVM) 

with parameters optimised by improved particle swarm optimisation (PSO) (Yu, Chen, 

Hassan, & Li, 2016), continuous-discrete recursive error algorithm for online identification 

of model parameters (L. Chen, Du, Li, He, & Liang, 2017), twice cluster analysis and back 

propagation (BP) neural network (X. Chen et al., 2017), a combination of long short-term 

memory and gated recurrent unit neural networks (LSTM-GRU) (Qiao et al., 2022), long 

short-term memory (LSTM) networks optimised by the sparrow search algorithm (SSA) (Zu, 

Liu, Zhao, Li, & Li, 2023), and one-dimensional convolutional neural networks and gated 

recurrent unit (CNN-GRU) (Hu et al., 2023). These data-driven CSG climate models, mainly 

based on neural networks and machine learning, have been reported to perform well in 

thermal environment prediction. However, an effective data model with strong 

generalizability requires an extremely large amount of data for parameter identification (L. 

Chen et al., 2017), and the applicability of the current models is usually limited to certain 

CSG production scenarios, specifically those that are similar to the experiments from which 

the model training data was derived. In China, CSGs lack a unified construction standard 

and vary in form based on different local climate conditions, planting needs, cost control, 

etc. Furthermore, indoor cultivation and management practices also differ widely. The use 

of existing data-driven CSG climate models for control poses significant challenges. 

 

CFD approach, aimed at quantifying fluid transport phenomena through a numerical 

solution of the conservation equations (Bournet & Rojano, 2022), has proven to be a 
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powerful tool for simulating air temperature and humidity changes and their distributions 

within the CSG (Fang, Yang, Zhang, Lu, & Zhou, 2015; Tong et al., 2009; G. Zhang et al., 

2019; Zheng, Yang, & Liu, 2023). The CSG climate models using CFD simulation can be 

used in the north wall optimisation (X. Zhang, Wang, Zou, & Wang, 2016), south and north 

roof design (X. Wu et al., 2021), and span selection (Tong, Christopher, & Zhang, 2018). 

However, the complexity of the simulation and computationally intensive nature limit their 

application in model-based controls, especially in online control (Norton et al., 2007). 

Similar issues also exist with other 2D and 3D models (Y. Zhang et al., 2020). 

 

Most of the optimal control or model predictive control systems for greenhouse climate 

management are based on mechanistic models (W.-H. Chen, Mattson, & You, 2022; I 

Ioslovich, 2009; Lin et al., 2021; Van Henten, 1994a), assuming the greenhouse air as a 

perfectively stirred tank. The mechanistic models are expected to generalise better than data-

driven models. They incorporate the parameters of structure, controls, and crops of the 

greenhouse production system and take these parameters as model inputs. For different 

greenhouse scenarios, the underlying principles remain unchanged, and the mechanistic 

models can work properly with different model inputs. Meanwhile, the mechanistic models 

treating the greenhouse air as a uniform entity can have higher computational efficiency than 

CFD models (Katzin et al., 2022). Therefore, the CSG climate model suitable for control 

must be a mechanistic model, particularly at the current stage. 

 

Early mechanistic CSG climate models paid more attention to simulating indoor solar 

radiation (D. Chen et al., 1992; Q. Chen, 1993; X. Li & Chen, 2004) since daylighting is 

crucial for the efficient production of CSGs that they rely on solar radiation as their primary 

energy source. Currently, radiation models still constitute the largest proportion (Han, Xue, 

Luo, Guo, & Li, 2014; Huang et al., 2020; Chengwei Ma et al., 2013; H. Xu et al., 2019). 

They employ an analytical approach, starting from defining extraterrestrial radiation to 

calculating the shortwave radiation absorbed by the envelope surfaces and ground inside the 

CSG. The focus was on determining the solar incidence angle on the south roof and further 

its transmissivity. The development of radiation models was mainly used to optimise the 



78 

 

design of greenhouse structures (Y. Cao et al., 2017; Xiaodan Zhang et al., 2020; Y. Zhang 

& Zou, 2017). Models simulating dynamics of air temperature (Meng, Yang, Bot, & Wang, 

2009; Sanchez-Molina et al., 2017; Tong et al., 2009; C. Wu, Zhao, & Guo, 2007) and air 

humidity (Bi & Wu, 2012; Z. Guo & Yu, 2012; F. He, Ma, & Zhang, 2009) within the CSG 

have been developed consecutively. These models were based on energy and water vapour 

balances and employ numerical simulation methods. CO2 concentration prediction models, 

which require careful consideration of ventilation, CO2 supplementation, and crop and soil 

activities, were the least studied (Bi, Ma, Cong, & Zhu, 2010; Dong, 2005). Research on 

these single climate factor prediction models contributes a lot to the CSG modelling work 

but is insufficient for optimal control. Firstly, climate control is for the growth and 

development of crops, which respond to the comprehensive climates, including temperature, 

humidity, CO2 concentration, and light, rather than to any single factor (Stanghellini et al., 

2019). Secondly, the control of greenhouse equipment also affects the climate 

comprehensively, not just a single factor. For example, the roof vent opening will 

simultaneously influence temperature, humidity, and CO2 levels inside the CSG, further 

influencing radiation by affecting condensation and frosting on the south roof inner surface. 

Furthermore, greenhouse climates interact with each other. Therefore, the CSG climate 

model for control purposes should be capable of effectively integrating and simulating the 

comprehensive climates inside the CSG, based on which optimal control algorithm can link 

equipment control with crop growth to seek optimized control schemes. To enhance the 

completeness, simulation accuracy, and universality of the CSG climate model, the 

simulated comprehensive climates should include shortwave radiation, air temperature, 

humidity, and CO2 concentration inside the CSG, especially when coupling with a crop 

model that responds to these four attributes in optimal control systems. 

 

CSG climate models that integratively describe two or more climate attributes are still 

relatively rare. R. Liu, Li, Guzmán, and Rodríguez (2021) developed a fast and practical 

one-dimensional transient model for CSG air temperature and humidity and stated that it 

could be used for decision-making support of greenhouse climate management. However, 

this model calculates the wall and ground temperatures using algebraic equations and implies 
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that the target objects have unidirectional internal heat transfer, with only their insulation 

properties being considered while their heat storage capabilities are ignored. This 

assumption applies to certain components in the Venlo type greenhouse (De Zwart, 1996) 

but might deviate from reality in CSG systems, especially for the north wall (nighttime heat 

release reaches 1.69 MJ m-2 d-1) and indoor soil (nighttime heat release reaches 0.48 MJ m-

2 d-1) (Bai, Liu, Wang, Tong, & Meng, 2003). Moreover, this model does not 

comprehensively address CO2 dynamics, validate the radiation calculations, and describe 

crop activities for a particular cultivar, though crop states significantly affect greenhouse 

climates. CSG climate models simulating three and four climate attributes have been 

reported by Jianfeng Zhang (2003) and X. Wang (2017). However, these models offer 

relatively simple descriptions of processes. They have not validated the sub-model of CO2 

concentration, nor have they evaluated model performance on simulating temperature, 

humidity, and shortwave radiation over a long period simultaneously. Furthermore, there is 

a lack of specific controls and crop states as model inputs. 

 

In summary, a thoroughly tested mechanistic CSG climate model that integratively simulates 

four attributes of shortwave radiation, air temperature, humidity, and CO2 concentration, 

with high computational efficiency and good generalization and universality, remains elusive. 

Such a model should describe crop activities and be validated with measured crop state 

inputs for a specific crop. The majority of present CSGs lack additional climate conditioning 

equipment (Qi et al., 2017). They, namely as standard CSGs, only have roof and side vents 

as well as the thermal blanket as the two essential and controllable structural components. 

Therefore, the objective of this study is to design and evaluate a full-scale CSG climate 

model that describes the effects of outdoor weather, greenhouse structure, cultivated crops, 

and greenhouse controls on the indoor climate of a standard CSG. The simulated CSG 

climate integrates all four attributes of shortwave radiation, air temperature, humidity, and 

CO2 concentration. Full-scale is reflected in both inputs and outputs of the model. The target 

crop in this climate model is lettuce, and model validation was performed for the lettuce 

production scenario in the CSG. The developed model is expected to accurately predict CSG 

climate dynamics and serve as a basis for optimal control of the CSG climate, incorporating 
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a lettuce growth model responding to four or fewer climate factors. 

 

Below are the key innovations of the study: 

 

(1) A novel process based CSG climate model is designed, integratively describing 

dynamics of shortwave radiation, air temperature, air humidity, and CO2 concentration 

inside the CSG that responds to weather, greenhouse structure, crops, and controls. 

(2) It is the first time that the CSG climate model describes crop activities specifically 

targeting lettuce and is thoroughly evaluated in lettuce production scenarios using 

measured crop states and greenhouse controls. 

(3) The model was extended to include the switch of condensation to deposition on the 

south roof, as well as the shading of the north wall by the north roof. 

(4) The model also offers new insights into energy and mass balances, the definition of 

layers and surfaces, radiative fluxes, criteria for selecting convective heat transfer 

coefficients, latent heat fluxes, natural ventilation and air infiltration, soil microbial 

respiration and evaporation, as well as the association between cultivated area and 

indoor ground. 

 

4.2 Model description 

 

4.2.1 Model overview 

 

4.2.1.1 Model framework 

 

This model describes the effects of outdoor weather, greenhouse structure, cultivated crops, 

and greenhouse controls on the indoor climate of a standard CSG. It is classified as a 

mechanism model and is built on process descriptions, which can benefit the generalization 

of the model and provide insights into mechanisms influencing CSG climate variations. The 

model serves as a basis for model predictive control or optimal control of the CSG climate. 

It can also be used for analysis, exploratory modelling, and design optimization of CSG 
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systems. The development of this model integrates and optimizes previous research, as well 

as provides new insights and quantifications of CSG processes. 

 

As shown in Figure 4.1, the target CSG climate attributes for simulation include shortwave 

radiation (I), air temperature (Xt), air humidity (Xh), and CO2 concentration (Xc) inside the 

CSG. The shortwave radiation at the top of the canopy, which also serves as the climate input 

for the developed crop model, is selected to represent the CSG light environment. Auxiliary 

states like temperatures of CSG envelope surfaces, indoor ground, soil layers, north wall 

layers, and crop canopy are also involved. The radiation related states are expressed using 

analytical formulas. All other states have their rates of change described by differential 

equations, considering energy, water vapour, and CO2 balances. The dynamics of these 

model states are modelled on a time scale of one second. For a given CSG, model inputs 

mainly include the external weather of horizontal solar radiation (Iout), air temperature (Tout), 

relative humidity (RHout), CO2 concentration (CO2out), and wind speed (ve), the controls of 

the thermal blanket (Ub), side vent (Uvent,s), and roof vent (Uvent,r), as well as the crop growth 

states of crop dry weight (Xd) and leaf area index (LAI). 

 

To explain the processes from model inputs to outputs, the model development is detailed in 

the following subsections. 

 

 State variables: Change rate of temperatures [℃], relative humidity [-], and CO2 

concentration [μmol (CO2) mol-1 (air)] of CSG objects are expressed by balancing 

incoming and outgoing energy and mass flows. 

 

 Definition of layers and surfaces: The CSG south roof is conceptualized as a dynamic 

composite layer consisting of a potential ice layer, a transparent covering, and an 

adjustable thermal blanket. Surfaces are defined for CSG objects. Further layering is 

performed to describe the temperature dynamics of the north wall and indoor soil with 

heat storage capabilities. 
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 Capacities of CSG objects: Heat capacities of the CSG air, canopy, indoor soil, and 

north wall, as well as capacities of indoor air to store water vapour and CO2, are 

presented. 

 

 Radiative fluxes: The shortwave radiation at the top of the canopy and absorbed by 

CSG envelope surfaces, indoor floor, and the canopy is ultimately described as a 

function of local latitude, date, and time, outdoor solar radiation, greenhouse structure 

and controls, LAI, and formation of the ice layer. These sub-models primarily focus on 

determinations of solar incidence angle, equivalent transmissivity and reflectivity of the 

composite south roof, as well as the shading ratio of the north wall. Longwave radiation 

heat fluxes are described among CSG surfaces, canopy, and sky, with a focus on 

determining the view factors. 

 

 Convective and conductive fluxes: Criteria and assumptions for choosing convective 

heat transfer coefficients are systematically elaborated, extending the effects of controls 

and crop state. Also, this section describes heat conductions between adjacent layers and 

between non-adjacent surfaces within the CSG. 

 

 Latent heat fluxes: Latent heat fluxes induced by crop transpiration, soil evaporation, 

and vapour condensation are described, with an expanded description addressing the 

transition from condensation to deposition on the south roof. 

 

 Vapour fluxes: The water vapour away from the CSG through condensations and air 

exchange is quantified. 

 

 CO2 fluxes: CO2 flux generated by air exchange is expressed. 

 

 Air exchange: Natural ventilation, induced by the combined wind and buoyancy effects, 

is described for the two ventilation modes of only the roof vent being open and the roof 

and side vents being open, considering the resistance of insect screens. Air infiltration 
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is modelled to respond to wind speed and the temperature difference between indoor 

and outdoor air, with an introduction of the thermal blanket control to modify the cover 

tightness. 

 

 Crop activities: This section summarises crop photosynthesis and respiration for lettuce, 

gives the specific calculation method of crop transpiration, and addresses the issues 

caused by the difference between an effective cultivated area and an indoor ground area. 

 

 Soil activities: While the crop activity has covered root respiration, the soil respiration 

description only considers the soil microbial respiration rate. Soil evaporation is 

described by integrating the effects of greenhouse climate and specific moisture levels 

of greenhouse soil on evaporation. 

 

Tracing back to the roots, all four CSG climate attributes are influenced by the model inputs 

of weather, greenhouse, crops, and controls. Simultaneously, the factors of shortwave 

radiation, air temperature, and air humidity interact with each other and collectively impact 

CO2 concentration. CO2 concentration does not affect other climate factors since the crop 

states serve as inputs in the CSG climate model. However, in an integrated CSG climate-

crop growth model, all four climate factors will interact. In sub-models, the south roof is 

often treated as a particular case because of its dynamic composite layer characteristics. The 

target crop in this climate model is lettuce, and model validation was performed for the 

lettuce production scenario in the CSG. Hence, this study presents a climate model of the 

CSG that cultivates lettuce. 
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Figure 4.1 A schematic diagram of the CSG climate model. All energy and mass fluxes are 

involved. Information flows avoid intermediate variables as much as possible, tracing back 

to inputs and states. The two interacting objects, represented by variables, between which 

energy or mass flux occurs contribute to the information flow of this flux. The influence of 

the indoor climate on crop photosynthesis and respiration is not involved in this figure and 

can be found in schematic diagram of the lettuce growth model. 
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4.2.1.2 Model assumptions 

 

The general assumptions of this model are as follows (see more detailed information in the 

section of model equations). 

 

 The CSG air is considered a ‘perfectly stirred tank’, which means the spatial variability 

of air temperature, humidity, and CO2 concentration is ignored. 

 The CSG is considered to be infinitely extended in the east-west direction, ignoring the 

influence of side walls. Also, the property of the aisle is regarded as being consistent 

with the cultivation area. In addition, the model adopts an LAI at the whole greenhouse 

level instead of based on the effective cultivated area to address the impact of crops. 

Then, the CSG production system is assumed to be uniformly consistent in the 

longitudinal direction. Moreover, the distribution of radiation at the top of the canopy 

and on all CSG surfaces can be uniform. 

 The model considers only one-dimensional heat transfer.  

 The north and south roofs are considered not to have heat storage capacity. 

 All the controls of CSG controllable structural components are assumed to be completed 

instantaneously. 

 Corresponding to the crop model, this model assumes that water and nutrients are 

supplied adequately, based on which activities of the soil and crops are described. 

 

4.2.2 Model equations 

 

4.2.2.1 State variables 

 

We focus on modelling CSG climate attributes, but it is important to note that the greenhouse 

is a holistic system where various objects interact. Therefore, other state variables, such as 

the indoor ground temperature, also need to be described. All states, except for radiation 

variables, have their rates of change described by differential equations. This is because 

radiation is only influenced by the current meteorological, greenhouse, and crop conditions, 



86 

 

while other states evolve from their values at the previous time step. The differential 

equations are based on three balances: energy balance, water vapour balance, and CO2 

balance. The right-hand side of these equations contains incoming and outgoing energy and 

mass flows, with the analysis focused on the state carriers (e.g., the inner surface of the north 

wall). Note that all fluxes are based on the indoor ground area, representing values per unit 

CSG ground area.  

 

For energy and mass transfer processes, we used the following notational conventions: C 

denotes convective heat flux, D denotes conductive heat flux, R denotes longwave radiation 

heat transfer flux, E denotes sensible heat flux due to air exchange, L denotes latent heat flux, 

MV denotes water vapour flux, and MC denotes CO2 flux. The inner surface is denoted by 

subscript ‘in’, while the outer surface is denoted by subscript ‘e’. In the unit [W m-2 (gro)], 

‘(gro)’ is used to define the area as an indoor ground area. The symbols used in the crop 

growth model presented in Chapter 3 are continued in this model. Additionally, the notational 

conventions of this study are partially borrowed from the greenhouse climate model by 

Vanthoor (2011) and the surplus air heat model of CSG by Weituo Sun et al. (2022). 

 

Temperatures of CSG objects 

 

Greenhouse air temperature Xt is described by: 

 

 
𝑐𝑎𝑝𝑎𝑖𝑟

𝑑𝑋𝑡
𝑑𝑡

= 𝐶𝑐𝑎𝑛_𝑎𝑖𝑟 + 𝐶𝑔𝑟𝑜_𝑎𝑖𝑟 + 𝐶𝑛𝑤,𝑖𝑛_𝑎𝑖𝑟 + 𝐶𝑛𝑟,𝑖𝑛_𝑎𝑖𝑟 + 𝐶𝑠𝑟,𝑖𝑛_𝑎𝑖𝑟

− 𝐸𝑎𝑖𝑟_𝑜𝑢𝑡  [W m
−2 (gro)] 

(4.1) 

 

where capair [J ℃-1 m-2 (gro)] is the heat capacity of air inside the CSG, Xt [℃] is the 

greenhouse air temperature, t [s] is the time. Convective heat exchanges occur between 

indoor air and surrounding objects, including the canopy Ccan_air, indoor ground Cgro_air, the 

internal surface of the north wall Cnw,in_air, the internal surface of the north roof Cnr,in_air, and 

the internal surface of the south roof Csr,in_air. Sensible heat is also exchanged between the 



87 

 

indoor air and the outdoor air, which is caused by the air exchange brought about by natural 

ventilation and air infiltration Eair_out. The CSG commonly utilizes a steel frame structure, 

employing various frame types such as elliptical tubes, galvanized steel pipes, and 

galvanized steel pipes with additional lower chord trusses. In the east-west direction, the 

spacing between adjacent roof arch frames is approximately 1.0 m. The design of the steel 

frame structure prioritizes minimizing shading effects on the greenhouse while meeting load-

bearing requirements. Hence, this model does not take into account the absorption of 

shortwave radiation by the steel frame and its involvement in other heat transfer processes. 

Also, the air does not directly absorb shortwave radiation nor participate in longwave 

radiation heat transfer processes. 

 

The canopy temperature Tcan is described by: 

 

 

𝑐𝑎𝑝𝑐𝑎𝑛
𝑑𝑇𝑐𝑎𝑛
𝑑𝑡

= 𝐼𝑐𝑎𝑛 − 𝐶𝑐𝑎𝑛_𝑎𝑖𝑟 + 𝑅𝑔𝑟𝑜_𝑐𝑎𝑛 + 𝑅𝑛𝑤,𝑖𝑛_𝑐𝑎𝑛 + 𝑅𝑛𝑟,𝑖𝑛_𝑐𝑎𝑛

+ 𝑅𝑠𝑟,𝑖𝑛_𝑐𝑎𝑛 − 𝑅𝑐𝑎𝑛_𝑠𝑘𝑦 − 𝐿𝑐𝑎𝑛_𝑎𝑖𝑟

+ 𝐿𝑎𝑖𝑟_𝑐𝑎𝑛  [W m
−2 (gro)] 

(4.2) 

 

where capcan [J ℃-1 m-2 (gro)] is the heat capacity of the canopy inside the CSG. Tcan [℃] is 

the canopy temperature, not equivalent to the greenhouse air temperature in this climate 

model. It is assumed to be uniformly consistent throughout the entire canopy. Ican [W m-2 

(gro)] is the shortwave radiation (solar radiation) absorbed by the canopy. In addition to 

convective heat exchange with the indoor air Ccan_air, crops in the greenhouse also experience 

longwave radiation heat transfer with the indoor ground Rgro_can, the internal surfaces of the 

CSG envelope Rnw,in_can, Rnr,in_can, Rsr,in_can, and the sky through the transparent covering of 

the south roof Rcan_sky. There are also latent heat fluxes associated with the crops, induced by 

crop transpiration Lcan_air and vapour condensation onto the canopy Lair_can. These two phase 

change processes lead to sensible heat loss and gain of the canopy, respectively. 

 

The materials, composition, and design functions differ across various parts of the CSG 
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envelope, leading to differences in modelling their heat transfer processes. The north wall is 

primarily composed of insulation and thermal storage materials, serving as one of the main 

heat storage bodies in the CSG. To accurately simulate the greenhouse climate, a dynamic 

model is necessary to describe the temperature dynamics of the north wall in layers, 

identifying internal heat fluxes and depicting its thermal storage function. Further details on 

layering and surface definitions are provided in the subsequent sections. The temperatures 

of the internal surface Tnw,in, external surface Tnw,e, and layer ‘j’ Tnw(j) of the north wall are 

described as follows. The layer ‘j’ is located between the two surfaces and is identified and 

numbered from the inside to the outside (Figure 4.1). 

 

 

𝑐𝑎𝑝𝑛𝑤,𝑖𝑛
𝑑𝑇𝑛𝑤,𝑖𝑛
𝑑𝑡

= 𝐼𝑛𝑤,𝑖𝑛 − 𝐶𝑛𝑤,𝑖𝑛_𝑎𝑖𝑟 − 𝑅𝑛𝑤,𝑖𝑛_𝑔𝑟𝑜 − 𝑅𝑛𝑤,𝑖𝑛_𝑐𝑎𝑛

− 𝑅𝑛𝑤,𝑖𝑛_𝑛𝑟,𝑖𝑛 − 𝑅𝑛𝑤,𝑖𝑛_𝑠𝑟,𝑖𝑛 − 𝑅𝑛𝑤,𝑖𝑛_𝑠𝑘𝑦

− 𝐷𝑛𝑤,𝑖𝑛_𝑛𝑤(1)  [W m
−2 (gro)] 

(4.3) 

 

 𝑐𝑎𝑝𝑛𝑤(𝑗)
𝑑𝑇𝑛𝑤(𝑗)

𝑑𝑡
= 𝐷𝑛𝑤(𝑗−1)_𝑛𝑤(𝑗) − 𝐷𝑛𝑤(𝑗)_𝑛𝑤(𝑗+1)  [W m

−2 (gro)] (4.4) 

 

 𝑐𝑎𝑝𝑛𝑤,𝑒
𝑑𝑇𝑛𝑤,𝑒
𝑑𝑡

= 𝐷𝑛𝑤(𝑗𝑚𝑎𝑥)_𝑛𝑤,𝑒 − 𝐶𝑛𝑤,𝑒_𝑜𝑢𝑡 − 𝑅𝑛𝑤,𝑒_𝑠𝑘𝑦  [W m
−2 (gro)] (4.5) 

 

where capnw,in, capnw,e, cap nw(j) [J ℃-1 m-2 (gro)] are the heat capacity of the internal surface, 

external surface, and the layer ‘j’ of the CSG north wall, respectively. Tnw,in, Tnw,e, Tnw(j) [℃] 

are the temperature of the internal surface, external surface, and the layer ‘j’ of the CSG 

north wall, respectively. Inw,in [W m-2 (gro)] is the shortwave radiation absorbed by the 

internal surface of the north wall. The external surface of the north wall is assumed to receive 

negligible shortwave radiation. Rnw,in_gro, R nw,in_nr,in, R nw,in_sr,in, and Rnw,in_sky [W m-2 (gro)] 

are the longwave radiation heat fluxes between the north wall internal surface with the indoor 

ground, the north roof internal surface, the south roof internal surface, and the sky, 

respectively. Dnw,in_nw(1) [W m-2 (gro)] is the conductive heat flux from the internal surface to 
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layer 1 of the north wall. Dnw(j-1)_nw(j) [W m-2 (gro)] is the conductive heat flux from layer ‘j-

1’ to layer ‘j’ of the north wall, and Dnw(j)_nw(j+1) [W m-2 (gro)] is the conductive heat flux 

from layer ‘j’ to layer ‘j+1’ of the north wall. The value of ‘j’ ranges from 1 to ‘jmax’ (Figure 

4.1). The external surface of the north wall exchanges heat with the adjacent layer ‘jmax’ 

through conduction Dnw,jmax_nw,e, with outdoor air through convection Cnw,e_out, and with the 

sky through radiative heat transfer Rnw,e_sky. Dnw(j-1)_nw(j) is equivalent to Dnw,in_nw(1) for the 

first layer, and Dnw(j)_nw(j+1) is equivalent to Dnw,jmax_nw,e for the layer ‘jmax’. 

 

The primary function of the CSG north roof is to provide insulation and capture as much 

radiation as possible, while its heat storage capacity and thermal lag effects can be neglected. 

Thus, this model regards the north roof as a whole for heat conduction analysis, with a 

consistent direction of heat flow internally. To facilitate model reduction, the temperatures 

of the internal surface Tnr,in [℃] and external surface Tnr,e [℃] of the north roof are 

determined using the following energy balance equations, rather than differential equations. 

 

 

𝐼𝑛𝑟,𝑖𝑛 − 𝐶𝑛𝑟,𝑖𝑛_𝑎𝑖𝑟 − 𝑅𝑛𝑟,𝑖𝑛_𝑔𝑟𝑜 − 𝑅𝑛𝑟,𝑖𝑛_𝑐𝑎𝑛 + 𝑅𝑛𝑤,𝑖𝑛_𝑛𝑟,𝑖𝑛 − 𝑅𝑛𝑟,𝑖𝑛_𝑠𝑟,𝑖𝑛

− 𝑅𝑛𝑟,𝑖𝑛_𝑠𝑘𝑦 = 𝐷𝑛𝑟,𝑖𝑛_𝑛𝑟,𝑒  [W m
−2 (gro)] 

(4.6) 

 

 𝐷𝑛𝑟,𝑖𝑛_𝑛𝑟,𝑒 = 𝐶𝑛𝑟,𝑒_𝑜𝑢𝑡 + 𝑅𝑛𝑟,𝑒_𝑠𝑘𝑦  [W m
−2 (gro)] (4.7) 

 

where Inr,in [W m-2 (gro)] is the shortwave radiation absorbed by the internal surface of the 

north roof. Rnr,in_gro, R nr,in_sr,in, and Rnr,in_sky [W m-2 (gro)] are the longwave radiation heat 

fluxes between the north roof internal surface with the indoor ground, the south roof internal 

surface, and the sky, respectively. Dnr,in_nr,e [W m-2 (gro)] is the conductive heat flux from 

the internal surface to the external surface of the north roof. Cnr,e_out [W m-2 (gro)] is the 

convective heat flux between the external surface of the north roof and the outdoor air. 

Rnr,e_sky [W m-2 (gro)] is radiative heat flux between the external surface of the north roof and 

the sky. 
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The CSG south roof serves for daylighting and is covered with an external thermal blanket 

for insulation at night. Additionally, frost formation might occur on the internal surface of 

the south roof after uncovering the thermal blanket. In this model, the CSG south roof is 

conceptualized as a dynamic composite layer consisting of a potential ice layer, a transparent 

covering, and an adjustable thermal blanket. Similar to the treatment of the north roof, the 

south roof is considered a unified entity for heat conduction analysis. The temperatures of 

the internal surface Tsr,in [℃] and external surface Tsr,e [℃] of the south roof can be 

determined by the following energy balance equations. 

 

 
−𝐶𝑠𝑟,𝑖𝑛_𝑎𝑖𝑟 − 𝑅𝑠𝑟,𝑖𝑛_𝑔𝑟𝑜 − 𝑅𝑠𝑟,𝑖𝑛_𝑐𝑎𝑛 + 𝑅𝑛𝑤,𝑖𝑛_𝑠𝑟,𝑖𝑛 + 𝑅𝑛𝑟,𝑖𝑛_𝑠𝑟,𝑖𝑛 + 𝐿𝑎𝑖𝑟_𝑠𝑟,𝑖𝑛

= 𝐷𝑠𝑟,𝑖𝑛_𝑠𝑟,𝑒  [W m
−2 (gro)] 

(4.8) 

 

 𝐷𝑠𝑟,𝑖𝑛_𝑠𝑟,𝑒 = 𝐶𝑠𝑟,𝑒_𝑜𝑢𝑡 + 𝑅𝑠𝑟,𝑒_𝑠𝑘𝑦 − 𝐼𝑠𝑟,𝑒 [W m
−2 (gro)] (4.9) 

 

where Inr,e [W m-2 (gro)] is the shortwave radiation absorbed by the external surface of the 

north roof. Assuming that, in both transparent and opaque states, the solar radiation absorbed 

by the south roof is attributed solely to the absorption of its external surface. Rsr,in_gro [W m-

2 (gro)] is the longwave radiation heat flux between the south roof internal surface and the 

indoor ground. Dsr,in_sr,e [W m-2 (gro)] is the conductive heat flux from the internal surface 

to the external surface of the south roof. Lair_sr,in [W m-2 (gro)] is latent heat flux from indoor 

air to the internal surface of the south roof, which is induced by vapour condensation onto 

the surface and leads to sensible heat gain of the internal surface. Csr,e_out [W m-2 (gro)] is 

the convective heat flux between the external surface of the south roof and the outdoor air. 

Rsr,e_sky [W m-2 (gro)] is radiative heat flux between the external surface of the south roof and 

the sky. 

 

Because of the high heat capacity of the indoor soil, layering is performed to describe its 

temperatures. The ground inside the CSG is typically bare soil, while there are rare cases 

where ground cloth is used. The detailed definitions of soil layers and surfaces can be found 
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in the following sections. The temperatures of the indoor ground and soil layers are described 

below:  

 

 

𝑐𝑎𝑝𝑔𝑟𝑜
𝑑𝑇𝑔𝑟𝑜

𝑑𝑡
= 𝐼𝑔𝑟𝑜 − 𝐶𝑔𝑟𝑜_𝑎𝑖𝑟 − 𝑅𝑔𝑟𝑜_𝑐𝑎𝑛 + 𝑅𝑛𝑤,𝑖𝑛_𝑔𝑟𝑜 + 𝑅𝑛𝑟,𝑖𝑛_𝑔𝑟𝑜

+ 𝑅𝑠𝑟,𝑖𝑛_𝑔𝑟𝑜 − 𝑅𝑔𝑟𝑜_𝑠𝑘𝑦 − 𝐷𝑔𝑟𝑜_𝑠𝑜(1)

− 𝐿𝑔𝑟𝑜_𝑎𝑖𝑟  [W m
−2 (gro)] 

(4.10) 

 

 𝑐𝑎𝑝𝑠𝑜(𝑖)
𝑑𝑇𝑠𝑜(𝑖)

𝑑𝑡
= 𝐷𝑠𝑜(𝑖−1)_𝑠𝑜(𝑖) − 𝐷𝑠𝑜(𝑖)_𝑠𝑜(𝑖+1)  [W m

−2 (gro)] (4.11) 

 

where capgro and capso(i) [J ℃-1 m-2 (gro)] are the heat capacity of the indoor ground and soil 

layer ‘i’, respectively. Tgro and Tso(i) [℃] are the temperature of the indoor ground and soil 

layer ‘i’, respectively. Igro [W m-2 (gro)] is the shortwave radiation absorbed by the indoor 

ground. Rgro_sky [W m-2 (gro)] is the longwave radiation heat flux between the indoor ground 

and the sky. Dgro_so(1) [W m-2 (gro)] is the conductive heat flux from the indoor ground to soil 

layer 1. Lgro_air [W m-2 (gro)] is latent heat flux from indoor ground to CSG air due to soil 

evaporation, leading to sensible heat loss of the soil. Dso(i-1)_so(i) [W m-2 (gro)] is the 

conductive heat flux from layer ‘i-1’ to layer ‘i’ of the soil, and Dso(i)_so(i+1) [W m-2 (gro)] is 

the conductive heat flux from layer ‘i’ to layer ‘i+1’ of the soil. The value of ‘i’ ranges from 

1 to ‘imax’. Dso(i-1)_so(i) is equivalent to Dgro_so(1) for the first layer. For the layer ‘imax’, 

Dso(i)_so(i+1) is equal to the conductive heat flux from soil layer ‘imax’ to the soil layer with 

constant temperature Dso,imax_so,cs. 

 

Humidity of greenhouse air 

 

The relative humidity of the CSG air is described by: 

 

 
𝑐𝑎𝑝𝑀𝑉

𝑑𝑋ℎ
𝑑𝑡

= 𝐸𝑐,𝑔ℎ + 𝐸𝑠𝑜 −𝑀𝑉𝑎𝑖𝑟_𝑠𝑟,𝑖𝑛 −𝑀𝑉𝑎𝑖𝑟_𝑐𝑎𝑛

−𝑀𝑉𝑎𝑖𝑟_𝑜𝑢𝑡  (0 ≤ 𝑋ℎ ≤ 1)  [kg m−2 (gro) s−1] 

(4.12) 
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where Xh [-] is the relative humidity of greenhouse air, capMV [kg m-2 (gro)] is the capacity 

of indoor air to store water, Ec,gh [kg m-2 (gro) s-1] is the crop transpiration rate at the whole 

greenhouse level, Eso [kg m-2 (gro) s-1] is the soil evaporation rate inside the greenhouse, 

MVair_sr,in [kg m-2 (gro) s-1] is the vapour flux from the indoor air to the internal surface of 

the south roof due to condensation or deposition, MVair_can [kg m-2 (gro) s-1] is the vapour 

flux from the indoor air to the canopy due to condensation, MVair_out [kg m-2 (gro) s-1] is the 

vapour flux from the indoor air to the outdoor air accompanying air exchange. 

 

CO2 concentration of greenhouse air 

 

The CO2 concentration of the greenhouse air is described by: 

 

 𝑐𝑎𝑝𝑀𝐶
𝑑𝑋𝑐
𝑑𝑡

= 𝑅𝑠𝑚 + 𝑅𝑑,𝑔ℎ − 𝐴𝐶,𝑔ℎ −𝑀𝐶𝑎𝑖𝑟_𝑜𝑢𝑡  [kg m
−2 (gro) s−1] (4.13) 

 

where Xc [μmol (CO2) mol-1 (air)] is the CO2 concentration of the indoor air, capMC [kg m-2 

(gro)] is the capacity of indoor air to store CO2, Rsm [kg (CO2) m-2 (gro) s-1] is the soil 

microbial respiration rate inside the greenhouse, AC,gh [kg (CO2) m
-2 (gro) s-1] is the gross 

canopy assimilation rate at the whole greenhouse level, Rd,gh [kg (CO2) m
-2 (gro) s-1] is the 

crop maintenance respiration rate at the whole greenhouse level, MCair_out [kg m-2 (gro) s-1] 

is the CO2 flux from the indoor air to the outdoor air generated by air exchange. 

 

4.2.2.2 Definition of layers and surfaces 

 

The Composite Layer of the south roof 

 

The CSG south roof is unique in the model descriptions because it has a dynamic layer. The 

CSG is equipped with an external thermal blanket that covers the transparent south roof 

during cold winter nights. When the thermal blanket covers the roof, it forms a composite 



93 

 

layer consisting of the roof and the blanket. During the day, the thermal blanket is rolled up 

to allow solar radiation to enter the greenhouse. As a result, the south roof of the CSG can 

vary depending on the controls of the thermal blanket. 

 

Most CSG climate models, especially those predicting humidity, describe condensations. 

They only consider the conversion between latent and sensible heat, rather than describing 

influences of condensation on the thermal and optical properties of the south roof (F. He et 

al., 2009; R. Liu et al., 2021; Tong & Christopher, 2009). This is because the water formed 

by condensation will rapidly slide along the inner surface of the south roof or drip onto the 

indoor ground. It is assumed that condensation does not stay on the surface, especially since 

non-dripping films are widely used. Condensation on crop leaves follows a similar pattern. 

This model maintains this assumption. However, another process leading to the vapour flux 

from indoor air to the south roof cannot be neglected, which is deposition. This process has 

never been involved in existing CSG models. The water vapour deposition onto the inner 

surface of the south roof usually occurs after uncovering the thermal blanket on cold winter 

mornings. During this period, the surface temperature drops sharply and can easily fall below 

0 ℃, as the thermal resistance of the south roof decreases significantly, while the indoor 

temperature has not yet risen. In addition to changing latent heat conversion accompanying 

vapour flows, the deposition will form an ice layer on the inner surface of the south roof and 

affect its conductive and optical properties. This model assumes that condensation shifts to 

deposition or frost formation when the inner surface decreases below 0 ℃. The formation of 

the ice layer will change the composition of the south roof. 

 

This model regards the CSG south roof as a composite layer that consists of a conditional 

ice layer, a transparent covering, and a movable thermal blanket from inside to outside. The 

definitions and assumptions about the south roof are as follows: 

 

(1) There are no gaps between the three layers. 

(2) The presence of the ice layer is represented by uice, 
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 𝑢𝑖𝑐𝑒 = {
1, 𝑇𝑠𝑟,𝑖𝑛 < 0 ∩ 𝑒𝑎𝑖𝑟 > 𝑒𝑠,𝑠𝑟,𝑖𝑛
0, 𝑇𝑠𝑟,𝑖𝑛 ≥ 0 ∪ 𝑒𝑎𝑖𝑟 ≤ 𝑒𝑠,𝑠𝑟,𝑖𝑛

  [−] (4.14) 

 

where Tsr,in [℃] is the temperature of the internal surface of the south roof, eair [Pa] is 

the vapour pressure of indoor air, es,sr,in [Pa] is the saturated vapour pressure of the south 

roof inner surface (can be the ice layer or transparent covering) at its temperature. Eq. 

(4.14) assumes that the ice layer forms when condensation occurs, and the temperature 

of the south roof inner surface is below 0 ℃. For model simplification, the appearance 

and disappearance of the ice layer are assumed to be instantaneous and do not consider 

the latent heat required for melting or sublimation. The thickness of the ice layer is 

defined to be 0.1 mm for relevant calculations. 

(3) The controls of the thermal blanket are represented by Ub, with Ub = 1 when operated 

to cover the south roof and Ub = 0 when rolled up. Generally, the rolling up of the thermal 

blanket is mechanically driven from the south roof bottom to the top or vice versa, with 

a duration of 10-15 minutes, depending on the span of the greenhouse. The time required 

to cover the thermal blanket is slightly shorter than the uncovering time. For model 

simplification, the covering and uncovering of the thermal blanket are also assumed to 

be instantaneous. 

(4) The presence or absence of the ice layer and the thermal blanket covering will not 

affect the convective heat transfer coefficients of the south roof but will affect its thermal 

conductivity. 

(5) All three layers affect transmission, absorption, and reflection of the south roof for 

shortwave radiation, as well as emissivity for longwave radiation. 

(6) Controls of the thermal blanket influence air infiltration of the CSG. 

(7) The optical and thermophysical properties of the composite layer will be illustrated 

as a special case in the following sections. 

 

Definition of layering and surfaces 

 

In steady-state CSG models such as heating and cooling load models, the temperatures of 
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the CSG envelope surfaces and indoor floor are determined by solving simultaneous 

equations (Fu et al., 2020; Weituo Sun et al., 2019), and surface temperatures can stand on a 

virtual surface. The states of certain greenhouse objects are also calculated using algebraic 

equations in some dynamic models, such as temperatures of the screen and air above the 

screen in the Venlo type greenhouse (De Zwart, 1996) and the wall and ground temperatures 

in the CSG (R. Liu et al., 2021). However, employing algebraic equations implies that the 

target objects have unidirectional internal heat transfer, only considering their insulation 

properties while ignoring their heat storage capabilities. It allows the target object, inner 

surface, and indoor air to respond to weather changes instantaneously. This assumption 

applies to certain components in the muti-span greenhouse, but deviates completely from 

reality in CSG systems, especially for the north wall (nighttime heat release reaches 1.69 MJ 

m-2 d-1) and indoor soil (nighttime heat release reaches 0.48 MJ m-2 d-1) (Bai et al., 2003). It 

is common for the CSG north wall, composed of thermal insulation and storage materials, 

to exceed 0.5 m in thickness, and the direction of heat fluxes within it is not always from 

inside to outside. Heat fluxes with inconsistent directions exist within the north wall at 

different positions at the same time and at different times at the same position (M. Li et al., 

2015; C Ma et al., 2010; Tong & Christopher, 2019).  

 

Dynamic CSG climate models should respond to external disturbances and characterize the 

thermal inertia and time delay effects of the greenhouse system for accurate and more 

explanatory simulations. For CSG objects with thermal storage capacity, layering is 

necessary to describe their temperature dynamics, aiming to understand the direction of 

interior heat fluxes and the heat storage and release patterns of the CSG envelope and soil. 

Correspondingly, simulating the surface temperature of these CSG objects requires reliance 

on a substantial layer with thickness. The temperatures of both the south roof and north roof 

surfaces are determined by solving simultaneous equations; therefore, layering and surface 

definition are not necessary for them. If not, the south roof, without the thermal blanket being 

covered, will exhibit extreme sensitivity in its temperature states to heat flow changes due 

to the minimal heat capacity. Besides, the model should iteratively update the temperature 

of the newly formed surface layer of the south roof on the basis of the original surface 
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temperature, but accompanied by abrupt changes in heat flow. Current numerical simulation 

methods, such as the Euler method and the Runge-Kutta method, are challenging when 

dealing with such state simulations. Then, the definition of layering and surfaces of the CSG 

objects, including the north wall and indoor soil, are detailed as follows. 

 

For the north wall, it is recommended to consider the thickness of its surface layer (internal 

or external) within the range of 1-100 mm. The surface layer is allowed to span multiple 

materials, adopting equivalent density, specific heat capacity, and thermal conductivity. 

Simultaneously, the radiative and convective processes of the defined surface should be 

based on the characteristics of the outermost or innermost layer material of the north wall. 

For indoor soil, it is similarly recommended that the indoor ground ranges from 1 to 100 mm 

in depth. If ground cloth is used, it should not affect the surface definition and conductive 

processes of the indoor ground. However, the radiative and convective processes should 

consider the influence of the ground cloth. 

 

More detailed layering is required after surface definition for CSG objects with thermal 

storage capacity, mainly including the north wall and indoor soil. In common CSGs, the 

interlayer of the north wall consists of a single thermal storage material and can be uniformly 

divided into three layers. Allocating more layers can provide more details on temperature 

and heat flow dynamics, but this compromises computation efficiency and may lead to 

overly sensitive states. If the interlayer contains multiple-layer materials, layering for the 

north wall does not span materials, with the thickness of a single layer not exceeding 1/3 of 

the total wall thickness identified from the inner surface to the outer surface. The total 

number of layers for the north wall depends on its material composition and dimensions. 

 

Within a depth of 0.5 m, excluding the indoor ground layer, the remaining soil is suggested 

to be divided into two layers since daily soil temperature fluctuations mainly occur within 

0.5 m depth in CSGs (Deng, 2021; Huang, 2021; Weituo Sun et al., 2015). In addition, the 

temperature of the soil layer deeper than 1.0 m is insensitive to the diurnal cycle of air 

temperature and solar radiation (Kalogirou & Florides, 2004). Then, other soil layers are 
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defined to occupy depths of 0.5-1.0 m, 1.0-3.0 m. The external surface of the soil is defined 

as a 1 mm thick layer with constant temperature starting from a depth of 3 m. This constant 

soil temperature (Tso,cs) can be estimated by the annual average of local air temperature (X. 

Liu, Zhao, Shi, & Zhao, 2007). In temperate regions, it can be set to 15 ℃ (M S Ahamed et 

al., 2018; Weituo Sun et al., 2022). For a CSG with indoor ground being bare soil or covered 

by ground cloth, the soil will be divided into 5 layers. 

 

4.2.2.3 Capacities of CSG objects 

 

The heat capacity of the CSG air capair represents the heat energy required for every 1 ℃ 

change in greenhouse air per unit ground area. It is described as: 

 

 𝑐𝑎𝑝𝑎𝑖𝑟 = 𝐻𝑔ℎ ∙ 𝜌𝑎 ∙ 𝑐𝑝,𝑎  [J ℃
−1 m−2 (gro)] (4.15) 

 

where Hgh [m] is the average height of the CSG, representing the ratio of the volume of 

indoor air to the greenhouse ground area, ρa [kg m-3] is the density of air, cp,a [J kg-1 ℃-1] is 

the specific heat capacity of air at constant pressure. It should be noted that all expressions 

of energy and mass fluxes, as well as capacities of CSG objects in this model, refer to values 

per unit greenhouse ground area. 

 

The heat capacity of the canopy capcan can be described by 

 

 𝑐𝑎𝑝𝑐𝑎𝑛 = 𝐿𝐴𝐼𝑔ℎ ∙ 𝛿𝐿 ∙ 𝜌𝐿 ∙ 𝑐𝑝,𝐿  [J ℃
−1 m−2 (gro)] (4.16) 

 

where LAIgh [m
2 (leaf) m-2 (gro)] is the leaf area index at the whole greenhouse level, δL [m] 

is the average thickness of the crop leaves, ρL [kg m-3] is the density of crop leaves, cp,L [J 

kg-1 ℃-1] is the specific heat capacity of crop leaves. δL ‧ ρL [kg m-2 (leaf)] denotes the fresh 

leaf weight per unit leaf area. 
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The heat capacities of other CSG objects capobj can be described by the following general 

formula. 

 

 𝑐𝑎𝑝𝑜𝑏𝑗 =
𝐿𝑜𝑏𝑗 ∙ 𝛿𝑜𝑏𝑗

𝐿𝑔𝑟𝑜
∙ 𝜌𝑜𝑏𝑗 ∙ 𝑐𝑝,𝑜𝑏𝑗    [J ℃

−1 m−2 (gro)] (4.17) 

 

where Lobj [m] is the characteristic length of the CSG object, such as the height of the north 

wall, the arc length of the south roof, the width of the indoor ground, etc. Lgro [m] is the span 

of the CSG, δobj [m] is the thickness of the CSG object, ρobj [kg m-3] is the density of the 

CSG object, cp,obj [J kg-1 ℃-1] is the specific heat capacity of the CSG object. This model 

assumes that the CSG production system is uniformly consistent in the longitudinal (east-

west) direction. Therefore, all ratios with respect to the indoor ground area can be processed 

on the cross-section of the CSG. 

 

To ensure that the mass transfer related outputs of the model are in the most common units 

and remain consistent with inputs of the crop model, the capacities of indoor air to store 

water vapour and carbon dioxide are represented by the following equations: 

 

 𝑐𝑎𝑝𝑀𝑉 = 𝐻𝑔ℎ ∙
𝑀𝑣

𝑅𝑔 ∙ 𝑋𝑡,𝐾
∙ 𝑒𝑠,𝑎𝑖𝑟  [kg m

−2 (gro)] (4.18) 

 

 𝑐𝑎𝑝𝑀𝐶 = 𝐻𝑔ℎ ∙ 𝜎𝐶𝑂2  [kg m
−2 (gro) (μmol mol−1)−1] (4.19) 

 

where Mv [kg mol-1] is the molar mass of water (and vapour), Rg [J mol-1 K-1] is the general 

gas constant, Xt,K [K] is the indoor air temperature in Kelvin, σCO2 [kg m-3 (μmol mol-1)-1] is 

the factor that converts the unit of CO2 concentration from μmol (CO2) mol-1 (air) to kg m-3. 

 

4.2.2.4 Radiative fluxes 

 

shortwave radiation heat fluxes 
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Simulation of shortwave radiation heat fluxes in CSGs requires the utilisation of analytical 

models. Numerous researchers have focused on this work (Han et al., 2014; X. Li & Chen, 

2004; Chengwei Ma et al., 2013; H. Xu et al., 2019) since daylighting is crucial for efficient 

production of CSGs that they heavily rely on solar radiation as their primary energy source. 

The modelling approach, taking the beam solar radiation simulation as an example, typically 

begins by defining extraterrestrial radiation based on the solar constant. Secondly, the normal 

incident solar radiation near the earth’s surface is calculated considering atmospheric 

transparency, aerosphere mass (dependent on local solar altitude and elevation), and cloud 

cover. Direct and diffuse solar radiation components can be further separated based on the 

cloud cover coefficient or clearness index. Thirdly, the solar incidence angle on the roof 

surface is calculated based on the solar altitude angle, solar azimuth angle, and the slope and 

orientation of the surface. Fourthly, the transmissivity to beam solar radiation of a specific 

point on the south roof is determined according to the incidence angle. Meanwhile, the solar 

radiation intensity at that point can be established in combination with the determined normal 

incident radiation. Finally, employing a backward ray tracing method, the radiation intensity 

on the internal surfaces and indoor ground of the CSG is computed by associating them with 

the radiation incidence points on the south roof. Alternatively, the weighted average 

integration of transmissivities along the transparent curved surface is performed to obtain 

the equivalent transmissivity and the transmitted average solar radiation through the south 

roof (Huang et al., 2020). 

 

Deducing the beam solar radiation normal to the sunrays, as described in the first two steps 

of modelling CSG related shortwave radiation dynamics, is outside the scope of this model. 

The model takes horizontal outdoor solar radiation as a given input variable. There are two 

points to consider in this regard. First, this model focuses on describing the influence of 

outdoor climate, greenhouse, controls, and crops on the CSG climate; using measured 

radiation data for model calibration and validation can benefit establishing a more precise 

correlation mechanism. Secondly, in future model applications for greenhouse management, 

outdoor solar radiation can be obtained based on historical data, commercial weather 

forecasts, or additional radiation prediction models. In order to simplify the model, instead 
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of using the backward ray tracing method, we calculate the equivalent transmittance of the 

south roof. Huang et al. (2020) discovered that using a curved surface to compute the 

equivalent beam transmissivity was more accurate than using the traditional simplified 

inclined planes. However, their model adopts an empirical transmissivity formula that is 

independent of the base transmittance, which might not apply to all CSG scenarios. As a 

result, the equivalent transmittance of the south roof calculated by our model is based on a 

simplified inclined plane. Correspondingly, the south roof points corresponding to the indoor 

surfaces share the same optical properties. 

 

Measurements of solar energy are typically expressed as global solar radiation on a 

horizontal surface. To identify the amount of beam and scattered solar radiations, accurate 

detection of cloud cover or clearness index is crucial. However, current methods have their 

limitations (Huang, 2021). In correspondence with the developed crop model, the climate 

model of this study does not differentiate between beam and scattered solar radiations. 

Moreover, unlike Venlo-type greenhouses that use diffuse glass for uniform indoor lighting, 

CSGs rely mainly on direct solar radiation, especially on clear days, where direct radiation 

can constitute 80-90 % of the total indoor solar radiation (Q. Chen, 1993). In some 

simulations, diffuse radiation on the outdoor horizontal surface can be approximated to be 

20% of total radiation on clear days (Tong et al., 2018). Therefore, the model defaults to 

consider properties of direct radiation when analysing shortwave radiation. Then, the 

subdivision of radiation involves shortwave radiation consisting of photosynthetically active 

radiation (PAR) and near-infrared radiation, PAR, and longwave radiation. The separation of 

PAR from shortwave radiation is attributed to the different extinction and reflection 

characteristics of crops to these two radiation types. As described in the crop model, this 

separation occurs after shortwave radiation enters the CSG. This is because common 

transparent cover materials used in CSGs, such as PE and EVA films, have nearly identical 

transmissivities to direct solar radiation and PAR, with base transmissivities exceeding 80% 

and the majority surpassing 85% (N. Wang, Ma, Zhao, Jiang, & Song, 2013). 

 

The description of shortwave radiation acquisition by various CSG objects is primarily based 
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on the analysis above and adapted from previous studies (Kalogirou, 2022; Chengwei Ma et 

al., 2013; Martinez-Gracia, Arauzo, & Uche, 2019; H. Xu et al., 2019). The solar incidence 

angle for the south roof simplified as an inclined surface, can be described by: 

 

 𝑐𝑜𝑠𝜃𝑖 = 𝑐𝑜𝑠𝜃𝑠𝑟 ∙ 𝑠𝑖𝑛𝜃ℎ + 𝑠𝑖𝑛𝜃𝑠𝑟 ∙ 𝑐𝑜𝑠𝜃ℎ ∙ 𝑐𝑜𝑠(𝜃𝑧 − 𝜃𝑔ℎ𝑧)  [−] (4.20) 

 

where θi [°] is the solar incidence angle for the south roof, which represents the angle 

between the solar rays and the normal to the south roof surface, θsr [°] is the south roof angle, 

which denotes the angle between the line connecting the bottom to the ridge of the south 

roof and the horizontal indoor ground in the same cross-section, θh [°] is the solar altitude 

angle, denoting the angle between the solar rays and a horizontal plane, θz [°] is the solar 

azimuth angle, which denotes the angle of the solar rays measured in the horizontal plane 

from the due south for the northern hemisphere, with westward being positive, θghz [°] is the 

azimuth angle of the CSG and westward from south is designated as positive. 

 

The solar altitude angle θh can be calculated by, 

 

 𝑠𝑖𝑛𝜃ℎ = 𝑠𝑖𝑛𝜑 ∙ 𝑠𝑖𝑛𝛿𝑠 + 𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠𝛿𝑠 ∙ 𝑐𝑜𝑠𝜔  (0 < 𝜃ℎ < 90)  [−] (4.21) 

 

 𝛿𝑠 = 23.45 ∙ 𝑠𝑖𝑛 (
360

365
∙ (284 + 𝑛))  [∘] (4.22) 

 

 𝜔 = 15 ∙ (𝑡𝐴𝑆𝑇 − 12)  [∘] (4.23) 

 

where φ [°] is the local latitude (north of the equator is taken as positive). δs [°] is the solar 

declination, which depends on the day n of the year; n = 1 for the date of January 1 and n = 

365 for the date of December 31. ω [°] is the hour angle, being zero due south and positive 

for west. tAST [-] is the local time measured in hours instead of the standard time, also known 

as apparent solar time. tAST = 12 for the local solar noon and ω = 0 ° at noon. 
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The solar azimuth angle θz is described by, 

 

 𝑠𝑖𝑛𝜃𝑧 =
𝑐𝑜𝑠𝛿𝑠 ∙ 𝑠𝑖𝑛𝜔

𝑐𝑜𝑠𝜃ℎ
  [−] (4.24) 

 

The transmissivity of a film to solar radiation is relative to the solar incidence angle, film 

thickness, and refractive index of the film. Once a film is selected, its transmittance can be 

considered solely as a function of the solar incidence angle (D. Chen et al., 1992). The 

equivalent transmissivity of the south roof τsr can be estimated by an empirical formula 

(Chengwei Ma et al., 2013), 

 

 𝜏𝑠𝑟 = 𝜏𝑠𝑟,0 ∙ (1 − 0.93
90−𝜃𝑖) ∙ (1 −

𝜃𝑖
1000

)  [−] (4.25) 

 

where τsr [-] is the equivalent transmissivity of the south roof to shortwave radiation. τsr,0 [-] 

is the base transmissivity of the south roof to shortwave radiation, which represents the 

transmissivity of the south roof to solar radiation when the incidence angle is 0 °. 

 

Based on the Snell’s Law and Fresnel equations, the equivalent reflectivity of the south roof 

to shortwave radiation κsr can be estimated by, 

 

 

𝜅𝑠𝑟 = 𝑈𝑏 ∙ 𝜅𝑠𝑟,0 + (1 − 𝑈𝑏) ∙ 𝜅𝑠𝑟,0

∙

1
2 ∙
(
𝑠𝑖𝑛2(𝜃𝑟 − 𝜃𝑖)
𝑠𝑖𝑛2(𝜃𝑟 + 𝜃𝑖)

+
𝑡𝑎𝑛2(𝜃𝑟 − 𝜃𝑖)
𝑡𝑎𝑛2(𝜃𝑟 + 𝜃𝑖)

)

(
𝜋𝑎 − 𝜋𝑡𝑐
𝜋𝑎 + 𝜋𝑡𝑐

)
2   [−] 

(4.26) 

 

 𝑠𝑖𝑛𝜃𝑟 =
𝑠𝑖𝑛𝜃𝑖 ∙ 𝜋𝑎
𝜋𝑡𝑐

  [−] (4.27) 

 

where κsr,0 [-] is the base reflectivity of the south roof to shortwave radiation, πa [-] is the 

refractive index of air, πtc [-] is the refractive index of the south roof transparent covering, θr 
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[°] is the angle of refraction formed when solar rays pass from air into the transparent 

covering. Note that, the ratio of κsr to κsr,0, applies to the single south roof transparent 

covering. It also applies to the double transparent layer combining the film covering and the 

ice layer since the Fresnel reflection at the air-film interface is significantly greater than that 

of the film-ice interface. 

 

According to the horizontal outdoor solar radiation, the normal incident solar radiation can 

be calculated by, 

 

 𝐼𝑛 =
𝐼𝑜𝑢𝑡
𝑠𝑖𝑛𝜃ℎ

  [−] (4.28) 

 

where In [W m-2] is the normal incident solar radiation, that is, the solar radiation received 

by a surface perpendicular to the solar rays. Iout [W m-2] is the horizontal outdoor solar 

radiation, which is the model input variable. 

 

For the south roof in both transparent and opaque states, the total absorption of radiation is 

assumed to be the contribution of the external surface for describing energy balance purposes. 

The following formula can be used to calculate the amount of solar radiation absorbed by 

the external surface of the south roof. 

 

 𝐼𝑠𝑟,𝑒 =
𝐿𝑠𝑟,𝑐
𝐿𝑔𝑟𝑜

∙ 𝛼𝑠𝑟 ∙ 𝐼𝑛 ∙ 𝑐𝑜𝑠𝜃𝑖   [W m
−2 (gro)] (4.29) 

 

where Isr,e [W m-2 (gro)] is the solar radiation absorbed by the external surface of the south 

roof, Lsr,c [m] is the length of the line connecting the bottom to the ridge of the south roof, 

αsr [-] is the absorptivity of the composite south roof to shortwave radiation.  

 

When a beam of radiation is incident on the surface of a body, the reflectivity (κ), 

absorptivity (α), and transmissivity (τ) of the surface to this radiation are related by 𝜅 + 𝛼 +

𝜏 = 1. For opaque CSG objects, such as the internal surface of the north wall, 𝜏 = 0 and 
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𝜅 + 𝛼 = 1 . This principle derives from the first law of thermodynamics and applies to 

shortwave and longwave radiations in this model. Generally, absorptivity is deduced by 

reflectivity and transmissivity, which are easier to measure and determine. Assuming that, 

for the transparent composite layer, reflection occurs only at the interfaces of incidence 

between different media, while absorption permeates the entire layer. Besides, this model 

does not consider the influence of refraction on the direction of the incident solar rays. 

 

For a two-layer object, its overall transmissivity (τ12) and overall reflectivity (κ12) can be 

estimated as follows: 

 

 𝜏12 =
𝜏1 ∙ 𝜏2

1 − 𝜅1 ∙ 𝜅2
  [−] (4.30) 

 

 𝜅12 = 𝜅1 +
𝜏1
2 ∙ 𝜅2

1 − 𝜅1 ∙ 𝜅2
  [−] (4.31) 

 

where τ1 and τ2 [-] are, respectively, the transmissivity of the first and second layers. The first 

layer refers to the layer that the radiation initially reaches. κ1 and κ2 [-] are, respectively, the 

reflectivity of the first and second layers.  

 

The CSG south roof is a dynamic composite layer with three layers. Normally, its overall 

transmittance can be determined by initially calculating the total transmittance of the thermal 

blanket and transparent cover based on Eq. (4.30). Subsequently, this double layer 

combining the thermal blanket and transparent cover is considered as the first layer, with the 

potential ice layer acting as the second layer, to obtain the roof transmissivity using Eq. 

(4.30). However, the determination can be simplified since the thermal blanket is opaque. 

Given the dynamics of the composite layer, the base transmissivity of the south roof to 

shortwave radiation can be described as, 

 

 𝜏𝑠𝑟,0 = (1 − 𝑈𝑏) ∙
𝜏𝑡𝑐 ∙ (1 − 𝑢𝑖𝑐𝑒 ∙ (1 − 𝜏𝑖𝑐𝑒))

1 − 𝜅𝑡𝑐 ∙ 𝜅𝑖𝑐𝑒 ∙ 𝑢𝑖𝑐𝑒
  [−] (4.32) 



105 

 

 

where τtc [-] is the transmissivity of the south roof transparent covering to shortwave 

radiation, κtc [-] is the reflectivity of the south roof transparent covering to shortwave 

radiation. τice [-] is the transmissivity of the ice layer to shortwave radiation from the 

transparent covering, κice [-] is the reflectivity of the ice layer to shortwave radiation from 

the transparent covering. In this formula, all the given optical properties are for the 

perpendicular incidence shortwave radiation, corresponding to the parameters usually 

provided by manufacturers or measured in laboratories. Accordingly, in the optical 

superposition, there is no need to consider polarisation effects. 

 

Similarly, the base reflectivity of the south roof to shortwave radiation κsr,0 can be estimated 

by, 

 

 𝜅𝑠𝑟,0 = 𝑈𝑏 ∙ 𝜅𝑏 + (1 − 𝑈𝑏) ∙ (𝜅𝑡𝑐 +
𝜏𝑡𝑐

2 ∙ 𝜅𝑖𝑐𝑒 ∙ 𝑢𝑖𝑐𝑒
1 − 𝜅𝑡𝑐 ∙ 𝜅𝑖𝑐𝑒 ∙ 𝑢𝑖𝑐𝑒

)  [−] (4.33) 

 

where κb [-] is the reflectivity of the external surface of the thermal blanket to shortwave 

radiation. 

 

The solar radiation at the top of the canopy inside the CSG is described by: 

 

 𝐼 = 𝜏𝑠𝑟 ∙ 𝐼𝑛 ∙ 𝑠𝑖𝑛𝜃ℎ   [−] (4.34) 

 

where I [W m-2 (gro)] is the solar radiation at the top of the canopy. Then, the solar radiation 

absorbed by the canopy and by the indoor ground can be described as, 

 

 𝐼𝑔𝑟𝑜 = 𝛼𝑔𝑟𝑜 ∙ 𝐼 ∙ 𝑒
−𝑘𝐼∙𝐿𝐴𝐼𝑔ℎ   [W m−2 (gro)] (4.35) 

 

 𝐼𝑐𝑎𝑛 = 𝛼𝑐𝑎𝑛 ∙ 𝐼 ∙ (1 − 𝑒
−𝑘𝐼∙𝐿𝐴𝐼𝑔ℎ)  [W m−2 (gro)] (4.36) 
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where Igro [W m-2 (gro)] is the solar radiation absorbed by the indoor ground, Ican [W m-2 

(gro)] is the solar radiation absorbed by the canopy, αgro [-] is the absorptivity of the indoor 

ground to shortwave radiation, αcan [-] is the absorptivity of the canopy to shortwave 

radiation, kI [-] is the extinction coefficient for shortwave radiation. 

 

The north roof angle of the CSG is currently designed to be 42-50° that the north roof could 

receive as much solar radiation (T. Li, 2013). Therefore, besides the north wall and indoor 

floor, the solar radiation received by the north roof should be considered. 

 

 𝐼𝑛𝑟,𝑖𝑛 =
𝐿𝑛𝑟
𝐿𝑔𝑟𝑜

∙ 𝛼𝑛𝑟,𝑖𝑛 ∙ 𝜏𝑠𝑟 ∙ 𝐼𝑛 ∙ 𝑐𝑜𝑠𝜃𝑖,𝑛𝑟  [W m
−2 (gro)] (4.37) 

 

 

𝑐𝑜𝑠𝜃𝑖,𝑛𝑟 = 𝑚𝑎𝑥{−𝑐𝑜𝑠𝜃𝑛𝑟 ∙ 𝑠𝑖𝑛𝜃ℎ + 𝑠𝑖𝑛𝜃𝑛𝑟 ∙ 𝑐𝑜𝑠𝜃ℎ

∙ 𝑐𝑜𝑠(𝜃𝑧 − 𝜃𝑔ℎ𝑧), 0}  [−] 

(4.38) 

 

where Inr,in [W m-2 (gro)] is the solar radiation absorbed by the internal surface of the north 

roof, Lnr [m] is the length of the north roof, αnr,in [-] is the absorptivity of the internal surface 

of the north roof to shortwave radiation, θi,nr [°] is the solar incidence angle for the north 

roof, θnr [°] is the north roof angle, which denotes the angle between the north roof and the 

indoor horizontal plane in the same cross-section. As the solar altitude angle and incidence 

angle increase, solar radiation is no longer incident on the internal surface of the north roof 

but on its external surface. Simultaneously, this shift in radiation incidence produces a 

shadow over the north wall. This model neglects the shortwave radiation absorption of the 

north roof external surface, especially considering the thermal blanket, rolled up and placed 

on the top of the roof, provides shading for the north roof. 

 

The internal surface of the north wall wholly or partially receives solar radiation following 

solar altitude variation. Thus, the solar energy absorbed by the internal surface of the north 

wall can be calculated by, 
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 𝐼𝑛𝑤,𝑖𝑛 =
𝐿𝑛𝑤
𝐿𝑔𝑟𝑜

∙ 𝛼𝑛𝑤,𝑖𝑛 ∙ (1 − 𝜎𝑠ℎ𝑎) ∙ 𝜏𝑠𝑟 ∙ 𝐼𝑛 ∙ 𝑐𝑜𝑠𝜃𝑖,𝑛𝑤  [W m
−2 (gro)] (4.39) 

 

 𝑐𝑜𝑠𝜃𝑖,𝑛𝑤 = −𝑐𝑜𝑠𝜃𝑛𝑤 ∙ 𝑠𝑖𝑛𝜃ℎ + 𝑠𝑖𝑛𝜃𝑛𝑤 ∙ 𝑐𝑜𝑠𝜃ℎ ∙ 𝑐𝑜𝑠(𝜃𝑧 − 𝜃𝑔ℎ𝑧)  [−] (4.40) 

 

 𝜎𝑠ℎ𝑎 =
𝐿𝑛𝑟
𝐿𝑛𝑤

∙
𝑐𝑜𝑠(𝜃𝑛𝑤 − 𝜃ℎ + 𝜃𝑛𝑟)

𝑠𝑖𝑛(𝜃𝑛𝑤 − 𝜃ℎ)
  (0 ≤ 𝜎𝑠ℎ𝑎 ≤ 1)  [−] (4.41) 

 

where Inw,in [W m-2 (gro)] is the solar radiation absorbed by the internal surface of the north 

wall, Lnw [m] is the height of the north wall, αnw,in [-] is the absorptivity of the internal surface 

of the north wall to shortwave radiation, θi,nw [°] is the solar incidence angle for the north 

wall, σsha [-] is the shading ratio of the north wall due to the shading by north roof, θnw [°] is 

the north wall angle, which denotes the angle between the north wall and the horizontal 

indoor ground in the same cross-section. The north wall angle is typically 90 °, but in certain 

instances, such as when the wall is made of thick, piled soil, this angle may exceed 90 °. The 

model accounts for one-dimensional heat transfer; thus, when only part of the north wall 

surface receives solar radiation, it is evenly distributed across the entire surface.  

 

Longwave radiation heat fluxes 

 

The longwave radiation heat transfer is ubiquitous, occurring among the various internal 

surfaces of the CSG, between the external surfaces and the sky, and from the internal surfaces 

through the south roof transparent covering to the sky. These longwave radiation heat fluxes 

can be described by the following two general formulas: 

 

 𝑅1_2 = 𝜎𝑎𝑟𝑒𝑎 ∙ 𝜀1 ∙ 𝜀2 ∙ 𝐹1,2 ∙ 𝜎 ∙ (𝑇1,𝐾
4 − 𝑇2,𝐾

4)  [W m−2 (gro)] (4.42) 

 

 

𝑅1_𝑠𝑘𝑦 = 𝜎𝑎𝑟𝑒𝑎 ∙ 𝜀1 ∙ 𝜀𝑠𝑘𝑦 ∙ 𝐹1,𝑠𝑘𝑦 ∙ 𝜎 ∙ 𝜓𝑠𝑟

∙ (𝑇1,𝐾
4 − 𝑇𝑠𝑘𝑦,𝐾

4)  [W m−2 (gro)] 
(4.43) 
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Where R1_2 [W m-2 (gro)] is the longwave radiation heat flux from object 1 to object 2, and 

Eq. (4.42) is applicable to interactions among the various internal surfaces of the CSG, and 

between the external surfaces and the sky. R1_sky [W m-2 (gro)] is the longwave radiation heat 

flux from an internal surface of the CSG to the sky, σarea [-] is the scale factor of the solid 

surface area to the indoor ground area, T1,K and T2,K [K] are respectively the temperatures in 

Kelvin of object 1 and object 2, σ [W m-2 K-4] is the Stefan-Boltzmann constant, ε1 and ε2 (-) 

are the emissivity of object 1 and object 2, respectively. For common transparent covering 

materials, the emissivity is 0.85 for glass (Vanthoor, 2011), 0.15 for polyethylene (PE) film 

(Yi Zhang, Ma, Liu, & Han, 2010), 0.62 for polyvinyl chloride (PVC) film, and 0.59 for 

ethyl vinyl acetate (EVA) film (Nijskens, Deltour, Coutisse, & Nisen, 1984). εsky [-] is sky 

emissivity, F1,2 (-) is the view factor of object 1 to object 2, F1,sky [-] is the view factor of an 

internal surface of the CSG to the sky, Tsky,K (K) is the effective sky temperature in Kelvin, 

ψsr (-) is the transmittance of south roof to longwave radiation, which is 0 for glass (Vanthoor, 

2011; Yi Zhang et al., 2010), 0.75 for PE film (Yi Zhang et al., 2010), 0.33 for PVC film, 

and 0.38 for EVA film (Nijskens et al., 1984). For a multi-layer greenhouse cover, ψsr can be 

calculated following the same optical superposition rules for shortwave radiation using 

reflectivity and transmissivity data of each layer. To avoid introducing reflectivity, the total 

transmittance of the south roof to longwave radiation can be simplified as, 

 

 𝜓𝑠𝑟 = (1 − 𝑈𝑏) ∙ 𝜓𝑡𝑐 ∙ (1 − 𝑢𝑖𝑐𝑒 ∙ (1 − 𝜓𝑖𝑐𝑒))  [−] (4.44) 

 

where ψtc [-] is the transmissivity of the south roof transparent covering to longwave 

radiation, ψice [-] is the transmissivity of the ice layer to long radiation from the transparent 

covering. 

 

The emissivity of the internal surface and external surface of the south roof are described as 

follows. 
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 𝜀𝑠𝑟,𝑖𝑛 = 𝑢𝑖𝑐𝑒 ∙ 𝜀𝑖𝑐𝑒 + (1 − 𝑢𝑖𝑐𝑒) ∙ 𝜀𝑡𝑐     [−] (4.45) 

 

 𝜀𝑠𝑟,𝑒 = 𝑈𝑏 ∙ 𝜀𝑏,𝑜 + (1 − 𝑈𝑏) ∙ 𝜀𝑡𝑐    [−] (4.46) 

 

where εice, εtc, and εb,o (-) are the emissivity of the ice layer, transparent covering, and the 

outermost layer of the thermal blanket, respectively. 

 

Since the CSG extends in the east-west direction and side walls have been ignored in the 

model description, the radiant energy emitted to the east and west ends can be omitted. Then, 

the CSG cross-section is considered as a closed system. Moreover, this model ignores 

radiation heat exchange with outdoor ground. The view factor to the indoor ground is divided 

between the ground and the canopy according to the leaf area index. Thus, according to the 

reciprocity rule and completeness of the view factor, as well as dimensions of the CSG cross-

section, view factors between different surfaces can be obtained based on the algebraic 

analysis method. All the view factors, together with the corresponding area ratios, are listed 

in Table B.1. 

 

The sky temperature is calculated according (Berdahl & Fromberg, 1982; Lawrence, 2005), 

 

 𝑇𝑠𝑘𝑦 = 𝜀𝑠𝑘𝑦
0.25 ∙ 𝑇𝑜𝑢𝑡,𝐾 − 273.15  [℃] (4.47) 

 

 𝜀𝑠𝑘𝑦 = 0.741 + 0.0062 ∙ 𝑇𝑑𝑝  [−] (4.48) 

 

 𝑇𝑑𝑝 = 𝑇𝑜𝑢𝑡 − 100 ∙ (
1 − 𝑅𝐻𝑜𝑢𝑡

5
)  [−] (4.49) 

 

where Tsky [℃] is the sky temperature, Tdp [℃] is dew point temperature of the outdoor air, 

Tout [℃] is the outdoor air temperature, Tout,K [℃] is the outdoor air temperature in Kelvin, 

RHout [-] is the relative humidity of the outdoor air. 
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4.2.2.5 Convective and conductive fluxes 

 

Convective heat fluxes 

 

Convective heat exchange occurs between the cover, soil, crop and the indoor air and 

between the cover and the outdoor air. As stated by Roy, Boulard, Kittas, and Wang (2002), 

the convective heat transfer process is influenced by both forced convection (due to wind 

pressure) and free convection (caused by temperature differences between solid surfaces and 

air). The dominant convection mode depends on the type of greenhouse, outdoor climate, 

and ventilation conditions. In well-ventilated greenhouses, forced convection is the primary 

mode due to strong air movement. And in closed greenhouses with low indoor air velocity, 

free convection dominates the process. As the convective heat flux density is proportional to 

the temperature difference, its description in the CSG climate model is given as, 

 

 𝐶1_2 = 𝜎𝑎𝑟𝑒𝑎 ∙ ℎ1_2 ∙ (𝑇1 − 𝑇2)  [W m
−2 (gro)] (4.50) 

 

where C1_2 [W m-2 (gro)] is the convective heat flux from object 1 to object 2; for objects 1 

and 2 in convections, one is a solid surface while the other is a fluid. h1_2 [W m-2 ℃-1] is the 

convective heat transfer coefficient between object 1 and object 2, T1 and T2 are the 

temperatures of object 1 and object 2, respectively. 

 

Convective heat transfer coefficients are presented in the form of empirical formulas. They 

are typically deduced from the appropriate Nusselt number that depends on convection 

modes and flow types (laminar or turbulent), with parameters fitted through experiments 

(Roy et al., 2002). Until now, no experimental study has determined convective heat transfer 

coefficients specific to CSGs. However, existing empirical formulas exhibit strong 

generality and can help achieve good performance of current CSG thermal climate models 

(R. Liu et al., 2021; Meng et al., 2009; Tong et al., 2009). In the model of this study and most 

others, the energy gain of CSG air is entirely from convections. Therefore, it is crucial to 

select appropriate convection coefficients. The challenge lies in the lack of criteria 
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description for selecting these coefficients in the developed CSG models, leading to 

confusion in calculating convections. The final result is that other researchers cannot 

reference convection formulas in present CSG models. To address this issue, R. Liu et al. 

(2021) categorized convective coefficients for four surface types, including the external and 

internal surfaces of the opaque wall and the transparent roof. However, this is not enough 

for climate models that fully depict crops and controls. 

 

In choosing convective heat transfer coefficients, we consider the following points: (1) Vent 

openings affect the convection coefficients between the north wall, north roof, south roof, 

and the indoor air. In closed CSGs, only free convection exists. When the roof vent is opened, 

it switches to mixed convection, combining free convection and forced convection by 

turbulent airflow. Additionally, the indoor air velocity is assumed to be 0.5 m s-1 under 

natural ventilation. (2) Coefficient determination differs between transparent and opaque 

greenhouse covers. However, the influence of controls on the external thermal blanket will 

not be involved due to the similar properties between the south roof film and the surface 

layer of the thermal blanket. (3) The convection coefficient between indoor ground and air 

is affected by the leaf area index of the crop, considering only buoyancy-driven natural 

convection. Moreover, it does not distinguish between bare soil floor and that covered with 

fabric cloth. (4) The coefficient between crops and indoor air is calculated at the leaf level, 

responding simultaneously to temperature difference and indoor air velocity. In closed CSGs, 

the airflow velocity is 0.09 m s-1 (Van Ooteghem, 2010), consistent with the assumption in 

the crop model. (5) All convections of the cover external surfaces are considered mixed mode, 

with constants representing the buoyancy effect in formulas of convective coefficients. The 

constants are used to address low wind speed situations. Based on these criteria and 

assumptions, all convective heat transfer coefficients and area ratio factors involved in this 

model are given in Table B.2. 

 

Conductive heat fluxes 

 

Heat conductions occur in the CSG envelope and indoor soil. First, they occur between 
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adjacent layers for greenhouse objects with heat storage capacity, requiring artificial 

stratification and layer-by-layer temperature descriptions. In this scenario, the two layers 

involved in the heat conduction have thicknesses, with the centre point of the thickness 

representing each layer, and the temperature within the layer is considered uniform. Second, 

for the greenhouse object that can be considered to have no heat storage capacity, only heat 

conduction between the inner and outer surface layers of the object needs to be described, 

thus allowing heat transfer span across multiple layers. Conductive heat flux flows between 

the centre points of the two tangible layers or the two virtual surfaces, of which the thermal 

resistance is the sum of resistances along the heat conduction distance. The following 

equation can describe all conductive heat fluxes within the CSG: 

 

 
𝐷1_2 =

{
 
 

 
 𝜎𝑎𝑟𝑒𝑎 ∙

1

0.5𝛿1
𝜆1

+
0.5𝛿2
𝜆2

∙ (𝑇1 − 𝑇2), 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑙𝑎𝑦𝑒𝑟𝑠

𝜎𝑎𝑟𝑒𝑎 ∙
1

𝛿1
𝜆1
+ ∑

𝛿𝑖
𝜆𝑖
+
𝛿2
𝜆2

∙ (𝑇1 − 𝑇2), 𝑎𝑐𝑟𝑜𝑠𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑙𝑎𝑦𝑒𝑟𝑠

 

  [W m−2 (gro)] 

(4.51) 

 

where D1_2 [W m-2 (gro)] is the conductive heat flux from object 1 to object 2, and objects 1 

and 2 in conductions are layers of greenhouse cover and indoor soil. δ1, δ2, and δi [m] are the 

thickness of object 1, object 2, and a specific layer between objects 1 and 2, respectively. λ1, 

λ2, and λi [W m-1 ℃-1] are, respectively, the heat conductivity coefficient of object 1, object 

2, and a specific layer between objects 1 and 2, depending on the CSG materials.  

 

For the special case of south roof, the conductive heat flux from the internal surface to the 

external surface can be described by, 

 

 

𝐷𝑠𝑟,𝑖𝑛_𝑠𝑟,𝑒 =
𝐿𝑠𝑟
𝐿𝑔𝑟𝑜

∙ (
𝑢𝑖𝑐𝑒 ∙ 𝛿𝑖𝑐𝑒
𝜆𝑖𝑐𝑒

+
𝛿𝑡𝑐
𝜆𝑡𝑐

+
𝑈𝑏 ∙ 𝛿𝑏
𝜆𝑏

)
−1

∙ (𝑇𝑠𝑟,𝑖𝑛 − 𝑇𝑠𝑟,𝑒)  [W m
−2 (gro)] 

(4.52) 
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where δice, δtc, δb,o [m] are respectively the thickness of the ice layer, transparent covering, 

and the outermost layer of thermal blanket, λice, λtc, and λb,o [W m-1 ℃-1] are respectively the 

heat conductivity coefficient of the ice layer, transparent covering, and the outermost layer 

of thermal blanket, δb [m] is the total thickness of the thermal blanket, λb [W m-1 ℃-1] is the 

average thermal conductivity coefficient of the thermal blanket. 

 

4.2.2.6 Latent heat fluxes 

 

Conversion of sensible heat to latent heat is crucial in modelling CSG climate. The latent 

heat fluxes occur when water or water vapour undergoes phase changes. These phase change 

processes include crop transpiration, soil evaporation, and vapour condensation to the 

surfaces. This study assumes that all latent heat conversions exert the same amount of 

sensible heat on the solid objects that drive phase changes. The greenhouse air is considered 

not to participate in sensible heat transfer. For example, the required latent heat for soil 

evaporation is entirely supplied by the soil rather than directly absorbing heat from the 

surrounding air. Another example is that the heat released by condensation of indoor air to 

the inner surface of the south roof is entirely absorbed by the south roof. The latent heat flux 

is linear to the related vapour flux, expressed by the following general equation form. 

 

 𝐿1_2 = 𝜆𝑣 ∙ 𝑀𝑉1_2  [W m
−2 (gro)] (4.53) 

 

where L1_2 [W m-2 (gro)] is the latent heat flux from object 1 to object 2, MV1_2 [kg m-2 (gro) 

s-1] is the vapour flux from object 1 to object 2. For objects 1 and 2 in latent conversions, 

one is the indoor air, while the other is the crop canopy or surface of the greenhouse cover 

or soil. If the latent heat flux points to the air, indicating the occurrence of evaporation or 

transpiration, the other object will lose sensible heat. Conversely, if the heat flux originates 

from the air, it indicates condensation and will lead to heat gain of the other object. λv [J kg-

1] is the latent heat of water vaporization, almost constant and about 2.45×106 J kg-1 for an 

air temperature of 20 ℃ (Stanghellini et al., 2019). 
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There is a particular case for quantifying the latent heat fluxes. When the temperature of the 

inner surface of the south roof film is lower than 0 ℃, condensation to this surface will 

switch to deposition. Then, the latent heat generated by the same water vapour flux will 

slightly increase due to the specific latent heat differences between condensation and 

deposition. Meanwhile, the description of water vapour flux remains unaffected. Therefore, 

a specific formula describing the latent heat flux to the south roof is as follows, 

 

 𝐿𝑎𝑖𝑟_𝑠𝑟,𝑖𝑛 = {
𝜆𝑣 ∙ 𝑀𝑉𝑎𝑖𝑟_𝑠𝑟,𝑖𝑛, 𝑇𝑠𝑟,𝑖𝑛 ≥ 0

𝜆𝑣,𝑑 ∙ 𝑀𝑉𝑎𝑖𝑟_𝑠𝑟,𝑖𝑛, 𝑇𝑠𝑟,𝑖𝑛 < 0
  [W m−2 (gro)] (4.54) 

 

where Lair_sr,in [W m-2 (gro)] is the latent heat flux from indoor air to the inner surface of the 

south roof film, MVair_sr,in [kg m-2 (gro) s-1] is the vapour flux from indoor air to the inner 

surface of the south roof film, Tsr,in [℃] is the temperature of the inner surface of the south 

roof, λv,d [J kg-1] is the latent heat for water vapour deposition. 

 

4.2.2.7 Vapour fluxes 

 

The water vapour in the CSG air is away through condensations on the inner surface of the 

south roof and crop leaves and through air exchange. As the surface temperature is lower 

than the dew point temperature of the greenhouse air, water vapour will condense on the 

surface. The dew point temperature only depends on vapour pressure. Furthermore, the 

vapour exchange coefficient is linear to the convective heat transfer coefficient between the 

air and the condensation surface (Vanthoor, 2011). Hence, based on the study of F. He et al. 

(2009), we describe the condensation rate of the indoor water vapour using the following 

equation, 

 

 𝑀𝑉1_2 = 𝑚𝑎𝑥 {0, 𝜎𝑎𝑟𝑒𝑎 ∙
ℎ1_2
𝜆𝑣 ∙ 𝛾

∙ (𝑒𝑎𝑖𝑟 − 𝑒𝑠,2)}  [kg m
−2 (gro) s−1] (4.55) 

 

 𝑒𝑎𝑖𝑟 = 𝑒𝑠,𝑎𝑖𝑟 ∙ 𝑋ℎ  [Pa] (4.56) 
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where MV1_2 [kg m-2 (gro) s-1] is the vapour flux from object 1 to object 2. For objects 1 and 

2 in condensation processes, object 1 represents greenhouse air, and object 2 represents the 

inner surface of CSG south roof or crop leaves. γ [Pa ℃-1] is the psychrometric constant, es,2 

[Pa] is the saturated vapour pressure of object 2 at its temperature, es,air [Pa] is the saturated 

vapour pressure of greenhouse air (see detailed calculation formula in Chapter 3). Eq. (4.55) 

asserts that condensation only occurs when the saturated vapour pressure at the surface 

temperature is lower than the vapour pressure of the greenhouse air.  

 

The water vapour flux generated by air exchange stems from the different water vapour 

content between the two exchanged air masses. Introducing absolute humidity (vapour 

concentration) is the most straightforward approach to quantify this vapour flux. 

 

 

𝑀𝑉𝑎𝑖𝑟_𝑜𝑢𝑡 = 𝑔𝑎𝑒 ∙ (𝜒𝑎𝑖𝑟 − 𝜒𝑜𝑢𝑡)

= 𝑔𝑎𝑒 ∙
𝑀𝑣

𝑅𝑔
∙ (
𝑒𝑎𝑖𝑟
𝑋𝑡,𝐾

−
𝑒𝑜𝑢𝑡
𝑇𝑜𝑢𝑡,𝐾

)  [kg m−2 (gro) s−1] 
(4.57) 

 

where MVair_out [kg m-2 (gro) s-1] is the vapour flux from indoor air to outdoor air, 

accompanying air exchange. χair and χout [kg m-3] are the absolute humidity of indoor and 

outdoor air, respectively, gae [m
3 m-2 (gro) s-1] is the total air exchange rate of the CSG, eout 

[Pa] is vapour pressure of outdoor air. 

 

The source vapour fluxes of the CSG air, including crop transpiration and soil evaporation, 

will be described in other sections. 

 

4.2.2.8 CO2 fluxes 

 

The CO2 concentration of the greenhouse air is influenced by crop and soil activities, as well 

as air exchange. Similar to the vapor flux accompanying ventilation, the CO2 flux generated 

by air exchange can be expressed as follows: 



116 

 

 

 𝑀𝐶𝑎𝑖𝑟_𝑜𝑢𝑡 = 𝑔𝑎𝑒 ∙ 𝜎𝐶𝑂2 ∙ (𝑋𝑐 − 𝐶𝑂2𝑜𝑢𝑡)  [kg m
−2 (gro) s−1] (4.58) 

 

where CO2out [μmol mol-1] is the CO2 concentration of the outdoor air. The CO2 flux from 

the crop to indoor air is the result of the combined effects of crop photosynthesis and 

respiration, and that from the soil to indoor air is induced by soil respiration. These processes 

will be described in crop and soil activities. 

 

4.2.2.9 Air exchange 

 

The air exchange of the CSG that only has roof and side vents for ventilation is induced by 

natural ventilation and air infiltration. Its air exchange rate is described as 

 

 𝑔𝑎𝑒 = 𝑔𝑛𝑣 + 𝑔𝑖𝑛𝑓 [m
3 m−2 (gro) s−1] (4.59) 

 

where gae [m
3 m-2 (gro) s-1] is the total air exchange rate of the CSG, gnv [m

3 m-2 (gro) s-1] is 

the CSG natural ventilation rate, ginf [m3 m-2 (gro) s-1] is the air exchange rate due to 

infiltration. 

 

Then, the sensible heat fluxes due to the air exchange Eair_out can be described as, 

 

 𝐸𝑎𝑖𝑟_𝑜𝑢𝑡 = 𝜌𝑎 ∙ 𝑐𝑝,𝑎 ∙ 𝑔𝑎𝑒 ∙ (𝑋𝑡 − 𝑇𝑜𝑢𝑡) [W m
−2 (gro)] (4.60) 

 

Natural ventilation 

 

A standard CSG has roof and side vents to remove excess heat, decrease humidity, and 

supplement CO2. In practice, growers tend to only open roof vents during winter. Compared 

to solely opening side vents, the roof ventilation mode can achieve more uniform 

distributions of CSG air temperature and humidity, as well as alleviate direct exposure of 
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crops to cold winds (Fang et al., 2015; Zheng et al., 2023). In warmer seasons, the side vent 

is activated and combined with the roof vent for ventilation and cooling. Under this scenario, 

the cold outdoor air mainly gets into CSG through the side vent, while the warm indoor air 

is discharged to the outside through the roof vent, enhancing the air exchange rate and 

cooling effect (Fang et al., 2015; Zheng et al., 2023). In addition, it is uncommon to use side 

ventilation alone in practical CSG production. The roof and side vents are respectively 

opened at the top and bottom of the south roof with film covering, extending continuously 

in the east-west direction. Their opening or closing operations are achieved by rolling or 

pulling the film, with openings being rectangular in shape. Insect screens are generally 

installed with the vents to prevent pests from entering the greenhouse.  

 

The description of the natural ventilation rate is indispensable for developing the CSG 

climate model. Natural ventilation is driven by two main forces: the wind effect and the 

buoyancy effect. The wind action results in a pressure field around the vents; the buoyancy 

effect, which is linked to gradients of air temperature and air density between inside and 

outside, leads to the vertical distribution of pressure (Thierry Boulard & Baille, 1995). 

Generally, when the outdoor wind velocity is higher than 1.5 m s-1, or if the temperature 

difference between indoor and outdoor air is low, the wind effect will dominate the natural 

ventilation (Thierry Boulard & Baille, 1995; Kittas, Boulard, Mermier, & Papadakis, 1996). 

The buoyancy effect can be neglected when the wind velocity exceeds 2.5 m s-1 (Fang et al., 

2016). Natural ventilation rate is influenced by various factors such as wind and buoyancy 

strength and distribution, greenhouse geometry, and vent size, shape, and arrangement 

(Jingfu Zhang et al., 2022). In addition, the usage of insect screens imposes significant 

resistance to greenhouse ventilation, causing a reduction in natural ventilation rate by 33%-

87% (Baeza et al., 2009; Katsoulas, Bartzanas, Boulard, Mermier, & Kittas, 2006; Pérez 

Parra, Baeza, Montero, & Bailey, 2004). 

 

The existing natural ventilation sub-models for CSG are derived from the Bernoulli equation 

and theories of fluid mechanics and thermodynamics, not fully considering the specific CSG 

structure, dimensions, and materials. So is the determination of the ventilation model 
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parameters that empirical values or values borrowed from other greenhouse types are used 

due to the lack of field experiments (R. Liu et al., 2021; Jingfu Zhang et al., 2022). Fang et 

al. (2016) applied the first-order assumption to model the ventilation rate of the CSG roof 

vent and used the CO2 gas tracing technique to identify parameters. The discharge coefficient 

was estimated to be 0.78, 0.60, and 0.44, and the wind effect coefficient was estimated to be 

0.04, 0.05, and 0.07 for the roof vent in width of 15, 25, and 35 cm, respectively. This study 

contributes to the parametrisation of the roof ventilation model specific to the CSG, but the 

model only applies to specific open widths of the roof vent and does not cover the scenario 

of using roof and side vents in conjunction. 

 

This model focuses on the two ventilation modes of only the roof vent being open and the 

roof and side vents being open. The CSG natural ventilation, considering the resistance of 

insect screens to ventilation (Pérez Parra et al., 2004), is described as follows, 

 

 𝑔𝑛𝑣 = {
𝜂𝑖𝑛𝑠𝑠 ∙ 𝑔𝑣𝑒𝑛𝑡,𝑟 , 𝑈𝑣𝑒𝑛𝑡,𝑠 = 0

𝜂𝑖𝑛𝑠𝑠 ∙ 𝑔𝑣𝑒𝑛𝑡,𝑟𝑠, 𝑈𝑣𝑒𝑛𝑡,𝑠 > 0 ⋂ 𝑈𝑣𝑒𝑛𝑡,𝑟 > 0
  [m3 m−2 (gro) s−1] (4.61) 

 

 𝜂𝑖𝑛𝑠𝑠 = 𝜀𝑖𝑛𝑠𝑠 ∙ (2 − 𝜀𝑖𝑛𝑠𝑠)  [−] (4.62) 

 

where gvent,r [m
3 m-2 (gro) s-1] is the natural ventilation rate when only the roof vent is opened, 

gvent,rs [m
3 m-2 (gro) s-1] is the natural ventilation rate when both roof and side vents are 

opened, Uvent,r [-] is the control of aperture of the roof vent, ranging from 0 to 1, Uvent,s [-] is 

the control of aperture of the side vent, ranging from 0 to 1, ηinss [-] is the ratio between the 

ventilation rate with and without an insect screen, εinss [-] is porosity of the insect screen that 

mainly depends on the mesh count. Generally, the porosity decreases along with the increase 

in mesh count. The model requires insect screens installed for CSG vents to have the same 

ventilation resistance coefficient, and ηinss = 1 if insect screens are not installed. 

 

The CSG south roof is curved, so the vents are not entirely horizontal and vertical. The roof 

vent has a practical dimension in the vertical direction, which can be significant in some 
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CSGs. Thus, the natural ventilation rate due to the roof vent gvent,r, induced by the combined 

wind and buoyancy effects, can be described by (Thierry Boulard & Baille, 1995; Fang et 

al., 2016),  

 

 
𝑔𝑣𝑒𝑛𝑡,𝑟 =

𝐴𝑣𝑒𝑛𝑡,𝑟,𝑈 ∙ 𝑐𝑑
2 ∙ 𝐴𝑔𝑟𝑜

∙ (
𝑔 ∙ 𝐻𝑣𝑒𝑛𝑡,𝑟

2
∙
𝑋𝑡 − 𝑇𝑜𝑢𝑡
𝑇𝑜𝑢𝑡 + 𝑇0,𝐾

+ 𝑐𝑤,𝑟 ∙ 𝑣𝑒
2)

0.5

   

[m3 m−2 (gro) s−1] 

(4.63) 

 

where Avent,r,U [m2] is the controlled opening area of the CSG roof vent, Hvent,r [m] is the 

vertical dimension of the CSG roof vent, g [m s-2] is the acceleration of gravity, T0,K [K] is 

the 0 ℃ in Kelvin, ve [m s-1] is outdoor wind speed, cd [-] is the discharge coefficient of CSG 

vent openings, and the roof and side vents share the same discharge coefficient in this model, 

cw,r [-] is the wind pressure coefficient of the CSG roof vent. Eq. (4.63) assumes that the 

wind-induced and buoyancy-induced ventilation are independent. This equation can also be 

used to calculate the natural ventilation rate when only the side vent is open.  

 

As recommended by Jingfu Zhang et al. (2022), the displacement ventilation model of CSG 

can follow the equation logic that the wind-induced ventilation considers the wind pressure 

coefficient difference between inlet and outlet vents. This assertion should be reasonable 

since the roof and side vents are located on a greenhouse roof facing south, and they are 

always in the same windward or leeward conditions, generating two offsetting wind effects 

on displacement ventilation (Chengwei Ma, Wang, Ding, Hou, & Han, 2008). The CSG 

climate model by F. He et al. (2009) adopted this assertion. However, the coefficient 

difference mentioned above is significantly influenced by wind directions despite its square 

root being fitted as a fixed value of 0.84 (Tian, 2021). This model does not involve wind 

direction inputs and cannot distinguish windward and leeward greenhouse sides. Thus, we 

describe the natural ventilation rate through both roof and side vents as follows (Dong, 2005; 

Kittas, Boulard, & Papadakis, 1997; PRC, 2018), 
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𝑔𝑣𝑒𝑛𝑡,𝑟𝑠 =
𝑐𝑑
𝐴𝑔𝑟𝑜

∙ (
𝐴𝑣𝑒𝑛𝑡,𝑟,𝑈

2 ∙ 𝐴𝑣𝑒𝑛𝑡,𝑠,𝑈
2

𝐴𝑣𝑒𝑛𝑡,𝑟,𝑈
2 + 𝐴𝑣𝑒𝑛𝑡,𝑠,𝑈

2

∙ (2 ∙ 𝑔 ∙
𝑋𝑡 − 𝑇𝑜𝑢𝑡

𝑇𝑜𝑢𝑡 + 𝑋𝑡
2 + 𝑇0,𝐾

∙ 𝐻𝑣𝑒𝑛𝑡,𝑟𝑠)

+ (
𝐴𝑣𝑒𝑛𝑡,𝑟,𝑈 + 𝐴𝑣𝑒𝑛𝑡,𝑠,𝑈

2
)
2

∙ 𝑐𝑤,𝑟𝑠 ∙ 𝑣𝑒
2)

0.5

 

(𝐴𝑣𝑒𝑛𝑡,𝑠 > 0)  [m3 m−2 (gro) s−1] 

(4.64) 

 

where Avent,s,U [m2] is the controlled opening area of the CSG side vent, Hvent,rs [m] is the 

vertical distance between the mid-points of the CSG roof and side vents, cw,rs [-] is the global 

wind pressure coefficient of CSG vent openings. 

 

Avent,r,U and Avent,r,U are described by the following equations, 

 

 𝐴𝑣𝑒𝑛𝑡,𝑟,𝑈 = 𝑈𝑣𝑒𝑛𝑡,𝑟 ∙ 𝐴𝑣𝑒𝑛𝑡,𝑟  [m
2] (4.65) 

 

 𝐴𝑣𝑒𝑛𝑡,𝑠,𝑈 = 𝑈𝑣𝑒𝑛𝑡,𝑠 ∙ 𝐴𝑣𝑒𝑛𝑡,𝑠  [m
2] (4.66) 

 

where Avent,r and Avent,s [m
2] are the maximum opening areas of the CSG roof vent and side 

vent, respectively. 

 

Air infiltration 

 

The impact of air infiltration on greenhouse climate cannot be ignored. In well-insulated 

greenhouses, the heating demand resulting from cold air infiltration can account for up to 

44% of the total demand (Weituo Sun et al., 2022). In closed CSGs, air infiltration along the 

edges of the soil and north wall results in the absorption of more than 30% of the solar energy 
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(Tong et al., 2018). The key to quantifying air exchange by infiltration lies in determining 

the air infiltration rate in units of h-1. Tong, Che, Bai, and Yamaguchi (2008) used thermal 

balance method to calculate air infiltration rate in winter, revealing rate differences between 

daytime and nighttime, with rates of 0.28-2.31 h-1 during the day and 0.13-0.20 h-1 at night. 

Other researchers quoted by Tong et al. (2008) determined the infiltration rate to be 0.33-

0.41 h-1 using the CO2 gas tracing method and 0.96 h-1 by a simple method. Most current 

CSG climate models are developed and validated using these fixed air infiltration rates, 

which might be adjusted slightly based on greenhouse age and sealing performance. For 

instance, the value of the infiltration rate is set to be 0.8 in the model by Y. Zhang et al. 

(2020), 0.5 by Ahamed, Guo, and Tanino (2020), 0.33-0.41 by Meng et al. (2009), and 0.4 

by Weituo Sun et al. (2022). 

 

However, there is a linear dependency between air infiltration rate and wind velocity and 

temperature (Bakker et al., 1995). Ignoring these correlations might cause significant 

simulation errors and result in inefficient control. Thus, starting from the research of M S 

Ahamed et al. (2018), three models have described air exchange rate through infiltration that 

considers wind speed and temperature difference between indoor and outdoor air (R. Liu et 

al., 2021; J. Xiao et al., 2023), borrowing from the study of Jolliet, Danloy, Gay, Munday, 

and Reist (1991). Based on this air infiltration description, we introduce the control of the 

thermal blanket to modify the cover tightness. This gives rise to the following equation, 

 

 

𝑁𝑖𝑛𝑓 =
3600

𝑉𝑔ℎ
∙ 𝐴𝑐𝑜𝑣 ∙ 𝜂𝑖𝑛𝑓 ∙ (1 − 𝑝𝑏 ∙ 𝑈𝑏)

∙ (𝑐𝑤,𝑐𝑑
2 ∙ 𝑣𝑒

2 + 𝑐𝑇
2 ∙ (𝑋𝑡 − 𝑇𝑜𝑢𝑡))

0.5

  [h−1] 

(4.67) 

 

where Ninf [h
-1] is the air infiltration rate of the CSG, Vgh [m

3] is the CSG volume, Acov [m
2] 

is the surface area of the CSG cover or envelope, Ub [-] is the control of the position of the 

CSG thermal blanket, ranging from 0 to 1, cT [m s-1 K-1/2] is the temperature difference factor, 

ηinf [-] is the characterization of the tightness of the cover to air infiltration, and it takes 5×10-

4 for well-maintained CSGs and 10×10-4 to 20×10-4 for leaky covers with cracks or holes, pb 
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[-] is the reduction fraction of the external thermal blanket to ηinf. 

 

Then the air exchange rate due to infiltration ginf can be calculated by 

 

 𝑔𝑖𝑛𝑓 =
𝑁𝑖𝑛𝑓 ∙ 𝐻𝑔ℎ

3600
  [m3 m−2 s−1] (4.68) 

 

4.2.2.10 Crop activities 

 

Crop photosynthesis and respiration 

 

Crop photosynthesis assimilates CO2 inside the greenhouse, while maintenance respiration 

releases CO2 into the greenhouse air. These two crop growth activities influence the variation 

of CO2 concentration inside CSGs. Few CSG climate models describe crop photosynthesis 

and respiration since they mainly focus on simulating light and thermal environments. Bi et 

al. (2010) developed a forecasting model of CO2 concentration inside the CSG, describing 

crop photosynthesis and respiration based on the widely recognized crop models by Farquhar 

et al. (1980); Goudriaan and Van Laar (1994); Egbert Heuvelink (1996). However, the type 

of crop targeted by these referenced crop models is inconsistent with the cultivated lettuce 

crop in the model validation experiments performed by Bi et al. (2010). A greenhouse 

climate model with practical significance and precision should specify the crop when 

describing crop activities. This study aims to develop a climate model of the CSG for lettuce 

cultivation; thus, we adopt the photosynthesis and respiration sub-models from the 

developed lettuce growth model in Chapter 3, which the following equations can summarize, 

 

 𝐴𝐶 = 𝑓(𝐿𝐴𝐼, 𝑋𝑡, 𝑋ℎ, 𝑋𝑐, 𝐼, 𝑇𝑐𝑎𝑛)  [kg (CO2) m
−2 (gro) s−1] (4.69) 

 

 𝑅𝑑 = 𝑓(𝑋𝑑, 𝑇𝑐𝑎𝑛, 𝜌𝑐)  [kg (CH2O) m
−2 (gro) s−1] (4.70) 

 

where AC [kg (CO2) m
-2 (gro) s-1] is the gross canopy assimilation rate, Rd [kg (CH2O) m-2 
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(gro) s-1] is the crop maintenance respiration rate, LAI [m2 (leaf) m-2 (gro)] is the leaf area 

index, ρc is plant density, plants m-2 (gro). See Chapter 3 for detail descriptions. 

 

Since our lettuce growth model defaults to an effective cultivation area-based, instead of an 

arbitrary ground area-based, plant density, Ac and Rd cannot be directly coupled to the climate 

model. The crop photosynthesis and respiration at the whole greenhouse level should 

consider the ratio of the effective cultivated area to the indoor ground area. 

 

 𝐴𝐶,𝑔ℎ =
𝐴𝑐𝑢𝑙
𝐴𝑔𝑟𝑜

∙ 𝐴𝐶   [kg (CO2) m
−2 (gro) s−1] (4.71) 

 

 𝑅𝑑,𝑔ℎ =
𝐴𝑐𝑢𝑙
𝐴𝑔𝑟𝑜

∙
1

𝑐𝛼
∙ 𝑅𝑑   [kg (CO2) m

−2 (gro) s−1] (4.72) 

 

where cα [-] is the factor converts assimilated CO2 into sugar equivalents in the 

photosynthesis process, Acul [m
2] is the effective cultivated area of the greenhouse. 

 

It should be noted that, in greenhouse climate models, the crop growth indicators, such as 

biomass and LAI based on the effective cultivated area, are the known model inputs. 

Certainly, the crop-related thermophysical states belong to the state variables of the climate 

model. Furthermore, canopy assimilation might be inhibited depending on the buffer storage. 

However, the buffer status cannot be measured, and thus, crop photosynthesis inhibition 

cannot be involved in the CSG climate model. This might lead to overestimating 

photosynthesis, further underestimating the CO2 concentration inside the CSG. In addition, 

LAI based on the effective cultivated area should be used in simulating crop activities. 

However, to avoid differentiating between cultivated and non-cultivated areas in CSG 

climate modelling, which considers the CSG as a perfectly stirred tank, the model adopts an 

LAI at the whole greenhouse level to address the impact of crops. 

 

 𝐿𝐴𝐼𝑔ℎ =
𝐴𝑐𝑢𝑙
𝐴𝑔𝑟𝑜

∙ 𝐿𝐴𝐼  [m2 (leaf) m−2 (gro)] (4.73) 
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Crop transpiration 

 

A wide range of methods to quantify greenhouse crop transpiration have been developed for 

irrigation scheduling and greenhouse climate control (Katsoulas & Stanghellini, 2019). The 

description of crop transpiration in most CSG climate models, such as the models by F. He 

et al. (2009); R. Liu et al. (2021), is based on the Penman-Monteith formula (Monteith, 1965). 

The Penman-Monteith formula describes the latent heat of evaporation from a leaf and is 

primarily used for predicting evapotranspiration of crops grown in open field conditions 

(Katzin et al., 2022; Villarreal-Guerrero et al., 2012). Stangheilini (1987) optimised the 

Penman-Monteith equation for greenhouse crops, including adding a factor of leaf area index, 

revising the calculation method for aerodynamic conductance, and linking stomatal 

conductance with all four greenhouse climate attributes. Compared with the Penman-

Monteith model, the crop transpiration model by Stangheilini (1987) can have higher 

prediction accuracy and better overall performance in cases of greenhouse production 

(Villarreal-Guerrero et al., 2012). Thus, the Stangheilini model is utilized in this CSG climate 

model, which remains consistent with our crop model descriptions. The crop transpiration 

rate Ec [kg m-2 s-1] is described by, 

 

 𝐸𝑐 =
∆ ∙ 𝑅𝑛 + 2 ∙ 𝐿𝐴𝐼 ∙ 𝜌𝑎 ∙ 𝑐𝑝,𝑎 ∙ 𝑒𝑐,𝑎 ∕ 𝑟𝑏𝑣

𝜆𝑣 ∙ (∆ + 𝛾 ∙ (1 + 𝑟𝑠𝑣 ∕ 𝑟𝑏𝑣))
  [kg m−2 (gro) s−1] (4.74) 

 

where Δ [Pa ℃-1] is the slope of the saturation curve of the psychrometric chart, Rn [W m-2] 

is the net radiation of the crop, ec,a [Pa] is leaf to air vapour pressure difference, equal to 

vapour deficit of indoor air, rbv [s m-1] is boundary layer resistance to diffusion of H2O, rsv 

[s m-1] is the stomatal resistance to diffusion of H2O. 

 

The two air temperature dependency parameters Δ and λv are described by the following 

formulas (Acquah et al., 2018; F. He et al., 2009; Villarreal-Guerrero et al., 2012), 
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 ∆= 41.45 ∙ 𝑒0.061∙𝑋𝑡  [Pa ℃−1] (4.75) 

 

 𝜆𝑣 = 1000 ∙ (2500.8 − 2.3668 ∙ 𝑋𝑡)  [J kg
−1] (4.76) 

 

The net radiation of the crop Rn is the balance of intercepted and reflected solar radiation 

plus the balance of incoming and outgoing long-wave radiation. To distinguish it from the 

absorbed shortwave radiation by the canopy Ican defined in the lettuce growth model, Rn is 

described by (Stanghellini et al., 2019), 

 

 𝑅𝑛 = 0.86 ∙ (1 − 𝑒−0.7∙𝐿𝐴𝐼) ∙ 𝐼  [W m−2] (4.77) 

 

The descriptions of stomatal and boundary layer resistances to vapour diffusion are derived 

from the lettuce growth model and the research of (Jarvis, 1976; Stangheilini, 1987; Van 

Ooteghem, 2010), 

 

 𝑟𝑠𝑣 = 𝑟𝐻2𝑂,𝑚𝑖𝑛 ∙ 𝑓𝐼,𝑠 ∙ 𝑓𝑇𝑐𝑎𝑛,𝑠 ∙ 𝑓𝑋𝑐,𝑠 ∙ 𝑓𝑋ℎ,𝑠 (4.78) 

 

 𝑟𝑏𝑣 = 𝐿𝑒𝑣
0.67 ∙ 𝑟𝑏ℎ (4.79) 

 

 𝑟𝑏ℎ =
1174 ∙ 𝑙𝑓

0.5

(𝑙𝑓 ∙ |𝑇𝑐𝑎𝑛 − 𝑋𝑡| + 207 ∙ 𝑣𝑎2)
0.25 (4.80) 

 

where rH2O,min [s m-1] is the minimum possible internal crop resistance to H2O, rbh [s m-1] is 

the boundary layer resistance or aerodynamic resistance to convective heat transfer, Lev [-] 

is the Lewis number for water vapour in air. Lev
0.67 represents the ratio of boundary layer 

resistance for H2O diffusion to that for forced heat convection. Detailed definitions of all 

other parameters and auxiliary variables of Eq. (4.78) and Eq. (4.80) can be found in the 

lettuce growth model, which are not reiterated here. 

 

Similarly, the crop transpiration rate at the whole greenhouse level Ec,gh is described by, 
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 𝐸𝑐,𝑔ℎ =
𝐴𝑐𝑢𝑙
𝐴𝑔𝑟𝑜

∙ 𝐸𝑐  [kg m
−2 (gro) s−1] (4.81) 

 

4.2.2.11 Soil activities 

 

Soil microbial respiration 

 

CO2 is released from the soil through soil respiration, which primarily includes microbial 

respiration and root respiration. Rastogi, Singh, and Pathak (2002) summarised that factors 

such as soil temperature, moisture, organic matter content, and fertiliser application 

influence CO2 production and emission from the soil. While the crop growth model has 

covered root respiration, this description will only focus on soil microbial respiration rate 

Rsm, adapted from an empirical formula (PRC, 2018; Q. Yang, Wei, & Yu, 2004). 

 

 𝑅𝑠𝑚 = 0.5 ∙ 𝜆𝑠𝑚 ∙ 𝑅𝑠𝑜,0 ∙ 𝑄10,𝑅𝑠𝑜
𝑇𝑔𝑟𝑜
10   [kg m−2 (gro) s−1] (4.82) 

 

where Rsm [kg (CO2) m
-2 (gro) s-1] is the soil microbial respiration rate inside the greenhouse, 

Rso,0 [kg (CO2) m
-2 (gro) s-1] is the soil respiration rate at a reference temperature of 0 ℃, 

Q10,Rso [-] is the Q10 value for soil respiration, λsm [-] is the correction factor for soil microbial 

respiration, which can be different for general soils and organic matter soils. The coefficient 

of 0.5 indicates that Rsm is assumed to contribute half of the soil respiration rate (Zhu, Cai, 

Song, & Chen, 2017). For bare soil conditions, 90% of the soil CO2 is produced within a soil 

depth of 50 mm (X. Xiao, Kuang, Sauer, Heitman, & Horton, 2015). Therefore, the 

temperature of indoor ground layer is selected to calculate the soil respiration rate. In 

addition, if the ground inside the CSG is the hardened ground or covered with the ground 

fabric, soil microbial respiration will be negligible. 

 

Soil evaporation 
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The soil evaporation process is influenced by soil moisture content, surrounding 

environment, as well as soil structure and physicochemical properties (Tang, Shi, & Gu, 

2011). In greenhouse climate models, the term soil evaporation is often neglected due to the 

hardening or covering of greenhouse floors (Katzin et al., 2020) or for model simplification 

(T Boulard & Baille, 1993). Most CSGs employ soil cultivation. Soil evaporation cannot be 

ignored for accurately simulating indoor humidity changes, particularly during stages with 

low leaf area index. Existing CSG climate models vary in their descriptions of soil 

evaporation. Z. Guo and Yu (2012) addressed soil surface evaporation as a certain proportion 

of crop transpiration, which depends on the leaf area index and time of day, considering that 

transmitted solar radiation is firstly intercepted by the canopy and then the remaining reaches 

the ground. Bi and Wu (2012) and Deng (2021) determined soil evaporation based on 

greenhouse climate and soil thermal properties. F. He et al. (2009) further introduced a 

coefficient to characterize the level of soil surface moisture. Sufficient water and nutrients 

are supplied in both practical greenhouse production and assumptions for simulating the 

greenhouse crop production process. Soil water content in the 0-100 mm depth soil layer 

ranges from 17% to 28% during irrigation cycles (J. Li, Wang, Su, & Ji, 2016); thus, the 

indoor soil surface can be considered moist instead of as open water. Based on the research 

by F. He et al. (2009) and Tiwari (2003), we integrate the effects of greenhouse climate and 

specific moisture levels of greenhouse soil on evaporation, resulting in the following 

equation: 

 

 𝐸𝑠𝑜 = 𝛽𝑠𝑚𝑙 ∙
∆ ∙ 𝐼𝑔𝑟𝑜 + ℎ𝑎𝑖𝑟_𝑔𝑟𝑜 ∙ 𝑒𝑠,𝑎𝑖𝑟 ∙ (1 − 𝑋ℎ)

𝜆𝑣 ∙ (∆ + 𝛾)
  [kg m−2 (gro) s−1] (4.83) 

 

where Eso [kg m-2 s-1] is the soil evaporation rate inside the greenhouse, βsml [-] is the 

coefficient to characterize the level of soil surface moisture inside CSGs, hair_gro [W m-2 ℃-

1] is the convective heat transfer coefficient between greenhouse air and ground. 

 

4.2.3 Model parameterization 
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The greenhouse structure is the input of the CSG climate model. However, structural 

parameters are constant for a given CSG. In this study, the model parameters are divided into 

two categories: general parameters and those dependent on the simulated CSG. Before using 

this model, these parameters need to be determined. Table 4.1 provides the values and 

sources for the general parameters of the CSG climate model. Table 4.2 presents the CSG-

dependent parameters, including information on defining surfaces and layers. Next, the 

determination of some of the model parameters will be clarified. 

 

Table 4.1 General parameters of the CSG climate model 

 

Parameter value unit source 

cd 0.65 - (Dong, 2005; Fang et al., 2016) 

cp,a 1005 J kg-1 ℃-1 physical constant 

cp,L 4.0×103 J kg-1 ℃-1 estimated from measurement 

cT 0.16 m s-1 K-1/2 (M S Ahamed et al., 2018) 

cw,cd 0.26 - (Dong, 2005; R. Liu et al., 2021; PRC, 2018) 

cw,r 0.1 - estimated from (Fang et al., 2016) 

cw,rs 0.16 - 
estimated from (Dong, 2005; R. Liu et al., 2021; 

PRC, 2018) 

cα 0.68 - physical constant 

cδρ,1 0.076 plants m-2 (leaf) Calibration 

cδρ,2 0.924 kg m-2 (leaf) Calibration 

g 9.8  m s-2 physical constant 

kI 0.48 - (Van Ooteghem, 2010) 

kR 0.94 - (De Zwart, 1996) 

Lev 0.89 - (Monteith & Unsworth, 2013) 

Mv 18×10-3 kg mol-1 physical constant 

pb 0.7 - estimated from (Weituo Sun et al., 2022) 

Q10,Rso 3 - (Bi et al., 2010) 

Rg 8.314 J mol-1 K-1 physical constant 

rH2O,min 82 s m-1 (Stangheilini, 1987) 

Rso,0 0.01×10-6  kg (CO2) m-2 (gro) s-1 
estimated from (Bi et al., 2010; Dong, 2005; 

PRC, 2018; Q. Yang et al., 2004) 

T0,K 273.15 K physical constant 

Tso,cs 15 ℃ 
(M S Ahamed et al., 2018; Weituo Sun et al., 

2022) 
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γ 66 Pa ℃-1 physical constant 

κice 0.3 - estimated from analysis 

λv,d 2.83 ×106 J kg-1 (Yau & Rogers, 1996) 

πa 1 - (Kalogirou, 2022) 

ρa 1.20 kg m-3 physical constant 

σ 5.67×10-8 W m-2 K-4 physical constant 

σCO2 1.83×10-6 kg m-3 (μmol mol-1)-1 (Stanghellini et al., 2019) 

τice 0.6 - estimated from analysis 

δice 0.0001 m estimated from analysis 

εice 1 - physical constant 

λice 2.2 W m-1 ℃-1 physical constant 

ψice 0 - physical constant 

αcan 0.78 - (Goudriaan & Van Laar, 1994) 

εcan 1.0 - (Stangheilini, 1987) 

 

Table 4.2 Greenhouse dependent parameters of the CSG climate model 

 

Parameter value unit 

CSG for Exp_1 CSG for Exp_3 

Greenhouse profile 

Lgro 7.500 7.550 m 

Hgh 2.350 3.110 m 

Agro 585.0 651.6 m2 

Acov 874.4  1099.9  m2 

Vgh 1374.8  2026.4  m3 

Lc1 3.078 4.307 m 

Lc2 7.816 8.143 m 

Lsr,c 7.442 7.458 m 

θghz 5 ° west of south 5 ° west of south ° 

φ 39.62 39.62 ° 

North wall 

Lnw 2.200 3.050 m 

θnw 90 90 ° 

δnw,in 0.01 0.01 m 

αnw,in 0.75 0.75 - 

εnw,in 0.94 0.94 - 

λnw,in 0.93 0.93 W m-1 ℃-1 

ρnw,in 2100 2100 kg m-3 

cp,nw,in 900 900 J kg-1 ℃-1 
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δnw,e 0.05 0.1 m 

εnw,e 0.94 0.94 - 

λnw,e 0.40 0.072 W m-1 ℃-1 

ρnw,e 1220 540 kg m-3 

cp,nw,e 900 916 J kg-1 ℃-1 

δnw(j) δnw(1) - δnw(3): 0.123 δnw(1) - δnw(3): 0.135 m 

λnw(j) λnw(1) - λnw(3): 0.35 λnw(1) - λnw(3): 0.35 W m-1 ℃-1 

ρnw(j) ρnw(1) - ρnw(3): 1000 ρnw(1) - ρnw(3): 1000 kg m-3 

cp,nw(j) cp,nw(1) - cp,nw(3): 900 cp,nw(1) - cp,nw(3): 900 J kg-1 ℃-1 

North roof 

Lnr 1.055 1.690 m 

θnr 49 39 ° 

αnr,in 0.75 0.75 - 

εnr,in 0.94 0.94 - 

εnr,e 0.94 0.94 - 

δnr(i) δnr (1), δnr (5) : 0.002 

δnr (2), δnr (4): 0.05 

δnr (3) : 0.08 

δnr (1), δnr (5) : 0.002 

δnr (2), δnr (4): 0.05 

δnr (3) : 0.08 

m 

λnr(i) λnr (1), λnr (5) : 0.93 

λnr (2), λnr (4): 0.04 

λnr (3) : 1.20 

λnr (1), λnr (5) : 0.93 

λnr (2), λnr (4): 0.04 

λnr (3) : 1.20 

W m-1 ℃-1 

Indoor floor and soil 

λsm 1.0 1.0 - 

βsml 0.45 0.65 - 

δgro 0.01 0.01 m 

αgro 0.92 0.92 - 

εgro 0.96 0.96 - 

λgro 1.0 1.0 W m-1 ℃-1 

ρgro 1400 1400 kg m-3 

cp,gro 1500 1500 J kg-1 ℃-1 

δso,cs 0.001 0.001 m 

λso,cs 1.0 1.0 W m-1 ℃-1 

δso(i) δso(1) – δso(2): 0.245 

δso(3) : 0.5 

δso(4) : 2.0 

δso(1) – δso(2): 0.245 

δso(3) : 0.5 

δso(4) : 2.0 

m 

λso(i) 1.0 1.0 W m-1 ℃-1 

ρso(i) 1400 1400 kg m-3 

cp,so(i) 1500 1500 J kg-1 ℃-1 

South roof 

Lsr 7.955 8.005 m 
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θsr 24 33 ° 

πtc 1.5 1.5 - 

δtc 0.08×10-3 0.08×10-3 m 

εtc 0.15 0.15 - 

λtc 0.13 0.13 W m-1 ℃-1 

τtc 0.80 0.80 - 

κtc 0.05 0.05 - 

ψtc 0.75 0.75 - 

αb,o / 0.35 - 

εb,o / 0.85 - 

δb / 0.021 m 

λb / 0.04 W m-1 ℃-1 

Vents 

Avent,r 31.2  34.5  m2 

Avent,s 78.0  86.3  m2 

Hvent,r 0.018 0.049 m 

Hvent,rs 2.348 3.366 m 

εinss 0.54 0.54 - 

ηinf 15×10-4 5×10-4 - 

Crops 

Acul 261.4 368.8 m2 

ρc 11.71 11.52 plants m-2 (gro) 

 

4.2.3.1 General model parameters 

 

For simplification in this model, both air density (ρa) and specific heat capacity of air at 

constant pressure (cp,a) were assumed to be constant by assuming at a temperature of 20 ℃ 

and under a standard atmospheric pressure of 101.325 kPa. Therefore, the ρa was taken as 

1.20 kg m-3 and cp,a was taken as 1005 J kg-1 ℃-1. The latent heat for water vapour deposition 

(λv,d), which is almost constant in the temperature range from -40 to 0 ℃ (Yau & Rogers, 

1996), took the value of 2.83 ×106 J kg-1. 

 

The ice layer that forms on the inner side of the transparent covering is rough and not entirely 

transparent. The incident solar radiation is scattered and deflected in many directions, 

leading to an increase in reflectivity and a decrease in transmissivity. Thus, the transmissivity 

of the ice layer to shortwave radiation from the transparent covering (τice) was assumed to 
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be 0.6, and the reflectivity of the ice layer to shortwave radiation from the transparent 

covering (κice) was assumed to be 0.3 in this model. 

 

For calculating the natural ventilation rate through both roof and side vents, the global wind 

pressure coefficient of CSG vent openings (cw,rs) was estimated to be 0.16 by 𝑐𝑤,𝑐𝑑
2/𝑐𝑑

2, 

where cw,cd = 0.26 is the combined wind pressure coefficient for empirically describing wind 

effect ventilation rate (Dong, 2005; R. Liu et al., 2021; PRC, 2018). 

 

In the context of CSG production, the soil respiration rate at a reference temperature of 0 ℃ 

(Rso,0) ranges from 0.01 to 0.04×10-6 kg (CO2) m
-2 (gro) s-1 (Bi et al., 2010; Dong, 2005; 

PRC, 2018; Q. Yang et al., 2004). In this model, Rso,0 was set at 0.01×10-6 kg (CO2) m
-2 (gro) 

s-1 after considering the introduction of the correction factor for soil microbial respiration 

(λsm). 

 

The average water content of the lettuce heads was found to be 93.8% across all validation 

experiments. Hence, it is reasonable to assume that the specific heat capacity of the lettuce 

crop leaves (cp,L) is close to that of water, estimated at 4.0×103 J kg-1 ℃-1 for this study. 

While the available data do not allow for determining the average thickness of the crop 

leaves (δL) and the density of crop leaves (ρL) independently, they do enable the calculation 

of their product, δL ‧ ρL, which denotes the fresh leaf weight per unit leaf area. This value can 

be determined using the data of shoot fresh weight and leaf area at an individual plant level. 

However, it is not constant and exhibits a logarithmic relationship with the individual plant 

dry weight (Figure 4.2). Therefore, δL ‧ ρL was calculated by the following fitting equation, 

 

 𝛿𝐿 ∙ 𝜌𝐿 = 𝑐𝛿𝜌,1 ∙ 𝑙𝑛 (
𝑋𝑑
𝜌𝑐
) + 𝑐𝛿𝜌,2   [kg m

−2 (leaf)] (4.84) 

 

where cδρ,1 [plants m-2 (leaf)] and cδρ,2 [kg m-2 (leaf)] are fit coefficients for describing the 

fresh leaf weight per unit leaf area. They are respectively fitted to be 0.076 plants m-2 (leaf) 

and 0.924 kg m-2 (leaf), with R2 = 0.734 and RMSE = 0.074 kg m-2 (leaf). 
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Figure 4.2 Variation of the fresh leaf weight per unit leaf area along with the individual plant 

dry weight for the lettuce crop. R2 = 0.734, RMSE = 0.074 kg m-2 (leaf). 

 

4.2.3.2 Greenhouse dependent parameters 

 

The CSGs in both experiments were equipped with a 40-mesh insect screen with a wire 

diameter of 0.17 mm at the vents. The porosity of the insect screen (εinss) was estimated to 

be 54%. The CSG in Exp_3 was well-maintained and used for overwinter production of 

vegetables, and its characterization of the tightness of the cover to air infiltration (ηinf) was 

set to be 5×10-4. In comparison, ηinf of the CSG in Exp_1 was set to be 15×10-4 due to its 

leaky covers. To facilitate the calculation of the heat conduction processes of the north roof, 

layering was also performed for north roof but without any thickness limitations. 

 

In the absence of specific data, τtc can take 80-90% for new plastic films and 55-75% for old 

and dirty films; κtc can take 5% for new plastic films and 10-25% for old and dirty films. 

The reduction in transmissivity is primarily attributed to an increase in absorption for aged 

films, while for dirty films, it is more likely due to an increase in reflection and scattering. 

 

An assumption underlying this model is that the water supply is sufficient for crop growth, 

and therefore, the soil surface is considered moist. According to the research by (F. He et al., 
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2009), the coefficient to characterize the level of soil surface moisture inside CSGs (βsml) 

was assigned a value of 0.45 in Exp_1, and 0.65 in Exp_3. 

 

4.3 Results and discussion 

 

Figure 4.3 to Figure 4.8 comprehensively present the inputs of the CSG climate model, 

including outdoor weather, greenhouse controls and crop states, for model validation, 

alongside the dynamic curves of the simulated and measured indoor climates. The 

assessment of model performance includes qualitatively comparing the dynamic trends of 

simulated and measured climate values, and quantitatively evaluating simulations across the 

entire crop growth cycle using RMSE and RRMSE. The validation data for the model were 

derived from experiments Exp_1 and Exp_3, covering two CSGs with different structural 

parameters and involving both warm and cold seasons. During the two experiments, the 

lettuce crop was cultivated in soil inside CSGs, with the growth periods being 35 and 45 

days, respectively. The model simulations spanned these growth periods. The differential 

equations were solved using the ODE45 solver in MATLAB, in which the ‘fsolve’ function 

was employed to address certain energy balance equations. 
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Figure 4.3 Outdoor climate used as model inputs in Exp_1 (17:00, 9 April 2020 – 17:00, 14 

May 2020). 

 

Figure 4.4 Greenhouse controls and crop states as model inputs in Exp_1 (17:00, 9 April 

2020 – 17:00, 14 May 2020). 
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Figure 4.5 Comparison between the simulated and measured climate trajectories inside the 

CSG during Exp_1 (17:00, 9 April 2020 – 17:00, 14 May 2020). RMSE = 38.8 W m-2 and 

RRMSE = 12.6% for prediction of shortwave radiation at the top of the canopy. RMSE = 2.9 ℃ 

and RRMSE = 14.5% for prediction of indoor air temperature. RMSE = 0.09 and RRMSE = 

17.7% for prediction of indoor relative humidity. RMSE = 12 ppm and RRMSE = 3.0% for 

prediction of indoor CO2 concentration. 
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Figure 4.6 Outdoor climate used as model inputs in Exp_3 (15:00, 30 January 2022 – 15:00, 

16 March 2022). 

 

Figure 4.7 Greenhouse controls and crop states as model inputs in Exp_3 (15:00, 30 January 

2022 – 15:00, 16 March 2022). 
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Figure 4.8 Comparison between the simulated and measured climate trajectories inside the 

CSG during Exp_3 (15:00, 30 January 2022 – 15:00, 16 March 2022). RMSE = 64.9W m-2 

and RRMSE = 23.0% for prediction of shortwave radiation at the top of the canopy. RMSE 

= 3.3 ℃ and RRMSE = 21.1% for prediction of indoor air temperature. RMSE = 0.25 and 

RRMSE = 30.8% for prediction of indoor relative humidity. RMSE = 58 ppm and RRMSE = 

12.4% for prediction of indoor CO2 concentration. 
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4.3.1 Performance in predicting shortwave radiation 

 

The horizontal solar radiation at the top of the canopy was selected to represent the radiation 

condition inside the CSG since the crop model takes it as a model input. It can be directly 

used to calculate the shortwave radiation absorbed by the canopy and indoor ground, as well 

as by internal surfaces of the CSG envelop through trigonometric transformation. Also, the 

validation experiments measured this value located at the mid-span of the greenhouse. As 

illustrated in Figure 4.5 and Figure 4.8, the simulated shortwave radiations closely agreed 

with the measured values across both validation experiments. Depending on the specific 

experiment and the time of day, the model exhibited different estimations for predicting 

shortwave radiation at the top of the canopy inside CSGs. Overall, the model tended to 

underestimate shortwave radiation around noon. Throughout the entire growth cycles of the 

lettuce crop in Exp_1 and Exp_3, the radiation predictions yielded RMSE of 38.8 and 64.9 

W m-2 and RRMSE of 12.6% and 23.0%, respectively, demonstrating good model 

performance. 

 

In Exp_1 and Exp_3, the average difference between simulated and measured indoor 

radiations during the daytime was respectively 1.0 and 21.8 W m-2, indicating minimal 

discrepancies. The model tended to underestimate shortwave radiation around noon, which 

was consistent with the solar radiation model by H. Xu et al. (2019). This underestimation 

might be attributed to the simplification of the CSG south roof and the lack of distinction 

between direct and diffuse shortwave radiations. Firstly, the model simplifies the curved 

south roof to an inclined plane with a fixed slope angle. Compared to the time near sunrise 

and sunset, the solar rays reaching the top of the canopy around noon have a smaller 

incidence angle and higher transmissivity for the south roof (Figure 4.9), suggesting that the 

model should overestimate the radiation during this period. However, the actual south roof 

surface is curved, with its tangent angle increasing from top to bottom of the roof. As the 

solar altitude is low around noon during winter days, the incident solar radiation at the 

measurement point might pass through a point on the south roof surface with a greater slope 

angle than that of the inclined plane. This leads to a smaller actual incident angle and, 
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consequently, a higher transmittance and indoor radiation than the simulated values. It is 

important to note that the estimation errors around noon caused by the roof simplification 

have spatial variability, presenting both overestimations and underestimations at the same 

time. Secondly, the model does not differentiate between direct and diffuse shortwave 

radiation, and it analyses global solar radiation solely based on the optical properties of the 

direct part. A study conducted by Huang et al. (2020) found that the ability of transparent 

material to transmit diffused radiation is related to the angle of its surface slope. As the angle 

increases from 0 to 90 °, the transmissivity decreases gradually. Furthermore, in different 

seasons, the equivalent transmissivity of a typical south roof transparent covering to 

scattered radiation is much greater than for beam radiation at solar noon, though this 

difference was also reported to be only 2% (Han et al., 2014). As a result, the actual normal 

incident solar radiation, which includes diffuse components, has a considerable potential to 

have higher transmissivity than that of the single direct radiation assumed in the model. 

These may cause the model to underestimate the indoor radiation. 

 

The transmissivity of the south roof to shortwave radiation decreases with an increase in the 

solar incidence angle for the south roof, and the rate of decrease gradually accelerates (Figure 

4.9). According to the model description, for a given CSG, its base transmittance, south roof 

angle, and the greenhouse azimuth are fixed, with the local latitude also known. The 

transmissivity of the south roof transparent covering depends on the incidence angle, which 

in turn is determined by the solar altitude and azimuth angles, ultimately depending only on 

the day of the year and the time of day. On 21 February 2022, which was the 52nd day of the 

year, the solar altitude angle reached its maximum value of 39.2 ° at local solar noon, with 

an azimuth angle of 0 ° (Figure 4.9b). Due to the presence of the greenhouse azimuth angle 

(5 ° west of south), the minimum incidence angle for the south roof (17.9 °) and the 

maximum transmissivity (0.78) were delayed by the solar hour angle of 2.65 ° and by the 

period of 636 s. The thermal blanket was rolled up after sunrise and covered before sunset. 

The north wall was slightly shaded by the north roof around noon, with a duration of 0.6 h 

and a maximum shading ratio of 0.002. However, as the solar altitude angle increased, the 

issue of shading became increasingly severe, with a duration of 5.0 h and a maximum 
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shading ratio of 0.33 on 1 May 2020 (Figure 4.9a), which was the 122nd day of the year. In 

the two experiments, the days with shading respectively accounted for 100% and 53% of 

each crop production period (Figure 4.10), indicating that shading for the north wall cannot 

be ignored. Furthermore, as the available solar altitude angle increases, both the maximum 

shading ratio and the duration of shading throughout the day increase. 

 

 

 

 

Figure 4.9 Optical characteristics of the shortwave radiation fluxes. (a) Analysis for the day 

of 1 May 2020 during Exp_1. (b) Analysis for the day of 21 February 2022 during Exp_3. 

 

(a)

(b)
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Figure 4.10 Occurrences of shading for the north wall in the three validation experiments 

(a: Exp_1; b: Exp_3) 

 

4.3.2 Performance in predicting temperature 

 

As illustrated in Figure 4.5 and Figure 4.8, the simulated CSG air temperatures closely 

mirrored the measured values across both validation experiments. The model demonstrated 

varied performance in simulating air temperatures during different simulation periods. In 

Exp_3, where the thermal blanket was used in a timely manner, and the CSG production 

scenario was the most representative, the model overestimated the indoor air temperature 

during nighttime at the initial stage of the simulation. Around noon, the model tended to 

overestimate temperatures in the early stages of the simulation and underestimate them in 

the later stages. In Exp_2, characterized by warm outdoor weather without the use of the 

thermal blanket, the simulations provided a perfect fit at night but consistently 

underestimated the temperature around noon. Throughout the entire growth cycles of the 

lettuce crop in Exp_1 and Exp_3, the RRMSE for indoor air temperature predictions was 

14.5% and 21.1%, respectively, with the RMSE being 2.9 and 3.3 ℃, indicating good model 

performance. 

 

According to our simulation attempts, the primary reason for the overestimation of nighttime 

temperatures at the initial stage of the simulation is that the initial layer temperatures of the 

(a) (b)
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north wall and indoor soil, which have heat storage capabilities, were overestimated. As the 

simulation progressed, this overestimation gradually disappeared. By comparing the 

simulated results across the two experiments, it can be inferred that the thermal blanket usage 

might also have been a potential cause of the overestimation. The use of the thermal blanket 

affects radiation, conduction, and infiltration processes. The model assumed a reduction 

fraction of 0.7 for the usage of the thermal blanket to modify air infiltration. Reducing this 

value could increase the infiltration rate. However, it might lower the simulated values of 

indoor air humidity at night, making them deviate further from the measurements (Figure 

4.5 and Figure 4.8). Comparatively, in practical application, carefully assessing the actual 

status of the thermal blanket and appropriately selecting a comprehensive thermal 

conductivity can be a direction for improving model accuracy. 

 

In both experiments, as found in Section 4.1, the indoor radiation around noon was 

underestimated, which can explain the underestimation of indoor air temperatures in Exp_1. 

However, in Exp_3, indoor air temperatures were overestimated around noon in the early 

stages of the simulation, indicating that the errors during the day were not solely due to the 

shortwave radiation at the top of the canopy. Another factor could be related to changes in 

the crop growth stage. In the early stages of crop growth, the indoor ground absorbs more 

solar radiation and exchanges heat with indoor air dominantly compared to the crop canopy. 

If the description of soil evaporation rate is lower than the actual value, or if the convective 

coefficient between indoor ground and air is higher than the actual value, the temperature of 

indoor ground will be overestimated, leading to an overestimation of CSG air temperatures 

in the early stages of crop growth. As the LAI increases, the temperature overestimation 

brought about by soil interactions becomes negligible, and the underestimated radiation 

dominates the temperature estimation errors. Although the crop transpiration in this model 

is derived from the study on tomatoes by Stangheilini (1987), its model components have 

been validated in the developed lettuce growth model. Therefore, transpiration can be 

considered as not significantly contributing to estimation errors of CSG air temperatures. 

 

Figure 4.11 illustrates the heat fluxes that determine the air temperature dynamics inside the 
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CSG. Convective heat fluxes between indoor air and the canopy Ccan_air, indoor ground 

Cgro_air, and the internal surface of the north wall Cnw,in_air consistently acted as incoming 

energy flows for indoor air. Among these, owing to a significant amount of solar radiation 

absorbed by the indoor ground, Cgro_air contributed the most to the heat gain of indoor air 

during warm seasons, with the proportion reaching 56.1%, and achieved 29.3% during cold 

seasons. Another major source was Cnw,in_air, which contributed the most during cold seasons, 

reaching 57.6%, while in warm seasons, it accounted for 14.3%. The contribution of Ccan_air 

was relatively small, accounting for 3.4% and 13.2% of the total heat gain during Exp_1 and 

Exp_3, respectively. The magnitude relationship between the canopy temperature and 

surrounding air temperature is dynamically changing (Jackson, Idso, Reginato, & Pinter Jr, 

1981). For lettuce cultivation inside CSGs, the average temperature differences between the 

canopy and greenhouse air based on the simulated results are summarized in Table 4.3. They 

ranged from -1.6 to 1.4 ℃ under different greenhouse scenarios. Generally, depending on 

the temperature differences, Ccan_air tended to provide heat to the indoor air when the 

greenhouse was closed at night and under natural ventilation conditions during the daytime, 

while removing heat under natural ventilation conditions at night and when the greenhouse 

was closed during the daytime. 

 

On the other hand, convective heat exchange between indoor air and the internal surface of 

the north roof Cnr,in_air, as well as the sensible heat exchange caused by air exchange Eair_out 

consistently acted as outgoing energy flows for indoor air. In both experiments, Eair_out served 

as the largest outgoing heat flux, constituting 95.3% and 62.0% of the total heat loss, 

respectively. The proportion of Cnr,in_air was relatively lower, at 4.7% in Exp_1 and 1.5% in 

Exp_3, aligning with the role of the north roof in thermal insulation. Furthermore, during 

the cold seasons, Cnr,in_air achieved a lower average heat flux since the north roof inner 

surface could receive solar radiation over a longer period at lower solar altitudes. An 

exception is the convective heat exchange between indoor air and the internal surface of the 

south roof Csr,in_air, which represented a significant outgoing heat flux during the cold 

seasons, at 36.5%. However, it acted as a heat source that contributed 26.2% of the total heat 

gain during warm seasons. This was induced by the high outdoor temperatures that the south 
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roof could have a higher internal surface temperature than indoor air after absorbing solar 

radiation. Additionally, note that there was a minimal difference between the sums of 

incoming and outgoing energy flows, which applies to the mass flows as well. 

 

 

 

Figure 4.11 The average of heat fluxes that determine the CSG air temperature dynamics 

during the entire crop growth cycle (a: Exp_1; b: Exp_3) 

 

Table 4.3 Average temperature differences between the crop canopy and greenhouse air 

 

Greenhouse scenarios 
Temperature difference between the canopy and greenhouse air 

Exp_1 Exp_3 

Closed greenhouse at night / 0.8 

Ventilated greenhouse at night -1.6 / 

Closed greenhouse in the daytime / -0.9 

Ventilated greenhouse in the daytime 1.1 1.4 

 

4.3.3 Performance in predicting humidity 

 

As illustrated in Figure 4.5 and Figure 4.8, the simulated indoor air humidity levels closely 

matched the measurements in both Exp_1 and Exp_3. Throughout the entire growth cycle 

of the lettuce crop, the RRMSE for relative humidity predictions was 17.7% in Exp_1 and 
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30.8% in Exp_3, with the RMSE values being 0.09 and 0.25, respectively, indicating 

acceptable model performance. In cold seasons, the estimation errors in predicting humidity 

were significantly affected by greenhouse controls. The indoor air humidity was generally 

underestimated when the CSG was covered by the thermal blanket and overestimated when 

it was uncovered; this overestimation became more pronounced upon the activation of roof 

ventilation. When combining the analysis of the simulation results for indoor temperature, it 

becomes clear that the accuracy improvement for humidity predictions under non-radiative 

conditions should consider the potential underestimation of soil evaporation and 

overestimation of vapour condensations on the south roof inner surface and the canopy. 

Under radiative conditions, the natural ventilation through the roof vent was likely 

underestimated. 

 

Figure 4.12 shows the vapour fluxes that determine the air humidity dynamics inside the 

CSG. Crop transpiration Ec,gh and soil evaporation Eso always acted as source vapour fluxes, 

contributing to 34.2% and 65.8% of the total vapour gain of indoor air in Exp_1, and 46.5% 

and 53.5% in Exp_3, respectively. The removal of water vapour from the CSG air occurred 

through condensations on the inner surface of the south roof MVair_sr,in and crop leaves 

MVair_can, as well as through air exchange MVair_out. Analogous to the heat loss from indoor 

air, MVair_out served as the largest outgoing vapour flux, constituting 99.5% and 83.4% of the 

total vapour loss, respectively. MVair_sr,in and MVair_can primarily occurred in cold seasons, 

with a proportion of 14.5% and 2.1%, whereas in warm seasons, their contributions to vapour 

loss were limited to 0.1% and 0.4%, respectively. 
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Figure 4.12 The average of vapour fluxes that determine the CSG air humidity dynamics 

during the entire crop growth cycle (a: Exp_1; b: Exp_3) 

 

4.3.4 Performance in predicting CO2 concentration 

 

As depicted in Figure 4.5 and Figure 4.8, the simulated indoor air CO2 concentrations closely 

matched the measured values in both validation experiments. Throughout the entire growth 

cycles of the lettuce crop in Exp_1 and Exp_3, the predictions of CO2 concentration yielded 

RMSE values of 12 and 58 ppm, and RRMSE of 3.0% and 12.4%, respectively, demonstrating 

excellent model performance. Among all CSG climate attributes, the model exhibited the 

best predictive performance for CO2 concentration. This is because the key components of 

the sub-model describing CO2 dynamics, including canopy assimilation and respiration, 

were derived from an already developed and validated lettuce growth model. Additionally, 

the model should have accurately described soil microbial respiration and the CO2 flux 

generated by air exchange. The model had a poorer performance in Exp_3 due to the lack of 

measured outdoor CO2 concentrations in Exp_3, which instead utilized an assumed value of 

400 ppm (Figure 4.6). However, there were discrepancies between the assumed and the 

actual measured values (Figure 4.3). 

 

In both experiments (Figure 4.13), soil microbial respiration Rsm accounted for the largest 
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proportion of the source CO2 fluxes, comprising 93.5% in Exp_1 and 46.6% in Exp_3, with 

average rates of 1.39×10-7 and 0.46×10-7 kg m-2 s-1, respectively. Rsm exhibited larger rates 

in warm seasons primarily due to higher soil temperatures. Organic base fertilizers were used 

in both validation tests, which allowed soil respiration to release more CO2, and the 

correction factor for soil microbial respiration λsm was set to 1.0. Thus, for the general soil, 

this greenhouse dependent parameter may need to be less than 1.0. Crop maintenance 

respiration Rd,gh, as another source CO2 flux, had significantly lower average rates compared 

to Rsm, at 0.96×10-8 and 1.06×10-8 kg m-2 s-1, respectively. The canopy assimilation AC,gh was 

always the main CO2 consumer. The CO2 flux induced by air exchange MCair_out represented 

a special case. In cold seasons, it supplemented CO2 for the CSG, constituting 42.6% of the 

total CO2 sources, while in well-ventilated greenhouses during warm seasons, it transformed 

into an outgoing flux, accounting for 54.5% of the total CO2 losses. 

 

 

 

Figure 4.13 The average of CO2 fluxes that determine the CO2 concentration dynamics of 

CSG air during the entire crop growth cycle (a: Exp_1; b: Exp_3) 

 

4.3.5 Heat fluxes inside the north wall and indoor soil 

 

Layering and surface definition were conducted to describe the temperature dynamics of the 

north wall and indoor soil. Their temperatures across different layers in selected two days 
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are respectively illustrated in Figure 4.14 and Figure 4.15. It can be observed that the 

temperature fluctuations of the outer and inner surfaces of the north wall were significant, 

while the fluctuations in the interlayers were relatively smaller. During each day, there was 

at least one pair of adjacent layers whose temperature curves intersected, and on the day 

from the warm seasons, all four pairs of adjacent layers experienced intersections. This 

indicated that at different times of the day, there was at least one pair of adjacent layers where 

the relationship between their temperatures changed, leading to a reversal in the direction of 

the heat flux. That is, the direction of heat fluxes within the north wall was not always from 

inside to outside, which supported previous studies (M. Li et al., 2015; C Ma et al., 2010; 

Tong & Christopher, 2019). The thermal storage capacity of the north wall was also 

manifested in this manner. For example, at 21:00, 1 May 2020, the first layer of the north 

wall supplied heat to its internal surface to warm the greenhouse, and it also released heat to 

the second layer. Therefore, for the north wall, which has storage capacity and is considered 

to have internal heat sources, it is not appropriate to employ algebraic equations to calculate 

its states, and layering is undoubtedly necessary. On the two selected days, there was at least 

one pair of adjacent layers in the indoor soil whose temperature curves intersected, indicating 

that layering is also necessary for indoor soil. According to the simulated results, daily soil 

temperature fluctuations mainly occur in the indoor ground, and the first and second layers, 

that is within 0.5 m depth, consistent with measurements (Deng, 2021; Huang, 2021; Weituo 

Sun et al., 2015). This also proves the rationality of layering for indoor soil. 
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Figure 4.14 Temperature trajectories of the north wall surfaces and internal layers. (a) 

Analysis for the day of 1 May 2020 during Exp_1. (b) Analysis for the day of 21 February 

2022 during Exp_3. 

 

 

 

Figure 4.15 Temperature trajectories of indoor ground and soil layers. (a) Analysis for the 

day of 1 May 2020 during Exp_1. (b) Analysis for the day of 21 February 2022 during Exp_3. 

 

4.3.6 Ice layer formation 

 

Ice layer formation ultimately depends on the indoor air temperature and humidity, as well 

(a) (b)

(a) (b)



151 

 

as the temperature of the internal surface of the south roof. It was observed in Exp_3, which 

was conducted during the cold seasons (Figure 4.16). The ice layer formed on the internal 

surface of the south roof during periods when the CSG was closed, accompanied by low 

temperatures and high humidity levels of indoor air, as well as extremely low outdoor 

temperatures. Throughout the experiment, the duration of the ice layer formation accounted 

for only about 0.14% of the condensation time. However, it is foreseeable that this proportion 

would increase further in colder seasons (e.g. up to 1.2% in Exp_2, where, as anticipated, 

deposition frequently occurred after rolling up the thermal blanket). Ice layer formation 

directly impacts the heat fluxes of shortwave radiation, longwave radiation, conduction, and 

latent heat conversion. Therefore, incorporating a description of condensation switching to 

deposition is necessary to enhance the comprehensiveness and accuracy of the CSG climate 

model. 

 

 

 

Figure 4.16 Ice layer formation and Condensation occurrence in Exp_3. 0 represents ‘not 

formed/ not occurred’, and 1 represents ‘formed/ occurred’. 

 

4.3.7 Universality, limitations, and perspective 

 

The full-scale CSG climate model developed in this study, which is based on detailed process 

descriptions, can be used to simulate indoor climate attributes of shortwave radiation, air 

temperature, humidity, and CO2 concentration, as well as other CSG object states for any 

standard CSG at any geographical location. It describes crop activities with lettuce as the 

target crop, but most of the knowledge can be extended to CSGs cultivating other crops. The 

CSG climate model can be incorporated with the crop growth model to simulate the CSG 
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production process since its outputs cover almost all the climate inputs of the current crop 

models for potential situations. The model has been validated to have acceptable 

performance during both warm and cold seasons. When Compared with other process-based 

models, such as those for Venlo-type greenhouses by Vanthoor, Stanghellini, Van Henten, 

and De Visser (2011) and Katzin et al. (2020), as well as the temperature and humidity 

prediction models for CSG by R. Liu et al. (2021), this model performs better on CO2 

concentration predictions but shows poorer performance in temperature and humidity 

predictions. In addition, it exhibited comparable performance in simulating shortwave 

radiation to the CSG radiation model by H. Xu et al. (2019). Thus, the developed CSG 

climate model can be deemed sufficiently accurate for control, considering that the CSG 

system is much more complex than the Venlo-type greenhouse in heat and mass transfers, 

the lack of CSG construction standards makes it difficult to precisely determine structural 

parameters and material properties, and the model is highly integrated, and its evaluation 

was performed over the entire crop growth cycles. 

 

Another indicator used to measure greenhouse air humidity is VPD, which represents the 

amount of vapour the air can still hold before reaching saturation. VPD can more directly 

reflect the crop transpiration demand, making it a preferred metric among growers in some 

regions when discussing greenhouse climate (Stanghellini et al., 2019). Although VPD was 

entirely determined by air temperature and relative humidity in the developed CSG climate 

model, the VPD of CSG air did not achieve an acceptable RRMSE in our simulation tests. 

Therefore, future model optimization will focus on improving the description of humidity-

related processes, particularly soil evaporation, vapour condensation, and natural ventilation. 

 

Computational efficiency is another crucial metric for control-oriented models, especially 

when used for online control. It is closely related to how surfaces are defined in the CSG 

climate model. Based on our programming tests, increasing the thickness and thermal 

capacity of the internal surface of the north wall and the indoor floor could make their states 

less sensitive to variations in heat flow, improving the efficiency of solving differential 

equations and saving computation time. However, this adjustment also caused the model to 
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exhibit varying degrees of lag in predicting indoor air temperatures during both the rise and 

fall processes. This time lag could lead to overestimation or underestimation of the state 

variables, thereby significantly reducing the model’s accuracy. For example, changing the 

inner surface thickness of the north wall from the current 10 mm to 50 mm resulted in an 

oversized thermal capacity. Consequently, the wall surface warmed up more slowly than the 

actual rate, correspondingly leading to a slower increase in indoor air temperature due to the 

convective interactions. Meanwhile, due to the larger thermal capacity, the maximum 

temperature that the wall surface could reach might be lower than the actual value, and this 

maximum temperature would be reached later at lower levels of indoor radiation. According 

to the same logic, the indoor air temperature also dropped more slowly in the afternoon. 

These generated the time lag issue in predicting indoor air temperatures, and the RRMSE 

increased from 21.1% to 26.7% in Exp_3. One should be aware of the distinction between 

the time lag issue in simulations and the expected thermal inertia and time delay effects of 

the greenhouse system. 

 

Adjusting the surface definition to improve computational efficiency will sacrifice model 

accuracy. Meanwhile, thinner surface layers risk making their state dynamics overly 

sensitive, reducing the efficiency of solving differential equations and posing challenges for 

using common numerical simulation methods. Employing switch functions to smooth out 

the conditional ‘if/else’ statements in the model and greenhouse control inputs is a way to 

enable the model to tolerate lower thermal capacities. It can improve computational 

efficiency under the current surface definition. This approach also benefits optimal control. 

Firstly, gradient-based optimization algorithms require that differential equations be written 

in a continuously differentiable form. Secondly, although the operation of the thermal 

blanket is modelled as being instantaneously completed, its actual movement typically takes 

longer. By using switch functions, this movement can be fully identified by the model, 

thereby enhancing control efficiency. The construction of switch functions will be addressed 

in subsequent research. 
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4.4 Summary 

 

A full-scale climate model of the CSG has been developed and evaluated. This model, 

designed for greenhouse climate control, is based on detailed process descriptions. It 

describes the effects of outdoor weather, greenhouse structure, crop states, and greenhouse 

controls on the indoor climate of a standard CSG. Full-scale is reflected in both inputs and 

outputs of the model. For a given CSG, inputs mainly include the external weather of 

horizontal solar radiation, air temperature, relative humidity, CO2 concentration, and wind 

speed, the crop growth states of crop dry weight and leaf area index, as well as the controls 

of the thermal blanket, side vent, and roof vent. All four indoor climate attributes of 

shortwave radiation, air temperature, relative humidity, and CO2 concentration, along with 

other CSG object states, can be integratively simulated. 

 

The model was designed by detailing the following eleven subsections, introducing novelties 

and new insights: state variables, definition of layers and surfaces, capacities of CSG objects, 

radiative fluxes, convective and conductive fluxes, latent heat fluxes, vapour fluxes, CO2 

fluxes, air exchange, crop activities, and soil activities. Parameterisation of the model was 

achieved by classifying parameters into general parameters and those dependent on the 

simulated CSG. The model describes crop activities specifically targeting lettuce and was 

thoroughly evaluated in scenarios of lettuce production involving two different CSG 

structures across both warm and cold seasons. 

 

The model demonstrated acceptable performance. Simulated CSG climates closely mirrored 

the measured values throughout crop growth cycles, with the RRMSE being 12.7-23.0% for 

shortwave radiation, 17.5-21.1% for air temperature, 22.7-30.8% for relative humidity, and 

3.0-12.4% for CO2 concentration predictions. Potential directions for enhancing model 

accuracy, as well as the contributions of energy and mass fluxes to the temperature, humidity, 

and CO2 dynamics, were analysed. Layering was proved to be necessary to describe the 

temperature dynamics of the north wall and indoor soil. Seasonal variations in the shading 

of the north wall by the north roof and ice layer formation were noted; incorporating these 



155 

 

processes could improve the model descriptions.  

 

The developed CSG climate model, which can be integrated with the crop growth model to 

simulate the CSG production process, can serve as a basis for optimal control of the CSG 

climate, considering its high computational efficiency, strong generalisation, and sufficient 

accuracy. Further research will focus on the optimisation of the surface definition and the 

development of switch functions to enhance the efficiency of computations. 
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Chapter 5 

 

An integrated model of Chinese solar greenhouse 

climate and crop growth for control 

 

This chapter develops an integrated CSG climate-crop growth model that describes the entire 

CSG lettuce production process by combining the two models presented in Chapters 3 and 

4, supported by thorough validation. Meanwhile, exploratory modelling and model 

smoothing are performed. 
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5.1 Introduction 

 

To implement optimal control theory or model predictive control in practical CSG 

production, an integrated model with acceptable accuracy, high computational efficiency, 

and robust generalisation is required. However, integrated models of greenhouse climate and 

crop growth specifically for CSGs are currently unavailable, let alone models with crop 

growth components that respond accurately to a wide range of greenhouse climates and CSG 

climate components capable of simulating these indoor climates synthetically. Existing 

integrated greenhouse-crop models are scarce and primarily designed for modern multi-span 

greenhouses (Gijzen et al., 1997). A representative model is the one developed by Van 

Henten (1994a), which couples the predictions of greenhouse climate and lettuce growth for 

optimal climate control. In a pilot study by Dan Xu et al. (2018), which applied two time-

scale receding horizon optimal control to a high-tech CSG for lettuce cultivation, the basic 

CSG-crop model was adapted from the model of Van Henten (1994a) and is challenging to 

depict the actual CSG production scenarios. Also for the purpose of real-time optimal control, 

Tap (2000) designed, calibrated, and validated an comprehensive model describing the 

greenhouse tomato crop production based on existing greenhouse and crop models, e.g. the 

tomato model by de Koning (1994). Another significant model by Vanthoor (2011) 

integratively simulated the greenhouse climate and tomato growth dynamics for optimal 

greenhouse design. This model was later extended to include additional climate conditioning 

techniques, such as artificial lights, a secondary heating system, and heat harvesting for year-

round production by Righini et al. (2020). 

 

In our previous research, a lettuce growth model responding to a broad range of greenhouse 

climates and a full-scale climate model of the CSG were developed. These models were 

designed to meet the requirements for model predictive control or optimal control of the 

CSG climate, facilitating seamless integration. In this study, we aim to integrate these two 

models to establish a unified greenhouse-crop model for CSG lettuce production. While both 

models have demonstrated strong individual performance, their integrated performance 

needs to be specifically tested using the experimental data. 
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The performance of optimal control systems is sensitive to errors in the system model (Van 

Henten, 2003). Therefore, to generate an efficient optimal control system for CSG climate, 

model accuracy must be ensured. This typically implies that the integrated model needs to 

describe more processes, thereby making the model sophisticated. Although mechanistic 

models inherently possess high computational efficiency, significant improvement is still 

required, particularly for optimal control in on-line applications. One method to enhance 

computational efficiency is by employing differentiable switch functions to smooth out the 

conditional ‘if/else’ statements in the model and greenhouse control inputs (Vanthoor, 2011), 

enabling the model to minimise abrupt changes in output, have higher stability, and tolerate 

lower thermal capacities. This approach also benefits optimal control in terms of 

requirements of gradient-based optimisation algorithms, as well as the identification of 

movements of controllable structural components. In the model of Vanthoor (2011), all the 

switch functions featured steep flanks approaching the conditional ‘if/else’ statements, 

allowing greenhouse controls, including the operation of thermal screens, to be executed 

instantaneously. Similarly, in our developed CSG climate model, the rolling up and covering 

of the thermal blanket were also modelled as instantaneous events. However, in practice, 

these movements generally take 10-15 minutes to complete. Compared to the assumed 

instantaneous operation, fully capturing movements of the thermal blanket could enhance 

model accuracy and improve control efficiency. The use of switch functions to identify 

movements of greenhouse controls is a new concept and requires detailed study to 

understand its implementation and the impact on model performance. 

 

In conclusion, a well-designed and thoroughly validated integrated model of Chinese solar 

greenhouse climate and crop growth for control is currently unavailable. The objective of 

this study is to establish and evaluate such an integrated greenhouse climate-crop growth 

model for CSG lettuce production by combining the lettuce growth model and the CSG 

climate model developed in Chapter 3 and Chapter 4, respectively. This integrated model 

describes the effects of outdoor climate, greenhouse structure, and greenhouse controls on 

the indoor climate and crop state dynamics. First, the model will be validated in terms of 
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predictions of shortwave radiation, air temperature, relative humidity, and CO2 concentration 

inside the CSG, as well as the crop dry weight and leaf area index (LAI) of the cultivated 

lettuce. Second, the validated model will be used for exploratory modelling on practical 

control scenarios, to address the following research question: how much influence do current 

differentiating climate control scenarios in practice have on net economic return in standard 

CSG cultivation? Third, to further enhance computational efficiency, the integrated model 

will be optimised by employing differentiable switch functions to smooth out the conditional 

‘if/else’ statements in the model and identify movements of greenhouse controls. Finally, the 

processed model after smoothing will be evaluated again. This study will provide an 

integrated CSG climate-crop growth model and its smoothed form for model-based climate 

management of CSG cultivation, with the latter possessing higher adaptability and 

computational efficiency. 

 

5.2 Model synthesis and processing 

 

5.2.1 Model integration 

 

In the previous chapters, dynamic models that describe the lettuce growth and the CSG 

climate have been developed and evaluated individually. Combination of the two models 

results in an integrated CSG climate-crop growth model for lettuce production. As shown in 

Figure 5.1, this integrated model describes the effects of outdoor climate, greenhouse 

structure, and greenhouse controls on the indoor climate and crop state dynamics, 

determining the final output of the CSG crop production process. The model can be 

represented by the following general equations. 

 

 
𝑑𝑋

𝑑𝑡
= 𝑓(𝑋, 𝑌, 𝑈, 𝐷, 𝑃, 𝑡) (5.1) 

 

 𝑌 = 𝑔(𝑋, 𝑌, 𝑈, 𝐷, 𝑃, 𝑡) (5.2) 
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where X is the vector of model state variables determined by numerically solving differential 

equations, including crop dry weight, LAI, buffer storage, indoor air temperature, relative 

humidity, CO2 concentration, canopy temperature, indoor ground temperature, temperatures 

of soil layers, and temperatures of surfaces and layers of north wall; Y is the vector of model 

state variables obtained through analytical solutions or described by algebraic equations, 

including the shortwave radiation at the top of canopy, shortwave radiation absorbed by 

indoor ground, canopy, and surfaces of the CSG envelope, as well as temperatures of the 

north roof and south roof surfaces; U is the vector of greenhouse controls, including controls 

of the thermal blanket, roof vent, and side vent, and ranging from 0 to 1; D is the vector of 

external weather, including outdoor horizontal shortwave radiation, air temperature, relative 

humidity, CO2 concentration, and wind speed; P is the vector of model parameters, including 

the constant parameters, greenhouse dependent parameters, effective cultivated area, and 

plant density; t is the vector of the time, including the nth day of the year and the local time, 

as well as the simulation timing. 

 

More specifically, the generation of the integrated model integrates all state variables from 

the lettuce growth model and the CSG climate model into a unified description, directly 

merging their equations while retaining their constant parameters. 
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Figure 5.1 A schematic diagram of the integrated CSG climate-crop growth model. Elements 

outside the contour of the CSG serve as inputs of the model, while elements within the 

contour are outputs. Dashed lines indicate the flows of information. The crop dry mass is 

used to represent the final output of the CSG crop production process. 

 

5.2.2 Model smoothing 

 

5.2.2.1 Smoothed equations 

 

In this research, the sigmoid function, known for its smooth and continuously differentiable 

properties, was used to improve the smoothness of model descriptions, particularly in the 

implementation of conditional statements and in managing inputs of greenhouse controls. 

The general form of the sigmoid function is 𝑓(𝑥) =
1

1+𝑒−𝑠∙(𝑥−𝑥0)
  , where x is the input 

variable, x0 is the threshold or midpoint, and s is the slope of the differentiable switch 

function. The LogSumExp (LSE) function was used for the smooth approximation to the 

maximum and minimum functions, as well as the range of values. The general form of the 
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used LSE function is min(𝑎, 𝑏) = −1 𝑠⁄ ∙ ln(𝑒−𝑠∙𝑎 + 𝑒−𝑠∙𝑏) , where a and b are the two 

values for which the smooth minimum is to be calculated. The absolute value functions were 

smoothly approximated by the function 𝑓(𝑥) = √𝑥2 + 𝑧2 , where z is a small positive 

parameter introduced to ensure differentiability at the origin. Next, all formulas requiring 

smoothing in the integrated model will be processed into their smoothed versions.  

 

The Eq. (3.2) that describes the buffer dependent inhibition function hbuf [-] can be smoothed 

as: 

 

 

ℎ𝑏𝑢𝑓 = (
1

1 + 𝑒
−𝑠ℎ,𝑏𝑢𝑓,1∙(

𝐶𝑏𝑢𝑓
𝐶𝑏𝑢𝑓,𝑚𝑎𝑥

−0.99)
) ∙

−1

𝑠ℎ,𝑏𝑢𝑓,2

∙ ln (𝑒
−𝑠ℎ,𝑏𝑢𝑓,2∙

𝑅𝑑+
𝑅𝐺𝑅𝑚𝑎𝑥∙𝑋𝑑

𝑐𝛽
𝑐𝛼∙(𝐴𝐶+𝑧) + 𝑒−𝑠ℎ,𝑏𝑢𝑓,2)

+ (1 −
1

1 + 𝑒
−𝑠ℎ,𝑏𝑢𝑓,1∙(

𝐶𝑏𝑢𝑓
𝐶𝑏𝑢𝑓,𝑚𝑎𝑥

−0.99)
) ∙ 1 

(5.3) 

 

The Eq. (3.3) that describes the maximum relative growth rate RGRmax [s
-1] can be smoothed 

as: 

 

 

𝑅𝐺𝑅𝑚𝑎𝑥 = (
1

1 + 𝑒−𝑠𝑅𝐺𝑅,𝑚𝑎𝑥∙(𝑇𝑐−𝑇𝑐,𝑅𝐺𝑅)
) ∙ 𝑅𝐺𝑅𝑚𝑎𝑥,20 ∙ 𝑄10,𝑔𝑟

−
𝑇𝑐−20
10

+ (1 −
1

1 + 𝑒−𝑠𝑅𝐺𝑅,𝑚𝑎𝑥∙(𝑇𝑐−𝑇𝑐,𝑅𝐺𝑅)
) ∙ 𝑅𝐺𝑅𝑚𝑎𝑥,20 ∙ 𝑄10,𝑔𝑟

𝑇𝑐−20
10  

(5.4) 

 

The Eq. (A.6) that describes the light saturated net assimilation rate AL,sat,n [kg (CO2) m
-2 

(leaf) s-1] can be smoothed as: 

 

 𝐴𝐿,𝑠𝑎𝑡,𝑛 = 
−1

𝑠𝐴,𝐿,𝑠𝑎𝑡,𝑛
∙ ln(𝑒−𝑠𝐴,𝐿,𝑠𝑎𝑡,𝑛∙𝐴𝐿,𝑐,𝑛 + 𝑒−𝑠𝐴,𝐿,𝑠𝑎𝑡,𝑛∙𝐴𝐿,𝑚𝑚) (5.5) 
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The Eq. (3.16) that describes the temperature dependency of stomatal resistance fTc,s [-] can 

be smoothed as: 

 

 

𝑓𝑇𝑐,𝑠 = (
1

1 + 𝑒−𝑠𝑓,𝑇𝑐,𝑠∙(𝐼−3)
) ∙ (1 + 2.3 ∙ 10−2 ∙ (𝑇𝑐 − 24.5)

2)

+ (1 −
1

1 + 𝑒−𝑠𝑓,𝑇𝑐,𝑠∙(𝐼−3)
) ∙ (1 + 0.5 ∙ 10−2 ∙ (𝑇𝑐 − 33.6)

2) 

(5.6) 

 

The Eq. (3.17) that describes the CO2 dependency of stomatal resistance fXc,s [-] can be 

smoothed as: 

 

𝑓𝑋𝑐,𝑠 = (
1

1 + 𝑒−𝑠𝑓,𝑋𝑐,𝑠,1∙(𝐼−3)
)

∙ ((
1

1 + 𝑒−𝑠𝑓,𝑋𝑐,𝑠,2∙(𝑋𝑐−1100)
) ∙ 1.5 + (1 −

1

1 + 𝑒−𝑠𝑓,𝑋𝑐,𝑠,2∙(𝑋𝑐−1100)
)

∙ (1 + 6.1 ∙ 10−7 ∙ (𝑋𝑐 − 200)
2)) + (1 −

1

1 + 𝑒−𝑠𝑓,𝑋𝑐,𝑠,1∙(𝐼−3)
) ∙ 1 

(5.7) 

 

The Eq. (3.21) that describes the saturated vapour pressure of the indoor air es,air [Pa] can be 

smoothed as follows. The Eq. (5.8) also applies to the saturated vapour pressures at 

temperatures of the south roof inner surface, crop canopy, and outdoor air. 

 

 

𝑒𝑠,𝑎𝑖𝑟 = (
1

1 + 𝑒−𝑠𝑒,𝑠,𝑎𝑖𝑟∙𝑋𝑡
) ∙ 10

2.7857+
7.5∙𝑋𝑡

237.3+𝑋𝑡 + (1 −
1

1 + 𝑒−𝑠𝑒,𝑠,𝑎𝑖𝑟∙𝑋𝑡
)

∙ 10
2.7857+

9.5∙𝑋𝑡
265.5+𝑋𝑡 

(5.8) 

 

The Eq. (3.22) that describes the boundary layer resistance to CO2 diffusion rb [s m-1] can be 

smoothed as: 

 

 𝑟𝑏 = 𝐿𝑒0.67 ∙
1174 ∙ 𝑙𝑓

0.5

(𝑙𝑓 ∙ ((𝑇𝑐 − 𝑋𝑡)2 + 𝑧𝑟,𝑏2)
0.5
+ 207 ∙ 𝑣𝑎2)

0.25 (5.9) 
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The Eq. (4.14) that describes the presence of the ice layer uice [-] can be smoothed as: 

 

 𝑢𝑖𝑐𝑒 = (1 −
1

1 + 𝑒−𝑠𝑢,𝑖𝑐𝑒,1∙𝑇𝑠𝑟,𝑖𝑛
) ∙ (

1

1 + 𝑒−𝑠𝑢,𝑖𝑐𝑒,2∙(𝑒𝑎𝑖𝑟−𝑒𝑠,𝑠𝑟,𝑖𝑛)
) (5.10) 

 

The Eq. (4.21) that describes the solar altitude angle θh [°] can be smoothed as follows: 

 

 𝜃ℎ =
1

𝑠𝜃,ℎ,2
∙ ln (𝑒𝑠𝜃,ℎ,2∙0.1 + 𝑒

𝑠𝜃,ℎ,2∙
−1
𝑠𝜃,ℎ,1

∙𝑙𝑛(𝑒−𝑠1∙89.9+𝑒
−𝑠𝜃,ℎ,1∙𝜃ℎ

′
)
)  (5.11) 

 

 𝑠𝑖𝑛𝜃ℎ
′ = 𝑠𝑖𝑛𝜑 ∙ 𝑠𝑖𝑛𝛿𝑠 + 𝑐𝑜𝑠𝜑 ∙ 𝑐𝑜𝑠𝛿𝑠 ∙ 𝑐𝑜𝑠𝜔  (5.12) 

 

where 𝜃ℎ
′  [°] is the solar altitude angle without constraints in range. 

 

The Eq. (4.41) that describes the shading ratio of the north wall due to the shading by north 

roof σsha [-] can be smoothed as: 

 

𝜎𝑠ℎ𝑎 =
1

𝑠𝜎,𝑠ℎ𝑎,2
∙ 𝑙𝑛

(

 
 
1 + 𝑒

−𝑠𝜎,𝑠ℎ𝑎,2
𝑠𝜎,𝑠ℎ𝑎,1

∙𝑙𝑛(𝑒−𝑠𝜎,𝑠ℎ𝑎,1+𝑒
−𝑠𝜎,𝑠ℎ𝑎,1∙

𝐿𝑛𝑟
𝐿𝑛𝑤

∙
𝑐𝑜𝑠(𝜃𝑛𝑤−𝜃ℎ+𝜃𝑛𝑟)

𝑠𝑖𝑛(𝜃𝑛𝑤−𝜃ℎ) )

)

 
 

 (5.13) 

 

The convective heat transfer coefficient between indoor ground and air hgro_air [W m-2 ℃-1] 

listed in Table B.2 can be smoothed as: 

 



165 

 

 

ℎ𝑔𝑟𝑜_𝑎𝑖𝑟 = (
1

1 + 𝑒−𝑠ℎ,𝑔𝑟𝑜_𝑎𝑖𝑟∙(𝐿𝐴𝐼𝑔ℎ−1)
) ∙ 2.8

+ (1 −
1

1 + 𝑒−𝑠ℎ,𝑔𝑟𝑜_𝑎𝑖𝑟∙(𝐿𝐴𝐼𝑔ℎ−1)
) ∙ 1.86

∙ (((𝑇𝑔𝑟𝑜 − 𝑋𝑡)
2
+ 𝑧ℎ,𝑔𝑟𝑜_𝑎𝑖𝑟

2)
0.5

)
0.33

 

(5.14) 

 

The convective heat transfer coefficient between the internal surface of the south roof and 

indoor air hsr,in_air [W m-2 ℃-1] listed in Table B.2 can be smoothed as: 

 

 

ℎ𝑠𝑟,𝑖𝑛_𝑎𝑖𝑟 = (
1

1 + 𝑒−𝑠ℎ,𝑠𝑟,𝑖𝑛_𝑎𝑖𝑟∙(𝑈𝑣𝑒𝑛𝑡,𝑟−0.1)
) ∙ (0.95 + 6.76 ∙ 𝑣𝑎

0.49)

+ (1 −
1

1 + 𝑒−𝑠ℎ,𝑠𝑟,𝑖𝑛_𝑎𝑖𝑟∙(𝑈𝑣𝑒𝑛𝑡,𝑟−0.1)
)

∙ (2.21 ∙ (((𝑇𝑠𝑟,𝑖𝑛 − 𝑋𝑡)
2
+ 𝑧ℎ,𝑠𝑟,𝑖𝑛_𝑎𝑖𝑟

2)
0.5

)
0.33

) 

(5.15) 

 

The convective heat transfer coefficient between the internal surface of the south roof and 

indoor air hnw,in_air [W m-2 ℃-1] listed in Table B.2 can be smoothed as: 

 

 

ℎ𝑛𝑤,𝑖𝑛_𝑎𝑖𝑟 = (
1

1 + 𝑒−𝑠ℎ,𝑛𝑤,𝑖𝑛_𝑎𝑖𝑟∙(𝑈𝑣𝑒𝑛𝑡,𝑟−0.1)
) ∙ (7.2 + 3.84 ∙ 𝑣𝑎)

+ (1 −
1

1 + 𝑒−𝑠ℎ,𝑛𝑤,𝑖𝑛_𝑎𝑖𝑟∙(𝑈𝑣𝑒𝑛𝑡,𝑟−0.1)
)

∙ (3.4 ∙ (((𝑇𝑛𝑤,𝑖𝑛 − 𝑋𝑡)
2
+ 𝑧ℎ,𝑛𝑤,𝑖𝑛_𝑎𝑖𝑟

2)
0.5

)
0.33

) 

(5.16) 

 

The convective heat transfer coefficient between the internal surface of the south roof and 

indoor air hnr,in_air [W m-2 ℃-1] listed in Table B.2 can be smoothed as: 
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ℎ𝑛𝑟,𝑖𝑛_𝑎𝑖𝑟 = (
1

1 + 𝑒−𝑠ℎ,𝑛𝑟,𝑖𝑛_𝑎𝑖𝑟∙(𝑈𝑣𝑒𝑛𝑡,𝑟−0.1)
) ∙ (7.2 + 3.84 ∙ 𝑣𝑎)

+ (1 −
1

1 + 𝑒−𝑠ℎ,𝑛𝑟,𝑖𝑛_𝑎𝑖𝑟∙(𝑈𝑣𝑒𝑛𝑡,𝑟−0.1)
)

∙ (3.4 ∙ (((𝑇𝑛𝑟,𝑖𝑛 − 𝑋𝑡)
2
+ 𝑧ℎ,𝑛𝑟,𝑖𝑛_𝑎𝑖𝑟

2)
0.5

)
0.33

) 

(5.17) 

 

The Eq. (4.54) that describes the latent heat flux to the south roof Lair_sr,in [W m-2 (gro)] can 

be smoothed as: 

 

 

𝐿𝑎𝑖𝑟_𝑠𝑟,𝑖𝑛 = (
1

1 + 𝑒−𝑠𝐿,𝑎𝑖𝑟_𝑠𝑟,𝑖𝑛∙𝑇𝑠𝑟,𝑖𝑛
) ∙ (𝜆𝑣 ∙ 𝑀𝑉𝑎𝑖𝑟_𝑠𝑟,𝑖𝑛)

+ (1 −
1

1 + 𝑒−𝑠𝐿,𝑎𝑖𝑟_𝑠𝑟,𝑖𝑛∙𝑇𝑠𝑟,𝑖𝑛
) ∙ (𝜆𝑣,𝑑 ∙ 𝑀𝑉𝑎𝑖𝑟_𝑠𝑟,𝑖𝑛) 

(5.18) 

 

The Eq. (4.55) that describes the condensation rate of the indoor water vapour MV1_2 [kg m-

2 (gro) s-1] can be smoothed as follows. The Eq. (5.19) is preferred in warm seasons, and the 

Eq. (5.20) is preferred during the cold seasons. 

 

 𝑀𝑉1_2 =
1

𝑠𝑀𝑉,1_2
∙ ln (𝑒

𝑠𝑀𝑉,1_2∙𝜎𝑎𝑟𝑒𝑎∙
ℎ1_2
𝜆𝑣∙𝛾

∙(𝑒𝑎𝑖𝑟−𝑒𝑠,2) + 1) (5.19) 

 

 

𝑀𝑉1_2 = 𝜎𝑎𝑟𝑒𝑎 ∙
ℎ1_2
𝜆𝑣 ∙ 𝛾

∙ (𝑒𝑎𝑖𝑟 − 𝑒𝑠,2) +
1

𝑠𝑀𝑉,1_2

∙ ln (𝑒
−𝑠𝑀𝑉,1_2∙𝜎𝑎𝑟𝑒𝑎∙

ℎ1_2
𝜆𝑣∙𝛾

∙(𝑒𝑎𝑖𝑟−𝑒𝑠,2) + 1) 

(5.20) 

 

The Eq. (4.61) that describes the CSG natural ventilation rate gnv [m
3 m-2 (gro) s-1] can be 

smoothed as:  
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𝑔𝑛𝑣 = (
1

1 + 𝑒−𝑠𝑔,𝑛𝑣∙(𝑈𝑣𝑒𝑛𝑡,𝑠−0.1)
) ∙ (𝜂𝑖𝑛𝑠𝑠 ∙ 𝑔𝑣𝑒𝑛𝑡,𝑟𝑠)

+ (1 −
1

1 + 𝑒−𝑠𝑔,𝑛𝑣∙(𝑈𝑣𝑒𝑛𝑡,𝑠−0.1)
) ∙ (𝜂𝑖𝑛𝑠𝑠 ∙ 𝑔𝑣𝑒𝑛𝑡,𝑟) 

(5.21) 

 

The Eq. (4.64) that describes the natural ventilation rate through both roof and side vents 

gvent,rs [m
3 m-2 (gro) s-1] can be smoothed as:  

 

 

𝑔𝑣𝑒𝑛𝑡,𝑟𝑠 =
𝑐𝑑
𝐴𝑔𝑟𝑜

∙ (
𝐴𝑣𝑒𝑛𝑡,𝑟,𝑈

2 ∙ 𝐴𝑣𝑒𝑛𝑡,𝑠,𝑈
2

𝐴𝑣𝑒𝑛𝑡,𝑟,𝑈
2 + 𝐴𝑣𝑒𝑛𝑡,𝑠,𝑈

2 + 𝑧𝑔,𝑣𝑒𝑛𝑡,𝑟𝑠2

∙ (2 ∙ 𝑔 ∙
𝑋𝑡 − 𝑇𝑜𝑢𝑡

𝑇𝑜𝑢𝑡 + 𝑋𝑡
2 + 𝑇0,𝐾

∙ 𝐻𝑣𝑒𝑛𝑡,𝑟𝑠)

+ (
𝐴𝑣𝑒𝑛𝑡,𝑟,𝑈 + 𝐴𝑣𝑒𝑛𝑡,𝑠,𝑈

2
)
2

∙ 𝑐𝑤,𝑟𝑠 ∙ 𝑣𝑒
2)

0.5

 

(5.22) 

 

The Eq. (4.80) that describes the boundary layer resistance or aerodynamic resistance to 

convective heat transfer rbh [s m-1] can be smoothed as: 

 

 𝑟𝑏ℎ =
1174 ∙ 𝑙𝑓

0.5

(𝑙𝑓 ∙ ((𝑇𝑐 − 𝑋𝑡)2 + 𝑧𝑟,𝑏ℎ2)
0.5
+ 207 ∙ 𝑣𝑎2)

0.25 (5.23) 

 

In the initial integrated model, greenhouse controls were assumed to be completed 

instantaneously. The moments of greenhouse control actions in the model validation 

experiments were recorded using the initial time of controls. Meanwhile, the control input 

data for simulations were provided at 5-minute intervals aligning with the external weather 

data, and the model program determined control values at integration moments based on the 

commonly used linear interpolation method. As a result, the covering and rolling up 
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processes of the thermal blanket were prematurely started in the model simulations and 

completed within a shorter time frame in comparison to the actual situation. This would 

affect the daylighting and insulation conditions of the CSG and, consequently, might reduce 

the model performance. Additionally, greenhouse controls, including those of the thermal 

blanket and roof and side vents, have a significant impact on the indoor climate, and 

smoothing them can enhance the stability of the model simulation. In practical CSG systems, 

the movements of the thermal blanket generally take 10-15 minutes. The controls of the 

thermal blanket Ub [-] in the smoothed integrated model are described as follows: 

 

 𝑈𝑏 =
1

1 + 𝑒−𝑠𝑈,𝑏∙(𝑡−𝑡𝑐𝑜𝑣𝑒𝑟)∙(𝑡−𝑡𝑢𝑛𝑐𝑜𝑣𝑒𝑟)
 (5.24) 

 

where tcover [s] is the covering time of the thermal blanket, specifically located at the midpoint 

of its movement, tuncover [s] is the time for rolling up the thermal blanket, also specifically 

located at the midpoint of its movement. 

 

Similarly, the controls of the roof vent Uvent,r [-] and side vent Uvent,s [-] in the smoothed 

integrated model are described as follows: 

 

 𝑈𝑣𝑒𝑛𝑡,𝑟 =
1

1 + 𝑒𝑠𝑈,𝑣𝑒𝑛𝑡,𝑟∙(𝑡−𝑡𝑣𝑒𝑛𝑡,𝑟,𝑜𝑛)∙(𝑡−𝑡𝑣𝑒𝑛𝑡,𝑟,𝑜𝑓𝑓)
 (5.25) 

 

 𝑈𝑣𝑒𝑛𝑡,𝑠 =
1

1 + 𝑒𝑠𝑈,𝑣𝑒𝑛𝑡,𝑠∙(𝑡−𝑡𝑣𝑒𝑛𝑡,𝑠,𝑜𝑛)∙(𝑡−𝑡𝑣𝑒𝑛𝑡,𝑠,𝑜𝑓𝑓)
 (5.26) 

 

where tvent,r,on and tvent,s,on [s] are the opening times of the roof vent and side vent, respectively, 

tvent,r,off and tvent,s,off [s] are the closing times of the roof vent and side vent, respectively. These 

time points specifically correspond to the midpoints of the CSG vent movements and may 

vary daily. 
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5.2.2.2 Parameterisation for model smoothing 

 

The slope of the differentiable switch function for each model equation might be different, 

primarily depending on the desired range of input variables over which the model description 

intends the switch function to complete the transition between 0 and 1. Additionally, the 

selection of these values must also consider the effectiveness of numerical simulations within 

the program. For the model smoothing process, all introduced parameters and their values 

are summarised in Table 5.1. The parameter selection methods and curve patterns of the 

smooth functions are illustrated with the following examples. 

 

The movement of the thermal blanket, including both covering and uncovering processes, 

was assumed to be a constant 10 minutes. The curve patterns of the smoothed controls of the 

thermal blanket are illustrated in Figure 5.2a, where transitions between 0 and 1 are 

completed within 600 s, and the midpoint of the movements corresponds to a control state 

of 0.5. Note that in the simulations of the smoothed integrated model, the values for tcover 

and tuncover should be set 5 minutes later than the initial time of the control actions. The 

control trajectory of the thermal blanket within a day is shown in Figure 5.2b, starting to 

uncover the south roof at 07:55 and being rolled up at 16:55. Additionally, the movements 

of both the roof and side vents, for switches between any positions, were assumed to be 60 

s, with a control smoothing mechanism similar to that used for the thermal blanket. 

 

In Equation 5.3, the threshold of 0.99 was defined to ensure that the calculation of hbuf could 

be based entirely on the formula applicable when Cbuf = Cbuf,max. The patterns of the switching 

function and the smooth minimum for hbuf are depicted in Figure 5.2c and Figure 5.2d, 

respectively. Similarly, in Equation 5.21, the selection of the threshold of 0.1 was aimed at 

clearly differentiating between the two ventilation modes of only the roof vent being open 

and both the roof and side vents being open. 
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Table 5.1 Introduced parameters for smoothing the integrated CSG climate-crop growth 

model 

 

Notation Meaning Value Unit 

sh,buf,1 Slope of the differentiable switch function for hbuf 1000 - 

sh,buf,2 Sharpness parameter of the smooth minimum for hbuf 100 - 

zh,buf Auxiliary parameter to prevent AC from being zero in 

the denominator of hbuf 

1×10-12 kg (CO2) m-2 (gro) s-

1 

sRGR,max Slope of the differentiable switch function for RGRmax 10 ℃-1 

sA,L,sat,n Sharpness parameter of the smooth minimum for 

AL,sat,n 

1×108 - 

sf,Tc,s Slope of the differentiable switch function for fTc,s 10 m2 W-1 

sf,Xc,s,1 Slope of the radiation dependent differentiable switch 

function for fXc,s 

10 m2 W-1 

sf,Xc,s,2 Slope of the CO2 dependent differentiable switch 

function for fXc,s 

0.5 (μmol (CO2) mol-1 

(air))-1 

se,s,air Slope of the differentiable switch function for es,air 10 ℃-1 

zr,b Auxiliary parameter to smooth the absolute value 

function for rb 

1×10-4 ℃ 

su,ice,1 Slope of the temperature dependent differentiable 

switch function for uice 

10 ℃-1 

su,ice,2 Slope of the vapour pressure dependent differentiable 

switch function for uice 

0.5 Pa-1 

sθ,h,1 Sharpness parameter of the smooth minimum for θh 5 - 

sθ,h,2 Sharpness parameter of the smooth maximum for θh 5 - 

sσ,sha,1 Sharpness parameter of the smooth minimum for σsha 50 - 

sσ,sha,2 Sharpness parameter of the smooth maximum for σsha 50 - 

sh,gro_air Slope of the differentiable switch function for hgro_air 50 - 

zh,gro_air Auxiliary parameter to smooth the absolute value 

function for hgro_air 

1×10-4 ℃ 

sh,sr,in_air Slope of the differentiable switch function for hsr,in_air 100 - 

zh,sr,in_air Auxiliary parameter to smooth the absolute value 

function for hsr,in_air 

1×10-4 ℃ 

sh,nw,in_air Slope of the differentiable switch function for hnw,in_air 100 - 

zh,nw,in_air Auxiliary parameter to smooth the absolute value 

function for hnw,in_air 

1×10-4 ℃ 

sh,nr,in_air Slope of the differentiable switch function for hnr,in_air 100 - 

zh,nr,in_air Auxiliary parameter to smooth the absolute value 

function for hnr,in_air 

1×10-4 ℃ 
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sL,air_sr,in Slope of the differentiable switch function for Lair_sr,in 10 ℃-1 

sMV,1_2 Sharpness parameter of the smooth maximum for 

MV1_2 

0.5×107 - 

sg,nv Slope of the differentiable switch function for gnv 100 - 

zr,bh Auxiliary parameter to smooth the absolute value 

function for rbh 

1×10-4 ℃ 

sU,b Slope of the differentiable switch function for Ub 6×10-7 s-2 

sU,vent,r Slope of the differentiable switch function for Uvent,r 6×10-6 s-2 

sU,vent,s Slope of the differentiable switch function for Uvent,s 6×10-6 s-2 

zg,vent,rs Auxiliary parameter to address the scenario where 

both Avent,r,U and Avent,r,U are zero for determining gvent,rs 

1×10-5 m2 

 

 

 

 

Figure 5.2 Curve patterns of the model smoothing on controls of the thermal blanket and 

the buffer dependent inhibition function. 

 

(a) (b)

(c) (d)
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5.3 Results and discussion 

 

5.3.1 Validation of the initial integrated model 

 

The integrated CSG climate-crop growth model was validated using data collected in three 

experiments (Exp_1, Exp_2, and Exp_3), which covered three different seasons, two CSGs 

with different structural parameters, and three lettuce cultivation scenarios. Figure 5.3 and 

Figure 5.4 display the measured model input data from Exp_2, including outdoor climate 

and greenhouse controls. Model inputs from Exp_1 and Exp_3 are detailed in previous 

chapters. To exclude the potential impact of crop senescence, which is beyond the scope of 

this study, data from the last five days of all experiments were uniformly discarded. All the 

constant parameters of the integrated model were consistent with those defined in the 

individual lettuce growth model and the CSG climate model. The greenhouse dependent 

parameters from Exp_1 and Exp_3 were also consistent with those used in the validation of 

the CSG climate model. All the parameters required by the integrated CSG-crop model, 

including the newly added greenhouse dependent parameters from Exp_2, are summarised 

in Table 5.2 and Table 5.3. 

 

Figure 5.3 Greenhouse controls as model inputs in Exp_2 (15:00, 29 November 2020 – 

15:00, 18 January 2021). 
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Figure 5.4 Outdoor climate used as model inputs in Exp_2 (15:00, 29 November 2020 – 

15:00, 18 January 2021). 

 

Table 5.2 Constant parameters of the integrated CSG climate-crop growth model 

 

Parameter value unit 

cH 2.2×105 J mol-1 

cr,I 0.22 - 

cr,PAR 0.07 - 

crc,1 0.315 m s-1 ℃-2 

crc,2 -27.35 m s-1 ℃-1 

crc,3 790.7 m s-1 

cRd,25,r 1.16×10-7 kg (CH2O) kg (dry matter) s-1 

cRd,25,sh  3.47×10-7 kg (CH2O) kg (dry matter) s-1 

cS 710 J mol-1 K-1 

cα 0.68 - 

cβ 0.8 - 
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cζ 1.6 - 

cσr,1  -0.026 plants kg-1 

cσr,2 -0.076 - 

EJ 3.7×104 J mol-1 

Ia,L,ref 50.3 W m-2 (leaf) 

Jmax,25 210.15  μmol (e-) m-2 (leaf) s-1 

kI 0.48 - 

kPAR 0.9 - 

Le 1.47 - 

lf 0.1 m 

MCO2 44×10-3 kg mol-1 

Q10,gr 1.6 - 

Q10,Rd 2 - 

Q10,Г 2 - 

Rg 8.314 J mol-1 K-1 

RGRmax,20 1.54×10-6 s-1 

rH2O,min 82  s m-1 

rt 50  s m-1 

SLArf 47.93 m2 (leaf) kg-1 (leaf) 

Tc,RGR 25 ℃ 

va 0.09 m s-1 

Xh,ref 0.75 - 

βI -4.74×10-3  m2 (leaf) W-1 

βXh 0.912 - 

ε0 17×10-9 kg (CO2) J-1 

ρCO2,T0 1.98 kg m-3 

σbuf 0.2 - 

σPAR 0.5 - 

ГT20 40 μmol (CO2) mol-1 (air) 

cd 0.65 - 

cp,a 1005 J kg-1 ℃-1 

cp,L 4.0×103 J kg-1 ℃-1 

cT 0.16 m s-1 K-1/2 

cw,cd 0.26 - 

cw,r 0.1 - 
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cw,rs 0.16 - 

cα 0.68 - 

cδρ,1 0.076 plants m-2 (leaf) 

cδρ,2 0.924 kg m-2 (leaf) 

g 9.8  m s-2 

kI 0.48 - 

kR 0.94 - 

Lev 0.89 - 

Mv 18×10-3 kg mol-1 

pb 0.7 - 

Q10,Rso 3 - 

Rg 8.314 J mol-1 K-1 

rH2O,min 82 s m-1 

Rso,0 0.01×10-6  kg (CO2) m-2 (gro) s-1 

T0,K 273.15 K 

Tso,cs 15 ℃ 

γ 66 Pa ℃-1 

κice 0.3 - 

λv,d 2.83 ×106 J kg-1 

πa 1 - 

ρa 1.20 kg m-3 

σ 5.67×10-8 W m-2 K-4 

σCO2 1.83×10-6 kg m-3 (μmol mol-1)-1 

τice 0.6 - 

δice 0.0001 m 

εice 1 - 

λice 2.2 W m-1 ℃-1 

ψice 0 - 

αcan 0.78 - 

εcan 1.0 - 

 

Table 5.3 Greenhouse dependent parameters of the integrated CSG climate-crop growth 

model from the three validation experiments 

 

Parameter value unit 

CSG for Exp_1 CSG for Exp_2 and Exp_3 

Greenhouse profile 

Lgro 7.500 7.550 m 

Hgh 2.350 3.110 m 
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Agro 585.0 651.6 m2 

Acov 874.4  1099.9  m2 

Vgh 1374.8  2026.4  m3 

Lc1 3.078 4.307 m 

Lc2 7.816 8.143 m 

Lsr,c 7.442 7.458 m 

θghz 5 ° west of south 5 ° west of south ° 

φ 39.62 39.62 ° 

North wall 

Lnw 2.200 3.050 m 

θnw 90 90 ° 

δnw,in 0.01 0.01 m 

αnw,in 0.75 0.75 - 

εnw,in 0.94 0.94 - 

λnw,in 0.93 0.93 W m-1 ℃-1 

ρnw,in 2100 2100 kg m-3 

cp,nw,in 900 900 J kg-1 ℃-1 

δnw,e 0.05 0.1 m 

εnw,e 0.94 0.94 - 

λnw,e 0.40 0.072 W m-1 ℃-1 

ρnw,e 1220 540 kg m-3 

cp,nw,e 900 916 J kg-1 ℃-1 

δnw(j) δnw(1) - δnw(3): 0.123 δnw(1) - δnw(3): 0.135 m 

λnw(j) λnw(1) - λnw(3): 0.35 λnw(1) - λnw(3): 0.35 W m-1 ℃-1 

ρnw(j) ρnw(1) - ρnw(3): 1000 ρnw(1) - ρnw(3): 1000 kg m-3 

cp,nw(j) cp,nw(1) - cp,nw(3): 900 cp,nw(1) - cp,nw(3): 900 J kg-1 ℃-1 

North roof 

Lnr 1.055 1.690 m 

θnr 49 39 ° 

αnr,in 0.75 0.75 - 

εnr,in 0.94 0.94 - 

εnr,e 0.94 0.94 - 

δnr(i) δnr (1), δnr (5) : 0.002 

δnr (2), δnr (4): 0.05 

δnr (3) : 0.08 

δnr (1), δnr (5) : 0.002 

δnr (2), δnr (4): 0.05 

δnr (3) : 0.08 

m 

λnr(i) λnr (1), λnr (5) : 0.93 

λnr (2), λnr (4): 0.04 

λnr (3) : 1.20 

λnr (1), λnr (5) : 0.93 

λnr (2), λnr (4): 0.04 

λnr (3) : 1.20 

W m-1 ℃-1 

Indoor floor and soil 

λsm 1.0 1.4 (Exp_2) - 
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1.0 (Exp_3) 

βsml 0.45 0.65 - 

δgro 0.01 0.01 m 

αgro 0.92 0.92 - 

εgro 0.96 0.96 - 

λgro 1.0 1.0 W m-1 ℃-1 

ρgro 1400 1400 kg m-3 

cp,gro 1500 1500 J kg-1 ℃-1 

δso,cs 0.001 0.001 m 

λso,cs 1.0 1.0 W m-1 ℃-1 

δso(i) δso(1) – δso(2): 0.245 

δso(3) : 0.5 

δso(4) : 2.0 

δso(1) – δso(2): 0.245 

δso(3) : 0.5 

δso(4) : 2.0 

m 

λso(i) 1.0 1.0 W m-1 ℃-1 

ρso(i) 1400 1400 kg m-3 

cp,so(i) 1500 1500 J kg-1 ℃-1 

South roof 

Lsr 7.955 8.005 m 

θsr 24 33 ° 

πtc 1.5 1.5 - 

δtc 0.08×10-3 0.08×10-3 m 

εtc 0.15 0.15 - 

λtc 0.13 0.13 W m-1 ℃-1 

τtc 0.80 0.75 (Exp_2) 

0.80 (Exp_3) 

- 

κtc 0.05 0.15 (Exp_2) 

0.05 (Exp_3) 

- 

ψtc 0.75 0.75 - 

αb,o / 0.35 - 

εb,o / 0.85 - 

δb / 0.021 m 

λb / 0.04 W m-1 ℃-1 

Vents 

Avent,r 31.2  34.5  m2 

Avent,s 78.0  86.3  m2 

Hvent,r 0.018 0.049 m 

Hvent,rs 2.348 3.366 m 

εinss 0.54 0.54 - 

ηinf 15×10-4 5×10-4 - 

Crops 
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Acul 261.4 351.5 (Exp_2) 

368.8 (Exp_3) 

m2 

ρc 11.71 11.31 (Exp_2) 

11.52 (Exp_3) 

plants m-2 (gro) 

 

Based on the simulation results presented in Figure 5.5, Figure 5.6, and Figure 5.7, the 

integrated CSG climate-crop growth model generally exhibited satisfactory simulation 

accuracy. The RMSE ranged from 38.9 to 66.3 W m-2, with the RRMSE of 13.0-24.2%, for 

predicting shortwave radiation at the top of the canopy. The RMSE ranged from 2.7 to 3.2 ℃, 

with the RRMSE of 14.2-26.6%, for predicting indoor air temperature. The RMSE ranged 

from 0.09 to 0.26, with the RRMSE of 17.8-32.0%, for predicting relative humidity of indoor 

air. The RMSE ranged from 12 to 100 ppm, with the RRMSE of 3.0-17.7%, for predicting 

CO2 concentration of indoor air. The RMSE ranged from 0.0108-0.0158 kg m-2 (gro), with 

the RRMSE of 25.1-40.7%, in simulating the crop dry weight of the lettuce. The RMSE = 

0.7989-1.3507 (leaf) m-2 (gro), with the RRMSE of 58.5-98.4% in simulating the leaf area 

index of the lettuce. The model demonstrated excellent to acceptable performance in 

predicting the four key climate attributes directly regulated by greenhouse controls, as well 

as the crop biomass that constitutes the final output of the greenhouse production process, 

across most CSG cultivation scenarios. Therefore, this model is considered suitable for use 

in optimal management of the CSG climate. 

 

The integrated model exhibited varying performance in simulating different states and the 

same states under different scenarios. In terms of greenhouse climate simulation, the 

integrated model performed better in the CSG production scenario of Exp_1 compared to 

Exp_2 and Exp_3, across all four climate variables. Apart from the model descriptions 

discussed in Chapter 4 as potential directions for improving accuracy, several other factors 

may explain this difference. First, greenhouse controls in the experiments were manually 

operated and recorded by the growers. While Exp_2 and Exp_3 involved daily control 

actions, Exp_1 did not use the thermal blanket, with the roof and side vents remaining open 

unless extreme weather occurred, which helped reduce errors from control inputs. Second, 

Exp_2 and Exp_3 were conducted in the same CSG, with structural parameters that differed 
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significantly from those of the CSG used for Exp_1. Since the model includes many 

greenhouse-dependent parameters, such values used in Exp_1 may have been closer to actual 

conditions. 

 

The simulated CSG climates did not show significant differences compared to the simulated 

results of the CSG climate model presented in Chapter 4, which was consistent with the 

research conducted by Van Henten (1994a). In the evaluation of the CSG climate model, 

measured crop states were used as inputs, whereas in the integrated model, they acted as 

outputs. Meanwhile, during the later stages of crop growth, the simulated crop states showed 

significant positive deviations from the measurements, especially in terms of the leaf area 

index. This indicates that the outputs and overall performance of the CSG climate 

simulations are not highly sensitive to disturbances in crop inputs, which may explain why 

most greenhouse climate models set crop status as a fixed value (R. Liu et al., 2021; Vanthoor, 

Stanghellini, et al., 2011). 

 

Conversely, compared to the individual lettuce growth model, the integrated model 

overestimated the biomass and leaf area index more severely in the later stages of crop 

growth. Obviously, the performance differences originated from prediction errors in the 

greenhouse climate (Figure 5.5, Figure 5.6, and Figure 5.7), more likely due to an 

overestimation of humidity levels that further influenced the specific leaf area of crop leaves. 

Unlike periodic changes in the greenhouse climate, crop growth accumulated these errors, 

leading to a decline in model performance in simulating crop dynamics. In addition, the 

integrated model showed similar performance trends to the crop model, achieving acceptable 

performance in simulating crop biomass in Exp_2 and Exp_3 conducted during the cold and 

cold-warm seasons. Crop production over cold seasons is the primary function of the CSG 

system and, naturally, the scenario that optimal climate control should focus on the most. 

Although the model slightly exceeded the pre-set acceptable range of performance during 

warm seasons, it remains usable. In practice, control algorithms that utilise receding horizon 

(D. Xu et al., 2018) and crop information feedback (Mao, Jin, & Chen, 2018) will further 

enhance the robustness of the model and control system. 
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Figure 5.5 Five-minute averages of the indoor shortwave radiation, air temperature, relative 

humidity, and CO2 concentration, as well as crop dry weight and leaf area index every five 

days, simulated by the integrated model versus the measured values during Exp_1. Data 

were selected from 17:00, 9 April 2020 to 17:00, 9 May 2020. RMSE = 38.9 W m-2 and 

RRMSE = 13.0% for prediction of shortwave radiation at the top of the canopy. RMSE = 2.7 ℃ 

and RRMSE = 14.2% for prediction of indoor air temperature. RMSE = 0.09 and RRMSE = 

17.8% for prediction of indoor relative humidity. RMSE = 12 ppm and RRMSE = 3.0% for 

prediction of indoor CO2 concentration. RMSE = 0.0158 kg m-2 (gro) and RRMSE = 40.7% 

in simulating the crop dry weight of the lettuce. RMSE = 0.7989 (leaf) m-2 (gro) and RRMSE 

= 68.7% in simulating the leaf area index of the lettuce. 
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Figure 5.6 Five-minute averages of the indoor shortwave radiation, air temperature, relative 

humidity, and CO2 concentration, as well as crop dry weight and leaf area index every five 

days, simulated by the integrated model versus the measured values during Exp_2. Data 

were selected from 15:00, 29 November 2020 to 15:00, 18 January 2021. RMSE = 48.8 W 

m-2 and RRMSE = 24.2% for prediction of shortwave radiation at the top of the canopy. 

RMSE = 2.8 ℃ and RRMSE = 26.6% for prediction of indoor air temperature. RMSE = 0.25 

and RRMSE = 30.4% for prediction of indoor relative humidity. RMSE = 100 ppm and 

RRMSE = 17.7% for prediction of indoor CO2 concentration. RMSE = 0.0108 kg m-2 (gro) 

and RRMSE = 28.6% in simulating the crop dry weight of the lettuce. RMSE = 1.3507 (leaf) 

m-2 (gro) and RRMSE = 98.4% in simulating the leaf area index of the lettuce. 
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Figure 5.7 Five-minute averages of the indoor shortwave radiation, air temperature, relative 

humidity, and CO2 concentration, as well as crop dry weight and leaf area index every five 

days, simulated by the integrated model versus the measured values during Exp_3. Data 

were selected from 15:00, 30 January 2022 to 15:00, 11 March 2022. RMSE = 66.3 W m-2 

and RRMSE = 22.9% for prediction of shortwave radiation at the top of the canopy. RMSE 

= 3.2 ℃ and RRMSE = 20.5% for prediction of indoor air temperature. RMSE = 0.26 and 

RRMSE = 32.0% for prediction of indoor relative humidity. RMSE = 56 ppm and RRMSE = 

12.0% for prediction of indoor CO2 concentration. RMSE = 0.0131 kg m-2 (gro) and RRMSE 

= 25.1% in simulating the crop dry weight of the lettuce. RMSE = 1.1436 (leaf) m-2 (gro) 

and RRMSE = 58.5% in simulating the leaf area index of the lettuce. 
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5.3.2 Impact of control schemes on greenhouse production output 

 

Before applying optimal control theory to CSG cultivation, it is necessary to investigate the 

potential for economic improvement by comparing control scenarios determined by different 

growers and controllers in practice. The integrated model developed in this study, as a 

comprehensive, science-based, dynamic model of the CSG-crop system, can conduct this 

work through simulation. The majority of present CSGs are low-tech and lack automatic 

control systems (Qi et al., 2017). Climate control in such standard CSGs is manually 

manipulated and relies on the grower’s experience and even on his labour time. The 

controllers utilised in CSGs are simple, featuring primarily on-off and PI-like mechanisms 

(R. Cao et al., 2020; X. Yang, Zhu, Jiang, Huang, & Li, 2014). In contrast to multi-span 

greenhouses, where climate controllers manage all climate conditioning equipment through 

24-hour setpoints of greenhouse climates and control constraints of equipment (Aaslyng, 

Lund, Ehler, & Rosenqvist, 2003; management, 2024; Priva, 2024), the CSGs have fewer 

controllable elements and typically directly set points for each device, employing a simpler 

control logic. Moreover, indoor temperature is the primary focus of CSG climate 

management, and humidity control not subject to temperature regulation is often completed 

within an extremely short time frame. Thus, four control schemes commonly used in 

practical CSG production, including the manual control, timer control, on-off control, and 

proportional control, were used to do the modelling exploratory. The aim was to assess the 

impact of different climate control scenarios on the outputs of the CSG cultivation. 

 

To accomplish this, test scenarios were selected from a period of 10 consecutive days in the 

second half of Exp_3. This 10-day period was representative, covering a range of weather 

conditions from cold to warm, during which the thermal blanket and vents required daily 

operation. During this period, the crop status was also ideal, ensuring strong interactions 

between the greenhouse climate and crops, and allowing the integrated model to perform 

well in simulating lettuce growth. The control schemes are detailed as follows: 

 Manual control: CSG climate control was supervised by the grower, with 

adjustments of the thermal blanket, roof and side vents achieved entirely by hand. 
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The manual control strategy used for comparative analysis originated from the 

actual operations conducted in Exp_3. 

 Timer control: The roof vent was fully opened from 11:00 to 14:00, denoted as 

Uvent,r = 1; during other times, it was completely closed, thus Uvent,r = 0. The side 

vent remained continuously closed, thus Uvent,s = 0. The thermal blanket fully 

covered the south roof from 16:30 to 08:00 the next day, indicated by Ub = 1; during 

other times, it was completely rolled up, thus Ub = 0. 

 On-off control: When Xt > 27 ℃, Uvent,r = 1; when Xt ≤ 23 ℃, Uvent,r = 0; when 23 

< Xt ≤ 27 ℃, no actions. When Xt > 30 ℃, Uvent,s = 1; when Xt ≤ 25 ℃, Uvent,s = 0; 

when 25 < Xt ≤ 30 ℃, no actions. When Iout > 50 W m-2, Ub = 0; when Iout ≤ 50 W 

m-2, Ub = 1. 

 Proportional control: 𝑈𝑣𝑒𝑛𝑡,𝑟 = 0.25 ∙ (𝑋𝑡 − 25), 0 ≤ 𝑈𝑣𝑒𝑛𝑡,𝑟 ≤ 1 ; 𝑈𝑣𝑒𝑛𝑡,𝑠 =

0.5 ∙ (𝑋𝑡 − 32), 0 ≤ 𝑈𝑣𝑒𝑛𝑡,𝑠 ≤ 1; When Iout ≤ 10 W m-2, or Iout ≤ 50 W m-2 ∩ Xt ≤ 

20 ℃, Ub = 1; otherwise, Ub = 0. 

 

As shown in Figure 5.8, distinct differences existed in the daily average and accumulated 

values of indoor climate, as well as in the crop output, under different CSG climate control 

schemes over a 10-day period. The largest difference in daily averages of indoor air 

temperature reached 1.6 ℃, corresponding to a maximum relative difference of 10%. For 

relative humidity, the maximum daily average difference was 0.08, also with a relative 

difference of up to 10%. The maximum difference in daily average CO2 concentration was 

37 ppm, with a relative difference of 9%, and the maximum difference in daily accumulated 

shortwave radiation was 0.6 MJ d-1, with a relative difference of 6%. After ten days of 

differentiated greenhouse control, the maximum relative difference in the final crop dry mass 

reached 4%. For standard CSGs, without additional energy-consuming devices, the crop 

production output can serve as a measure of the net revenue from CSG cultivation. Therefore, 

different practical control schemes significantly affected the economic performance of crop 

production in standard CSGs. This emphasises the importance of optimising CSG climate 

management, even in standard CSGs where little seems to be controllable, motivating the 

implementation of optimal climate controls. It was also observed that the CSG system, when 



185 

 

supervised and manually controlled by the grower, yielded the highest crop output, while the 

dry weight of these crops was generally lower than those under other controls over most of 

the period. This indicates potential for further optimisation, both in manual control by 

experienced growers and in rule-based controller setpoints. 

 

Figure 5.8 Comparison of indoor climates and crop production outputs under different CSG 

climate control schemes. The modelling exploratory was conducted based on the greenhouse 

production scenario of Exp_3 from 15:00, 19 February 2022, to 15:00, 1 March 2022. 
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5.3.3 Evaluation of the smoothed integrated model 

 

The integrated CSG climate-crop growth model was smoothed by substituting the original 

formulas with the smoothed equations and introduced parameters in Section 5.2.2. The 

smoothed model was evaluated using the same outdoor climate data and constant and 

greenhouse-dependent parameters as those used in the integrated model. As detailed in Table 

5.4, the smoothing not only enhanced the computational efficiency of the integrated model 

but also generally improved its predictive performance. This contrasts with the findings of 

Vanthoor, Stanghellini, et al. (2011), who reported no discrepancies in output between the 

initial and smoothed greenhouse climate models. Specifically, in Exp_1, compared to the 

initial model (Figure 5.5), the smoothed model maintained or slightly improved its prediction 

accuracy for the four greenhouse climate attributes and two crop states, a trend that was also 

observed in Exp_3 (Figure 5.7). In Exp_2, the smoothed model presented a slight 

performance decrease in predicting shortwave radiation and CO2 concentration, as well as a 

minor increase for humidity and a substantial increase (with RRMSE being reduced from 

26.6% to 23.6%) for temperature predictions (Figure 5.6). The most significant 

improvements were observed in the prediction of crop states, with the RRMSE for predicting 

the total crop dry weight decreasing from 28.6% to 18.7%. 

 

Figure 5.9 presents a five-day sample from the simulation based on Exp_2, comparing the 

trajectories of the simulated CSG climates, crop states, and intermediate variables between 

the initial model and the smoothed model. The smoothed controls of the thermal blanket 

enabled the model to achieve higher accuracy in radiation simulations over a cumulative 

period of 30 minutes during the covering and rolling up events in comparison to controls in 

the initial model, which were assumed to be instantaneously completed and were managed 

through interpolation within the program. Differences in greenhouse air temperature and 

humidity arose due to the two kinds of thermal blanket controls but then disappeared quickly. 

Moreover, the smoothed model showed a slight overall increase in RRMSE for radiation 

predictions, likely due to the offsetting effects of other shortwave radiation related 

smoothing processes. However, these observations do not imply that capturing movements 
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of the thermal blanket is irrelevant to enhancing model performance, given that crop growth 

integrates instantaneous responses to climate dynamics.  

 

The two models exhibited significant differences in the simulation of indoor air temperature 

and humidity during the latter parts of some nights; the initial model tended to overestimate 

these variables, whereas the smoothed model showed closer agreement with the 

measurements. This is most likely induced by the smoothing of the ice layer formation and 

the latent heat flux switches. Correspondingly, during these latter parts of the night, the 

simulated convective heat flux from the internal surface of the south roof to indoor air by 

the smoothed model exhibited lower levels and more stable change curves. The smoothing 

of model descriptions and control inputs finally led to differences in the simulation results 

for crop status between the two models, with the deviation increasing as the simulation 

progressed. The sample was selected from the first half of the lettuce growth cycle, during 

which the smoothed model simulated lower crop states. Based on the experience of model 

calibration in Chapter 3, suppressing crop growth appropriately during the early stages of 

the growth cycle has potential to improve the model accuracy at harvest and achieve a higher 

overall performance. As indicated by this empirical rule, the smoothed model performed 

substantially better in predicting crop states during Exp_2 (Table 5.4). 

 

Table 5.4 RRMSE of the smoothed integrated model for predicting CSG climates and crop 

states across the three validation experiments. 

 

Model states 
RRMSE 

Exp_1 Exp_2 Exp_3 

I 12.9% 25.2% 23.5% 

Xt 14.2% 23.6% 20.5% 

Xh 17.8% 29.6% 31.9% 

Xc 3.0% 18.0% 12.1% 

Xd 40.4% 18.7% 24.1% 

LAI 68.5% 82.2% 56.5% 
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Figure 5.9 Sample of the simulated greenhouse climate, crop state and intermediate variable 

trajectories by the integrated mode and its smoothed version, along with the measured 

climate states. The sample simulations span from 15:00, 10 December 2020, to 15:00, 15 

December 2020, during Exp_2. 
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5.3.4 Applicability, limitations, and improvement directions 

 

This study developed an integrated CSG climate-crop growth model by combining the 

lettuce growth model and CSG climate model presented in previous chapters, accompanied 

by thorough validation. The model demonstrated satisfactory accuracy for optimal control 

and identified the opportunities for economic improvement of the standard CSG production 

systems. To further improve computational efficiency and adaptability, the model 

descriptions and control inputs were smoothed, resulting in enhanced performance. This 

represents the first instance of a process-based integrated model, as well as its smoothed 

version, that comprehensively simulates the CSG lettuce production process with acceptable 

accuracy and high computation efficiency for control purposes. 

 

Similar to the lettuce growth model, the integrated model tended to overestimate biomass 

near harvest, but with greater deviations since it accumulated the effects of the greenhouse 

climate prediction errors. The potential directions for model accuracy improvement are as 

follows. First, the buffer dependent inhibition function for canopy assimilation needs to be 

optimised to remain effective at high dry matter levels. Second, since the performance in 

humidity predictions is notably poorer, and model smoothing has not led to a significant 

improvement, it is crucial to emphasise the optimisation of vapour flux descriptions. Zhou 

et al. (2023) employed a particle filter to calibrate five parameters of a process-based 

greenhouse climate-tomato model. This approach successfully reduced the RRMSE for air 

vapour pressure predictions from 40.7% to 16.4%, offering a potential method for model 

accuracy improvement. Third, distinguishing the crop growth responses to direct and diffuse 

radiations, while also differentiating these radiations in greenhouse climate simulations.  

 

To further improve the universality of the model, one could consider converting the energy 

balance equations of the south and north roofs to differential equations. The computational 

efficiency losses caused by increased model dimensions can be compensated by defining 

appropriate surfaces and layers of the CSG objects. The smoothing process introduces 

numerous parameters into the model, which can lead to uncertainty in the predictions (Payne, 
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van Henten, & van Mourik, 2024) and must be carefully calibrated to boost accuracy and 

stability. Control inputs of the smoothed model will utilise data in the form of state switching 

points. Additionally, combining machine learning technology with process-based model 

development, especially in terms of model structure optimisation and parameter 

identification (Y. Guo, Zhao, Zhang, Wang, & Chow, 2021; Zhou et al., 2023), has 

considerable potential to improve the accuracy, computational efficiency, and generalisation 

of the model. 

 

Although mechanistic models inherently possess high computational efficiency, it is 

favourable to work with a simpler yet relatively high-precision system model (Van 

Ooteghem, 2010), especially for on-line controls. Given that the developed integrated CSG-

crop model already employs as few state variables and outdoor climate inputs as possible, 

and greenhouse control inputs are essential, the potential simplification of the integrated 

model should primarily focus more on modifying intermediate (auxiliary) variables based 

on sensitivity analysis. Setting some intermediate variables as constants can reduce the 

number of computational processes and further enhance simulation efficiency. The method 

for simplifying the integrated model, as well as its impact on model performance, will be 

explored in the future study. 

 

5.4 Summary 

 

An integrated model of CSG climate and crop growth for control, along with its smoothed 

version, has been meticulously developed and rigorously validated. The integrated CSG 

climate-crop growth model provides a comprehensive depiction of the entire CSG lettuce 

production process, elucidating the influence of outdoor climate, greenhouse structure, and 

greenhouse controls on the dynamics of indoor climate and crop state. Its formulation 

involved the amalgamation of the lettuce growth model and CSG climate model developed 

in previous chapters, harmonizing all their state variables into a cohesive and unified 

description. 
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The integrated model was validated using data from three different seasons, two CSGs with 

different structural parameters, and three lettuce cultivation scenarios. It demonstrated an 

overall satisfactory performance for optimal control, with RRMSE being 13.0-24.2% for 

predicting shortwave radiation at the top of the canopy, 14.2-26.6% for indoor air 

temperature, 17.8-32.0% for relative humidity, 3.0-17.7% for CO2 concentration, and 25.1-

40.7% for crop dry weight of the lettuce throughout the entire growth cycle. Exploratory 

modelling revealed that implementing different practical control schemes over a 10-day 

period could lead to a 4% difference in the final crop dry mass and net economic return in 

standard CSGs. This highlights potential for further optimisation in both manual control and 

controller setpoints and motivating the application of optimal control theory to the standard 

CSG cultivation. 

 

To enhance computational efficiency and adaptability of the integrated model, model 

smoothing, particularly of conditional statements and control inputs, was performed.  The 

smoothed model exhibited a general improvement in predictive performance, notably in 

predicting crop states, with the RRMSE for total crop dry weight being decreasing from the 

initial 28.6% to 18.7%. The integrated CSG-crop model, along with its smoothed version, 

will serve as a foundation for investigating the optimally controlled CSG systems. 
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Chapter 6 

 

Event-driven receding horizon optimal control of 

Chinese solar greenhouse climate 

 

Based on the opportunities for economic improvement in standard CSG cultivation identified 

in Chapter 5, this chapter presents an optimal climate control system for crop production in 

a standard CSG without a local controller. The control algorithm employs an event-driven 

receding horizon design with real-time feedback to enhance system robustness and ensure 

user-friendliness. Three optimal control approaches, along with grower-supervised control, 

will be evaluated through comparative simulation trials. 
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6.1 Introduction 

 

In practical production, climate control for CSGs is mainly based on experience and 

implemented through manual operations or simple on-off and PI-like controllers (R. Cao et 

al., 2020; X. Yang et al., 2014). These control strategies have significant potential for 

optimisation. For example, in a CSG with standard configurations, adopting different 

practical control schemes can result in a 4% difference in net revenue within just 10 days 

(see Chapter 5). Given the enormous scale of CSG cultivation (see Chapter 4), any 

improvement in control efficiency can lead to substantial economic growth in the industry. 

Therefore, optimising greenhouse climate control is essential. Although the investigations 

into control optimisation can assume potential application scenarios, it is crucial for these 

approaches to be based on the current state of the industry, target specific greenhouse 

production systems, and consider user acceptance. Meeting these requirements can drive the 

practical application of optimised control approaches, ultimately benefiting the industry 

economically. 

 

The greenhouse industry has explored numerous approaches for climate control, aiming to 

improve economic performance (Golzar, Heeren, Hellweg, & Roshandel, 2021), enhance 

energy efficiency (Körner & Van Straten, 2008; Lin et al., 2021), or optimise controller 

performance (Bennis, Duplaix, Enéa, Haloua, & Youlal, 2008). These approaches fall into 

different control theory classifications: classical control, such as proportional-integral-

derivative (PID) control (Su, Yu, & Zeng, 2020); modern control, including optimal control 

(Van Straten et al., 2010) and model predictive control (MPC) (Lin et al., 2021); intelligent 

control, such as neural network method (Ido Seginer, 1997) and fuzzy control (Castañeda-

Miranda, Ventura-Ramos, del Rocío Peniche-Vera, & Herrera-Ruiz, 2006); as well as hybrid 

control, for example neural networks based on PID control (Qu, Ning, Lai, Cheng, & Mu, 

2011). Each method is designed to meet different automation control needs and controller 

design considerations. The sustainable development of the greenhouse industry lies in 

maximising the economic benefits of crop production. From the perspective of greenhouse 

climate management, this requires balancing the operational costs of the climate 
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conditioning equipment with the marketable crop product, which falls within the scope of 

optimal control. Greenhouse production systems are multi-input multi-output (MIMO) 

systems, where external weather and greenhouse controls influence greenhouse states, and 

the climate and crop states interact with each other. PID control, based on transfer functions, 

is suited for single-input single-output (SISO) systems and relies on the designer’s 

experience for tuning, making it inadequate for handling complex greenhouse control 

problems (Su et al., 2020). In contrast, optimal control uses state-space methods with first-

order differential equations to describe system dynamics and set optimisation goals, enabling 

effective MIMO system control. Furthermore, the theoretical framework of optimal control 

can integrate artificial intelligence algorithms during the optimisation phase (Jin et al., 2020) 

and utilise data-driven models for system description (Mahmood, Govindan, Bermak, Yang, 

& Al-Ansari, 2023), demonstrating strong compatibility. Compared to purely intelligent 

control algorithms, optimal control, typically employing process models, offers greater 

interpretability and generalisation capabilities in addressing control and optimisation 

problems. Meanwhile, it has a stronger capability to handle the constraints explicitly 

(Morcego et al., 2023). As a result, optimal control theory is highly favoured in greenhouse 

climate control and has seen significant development in recent years. 

 

Compared to conventional control, optimal control can significantly improve the production 

efficiency of greenhouse systems. For instance, in greenhouse tomato production, optimal 

control can improve energy efficiency by 8% (Tap, 2000), reduce control costs by 20% (W.-

H. Chen et al., 2022), and boost net economic returns by up to 27% (Chalabi et al., 2002a). 

Additionally, equipping greenhouses with more climate regulation devices can provide 

further opportunities for optimisation, improving net profits up to 32% in greenhouse lettuce 

production (Dan Xu et al., 2018). However, due to uncertainties in the system model and 

weather forecast, optimal control aiming to achieve the global optimum over the entire crop 

growth cycle cannot be directly applied in practice. This limitation has led to the 

development of various optimal control algorithms and systems for robust practical 

application. These algorithms implement feedback through a receding horizon to achieve 

closed loop control, known as suboptimal control or MPC. Both optimal control and MPC 
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aim to maximise or minimise control functionals based on models (Mayne, 2014; Van Straten 

et al., 2010), with the primary difference being the control horizon for optimisation. Their 

hierarchical relationship remains under discussion. This study proposes that MPC is a 

specific implementation of optimal control theory, where optimal control theory provides 

the fundamental mathematical framework and methods, while MPC applies this theory to 

practical prediction and control problems in the greenhouse crop production process.  

 

Specifically, to put optimal control into practice, Van Beveren et al. (2015) developed an 

optimisation framework for greenhouse heating and cooling that allows growers to modify 

indoor climate bounds, potentially reducing energy consumption by 47% in heating and 15% 

in cooling, with a 10% reduction in CO2 injection. W.-H. Chen et al. (2022) developed a 

novel nonlinear model predictive control framework for greenhouse climate control to 

minimise the total control cost mainly coming from energy use. In order to deal with rapidly 

fluctuating disturbances of external inputs, Van Henten and Bontsema (2009) proposed a two 

time-scale decomposition for the optimal control problem in greenhouse climate 

management based on singular perturbation theory. This hierarchical approach was also 

employed by Tap (2000) for tomato cultivation and extended by D. Xu et al. (2018) with 

online parameter estimation for generating an adaptive controller. In addition, Kuijpers et al. 

(2022) found that a receding horizon of 15 minutes contributed to the mitigation of the effect 

of weather prediction uncertainties on the performance of the optimally controlled 

greenhouses. However, these optimal control approaches primarily address the climate 

management of multi-span greenhouses, with limited research on CSGs that have significant 

differences in greenhouse structure and supporting equipment. In order to effectively apply 

optimal control theory to practical CSG cultivation, it is necessary to investigate optimal 

control systems of CSG climate based on models that explicitly describe the entire 

greenhouse crop production process specific to CSG and develop user-friendly optimal 

control algorithms that meet practical industry needs. 

 

A pilot study on the optimal control system for CSG climate management was conducted by 

Dan Xu et al. (2018). They applied a two time-scale receding horizon optimal control to a 



196 

 

high-tech CSG cultivating lettuce. The study investigated the economic improvements by 

introducing an online controller in combination with the additional supply of heat, CO2, 

ventilation, and artificial light. The CSG-crop model used in this study was adapted from 

Van Henten (2003). The main addition to the original scheme of Van Henten (1994a) was 

the introduction of the state of the north wall temperature as well as control inputs of the 

thermal blanket and artificial lighting. However, this study did not focus on the control 

optimisation of the standard CSG itself, which constitutes the majority of CSGs and typically 

involves only the thermal blanket and ventilation openings without a local controller. Thus, 

although this study contributes to the theoretical development of CSG optimal control, the 

developed control algorithm may not be applicable to most CSG production systems. 

Meanwhile, the potential for improving the economic performance of crop production inside 

standard CSGs by using optimal climate control remains to be explored. 

 

The optimal control systems reported so far have not yet been implemented in commercial 

greenhouses (Van Beveren et al., 2015). This fact is partly due to the lack of corresponding 

hardware support for controllers. Another crucial factor is that growers lack confidence in 

optimal control or are reluctant to accept the decision support system (DSS) working modes, 

which mainly depend on control algorithms. For the development of an optimal climate 

control system tailored to standard CSGs, the optimal control algorithm is expected to 

possess the following characteristics: 

1. Target CSGs lacking local controllers and reliant on manual control. 

2. Designed for decision support, delivering grower-accepted and efficient guidance 

for climate control decision-making. 

3. Focused on the grower, fully considering the grower’s control objective, acceptable 

labour input, and available manual operations. 

4. Ensure the robustness of the control system, even accommodating growers who 

sometimes choose not to follow the control action advice. 

 

In summary, a user-friendly optimal climate control system for crop production in a standard 

CSG without the local controller is currently unavailable. The objective of this chapter is to 
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develop, analyse, and evaluate such a system. The process-based integrated model of CSG 

climate and crop growth presented in Chapter 5 demonstrated acceptable simulation 

accuracy and high computation efficiency, making it a suitable basis for the optimal control 

system. Consequently, the system development will focus on formulating the optimal control 

algorithm. This algorithm employs an event-driven receding horizon design with real-time 

feedback to enhance system robustness while ensuring user-friendliness. Next, a 

comparative study will be conducted between three control approaches: ideal optimal control, 

open loop optimal control, and control based on the grower’s experience. These comparative 

simulations aim to address the research question: What is the potential economic 

improvement of a standard CSG using optimal control compared to conventional control 

supervised by the grower? The feasibility of implementing closed-loop optimal control will 

be investigated, addressing the following research question: To what extent can the 

efficiency of CSG production achieved by optimal control be realised in practical production? 

Finally, the study will discuss the simplification of the system model, methods for solving 

the optimal control problem, limitations of the research outputs, and future research 

prospects. This study will provide an optimisation framework for the efficient climate 

management of standard CSGs, promoting the application of optimal control theory in 

practical CSG production. 

 

6.2 Optimal control system formulation 

 

The optimal control system developed in this study is designed for climate management 

during the crop production process of a standard CSG without the local controller. Using an 

event-driven receding horizon design incorporated with real-time feedback, it functions as a 

DSS for growers (Figure 6.1). The system does not replace the current manual control in 

CSG cultivation but provides growers with more efficient, grower-accepted advice for 

climate control decision-making. The development of this system integrates the system 

model with the optimal control algorithm. The optimal control algorithm, consisting of 

optimal control problem definition and the overall control process planning (controller 

design), is centred around the grower, fully considering the grower’s greenhouse production 
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objective, acceptable labour input, and the accuracy of manual operations. 

 

To conduct comparative research and thoroughly explore the economic performance of CSG 

crop production using optimal climate control theory, this study will involve four control 

algorithms, defined as follows: 

 

1. Ideal optimal control: Open loop optimal control where greenhouse control inputs 

are assumed to have continuous adjustment without restriction on operation 

frequency. This approach aims to reveal the maximum potential of production 

performance in standard configuration CSGs. 

2. Open loop optimal control: Open loop optimal control that employs the same 

problem definition as the event-driven receding horizon optimal control, with 

control inputs following the manual control practices of the grower. This approach 

explores the potential of production performance in standard CSGs without the 

local controller. 

3. Conventional control: Climate control supervised by the grower. 

4. Closed loop optimal control: Event-driven receding horizon optimal control with 

real-time feedback, also referred to as model predictive control or sub-optimal 

control. 

 

Figure 6.1 The event-driven receding horizon optimal control system designed for the CSG 

cultivation. The text blocks are design elements, and the dashed lines are information flows. 
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6.2.1 System model 

 

The integrated CSG climate-crop growth model developed in Chapter 5 serves as the system 

model for the optimal control of this study. According to the model descriptions, the CSG 

lettuce production process is a MIMO system with numerous inputs and outputs. Among 

these, greenhouse controls, including the thermal blanket Ub, roof vent Uvent,r, and side vent 

Uvent,s, are the decision variables for the optimal control system. For a given CSG and a 

specific cultivation scenario where the greenhouse-dependent input parameters are fixed, the 

optimal control determines the optimal trajectories of greenhouse controls mainly based on 

external climate inputs. 

 

6.2.2 Optimal control algorithm 

 

6.2.1.1 Definition of optimal control problem 

 

Control objective 

 

The objective of the optimal control is to maximise the net economic return of CSG lettuce 

cultivation. However, the energy consumption for operating the thermal blanket and 

ventilation openings is negligible, and standard CSGs lack additional energy-consuming 

climate conditioning equipment. In this context, it is unnecessary for the control to 

continuously balance the benefits of crop production against the operating costs of the 

climate conditioning devices. As a result, the cost function can be simplified to focus solely 

on maximising the crop yield, specifically the fresh weight of the lettuce heads. It is possible 

to measure crop economic return by yield in the Chinese agricultural product market, 

especially when selling soil-cultivated lettuce in bulk. The fresh weight of the lettuce heads 

is assumed to be proportional to their dry weight, which can be described as 

 

 𝑋ℎ𝑓𝑤 = 𝑐ℎ𝑓𝑤 ∙ 𝑋𝑑 ∙ (1 − 𝜎𝑟) (6.1) 
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where Xhfw [kg m-2 (gro)] is the head fresh weight of the crop, chfw [-] is the ratio of head 

fresh weight to head dry weight of the lettuce crop. As reported in Chapter 4, in all three 

validation experiments conducted with soil cultivation, the average water content of the 

lettuce heads was 93.8%. Therefore, chfw takes 17.5 in this study, which is lower than the 

ratio of 22.5 measured by Van Henten (1994a) in hydroponic cultivation. 

 

Then, the cost function described in Eq. (2.3) can be converted as 

 

 𝐽(𝑈) = 𝑋ℎ𝑓𝑤(𝑋, 𝑌, 𝑈, 𝐷, 𝑃, 𝑡, 𝑡0, 𝑡𝑓) (6.2) 

 

Eq. (6.2) asserts that for the climate management of standard CSGs, maximising crop yield 

is equivalent to maximising net revenue of CSG crop production. Meanwhile, the problem 

definition does not take into account the risk of commercial value reduction of lettuce 

products due to excessive individual plant weight or aging. Before the initially anticipated 

crop harvest time, which is also the final time targeted by the optimisation, growers are 

allowed to terminate cultivation activity in a timely manner based on observed and simulated 

crop states. The problem can then be described as determining the open loop control strategy 

to maximise the crop yield within a fixed time frame. According to Eq. (3.24), there is a 

negative correlation between the root ratio and the crop dry weight. Consequently, referring 

to Eq. (6.1), the yield of the lettuce is positively correlated with its total dry weight. This 

implies that maximising the output (i.e., crop dry weight), yield, and net revenue of the CSG 

crop production process converge towards the same objective when solving the optimal 

control problem. 

 

Control constraints 

 

In ideal optimal control, the control variables are constrained by the following inequations: 

 

 0 ≤ 𝑈𝑏(𝑡) ≤ 1 (6.3) 
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 0 ≤ 𝑈𝑣𝑒𝑛𝑡,𝑟(𝑡) ≤ 1 (6.4) 

 

 0 ≤ 𝑈𝑣𝑒𝑛𝑡,𝑠(𝑡) ≤ 1 (6.5) 

 

In open loop optimal control and event-driven receding horizon optimal control, which are 

designed for manual control, the control inputs are subject to the grower’s acceptable labour 

input and the accuracy of manual operations. The control actions for the thermal blanket are 

limited to twice per day and kept in fully opened or closed condition. Similarly, the vents are 

designed to be operated twice daily, with the roof vent opening before the side vent. The 

aperture of vents can be operated at five levels. A basic rule lies in that the thermal blanket 

and vents cannot be used simultaneously. The available control magnitudes are as follows: 

 

 𝑈𝑏(𝑡) = {0,   1} (6.6) 

 

 𝑈𝑣𝑒𝑛𝑡,𝑟 = {0,   
1
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 𝑈𝑣𝑒𝑛𝑡,𝑠 = {0,   
1
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,   
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4
,   1} (6.8) 

 

State constraints 

 

The developed lettuce growth model responds to a broad range of greenhouse climates, 

including air temperature with extreme conditions, humidity, CO2 concentration, and 

shortwave radiation, and even works with sub-zero temperature inputs. The process model 

integrates this crop model, inheriting its characteristics and capabilities. It has been 

thoroughly validated across various seasons and can effectively address the occurrence of 

extreme greenhouse climates. On the other hand, as stated in Chapter 3, extreme climate 

conditions frequently occur in CSGs with inadequate climate conditioning, which cannot be 

avoided even with optimal controls. Thus, for most climate states, we set broad bounds that 
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comply with physical laws and only pay attention to high temperatures as the model 

demonstrated greater tolerance to them, allowing the system model to play a leading role in 

decision-making. These bounds for the optimal climate control of the CSG cultivation 

scenario in Exp_3 are shown in Table 6.1. 

 

As mentioned in formulating the control objective, although the growers can advance or 

delay the harvest time during the practical production process supported by the optimal 

control system, the final time (harvest time) is fixed in solving the optimal control problem. 

The control system does not optimise the final time, and there are no constraints on the 

terminal crop state. Note that if the lettuce is required to be harvested after being fully grown 

with a fixed terminal crop dry weight, the problem will convert to one with free final time 

(Dan Xu et al., 2018), which would not bring convenience or improve yield to the process 

considered. 

 

Table 6.1 Climate state constraints for optimisation 

 

State variable I [W m-2 (gro)] Xt [℃] Xh [-] Xc [ppm] 

Lower bound 0 3 0 0 

Upper bound 1200 35 1 1500 

 

6.2.1.2 Event-driven receding horizon optimal control 

 

Open loop optimal control is not practical for direct application in actual greenhouse 

production due to the uncertainties in the underlying process model and weather forecasting. 

To address these prediction errors and enhance system robustness while ensuring user-

friendliness, an optimal control algorithm employing an event-driven receding horizon 

design with real-time feedback was proposed (Figure 6.1). Unlike previous studies (Tap, 

2000; Van Henten, 1994a; Van Ooteghem, 2010; Dan Xu et al., 2018), the horizon receding 

is triggered subjecting to the control actions of the thermal blanket, roof vent, and side vent, 
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rather than at fixed and relatively short time intervals, thereby making it event-driven. 

Furthermore, to prevent frequent updates to decision recommendations within a single day 

and enhance user-friendliness, a deviation assessment between simulated and measured CSG 

climates has been incorporated into the event-driven receding horizon trigger mechanism. A 

forced repetition of solving the optimal control problem must be performed before the last 

control action of the day to ensure control efficiency. 

 

In this system, the closed loop is realised by performing the model based receding horizon 

optimal control. The initial climate states for solving the optimal control problem within the 

current control horizon are based on real-time climate measurements at the start of this 

horizon. Meanwhile, the initial crop state is derived from the simulated crop state, which is 

based on the measured crop state at the transplanting date and the measured climates from 

the beginning of the growth cycle to the start of the current horizon. Thus, the real-time 

feedback of greenhouse climates contributes to triggering the computational solving for the 

forward horizon receding and supports determining the initial states. Feedback endows the 

control system with solid robustness so that subsequent decisions can be effectively 

determined even if growers do not follow recommended control actions during some periods. 

 

Figure 6.2 illustrates the specific steps taken in implementing the event-driven receding 

horizon optimal control with a closed loop. More information is provided below. The 

measured initial states at t0 include indoor air temperature, relative humidity, CO2 

concentration, crop dry weight, and LAI, while other initial state variables are estimated. 

Weather predictions cover outdoor horizontal solar radiation, air temperature, relative 

humidity, CO2 concentration, and wind speed. The default receding control horizon ΔH starts 

at 2-3 days and shortens near harvest. Control actions derived from the optimal control 

trajectories and to be executed are denoted as ui, where i counts the actions actually executed 

from the start of the crop growth cycle. At the moment ti, which should be prior to executing 

ui and after executing ui-1, a check is conducted for any significant deviations to determine 

whether an updated calculation should be performed. If triggered, this moment ti becomes 

the starting point of the new control horizon. 
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Figure 6.2 Overall control process planning of the event-driven receding horizon optimal 

control. 
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Indoor climate elements involved in the deviation judgment include air temperature, 

humidity, and CO2 concentration. If the predicted value of any of these climates significantly 

deviates from the actual value, it triggers the horizon receding. The specific thresholds for 

deviation should, at the most basic level, accommodate the measurement accuracy of the 

sensors. For example, the thresholds can be set at 2 ℃ for temperature, 0.1 for humidity, and 

100 ppm for CO2. If the deviation does not exceed the threshold, then ui is prepared for 

execution, and ui+1 is derived from the optimal control trajectory for the current control 

horizon starting from ti-1. The control system solves the optimal control problem within ΔH 

starting from ti, determining the optimal control trajectories for this horizon. The updated 

computation does not change the imminent control action ui, but only updates ui+1 and its 

subsequent actions. This ensures that the grower can execute ui at the scheduled time and 

accurately know the timing of ui+1 after the execution of ui, thereby facilitating time 

management. The control system stops problem-solving after determining the last control 

action before harvesting. 

 

The control system communicates updated climate control recommendations to the grower 

as part of a DSS. In most cases, the advice includes actions for managing the thermal blanket 

and vents within a single day, derived from the optimal control trajectories over the control 

horizon. Except for the optimal control trajectories generated at the initial time of the growth 

cycle, where only the first control action is guaranteed to be executed, the execution of the 

first two control actions from trajectories computed at subsequent times is guaranteed. All 

recommended control actions by the DSS occur during the day, with no actions are taken at 

night. The grower receives the decision advice for the next day in the evening, with the 

possibility of updates during the following day if necessary. 

 

As stated above, the event-driven receding horizon optimal control follows the practices of 

growers and meets the requirement for manual control. It tries to trigger horizon receding in 

response to each control action, providing appropriate opportunities for updating the solution 

of the optimal control problem and ensuring control efficiency. Moreover, the event-driven 

mechanism reduces time intervals between the control actions to be updated, particularly 
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ui+1, and the solving time. This enables optimal control trajectories to be generated based on 

more accurate weather predictions and less accumulation of system model errors, benefitting 

the optimality of updated control actions. The event-driven approach provides a balance 

between robustness and user-friendliness for applying receding horizon optimal control in 

CSG climate management. 

 

6.3 Results 

 

6.3.1 Ideal optimal control versus grower  

 

In the ideal optimal control scenario, it was assumed that the thermal blanket and roof and 

side vents could be continuously adjusted and activated at any time, which can be achieved 

with a well-designed local controller paired with limiters. Additionally, there is no priority 

differentiation between roof and side ventilation openings to meet the potential need for 

rapid ventilation. Therefore, besides adhering to the path constraints and dynamics defined 

by the system model, the optimisation control solution must also address the rule that the 

thermal blanket and vents cannot be used simultaneously, as well as the constraints of the 

greenhouse climate states, especially for the indoor air temperature. In the following case 

studies, the ideal optimal control problems were solved within a control horizon of 24 hours, 

and the optimisation time step was set to 30 minutes. 

 

Figure 6.3 depicts the control and state trajectories of CSG crop production under ideal 

optimal control and grower empirical control during a specific day in Exp_3, from 15:00 on 

7 March 2022 to 15:00 on 8 March 2022. With ample biomass present in the crops, there 

was no opportunity for photosynthesis inhibition. Consequently, the ideal optimal control 

reduced the indoor air temperature as much as possible during the night to reduce respiration 

while ensuring it did not drop below the lower bound. Therefore, under the optimal control 

regime, natural ventilation was consistently executed from 15:00 to 17:00, with varying vent 

openings ranging from 6% to 100%. In contrast, the grower closed the vents entirely by 

16:00. This disparity contributed to consistently lower night temperatures and higher 
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biomass in optimal control. Furthermore, increased ventilation facilitated the introduction of 

outdoor CO2, thereby supporting photosynthesis. On the other hand, the grower completely 

covered the thermal blanket on the south roof from 17:05 until 7:50 the following day. In 

comparison, optimal control covered 51% at 17:30, 41% at 18:00, 2% at 18:30, and fully 

covered by 19:00, with complete uncovering at 8:00 the next day. Compared to the grower 

control, the optimal control allowed the crops about two additional hours of light exposure 

for photosynthesis around sunset. Since the control inputs at integration moments were 

obtained using linear interpolation in the program, the optimal control also tended to uncover 

the blanket earlier the next morning. All optimised greenhouse controls around sunset were 

scheduled to provide the crops with higher light intensity and CO2 levels, as well as lower 

night temperatures, thereby enhancing photosynthesis, reducing respiration, and augmenting 

biomass. 

 

During the photosynthetic period (Figure 6.3), the ideal optimal control employed longer 

ventilation times and simultaneously opened both roof and side vents around noon to 

enhance ventilation. As a result, the air temperature and humidity inside the optimally 

controlled CSG were lower than those in the grower controlled CSG for most of the day, 

with an average difference of 2.8 °C and 0.09, respectively. Meanwhile, the CO2 

concentration was higher, with an average difference of 28 ppm. These optimal control 

strategies and resulting indoor climate dynamics were efficient, leading to a sustained 

increase in crop production output difference. Timely CO2 supplementation likely played a 

crucial role. Evidence for this is the rapid drop in CO2 levels in both greenhouses after 

uncovering the thermal blanket, with optimal control gradually opening vents from 8:00, 

while the grower did so at 10:20, only opening the roof vents. Between 8:30 and 10:20, CO2 

levels in the grower controlled greenhouse dropped to a minimum of 203 ppm, indicating 

extreme deficiency, while the optimally controlled greenhouse received timely CO2 

supplementation. The output difference widened during this period, with an average growth 

rate difference reaching 24.8%. Throughout the day, ideal optimal control ultimately 

increased crop dry weight by 1.229×10-3 kg m-2, resulting in a 0.7% improvement in crop 

dry weight and an 8.5% improvement in dry matter accumulation over grower-supervised 
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climate control. On a short time scale, such as a single day, comparing the changes in dry 

matter and yield is evidently more reasonable than directly comparing the terminal states. 

According to Eq. (6.1), the improvement in lettuce yield increment reached 8.6%. This 

means that, compared with conventional control, the maximum potential for improving the 

economic performance of a standard CSG by using optimal control can reach 8.6% during a 

single day. 

 

It should be noted that when there is no photosynthesis inhibition the following day, or when 

the reduction in respiration offsets the increased photosynthesis inhibition due to lower 

nighttime temperatures, the optimal control system tends to lower the nighttime temperature, 

even leading to temperatures below 0 °C. Therefore, state constraints are essential as they 

can compensate for any inadequacies in the system model description. 

 

In warm seasons, unless there were exceptional circumstances like rain, growers did not pay 

much attention to greenhouse climate control. They kept the roof and side vents fully open 

continuously (Figure 4.4). As shown in Figure 6.4, the efforts of optimal control yielded 

minimal results at night and mainly became effective after sunrise. Between 6:30 and 9:00, 

the ideal optimal control reduced window openings to increase air temperature and humidity 

inside the CSG, which also led to a slight decrease in indoor CO2 concentration. This control 

strategy significantly improved the crop growth rate, with increased humidity likely being 

the dominant factor. These optimised controls laid a strong foundation for subsequent 

photosynthesis production, increasing dry matter accumulation by up to 12.5% during the 

photosynthetic period. However, the occurrence of photosynthesis inhibition considerably 

reduced the advantages of optimal control. In other words, the crop state itself, instead of its 

growing environment, was the limiting factor. The overall increase in dry matter 

accumulation due to optimal control throughout the day was found to be 0.8%, with an 

improvement of 0.8% in crop yield increment. Therefore, optimal control had a more 

significant impact in the later stages of crop growth. This does not mean that early-stage 

optimisation was not important, as these relatively small improvements would accumulate 

over time, and their impact would gradually amplify. 
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Figure 6.3 Control patterns and state trajectories of the CSG production process (without 

photosynthesis inhibition) using grower supervised control and ideal optimal control. This 

case study of control performance comparison was based on the data from 15:00, 7 March 

2022, to 15:00, 8 March 2022, during Exp_3. 
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Figure 6.4 Control patterns and state trajectories of the CSG production process (with 

photosynthesis inhibition) using grower supervised control and ideal optimal control. This 

case study of control performance comparison was based on the data from 17:00, 28 April 

2020, to 17:00, 29 April 2020, during Exp_1. 

 

6.3.2 Open loop optimal control versus grower 

 

In open loop control, considering the acceptance of growers, the number of state switches of 

the thermal blanket and vents was limited, and their positions were also fixed to specific 

levels. Therefore, the switching functions established for greenhouse controls in Chapter 5 
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presented an opportunity for efficient solutions to the optimal control problem. By using 

these functions, solving the dynamic control trajectories could be converted into determining 

a minimal number of daily switching time points and the corresponding opening coefficients. 

For example, in Exp_3, there were five optimisation objects for a single day, including the 

switching times of the thermal blanket and the roof vent, as well as the opening levels of the 

roof vent. To further improve computational efficiency, the state and control bounds of the 

optimal control problem were implemented through penalty functions in the program. In the 

following case studies, the open loop optimal control problems were also solved within a 

control horizon of 24 hours, and the optimisation time step was set to 30 minutes. 

 

Figure 6.5 shows the control and state trajectories of CSG crop production under open loop 

optimal control and grower empirical control on a specific day in Exp_3, from 15:00, 19 

February 2022, to 15:00, 20 February 2022. Similar to the ideal optimal control strategy, the 

open loop approach enhanced lighting by delaying the coverage of the thermal blanket and 

uncovering it earlier to enhance photosynthetic production. In terms of ventilation, to boost 

crop production output, the optimal control strategy closed the side vent earlier to raise 

indoor air temperature and humidity, which also resulted in a decrease in CO2 concentration. 

Photosynthetic inhibition occurred around 10:40 and continued until the end of the day cycle. 

Compared with the climate control supervised by the grower, the open loop optimal control 

increased dry matter accumulation and crop yield increment by 1.8% each within a day. In 

the absence of photosynthesis inhibition, both increases reached 3.1% (Figure 6.6). Thus, 

subjecting to the acceptance of growers, the potential economic improvement of crop 

production inside a standard CSG using optimal control over a conventional control reached 

1.8-3.1%. 
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Figure 6.5 Control patterns and state trajectories of the CSG production process (with 

photosynthesis inhibition) using grower supervised control and open loop optimal control. 

This case study of control performance comparison was based on the data from 15:00, 19 

February 2022, to 15:00, 20 February 2022, during Exp_3. The dashed black and green lines 

represent the upper limits of the buffer capacity for diurnal assimilate storage. 
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Figure 6.6 Control patterns and state trajectories of the CSG production process (without 

photosynthesis inhibition) using grower supervised control and open loop optimal control. 

This case study of control performance comparison was based on the data from 15:00, 7 

March 2022, to 15:00, 8 March 2022, during Exp_3. The dashed black and green lines 

represent the upper limits of the buffer capacity for diurnal assimilate storage. 

 

6.3.3 Feasibility of closed loop optimal control 

 

The practical performance of the closed loop optimal control system needs field trials and 

support from a specially designed cloud service system, which is currently unavailable. 

Actually, determining what constitutes optimal climate control for an actual greenhouse 

production system is challenging due to uncertainties in the process model on which optimal 

control solutions are based. Previous studies assumed that the system model was perfectly 

accurate when exploring the potential of optimal control for economic improvement of 

greenhouse production. To test the event-driven receding horizon optimal control algorithm 

proposed in this study and investigate to what extent it can achieve optimal while 

maintaining grower-friendliness, we continued with this assumption and conducted 
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simulation comparison trials. Then, in these trials, the only source of uncertainties came from 

weather predictions. 

 

As detailed in Section 6.2.1.2, the default receding control horizon for the closed loop 

optimal control system was set to 2-3 days. Running the algorithm across each receding 

horizon throughout the crop growth cycle entailed substantial computational costs. To 

facilitate the simulation trials for performance evaluation, we selected two consecutive days 

from Exp_2 as the target production scenario. Algorithm execution over this 2-day horizon 

served as a mapping of the computational process for the entire crop growth cycle, allowing 

for a feasibility assessment of the system. In addition, these two days featured cold outdoor 

weather and represented a typical scenario for CSG cultivation, where the thermal blanket 

and roof vent were used while the side vent remained closed. The control optimisation and 

external inputs spanned but did not exceed these days. During this period, the conditions for 

inhibiting photosynthesis were not present. This absence could reduce excessive temporal 

correlation in control strategy generation and ensure that the application effect of the horizon 

receding in the simulation trials closely approximates that of the controller design. The 

specific steps for conducting the simulation trials are outlined below: 

 

1. Use the ‘lazy man weather prediction’ (Tap, 2000; Van Ooteghem, 2010) to obtain the 

outdoor climate at 5-minute intervals over the target two days. Specifically, it was 

assumed that the outdoor weather, except for shortwave radiation, during the next hour 

was the same as the weather during the past hour. In this way, uncertainties in weather 

predictions were generated with relatively reasonable errors. 

2. Solve the optimal control problem within the two days based on the weather forecast to 

obtain the first control action to be taken, u1 (i.e. covering the thermal blanket in this 

case study). 

3. Repeat solving the optimal control problem at the first half-hour mark after executing 

u1 (denoted as t1), with the control horizon from t1 to the end, to determine u2. Both the 

initial climate and crop states were derived from simulations based on measured weather 

and executed controls from the initial time to t1 (excluding t1). 
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4. Repeat step 3 until the last control action within the 2 days was obtained. 

5. Simulate and compare open and closed loop controls over the two days using actual 

weather conditions. 

 

The differences from controller design of the event-driven receding horizon optimal control 

included using simulation instead sensors for feedback on greenhouse climate information. 

These trials also employed non-fixed receding control horizons, similar to the special 

situation near harvest, and triggered horizon receding without assessing indoor climate 

deviations. Additionally, calculations were updated after executing control actions to 

simplify the optimisation algorithm. Despite these differences, the simulation trials can still 

practice the controller design and explore its robustness in handling weather prediction 

uncertainties. 

 

Figure 6.7 shows the control and state trajectories of CSG crop production under grower 

empirical control, closed loop optimal control, and open loop optimal control over two 

consecutive days in Exp_2, from 15:00 on January 10, 2021, to 15:00 on January 12, 2021. 

The initial crop dry weight was 0.1233 kg m-2, and the final states reached 0.1417, 0.1427, 

and 0.1423 kg m-2, respectively, under the grower, closed loop, and open loop controls. Using 

dry matter accumulation as the performance criterion, the closed loop optimal control 

achieved 98.1% of the efficiency by open loop optimal control, indicating strong robustness 

in handling weather forecast errors. Moreover, compared to grower control, the closed-loop 

optimal control system that can be used in practice increased dry matter accumulation and 

crop yield by 3.2%, resulting in a corresponding 3.2% increase in net revenue. Additionally, 

applying open loop optimal control continuously for two days resulted in a 5.2% increase in 

dry matter accumulation and yield increment of greenhouse crops compared to those in the 

grower-controlled greenhouse.  

 

The event-driven receding horizon optimal control system was designed to focus on the 

grower and ensure user-friendliness. The event-driven mechanism reduces computational 

demand by performing calculations only when specific events trigger them, rather than at 
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regular intervals as in traditional receding horizon control. The system has demonstrated 

robustness in addressing uncertainties and can achieve higher efficiency in greenhouse crop 

production compared to conventional control methods. Therefore, the closed optimal control 

system is feasible for practical application in climate management of standard CSGs. 

 

Figure 6.7 Control patterns and state trajectories of the CSG production process (without 

photosynthesis inhibition) using climate control supervised by the grower, closed loop 

optimal control, and open loop optimal control. This case study was based on the data f from 

15:00, 10 January 2021, to 15:00, 12 January 2021, during Exp_2. 
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6.4 Discussion 

 

Towards grower acceptance, this study investigated an optimal control system for climate 

management of the standard CSG without the local controller. The study makes two main 

contributions. On the one hand, it provides an optimal control model system and optimisation 

framework for manual control of CSGs. The optimal control algorithm employs an event-

driven receding horizon design with real-time feedback, demonstrating that it could provide 

a balance between system robustness and user-friendliness. This system acts as a decision 

support system for growers, showing great potential for practical application. On the other 

hand, this study is the first to reveal the potential of optimal control for improving the 

production efficiency of standard CSGs and its feasibility in practice. The findings confirm 

that optimal control can enhance the production efficiency or economic performance of 

standard CSG cultivation. 

 

6.4.1 Costs of deploying the proposed optimal control system 

 

The observed crop production efficiency improvements in a standard CSG when using 

optimal control systems designed for practical applications are in the range of 1-3%. They 

occurred over a time scale of 1-2 days, and it is foreseeable that these daily gains will 

accumulate throughout the entire crop growth cycle, leading to considerable overall 

economic benefits. The development of optimal greenhouse climate control algorithms and 

systems typically aims to reduce energy consumption, increase crop yields, or improve net 

returns, while also enhancing the robustness of the control system. In addition, this study 

particularly emphasizes user-friendliness. However, evaluating the feasibility of algorithm 

and controller designs should also consider required hardware support. Different algorithms 

necessitate different levels of hardware resources, mainly involving computational power, 

sensors, local controllers, and weather forecasting services. The consideration of hardware 

support costs and the payback period in optimally controlling greenhouse climate has not 

been extensively studied. As intelligent control algorithms are gradually implemented in the 

greenhouse horticulture industry, this area will attract increasing attention. 
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Below an exploratory evaluation of the investment and payback period for the proposed 

closed-loop optimal control system will be conducted based on a hypothetical CSG 

production scenario (Table 6.2). In this scenario, the grower, operating an agricultural park 

with multiple CSGs, is the investor. All CSGs are assumed to have identical structural 

parameters and follow the same cultivation and management practices. With decision 

support for greenhouse climate management, the annual net revenue increase for a single 

CSG is calculated as 0.08×4200×10×5 = 16,800 CNY (Chinese Yuan). Since the decision 

advice is delivered directly to the grower for manual control, there is no need to install local 

controllers. Therefore, the costs of deploying the optimal control system primarily come 

from servers needed for system execution, climate sensors with remote communication 

capabilities installed in each CSG, and commercial weather forecasting services. According 

to survey data, the total cost of these components amounts to 60,000 CNY. In order to recover 

this investment within one year, the number of CSGs using the decision support system 

should be no less than eight, corresponding to a total cultivation area of approximately 5300 

m2. 

 

Table 6.2 A hypothetical CSG production scenario using event-driven receding horizon 

optimal control. 

 

Items value 

Cultivation area of a single CSG 667 m2 

Number of lettuce plants cultivated in a single CSG 4,200 

Number of crop rotation cycles per year 5 

Average duration of each crop growth cycle 45 days 

Reference harvest weight of a single lettuce plant 0.2 kg 

Increase ratio of lettuce yield at harvest 40% 

Yield increase per lettuce plant 0.08 kg 

Selling price of lettuce 10 CNY/kg 

Cost of servers for deploying the optimal control system 30,000 CNY 

Cost of sensors used in a single CSG 10,000 CNY 

Annual fee for commercial weather forecasting services 20,000 CNY 
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6.4.2 Model processing and algorithm selection 

 

To reduce the dimensionality of the model and avoid the excessive sensitivity caused by the 

thin south roof transparent covering, the temperature states of the south and north roofs were 

described using analytical equations. In the process model programming, the solution of 

these analytical equations was nested within the solution of differential equations. The roof 

temperatures, treated as analytical state variables, were determined based on the previous 

differential state values, such as indoor air temperature. These determined values were then 

used to compute those differential states at the current time step. While this approach 

achieved high accuracy in simulations, it incurred a relatively high computational cost. By 

expressing the south roof temperatures as simplified functions of the indoor and outdoor 

climates, a minor reduction in accuracy was observed, but computational efficiency 

increased approximately 10 times. These expressions, detailed in Table 6.3, were 

parameterised using the simulation results of the integrated CSG climate-crop growth model 

for Exp_3. The model simplification also ignored the convective interactions between roof 

surfaces and the air. Despite these simplifications, the integrated model provided a robust 

foundation for generating the optimal control strategy in this study. 

 

Table 6.3 Simplified expressions for the surface temperatures of the south and north roofs. 

 

Symbol Expression Unit 

Tnr,in 𝑋𝑡 ℃ 

Tnr,e 𝑇𝑜𝑢𝑡  ℃ 

Tsr,in 𝑈𝑏 ∙ (𝑋𝑡 − 4.77) + (1 − 𝑈𝑏) ∙ (0.89 ∙ 𝑋𝑡 + 0.11 ∙ 𝑇𝑜𝑢𝑡) ℃ 

Tsr,e 𝑈𝑏 ∙ (𝑇𝑜𝑢𝑡 − 4.80) + (1 − 𝑈𝑏) ∙ (𝑇𝑠𝑟,𝑖𝑛 − 0.16) ℃ 

 

In solving optimal control problems, this study employed a genetic algorithm (GA). On the 

one hand, we implemented CSG controls at certain levels to account for the precision of 

manual operations. Genetic algorithms are effective for addressing discrete control problems. 
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On the other hand, we faced challenges when using sequential quadratic programming (SQP) 

and the pseudospectral collocation method. These issues may have been caused by an 

excessive number of state variables, making the problem unsolvable, or by the insensitivity 

to control objectives that results in ineffective solutions. In complex optimisation problems, 

providing one or more potential optimal solutions as part of the initial population can 

significantly speed up the convergence of a GA. For controlling the climate in standard CSGs, 

the grower’s experiential control served as an excellent starting point. A good initial guess 

is equally essential in other optimisation algorithms, as it can prevent the risk of achieving 

local minima and reduce computation time. For example, a grid search method was 

implemented to provide a proper initial guess for the gradient search in solving the 

greenhouse climate control problem (Van Ooteghem, 2010). Additionally, the use of penalty 

terms to enforce control and state constraints seemed to improve computational efficiency.  

 

Although the efficiency improvements introduced by the optimal control approaches were 

evaluated, they were based on a limited period and data. Future research will focus on 

optimising algorithms to solve optimal control problems of the complex greenhouse system 

using mathematical techniques (I Ioslovich et al., 2009). This includes utilising software like 

TOMLAB-PROPT, which supports both ordinary differential equations and differential 

algebraic equations for state-space descriptions (Rutquist & Edvall, 2010). The aim is to 

improve calculation efficiency further and achieve optimal solutions throughout the entire 

crop growth period. 

 

6.5 Summary 

 

A user-friendly optimal climate control system for crop production of a standard CSG 

without the local controller has been developed and evaluated. Its generation takes the 

integrated CSG climate-crop growth model presented in Chapter 5 as a basis and employs 

an event-driven receding horizon design with real-time feedback to enhance system 

robustness while ensuring user-friendliness. Event-driven means horizon receding is 

triggered subject to the control actions. The control system is expected to serve as a decision 
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support system and provide growers with user-accepted and more efficient advice for 

decision-making in CSG climate control. 

 

Simulation trials were conducted to compare the ideal optimal control, open-loop optimal 

control, closed-loop optimal control, and grower empirical control, aiming to explore the 

crop production efficiency improvement of a standard CSG by using optimal control. 

Throughout a single day, ideal optimal control ultimately increased crop yield increment by 

8.6% compared to grower-supervised climate control, representing the maximum potential 

for economic performance improvement. When following grower practices, the open loop 

optimal control increased dry matter accumulation and crop yield increment by 1.8-3.1% 

within a day. The occurrence of photosynthesis inhibition considerably reduced the 

advantages of optimal controls. Orienting to practical usage, the event-driven receding 

horizon optimal control achieved 98.1% of the optimal efficiency over two consecutive days, 

indicating strong robustness in handling weather prediction uncertainties. Meanwhile, the 

closed loop optimal control system demonstrated a 3.2% higher net revenue than 

conventional control. Therefore, optimal control can significantly enhance the production 

efficiency and economic performance of standard CSGs, and the closed loop optimal control 

system developed in this study is feasible for practical application. 
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Chapter 7 

 

Conclusion 

 

This chapter presents the conclusion and future outlook of this research project.  
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7.1 Conclusion 

 

This project has generated an optimal climate control system for standard CSGs, 

incorporating the development of a required system model and an applicable control 

algorithm. The integrated CSG climate-crop growth model for optimal control, 

comprehensively simulating the CSG crop production process, was developed by combining 

a lettuce growth model responding to a broad range of greenhouse climates and a full-scale 

CSG climate model. This system model was thoroughly validated to have acceptable 

accuracy, with high computational efficiency and strong generalisation. The event-driven 

receding horizon optimal control algorithm was designed for standard CSGs without 

controllers, with a comprehensive focus on the grower, enabling the application of optimal 

control theory into practice. The control system, acting as a decision support system, resulted 

in higher net revenue in CSG cultivation over a conventional control supervised by the 

grower. Thus, the objective of this project has been successfully achieved. 

 

Based on the models, control algorithm, and control system developed in this study, there is 

potential to develop a cloud service system for area-wide management of lettuce production 

in CSGs. By utilising weather forecast service in the region and installing climate sensors 

with remote communication capabilities within the target CSGs, the system can provide 

growers with grower-accepted and more efficient recommendations for decision-making in 

greenhouse climate control. 

 

Below is the summary of the contributions and important findings of this study, organised 

by chapter: 

 

In Chapter 1, we introduced the CSG properties and its standard configuration, challenges 

in production, limitations of conventional climate controls, and the prospect of employing 

optimal control. The motivation of this project was further clarified by comparing the current 

and desired situations, leading to the formulation of the research objective.  
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In Chapter 2, the methodologies, data, and codes that supported the whole research were 

illustrated. Three experiments of lettuce soil cultivation were conducted in two CSGs with 

differing structural parameters across cold, cold-warm, and warm seasons. The effective 

cultivated area, determining the implicit plant density in models, was defined by constraining 

the maximum ground area occupied by a single lettuce plant. The collected data, including 

crop growth indicators, greenhouse climate, outdoor climate, and greenhouse controls, were 

used for model calibration, validation, and control system evaluation in the following 

chapters. In order to ensure representative data and evaluation results, crop data were pre-

processed, and outdoor climates during the three experiments were summarised. The 

selection of mechanistic model types and the phases of model development were outlined. 

Model performance was assessed by comparing measurements with simulation results using 

graphical interpretation and statistical metrics of RMSE and RRMSE. Local calibration used 

data from the lower integration level to parameterise the model by fitting, while global 

calibration was performed at a higher integration level to minimise the RRMSE. The basic 

methods for optimal control system development and problem solving were summarised. 

The initial states and programming for simulations were also presented. 

 

In Chapter 3, we developed a mechanistic lettuce growth model that describes the effects of 

a broad range of greenhouse climates, including air temperature with extreme conditions, 

humidity, CO2 concentration, and shortwave radiation on dynamics of the single state 

variable, structural crop dry weight. The proposed model framework performs two parallel 

sets of mass flows: dry matter accumulation and buffer evolution. The buffer carbohydrates 

flow to growth conversion based on the temperature-dependent sink strength. The inhibition 

of canopy assimilation occurs when the carbohydrate storage approaches the buffer capacity. 

The humidity effects are incorporated by describing stomatal resistance and specific leaf 

area of new leaves. The model was first calibrated at both sub-model and model levels and 

then validated against data collected in three experiments, covering a broad range of 

greenhouse climates. Results demonstrated that the model performance was good and 

acceptable; the simulated crop dry weights closely mirrored the measured values, with the 

RRMSE of 10.5-24.9% and the RMSE of 0.0070-0.0131 kg m-2. The model predicted the leaf 
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area index with an RRMSE of 12.1-54.7% and performed well for the vegetative growth 

stage concerned by commercial production. The photosynthesis inhibition time accounted 

for 27-41% of the total photosynthesis time, indicating that the model framework and 

underlying hypothesis worked in simulations. The developed model, simulating 

instantaneous lettuce dynamics for the potential situation, can be applied to low-tech 

greenhouses with limited climate conditioning capacities and enables optimal control of all 

four climate factors.  

 

In Chapter 4, a process based full-scale climate model of the CSG was developed and 

evaluated. It describes the effects of outdoor weather, greenhouse structure, crop states, and 

greenhouse controls on the indoor climate of a standard CSG, including shortwave radiation, 

air temperature, relative humidity, and CO2 concentration, along with other CSG object 

states. The model description is divided into eleven subsections, and its parameters are 

classified into general parameters and those that depend on the simulated CSG. The model 

describes crop activities specifically targeting lettuce and was thoroughly evaluated in 

scenarios of lettuce production involving two different CSG structures across both warm and 

cold seasons. The model demonstrated acceptable performance. Simulated CSG climates 

closely mirrored the measured values throughout crop growth cycles, with the RRMSE being 

12.7-24.2% for shortwave radiation, 17.5-26.7% for air temperature, 22.7-32.0% for relative 

humidity, and 3.0-10.7% for CO2 concentration predictions. Layering was proved to be 

necessary to describe the temperature dynamics of the north wall and indoor soil. Seasonal 

variations in the shading of the north wall by the north roof and ice layer formation were 

noted. Incorporating these processes could improve the model descriptions. The developed 

CSG climate model can serve as a basis for optimal control because of its high computational 

efficiency, strong generalisation, and sufficient accuracy. 

 

In Chapter 5, an integrated model of CSG climate and crop growth for control, as well as its 

smoothed version, were developed and thoroughly validated. The integrated CSG climate-

crop growth model explicitly describes the entire CSG lettuce production process, detailing 

the effects of outdoor climate, greenhouse structure, and greenhouse controls on the 
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dynamics of indoor climate and crop state. Its generation combined the lettuce growth model 

and CSG climate model developed in Chapter 3 and 4. The integrated model was validated 

using data from three experiments. It demonstrated overall satisfactory performance for 

optimal control, with RRMSE being 13.0-24.2% for predicting shortwave radiation at the top 

of the canopy, 14.2-26.6% for indoor air temperature, 17.8-32.0% for relative humidity, 3.0-

17.7% for CO2 concentration, and 25.1-40.7% for crop dry weight of the lettuce throughout 

the entire growth cycle. Exploratory modelling revealed that implementing different 

practical control schemes over 10 days could lead to a 4% difference in the final crop 

production output in standard CSGs. This motivates the implementation of optimal climate 

controls in standard CSGs where little seems to be controllable. The model was smoothed, 

particularly on conditional statements and control inputs, to improve computational 

efficiency and adaptability further. The smoothed model turned out to have a generally better 

performance, especially in predicting crop states, with the RRMSE for crop dry weight being 

able to decrease from the initial 28.6% to 18.7%. The integrated CSG-crop model, along 

with its smoothed version, will serve as a basis for investigating the optimally controlled 

CSG system. 

 

In Chapter 6, addressing practical industry needs, a user-friendly optimal climate control 

system for crop production of a standard CSG without the local controller was generated and 

evaluated. The control algorithm employs an event-driven receding horizon design with real-

time feedback to enhance system robustness while ensuring user-friendliness. The control 

system acts as a decision support system and is expected to provide growers with user-

accepted and more efficient advice for decision-making in CSG climate control. Simulation 

trials found that, compared with conventional control, the maximum potential for improving 

the economic performance of a standard CSG by using optimal control could reach 8.6% 

during a single day. When subjected to the acceptance of growers, the open loop optimal 

control increased dry matter accumulation and crop yield increment by 1.8-3.1% within a 

day. In terms of addressing weather prediction uncertainties, the event-driven receding 

horizon optimal control achieved 98.1% of the optimal efficiency over two consecutive days, 

indicating strong robustness. Meanwhile, the closed loop optimal control system 
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demonstrated a 3.2% higher net revenue than conventional control. Therefore, optimal 

control can significantly enhance the production efficiency and economic performance of 

standard CSGs, and the closed loop optimal control system developed in this study is feasible 

for practical application. This study provides an optimization framework for the efficient 

climate management of standard CSGs. 

 

This thesis, for the first time, establishes a comprehensive modelling and algorithmic 

framework specifically for climate management in CSG cultivation scenarios, significantly 

advancing the field of process simulation and optimal control in greenhouse production. The 

developed lettuce growth model demonstrates high adaptability, enabling accurate 

simulations across low-tech and high-tech greenhouses, and even plant factories, with much 

of its underlying knowledge transferable to other crops. The developed full-scale CSG 

climate model is applicable across diverse CSG structures in various regions, including 

traditional brick- and soil-walled CSGs, as well as the increasingly popular ones covered 

with flexible insulation materials. The integrated CSG climate-crop growth model, 

describing the CSG lettuce production process from external weather to indoor crop biomass, 

allows for the substitution of crop growth components as needed. These mechanistic models 

not only provide a basis for climate control optimisation targeted in this thesis, but also 

support model-based greenhouse design, exploratory modelling, and system analysis. The 

developed optimal control algorithm is similarly applicable to greenhouse production 

scenarios managed manually or by simple controllers. The process-based models, industry-

informed control algorithm, and the integrated optimal control system perform well overall, 

regarding prediction accuracy, generalisation, computational efficiency, robustness, and 

user-friendliness. Further improvements are anticipated by extending the effects of lettuce 

plant senescence, distinguishing between direct and diffuse radiation, refining vapour flux 

descriptions, conducting parameter calibration and model evaluation across more scenarios, 

incorporating data-driven approaches, simplifying process models, and enhancing the 

method for solving optimal control problems with complex system models. 

 

Meanwhile, this thesis is the first to explore and demonstrate the substantial potential for 
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improving crop production efficiency and economic performance in manually controlled 

standard CSGs through optimising climate management. This output introduces a novel 

direction for enhancing greenhouse productivity in the CSG industry and boosts growers’ 

confidence in adopting optimised control measures. While further evaluation of the benefits 

from optimal climate control throughout the entire crop growth cycle would strengthen the 

evidence, this research advances the implementation of modern and intelligent controls in 

practical CSG cultivation. The developed optimal climate control system does not require 

customised local controllers, is grower-centred, exhibits robustness, and provides efficient 

decision-making support, showing strong potential for practical application. However, 

further improvements in computational efficiency, along with considerations of hardware 

support costs and the payback period, remain critical areas requiring sustained effort. 

Moreover, deploying the developed models, algorithm, and control system in actual 

production settings will be essential to assess whether the models provide sufficient accuracy, 

whether the algorithm offers adequate robustness, the degree to which optimal control 

improves production efficiency, and the overall feasibility of the proposed system. At present, 

no technical barriers impede field testing of this system. 

 

7.2 Future outlook 

  

7.2.1 Model simplification based on sensitivity analysis 

 

Optimal control systems, particularly those implemented online that frequently solve 

optimal control problems, require the system model to be simpler to achieve higher 

computational efficiency while still maintaining accuracy. Setting some intermediate 

variables as constants can be a direction for simplifying the integrated CSG climate-crop 

growth model presented in Chapter 5. A sensitivity analysis can serve as a basis for such 

model simplification (Van Henten, 1994a). In greenhouse horticulture science, sensitivity 

analysis, such as the first-order method (Van Henten, 2003), second-order method (Vanthoor, 

Van Henten, Stanghellini, & De Visser, 2011), or the Fisher information matrix (Van 

Ooteghem, 2010), is mainly used to reveal the relative importance of model elements to the 
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model outputs (Md Shamim Ahamed, Huiqing Guo, & Karen Tanino, 2018; Liang, Hu, 

Batchelor, Qin, & Li, 2018; Van Henten, 1994b; Vanthoor, Van Henten, et al., 2011) and the 

performance of control systems (Van Henten, 2003). The analysis results can then help 

identify which model parameters, external climates, greenhouse controls, and greenhouse 

structure design parameters need careful consideration. However, these studies have never 

advanced the model based on sensitivity analysis, such as through model optimisation, 

simplification, or reduction. The method for simplifying the integrated greenhouse-crop 

model for CSG lettuce production based on sensitivity analysis of intermediate variables, as 

well as its impact on model performance, remain to be explored. 

 

7.2.2 Setpoint optimal control of high-tech CSGs  

 

The generated optimal climate control system in this project is designed for standard CSGs, 

which have only the thermal blanket and vents as the controllable objects, with climate 

control being manually operated. These standard configurations may be insufficient for 

production activities requiring high standards for indoor climate conditions, such as seedling 

cultivation and flower production, in cold regions, or when aiming at year-round production. 

Currently, some newly constructed and commercially operated CSGs tend to be equipped 

with additional energy-consuming devices for light, heat, vapour, and/or CO2 adjustments. 

In such high-tech CSGs, controllers are installed to comprehensively manage these devices, 

thereby increasing control efficiency and reducing labour costs. The high-tech CSG is a 

relative concept, which is extended from the standard CSG with extra on-off type and/or 

continuously adjustable equipment, as well as an automated controller. It has more 

opportunities for control actions than the standard CSG.  

 

An optimal climate control system for high-tech CSGs, with potential for practical 

application, is expected to be designed and evaluated in future work. Firstly, the integrated 

model developed for standard CSGs will be extended for high-tech CSGs by incorporating 

descriptions of extra climate conditioning equipment, such as the heating system, fan-pad 

cooling system, artificial light, external shading screen, etc. Secondly, an optimal climate 
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setpoint control algorithm will be designed. The conventional optimal controller, such as the 

two time-scale receding horizon optimal control system developed for a high-tech CSG (Dan 

Xu et al., 2018), directly issues the control action commands to the local controller at specific 

moments. Instead, the setpoint optimal control system requires the local controller to set 

points for greenhouse climate attributes, along with equipment constraints, enabling the 

system to have lower operational risk and higher applicability. This is because when the 

optimal control generator fails or if there is a disruption in equipment communication, the 

grower will take over control. Compared to local controllers that directly set points for 

equipment, those with setpoints for climate factors and control constraints for equipment are 

more capable of handling the integrated management of various devices. Meanwhile, these 

controllers have become the most commonly used in high-tech greenhouses (Aaslyng et al., 

2003; Stanghellini et al., 2019). 

 

Then, the optimal control problem will be defined with the objective of maximising net 

economic return based on the final time. Receding horizon optimal control will be introduced 

to decrease the impact of uncertainties in parameters, weather predictions and measurements. 

In order to save computation time, two time-scale decomposition within optimal control of 

greenhouse cultivation can be employed (Van Henten & Bontsema, 2009; D. Xu et al., 2019; 

Dan Xu et al., 2018). The fast climate states and slow crop growth states will be distinguished. 

For the equipment offering on-off switching outputs, the control algorithm design should 

avoid frequent on-off switchovers. Furthermore, solving the optimal control problem will 

fully invoke the control logic of the local controller. The economic performances of the 

optimally controlled high-tech CSG will be compared to that of the optimally controlled 

standard CSG, considering the depreciation of any additional equipment. The development 

of the setpoint optimal control system aims to achieve hosted control of high-tech CSGs but 

can also serve as a decision support system, depending on the specific algorithm designs. 

 

7.2.3 Optimal control of CSG climate assisted by data-driven method 

 

In Chapter 4, we provided an overview of data-driven approaches applied in CSG climate 
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simulations. In Chapter 5, we discussed the potential of data-driven methods, such as 

Bayesian inference and machine learning, in optimising the system model structure and 

parameters. With the advancement of big data and artificial intelligence technology, data-

driven methods play an increasingly significant role in modelling and controlling the 

greenhouse crop production process (Zhou et al., 2023). However, the optimal control 

system generated in this study, based on mechanistic models, possesses irreplaceable 

advantages in interpretability, generalisation ability, and handling constraints (Morcego et 

al., 2023). Within the framework of this study, how to introduce data-driven methods to 

enhance model prediction accuracy, control performance, and computational efficiency 

should be an important future research topic. 

 

Here, we propose three potential points of integration: (1) The performance of optimal 

control systems heavily relies on the accuracy of crop models. Although the receding horizon 

computation can mitigate the cumulative impact of climate prediction errors on crop growth 

simulation, the crop model itself, as reported in Chapter 3, also has prediction errors, 

especially around crop harvest periods. Therefore, incorporating a crop state feedback loop 

into the optimal control algorithm, where crop growth simulation can stand at the updated 

and measured initial states, can improve simulation accuracy and control performance. Thus, 

to implement optimal control theory in practical greenhouse cultivation, a low-cost method 

for capturing crop states (mainly morphology) in real-time and without damage is required. 

Image identification, which low-cost industrial cameras can support well, has enormous 

potential to be a solution for crop state acquisition oriented toward CSG climate management. 

Thus, future work is expected to establish and evaluate an optimal CSG climate control 

system assisted by low-cost image identification. (2) Optimising model parameterisation and 

process descriptions using data-driven methods, as well as exploring the possibility of fusing 

‘knowledge’ and ‘data’ to improve computational efficiency. (3) Investigating and 

comparing the advantages and disadvantages of traditional mathematical optimisation 

methods and heuristic optimisation algorithms in solving optimal control problems of CSG 

climate.  
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Furthermore, we prefer to apply these data-driven method assisted optimal control 

approaches to CSGs for fruit-bearing crop production. This is because fruit-bearing crops, 

i.e. tomatoes, have longer growth cycles and more complex growth and development 

processes. Certainly, most of the knowledge gained in this study can be applied to the 

scenario of CSG tomato production. 
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Appendix A Supplementary description of the lettuce 

growth model 

 

A.1 Photosynthesis-light response 

 

The gross assimilation rate of individual leaves AL [kg (CO2) m
-2 (leaf) s-1] can be described 

by a negative exponential photosynthesis-light response curve (Goudriaan & Van Laar, 1994; 

Spitters et al., 1989; Van Ooteghem, 2010) 

 

 𝐴𝐿 = 𝐴𝐿,𝑠𝑎𝑡 ∙ (1 − 𝑒
−
𝜀∙𝑃𝐴𝑅𝑎
𝐴𝐿,𝑠𝑎𝑡 )  (A.1) 

 

where AL,sat [kg (CO2) m-2 (leaf) s-1] is the potential gross leaf assimilation rate at light 

saturation, ε [kg (CO2) J
-1 (absorbed)] is the light use efficiency by photorespiration, PARa 

[W m-2 (leaf)] is the absorbed photosynthetically active radiation (PAR).  

 

On the basis of the photosynthesis-light response of individual leaves, the AL in a specific 

leaf layer located by canopy depth li, that is AL,li, is calculated by substituting PARa for the 

absorbed PAR by this specific leaf layer PARa,li. The PARa,li [W m-2 (leaf)] is described by 

 

 𝑃𝐴𝑅𝑎,𝑙𝑖 = 𝑘𝑃𝐴𝑅 ∙ (1 − 𝑐𝑟,𝑃𝐴𝑅) ∙ 𝐼 ∙ 𝜎𝑃𝐴𝑅 ∙ e
−𝑘𝑃𝐴𝑅∙𝑙𝑖 (A.2) 

 

where cr,PAR [-] is the canopy reflection coefficient for PAR, I [W m-2 (gro)] is the shortwave 

radiation at the top of the canopy, σPAR [-] expresses the ratio of PAR to shortwave radiation, 

kPAR, the extinction coefficient for PAR, is assumed to be constant. To save computing time, 

the direct and diffuse radiations, as well as the sunlit and shaded leaves, are not distinguished. 

Their influences on crop photosynthesis are not involved in this model.  

 

The effect of photorespiration on the light use efficiency is described by (Van Henten, 1994a) 
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 𝜀 =  𝜀0 ∙
𝑋𝑐 − 𝛤

𝑋𝑐 + 2 ∙ 𝛤
 (A.3) 

 

where ε0 [kg (CO2) J
-1 (absorbed)] is the light use efficiency at very high CO2 concentration 

in the absence of photorespiration. Xc [μmol (CO2) mol-1 (air)] is the CO2 concentration of 

the indoor air. The CO2 compensation point deals with photorespiration and dark respiration. 

For simplicity, dark respiration is assumed to be suppressed in the light. Then Г [μmol (CO2) 

mol-1 (air)] is the CO2 compensation concentration in the absence of dark respiration, which 

accounts for photorespiration under high light levels.  

 

Higher temperatures strongly stimulate photorespiration by a faster increase in the affinity 

of rubisco to oxygen than to CO2. The Г is affected by the canopy temperature Tc according 

to the following relation (Goudriaan & Van Laar, 1994) 

 

 𝛤 =  𝛤𝑇20 ∙ 𝑄10,𝛤
𝑇𝑐−20
10  (A.4) 

 

where ГT20 [μmol (CO2) mol-1 (air)] is a reference value of the CO2 compensation point at 

20 ℃, Q10,Г [-] is a Q10 value for CO2 compensation point. 

 

The gross leaf assimilation rate at light saturation AL,sat is determined by adding the net leaf 

assimilation rate at light saturation AL,sat,n [kg (CO2) m
-2 (leaf) s-1] and the leaf maintenance 

respiration, 

 

 𝐴𝐿,𝑠𝑎𝑡 = 𝐴𝐿,𝑠𝑎𝑡,𝑛 +
1

𝑐𝛼
∙
𝑅𝑑
𝐿𝐴𝐼

 (A.5) 

 

The light saturated net assimilation rate AL,sat,n is described by a simple Blackman-type 

approach (Goudriaan & Van Laar, 1994), 
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 𝐴𝐿,𝑠𝑎𝑡,𝑛 =  min  (𝐴𝐿,𝑐,𝑛, 𝐴𝐿,𝑚𝑚) (A.6) 

 

where AL,c,n [kg (CO2) m
-2 (leaf) s-1] is the net leaf assimilation rate only limited by CO2 

concentration, AL,mm [kg (CO2) m
-2 (leaf) s-1] is the maximum endogenous photosynthetic 

capacity, representing the theoretical value of the net assimilation rate at both high levels of 

light and CO2. 

 

The AL,c,n is described by  

 

 𝐴𝐿,𝑐,𝑛 =
𝜌𝐶𝑂2 ∙ (𝑋𝑐 − 𝛤)

𝑟𝐶𝑂2
∙ 10−6  (A.7) 

 

where rCO2 [s m-1] is the total leaf resistance to CO2 diffusion, ρCO2 [kg m-3] is the CO2 density. 

 

The CO2 density ρCO2 at temperature Tc,K is described by  

 

 𝜌𝐶𝑂2 = 𝜌𝐶𝑂2,0 ∙
𝑇0,𝐾
𝑇𝑐,𝐾

 (A.8) 

 

where ρCO2,0 [kg m-3] is the CO2 density at temperature of T0,K = 273.15 K, Tc,K = (Tc + T0,K) 

K is the canopy temperature in Kelvin. 

 

The maximum endogenous photosynthetic capacity AL,mm [kg (CO2) m
-2 (leaf) s-1] is defined 

by (Farquhar et al., 1980; Van Ooteghem, 2010) 

 

 𝐴𝐿,𝑚𝑚 = 
𝑀𝐶𝑂2 ∙ 𝐽𝑚𝑎𝑥

4
∙ 10−6 (A.9) 

 

in which MCO2 [kg mol-1] is molar mass of CO2, and the maximum electron transport rate 

Jmax [μmol (e-) m-2 (leaf) s-1] is given by  

 



236 

 

 𝐽max = 𝐽max,25 ∙ e
𝐸𝐽∙

𝑇𝑐,𝐾−𝑇25,𝐾
𝑇𝑐,𝐾∙𝑅𝑔∙𝑇25,𝐾 ∙

1 + e
𝑐𝑆∙𝑇25,𝐾−𝑐𝐻
𝑅𝑔∙𝑇25,𝐾

1 + e
𝑐𝑆∙𝑇𝑐,𝐾−𝑐𝐻
𝑅𝑔∙𝑇𝑐,𝐾

 (A.10) 

 

where Jmax,25 [μmol (e-) m-2 (leaf) s-1] is the maximum electron transport rate at 25℃, EJ [J 

mol-1] is the activation energy of the maximum electron transport rate, T25,K = (T0,K +25) K, 

Rg [mol-1 K-1] is the gas constant, cS and cH are constants. 

 

A.2 Respiration 

 

Some carbohydrates generated are used in respiration to supply energy to sustain the current 

biostructures. The crop maintenance respiration rate Rd is described by 

 

 𝑅𝑑 = 𝑅𝑑,25 ∙ 𝑄10,𝑅𝑑
𝑇𝑐−25
10  (A.11) 

 

where Rd,25 [kg (CH2O) m-2 (gro) s-1] is the leaf maintenance (dark) respiration rate at a 

reference temperature of 25 ℃, Q10,Rd [-] is a Q10 value for maintenance respiration.  

 

Based on the typical values for the maintenance coefficients of various plant organs used by 

van Keulen et al. (1982), Rd,25 is described by 

 

 𝑅𝑑,25 = ( 𝑐𝑅𝑑,25,𝑠ℎ ∙ (1 − 𝜎𝑟) + 𝑐𝑅𝑑,25,𝑟 ∙ 𝜎𝑟) ∙ 𝑋𝑑 (A.12) 

 

where cRd,25,sh and cRd,25,r [kg (CH2O) kg (dry matter) s-1] are the maintenance coefficients 

for the shoot (leaf) and root at 25℃. 

  



237 

 

Appendix B Supplementary material for the Chinese 

solar greenhouse climate model 

 

Table B.1 View factors and area ratios to calculate the longwave radiation heat fluxes of the 

CSG climate model 

 

R1_2, R1_sky [W 

m-2 (gro)] 

σarea [-] F1_2, F1,sky [W m-2 ℃-1] 

Rgro_can 1 𝐹𝑔𝑟𝑜_𝑐𝑎𝑛 = 1 − 𝑒−𝑘𝑅∙𝐿𝐴𝐼𝑔ℎ 

Rnw,in_can 
𝐿𝑛𝑤
𝐿𝑔𝑟𝑜

 𝐹𝑛𝑤,𝑖𝑛_𝑐𝑎𝑛 =
𝐿𝑛𝑤 + 𝐿𝑔𝑟𝑜 − 𝐿𝑐2

2𝐿𝑛𝑤
∙ (1 − 𝑒−𝑘𝑅∙𝐿𝐴𝐼𝑔ℎ) 

Rnr,in_can 
𝐿𝑛𝑟
𝐿𝑔𝑟𝑜

 𝐹𝑛𝑟,𝑖𝑛_𝑐𝑎𝑛 =
𝐿𝑐1 + 𝐿𝑐2 − 𝐿𝑛𝑤 − 𝐿𝑠𝑟

2𝐿𝑛𝑟
∙ (1 − 𝑒−𝑘𝑅∙𝐿𝐴𝐼𝑔ℎ) 

Rsr,in_can 
𝐿𝑠𝑟
𝐿𝑔𝑟𝑜

 𝐹𝑠𝑟,𝑖𝑛_𝑐𝑎𝑛 =
𝐿𝑔𝑟𝑜 + 𝐿𝑠𝑟 − 𝐿𝑐1

2𝐿𝑠𝑟
∙ (1 − 𝑒−𝑘𝑅∙𝐿𝐴𝐼𝑔ℎ) 

Rcan_sky 1 𝐹𝑐𝑎𝑛_𝑠𝑘𝑦 =
𝐿𝑔𝑟𝑜 + 𝐿𝑠𝑟 − 𝐿𝑐1

2𝐿𝑔𝑟𝑜
∙ (1 − 𝑒−𝑘𝑅∙𝐿𝐴𝐼𝑔ℎ) 

Rnw,in_gro 
𝐿𝑛𝑤
𝐿𝑔𝑟𝑜

 𝐹𝑛𝑤,𝑖𝑛_𝑔𝑟𝑜 =
𝐿𝑛𝑤 + 𝐿𝑔𝑟𝑜 − 𝐿𝑐2

2𝐿𝑛𝑤
∙ 𝑒−𝑘𝑅∙𝐿𝐴𝐼𝑔ℎ 

Rnw,in_nr,in 
𝐿𝑛𝑤
𝐿𝑔𝑟𝑜

 𝐹𝑛𝑤,𝑖𝑛_𝑛𝑟,𝑖𝑛 =
𝐿𝑛𝑤 + 𝐿𝑛𝑟 − 𝐿𝑐1

2𝐿𝑛𝑤
 

Rnw,in_sr,in 
𝐿𝑛𝑤
𝐿𝑔𝑟𝑜

 𝐹𝑛𝑤,𝑖𝑛_𝑠𝑟,𝑖𝑛 =
𝐿𝑐1 + 𝐿𝑐2 − 𝐿𝑔𝑟𝑜 − 𝐿𝑛𝑟

2𝐿𝑛𝑤
 

Rnw,in_sky 
𝐿𝑛𝑤
𝐿𝑔𝑟𝑜

 𝐹𝑛𝑤,𝑖𝑛_𝑠𝑘𝑦 =
𝐿𝑐1 + 𝐿𝑐2 − 𝐿𝑔𝑟𝑜 − 𝐿𝑛𝑟

2𝐿𝑛𝑤
 

Rnw,e_sky 
𝐿𝑛𝑤
𝐿𝑔𝑟𝑜

 1 

Rnr,in_gro 
𝐿𝑛𝑟
𝐿𝑔𝑟𝑜

 𝐹𝑛𝑟,𝑖𝑛_𝑔𝑟𝑜 =
𝐿𝑐1 + 𝐿𝑐2 − 𝐿𝑛𝑤 − 𝐿𝑠𝑟

2𝐿𝑛𝑟
∙ 𝑒−𝑘𝑅∙𝐿𝐴𝐼𝑔ℎ  

Rnr,in_sr,in 
𝐿𝑛𝑟
𝐿𝑔𝑟𝑜

 𝐹𝑛𝑟,𝑖𝑛_𝑠𝑟,𝑖𝑛 =
𝐿𝑛𝑟 + 𝐿𝑠𝑟 − 𝐿𝑐2

2𝐿𝑛𝑟
 

Rnr,in_sky 
𝐿𝑛𝑟
𝐿𝑔𝑟𝑜

 𝐹𝑛𝑟,𝑖𝑛_𝑠𝑘𝑦 =
𝐿𝑛𝑟 + 𝐿𝑠𝑟 − 𝐿𝑐2

2𝐿𝑛𝑟
 

Rnr,e_sky 
𝐿𝑛𝑟
𝐿𝑔𝑟𝑜

 1 

Rsr,in_gro 
𝐿𝑠𝑟
𝐿𝑔𝑟𝑜

 𝐹𝑠𝑟,𝑖𝑛_𝑔𝑟𝑜 =
𝐿𝑔𝑟𝑜 + 𝐿𝑠𝑟 − 𝐿𝑐1

2𝐿𝑠𝑟
∙ 𝑒−𝑘𝑅∙𝐿𝐴𝐼𝑔ℎ 

Rsr,e_sky 
𝐿𝑠𝑟
𝐿𝑔𝑟𝑜

 1 
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Rgro_sky 1 𝐹𝑔𝑟𝑜_𝑠𝑘𝑦 =
𝐿𝑔𝑟𝑜 + 𝐿𝑠𝑟 − 𝐿𝑐1

2𝐿𝑔𝑟𝑜
∙ 𝑒−𝑘𝑅∙𝐿𝐴𝐼𝑔ℎ 

Note: Lc1 [m] is the length of connecting line between the roof ridge and the bottom angle of 

the north wall, and Lc2 [m] is the length of connecting line between the bottom angle of the 

south roof and the apex of the north wall, Lsr [m] is the arc length of the south roof, kR [-] is 

extinction coefficient for longwave radiation. 

 

Table B.2 The convective heat fluxes and their convection coefficients and area ratio factors 

 

C1_2 [W m-

2 (gro)] 
σarea [-] h1_2 [W m-2 ℃-1] Source of h1,2 

Ccan_air 2‧LAIgh ℎ𝑐𝑎𝑛_𝑎𝑖𝑟 =
𝜌𝑎 ∙ 𝑐𝑝,𝑎

𝑟𝑏ℎ
 

(Roy et al., 2002; 

Stanghellini et al., 

2019) 

Cgro_air 1 ℎ𝑔𝑟𝑜_𝑎𝑖𝑟 = {
1.86 ∙ |𝑇𝑔𝑟𝑜 − 𝑋𝑡|

0.33
, 𝐿𝐴𝐼𝑔ℎ ≤ 1

2.8, 𝐿𝐴𝐼𝑔ℎ > 1
 

Adapted from (Roy 

et al., 2002; Sethi, 

2009) 

Csr,e_out 
𝐴𝑠𝑟 𝐴𝑔𝑟𝑜⁄

= 𝐿𝑠𝑟 𝐿𝑔𝑟𝑜⁄  
ℎ𝑠𝑟,𝑒_𝑜𝑢𝑡 = 0.95 + 6.76 ∙ 𝑣𝑒

0.49 

(Papadakis, 

Frangoudakis, & 

Kyritsis, 1992) 

Csr,in_air 
𝐴𝑠𝑟 𝐴𝑔𝑟𝑜⁄

= 𝐿𝑠𝑟 𝐿𝑔𝑟𝑜⁄  

ℎ𝑠𝑟,𝑖𝑛_𝑎𝑖𝑟

= {
2.21 ∙ |𝑇𝑠𝑟,𝑖𝑛 − 𝑋𝑡|

0.33
, 𝑈𝑣𝑒𝑛𝑡,𝑟 = 0

0.95 + 6.76 ∙ 𝑣𝑎
0.49, 𝑈𝑣𝑒𝑛𝑡,𝑟 > 0

 

Adapted from 

(Papadakis et al., 

1992) 

Cnw,e_out 
𝐴𝑛𝑤 𝐴𝑔𝑟𝑜⁄

= 𝐿𝑛𝑤 𝐿𝑔𝑟𝑜⁄  
ℎ𝑛𝑤,𝑒_𝑜𝑢𝑡 = 7.2 + 3.84 ∙ 𝑣𝑒 

(Weituo Sun et al., 

2022) 

Cnw,in_air 
𝐴𝑛𝑤 𝐴𝑔𝑟𝑜⁄

= 𝐿𝑛𝑤 𝐿𝑔𝑟𝑜⁄  

ℎ𝑛𝑤,𝑖𝑛_𝑎𝑖𝑟

= {
3.4 ∙ |𝑇𝑛𝑤,𝑖𝑛 − 𝑋𝑡|

0.33
, 𝑈𝑣𝑒𝑛𝑡,𝑟 = 0

7.2 + 3.84 ∙ 𝑣𝑎 , 𝑈𝑣𝑒𝑛𝑡,𝑟 > 0
 

(Weituo Sun et al., 

2022) 

Cnr,e_out 
𝐴𝑛𝑟 𝐴𝑔𝑟𝑜⁄

= 𝐿𝑛𝑟 𝐿𝑔𝑟𝑜⁄  
ℎ𝑛𝑟,𝑒_𝑜𝑢𝑡 = 7.2 + 3.84 ∙ 𝑣𝑒 

(Weituo Sun et al., 

2022) 

Cnr,in_air 
𝐴𝑛𝑟 𝐴𝑔𝑟𝑜⁄

= 𝐿𝑛𝑟 𝐿𝑔𝑟𝑜⁄  
ℎ𝑛𝑟,𝑖𝑛_𝑎𝑖𝑟 = {

3.4 ∙ |𝑇𝑛𝑟,𝑖𝑛 − 𝑋𝑡|
0.33

, 𝑈𝑣𝑒𝑛𝑡,𝑟 = 0

7.2 + 3.84 ∙ 𝑣𝑎 , 𝑈𝑣𝑒𝑛𝑡,𝑟 > 0
 

(Weituo Sun et al., 

2022) 
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