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Abstract

In recent years, the field of environmental sciences has gained consid-
erable attention, driven by increases in global population and rapid
urbanisation. The issues have been widely recognised, as has the need
for solutions to address it. Previous work to explore the impact re-
lationship has shown poor air quality is harmful not only for health,
mental health, and wellbeing but also in recent years as serious as
death with the first landmark case of ‘air pollution’ as a cause of
death.

DigitalExposome, a novel conceptual framework is introduced to quan-
tify the impact of environment and mental wellbeing. The investiga-
tion uses real-time air quality with the approach of making inferences
based on an individual’s personal characteristics, behaviour and mo-
mentary wellbeing within urban spaces. Using a multimodal sensor-
fusion approach in this work with the purpose of utilising miniaturised
sensing and smartphone technologies aims to acquire environmental,
human on-body physiological and mental wellbeing data, specifically
labelled at the point of collection. This has entailed the creation of
an affordable, sensor-based environmental monitoring station incor-
porating Internet of Things (IoT) technologies.

To address this, a practical approach is explored of three stages to
unravel and understand the impact of the environment on wellbeing.
Firstly, to observe a more human-based personalised approach, the
use of trajectories were studied alongside the addition of semantics
to collect environmental air quality and on-body physiological data.
As a result, semantic-enriched trajectories combined with episodes
supports the limitation to quantifying the impact at the point of ex-
posure. Secondly, a study involving 40 participants in the real-world
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is conducted in a novel multimodal sensor fusion approach involv-
ing real-time data collection using self-labelled wellbeing, air quality
characteristics and on-body physiological data. The study extends
previous literature by quantifying multiple sensors and self-labelled
wellbeing using a more digital approach through low-cost, affordable
sensors and mobile technology. The aggregated approach supported
a higher accuracy level and produces a more comprehensive relation-
ship impact between the environment, human physiology, behaviour
and wellbeing.

Thirdly, this work explores data analysis used to quantify the impact
between air quality factors and wellbeing. To observe variable impor-
tance, statistical approaches such as Principle Component Analysis
and Multiple Variant Regression, results in Particulate Matter and
Nitrogen Dioxide having considerable negative impact to human well-
being. Various models such as Dynamic Time Warping (DTW), Deep
Belief Network (DBN) and Convolutional Neural Networks (CNN)
have created new opportunities for real-world inference of mental well-
being using environmental and on-body physiological sensor data. A
personalised approach using DTW is proposed as a way to observe
changes in wellbeing at a personal human-interaction level which in
this work demonstrates a high level of accuracy achieving an F1-
Score of 0.88 using a DTW network classifying on a 5-point wellbeing
scale. To leverage the concept in quantifying an individual’s exposure
to the environment using technology combined with artificial intelli-
gence (AI) detailed in this thesis gains a deeper understanding into
the negative impact air quality exposures can have towards mental
wellbeing.

This thesis offers the first attempt towards assessing the relationship
of air quality and mental wellbeing incorporating innovative methods
of digital technology and artificial intelligence for the first time. This
work has the potential to shed light on how individuals breathe, feel
and interact with their environment in different surroundings.
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Chapter 1

Introduction

1.1 Background and Motivation
As the global population continues to rapidly grow the places in which we live,
work and the environment is impacted greatly by increased urbanisation with
busier places for people to meet, things to touch, see, hear and the air we
breathe [109], [45]. The World Health Organisation (WHO) have recently found
that over 55% of the world’s population live within urbanised areas and this is
expected to greatly increase to 68% by 2050 [167]. The Office for National Statis-
tics (ONS) conducted research on behalf of the Department for Transport and
found that over the last decade emissions into the air have increased from cars by
29% [69], with the study also identifying that in the last five years (from 2018)
saw a steeper incline of use. With over 91% of individuals living and working
around within these situations, breathing polluted and harmful air which often
exceeds the national and international guidelines limit is a reminder of the serious
situation still on going for human health [165].

For this reason, the issues surrounding poor air quality is one of the most
prevalent risks to public health in the UK and more widely impacts across the
entire world [66]. According to Public Health England, a typical human is exposed
to poor air quality each day of their lives through either exposure to industry,
residential combustion, road transport, agriculture, manufacturing or construc-
tion [62].
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In recent years there have been vast amounts of work and efforts by studies
looking to develop environmental monitoring systems to understand, measure and
monitor air quality levels [38], [2]. The Exposome Concept developed in 2005,
[237] is an emerging approach that aims to unravel the impact of environmental
exposures humans encounter towards their health from birth to death [64]. The
results in an impact health assessment report for each individual are typically
made up from multiple datasets [163], which despite a useful approach, often
with large datasets [134] and time required for analysis it can be cumbersome and
incredibly difficult to calculate and understand. Previous research is showing that
in order to progress this concept the use of digital technology is required [226], [36].
As a consequence, air quality has significantly contributed to an increased risk
of developing health, behavioural-related issues and mental health concerns that
between 2017 and 2025 is expected to cost £1.6 billion for the National Health
Service (NHS) [62], indicating the need for this to be at the forefront of any
approach to understand the impact of the environment.

At the same time, mental health disorders have been widely recognised as
a concern to both the economic and societal perspective to individuals [71]. In
particular, evidence through research studies are demonstrating that short and
long-term exposures to poor air quality in Europe alone is resulting in more people
diagnosed with psychotic and mood disorders having an impact of £1.575 trillion
spent in healthcare admission costs [152]. On the other hand, previous research
so far shows that mental wellbeing is impacted by environmental noise [102], [8]
but there is more work to be carried out to fully understand the impact on wider
aspects of the environment.

To quantify and ascertain human behaviour through emotional states, the
term Affective Computing [218] refers to the development of computing tech-
nologies to interpret and measure impact on humans in order to make people’s
lives better . An essential element of gauging and understanding affective state
is the use of technological physiological measurement approaches that can mea-
sure the impact through responses of on-body sensors. Previous research on the
impact of affective computing highlights the causes of a negative wellbeing: de-
picting an elevated ElectroDermal Activity (EDA) and decrease of Blood Volume
Pulse (BVP) [63] and a reduced heart-rate variability (HRV) [25] as these stim-
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ulate an activation for the sympathetic nervous system [194], [94], which is a
series of nerves that helps the body in activating its ’flight or fight’ responses.
Although the many advances in technology and mobile computing are extensive,
there remains little research conducted to facilitate the provision of cutting edge
monitoring of affective states within the real-world.

Many previous works are continuing to build and explore multimodal sensor
fusion approaches which with the ever prevalent growing advances in wearable
and smartphone technologies allow for much more data to be obtained from a
wider variety of on-board sensors [40]. In a recent study, smartphone technology
was used through a mobile application to incorporate the built-in GPS and mi-
crophone for noise detection to understand the impact of noise as participants’
moved around a city centre environment [100]. Results demonstrated the useful-
ness of obtaining multiple data variables from the smartphone that could help to
infer mental wellbeing states across environments and understand physical be-
haviours. However, although this is a positive step in being able to quantify the
impact there is still little focus on the wider impact of factors in the environment,
particularly to air quality such as particulates and gases.

Building on these successes, studies are beginning to utilise on-body physio-
logical wearable devices and smartphone applications in a sensor-fusion approach
to unravel the link between environmental noise and wellbeing [102]. The ever
increasing capabilities of technology in this field, indicates the need for multi-
modal sensor fusion approaches to be at the forefront of studies to gain a full
perspective of the environment and to utilise the majority, if not all sensors on
devices to greater understand the impact.

There have been limited efforts in recent years to use environmental data
mostly focused around noise [102], applying Artificial Intelligence (AI) such as
deep learning to infer mental wellbeing states in the real-world. The major ad-
vances and prevalence of wearable and mobile sensing health options in the area
of deep learning provide a new potential of inference of wellbeing whilst at the
point-of-exposure. Adapting these advances into this work, the thesis explores
through 4 stages of designing, developing and quantifying a new framework to
quantify the relationship between the urban environment and mental wellbeing.

Figure 1.1 details the overall system architecture for mental wellbeing through
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the design of a low-cost environmental air quality monitoring system and self-
labelled ecological momentary assessment mobile application to quantify wellbe-
ing at the point of exposure within the environment. This continues to develop a
multimodal sensor fusion approach, combining environmental air quality, phys-
iological sensor and wellbeing data for classification in the real-world. Finally,
this approach concludes with the many research applications of this work which
has been discussed later in this thesis.

Figure 1.1: System Architecture showing design, multimodal data collection, clas-
sification and research application stages.
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1.2 Research Gap
Despite the interesting proposition of multimodal sensor-fusion approaches in en-
vironmental studies, there are limitations in terms of collecting, analysing and
inferring real-world data that is fused at the point-of-exposure. So far, little
work previously has focused towards gaining an understanding between the re-
lationship of environmental noise and human physiology to infer the impact to
emotions [100] and wellbeing [102]. The research study Urban Mind [22] utilises
mobile technology to obtain multiple data entries fused at the point of exposure
to understand the impact of the natural environment to wellbeing, although this
is carried out through a subjective survey-based question approach. Alternative
work ExpoApp [57] demonstrates the potential of employing smartphone tech-
nology to assess the exposure in the environment through physical activity and
location tracking. In all cases throughout the literature, there remains a lack
of consideration involving the wider environmental aspects; such as real-world,
real-time obtained air quality and physiological factors for example; (HR, HRV,
EDA and BVP) using a sensor fusion approach.

The development of a more low-cost sensing technology presents a novel and
exciting opportunity to support the collection of real-world sensor data partic-
ularly environmental context within the urban environment. At present, many
commercial and industry standard environmental monitoring systems are large
in size in a fixed location [68], cumbersome and have high costs associated [161]
which limit the scalability to carry out real-world experiments [138], [114], [130].
In particular, among the most popular available to the industry, the AQMesh
costs around £3-5,000 [16] and DustTrak [225] can cost in excess of £5,000 de-
pending on requirements for the customer. Furthermore, sensing systems incor-
porating low-cost sensors may not be adequately reliable to provide real-time air
quality levels [209], [208]. Table 2.1, explores a range of environmental moni-
toring air quality systems that are the most popular in everyday use. As such,
there remains a gap in the literature of utilising low-cost sensing technology that
provides accurate air quality levels for both portable and fixed sensing stations.

The use of AI is frequently utilised in helping to infer wellbeing states, however
many previous work examples are limited in terms classifying the combined mul-
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tiple data variables through a multimodal sensor-fusion approach. In addition,
many previous studies have only focused on a limited number of variables, specif-
ically either physiological or environmental noise (i.e. BVP, EDA, EEG, noise) to
train with [94], [207], [102]. Although classifying multimodal sensor-fusion data
has been carried out before [124], there is few examples of work involving the
combination of environmental factors such as air quality, human physiology and
real-world self-labelled mental wellbeing.

1.3 Research Questions
After reviewing the research overview, the thesis primarily aims to explore and
unravel the relationship between the environment (focused on air quality), human
physiology and momentary mental wellbeing. In particular, this thesis attempts
to answer the following questions:

1. How can we quantify the person-environment interaction to help explore an
urban environment that promotes a positive wellbeing?

2. How we monitor, fuse and model the relationship of a multimodal approach
to understand the impact between urban environment, human physiology
and mental wellbeing?

3. Can real-world sensor data be quantified and leveraged to infer wellbeing
through personal and community approaches?

4. What are the best approaches for validation and application of DigitalEx-
posome for real-world use cases?

In order to address these questions, the next section explores the aims and
objectives of the research performed in this thesis.
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1.4 Aim and Objectives
The overarching aim of this research is to explore and investigate the relationship
between the urban environment and momentary mental wellbeing using a mul-
timodal sensor fusion approach through wearable, smartphone technology and
low-cost sensing devices. In particular, this research focuses towards air qual-
ity data in the environment such as noise, particulates and gases to determine
the impact of mental wellbeing in a real-life setting. This work goes beyond the
conventional ’off-the-shelf’ and industry standard devices by developing custom-
built devices using low-cost sensors and Internet-of-Things Technology. Initially,
environmental monitoring (fixed and portable) systems are designed and physio-
logical on-body devices consisting of miniaturised sensors to aid the collection of
real-world labelled sensor data that is required to train classification models. To
explore this and in relevance to the research questions and aims for the study,
the following objectives have been derived:

1. To conduct extensive research through existing literature, sources and cur-
rent applications for environmental assessment and momentary mental well-
being and the impact on health, mental health and wellbeing.

2. Propose and develop a novel conceptual system framework to accurately
support in the process of quantifying an individuals’ exposure to the envi-
ronment, utilising digital technologies.

3. To explore how the design of portable and fixed environment monitoring
systems, physiological on-body and smartphone technology can be used
better to incorporate real-world self-labelled wellbeing.

4. To investigate ways in which multimodal sensor fusion approaches can be
used to infer wellbeing with the use of deep learning neural network archi-
tectures for feature extraction and classification.

5. To investigate and implement a trajectory modelling approach with the
potential of employing semantic enrichment to unravel the impact of mo-
bility and movement-patter behaviour using deep learning neural network
architectures.

7



1. Introduction

6. To summarise and explore further the research applications, related to the
conceptual framework ’DigitalExposome’, mobile sensing applications and
environmental monitoring systems.
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1.5 Major Contributions
The major contributions of this thesis are summarised below with this work mark-
ing an initial attempt at developing a step of quantifying the relationship between
the environment, physiology and wellbeing using a sensor fusion approach. The
six main contributions of this work are as follows:

1. Propose the design of a novel conceptual framework DigitalExposome on
quantification of the impact between environment, human physiology, be-
haviour and momentary mental wellbeing utilising digital technologies in
the form of mobile sensing and smartphones.

2. The creation of a novel mobile application by leveraging smartphone tech-
nologies for the real-time collection of self-labelled mental wellbeing data
from users at the point of exposure, offering a unique and comprehensive
approach to obtaining the differences of individual wellbeing in the urban
environment.

3. The design and development of a low-cost more affordable solution for real-
time air quality monitoring in the urban environments which has demon-
strated a high level of accuracy through correlation with industrial stan-
dardised equipment.

4. The exploration of human trajectories and how time-series data in the form
of a multimodal sensor fusion semantic trajectories enriched with environ-
mental and physiological data whilst extracting self-labelled emotion can
be used to measure the impact more directly to the individual.

5. The collection of real-time self-labelled mental wellbeing data used across
three datasets obtained in this research to train classification models. In
particular:

(a) Multimodal sensor fusion dataset made up from a real-world study
with 43 participants (resulting in 41,037 samples recorded) collecting
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in an environment: air quality data, on-body physiological and real-
time self-labelled mental wellbeing.

(b) The use of semantics as a way to enrich time-series trajectories with
the use of environmental, physiological data and real-time self-labelled
wellbeing which is used as episodes to segment the data and under-
stand the impact more at a direct level (point of exposure). A total
of 3,953 samples were recorded from 6 users.

(c) Ecological momentary assessment tool using smartphone technologies
in combining real-world environmental sensor data to understand the
impact of environment on wellbeing through: live sensor data, im-
ages and perceived self-labelled wellbeing. In total there were over 50
downloads and 100 assessments carried out.

6. The exploration of deep learning architectures to classify real-world mental
wellbeing. A varied range of deep learning models have been explored such
as Deep-Belief Networks (DBNs), Convolutional Neural Network (CNN)
and Dynamic Time Warping (DTW) have been trained using real-world
sensor data to explore the impact of performance.

7. The exploration of real-time of three intervention applications: Spatio-
temporal Visualisations (e.g. HeatMaps and Voronoi), Fusing real-world
environmental sensor data and mometary mental wellbeing to calculate
impact at the point of exposure and the use of low-cost sensors to aid en-
vironmental monitoring.
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1.6 Publications
During the study of this research, the following manuscripts made up of journals,
conferences, workshops were published.

Johnson, T., Kanjo, E. & Woodward, K. DigitalExposome: quantifying im-
pact of urban environment on wellbeing using sensor fusion and deep learning.
Computational Urban Science. 3, 14 (2023). https://doi.org/10.1007/s43762-
023-00088-9

Johnson T., Kanjo E. (2023) Designing an Interactive Mobile Assessment Tool
to Quantify Impact of the Environment on Wellbeing. The 25th International
Conference on Human-Computer Interaction 2023 (HCII 2023).

Johnson, T., Kanjo, E. ”Urban Wellbeing: A Portable Sensing Approach to
Unravel the Link Between Environment and Mental Wellbeing,” in IEEE Sen-
sors Letters, vol. 7, no. 3, pp. 1-4, March 2023, Art no. 5500704, doi:
10.1109/LSENS.2023.3243790.

Johnson T., Kanjo E. ”Episodes of Change: Emotion Change in Semantic Trajec-
tories of Multimodal Sensor Data,” 2023 IEEE International Conference on Per-
vasive Computing and Communications Workshops and other Affiliated Events
(PerCom Workshops), Atlanta, GA, USA, 2023, pp. 178-183, doi: 10.1109/Per-
ComWorkshops56833.2023.10150220.

Johnson, T., Kanjo, E. ”Sensor Fusion and The City: Visualisation and Ag-
gregation of Environmental & Wellbeing Data,” 2021 IEEE International Smart
Cities Conference (ISC2), Manchester, United Kingdom, 2021, pp. 1-4, doi:
10.1109/ISC253183.2021.9562852.
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1.6.1 Magazines

Johnson T., Kanjo E., & Woodward, K. (2021) Real-time Environmental Changes
Impacts Mental Wellbeing. Air Quality News.

1.6.2 Presentations

Finalist at Stem for Britain 2023 at the Houses of Parliament (Engineering Cat-
egory).
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1.7 Thesis Outline
This thesis is organised in the following chapters:

Chapter 2: presents a literature review focused on environments within a
place and the relative impact it can have on health, behaviour, mental health
and wellbeing. The Exposome concept as a system to understand the impact of
the environment over a human lifetime on health is described and opportunities
to develop this further. The chapter also reviews methods to monitor affective
states including physiological technological sensors. Finally, considerations are
made towards several deep learning architectures employed within this thesis and
concludes with a reflection of research challenges.

Chapter 3: presents the new DigitalExposome Concept and conceptual
framework as a principle method for quantifying the relationship between the
environment, physiology, behaviour and mental wellbeing. The concept attempts
to propose a new way of calculating the Exposome through the use of digital tech-
nologies in the form of mobile sensing and smartphone technology. The chapter
also presents several devices made up of environmental monitoring system (fixed
and portable) and mobile sensing technologies that have been custom-built as
a viable step in supporting the DigitalExposome concept. These devices have
been demonstrated as viable solutions within DigitalExposome through the use
of analysis and scholarly output. As a result, this chapter also discusses the three
datasets that have been curated as part of this research study.

Chapter 4: of the thesis explores the classification of mental wellbeing using
a range of deep learning classifiers based on two of the three datasets discussed
in the previous chapter. Two studies in the chapter are presented; one investi-
gates the use of human trajectories and the combination of semantics to contain
environmental and physiological data with the use of episodes to understand the
impact at a more direct level, (at the point of exposure). The second study
establishes comparisons through mathematical statistical tools and deep learn-
ing models of the obtained environment and physiological data and the impact to
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mental wellbeing at an aggregated group level. Across the two studies, deep learn-
ing models including deep belief network (DBN), Convolutional Neural Network
(CNN) and Dynamic Time Warping (DTW) is trained from the obtained features.

Chapter 5: presents the three potential research applications of this study
by exploring mobile ecological assessment tools to quantify wellbeing based on
the environment in real-time and at the point of exposure, in addition to low-cost
environmental monitoring systems as a reliable solution to long-term monitoring.

Chapter 6: concludes the work with a summary of the contributions made in
this research study and presents a direction of potential work for future research
based on what has been undertaken within this thesis.
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Chapter 2

Literature Review

2.1 Background
The substantial effects resulting from the rapid global expansion in recent years
have raised significant concerns, notably regarding impact towards human health
[147], behavior [82], mental well-being [102] and death [117]. Urbanisation is the
phenomenon caused by the impact of changes in the environment that can be
a result of weather conditions, temperature, increase in air quality, growth in
crowdedness and high levels of noise, which in turn can all lead to poor health
and physical activities [45].

In line with this, the chapter provides a comprehensive review of previous
work in the fields, as depicted at Figure 2.1, including quantifying exposure to
the environment, in relation to air quality exposures which this thesis has partic-
ular focus on. The impact to health and wellbeing is also discussed with methods
to monitor these exposures analysed using approaches such as delving into The
Exposome Concept and technological sensors. The discussion then leads on to
mental wellbeing exploring affective models, followed by methods to monitor well-
being using physiological wearables and individual on-body sensors. Finally, a
series of deep learning architectures and networks to perform classification are
reviewed followed by exploring this current gap and identifying the research op-
portunity.
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Figure 2.1: The structure of Chapter 2 showing the organisation and their re-
spective dependencies of background overview.
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2.2 Quantitative Assessment of Exposures in Ur-
ban Environments

Exposure to poor air quality within urban environments is a continual problem
that significantly contributes to the rising health and mental wellbeing challenges
of our world. Short, long-term and repeated exposures to pollutants such as
(noise, air particulates and gases) have all been found to increase the risk of
developing health related issues [210], [216] often more serious conditions such as
respiratory and cardiovascular diseases [123], [119], [147], behavioural [137], [139],
physiological health [102], [82], [28], mental health [186], [24] and more recently
death following the first UK citizen to have ’air quality’ labelled as the cause of
death on the certificate [118].

The World Health Organisation have long studied the relationship between air
quality, health and their impact. Research demonstrates that over 91% of people
living in urban environments struggle to have satisfactory air quality levels that
meet national and international guidelines and the continued use of non-clean
fuels and household emissions cause around 4.2 million deaths each year further
adding to the concern [97]. As a result, those living in locations whereby air
quality levels exceed the guidelines, particularly people in the UK have a higher
chance of developing serious health conditions such as higher heart rate, asthma
and cardio-cerebrovascular disease [4].

2.2.1 Unveiling the Influence of the Environment on Hu-
man Health

ExpoApp [57] used a sensor fusion approach (environmental and on-body fac-
tors) to model the short term health impact of high air pollution. By utilising
a variety of sensors, the authors were able to calculate the time an individual
spent in a specific location whereby particulate matter was at a consistently high
concentration. This in turn provides a clear approach to understanding the as-
sociated risks high level exposures to the environment can result in. The study
analysis revealed that those individuals who didn’t have access to green spaces
inhaled a higher rate of air pollution. In addition ’Project Helix’ [134] studied
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the total environmental exposure and impact on individuals living in urban envi-
ronments. As a result increased levels of blood pressure, asthma, allergy related
illnesses and behaviour issues are a common concern for those living in urban
environments [134], [82], [202].

Personal sensors to measure individual exposures such as air pollution, noise,
outdoor temperature, physical activity and blood pressure have been a positive
way forward in monitoring due to their ability to collect data continually and
in real-time [52] helping to reveal early health conditions [155]. With the high
prevalence of combined sensor data streams and the possibility for an individual
to continuously wear sensors, the data has the potential to show the exposure an
individual encounters as well as predict early health conditions.

Utilising technologies within smartphones such as activity and GPS provides
the opportunity to predict an individual’s location and the potential exposure
that can be encountered. Specifically, a recent investigation showed a positive
impact on using sensors and a smartphone to assess an individual’s exposure [209].
Similarly, the capabilities that using a smartphone and the built-in microphone
has to detect noise as individual’s walk around a city centre [100].

There has been a significant interest in the role of ’data driven approaches’ in
order to obtain reliable, real-time and real-world data [13]. A recent study, util-
ising a range of on-body sensors and smartphone technology to capture changes
within the surrounding environment has demonstrated how an increased level of
air pressure can have an impact on body temperature, motion and heart rate [102].

Previously, electroencephalography (EEG) has been used in studies to assess
the environmental impact to groups of participants on journey’s through urban
spaces in order to observe the changes in neural activity [19]. A 2015 study
analysed a group of participants that walked around three different urban en-
vironments whilst tracking in real-time the EEG of individuals to analyse the
emotional experience of the journey. Results found that participants had lower
levels of frustration within green spaces and higher levels when entering a busy,
polluted urban environment [19]. In addition it was noted that green spaces stim-
ulate a better engagement [96]. Furthermore, walking in urban environments with
green spaces has been found to promote relaxation [148].
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2.2.2 The Exposome Concept

The Exposome Concept, developed in 2005 [237] is a traditional approach to
assess environmental exposure and the impact towards human health within epi-
demiological studies. This approach has the potential to measure the totality of
exposure a human would be subjected to from birth to death [238], [12]. The cal-
culation of the concept in practice has been shown to be highly effective in being
able to investigate the impact of environment on human health, mainly due down
to the extensive assessment method and data that the concept utilises [85], [213].
Also, increased health outcomes from calculating the exposome has been shown
because of the increased knowledge that the concept produces [131].

     

  
Figure 2.2: The Exposome Concept Framework depicting the three stages of
the approach (including examples) and how each section plays an active part in
calculating the health assessment risk for an individual.
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Figure 2.2, presents the Exposome Concept in its simplest form and high-
lights the significant amount of data (e.g. Climate, Urban environment, Social,
Diet, Physical Activity, Genetics) that is required in order to calculate exposure
impact across an individual’s lifetime. There are three stages associated with
the Exposome; (1) internal, (2) general exposome and (3) specific external before
being fused together to develop a health outcome for an individual [231].

Each stage is done independently of the other with the first stage of calcu-
lating the exposome is, ’internal’, that measures the body’s biological response
to exposures such as ageing and stress. Next, the second stage of the exposome,
’general exposome’ considers the wider impact on our lives and the influences
on individuals such as educational background and financial situation. The final
stage is ’specific external’ which examines effects outside of the body such as ra-
diation, pollution and diet. Once all three stages have been combined, the exact
impact of exposure can be calculated [228], [237], [238].

The concept is currently being utilised towards monitoring the environmental
impact to human health which in studies has shown the relational impact of air
pollution to an individual as discussed in Section 2.2.1. The Project Helix study
used the Exposome concept to understand the impact of children (from birth to
age 6 and 11) who remained living in urban environments that went on to develop
health and development concerns [134]. Out of 5 other countries explored the UK
was found to be the highest risk for children developing health-related conditions
such as asthma, food allergy concerns, obesity and some showing clear signs of
ADHD [134]. A major concern in calculating the exposome, particularly in the
case of this study is the amount of data required, whereby the authors relied on
questionnaires for the majority of analysed data and existing datasets that were
freely available.

Recent developments on Exposome-based studies have shown to identify the
exposures early through using the concept, which is leading to improved un-
derstanding of diseases and leading to better risk assessments [52]. In addition
research has clearly shown that by assessing the Exposome early on can delay a
potential life-changing disease or condition [163]. One of the main reason behind
this is due to the more extensive assessment methods that the Exposome concept
can use in order to measure the impact of exposure [85], [213]. Ultimately, this
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allows for better interventions to be put into place more easily in order to better
protect the individual.

Some studies are starting to utilise the Exposome concept to capture an in-
dividual’s specific external by incorporating sensors to capture a range of factors
within the environment. The calculation reveals that poor levels of air quality can
have a detrimental impact to human health, which has been shown to bring an
increased risk of developing conditions such as asthma and cardio-cerebrovascular
diseases [228], [229], [130]. Although a considerable amount of data was required
for the calculation it shows the potential in acquiring technological sensing devices
to quicken the process of calculating the Exposome.

Combination of the Exposome concept and personal sensors in previous work
has discovered early health conditions diagnosed quicker [52], [163]. A study
using a range of sensors including air pollution, noise, outdoor temperature, ac-
celerometer and blood pressure to measure the impact across a 24 hours a day
period, with the data showing the potential in gathering substantial amount of
exposures and individual can encounter as well as identify early on serious health
conditions [155]. In addition, this shows potential in gaining a deeper understand-
ing by collecting a wider range of real-world data more easily to help understand
the impact of the environment [226].

Wearable technologies incorporating built-in sensors are increasingly being
introduced to monitor an individual’s internal Exposome because of their ability
to measure continually where ever they go and the wealth of data that can be
extracted [227]. The investigation used a variety of sensors, such as: pollution,
noise, temperature, particle matter and location. Tracking the individual’s loca-
tion created a map which once the data has been analysed would reveal areas
where there was an increased level of exposure to the individual. Although the
potential is beneficial, there still remains the gap of ascertaining the true impact
value of environmental factors.
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2.2.3 Limitations to Quantify the Exposome Concept

Although the Exposome Concept is appealing and has potential to determine
the relationship and cause of repeated exposures over a long period of time, in
its current form there are many limitations and challenges that researchers face.
Since the aim of the Exposome is to assess the totality of the exposures [238], it
can take significant time to fully understand the impact. The Centers for Disease
Control and Prevention (CDC) [70] identify two research areas that currently
need to be explored in order to further the work of the Exposome into everyday
life and fully quantify the impact, which includes:

1. Can investment and development of new technology and tools measure the
external and internal factors?

2. How can we validate the techniques for response monitoring?

Additionally, the vast quantity of data required for the three sections (General
External, Internal External and Specific External) continues to be a cause of
concern for quantifying the complete impact and producing the health assessment
report either due to the quality of data, size [130] and issues associated with
gathering data in the form of agreements, guidelines and ethics [178], [64]. As a
result many researchers face concerns in the way of analysing the data on selecting
the correct tools and techniques to accurately quantify the relationship of the
environment and health [203]. There are other considerable concerns regarding
the significant computational power required in order to process the obtained
data through statistical and analytical models [251].

Furthermore, accurately assessing each part of the Exposome Concept sepa-
rately before the calculation is often a limitation due to factors such as equipment
cost for gathering data and being able to perform statistical analysis [204]. A re-
cent study starting to utilise technology has shown this to be a limitation on the
basis of knowledge and feasibility of acquiring the types of technology [251].

This thorough analysis of the Exposome concept reveals that the there are
many opportunities associated with developing the Exposome Concept further
particularly in automating data collection to reduce time and the use of technol-
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ogy to gather a wider range of exposure data in the hope to fully quantify the
relationship and produce a more accurate health assessment report.

2.2.4 Location Time-Series Data as Trajectories to Quan-
tify the Personal-interaction Level

Location data is ubiquitous in many aspects of our digital lives and has the
potential of being able to gain a greater understanding into individual human
behaviour and movement patterns. This next section delves deeper into the
area at a personal-interaction level to explore spatio-temporal time-series data
to investigate how the use of trajectories and semantics can be combined to
understand how the environment can impact individuals’ directly.

Trajectory modelling is becoming increasingly common in order to explore
spatio-temporal patterns in mobility and the movement of multiple objects. A
spatial-temporal trajectory can be defined as the observation of a moving object in
geographical spaces recorded chronologically in ordered points [252], [116], [244].

Figure 2.3: A spatio-temporal trajectory in its simplest form depicting an indi-
vidual point combining x,y as GPS (latitude and longitude) and t as timestamp.

In other words, trajectory data is described as the collection of geo-tagged
data points that are ordered by a timestamp [49], [233]. A raw trajectory (T) is
a sequence of time-stamped location points depicted at Equation 2.1 [244].

T = (Pi | i = 1, 2, · · · , n) (2.1)
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where Pi is the ith sampling point at spatial positions in geographical space,
as depicted at Equation 2.2.

Pi =
(
PiLatitude , PLongitude , PiTimestamp

)
(2.2)

The observation of a trajectory collected by a smartphone GPS has long
been shown to be useful in starting to understand human behaviour [100]. As
such, a study in 2014 uses classification to observe trajectories through pedestrian
movement and the impact of walking through a busy, polluted urban environ-
ment [137]. Geo-visual analytics using visualisations such as how space-time cube
(STC) and heat-maps can help to understand how each participant moves around
a city environment. However, this research is lacking in exploring changes within
the environment and how the participants are moving within could impact their
physiology, behaviour and personal characteristics.

2.2.4.1 The Opportunity of Semantic Enriched Trajectories

The concept of Semantics can be defined as the contextualised information that
is added to a trajectory enhanced with additional detail which tells us more about
the moving object and impacts of mobility directly [185], [7]. Semantics are ulti-
mately used to enrich the content of trajectories beyond latitude, longitude and
timestamp information. It can involve situations, such as the weather conditions
during a trip, the POIs visited by a tourist (museums, hotels), the activities
(shopping, eating). In other words, a primary concern of semantic trajectories
is how to present them alongside the additions of the semantics and to facilitate
the understanding of behaviours during a single movement. In order to achieve
this, novel approaches for modeling trajectories have to go one step further on
expressively.

A semantic trajectory involves the re-organisation of a trajectory as depicted
at Equation 2.3.

T ∗ = (SubT ∗
i | i = 1, 2, · · · , l) (2.3)
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where:

SubT ∗
i (2.4)

is the ith sub-trajectory associated with particular semantic information.

Many sensor-based studies are utilising semantics in addition to trajectories
to help understand the impact towards personal characteristics, daily and human
behaviours within indoors and outdoor settings [92], [246]. Previous work showed
the opportunities of collecting accelerometer data alongside GPS to create a life-
cycle trajectory of daily behaviours [246].

Specific parts of a trajectory or several trajectories can be grouped into a
series or several groups which have otherwise been know as an episode [49], [159].
In other words, episodes of a trajectory may follow the scenario such as: period
of time (morning, afternoon, night); movement (stopping and moving); category
of a particular location region (residence, tourism, commercial, recreation) [49].

The concept ’FrameSTEP’ (Framework for annotating Semantic Trajectory
Episodes) [158] is a useful approach for segmenting semantic trajectories based on
representing generic spatio-temporal episodes. The concept can represent spatio-
temporal phenomena at different levels of granularity when focusing directly into
the individual episodes. Using FrameSTEP has been shown to give an under-
standing into large trajectory datasets.

Additionally the concept ’CONSTAnT’ [29] is an interesting propositions as
it aims to develop a raw trajectory by the addition of semantics to increase the
knowledge gained from a journey. The studies use of sub-trajectories (a subset
of a trajectory [169]) highlights how a more in-depth understanding on parts of
the trajectory can be understood. The results showed how by creating episodes
and sub-trajectories of a trajectory tourists could be monitored to understand
how they journeyed through a city centre. The work also goes on to suggest
how in future work, additional semantics could be added such as the weather
and environment monitoring as they moved to understand how this could impact
their walk.
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Recently, semantic information in the outdoor environment has received in-
creased attention with Electroencephalography (EEG) used to assess the envi-
ronmental impact to groups of participants on journey’s through urban spaces to
observe changes in neural activity. A study in 2015 analysed a group of partici-
pants that walked around three different urban environments whilst tracking in
real-time the EEG to analyse the emotional experience of the journey. Results
found that participants had lower levels of frustration and engagement within
green spaces and higher levels when entering a busy, polluted urban environ-
ment [19]. However, these studies are limited in understanding the true impact
of environmental exposure to human physiology, behaviour and in real world
environments.

Data mining is an important step in analysing the trajectories obtained from
moving objects to discover patterns in the data collected [129]. In addition this
method has been shown to help extract important information from a large vol-
ume of data [198].
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2.2.5 Methods to Monitor the Environment

The next section provides an overview of various environmental monitoring sta-
tions commonly employed in industrial settings, as well as individual sensors used
to measure specific elements such as Carbon Dioxide and Particulate Matter.

Table 2.1: Summary of Popular Environmental Monitoring Stations.

AQMesh Developed in 2012, the AQMesh is one of the smallest
devices on the market for air quality monitoring in a
fixed location [15]. The device is extremely flexibile with
its ability to target as little as 1 pollutant and up to a
possible 13 different environmental factors at any time
including, gases, particles, noise, wind speed, humidity
and pressure [46]. These include: NO, NO2, CO, SO2,
H2S, CO2, PM1, PM2.5, PM4, PM10, Noise and tem-
perature [14]. The ability to customise pollutants within
the device is useful and a feature that other environmen-
tal monitoring systems do not offer. Typically the cost
to purchase the device is around £3,000 and £5,000 and
an additional monthly maintenance cost which should be
taken into account. The AQMesh system is currently be-
ing utilised at the Urban Observatory in Newcastle to
monitor air quality across the entire city [16]

Sensing System Specification of Device

Continued on next page

27



2. Literature Review

Table 2.1: Summary of Popular Environmental Monitoring Stations. (Continued)

TSI DustTrak
Environmental
8543 MCERTS
Outdoor Dust &
Aerosol Monitor

The DustTrak device is suitable for a more long-term ap-
proach to outdoor monitoring of the environment [58],
[225]. The device at present allows the measurement of
PM Total including PM2.5 and PM1 [222]. Although a
certified device of collection for PM, the device is limited
as it does not take into account of other environmental
pollutants. Each device can cost anything around £5,000
depending on customer requirements for monitoring. Al-
though there are opportunities to hire the device from
selected air quality specialists at a reduced cost.

ReliaSENS 19-15 The ReliaSENS device is small, compact and easy to
install within the environment to monitor air quality.
Each device is able to monitor a range of different pol-
lutants such as CO, CO2, NO, NO2, O3, SO2, H2S,
VOC, outdoor temperature, pressure and humidity in
real-time [184]. The system also comes with a web in-
terface which allows for the collected air quality to be
visualised using cloud storage.

Aeroqual - AQM
Series

The AQM series environmental monitoring device offers
long-term monitoring with the potential of sensing up to
20 different gaseous and particulate pollutants [2]. The
system boasts an interactive dashboard for monitoring of
air quality levels and options to visualise the collected
data. The whole system and device to purchase is costly
and requires a large space for setup which limits the de-
vice in research activities.

Sensing System Specification of Device

Continued on next page
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Table 2.1: Summary of Popular Environmental Monitoring Stations. (Continued)

Automatic Urban
and Rural Network
(AURN)

The AURN is considered to be the UKs largest environ-
mental pollution monitoring system being able to capture
pollution types such as NOx, SO2, O3, CO and PM10,
PM2.5, weather and temperature conditions [67]. The
aim of the network is to ensure that pollution levels are
compliant with the agreed national and regional guide-
lines. The public are given free access to the data of each
pollutant level in the area as well as a general air qual-
ity index which is a averaged reading of all pollutants
calculated together. Although, there are many benefits
with the system, they are large and sometimes only one
per city meaning pollution levels are only taken into ac-
count within that area. The cost with these systems is
extremely large with one of the sensors costing around
£25,000 [67].

Sensing System Specification of Device

In summary, Table 2.1 demonstrates that there are many limitations when se-
lecting a suitable environmental monitoring system. These include the individual
sensor cost as many systems allow a basic device setup which can be expanded on
that require additional resources. In addition, many discussed here are fixed sys-
tems (such as AQMesh, AURN and ReliaSENS), which cannot be easily portable
which reduces the options for using such a system. Considerations as to how
the data is collected and then shared is a concern which can limit the analysis
carried out and therefore not gain a full understanding of how the environmental
is having on human life.

To understand the exposures of pollution within the environment, technolog-
ical mobile sensing devices and sensors pose the greatest opportunity to collect
a range of different environmental factors such as air pollution: made up of
noise, particulates and gases. Low-cost sensors are a significant growth in this
area with many studies identifying the same results through calibration exper-
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iments (tested in the real-world alongside industrial experiments), particularly
when testing Ozone and Nitrogen Dioxide sensors [208].

Generally, improved measurement accuracy in sensors has enabled more char-
acteristics within the environment to be collected. The growth in recent years
towards custom-built monitoring system with technological sensors has demon-
strated the impact of measuring exposures more effectively [211]. As sensors are
becoming more reliable, affordable for research they offer exciting opportunities
to measure multiple exposures at the same time [114], [47], [160].

The following sub sections summarise the most popular environmental factors
that can be monitored within urban environments, in addition to an exploration
description.

2.2.5.1 Particulate Matter

As one of the most harmful environmental pollutants, Particulate Matter (PM)
[196], is commonly built-in within sensing systems [164]. The structure of the
pollutant is extremely small particles and liquid droplets that are produced from
acids, chemicals, metals or dust [11]. Within the environment the level of PM can
be the result on the combustion of mechanical and industrial processes and vehicle
emissions [174]. PM particles are generalized as 1.0, 2.5 and 10 micrometers, with
the smaller size considered the most dangerous, as they are invisible [193]. The
pollutant is usually measured in terms of micrograms per cubic meter (�g/m3)
[164]. High levels of PM both daily and overtime have been shown to correlate
and cause serious health conditions [119], [123], mental health [179], behavioural
issues and death [117]. A landmark study in 2021 demonstrated that high levels
in PM2.5 resulted in ’Air Pollution’ added to a death certificate for the first time,
declaring air pollution and the part it played in causing a child’s death.

2.2.5.2 Noise

Sensors to capture sound are often used within environmental sensing systems.
Primarily, these sensors work by detecting the overall intensity of sound waves
by using an in-built microphone, peak detector and an amplifier [133]. Previous
work has demonstrated that the microphones integrated into mobile smartphones
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are highly effective in directly measuring exposures at the direct level to an in-
dividual. This research has revealed that increased noise levels can significantly
affect mental well-being [102], [82] and health conditions such as cardiovascular
diseases [147].

2.2.5.3 Gas Sensors

Gas sensors are commonly used within environmental monitoring systems as they
can be highly sensitive and offer low power consumption, enabling them to be
embedded into fixed and portable devices due to their small footprint [78]. Re-
search conducted using both Carbon Dioxide (CO2) and Carbon Monoxide (CO3)
sensors highlight significant issues for human health with respiratory and cardio-
vascular illnesses at the forefront [54]. In addition, more recently the impacts of
these gases in the short-term demonstrate physiological changes and behavioural
issues [21], although more work is needed to understand the impact of long-term
exposures.

2.2.5.4 Nitrogen Dioxide

Nitrogen Dioxide (NO2) is one of the most highly reactive gases as a result from
aerosols and combustion processes for fossil fuels within the environment [65].
Previous work on (NO2) has been shown to cause many issues in both short and
long-term exposure such as respiratory symptoms [115], stress [188] and to result
in cardiovascular illnesses [54]. There is little research showing impact directly to
the individual in terms of physiological health and behaviour.

2.2.5.5 Ammonia

Within the environment, Ammonia (NH3) is thought to be one of the most com-
mon gases in the atmosphere [83]. Research has shown the impact of Ammonia
depends on the level of exposure with low causing irritation to the eyes, nose and
throat and high exposure resulting in swelling in the airways and long-term issues
in the respiratory system [77]. There is little research in the literature to suggest
that ammonia could impact physiological responses.
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2.2.5.6 Outdoor Temperature

These types of sensors are able to measure the temperature of the atmosphere
where an individual is located. Recent studies have show the impact of low/ high
temperature in different seasons which have been shown to be associated with
increase health outcomes [248]. In addition, increases in temperature above 21
degrees has been shown to decrease overall emotional mental wellbeing [157].

2.2.5.7 Weather Monitoring

These monitoring systems are made up of different sensors which can include
variables such as: air pressure, rainfall gauge, anemometer, sunshine and UV
intensity levels. Sensors to measure the humidity aim to measure the quantity
of water vapour in the atmosphere. Many studies have used these sensors to
measure and monitor the environment [232]. Previous research has shown that
air pressure influences physiological responses such as HR [102].
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2.3 The Models of Affective States
The term Affective states in psychology is often defined as an underlying emo-
tional state [10] and is used as a collective term for encompassing several differ-
ent states such as emotion, mood, and feelings [1], [23]. Previous physiologists
have measured affective state through exploring emotions and stress levels being
felt [26].

The concept of Emotion as a physiological state has been studied for a long
time. Emotions involve a collection of responses triggered from parts of the brain
to the body [48], otherwise known as neurophysiological changes that can be asso-
ciated with feelings, behavioural responses and thoughts [72]. Although generally
similar, moods can be interpreted as either a positive or negative valence, which
in comparison to Emotion are less specific, intense and unlikely to be provoked
by a specific event or stimulus [1]. On the other hand, Mental Wellbeing refers
to how an individual determines their own potential to cope with normal day
life and everyday stresses and that they know their own abilities to contribute to
their work and community [166]. Physiologists have often defined the measure-
ment of wellbeing as associated with the intensity of how people feel positive and
negative affect [235], [156].

In recent years, there have been a range of theories and different approaches
to try to address the challenges of emotion classification. Although there are no
common practices, the most popular is Russel’s Circumplex Model of Affect [190]
as depicted at Figure 2.4. The model represents these emotional states through
a spatial model in the form of a circle and measures emotions dimensionally from
Arousal to Valence.
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Figure 2.4: The Russel’s Circumplex Model of Affect [190].

Additionally, the Ekman Model [60] is made up of 6 individual emotions con-
sisting of Happiness, Sadness, Anger, Surprise, Disgust and Fear which can be
expressed through facial expressions. Furthermore, the Self-Assessment Manikin
(SAM) [30] is an effective method as depicted at 2.5. The model uses 9 indi-
vidual pictorial images of humans to measure subjective valence, arousal, and
dominance. Using a simpler approach makes this technique easier to apply en-
abling a quicker assessment and understanding into the impact of affective state.
However, consideration must be taken into account when using in a real-world,
real-time scenario where the assessment needs to be completed on-the-spot when
a change in emotion is felt.
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Figure 2.5: SAM Model of Affect (top) measurement of valence displeasure to
pleasant and (bottom) Arousal very active to sleepy.

2.3.1 Traditional Approaches to Quantify Affective State

In recent years, there have been a range of traditional approaches to aid in
quantifying mental wellbeing which include standardised questionnaires, expe-
rience sampling (ESM) [145] and the ecological momentary assessment technique
(EMA) [112]. The use of self-report in these approaches has been a primary
method of enabling individual’s to document their lives (behaviours, thoughts
and emotions) which can be used to assess and understand direct triggers [171].

Firstly, the validated scale ’Positive and Negative Affect Schedule (PANAS)
has been shown to be an effective questionnaire to measure both mood or emotions
of affective states [235]. The scale is made up of 20 items; 10 items measuring
positive and 10 items measuring negative affect. In addition, a five-point Likert
scale is used to measure the impact from very slightly to extremely likely.

In addition, the Warwick-Edinburgh mental well-being scale (WEMWBS)
[162] is an alternative approach to measuring mental wellbeing which consists of
14 positively phrased Likert-style items [221] and sometimes 7 items to reduce
the time spent in quantifying mental wellbeing [212] as depicted at Figure 2.6.
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Analysing both approaches when quantifying mental wellbeing demonstrates a
0.95 correlation in results indicating that both the 7 and 14 item-approach can
be equally as effective [132]. However, self-reporting in this way takes a consider-
able amount of time since each time a change is encountered an assessment must
be completed and scores in the table must be calculated.

Figure 2.6: An example of a 7-item scale utilising the approach of the Warwick-
Edinburgh Mental Well-being Scale (WEMWBS).

Furthermore, an Ecological Momentary Assessment (EMA) involves repeated
sampling (at periodic intervals) of individuals’ behaviour in real-time [199] which
has been shown to minimise bias [200]. Traditionally, an EMA has been com-
pleted by pen and paper and also often is a slow process in calculating impact
to mental wellbeing [51]. In recent years, smartphone technology has started
to be used for EMA, such as the Urban Mind mobile application used to assess
the environment through a series of questions [22]. The work starts to highlight
how smartphone-based assessment tools can be used to gain a perspective into
the natural features within the environment and the impact it can demonstrate
towards mental wellbeing. Although useful, this area requires further work with
the investigation of real-world sensor data playing a part on the EMA through
smartphone applications.

The use of self-reporting across these different approaches have many ben-
efits to accurately capture affective states and mental wellbeing. However, to
gain a clear understanding into the data, self-report must be collected for a long
period which can be very time consuming [214]. In addition, the application
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of approaches to real-time experiments has not been suitable since the large re-
sources required. Following exploration of the work to classify emotions, this
thesis aims to investigate categorical affective state representation since other
studies have shown a guarantee of assigning a physiological reading to a state
category [127], [101].

2.4 Monitoring Affective State

2.4.1 Physiological Sensor Measurement

In this section explores the non-invasive technologies and mobile sensors that can
be utilised in the real-world and provide the greatest opportunities to capture
and assess affective states in real-time. Non-invasive technologies incorporating
miniature sensors are increasingly being used in physiological sensing due to their
ease of embedding inconspicuously [227], [52], measurement in real-time [243], im-
proved affordability [114] and overall portability [102], [47], [160]. As a result,
these technologies have the greatest opportunity to understand mental health is-
sues, providing the mechanisms to collect and physiological changes [101] and be-
haviour markers of mental well-being [241]. Previous work in the area of machine
learning classification and deep learning models to obtain features from the col-
lected sensor data can be used to analyse an individual’s affective states [172], [17].

Several physiological assessment technologies readily available in the form of
wearables that incorporate miniature sensors have been considered at Table 2.2
which detail the most popular devices available.
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Table 2.2: Several assessment technologies and tools to observe changes in phys-
iology.

The E4 Real-Time Empatica [61] is a real-time physio-
logical wearable wristband that enables continuous mea-
surement of the sympathetic nervous systems activity and
captures data such as: BVP, Accelerometer, EDA, Body
Temperature, HR and HRV. The wearable connects to an
app in order to control recordings and data can be easily
downloaded as individual variables from the online por-
tal. Although the E4 is currently being phased out for a
more up to date version, the device is available to pur-
chase at around £1,690. Previous studies have utilised
Empatica’s because of its ability to measure and quan-
tify the impact of wearable technology in health and also
within clinical trials [42], [217], [113].

The Apollo Neuro wearable [151], is typically worn ei-
ther on the wrist, ankle or as a clip on clothing. The
device is able to measure heart-rate variability, sleep pat-
terns and activity. Utilised more in clinical studies, the
wearable has been shown to help in modulating heart
rate variability in order to reduce stress levels and blood
pressure [182]. The device costs around £349 and in-
cludes a free mobile application as an interactive dash-
board to track progress and monitoring levels of variables
collected.

Image Device Description

Continued on next page
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Table 2.2: Several assessment technologies and tools to observe changes in phys-
iology. (Continued)

Movisens [143] offer a range of devices that can be added
to a wearable wristband which is able to quantify on-
body data such as accelerometer, air pressure, temper-
ature, ECG, DEA, HR and HRV in real life conditions.
A limitation to the Movisens devices are that each vari-
able is individual such as temperature and accelerometer
have to be purchased separately. The cost for each de-
vice can range from £1,000 for an individual (used) device
or several £1,000s depending on the variables added for
monitoring. Several studies have shown how effective the
Movisens devices can be in real-life experiments to quan-
tify health, emotion and clinical studies [91], [146], [122].

OURA ring [87] is a wearable device that monitors sleep,
HR, recognise activity and body temperature in real-time.
The device is able to connect to a mobile application
that displays the data in different visualisations to the
user, also with options to incorporate the data into the
respective built-in health applications already installed
on a smartphone. For each days’ recording, the data is
able to be downloaded as a CSV or JSON Format for
further analysis. The ring devices roughly cost around
£299 [168]. Previous studies have demonstrated the de-
vices ability to quantify HR and HRV and activity quan-
tification [106], [215].

Image Device Description
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2.4.1.1 Heart-Rate

Heart rate (HR) is measured by the speed of the heartbeat which is referred to as
the number of beats per minute (BPM). Typically a normal adult’s resting heart
rate is between 60 and 90 beats per minute (bpm) [20]. HR sensors due to their
small size are often embedded within wearable devices and offer opportunities to
accurately assess the autonomic nervous system [103]. This system in previous
work has been shown to understand and model positive and negative mood [108].
Heart-Rate Variability can is measured from collecting HR, by understanding
the changes in time between heartbeats, which are often referred to as inter-
beat intervals (IBI) [195]. Research has shown that a variation in environmental
factors such as air pressure and noise have been shown to impact HR [102]. Lower
HRV has been shown to be associated with anxiety disorders [76], [37] and result
in higher stress [105].

2.4.1.2 ElectroDermal Activity

ElectroDermal Activity (EDA) is measured by assessing the resistance between
two-electrodes, typically where sweat glands are located on the human body [34].
These type of sensors are considered the most effective in monitoring the human
nervous system. The measurement of EDA changes depending on the level of
emotional arousal [74]. The data from collecting EDA can be used towards train-
ing affective models in order to classify mental wellbeing as it directly correlates
to the sympathetic nervous system which controls the rapid responses to different
situations [194]. Several previous studies have utilised EDA sensors to explore
the impact of the environment, although so far focusing on noise levels [102].

2.4.1.3 Blood Volume Pulse

Blood Volume Pulse (BVP) is usually measured from a finger or hand and calcu-
lated by assessing the changes in volume of blood across vessels and commonly
used to indicate physiological arousal in affective computing [110] and to monitor
mental wellbeing [253]. The process works by using HR to capture the volume of
blood that passes through a particular location within a single heart-beat [126].
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Previous studies have shown BVP to be a factor in developing an understanding
to mental wellbeing [111].

2.4.1.4 Skin (Body) Temperature

Skin temperature sensors can be used in addition to physiological sensor data to
measure mental wellbeing [121]. To measure skin temperature, electrical signals
in the form of resistance between two diode terminals is measured where most
commonly there is an increase in voltage as it results in a higher temperature [56].
Previous work has attempted to use body temperature sensors to classify mood
and emotions achieving 72.3% and 75.0% [128]. However, more recent work fo-
cused on multimodal has found increased classification ranging from 0.60 and
0.988 (f1-score) [102], [207], [172], [95]. In many of these studies, skin temper-
ature data has been combined with other physiological data (such as HR and
Acceleromter) to increase classification of mental wellbeing.

2.4.1.5 Motion

These sensors can be used to help detect overcrowding in a specific location. For
example, working at a 3m distance and a 120 degree detecting angle provides a
good detection of motion [79]. Used to capture and measure human movement
and physical activity an individual does. Many studies have used accelerometers
to monitor the impact movement factors have on health and well-being [9], [24].
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2.5 Deep Learning Networks
In recent years the use of Deep Learning has gained significant traction for the
opportunities of classifying raw sensor data using classification models such as
Convolutional Neural Networks (CNNs) which is explored practically at a later
stage in this thesis. There have been a range of classification models previously
explored in affective computing to accurately classify physiological data to achieve
the best result. Over the following section, a range of deep learning classifica-
tion networks are explored that demonstrate the potential to classify real-world
physiological collected sensor data.

2.5.1 1 Dimensional Convolutional Neural Network

Perhaps one of the most popular algorithms, a Convolutional Neural Network
is based on a ’deep feedforward’ approach that involves the addition of numer-
ous layers [43]. CNNs are more commonly used with image processing but in
recent years have been repurposed and research using 1-dimensional CNNs are
found to be effective in modelling time-series data [240]. This is composed of an
input, output and several hidden layers which includes the convolutional layer
that makes use of a set of learnable filters, polling layers, fully connected and
normalisation layers [245]. A 1D CNN forms the same structure as a 2D CNN,
although the only difference are the input dimensions and filters. Depicted at
Figure 2.7 illustrates the basic blocks of a typical sample CNN configuration.

Figure 2.7: Architecture of a Convolutional Neural Network.
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More formally, the training input dataset can be represented as: x = [x1, x2, . . . xj]

whereby the number of training samples is j [86]. The dataset is passed through
a series of CNN layers that scan for sequences with 1D windows and learn filters.
The feed forward process can be further denoted as:

p = σ (w1x+ b1] (2.5)

y = σ (w2p+ b2) (2.6)

Equations 2.5 and 2.6 present the sigmoid otherwise know as the activation
function. This involves two weight matrixs made up of w1, positioned between
the input and hidden layer along with w2 between the hidden and output layer.
Finally, b1 and b2 refer to the bias vectors [75].

2.5.2 Long Short-term Memory

A long short-term memory (LSTM) network is a specific type of recurrent neural-
network (RNN) often used in the field of deep learning classification [89]. There
are three specific parts of an LSTM cell which involve a forget (f), input (I) and
output (o) gate, as depicted at Figure 2.8.
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Figure 2.8: The architecture of an LSTM cell with input vector (X), cell output
(h), cell memory (c), input (I) forget (f) and output (o) gates [135].

Using an LSTM model requires several steps, started by using the sigmoid
layer (forget layer input) to decide what information to throw away at the start,
as depicted at Equation 2.7.

ft = σ (Wf · [ht−1, xt] + bf ) (2.7)

Secondly, a decision over what new information to store in the cell state
is considered which uses the input gate layer to decide which value to update
(Equation 2.8), followed by a tanh layer to create a vector of the new candidate
value C̃t as depicted at Equation 2.9.

it = σ (Wi · [ht−1, xt] + bi) (2.8)

C̃t = tanh (WC · [ht−1, xt] + bC) (2.9)
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Thirdly, as depicted at Equation 2.10, the old cell state (Ct−1) is updated into
the new cell (Ct). Next, to forget the data previously from the cell, the old cell
state is multiplied by (f) and then it ∗ C̃t is added.

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.10)

Next, Equation 2.11 depicts the sigmoid layer which is utilised to determine
which part of the cell state that is needed to output.

ot = σ (Wo [ht−1, xt] + bo) (2.11)

Equation 2.12 utilises a tanh on the cell state and multiplying the output of
a sigmoid gate results in:

ht = ot ∗ tanh (Ct) (2.12)

To finish, a SoftMax layer follows an LSTM cell using cross entropy loss
function to result in an prediction output from the classes.
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2.5.3 Deep Belief Networks

Unsupervised Deep Belief Networks (DBNs) are beneficial as they learn to extract
a deep hierarchical representation of the training data which can then be used
as features within a supervised machine learning classifier. DBNs are generative
models and are a composition of stacked Restricted Boltzmann Machines (RBM)
and Sigmoid Belief Networks [142], [206]. Depicted at Figure 2.9 illustrates the
basic blocks of a typical DBN configuration that can consist of several RBMs
with an input and output layer.

Figure 2.9: Schematic Architecture of a Deep Belief Network: comprised of three-
stacked RBMs including an input and output layer.

RBMs are stacked and trained in a greedy manner by training in a sequential
way, feeding lower layers’ results to the upper layers to form DBNs [249]. They
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model the joint distribution between the observed vector x and the ℓ hidden layers
hk where x = h0, P

(
hk−1 | hk

)
is the distribution of the units conditioned on the

hidden units of the RBM at level k, and P
(
hℓ−1, hℓ

)
is the visible-hidden joint

distribution in the top RBM as demonstrated at Equation 2.13.

P
(
x, h1, . . . , hℓ

)
=

(
ℓ−2∏
k=0

P
(
hk | hk+1

))
P
(
hℓ−1, hℓ

)
(2.13)

Unsupervised learning is used to train the RBMs of the DBN to automatically
construct features and reconstruct inputs. The Gibbs Sampling based contrastive
divergence method [35] is used to train the RBM as shown below:

1. Typically, the combined data is fed into the RBM as the input x = h(0) of
the first layer.

2. Next the activation probabilities of the hidden layers are calculated using
Equation 2.14:

P (hj | X) = σ

(
bj +

m∑
i=1

WijXi

)
(2.14)

3. Then the activation probabilities of input layers are calculated using Equa-
tion 2.15:

P (Xi | h) = σ

(
ai +

n∑
j=1

Wijhj

)
(2.15)

4. The edge weights are updated where α is the learning rate using Equation
2.16:

Wij = Wij + α (P (hj | X)− P (Xi | h)) (2.16)

After training the first RBM the edge weights are frozen and the remaining
RBMs are trained using the same contrastive divergence method with the output
of previous trained RBM being used as the input of the next RBM. After training
has completed, the DBN features are extracted from the top hidden layer and
a hidden unit of the learned network structure is used as the input layer for
a supervised ML models. The DBN is essentially used as a feature selection
mechanism for the machine learning models as it is used as a representation
learner compressing the original input vector for the ML models to use.
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2.5.4 Dynamic Time Warping

Dynamic Time Warping (DTW) has been shown as an effective algorithm in many
areas, particularly time-series data [192] in being able to measure the similarity
between two temporal sequences by finding the best mapping position with the
minimum distance between two points. The distance between two points can be
depicted more formally as: x = [x1, x2, . . . xn] and y = [y1, y2, . . . yn] and then
calculated using the Euclidean distance [140] as depicted at Equation 2.17.

dist(x,y) = ∥x− y∥ =

√
(x1 − y1)

2 + (x2 − y2)
2 + · · ·+ (xn − yn)

2 (2.17)

However, an important factor for DTW in this method is that calculating the
exact distance can only be achieved if the distances are the same in length [183].
Figure 2.10 depicts the difference of mapping the distances between Euclidean
and DTW. It is interesting to note that Euclidean matches timestamps and DTW
matches between the two time-series data through feature values.

Figure 2.10: Differences between calculating the Euclidean Distance and Dynamic
Time Warping of a trajectory [220].

DTW is a more appropriate approach as it finds the optimal mapping with
the minimum distance between two data points [220]. The sequences for x and
y are used to generate a grid whereby each point individually is labelled as (i,
j) which results in the alignment between x[ i ] and y[ j ]. More formally using
DTW, the distance between two paths can be represented as Equation 2.18.
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γ(i, j) = d (xi, yj) + min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} (2.18)

Whereby, (x, y) is the sequence data, (i, j) are the local constraints for any
given node. y is represented as the distance of warping path, d is the distance
measured between each element of two sequences [120].

In previous work DTW has been shown to be highly successful in being able
to classify large time-series based data sets [104]. In particular, the mapping
concept of DTW enables a higher level signal processing technique used with
human-to-human interaction [180], to reveal responses to the nervous system
[81]. Additionally, this has been a proven method by being able to achieve high
classification results through using a sensor fusion approach [90]. Furthermore,
studies using DTW to classify accelerometer data between two participants found
that the system has the capabilities to perform efficiently and effectively in real-
time compared to alternative classifiers such as a Hidden Markov Model (HMM)
based system [107].
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2.6 Reflection and Research Challenges

2.6.1 Challenges

The design and development of pervasive computing technology systems pose
numerous challenges. This section explores several key considerations related to
these challenges and concludes by highlighting the identified gaps and research
opportunities.

2.6.1.1 Privacy and Ethics

In recent years there has been significant attention towards privacy and ethical
considerations particularly towards mobile sensing and pervasive computing tech-
nologies [88]. Both issues remain at the forefront of this area as the majority of
individuals prefer for their mental health data to be kept secure and private [80].

There are many considerations when undertaking research such as processing
data offline locally and avoiding cloud based storage which could encourage in-
terception of the stored data. Additionally, before users are introduced to the
study, care should be made to acknowledge with consent of the individual to
understand what data will be obtained and how it is being processed. There has
been considerable work to develop approaches to keep data secure and private,
particularly through the General Data Protection Regulation (GDPR) in the EU
which enables more control to users to access their stored data and understand
how it is being processed.

2.6.1.2 Data Collection

A common problem with pre-existing work is that only a limited number of tri-
als collect or analyse real-world data, since experiments that simulate situations
within the environment may not demonstrate the same patterns as real-life situa-
tions. Additionally, the recruitment and engagement of participants to undertake
real-world experiments is an on-going concern as many do not initially see the
added benefits of supporting the work and only see what they can get out of it
themselves. Similarly, considerations should be taken as how to provide a suit-
able incentive or reward for taking part in the study which equates to their time
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taken.

2.6.1.3 Portability

The portability of devices continues to pose a significant challenge in research
focused on developing systems for monitoring the environment and mental well-
being while on the move. A notable concern pertains to the size of the devices
needed for environmental monitoring, which requires numerous sensors and a con-
nection to a mains electricity source or suitable resource for long-life battery [68].

In recent years, there has been some early development in more portable ap-
proaches through rucksacks and hand-held devices but limitations remain in the
verification of data collected. There are some new approaches to monitor the
environment and mental wellbeing including the Urban Mind mobile application
but this takes the form of a digital-questionnaire [22]. However, at present this
remains static and subjective as to what the individual thinks about their envi-
ronment and personal-wellbeing rather than based on objective real-world sensor
data.

2.6.1.4 Battery Life

The proliferation of sensors and the ability to incorporate them into smart devices
and mobile technology offer a significant opportunity to transform real-world
monitoring of the environment and mental wellbeing. However, many occasions
require the ability to unobtrusively obtain data which can result in little room
for a battery to power the devices. Further work is needed to extend the life and
capacities of batteries whilst also keeping them relatively small for use within
devices. With this in mind it remains difficult to collect large amounts of wellbeing
data.
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2.6.2 Current Gaps and Research Opportunity

The following considerations from the literature studied in this chapter are ex-
panded on below:

1. To date, the Exposome Concept has been an effective method in measuring
the impact of the environment towards health outcomes for an individual
but is lacking in terms of a focus towards a mental wellbeing centric inves-
tigation. A common limitation in the literature highlights the need for a
large amount of data to be available to measure the health impact and gain
a complete assessment for an individual, which has often involved using
pre-existing, typically out-dated datasets. Further work to speed up the
data collection and analytical approaches using technological state-of-the-
art sensing equipment may offer greater opportunities to fully quantify the
approach.

2. Only a few attempts at present in the literature have considered environ-
mental noise and the impact this can have towards physiological responses
and mental wellbeing [102]. Therefore, research conducted into other en-
vironmental factors through a multimodal approach pose a significant op-
portunity to quantify the relationship of the entire environment on physi-
ological responses which may also improve real-time interventions.

3. Sensing systems pose a significant opportunity with the advancements of
mobile sensors and sensing technologies which has enabled new approaches
for capturing, diagnosis and assessment of the environmental impact, phys-
iological responses and mental wellbeing. A considerable amount of pre-
vious research has been conducted on measuring physiological responses
using sensors such as HR, HRV, EDA, BVP and Accelerometer with these
studies aiming to highlight the differences in wellbeing among individual’s
based on the levels of the physiological modalities [157], [128], [102]. Al-
though there are increasing efforts towards capturing a range of pollutants
through environmental monitoring, most of which are directed towards use
in a fixed location and require significant cost. Despite this, there is a start
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in the literature with developing bespoke systems but these are only able
to capture a limited range of environmental factors [57].

4. Previous studies have shown the potential of modelling time-series trajec-
tory data can be an effective method of quantifying the impact of expo-
sure at a specific location. Similarly, when trajectories are enriched with
semantics they can offer new opportunities to gain a more wholesome un-
derstanding into human behaviour and movement patterns [246], although
this is limited in terms of studies collecting and utilising real-world data.
Additionally, research into the areas of ’episodes’ or ’segmenting’ in the lit-
erature has been very little. Therefore, research using real-time, real-world
semantic trajectory data may unravel the impact at the point of exposure
further.

5. The literature is limited in demonstrating how spatial visualisation concepts
and techniques can show the direct impact upon the individual using the
collected sensor data. Noisespy [100] effectively demonstrates the use of
heat-mapping as a way to see how environmental noise changes across a city
location. Although useful, there are concerns over the ability to allocate an
individual sensor reading to each cell and to represent additional collected
sensor data.

To address the gaps identified in the research above, the work in this thesis
explores the relationship of the environment, physiology, human behaviour to
quantify the impact to momentary mental wellbeing. Following the issues iden-
tified with the current Exposome Concept, the approach is furthered to explore
the use of technology in the form of smartphone and miniaturised sensors. It is
hoped that with this new framework will enable the quantification of the impact
towards the environment on inference of wellbeing.
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Chapter 3

DigitalExposome: Wearable and
Mobile Sensing Technologies for
Transforming Wellbeing

3.1 Introduction
Traditionally the collection of environmental, physiological and self-labelled well-
being data required a vast amount of resources; mainly collected through ques-
tionnaires and multiple datasets over a long period of time, which can be chal-
lenging [41]. This was particularly evident in the previous chapter with the Expo-
some Concept [238], whereby each component must be obtained before analysis
can take place. The general increase and availability in sensor-based technologies
and mobile sensing, particularly in affordability and size, enables a more accurate
analysis and understanding specific to location-based exposure [52], [47]. A tech-
nological approach using sensing devices to monitor an individual’s affective state
could be incredibly useful in improving assessment tools and techniques [18].

In this chapter, describes the exploration, design and framework for the ’Dig-
italExposome’ Concept. This new approach presented aims to delve deeper into
the relationship and quantification of environment, human physiology, behaviour
characteristics and momentary mental wellbeing. Utilising the DigitalExposome
concept to quantify impact to mental wellbeing, there are new opportunities in
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mobile sensing which offer exciting new possibilities in tracking a users’ feelings
as they journey between different urban environments. Finally, an overview of
the data collection tools employed to gather information pertaining to the envi-
ronment, physiological measurements, and momentary wellbeing assessment.

The following contributions in this chapter are as follows:

1. Introduction and exploration of DigitalExposome and the significant op-
portunities it can have in providing the step to quantify the relationship
between environment, human physiology and mental wellbeing utilising
digital technology solutions, mobile sensors, smartphones and data science
through a novel conceptual framework.

2. Present the design and development of several custom-built experimental
tools to (i) sample a range of environmental factors (such as Particulate
Matter (PM1), (PM2.5), (PM10), Reducing and Oxidising gases, Ammo-
nia (NH3) and Noise), (ii) Obtain physiological responses (such as Heart-
Rate, Blood Volume Pulse, Heart-Rate Variability and ElectroDermal Ac-
tivity), (iii) Smartphone technology to understand impact of environment
and wellbeing at the point of exposure.

3. Three individual datasets with over 50,000 samples of data encompass-
ing real-world environmental sensor, physiological and momentary mental
wellbeing data.
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3.2 Introduction to the DigitalExposome Con-
ceptual Framework

DigitalExposome can be defined as the framework to quantify the relationship be-
tween the environment, physiology and mental wellbeing. This new field enhances
and furthers the work undertaken as part of the previous Exposome Concept by
utilising a range of digital technologies in the form of mobile sensing devices and
data science concepts in order to collect the required data to assess and calculate
the exposome more accurately and precisely. With the ultimate aim to measure
multiple environmental factors using mobile technologies and then quantify them
in real-life settings.

The combination of multiple data collection methods helps to support Digital-
Exposome and gain a better understanding into how exposures to the environment
can impact mental wellbeing. Figure 3.1, depicts the range of technological data
collection methods made up of fixed, wearable and smartphone sensing devices to
support the concept. Through use of the concept many opportunities and possi-
bilities of being able to investigate the relationship between the environment and
wellbeing can be explored.
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Figure 3.1: DigitalExposome Concept: The quantification step to unravel the
relationship of environment and physiology on mental wellbeing

DigitalExposome is primarily made up of two parts: data collection and data
analysis with both aspects using technological advances to accurately calculate
the exposome and therefore close the gap in associations between the environment
and human physiology. To aid in quantifying the process, the utilisation of data
from sensors that show how an individual has been exposed to air pollutants
is required. This will be a key part of DigitalExposome, where both terms are
clearly connected through their vision of being able to capture the true exposure
that an individual has been exposed to. As noted in the literature data that
is generated through the use of technology, such as sensors are ideal to monitor
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various exposures and enable the possibility to link this to health [133], [138]. The
DigitalExposome concept builds on previous work such as ’Digital Phenotyping’
which involves quantifying the human individual-level of behaviour in a step using
data collected from smartphones and wearables [177], [223]. This has been shown
to be highly effective in developing awareness of the impact towards depressions
and anxiety to support real-world prevention and treatment [153], [205].

3.2.1 Conceptual Framework

The conceptual framework outlines the several processes involved in the Digital-
Exposome approach and aids to assess the correlations between urban exposures
and self-report wellbeing as depicted at Figure 3.2. In this case, it is clearly
evident as highlighted in the conceptual, sensing and computing layers that Dig-
italExposome creates a significant role in the amount of knowledge that can be
used to quantify the relationship. The four key layers with further description
and explanations are as follows:
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Figure 3.2: The Conceptual Framework for DigitalExposome on the Quantification Step for Mental Wellbeing.
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• Conceptual Layer: The conceptual layer contains the four main areas
in the literature that have been shown to have an impact towards mental
wellbeing as identified within the research [125]. In this thesis, the work
specifically targets the environmental aspects. The environmental factors
could be made up of chemical, air pollution, climate change and access to
poor water quality. Biological factors may include factors such as genetics,
brain qualities and physical health. In addition social aspects which could
include issues surrounding relationship with people in the vicinity, quality
of sleep, a nutritional diet and regular exercise. Finally cultural factors may
include aspects such as stigma around wellbeing and available resources for
support.

• Sensing Layer: The sensing layer presents the three physical devices made
up of several smart mobile sensors which include: physiological systems
(such as a wearable) to monitor HR, HRV, EDA, BVP, Accelerometer and
body temperature). Secondly, environmental monitoring systems made up
of several sensors to capture and monitor in real-time pollutants such as
noise, air pollution, particulates and gases. Finally, the layer involves the
use of smartphones that can unobtrusively monitor. The work in this thesis
explores the environmental, human physiological factors and smartphone
mobile application to quantify the sensing approaches of DigitalExposome.

• Computing Layer: The computing layer lists the several key core data
science and analytical techniques which will enable a greater understanding
of the impact to mental wellbeing. This includes techniques such as ma-
chine learning and deep learning to classify wellbeing, edge computing to
assess the potential impact on the device. In addition, statistical analysis
to understand the variable importance of the collected sensor data. Finally
data visualisation will support the work of being able to map using the
GPS data points at where individual’s wellbeing is impacted more. The
work in this thesis has explored many areas of the Computing Layer with
approaches such as statistical analysis, deep learning, and machine learning
in Chapter 4. Furthermore, data visualisation has been explored through
heatmaps and Voronoi in Chapter 5.

60



3. DigitalExposome: Wearable and Mobile Sensing Technologies for
Promoting Transforming Mental Wellbeing

• Application Layer: Finally, the application layer of the concept presents
the potential applications of DigitalExposome. This includes a greater per-
spective into active monitoring of wellbeing, environment, and physiological
on-body variables. In addition, support, prevention and treatment can be
better controlled by understanding the issue of the environment. In the
context of this work, this thesis has supported the DigitalExposome ap-
proach in terms of monitoring mental wellbeing through the use of smart-
phone technologies as demonstrated in Section 3.3.3. Finally, approaches
to support, prevent and evaluate DigitalExposome have been considered in
Chapter 5, between the three applications of this research.
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3.2.2 Opportunities with DigitalExposome

Development of the DigitalExposome concept offers a range of new and exciting
opportunities to explore the impact of the environment and physiology to mental
wellbeing. In this section, a range of techniques and tools are presented in a way
to explore the possibilities of this concept with the addition of technology and
mobile sensing.

3.2.2.1 Statistical Analysis

Various methods including descriptive statistics, linear regression and spatial
analysis have previously been used to identify and gain a better understanding
of data which can be used to monitor the overall impact and identify patterns,
commonalities and correlations [27]. Previous research have used statistical anal-
ysis tools and techniques to measure the impact of environmental factors on the
body [224].

The use of a statistical approach and the combination of body and environ-
mental sensors have been shown to improve the general prediction to an individ-
ual’s emotions [102]. Using data that is combined with location tracking (GPS)
can offer the opportunities to carry out spatial analysis or correlation analy-
sis [219] [101]. Results have shown a clearer understanding as to the triggers of
behaviour and wellbeing within a specific location. Additionally, the use of Prin-
cipal Component Analysis (PCA) provides an effective statistical mechanism to
understand the impact relationship between two or more variables [99], particu-
larly within large datasets [141]. To date little efforts have focused on statistical
analysis to investigate the relationship of the environment to wellbeing, with
limited work previously focused on noise [100].
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3.2.2.2 Machine Learning

The use of machine learning can offer a statistical approach to predict and in-
fer data collected by learning and building algorithms [33]. Previous work in
the literature has shown on numerous occasions that using machine learning can
enable a new perspective on the data as well as discover new patterns and corre-
lations between variables. This has involved some but otherwise limited attempts
to classify the impact of a singular environmental pollutant towards an individ-
ual namely Benzene and PM2.5 [17], [53]. In both cases the potential to utilise
data science techniques such as machine learning are evident in results of high
classification.

In the concept of DigitalExposome on the proposed framework at the ’Com-
puting Layer’, demonstrates that both deep learning architectures and machine
learning classification would be advantageous and could be utilised to understand
the data to monitor the direct impact towards individuals. To date there have
been little research attempts using machine learning to monitor the impact of
poor air quality to an individual’s wellbeing, with previous work focusing on
PM2.5 [196], noise/ audio [101], UV [102].
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3.3 Data Collection
This section discusses a range of data collection approaches to further the Dig-
italExposome Concept; such as wearables, smartphones, self-report, fixed and
portable sensors which can be utilised as a multimodal fusion approach to gather
a large amount of data reliably. Mobile sensing has become a very popular ap-
proach of data collection due to their ability to collect large amounts of data
efficiently and without much human interaction. This has involved developing
a custom-build environmental monitoring system using a range off-the-shelf low-
cost sensors, capable of sensing: Particulate Matter, Oxidising and Reducing
Gases, Ammonia and Noise with Internet-of-Things technology on-board. Read-
ily available systems with these sensors built in are often very large, in fixed
sensing stations and are not practical for ’in-the-wild’ experiments. In order to
gain as much information as possible from an individual a range of collection
types explored for DigitalExposome are given at Figure 3.3.

Figure 3.3: Several data collection types for DigitalExposome.
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As a result, this includes a wellbeing application to self-report wellbeing states,
custom-build environmental sensing system, physiological wrist wearable and a
cross platform mobile application to self-report wellbeing states and to collect
environmental data in situ at the point-of-exposure.

3.3.1 Wellbeing Smartphone Mobile Application

To encourage and support a more digital-approach to self-recorded wellbeing,
an Android-based mobile application was developed, as depicted at Figure 3.4.
On opening the mobile application, five well known emojis are presented to the
participant, from very happy to very sad. Each emoji is placed on buttons from
1 = negative/ Very Sad to 5 = positive/ Very Happy.

Figure 3.4: Screenshot of smartphone wellbeing application made up of the five
well-known emojis from crying to very happy.

The general idea with this mobile application is that in a research scenario,
participants would be constantly reminded to label their wellbeing through the
emojis as to ascertain how they were feeling. Several previous studies have used
this self-report approach [102] to quantify wellbeing states. Additionally, research
shows that wellbeing labels can change quickly whilst moving through environ-
ments so a ’quick label’ process is paramount in obtaining wellbeing at the correct
time [5].
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To collect wellbeing data from participants the ’Personal Wellbeing Index for
adults’ has been selected in this scenario which asks the user how they are feeling
with their life as a whole [46]. This has been adapted further for this work, in
the form of a five-point Likert SAM scale [31] with an emoji at each point. This
approach has been shown to be a proven method in other literature studies for
self-report wellbeing [93], [26], [242].

3.3.2 Environmental Monitoring System

To observe changes and capture levels of air quality in the environment an ade-
quate monitoring system must be sought. As identified in the literature, readily
available environmental monitoring systems are typically unsuitable either for
high cost, size and adaptability into real-world experiments. In this thesis, four
prototypes have been developed with a range of environmental sensors with a
particular focus on using low-cost alternatives. Table 3.1, depicts the prototype
devices, including device name, images and short description.
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Table 3.1: Four environmental sensing prototypes with embedded electronics and
low-cost sensors, developed to support the DigitalExposome process.

Enviro-house: The first prototype
is a fixed device either to be placed
within a room or on a wall. Within
the system is one environmental sen-
sor that is capable of sensing harm-
ful gases such as Carbon Dioxide and
alcohol based products. The device
is built using an Arduino Nano and
has several LEDs to perform visual
feedback based on the levels of gases
sensed within the room. The power
to the device involves a small battery.
This is built on a traffic light scenario,
where for example if the air quality is
good the ’house’ device will illuminate
green and poor air quality will light
red. The device works in real-time
and will respond to actions such as
opening the window which in the lit-
erature shows can improve indoor air
quality [234]. An approximate costing
of the device including low-cost sen-
sors, embedded board and battery is
around £50.

Prototype Images Device Description

Continued on next page
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Table 3.1: Four environmental sensing prototypes with embedded electronics and
low-cost sensors, developed to support the DigitalExposome process.
(Continued)

The second prototype is a 3D printed
cylinder suitable for being held in the
hand whilst walking around an en-
vironment due to the positioning of
holes around the device. The size of
each device is 10cm x 8cm. Pow-
ered from an external battery the sys-
tem is connected to a Raspberry Pi
4 through several embedded sensors
are incorporated including Particulate
Matter (PM1), (PM2.5), (PM10), Re-
ducing and Oxidising gases, Carbon
Dioxide (CO2), Volatile Organic Com-
pound (VOV), Ammonia (NH3) and
Noise. The device including case, elec-
tronics and sensors cost around £125
to build.

Prototype Images Device Description

Continued on next page
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Table 3.1: Four environmental sensing prototypes with embedded electronics and
low-cost sensors, developed to support the DigitalExposome process.
(Continued)

Enviro-IoT: The third prototype de-
veloped is a 3D printed device specifi-
cally for outdoor use. Each system in-
corporates a Raspberry Pi 4, several
environmental sensors and built-in
Internet-of-Things technology. Specif-
ically the devices target Particulate
Matter (PM1), (PM2.5), (PM10),
Nitrogen Dioxide (NO2), Oxidising
gases, Ammonia (NH3) and Noise.
The air is sampled every 5-minutes
with the on-board device averaging
the air quality level to give an hourly
rate. Data is sent to a secure online
database for analysis which is a sim-
ilar approach carried out by industry
standard off the shelf devices The de-
vice including 3D printed case, elec-
tronics, sensors and router for internet
cost around £300 with a maintenance
for sim-replacement costing £50 every
6-months.

Prototype Images Device Description

Continued on next page

69



3. DigitalExposome: Wearable and Mobile Sensing Technologies for
Promoting Transforming Mental Wellbeing

Table 3.1: Four environmental sensing prototypes with embedded electronics and
low-cost sensors, developed to support the DigitalExposome process.
(Continued)

Enviro-Rucksack: The fourth pro-
totype builds on prototype 3 with a
similar set up of a custom-built ruck-
sack to unobtrusively collect environ-
mental data whilst walking around
an environment. Within each ruck-
sack houses a Raspberry Pi 4+ along
with several environmental sensors
such as Particulate Matter (PM1),
(PM2.5), (PM10), Reducing and Ox-
idising gases, Ammonia (NH3) and
Noise. The cost for developing this in-
cluding rucksack, electronics, sensors
and battery power costs £250.

Prototype Images Device Description
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3.3.2.1 Enviro-IoT: A Low-Cost Alternative to Assessing Air Quality
Levels

The Enviro-IoT is a custom-built environmental sensing device equipped with a
Raspberry Pi 4 to continually sample the environment with a timestamp, obtained
every 5 minutes and then averaged to give the mean concentration per hour.
Additionally, within the 3D printed case a selection of small, lost-cost air quality
sensors are placed to observe changes, which include the following variables:

• Particulate Matter (PM)

– PM 1.0 ug/m3

– PM 2.5 ug/m3

– PM 10 ug/m3

• Nitrogen Dioxide (NO2)

• Oxidising gases

• Reducing gases

• Ammonia (NH3)

• Noise (dB)

• Timestamp (Format of DD/MM/YYYY, HH:MM:SS)

The circuit is encased within a 3D plastic container to ensure the electronic
components are kept clean, secure and water-tight. As shown at Figure 3.5,
depicts the electronic circuit made up of the key components required to obtain
air quality levels. To place the device in a fixed location, the battery can be
replaced with a connection to the mains power.
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Figure 3.5: Electronic circuit of the Enviro-IoT and Enviro-Rucksack depicting
a Raspberry pi, power through a battery and several environmental air quality
low-cost sensors.

3.3.2.2 Deployment

In July 2022, two Enviro-IoT devices were positioned at an outdoor location
alongside the Automatic Urban and Rural Network (AURN) stations in different
urban environments across Nottingham City Centre as depicted at Figure 3.6.
The two areas were selected as part of a pilot study working with Nottingham
City Council (NCC) and the added interest of monitoring (NO2) and (PM) levels
of air pollution. The two pollutants are of significant importance due to NCC’s
commitment to reduce the level of (NO2) and (PM) over the next 5 years as
currently they remain in one of the UK Government’s ’Air Quality Mangement
Area’ [44].

The Enviro-IoT were fitted on top of the AURN with cables thread through
an inlet to access power and network connections. Due to the location of both
sensors, the Enviro-IoTs were placed into a wire cage to protect them against
vandalism. In both cases, the Enviro-IoTs have been placed as close to the other
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sensors that make up the AURN as possible.

Figure 3.6: Two locations of the Air Quality Monitors (Enviro-IoT) deployed in
Nottingham City Centre and Western Boulevard alongside the DEFRA AURN.

3.3.3 Urban Wellbeing: Design of an Ecological Momen-
tary Assessment Tool

In this section describes the design and development of Urban Wellbeing as a
cross-platform (iOS and Android) interactive ecological momentary assessment
tool that aids in supporting the work of DigitalExposome by unravelling the
relationship between the environment and mental wellbeing. Urban Wellbeing
is made up of multiple on-board mobile sensors for noise detection and fixed
external environmental sensors where data is provided by The Department of
Environment, Food and Rural Affairs’ (DEFRA) and Automatic Urban and Rural

73



3. DigitalExposome: Wearable and Mobile Sensing Technologies for
Promoting Transforming Mental Wellbeing

Network (AURN) [67] to obtain location specific air quality data, as demonstrated
at Figure 3.7.

Figure 3.7: Urban Wellbeing Mobile Application and the six sub-processes.
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The Urban Wellbeing application builds on previous work such as NoiseSpy
[100] which involves the collection of noise levels using smartphone technology
to monitor and map the impact along a journey within the environment. In ad-
dition, previously paper-based surveys have been conducted to understand how
people feel within the environment [82]. By incorporating more data from the
environment using technology will enable a deeper understanding of the impact
towards wellbeing and behaviour. The full system process of the mobile applica-
tion as detailed at Figure 3.8, depicts the structure of the application and data
obtained specifically to the device: smartphone and DEFRA AURN.

Figure 3.8: Urban Wellbeing system processes: The combined data collection
and processing workflow of Urban Wellbeing involving Smartphone application,
AURN Air Quality Monitoring Station and Database.
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Figure 3.9: (Left) User view of Urban Wellbeing demonstrating the wellbeing
assessment page, (Right) table equivalence of emoji vs scoring comparison.

As part of each assessment completed on the Urban Wellbeing application,
the following data is obtained:

1. Momentary Mental Wellbeing: The application users are required to
record their wellbeing using five well-known emojis and text-equivalent
meanings displayed on buttons as depicted at Figure 3.9. In addition, the
table at Figure 3.9 shows how wellbeing is calculated in terms of assigning
an individual score to each emoji, from 1=negative/low to 5=positive/high
. The ’Personal Index for Adults’ self-assessment of measured satisfaction,
as previous utilised has been adopted in this work to ask users how they
are feeling with their life as a whole [46]. This has been adapted into the
form of a five-point Likert SAM scale [31], to provide a proven method for
self-reporting subjective wellbeing.
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Figure 3.10: Image capture page demonstrating the option for users’ to under-
stand terms of use accompanies with four example images taken by participants.

2. Environment Type: To obtain where the user is located, a question is
presented to the app user on whether they are currently within an inside
or outside environment.

3. Environmental Image Capture: To gain an understanding into what
the environment visually looks like when the assessment is taking place,
participants are invited to capture an image using the in-build camera of
the wider environment they are currently standing within. Depicted at
Figure 3.10 demonstrates this page in action, along with the image consent
which participants must ’agree to understand’ prior to being able to take
the image. Whilst testing the Urban Wellbeing application, four images at
Figure 3.10 show examples of what was collected from several participants.

4. Environment Air Quality and Noise: The final process for the assess-
ment is to collect the environmental levels of air quality and noise which
is relative to the participants’ specific location. On clicking ’Capture’ as
depicted at Figure 3.11, a loading bar will form around the noise icon which
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Figure 3.11: Screenshot of Urban Wellbeing assessment in process as air quality
and noise sampling is obtained from the environment matching the location of
the participant.

results in several processes of obtaining the participant’s location, Air qual-
ity and noise level.

Air Quality readings are gathered by using the smartphone’s specific loca-
tion (longitude and Latitude) of the user and then data collected by the
nearest DEFRA AURN station [67]. In particular, the data obtained in-
cludes: Real-time Air Quality Index, Air Quality Level and AURN station
ID. The Air Quality Index is a process of combining all of the individual pol-
lutants collected at each AURN station either taking the highest recorded
value or averaging out the values across a period of time [73]. Secondly,
noise is obtained from the assessment which is calculated by recording a
series of noise clips in decibels which are collected over a period of 5 sec-
onds. Finally, at this point all the data has been saved locally stored on
the phone and with the timestamp (DD/MM/YYYY) added, the combined
data is sent to a secure database ready for analysis. To protect users and
in-line with ethics agreement, no data is stored in the database to identify
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a participant.

3.3.3.1 User Testing

A preliminary study has taken place to evaluate the design of the application and
performance as a tool to capture live environment sensor data and wellbeing, to
aid in quantifying the relationship between the two variables. In total, 5 partici-
pants were recruited for testing of Urban Wellbeing and interviewed following a
full day of utilising the application in the wild. There was an equal download of
Urban Wellbeing made up of iOS and Android platform between the participants.

When interviewed after using the Urban Wellbeing app for the day, it was
found that the majority, 4 out of 5 participants stated that they enjoyed using the
mobile application as a new approach to understand how the environment could
play a part in either a positive or negative wellbeing. Overall, these participants
were able to use Urban Wellbeing and complete the assessment process several
times throughout their day. One participant struggled with the concept and pro-
cess through the application and what they had to do. Some of the participants
at times reported that the final screen (Figure 3.11) was a little slow at loading
causing some issues with waiting around for the assessment to be completed.

A concern shared by one participant was that ’the application is not letting me
past the first screen to capture an assessment.’ One closer analysis, it was found
that this participant had not clicked on the ’accept’ permissions when prompted
by the smartphone so therefore the application was not able to be used. All
participants agreed that there should be some sort of inventive to carry out the
experiment using the mobile application, with one stating ’perhaps a series of
badges per environment or a step counter activity could be included’.

Following discussions with all participants after their day, it was mentioned
that a loading screen before the assessment starts should be presented which
briefly explains the main ideas and understanding of the work to be carried out.
As such, a landing page has been developed into the application with three sep-
arate pages detailing the app itself, the walk outline and how the results of this
study will be used, as depicted at Figure 3.12.
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Figure 3.12: Urban Wellbeing mobile application three landing screens to give a
general overview of the application before starting the individual assessment.

3.4 Datasets
To conduct this research, three different datasets are discussed in this section
with a brief description of each provided, additionally to the collected variables
obtained as part of the study. Section 3.4.1, presents the first dataset, that
explores individual-level data in the form of trajectories with semantic enrichment
and episodes to understand the impact of walking within an urban environment on
mental wellbeing across an entire journey. A pictorial example of the experiment
is provided in Figure 3.13 depicting the different data captured.

In Section 3.4.2, the second dataset is introduced which embodies a sensor
fusion approach of aggregated data collected from a real-world, real-time study
to quantify the relationship of the environment, physiology, behaviour and mental
wellbeing. The experimental set up, similar to dataset 1 is demonstrated at Figure
3.13. Finally, Dataset 3 (Section 3.4.3) embodies several interactive assessments
from the Urban Wellbeing smartphone application, to enable the development of
computational solutions to detect changes to wellbeing in different environments
in real-time. Further details and descriptions of each dataset are provided below:
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Figure 3.13: Experimental setup and tasks associated with this research encom-
passing a (1) Enviro-IoT Custom-built environmental sensing kit, (2) E4 Em-
patica to measure physiological responses, (3) Custom-built smartphone mobile
application.

3.4.1 Dataset 1: Semantic-Enriched Trajectories

The first dataset utilised in this thesis involved six participants (made up of 3
females and 3 males, aged between 18-50) who were all screened prior to the
study to ensure they were fit and healthy. This study gained ethical approval
from Nottingham Trent University’s Human Invasive Ethics Committee. The
six participants were instructed to walk through a range of different urban envi-
ronments which should take roughly no longer than 40 minutes to complete the
journey. The decision behind the length of time was due to previous user expe-
rience whereby a longer distance was found to be difficult. Additionally, the aim
was to not exhaust participants as this could result in an impact to their bodies
responses. Several studies with similar length of experiment time have since found
it difficult to motivate participants to walk further [6], [5], [102]. The experiment
was carried out around Nottingham Trent University, Clifton Campus.
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Figure 3.14: Selected route taken by participants demonstrating the journey
through a several green spaces (left picture) and a busy, polluted environment
(right picture).

Figure 3.14, presents the journey route followed by all participants in the
experiment. This is made up of the raw trajectory which involves the x, y and
a timestamp. The selected route took the participants on a mixture of urban
environments from several green to busy and polluted spaces which would help
to demonstrate the impact of different levels of exposure to air pollutants. Each
participant was given an E4 Empatica Wristband, Samsung Smartphone (pre-
loaded with wellbeing application) and a custom built Enviro-IoT Monitoring
Rucksack as depicted at Figure 3.13. Additionally, each is given an Enviro-
IoT Rucksack as detailed in Section 3.3.2.1 to capture the current air quality
every 20 seconds. Similarly, the Smartphone application samples a time stamp,
longitudinal and latitude. While the E4 Empatica sensors’ data is sampled at
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different rates with HR at 1Hz and EDA, BVP, HRV and body temp at64Hz.
The data set resulted in 3,953 samples made up from the following factors as
detailed in Table 3.2.

Table 3.2: The Semantic Trajectory dataset involving factors including: (1) raw
trajectory, (2) semantic and (3) mental wellbeing data.

Raw Trajectory Semantics Mental Wellbeing
Longitudinal (x) Heart Rate Self-Labelled emotions in

the form of Emojis as
outlined in Section 3.3.1.

Latitude (y) Heart-Rate Variability
TimeStamp
(DD:MM:YY,
HH:MM:SS)

Electrodermal Activity

Accelerometer
Blood Volume Pulse
Body Temperature
Particulate Matter 1.0
Particulate Matter 2.5
Particulate matter 10
Ammonia
Reducing Gases
Oxidising Gases
Noise
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3.4.2 Dataset 2: Quantifying DigitalExposome

A total of 40 participants (made up from 25 Males and 15 females, aged between
18 and 50) who were all screened prior to the study to ensure those who par-
ticipated in this research study were fit and healthy. This study gained ethical
approval from Nottingham Trent University’s Human Invasive Ethics Committee.
Previous literature has used a similar number of participants to carry out studies
in the same area [19], [106]. To obtain an adequate amount of data to evaluate
the DigitalExposome framework, participants were given a specified route to walk
around which would take no longer than 40 minutes to complete. As with Dataset
1, the choice in length of the walk was based on other studies and experiments
with the aim of not exhausting participants which obvious could result in an im-
pact to their body responses [6], [5], [102]. The route itself was selected within a
range of different urban environments which involved several busy, polluted and
open green spaces, as presented at Figure 3.15.

Figure 3.15: The pre-specified route made up of busy, polluted (right) and green
spaces (top-left) taken by all participants in the experiment.
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As with the previous dataset, in this experiment all participants were asked
to wear an E4 Empatica, carry a custom-build environmental sensing station (as
discussed in Section 3.3.2.1) in which both devices would be continually collecting
data. To collect mental wellbeing data, this dataset adopted the use of the
’Personal Wellbeing Index for adults’ which asks the user how they are feeling
with their life as a whole [46]. In this work, this has been adapted in the form of
a five-point Likert SAM scale [31] to provide a proven method for self-reporting
subjective wellbeing. In our pre-installed mobile app the user is met with five
well-know emojis, displayed on buttons from 1=negative/low to 5=positive/high.
The idea is that the participant will be constantly prompted by the researcher
to ascertain how they are feeling. Several studies such as [102] and NeuroPlace
[5] have shown how momentary wellbeing labels can change quickly as moving
through environments. The data set resulted in 41,037 samples and the following
collected factors as depicted in Table 3.3.

Table 3.3: The DigitalExposome dataset involving factors including: (1) environ-
mental, (2) physiological and (3) self-report wellbeing.

Environment Physiological Wellbeing
Particulate Matter 1.0 Heart Rate Self-Labelled emotions in

the form of Emojis as
outlined in Section 3.3.1.

Particulate Matter 2.5 Heart-Rate Variability
Particulate Matter 10 Electrodermal Activity
Noise Accelerometer
Reducing Gases Blood Volume Pulse
Oxidising Gases Body Temperature
Ammonia
Carbon Dioxide
Volatile Organic Com-
pound
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3.4.3 Dataset 3: Urban Wellbeing: Ecological Wellbeing
Assessment

The third dataset involves the Urban Wellbeing mobile application as presented in
Section 3.3.3, a dataset that contains real-world, real-time environmental sensor
and self-report mental wellbeing data. In total there were over 50 downloads
of Urban Wellbeing on the iOS and Android platforms resulting in 74 samples
collected from across the United Kingdom as depicted at Figure 3.16. As part
of the application, participants signed an in-app consent form that allows the
collection of wellbeing data. The dataset was made up of the following variables:

1. Self-report mental wellbeing

2. Indoor/ Outdoor location

3. Location (Longitude and Latitude values)

4. Noise

5. Environment image taken by user

6. Timestamp

7. Real-time Air Quality Index stamp

8. Air Quality level

9. Air Quality nearest station for gathering data
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Figure 3.16: Map overlay from all participants that labelled. Each dot represents
a location trace using the longitudinal and latitude values recorded by the appli-
cation.

3.4.4 Data Storage Protection and Management

The collection of data requires careful considerations of various aspects, including
the approaches employed to manage, protect and uphold the ethical standards
throughout the research process.

Invasive ethics was granted by the Nottingham Trent University Ethical Com-
mittee (Application No. 068) to undertake the research activities that resulted in
Dataset 1, 2 and 3. In line with the ethical agreement a data management plan
was put in place for the collection of participants data to ensure that the analysis
will be more efficient and avoid lots of irrelevant information [230]. Once the col-
lected data from each participant device was downloaded, it was collated into a
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single .csv file combining the environmental, physiological factors and self-report
wellbeing level. It was then transferred to a password protected storage database.
Additionally, all non-digital data such as the consent forms were stored within a
locked cabinet in the research lab. As a result of collecting personal information
the data will be fully anonymous.

3.4.5 Data Pre-Processing

Following data collection, considerations must be made for pre-processing to make
it suitable for modelling. As evident in Section 3.3, there is a range of sensors with
varying sample rates which must be taken into account so as to either up or down
sample data correctly to ensure that nothing is lost. Following each experiment
discussed in future chapters’, the data has been pre-processed to ensure that it
is ready for analysis.

The important considerations with the data obtained firstly involves the
Enviro-IoT device that records data once every 20 seconds. Secondly, for the
E4 Empatica since there are varying rates of samples collected from HR at 1Hz
and EDA, BVP, HRV and body temperature at 64Hz. Due to the varying sample
rates, the physiological data collected (EDA, BVP, HRV and body temperature)
were down-sampled to a rate of 1Hz to match the sample rate of collected HR
by the device. In addition, the collected environmental sensor data had to be
up-sampled to match the sampled rate of the physiological data at 1Hz. This was
due to the low sample rate produced by the environmental device. Finally, the
labelled data from the mobile smartphone was extracted and up-sampled to the
same rate as the environmental and physiological data to 1Hz to remain consis-
tent with the other data. To sample the data linear interpolation has been used
on all datasets contained in this thesis [149]. If the two known points are given
by the coordinates ( x1 , y1) and ( x2 , y2). The linear interpolant is the straight
line between these points. For a value x in the interval ( x2 , x1 ), the value y
along the straight line is given from the equation of slopes as shown below:

y = y1 + (x− x1)
(y2 − y1)

(x2 − x1)
(3.1)

Once completed, all signals from data sources were then normalised to bring all
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variables within the same range for both the data analysis and machine learning.

3.5 Conclusion
This chapter has presented the novel concept DigitalExposome and demonstrated
the potential of employing a sensor fusion approach to further understand the rela-
tionship between the environment and the impact towards mental wellbeing. This
led to the development of several environmental and mental wellbeing through
the use of miniaturised low-cost sensors and smartphone technology. This in-
volved the collection of 3 individual datasets made up of real-world, real-time
environmental, physiological and mental wellbeing based on self-report data. Us-
ing DigitalExposome and the sensing technologies developed in this work could
enable a new perspective on the environment and how people breath, feel and
interact with different surroundings.

The next chapter, explores into the relationship using the wellbeing label to
quantify further in using deep learning algorithms to understand the impact of
environment on momentary mental wellbeing in urban environments.
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Chapter 4

Multimodal Environmental
Sensing for Mental Wellbeing
Prediction

4.1 Introduction
As explored in Chapter 3, the DigitalExposome concept and framework was ex-
plored to provide a viable alternative step to quantifying the relationship to envi-
ronment, physiology and mental wellbeing. In this chapter the work is detailed as
a two-fold approach investigating the individual more directly through the use of
semantic trajectories with episodes and aggregated data to quantify mental well-
being. In this way, multimodal data is explored by using computational models
to accurately classify mental wellbeing.

The experiments involve the use real-world multimodal collected sensor data
from over 50 participants which showed that (i) the collection of environmental,
physiological and momentary mental wellbeing enables accurate classification of
mental wellbeing, (ii) time-series data has the potential to quantify the environ-
ment and mental wellbeing at the point of exposure.
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As part of this chapter, the following contributions are made:

1. Conduct an extensive data exploration of collected environmental, physi-
ological and momentary self-reported labelled mental wellbeing With the
aim of being able to quantify the relationship between the environment,
physiology, personal characteristics and wellbeing at an individual level
and aggregated to observe the impact of each with over 50 users made up
of more than 45,372 samples collected across two studies.

2. Utilised exploratory and statistical analysis techniques to begin to evalu-
ate the link between environment, physiological variables and self-reported
wellbeing. The results clearly show that the fluctuations in urban envi-
ronments where pollution is high is impacted by individual’s physiological
and wellbeing states.

3. Explore several supervised learning methodologies to accurately classify
and infer wellbeing based on collected environmental, physiological and be-
haviour classified separately and together to ascertain the impact through-
out a range of urban environments.

4. Demonstrate for the first time the feasibility of acquiring time-series data
in the form of trajectories by adding environmental, physiological and mo-
mentary mental self-labelled wellbeing as semantics while applying the
concept of episodes to classify wellbeing states across different urban en-
vironments.
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4.2 Semantic Trajectories to assess the Impact
at the Point-of-Exposure

Trajectory modelling is becoming increasingly common to explore spatio-temporal
patterns in mobility and the assessment movement of multiple objects in order
to assess impact at the ’point-of-exposure’. Additionally, as identified in the lit-
erature semantic enrichment provides many benefits in being able to add greater
detail to a trajectory and be able to understand the impact of mobility directly.
The main focus in this study is to explore the use of a personalised individual
trajectory with the addition of semantics to store internal characteristics (such as
physiological HR, HRV, EDA) and external context (such as the environmental
factors) to observe the impact to mental wellbeing, specifically at the point of
exposure. This investigation will link together trajectories to the actual envi-
ronment where exposure takes place which is an important step to quantify the
impact of the environment on time-series data in moving objects.

The complexity and increased use of spatio-temporal data have helped in
leading to achieve a better understanding into the processes of a movement. Sev-
eral studies have previously shown the capabilities of this data for describing
movement phenomena graphically [158], [32]. Many authors have proposed solu-
tions for the task of gaining a better understanding on the impacts of movement.
However, the gap remains in understanding of how other factors such as environ-
mental and physiological could have a direct impact towards mental wellbeing
and mobility.

4.2.1 Experimental Setup

The work in this section uses Dataset 1 at Section 3.4.1 which contains the multi-
sensor fusion approach embodying the trajectory (x,y and timestamp), semantic
as environmental and physiological data, in addition to the individual episodes
as self-reported mental wellbeing label. The fused trajectory dataset is made up
of 3,953 samples which include the following variables:

• Urban environmental attributes and air quality: Particulate Matter (PM1.0),
(PM2.5), (PM10), Oxidised, Nitrogen Dioxide (NO2), Reduced, Ammonia
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(NH3) and Noise

• Body physiological reactions including: Heart rate (HR), Electrodermal
activity (EDA), Heart Rate variability (HRV)

• People count via wireless proximity detection

• Individuals’ perceived responses: Self-reported valence (Refer to Section
3.3.1)

4.2.1.1 Identification of Trajectory Episodes

This study considers a different approach to identifying episodes from semantic
trajectory data. The general idea and objective of this work is to explore using
the self-labelled emotion to construct several individual episodes to divide up
the human trajectory. At each episode point, along with the raw trajectory
(x, y, timestamp) contains a self-labelled wellbeing-level based on an emoji and
several semantic elements to enrich the episode, in the form of environmental
(Air Quality) and physiological factors. In this case, Figure 4.1, demonstrates
this visually, depicting an example trajectory of one participant’s route with a
red outline dot representing a single wellbeing change along the route.

Figure 4.1: Wellbeing overlay from one participant’s trajectory. Each dot repre-
sents a change in wellbeing, tagged with a trajectory (x, y) containing environ-
mental and physiological factors.
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To further envisage this approach Figure 4.2, demonstrates a single individ-
ual’s trajectory with the addition of semantics made up of environmental, physi-
ological and self-report labelled wellbeing as the y-axis. This is put in context of
several episodes (e.g. 913 at Figure 4.2) which is made from an individual’s well-
being change at each point across a whole trajectory (x-axis). The arrangement
of information in this way shows the usefulness of a representation that allows
multimodal data to be combined.
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Figure 4.2: An individual trajectory combining semantic features; Environmental, physiological factors depicting
each single episode made up of the changes in emotions across the entire trajectory.
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4.2.2 Statistical Analysis

To begin to unravel the relationship between the different environmental and
physiological variables and the impact each one has on another, Pearson’s R
Correlation Coefficient Matrix is employed. The correlation coefficient helps in
understanding the strength of the linear relationship between two variables [144].
Figure 4.3 presents the Correlation Matrix depicting the environmental, physio-
logical and self-report wellbeing variables.

Figure 4.3: Pearson’s Correlation Coefficient Matrix made up using the collected
environmental, physiological and self-labelled wellbeing.
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In particular, momentary self-report wellbeing label correlates negatively with
Particulate Matter 1.0, 2.5, 10, Oxidised, Reduced and Ammonia demonstrating
that higher levels is causing a negative wellbeing. Additionally, it can be noted
that EDA correlates positively with the wellbeing label (0.22) and negatively
with Particulate Matter 1.0, 2.5 and 10. Furthermore, HR suggests to correlate
with Oxidising Gases (0.55), body temperature (0.75) ammonia (0.36) and noise
(0.20).

4.2.3 Classification of Emotion Change using Semantic
Trajectory Episodes

The use of machine learning has been explored to help classify the changes in
wellbeing based on the five self-reported states of momentary wellbeing label
using the environmental pollutants and physiological data. These labels segment
the trajectories into individual episodes of the environment.

4.2.4 Dynamic Time Warping

Dynamic Time Warping (DTW) has been shown to be an effective algorithm
in many areas, particularly in classification of time series data [192] in being
able to measure the similarity between two temporal sequences. In this case, for
classifying the episodes of wellbeing change, the similarity distance between the
different episodes of the trajectories was first measured using DTW. The seman-
tic trajectories containing the individual wellbeing episodes from 6 participants
(3,953 samples) have been extracted using DTW, which were then used to train
a number of machine learning classifiers to classify mental wellbeing. The input
data used to train was made up of the semantic trajectories which includes: Par-
ticulate Matter (1.0, 2.5 & 10), Ammonia, Noise, Oxidised and Reducing Gases,
HR, HRV, EDA, BVP, Body Temperature and labelled wellbeing in the form of
self-report. The model was trained over 20 epochs with a batch size of 128 and
tested using a 10-fold cross validation with a 20% test split. To segment the col-
lected data an overlapping sliding window strategy was adopted with a window
size of 8 and a step of 4 chosen experimentally to improve accuracy.
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4.2.4.1 Classification Results

The F1-Scores for each of the classification models trained using the combined 12
features made up of environmental and physiological data are depicted at Figure
4.4. Using DTW with a KNN classifier can be seen to be the best perform-
ing model with accuracy as 0.88 (F1-Score), outperforming the other statistical
models by 0.10 (DT) and 0.37 (RF) respectively.

Figure 4.4: Comparison of classification models used with combined environmen-
tal and physiological data to classify wellbeing across episodes.

To delve deeper into the relationship between using environmental and physi-
ological data and why it can be combined to predict wellbeing, the three classifiers
(KNN, DT and RF) were used on the separate data modalities (environmental
and physiological) in the dataset as depicted at Figure 4.5.

When the DTW model was trained using just the environmental data alone,
a KNN classifier achieved the highest at F1-Score 0.84 indicating that wellbeing
can be inferred using environmental data and physiological data can be used to
infer with an F1-Score of 0.76. These results build on previous work as the use of
physiological data has been shown in other studies to accurately classify wellbe-
ing, due to its high correlation with the sympathetic nervous system [197]. From
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Figure 4.5: Comparison of F1-Scores for both environmental and physiological
data separated.

these results, it is particularly interesting to note that environmental combined
with physiological data outperformed the model trained using environmental data
alone, demonstrating the benefits of the environmental air quality data collected.
This suggests that environmental data is a robust source for wellbeing classifica-
tion alone.

Moreover, the results also show that using a Decision Tree classifier with the
separate environmental and physiological data achieved 0.76 and 0.61 respectively.
Combining the training of environmental and physiological data together and
trained using DTW and classified using Decision Trees, could be used to infer
emotion achieving an F1-Score of 0.78. It is worth noting that in both classifying
environmental data using DT and a KNN, wellbeing could be inferred at a higher
level than physiological data. This further highlights the importance air quality
data can have in wellbeing classification.
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4.3 DigitalExposome Aggregated Study
This section delves deeper into the exploration and discussion of the proposed
methodology that focuses on quantifying data related to environmental, phys-
iological, and mental wellbeing. The approach employed here emphasises the
collection and analysis of data in an aggregated manner, drawing insights from a
group of users.

4.3.1 Experimental Setup

The work in this section uses Dataset 2 (see Section 3.4.2) which contains the
multi-sensor fusion approach embodying environmental, physiological and self-
report mental wellbeing data. Following sampling of the sensor data, the resulting
dataset includes:

• Urban environmental attributes and air quality: Particulate Matter (PM1.0),
(PM2.5), (PM10), Oxidised, Reduced, Ammonia (NH3) and Environmental
Noise

• Body physiological reactions including: Heart rate (HR), Electrodermal
activity (EDA), Heart Rate variability (HRV), Body temperature (TEMP)

• Body Movement via Accelerometer

• People count via wireless proximity detection

• Individuals’ perceived responses: Self-report Wellbeing (Refer to Section
3.3.3)
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4.4 Results
In this section, the experimental results are presented, explored and discussed.
Section 4.4.1 employs mathematical and statistical approaches for the exploratory
analysis stage including variable Correlations, PCA factor maps, variable impor-
tance and Pearson’s R Correlation Coefficient to measure the association between
two categorical variables. Section 4.4.2 explores the use of Multi-Variant Regres-
sion to understand the variable importance between dependent and independent
factors. Finally, Section 4.5, presents the classification results of infer mental
wellbeing on both environmental and physiological factors.

4.4.1 Statistical Factorial and Variable Importance Anal-
ysis

To explore the correlations between environmental, physiological and self-reported
wellbeing mathematical and statistical approaches have been explored. These in-
clude descriptive statistics, variable correlations, Principal component analysis
(PCA) factor maps, variable importance and Pearson’s R Correlation Coefficient
to measure the association between two categorical variables. Table 4.1, gives an
overview of the descriptive statistics including the mean, mode, Min, 1st, 2nd,
3rd quartile, maximum value, skewness and kurtosis for the data collected during
this study.
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Table 4.1: Summary of the Descriptive Statistics of the collected Environment
and Physiological Data.

Variables Mean Median Min 1st
Qu.

2nd
Qu.

3rd
Qu.

Max Skewness Kurtosis

BVP -1.5 0 -1050 -36.02 0 34.714 1075 -0.019 11.022
EDA 0.35 0.175 0 0.12 0.18 0.26 4.54 3.92 15.84
HR 100.2 100.6 0.71 91.23 100.64 108.96 174 0.13 1.66
HRV 0.46 0.55 0 0.21 0.55 0.62 1.34 -0.52 -0.54
NH3 878.6 686 15 509 686 1064 3794 1.3 1.4
Noise 97.4 96.4 47.2 94.5 96.37 100.3 140.3 -1.73 19.95
Oxidised
Gases

38.1 38 2 30 38 42.3 88 0.08 0.21

PM 1.0 4.36 3 0 0 3 7 65 3.21 18.6
PM 2.5 5.8 0 0 3 3 9 65 2 7.1
PM 10 7.3 3 0 0 4 12 65 1.88 4.4
Reduced
Gases

453 509 47 341 509 548 1201 -1.4 0.5

A correlation matrix for the study data depicted at Figure 4.6 aims to
demonstrate the relationship between variables. From this, it is clear to see that
some variables are highly correlated together. Through analysing the individual
cells HRV is shown to correlate with PM10 (0.118) and NH3 (0.211). In addition,
EDA demonstrates a correlation with PM10(0.189), oxidised (0.213) and reduced
gases (0.15), and NH3 (0.198).

102



4.
M

ultim
odalSensing

for
W

ellbeing
P

rediction

Figure 4.6: Correlation Matrix for Environmental, Physiological and self-reported label.

103



4. Multimodal Sensing for Wellbeing Prediction

Principal component analysis factor maps are an effective method for
large datasets, to help understand the relational impact between different vari-
ables, with reducing information loss [99]. The use of PCA maps offers a visual ap-
proach to presenting data and examining the relationships among variables [102].
This is achieved by giving a view of all the plotted variables projected on to a
plane, spanned by the first two principle components. This method demonstrates
the structural relationship between the different variables. Figure 4.7 (A & B),
present the captured environmental and physiological variables depicted on a
PCA map.

Figure 4.7: PCA Analysis - (A) Variance between the different variables, (B)
Variance between the different variables without EDA.

It is worth noting, that most of the body attributes EDA, HR and HRV are
all at the top of the figure, whilst, the environmental variables PM1, PM2.5,
PM10 and Reducing gases are located in the middle. From the diagram (A),
there is Dim1 25.9% and Dim2 19.2%, resulting in 45.1% in total variance across
the environmental and physiological variables. It is worth noting that the most
important, (or, contributing) variables are highlighted using the colour gradient
(i.e. darker colours indicate higher contributing factor).

At the second PCA diagram (B), depicts the most important variables as
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identified at diagram (A) including PM1,PM10, PM2.5,EDA, HR and IBI with
the least contribution variables discounted. With this PCA diagram, it is notice-
able that the total variance increases to 80%, comprising of 49.8% from Dim1
and 30.2% from Dim2. Higher increased of variance in other studies has shown
the stronger association between variables [189], as evident in PCA diagram (B).
The close grouping and proximity of the independent variables suggests that HRV,
HR and PM10 are correlated and that HRV, HR, PM2.5 can also be correlated.
Analysing these early findings indicates that lower the HRV and higher HR is
correlated to a higher level of air pollution within the environment.

Figure 4.8 demonstrates the variable importance by depicting the impact of
wellbeing against levels of PM2.5 within the environment. The bars on the chart
are associated with how many times a particular user would label how they were
feeling (self-report wellbeing) whilst walking around the environment.

Figure 4.8: Depicts the relationship between the self-reported Participant’s well-
being (Label) and PM2.5.

The results of this indicate that high levels of PM2.5 are more commonly
associated with a negative wellbeing, shown by participants choosing (1- Very
negative wellbeing) on the device. Whereas less association is apparent where
participants labelled ’5’ (very positive wellbeing), the levels of PM2.5 were much
lower. This early analysis on the collected sensor data helps to further understand
and demonstrates the impact of pollution on mental wellbeing.

105



4. Multimodal Sensing for Wellbeing Prediction

4.4.2 Multi-Variant Regression Analysis

Multi-Variant Regression offers the opportunity to see the importance and im-
pact each variable has on the other. In this work, the variable dependency on
two different modalities using Multivariate Regression and Principle Component
Analysis (PCA). For each of the dependent variables (physiological data), Multi-
ple Linear Regression was utilised to compare them against the independent vari-
ables (environmental data). The aim of this is to see which dependent variable
can be predicted from using the environmental data as independent variables.

4.4.2.1 Multiple Regression Model for EDA

Firstly, a multiple linear regression module for EDA has been used to understand
the impact of this physiological on-body sensor to the other independent environ-
mental variables including NH3, Noise, PM1, PM2.5, PM10 and Reduced. Table
4.2, shows the multiple regression results for EDA:

Table 4.2: Multiple Regression Analysis between EDA and Environmental vari-
ables.

Coefficients Standard Error t Stat P-value
Intercept -0.02381894 0.02225209 -1.07041 0.284452
nh3 0.000291595 1.14608E− 05 25.44285 1.5E− 139
noise 0.004050864 0.000221511 18.2874 7.92E− 74
oxidised -0.00590754 0.000143065 -41.2928 0
pm1 -0.00768185 0.00081832 -9.38735 7.11E− 21
pm10 0.000939923 0.000285371 3.29369 0.000991
pm25 0.003698711 0.000800215 4.622149 3.83E− 06
reduced -0.00058528 4.59985E− 05 -12.7239 7.06E− 37

At Table 4.2, the coefficients demonstrate that environmental variables (NH3,
Noise, PM10 and PM2.5) involve an increase in EDA. A negative coefficient shows
that as EDA increases the remaining environmental variables decrease showing
that there is a less of association between them. In addition, a negative (-) t-stat
value for each environmental variable depicts a negative impact on the variable of
EDA. Whereas a positive value indicates an association between the environmen-
tal variable and EDA. The data in Table 4.2 was then evaluated using a regression
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curve shown in Figure 4.9. This shows the relationship between the calculated
residual values verses the fitted values shown at (A) and (B) respectively.

Figure 4.9: EDA Regression: Residuals Vs Fitted values curve (A) and Q-Q Plot
(B).

Figure 4.9 depicts the graphs of Residuals Vs Fitted (A) and a normal Q-Q
plot (B) for EDA by using bi-modal data. The aim of a Residual Vs Fitted graph
is to ascertain whether linearity holds which is normally indicated by the mean
of the residual values being close to 0. In the case of (A), this is shown by the
red dotted line being close to 0. On the other hand, the Q-Q plot (B) is used
to in order to fit a linear regression model. In many Q-Q plots, the data on the
graph takes the shape of a twist like seen in this plot [102], [191]. This plot is
presenting a symmetric distribution with ’fat-tails’, otherwise known where the
ends of the line curve. The lower part of the plot is almost linear, suggesting
a normal distribution in relation to one mode of data distribution. In addition,
the upper part of the Q-Q plot again suggests linear, showing an approximate
distribution. The steep line between the upper and lower curve is steeper than
the line y = x which suggests the distribution plotted on the vertical axis is more
dispersed than the distribution plotted on the horizontal axis. The implication
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to this is that the data points are normally distributed.

4.4.2.2 Multiple Regression Model for HR

Below presents the multiple linear regression model for HR using the other in-
dependent variables (environmental). This includes; NH3, Noise, PM1, PM2.5,
PM10 and Reduced. Table 4.3, shows the multiple regression results for HR:

Table 4.3: Multiple Regression Analysis between HR and Environmental vari-
ables.

Coefficients Standard Error t Stat P-value
Intercept 128.8420806 1.721454748 74.84488381 0
nh3 0.007322924 0.000886623 8.25933903 1.59864E− 16
noise -0.083286817 0.017136432 -4.860219147 1.1856E− 06
Oxidised -0.051833849 0.011067698 -4.683344891 2.84951E− 06
pm1 0.118538171 0.063306454 1.872450026 0.061165731
pm10 0.112184632 0.022076708 5.081583292 3.79248E− 07
pm25 -0.232804742 0.061905795 -3.760629225 0.000170194
reduced -0.072042617 0.003558515 -20.24513451 8.12597E− 90

These initial findings are in agreement with previous research that shows
PM2.5 can directly impact HR [170]. In addition, research has shown how dif-
fering levels of irregular environmental noise can impact a regular heart-beat. In
particular, recent studies exploring this find that noise levels between 55 and 75
Decibels (dB) are linked to a higher risk of developing heart related diseases [147].

Figure 4.10 depicts the Residual VS fitted values and normal Q-Q Plot as
shown at A and B respectively. Similar to the EDA Q-Q plot, HR Q-Q plot
shown in Figure 4.10 (right) demonstrates a twist at either end of the plot. In
addition the data shows a clear bi-modal distribution. The lower part of the plot
is almost linear suggesting an approximate normal distribution. The line in the
middle of the upper and lower parts follows a more linear (y=x) line, meaning
that the distribution is less dispersed. It is worth noting that there were three
outliers for HR distribution due to erroneous sensor readings.
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Figure 4.10: HR Regression: Residuals VS Fitted values curve (A) and Q-Q Plot
(B).

4.5 Classification of Aggregated Mental Wellbe-
ing

To explore the relationship deep learning networks and machine learning classifi-
cation techniques have been incorporated to classify the five self-reported states
of wellbeing using the environmental pollution and physiological data from the
40 participants who successfully labelled their wellbeing. There were 3 partic-
ipants whose data was removed prior to the classification due to issues around
the self-recorded label and sampling of the environmental variables not recording
correctly.
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4.5.1 Deep Belief Network (DBN) Analysis

Firstly, a preliminary study involving 11 participants took part in the experiment
collecting environmental and physiological data that has been used to train an
unsupervised one dimensional deep belief network to classify the obtained mental
wellbeing data. The input data into the model includes: Particulate Matter (1.0,
2.5 & 10), Ammonia, Noise, Oxidised and Reducing Gases, HR, HRV, EDA, BVP,
Body Temperature and labelled wellbeing in the form of self-report. The model
was trained over 20 epochs with a batch size of 128 and tested using a 10-fold
cross validation with a 30% test split. The raw input data was firstly divided into
segments of fixed lengths. To segment the collected data an overlapping sliding
window strategy was adopted with a window size of 8 and a step of 4 chosen
experimentally to improve accuracy.

4.5.1.1 Classification Results using a DBN

The extracted features from the DBN were combined with Random Forest, Sup-
port Vector Machine (SVM), Decision Tree, Gaussian Naive Bayes, Logistic Re-
gression and Gradient Boosted supervised machine learning models to classify
the five self-reported states of wellbeing using the input data of environmen-
tal air quality pollution and physiological. These machine learning models were
selected due to their high popularity and were also tested using only common
statistical features: mean, median, max, min, max-min, standard deviation and
quartiles [128]. Additionally, a Convolutional Neural Network (CNN) has been
trained using the same raw data to enable comparison with the DBN models for
the 11 participants’ data.

Figure 4.11 shows the accuracy for each of the classification models trained
using standard statistical features and features extracted using the DBN. The
results demonstrate that the models trained using features extracted from the
DBN outperformed the models trained with statistical features for three out of
the six classifiers and achieved on average 3.2% higher accuracy. Random Forest
combined with the DBN was the best performing model achieving 80.83% accu-
racy, outperforming all statistical models and the CNN which is frequently used
for wellbeing classification by 5.54%. To explore the impact air quality pollution
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Figure 4.11: Comparison of classification models trained using statistical features
and features extracted from DBN.

has on wellbeing the best performing model (Random Forest) in addition to the
CNN were individually trained using only the pollution and physiological data as
shown in Figure 4.12.
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Figure 4.12: Comparison of Random Forest combined with DBN and CNN when
trained using only pollution or physiological data.

The results show that wellbeing can be inferred using pollution data alone
with 73% accuracy while wellbeing can be inferred from physiological data with
79.1% accuracy. It was expected that psychological would accurately classify
wellbeing due to its high correlation with the sympathetic nervous system [197].
From the results in this smaller study of 11 participants it is surprising that the
environmental air quality pollution data when combined with physiological data
outperforms the model trained using environmental data alone. This situation
implies that the environmental air quality data can play a crucial role towards
impacting mental wellbeing in urban environments.
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4.5.2 Convolutional Neural Network (CNN) Analysis

Secondly, to compare model performance, environmental and physiological data
from 40 participants have been used to train a 1D-CNN to classify the five mental
wellbeing states. The input data variables for the model was the same as stated
in Section 4.5.1. The model was trained over 20 epochs with a batch size of 128
and tested using a 10-fold cross validation with a 30% test split. The network
architecture of consists of 2 1-dimensional convolutional layers (64 and 32 neurons
respectively) followed by a dropout layer with a rate of 0.5 to prevent over fitting
before the ’softmax’ activation function. Batch normalisation has been utilised
within the network to normalise the inputs of each layer followed finally by a fully
connection layer. The learning rate has been set at 0.001. The raw input data
was firstly divided into segments of fixed lengths. To segment the collected data
an overlapping sliding window strategy was adopted with a window size of 8 and
a step of 4 chosen experimentally to improve accuracy. Adam was selected as the
optimiser, although others were trialled in order to try and improve the accuracy.

4.5.2.1 Classification Results using a 1D-CNN

The extracted features from the CNN were combined with Random Forest, Sup-
port Vector Machine (SVM), Decision Tree, Gaussian Naive Bayes, Logistic Re-
gression and Gradient Boosted supervised machine learning models to classify the
five self-reported states of wellbeing using the environmental air quality pollu-
tion (PM1, PM2.5, PM10, Oxidised, Reduced, NH3 and Noise) and physiological
(BVP, EDA, HR, HRV and body temperature) data. These machine learning
models were selected due to their high popularity [128].

Figure 4.13 presents the F1-scores for each of the classification models trained
using standard statistical features. The classifier Random Forest was the best per-
forming model achieving an F1-score of 0.76, outperforming the other statistical
models by 0.09 and the CNN which is frequently used for wellbeing classification
by 0.13. To explore the environmental air quality impact on mental wellbeing,
the best performing classifier (Random Forest) was trained using the environmen-
tal and physiological data independently, as shown in Figure 4.14. The results
indicate that wellbeing can be inferred using environmental data alone, achieving
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Figure 4.13: Comparison of classification models trained using statistical features
and raw data from a CNN.

an F1-score of 0.67 while well-being can be inferred from physiological data with
0.61. As previous studies have shown, physiological data should be expected to
accurately classify well-being due to its high correlation with the sympathetic
nervous system [197]. However, similar to the first study (Section 4.5.1.1), it is
interesting to note that air quality pollution data when combined with physio-
logical data outperformed the model trained using the environmental data alone,
demonstrating the benefits of this data in classifying wellbeing.

Analysing the results further in terms of precision and recall across the six dif-
ferent models for classification the scores were very similar in values. In particular,
Logistic Regression and Support Vector Machine scored very low on precision and
recall (0.44 and 0.33 respectively), struggling at predicting the middle of labels
(3 and 4). At the two highest achieving models (Decision Trees and Random
Forest) both were similar resulting in higher precision and recall values (0.70 and
0.74 respectively), with slightly lower scores of 0.33 when predicting label 2.

Sometimes there can be some variations in a dataset, which could be the result
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Figure 4.14: Comparison of Random Forest combined with CNN when trained
using only the environmental or physiological data.

of one user labelling poorly across the experiment that can potentially lead to the
training dataset being significantly impacted. In order to evaluate the training
dataset in this case, two radar charts are generated from 10 users’ models (CNN
and CNN with a Random Forest Classifier) as depicted at Figure 4.15. A CNN
alone resulted in the highest variation between users with environmental data
achieving 0.45 to 0.70, physiological 0.20 to 0.50 and combined environmental
and physiological achieving between 0.30 to 0.90 (F1-Scores respectively). The
combination of a CNN and using a random forest classifier depicted a significantly
lower variation in accuracy between users, apart from user 4. Out of the 10 users’
selected, user 4 achieved a lower accuracy from environment (0.5), physiological
(0.3), combined environment and physiological (0.6). However, the other 9 users
were consistent in the achieved accuracy of environment (0.9), physiological 0.7
and both combined environment and physiological data (0.9). This approach has
helped to understand how sometimes users’ data can impact the overall training
of the model dataset. Furthermore, the combination of environmental and phys-
iological data to train with has highlighted the association between the variables
to help infer wellbeing states.

115



4. Multimodal Sensing for Wellbeing Prediction

Figure 4.15: Radar charts showing the accuracy levels of three models (top) CNN,
(bottom) CNN-RF, based on ten users data in ad-hoc and fused modes.
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4.6 Discussion
The findings from the semantic trajectory and DigitalExposome studies reveal
that the utilisation of objective sensor data enables a continuous collection and
integration of real-world environmental and physiological sensor data. This ap-
proach proves beneficial in understanding the impact of our surroundings on
mental wellbeing and provides insights into our interactions and behaviors across
various environmental conditions. By combining these data sources, valuable
knowledge can be gained about the way to perceive and engage with our envi-
ronment.

The impact of various variables on mental wellbeing has been established
through their interrelationship. Previous research in the field has predominantly
concentrated on examining the effects of noise and ultra-violet radiation on emo-
tions [100], as well as exploring methods for assessing individual exposure to the
environment [57], particularly through mobile and environmental sensing. In
contrast, the present study takes a more comprehensive approach by consider-
ing a broader range of environmental factors and their influence on physiological
responses and overall wellbeing. By continually collecting and fusing real-world
environmental and physiological sensor data has enabled an understanding into
how as individuals we interact and behave within different environmental condi-
tions.

The results of the principal component analysis (PCA) indicate that when
all the collected variables are merged, they can effectively capture and describe
the overall variability of the data. In particular, on the PCA map, the physi-
ological sensors (EDA, HR and HRV) point towards a different location to the
environmental variables. From the analysis conclusions can be made that a range
of environmental factors (PM1.0, PM2.5, PM10) impact physiological changes
(HRV, HR). Placing this work in relation to related work shows that similar
work find that HR and HRV are correlated to PM2.5 [50] but little research has
been explored around EDA, which this work demonstrates there is significant
correlation, demonstrating the significance of this work.

The multi-variant regression models applied to heart rate (HR) data reveal
a distinct bimodal distribution, with a relatively weaker positive correlation ob-

117



4. Multimodal Sensing for Wellbeing Prediction

served towards NH3 and Particulate Matter 1.0 and 2.5. Additionally, the ex-
ploratory data analysis (EDA) also exhibits a bimodal distribution, with a rel-
atively weaker positive correlation observed towards NH3, environmental noise,
and Particulate Matter 1.0 and 10.

The ability to classify the collected data presents many possibilities for the
real-world inference of wellbeing using environmental air quality data. The re-
sults show that using features extracted from a CNN successfully improved the
accuracy in which wellbeing can be inferred. Combining physiological with en-
vironmental pollution data achieved an F1-score of 0.76 compared with an F1-
score of 0.61 when trained using only physiological and 0.67 when trained using
only environmental pollution data. In both studies, classification of mental well-
being using both environmental and physiological features using an aggregated
approach achieved 80.8 (DBN + KNN), 0.76 (CNN + KNN).

In addition, observations can highlight the impact of focusing more directly
to the individual using semantic trajectories of self-report wellbeing to create
episodes, which results in a better accuracy performance at 0.88 using DTW
to extract and classify using a KNN to infer wellbeing. Whilst classifying the
data obtained it is interesting to note that when utilising an LSTM classifier,
on average the accuracy scored was around 0.11 F1-Score. This was an unusual
result in that LSTMs used in previous work has been shown to achieve a very
high classification accuracy [173], [98].

By putting the results obtained in context of related works, it further high-
lights the impact of this work. Similar datasets have a slightly lower accuracy/
F1-Score (around 0.80) for the different task of predicting impact of environmen-
tal noise to emotion [100], [101]. In this work, the ability for pollution data to
increase overall F1-score demonstrates its impact on wellbeing and shows pol-
lution should continue to be considered as a factor that influences changes in
wellbeing.

There were some limitations that were encountered during both studies, par-
ticularly with the E4 Empatica in that it was not accurately collecting partici-
pants EDA. While the EDA sensor worked successfully for some, for other par-
ticipants no variation in EDA was recorded throughout the experiment. At the
point of fusing the collected sensor data, both CO2 and VOC were found to have
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collected data for some participants but not all, resulting in its dismissal from
the analysis.

4.7 Conclusion
In this chapter, the proposed concept DigitalExposome has demonstrated the
potential of employing a multimodal mobile sensing approach and utilising data
science techniques can be employed to delve deeper into the intricate connections
among environmental factors such as air quality, human physiology, and their
effects on mental wellbeing. To achieve this, two real-world experiments were
conducted in which participants’ walked around a specified route, reporting their
wellbeing responses using self-report and collecting environmental, behavioural
and physiological on-body sensor data.

The recent developments in mobile sensing and wearable technologies have
shown in this work how trajectory studies can be enriched through the use of
semantics. These can offer a greater understanding into how other factors such
as physiological and the environmental factors can have an impact on mental
wellbeing. Sensing technologies can help in shedding light on how people breath,
feel and interact with their environment in different surroundings. This can help
in offering a better security for city dwellers and creating a bond with their
environments.

In the work carried out, the studies explored in this chapter have demonstrated
that physiological (on-body) sensor data is directly correlated with high levels of
pollution (particulate matter in particular) within the environment. The results
clearly demonstrates the advantage of combining environmental and physiological
data to improve the performance of the models used and as a result increase in
accuracy to infer mental wellbeing. The addition of these factors led to improve
classification from environmental 0.67 and physiological 0.61 to combined of 0.76
when aggregating data. On the other hand, analysing impact to an individual
participant saw classification of wellbeing improve further through environment
0.84 and physiological 0.76 to a combination of 0.88.

In the future, the hope is to consider additional sensors to observe greater
changes that may improve our sense of places and characterise the relationship
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between people and spatial settings, which in turns might influence the future
design of urban spaces. Also, although the trajectory distance walked by partic-
ipants was sufficient, selecting a longer route will help to further understand the
changes that impacts mental wellbeing states on a trajectory throughout different
episodes.
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Chapter 5

Exploration of Research
Applications and Real-World
Interventions

5.1 Introduction
This chapter explores the many applications this research has within the real-
world which aims to monitor, evaluate and provide methods to improve the in-
terplay between the environment, physiology, and mental well-being.

Currently, there is a noticeable lack of emphasis on low-cost environmental
monitoring [250], on-the-go labelling, and practical approaches to leverage smart-
phone technology [84] for collecting real-world data to assess wellbeing states [51].
This limited focus restricts the ability to fully understand the intricate relation-
ship between the environment, physiology, and mental well-being in a real-world
context. Existing technologies such as Urban Mind [22], Noisespy [100], Ex-
poApp [57] to provide a basis, although these system are limited to monitoring
the environment either through using few sensors or relying on questionnaires.
The potential of smartphone technology and cost-effective monitoring methods
provide a valuable opportunity to gather more comprehensive data to gain in-
sights into how the surroundings can impact physiological states. This in turn can
help document a person’s emotions [102], stress levels [247], mood [91], travel/
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journey [84] and other physiological factors as they go about their daily lives.
The real-world interventions explored serve as a bridge between research and

the application of its findings in tangible and practical ways. In particular, the
following contributions have been made through carrying out the work in this
thesis with each described and explained. These are as follows:

1. Visualising Space and Time: Exploring spatial and temporal patterns through
visualisations.

2. Cross-platform multimodal sensing mobile application enabling comprehen-
sive data dollection.

3. Enviro-IoT: A cost-effective solution for environmental sensing in the urban
environment.

5.2 Applications
This section presents three case studies that demonstrate the practical application
of this research in real-world scenarios. These provide clear examples of how the
findings and methodologies from the study can be implemented to gain insights
and make informed decisions on wellbeing interventions.

5.2.1 Visualising Space and Time: Exploring Spatial and
Temporal Patterns

Spatial statistical visualisation is the ability to represent a geographical space to
explore the characteristics, usually in terms of geo-referenced data in space [150]
and offers significant opportunities to visualise space and time in new approaches.
These techniques help to understand the events happening within a specific
location as to where the data was taken from [154]. Some previous studies
have used spatial analysis to observe the impact relationship between two vari-
ables [39], [100]. Although, at present little research has been explored in this area
with the impact of noise at the forefront [100]. The current literature is lacking
in terms of plotting a wider range of environmental factors and exploring their
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impact. Therefore, the first application of this research aims to explore ways
of observing the relationship between environmental and physiological factors
through visualisation techniques on the data collected in Section 3.4.2.

5.2.1.1 Heat Maps

An approach to explore patterns is dividing geographical study areas into smaller
sections with the use of layers, otherwise known as heat maps. These were first
introduced to visualise values in individual cells using a colour gradient [141].
Previous work of mapping sensor data in this way has shown to visualise dynamic
data effectively [136], [100]. To explore the impact of air quality and human
physiology data, each were extracted from the experiment at Section 4.3 and
investigated further by plotting the data on the top of a map using the exact
location of a user as they completed the experiment. As a result, nine heat-maps
with intensity of sensors data are depicted at Figure 5.1.

Each heat-map at Figure 5.1 depict several hot-spots scattered along the busy
road (right of map) and not confined to one particular area. Results from this
visualisation demonstrate further that when participants are met with abnormal
levels of poor air quality, particularly PM2.5, noise, reducing gases and EDA,
directly impacts HRV and EDA. While heat-maps show the intensity of each
variable based on GPS coordinates, the maps also indicate the real distribution
of all sensor data. This can be demonstrated by the temperature colour scheme
used whereby red signifies a more concentrated level.

Although the use of heat maps have significant advantages to visualise spatio-
temporal data, sometimes this approach may not contain enough information or
give readers the ability to draw conclusions, or to gain a clear perspective and
understanding into the associated impact [181]. A different option is to further
divide the geographical study area into a series of grid cells [100], however in
other works it is difficult to allocate an individual cell to a single sensor reading.
Moreover, it is not possible to decide on a cell size since the density of the sensor
mobility traces can be of a different density distribution.
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Figure 5.1: Nine heat maps using the collected environment and physiological
data applied from the DigitalExposome Concept pre-specified route.
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5.2.1.2 Dirichlet tessellation: Application of Voronoi

The concept of Voronoi visualisations is a computational geometry algorithm
which allows the visualisation of large data sets [55]. The concept works by
defining a set of polygon regions called cells, whereby the cells give an indication
of the overall density of an object area of the size of the object itself [176].
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Figure 5.2: The four step process in constructing a Voronoi diagram using sub-
sections as segments.
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Voronoi is split into four stages as demonstrated at Figure 5.2 [175]. Step 1
involves drawing segments from the selected data (labelled in black) to each of the
respected neighbours. Step 2, depicts the addition of bisectors for each segment.
Step 3 shows the bisectors connecting from one to another to construct a space
around the individual sensor data location. Finally, step 4 divides the space
into joined triangles. The concept divides the space into a set of regions called
Voronoi cells, including the space that is closest to the object (route location, in
this case). The size of these cells gives an indication of the density of the area a
certain object is in or the size of an object [176]. The cell structure also shows the
Delaunay triangulation, which easily allows calculating an object’s immediate set
of neighbours.

The definition of a Voronoi cell is given by the Equation 5.1, where x is a planar
metric space; p is the set of generator points in the metric space; and d is the
distance between all points in x and a specific generator point (where the distance
can be defined using any distance definition such as Euclidean, Manhattan, or
road-network distance):

V ori = {x | d(x, pi) ≤ d(x, pj), j ̸= i} (5.1)

Thus, the Voronoi diagram is composed of a collection of tessellations (i.e.
polygons) defined as Vor, where:

V ori = {V or1, V or2...V orn} (5.2)

The creation of a Voronoi tessellations is a dynamic procedure till all the
points are represented in adjacent polygons. If sufficient number of particles did
not satisfy Equation 5.2 then Voronoi gets partially filled. In this case, the data
is then redistributed. By giving each polygon a class value Ci that corresponds
to the sensor value collected in a particular GPS coordinate, it is then possible
to divide the space into adjacent polygons with different sensor reading which
are represented in colours. To provide an alternative approach to heat map-
ping of sensor data, Voronoi has been explored which incorporates the self-report
wellbeing data depicted at Figure 5.3.
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Figure 5.3: (left) Voronoi overlay from one participant data. Each polygon rep-
resents one location trace tagged with a wellbeing label while collecting the data
in a specified route (the map layer from Microsoft Bing), (right collected label
data from start to end).
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Voronoi visualisations have demonstrated how changes within the environ-
ment specifically air quality levels can help to provide an immersive and illustra-
tive approach to investigate the influence of surroundings, human physiology, and
transient emotional states. The colour of the polygons represent the self-report
wellbeing data collected from participants from very low/ negative (1) to very
high/ positive (5). Poor wellbeing is indicated by lighter colours (i.e. cream and
yellow) which was most reported along the main road where high levels of air
quality were also experienced as evidenced at Section 5.2.1.1.

On the other hand a positive state of wellbeing was recorded from participants
in less polluted areas such as fields and open spaces which are indicated by dark
colours (i.e. blue). In comparison to the heat maps at Section 5.2.1.1 it can be
identified that at these specific points where positive wellbeing was labelled there
were lower levels of PM 2.5, PM 10, noise and gases recorded. At the right of
the Voronoi diagram depicts the labelled data from a participant whilst walking
along the route. As an example, the arrow shows that when participants are met
with a change in the environment such as an increase in poorer air quality levels,
participants label as being unhappy.

By utilising spatial and temporal approaches, the intricate connections be-
tween the physical surroundings, bodily responses, and momentary well-being
can be explored to enhance our insights in a visually captivating manner. Re-
cent advances particularly in mobile sensing, GPS and wellbeing labelling at the
point-of-exposure enables easy collection of spatio-temporal data to a new level.
As a direct result large datasets raise issues on how researchers can derive useful
knowledge through patterns and as a whole the data collected.
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5.2.2 Urban Wellbeing

The second research application builds upon the DigitalExposome concept and
explores the potential of acquiring and integrating multimodal environmental air
quality and wellbeing data at the point of exposure. By fusing these different
data modalities, a more comprehensive picture of the impact of air quality on
wellbeing can be obtained, leading to more targeted interventions and improved
public health outcomes [236]. As a result, Urban Wellbeing as previously discussed
in Section 3.3.3 is an alternative to existing traditional approaches of collecting
mental wellbeing through questionnaires [22], [112] and environmental data from
pre-existing datasets [201]. As it stands little research has focused to date, around
the use of smartphone technology to support and understand the impact of air
quality and mental health [114]. The mobile application uses fixed environmental
sensing systems to digitise and enable real-time monitoring of impact towards
self-labelled mental wellbeing using a smartphone.

Following the process of designing and developing Urban Wellbeing, this sec-
tion focuses on a real-world experiment of 52 devices who downloaded the appli-
cation resulting in over 100 assessments completed. Urban Wellbeing was tested
’in the wild’ across a range of different urban environments from places across
the UK to evaluate the performance of understanding the relationship between
urban environments and momentary wellbeing.

To analyse the collected environmental variables and self-labelled wellbeing
data, firstly, a Pearson’s R Correlation Coefficient Matrix was utilised to measure
associations between the variables as depicted at Figure 5.4. The results highlight
environmental sensor data (labelled Air Index) positively correlated (0.2) with
noise. In addition, the self-report label correlated negatively (-0.4) with noise
indicating that when noise is increased wellbeing is reduced. This is a similar
occurrence in the work at Section 4.3 and across other studies [102].
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Figure 5.4: A Correlation Matrix depicting the relationship between the collected
environment air quality and physiological factors.

The collected sensor data from the application can be visualised as seen in Fig-
ure 5.5 demonstrating three assessments completed by independent users across
Nottingham, from at each point, Environmental Air Quality Index level; self-
labelled wellbeing; noise level and an image of the environment was collected
from the sensors. An Air Quality Index is deemed acceptable when the score is
between 0-50 with values of 50-100 becoming more serious for those with sensitive
needs to air pollution [3]. Across the individual assessments collected over 65%
recorded above the level of 50.

The visualisation results highlight that in green spaces wellbeing was labelled
positively or very positively, and also showed noise levels were relatively low and
air quality levels were very good between AQI 19 - 28. The findings of green
spaces having lower levels of air quality is in line with previous research stud-
ies [59], [187]. In comparison to a very negative wellbeing indicated when air
quality was poor at AQI 70 and noise high. In other studies, noise has correlated
with wellbeing showing that the level can impact how someone is feeling [102].
Additionally, previous research on the impact of noise has shown that anything
above 80 dB can be dangerous in prolonged scenarios [139]. At each point anal-
ysed, it demonstrates that by using environmental sensor data, mental wellbeing
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Figure 5.5: Graph overlay from three participant’s data. Each column represents
a location trace tagged with the level of noise, Air Quality Index, self-reported
wellbeing label and an image of the current environment demonstrating a range
of impacting factors within the environment.

is impacted by factors within the environment such as Air Quality, Noise and the
surrounding image of an environment.

Figure 5.6 depicts several images taken from each time a participant completed
an assessment where they self-labelled their wellbeing as either very negative or
negative. The purpose of obtaining an image in the process was to increase
knowledge into the relationship impact between the environment; namely air
pollution factors, mental wellbeing and noise.

The results and subsequent analysis of the photographs obtained from the
mobile application in the scenario of a negative wellbeing show that walking near
or close to busy traffic and a congested high street could impact mental wellbeing
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Figure 5.6: Several images obtained from photographs taken during an individual
assessment from Urban Wellbeing where self-report wellbeing was labelled as 1
(very negative impact) or 2 (negative impact) as indicated at each image.

significantly. In addition, it is worth noting that in these 6 scenes the collected
sensing data shows that noise levels were averaged at 85 dB in these locations.
On the other hand, further analysis into the photographs taken where wellbeing
was either positive or very positive shows individual’s in green spaces, free from
traffic and noise levels typically lower than 65 dB, depicted at Figure 5.7. The
work on Urban Wellbeing as identified in Chapter 3 goes beyond previous work
which shows how alternative factors within the environment can be quantified
rather than just noise [100], [139], [159], [82], [22].
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Figure 5.7: Several images obtained from photographs taken during individual
assessment from Urban Wellbeing where self-report wellbeing was labelled as 5
(very positive impact) or 4 (positive impact) as indicated at each image.

5.2.3 Enviro-IoT

The second research application is the development of the Enviro-IoT as a low-
cost alternative to environmental air quality monitoring. This work formed part of
a ’co-location’ project working alongside Nottingham City Council Environmental
Health, Department for Environment, Food and Rural Affairs (Air Quality) and
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Ricardo Air Quality Specialists.
The Enviro-IoT as discussed in Section 3.3.2.1 is capable of sensing levels

of Particulate Matter (1.0, 2.5 and 10), Ammonia, Carbon Monoxide, Nitrogen
Dioxide and Oxidising gases in real-time. The obtained sensor data is sent directly
to a database for storage. All of the electronics have been encased into a small
3D printed plastic box as depicted at Figure 5.8, which can be easily installed
within any environment. In this case, the three photographs depict the Enviro-
IoT placed at the Nottingham City Centre beside the DEFRA AURN sensors for
air quality monitoring.

Figure 5.8: The Enviro-IoT devices in-situ at the DEFRA owned AURN Site in
Nottingham City Centre.

Two Enviro-IoT devices were placed at both the Nottingham City and Western
Boulevard DEFRA AURN Station sites. Real-world trials across a 9-month pe-
riod (from August 2022 to April 2023) using the Enviro-IoT alongside the AURN
device showed high accuracy levels indicating that incorporating low-cost sensors
into an environmental monitoring system highlighted considerable reliability.

In this evaluation, three air quality factors were selected which includes: Par-
ticulate Matter 2.5, 10 and Nitrogen Dioxide. The sensor data was sampled at a
rate of 5-minute intervals and then these values were averaged to give the mean
concentration per hour to match the frequency reported by the AURN station.

135



5. Exploration of Research Applications and Real-World
Interventions

Statistical analysis has been applied to the data collected from both devices in
the form of Pearson’s R and Spearman’s to understand the correlations between
collected values as depicted at Table 5.1.

Table 5.1: Statistical Analysis of Environmental Pollution Variables Comparison
between AURN and Enviro-IoT.

Pollution Type Pearson’s R Spearman’s
PM2.5 0.983 0.964
PM10 0.98 0.92
NO2 0.96 0.94

Table 5.1 indicates that the Enviro-IoT system is highly reliable and producing
accurate results for the three pollutants specifically: PM 2.5, PM 10 and NO2
which is in line with the industrial standard equipment with results above the
90% accuracy. In addition, Figure 5.9, 5.10 and 5.11, visualises the readings
for both the Enviro-IoT and DEFRA AURN across a 9-month period of testing.
Analysis of Figures 5.9 and 5.10, show both devices record very similar values
with both lines following the same path. January values have been omitted from
the graphs as the Enviro-IoT encountered WiFi connection issues whereby the
sim-card ran out of data so the air quality data for this month was not recorded
by the system.
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Figure 5.9: The impact of PM 2.5 on air quality of readings from low-cost sensors (Enviro-IoT) and Industry standard
equipment (AURN).

Figure 5.10: The impact of PM 10 on air quality of readings from low-cost sensors (Enviro-IoT) and Industry
standard equipment (AURN).
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Figure 5.11: The impact of NO2 on air quality of readings from low-cost sensors (Enviro-IoT) and Industry standard
equipment (AURN).
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Figure 5.11 shows the analysis of NO2 levels recorded by two different de-
vices. It is observed that the NO2 values recorded by both devices exhibit similar
patterns over time. However, there seems to be slightly more variability and
deviation from the expected trend between the two devices, especially noticeable
during the months of November and December.

It is indeed important to note that colder months, such as November and
December, are generally associated with higher air pollution levels [239]. This
pattern is evident in Figures 5.9, 5.10, and 5.11, where both the Enviro-IoT and
AURN devices show an increase in pollutant levels during these months. This
aligns with the understanding that certain weather conditions, such as tempera-
ture inversions and reduced dispersion, can lead to higher pollution concentrations
in colder months. Regarding the correlation of collected PM2.5 and PM10, the
figures demonstrate that both devices show very similar levels throughout the
9-month study. This suggests that the small low-cost sensors used in the Enviro-
IoT device are capable of accurately reporting hourly pollution levels. The strong
correlation between the measurements obtained from the two devices reinforces
the reliability and suitability of the Enviro-IoT system for environmental moni-
toring in real-world settings.

Overall, the comparison of the Enviro-IoT and AURN devices supports the
conclusion that the small low-cost sensors used in the Enviro-IoT system are a
reliable solution for environmental monitoring.

5.3 Conclusion
In this chapter, three distinct real-world applications have been presented and
extensively discussed. These applications serve as effective means to quantify
and evaluate the relationship between the environment and wellbeing, with the
ultimate goal of monitoring and enhancing wellbeing within different urban envi-
ronmental contexts. They also support the DigitalExposome Concept and Frame-
work. The insights gained from these studies can be used to develop strategies
and interventions aimed at promoting better health and quality of life in different
environmental settings.

The Enviro-IoT has demonstrated the potential to revolutionise environmen-
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tal monitoring through the utilisation of affordable sensors and on-board IoT.
This innovative approach enables the real-time capture of air quality levels,
thereby offering valuable insights in areas where monitoring air quality is challeng-
ing. Leveraging low-cost sensors and IoT capabilities, the project addresses the
need for accurate and up-to-date information on air quality, which can be crucial
for identifying regions with poor air quality and facilitating targeted interven-
tions to mitigate potential health risks. This advancement has the potential to
significantly improve public health and enhance overall air quality management.

Secondly, spatial and temporal visualisations demonstrate a robust approach
in quantifying environmental sensor and self-labelled wellbeing by unravelling the
impact on movement and understanding towards patterns. In this work heat maps
and Voronoi have been used to model environmental, physiological and mental
wellbeing data and shown clear relationships between the modalities. The focus
of this work is valuable and meaningful, particularly to urban planners which
can utilise this data more widely by designing environments that contain calming
areas (green spaces) in those areas where air quality is poor and as a result brings
on a negative mental wellbeing.

Finally, Urban Wellbeing presents a new significant opportunity to monitor
an individual’s mental wellbeing while obtaining real-world environmental sensor
data to observe and understand the impact directly at the point of exposure.
The cross-platform technology behind Urban Wellbeing provides a non-obtrusive
mean for individual’s to understand how their wellbeing is impacted in urban
environments.
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Chapter 6

Conclusion and Future Work

This thesis has introduced a novel framework aimed at achieving the objective of
quantifying the intricate relationship between the environment, physiology, and
mental wellbeing. By leveraging data science techniques has provided significant
strides in advancing the understanding and measurement of affective states in
a real-world urban environment. In this final chapter a general overview of the
undertaken work, summary of contributions, areas of improvement and future
work are all considered.

6.1 Conclusion
The work undertaken in this thesis presents the design, implementation and anal-
ysis of the framework DigitalExposome which quantifies the relationship between
environment with a focus on air quality towards human physiology and mental
wellbeing. Using a sensor-based fusion approach and data science aims to explore
this perspective. The research questions originally posed in Chapter 1 have been
explored and addressed through the studies in this thesis. There were summarised
as the following:

1. How can we quantify the person-environment interaction to help explore an
urban environment that promotes a positive wellbeing?

2. How we monitor, fuse and model the relationship of a multimodal approach
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to understand the impact between urban environment, human physiology
and mental wellbeing?

3. Can real-world sensor data be quantified and leveraged to infer wellbeing
or mental states through personal and community approaches?

4. What are the best approaches for validation and application of DigitalEx-
posome for real-world use cases?

To investigate and evaluate the effectiveness of DigitalExposome in quantify-
ing mental wellbeing, a series of real-world experiments were conducted involving
the development of smartphone technology incorporating cross-platform mobile
applications to obtain wellbeing at the point of exposure. Hence, drawing on
these attempts the following sections of this chapter summarise the findings and
major conclusions that have been achieved.

Chapter 3 focuses on the design of the conceptual framework known as Dig-
italExposome which aims to quantify the relationship between the environment,
physiology, and mental wellbeing. This chapter specifically explores the utilisa-
tion of digital technologies, including mobile sensors and data science, to enable
a more comprehensive assessment of environmental exposures and inference of
mental wellbeing. To facilitate this process, the development of various environ-
mental low-cost, affordable sensing stations was undertaken, including both fixed
and portable contained within 3D-printed devices. Among these devices, a fixed
sensing system was selected and tested within a real-world setting, alongside in-
dustry standard equipment. The objective was to ensure that the measurements
obtained from the low-cost sensing system were highly reliable and accurate in
comparison to established standards. The validation of the sensing system’s reli-
ability was a significant milestone in the research process. The step ensured that
the air quality data collected throughout the subsequent Chapter 4 and Chapter
5 could be relied upon for assessing the impact of environmental exposures on
mental wellbeing.

As identified in the literature at Section 2.2.3, the CDC [70] explored the use
of the Exposome concept in its current form and acknowledged two areas that
require further work in that the use of digital technologies to measure external
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and internal factors and the way in which the new techniques can be validated.
The development of DigitalExposome and the sensing technologies validated in
Chapters 3, 4 and 5 demonstrate that this approach can be a viable step for-
wards to continue the work in quantifying the relationship of the environment to
wellbeing.

Smartphone technology has been explored in the form of a cross-platform
custom-built mobile applications (Android & iOS) that collects real-world, real-
time current environmental air quality levels, type of environment including a
respective image and in situ noise levels and self-labelled mental wellbeing. This
application helps to provide a better understanding into affective states with the
ability to label sensor data at the point of collection. Furthermore, three datasets
of this research are explained and discussed in terms of experimental setup, data
obtained and route selected in addition to the steps taken to pre-process the data
as many of the data types were collected at different sampling rates.

Quantifying the relationship through classification of real-world mental well-
being states of affect, the developed technological devices identified in Chapter 3
were utilised for real-world data collection of environmental, human physiology
and self-labelled mental wellbeing. Therefore, Chapter 4 explores from a multi-
modal perspective of classifying mental wellbeing in a two-fold approach. Firstly,
an initial analysis at an individual level studied the focus on examining the in-
stances of stops and moves across a single trajectory towards understanding the
direct personalised impact.

Although noise has previously been considered, this is some of the first work
to show the incorporation of environmental air quality factors and physiological
data using real-world sensing technology as semantics to enrich the trajectory. As
such, a DTW model was trained using 12 features made up of the collected envi-
ronmental and physiological sensor data and then classified using three classifiers
(KNN, DT and RF). The results showed that by combining trained environmen-
tal and physiological data together to classify wellbeing had significant benefit
that resulted in a higher accuracy of 0.88 (F1-score) whilst individually trained
and classified scored 0.76 (physiological) and 0.84 (environmental). Leveraging
environmental and physiological data together helped in improving the overall
accuracy, highlighting the importance of environmental data in real-world infer-
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ence of wellbeing. Furthermore, the high classification rate of environmental data
alone shows the importance these variables when calculating wellbeing in urban
environments.

Secondly, a multimodal aggregated approach in Section 4.5 was explored ini-
tially using a DBN network and later a 1D-CNN both trained using environmental
and physiological data. The results show that adopting a multimodal approach in
classification of environmental and physiological data combined increased model
performance achieving an average accuracy of 0.76 (F1-Score) compared to in-
dividually trained data environmental and physiological achieving 0.67 and 0.61
(F1-Score) respectively. Typically, it would be expected due to the correlation
to the sympathetic nervous system that physiological should classify higher but
in both studies environmental highlighted increased scores demonstrates the im-
pact sensor data particularly air quality from the environment can have when
classifying mental wellbeing states.

As a result of this research several real-world applications have been discussed
and explored in Chapter 5. The growing level of the environment is now more
important that ever before with an increasing number of people experiencing
health, behavioural, wellbeing related issues and death. Therefore, data visuali-
sation concepts have been explored in a spatio-temporal approach through heat
mapping and Voronoi as a mechanism of understanding the relationship between
environment, physiology and self-report wellbeing depicting a negative wellbe-
ing in areas of a high exposure to poor air quality. The approach extracts the
individual collected sensor modalities and plot across a map to understand the
intensity of factors on wellbeing.

Furthermore, the Enviro-IoT has been developed to demonstrate the impact
of using miniaturised low-cost, affordable sensors and Internet of Things (IoT)
technologies to monitor the environment in a real-world context. Although the
system is primarily for a fixed position, studies conducted in this thesis have
shown the potential of using this within a rucksack for unobtrusive monitoring
of the environment, as seen in Section 3.4.1 and 3.4.2. The work of Enviro-IoT
has many benefits particularly to its capacity to monitor real-world air quality
levels in real-time and having the ability to be positioned in multiple places
without the need for many resources. Finally, Urban Wellbeing, a smartphone
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mobile application has been developed that combines real-world environmental
and momentary self-labelled wellbeing, obtained at the point of exposure. By
developing a mobile application and connecting it to a UK network wide air
quality monitoring system enables the possibility of continually and unobtrusively
monitoring wellbeing through urban environments with the potential to inform
of areas where wellbeing could be impacted.

Overall, the work explored in this thesis has consistently demonstrated the re-
lationship between environment, human physiology and momentary self-labelled
wellbeing that it can be accurately quantified through the incorporation of Dig-
italExposome and the use of custom-built sensing technologies to monitor and
capture exposures encountered by a human in addition to data science. The
DigitalExposome work has the potential to greatly improve understanding and
assessment tools that assess real-world wellbeing.

6.2 Summary of Major Thesis Novel
Contributions

This section highlights the significant contributions that have been made in this
thesis with the specifics including:

6.2.1 A Novel Framework for Quantifying the relationship
between Environment and Mental Wellbeing

The DigitalExposome framework encompasses the ability to unravel the relation-
ship between environment, human physiology, behaviour and momentary mental
wellbeing for the quantification inference of wellbeing for urban environmental
settings. The developed framework consists of five stages with each defined as:

1. The conceptual layer identifies the four main areas that have been shown
in previous research to have an impact towards mental wellbeing which
involves (1) environmental factors, (2) biological factors, (3) social aspects
and (4) cultural factors.
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2. Sensing layer to detail the smart technology devices and low-cost sensors
that help in monitoring wellbeing and the environment.

3. Computing layer identifies the core data science and analytical techniques
that will unravel the impact between variables and help to infer wellbeing
states.

4. Application layer details the potential of DigitalExposome within the real-
world for a greater understanding to active monitoring of wellbeing, envi-
ronment and physiological health.

6.2.2 Real-World Data Collection

• Environmental monitoring systems have been explored and a new low-cost,
affordable resource has been custom-built and shown to be extremely re-
liable and accurate in a range of urban environments whilst co-located to
industrial standard equipment. The approaches have resulted up to around
95% for Particulate Matter 1.0, 2.5 & 10 and to 97% for Nitrogen Dioxide
in terms of reliability.

• Methods to label data in real-time have been explored through the use
of smartphone technology. The results demonstrate the benefits of using
emojis to label how participants were feeling within environments across a
five-point scale which showed a reliable and accurate concept to label data in
both scenarios at the point of exposure. Additionally, the aim of obtaining
environmental air quality data and self-labelled wellbeing has been trialled
showing the ability to understand the impact at the point of exposure.

146



Conclusion and Future Work

6.2.3 Deep Learning Classification on MultiModal Sensor
Fusion

• This work developed a personalised-individual impact approach through
semantic trajectories and episodes based on classifying five-states of real-
world wellbeing achieving up to 0.88 (F1-score) accuracy, highlighting the
impact air quality data can have in classifying wellbeing states.

• Developed a second approach using aggregated data to classify the five-
states of real-world mental wellbeing resulting in up to accuracy levels of
0.76 (F1-score). This has highlighted the importance environmental data
can have on improving the classification of wellbeing.

6.2.4 Real-Time Research Application Interventions

• Three individual approaches developed from the research conducted: Enviro-
IoT - low-cost environmental sensing system, Temporal and Spatial Visu-
alisation - Use of Heat Maps and Voronoi as a way to visualise real-world
data to understand movement and behaviour patterns and Urban Wellbe-
ing - Cross-platform smartphone mobile application to obtain real-world
environmental data and self-labelled wellbeing collected at the point-of-
exposure.
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6.3 Future Directions, Challenges and
Recommendations

Following the work explored in this thesis, this section identifies the main direc-
tions for future research and recommendations for improvements:

1. DigitalExposome has demonstrated an achievable approach of monitoring
mental wellbeing states through the use of low-cost sensing and smartphone
technology, coupled with data science. Previously, calculating the Expo-
some concept was a very cumbersome process, relying on existing datasets
to understand the impact to health which required many years of gath-
ering prior to analysis. The addition of capturing more factors within the
environment in the future would be advantageous to gain a more clearer un-
derstanding into how human wellbeing changes. With this, the additional
new data science concepts to extend the analysis would be advantageous.
Further analysis work behind the framework, particularly around areas not
considered in this work such as the conceptual layer to review alternative
factors such as biological, social and cultural would be advantageous to
take this work further. Additionally, in the application layer at how we can
provide more prevention in the form of treatment.

2. The area of environmental monitoring using low-cost sensors continues to
receive increasing attention. However, as identified in Section 2.2.5, most
of these efforts at the moment are directed towards heavy, expensive and
fixed monitoring systems. An effort to improve the viability of low-cost sen-
sors as explored in this thesis is promising and has showed clear potential,
particularly for areas where it is difficult to monitor due to size and over-
all cost. Although, there are still areas for continued exploration through
long-term monitoring and the impact, in addition to a wider selection of
sensors selected and tested to gather a large amount of air quality data.

3. Investigating beyond the urban environment presents a world of opportuni-
ties when it comes to people, exploring social aspects, fostering connections
and embracing the concept of social prescribing in a real-world setting.
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Expanding the focus beyond the confines of cities opens up a deeper un-
derstanding of diverse populations and the need for a more positive change
in our environment to improve mental wellbeing. Consideration towards
social aspects can help in developing targeted interventions and policies.

4. Although not explored in this research, but stated in the DigitalExposome
Conceptual Framework, on-device processing in edge-computing provides
many future opportunities to develop this research further, particularly for
real-time inference. In recent years there has been significant advances
in edge computing which has reduced the need to have large computing
devices for processing and smartphone technology for labelling. In this
sense, there is the potential to develop a multimodal sensor-fusion on-edge
approach incorporating environmental, human physiological and momen-
tary self-labelled mental wellbeing to infer wellbeing states whilst moving
between a range of urban environments, while using low-cost sensing tech-
nologies.

5. Approaches in this work have explored a range of deep learning models
including a CNN, DBN and DTW in supporting the inference of affective
states. With further advances in model architectures and developed new
networks enable explorations of increasing affective state modelling accu-
racy performance.

6. Although the datasets that have been devised from this thesis are encour-
aging in monitoring of mental wellbeing states within urban environments,
some are small. Future research in this area is to combine a more diverse
dataset from increased participation from individuals and exposure to ur-
ban environments for longer periods of time to understand the impact on
wellbeing better. Due to the global Covid-19 pandemic and the experimen-
tal resources required to obtain data it has been difficult to recruit further
participants for experiments.
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