
Computational Particle Mechanics
https://doi.org/10.1007/s40571-025-00907-2

Developing a multi-scale model for the simulation of adsorption
phenomena based onMD and CA: a Li-ion battery case study

Omid Ziaee1,2 · Naeem Zolfaghari1 ·Mostafa Baghani1 ·Mahdi Bodaghi3 ·Majid Baniassadi1

Received: 11 October 2024 / Revised: 31 December 2024 / Accepted: 17 January 2025
© The Author(s) 2025

Abstract
Adsorption, an essential surface phenomenon, is involved in many industries, from water purification to energy storage
and carbon capture, aiming at negative emission technologies. The need to synthesize new materials for these applications
necessitates the development of new, flexible modeling tools to simulate complex conditions. This work introduces a multi-
scale model to simulate various adsorption scenarios. It involves simulating the details of interatomic interactions in molecular
dynamics simulations and scaling up to a laboratory scale through cellular automaton modeling. To showcase its capabilities,
we utilized the simplest form of the model to simulate Li-ion adsorption on the surface of an anatase TiO2 sheet. The
probability of adsorption and desorption for a Li-ion is quantitatively determined through molecular dynamics simulations
and subsequently incorporated into the cellular automaton model. This secondary model simulates the kinetic process of
adsorption and quantifies the equilibrium degree of surface coverage across varying concentrations, facilitating comparison
with the Langmuir isotherm. An inverse relationship between surface coverage and temperature is consistent with theoretical
predictions. Given the model’s computational efficiency, which complements molecular dynamics simulations, it offers
extensive potential for extension across a broad spectrum of applications where adsorption, intercalation, diffusion, and other
critical surface phenomena are fundamental.

Keywords Molecular dynamics · Cellular automaton · Adsorption · Lithium-ion battery

1 Introduction

Adsorption properties of materials have become a hotbed of
research due to their surprisingly diverse applications across
industries. From the food industry,where porous silica gels in
packaging cling to moisture and keep contents fresh [1, 2], to
coating technologies that rely on adsorption for strong adhe-
sion [3], the reach of this phenomenon is vast. Biomedicine is
used to deliver drugs directly to targeted cells and to assess the
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biocompatibility of implants [4, 5]. Environmental science
applied to water treatment, air purification, carbon capture,
and catalysis leverage adsorptionpower [6, 7]. Scientists even
use it to study a material’s surface intimately, revealing its
chemical makeup, pore structure, and specific surface area
[8].

However, perhaps the most exciting frontier applica-
tion is for batteries. Researchers envision electrodes that
adsorb charge-carrying ions onto their surfaces, dramati-
cally improving charging speed, capacity, and lifespan, all
by bypassing the traditional bulk absorption method [9–16].
This captivating field demands equally sophisticated simu-
lation techniques. We need models that capture the intricate
molecular-level interactions and the broader phenomena on
the surface and can truly understand and harness the full
potential of adsorption.

According to the International Union of Pure and Applied
Chemistry (IUPAC), adsorption is “An increase in the con-
centration of a dissolved substance at the interface of a
condensed and a liquid phase due to the operation of sur-
face forces. Adsorption can also occur at the interface of a
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condensed and a gaseous phase” [17]. Adsorption, a mes-
merizing dance at the molecular scale, is orchestrated by the
delicate interplay of interatomic forces. These microscopic
magnets, acting as “surface forces,” pull and hold adsorbate
particles onto the adsorbent’s surface, creating a concentrated
layer. Unlike absorption, where the guest infiltrates the host’s
bulk, adsorption is a surface-exclusive phenomenon, a tango
between sticking (adsorption) and unsticking (desorption).
We gain insights into the particle’s embrace and graceful
release by analyzing these surface forces.

Modeling adsorption takes two distinct paths; the first is
to dive deep, tracking individual particles and their interac-
tions. Statistical tools such as averages and mean squares
unlock the microscopic ballet, revealing the intricate forces
at play. This approach is ideal for understanding fundamental
mechanisms. Simulation methods such as molecular dynam-
ics [18–20], Monte Carlo [21], diffusive particle dynamics
[22], discrete element method [23], and cellular automaton
[24, 25] lie in this category.

But what about larger scales, like laboratory experiments?
Here, the second approach shines. We zoom out, assuming
the adsorbent and particles forma seamlesswhole. This sacri-
fices detail for the ability to model over extended timescales,
mimicking real-world observations.

Adsorption isotherms represent the graphical depiction of
the equilibrium correlation between the quantity of adsorbate
molecules adsorbed onto an adsorbent surface and the con-
centration or pressure of the adsorbate within the bulk phase
at a constant temperature. Consequently, these isotherms
fall under the category of second-type models. Of the most
straightforward among these isotherms is the one proposed
by Langmuir. This isotherm is called favorable adsorption
isotherm (type 1), and the Langmuir equation most com-
monly characterizes it. Langmuir equation assumptions are:

1. Adsorbent is a gridded surface with energetically homo-
geneous adsorption siteswith equal surface energy levels.

2. Adsorption is monolayer and local, meaning that once an
adsorbate occupies an adsorption site, it cannot accom-
modate another particle, and they are fixed in their place.

3. Adsorbed particles do not interact with each other [26].

Langmuir equation determines the surface coverage of the
adsorbent (θ ) as a function of relative concentration (p)where
kL is the Langmuir constant, and it is related to adsorption
capacity [26].

θ � kL p

1 + kL p
(1)

Ultimately, the choice of the model boils down to our
focus. Do we crave the intimate secrets of individual
molecules or the grand choreography across time? Both

approaches, like complementary lenses, offer unique per-
spectives on this fascinating surface phenomenon.

Particle-scale simulation methods such as DFT, MD,
and MC hold immense power. Armed with first principles,
interparticle interactions, and statistical sampling, they can
accurately predict adsorption behavior. These methods have
yielded fascinating results in adsorption research [27, 28].
However, their computational cost is immense, limiting them
to situations with relatively small particle numbers and short
timescales, far from the realm of typical applications. This
dilemma creates a significant gap between the temporal and
spatial scales accessible to experiments compared to simula-
tions.

Continuum-based approaches, exemplified by Langmuir
isotherms, offer a trade-off. They sacrifice some fine-grained
details for the ability to model more extensive systems and
make them computationally efficient and suitable for cap-
turing larger-scale phenomena. However, the loss of detail
can limit their precision, especially when intricate specifics
become crucial for design purposes.

This fact highlights the complementary strengths and
weaknesses of each approach. Particle-scale methods reveal
the intricate behavior of individual molecules, providing
invaluable insights into fundamental mechanisms. Contin-
uum models, on the other hand, enable us to scrutinize
through time, mirroring real-world observations and paving
the way for practical applications. Ultimately, the choice
hinges on the research question and the desired level of
detail. Whether delving into the microscopic intricacies or
observing the grand choreography, both approaches ulti-
mately contribute to our understanding of this mesmerizing
surface phenomenon.

For example, the inherent disparity between adsorption
and desorption timescales poses a significant challenge for
molecular dynamics (MD) simulations. While MD readily
handles diverse adsorption processes, its converse, desorp-
tion, remains a formidable obstacle. As [29] demonstrates,
desorption rates generally lag behind adsorption rates, lead-
ing to fewer observable desorption events within a typical
MD simulation timeframe. Desorption, typically occurring
at slower rates than adsorption under conventional tem-
peratures, often necessitates post-processing techniques to
extract relevant parameters after simulation completion and
can compromise accuracy.

Hannah Fox’s insightful research exemplifies this chal-
lenge on water adsorption onto MgO surfaces utilizing
established interatomic potentials [30, 31]. Verifiable find-
ings indicated a near-unity probability of adsorption (PAds)
for adsorbates at equilibrium distance and low surface cov-
erage [30]. However, determining the desorption probability
(PDes) proved problematic. Adsorbed particles remained
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bound for hours in real time, exceeding the simulation dura-
tion. Fox et al. did not observe a desorption event within their
simulated few seconds.

Consequently, a brute-force approach to simulating des-
orption would demand significantly extended simulations,
rendered impractical by the inherent computational cost of
MD. To address this, [30] implemented a formulation trans-
lating the system’s interatomic potential to desorption rates,
enabling reliable predictions at varying temperatures. How-
ever, these computations yielded single-particle insights,
while the overall behavior, such as surface coverage, is often
of primary interest. Therefore, a model remains necessary
to translate these rates into isotherms for studying material
adsorption at the macroscale.

Wenow introduce amulti-scalemethod that aims to bridge
the chasm between the two classes mentioned above, lever-
aging the strengths of both MD and CA. This approach
capitalizes on the formulation proposed by [30], enabling
us to derive the parameters of a CA model directly fromMD
simulations.

Cellular automata (CA) represent an idealized physi-
cal system where time, space, and physical attributes are
restricted to discrete sets. This approach creates a discrete
model that evolves based on a pre-defined set of rules. Von
Neumann’s pioneering work in the late 1940s laid the foun-
dation for this powerful approach, which has since found
applications across diverse scientific domains [32–34].

A cellular automaton (CA) is a discrete dynamical sys-
tem that evolves based on simple, local interaction rules. It
consists of the following key components:

• Lattice/Cells: The CA is defined on a grid (or lattice)
composed of discrete units called cells. Depending on
the application, the grid can be one-dimensional, two-
dimensional, or higher-dimensional.

• Cell States: Each cell in the lattice has a finite set of pos-
sible states. For instance, states can be binary (e.g., 0 or 1)
or more complex (e.g., a range of integers or colors).

• Neighborhood: The neighborhood of a cell consists of
the set of adjacent cells that influence its state. In one-
dimensional CA, neighborhoods typically include the cell
and its immediate neighbors (e.g., the cells on the left and
right). In two-dimensional CA, neighborhoods might con-
sist of the four nearest cells (von Neumann neighborhood)
or eight surrounding cells (Moore neighborhood).

• Transition Rules: A set of deterministic or probabilistic
rules governs how the state of each cell changes at each
time step. These rules define how a cell’s current state and
neighbors determine its next state.

• TimeSteps:The evolutionof theCAoccurs in discrete time
steps. At each step, all cells update their states simultane-
ously based on the transition rules (synchronous updates).

• Initial Configuration: The CA starts from an initial con-
figuration, which defines the state of every cell at time
t � 0. The initial setup can be pre-defined, random, or
determined by specific constraints.

• Boundary Conditions: These specify how the edges of the
grid behave. Common boundary conditions include peri-
odic (wrapping around the grid edges), fixed (static values
at the edges), or reflective (mirroring the edge states).

A simple one-dimensional CA system is presented in
Fig. 1. The state of the system at timestep tn , the neigh-
borhood and the local rules are given. For this system, we
assumed periodic boundary conditions, so the cells at the
boundaries are considered neighbors. Here, white represents
the state 0, and black is 1. The transition rules determine the
next state of the cell based on its own and it neighbors’ state,
so, for example, per rule 1, if a cell is zero, and both of its
immediate neighbors are 1, this cell’s state will change to 1
in the tn+1 timestep, and per rule 2, if any cell at state 0 has
a neighbor with state one on the left and zero on the right, it
will remain zero for the next timestep. The state of the system
at the timestep tn+1, the rule that was applied to each cell is
shown at the bottom of Fig. 1.

The system’s state at timestep tn , the neighborhood and
the local rules are provided. This system assumes periodic
boundary conditions, meaning the cells at the boundaries are
treated as neighbors. The state of the system at timestep tn+1,
the specific rule applied to each cell is shownat the bottom left
of Fig. 1. Here, white represents state 0, and black represents
state 1.

The transition rules determine the next state of each cell
basedon its current state and the states of its immediate neigh-
bors. For instance:

• Rule 1: If a cell is in state zero and both of its immediate
neighbors are in state 1, the cell’s state will change to 1 in
the next timestep (tn+1).

• Rule 2: If a cell is in state zero and has a neighbor with
state 1 on the left and 0 on the right, it will remain in state
zero at tn+1.

The allure of CA lies in its ability to provide simple yet
effective models for complex systems. Researchers elegantly
demonstrated how the collective behavior of a system could
arise from the summation of individual, often simple, compo-
nents [35]. This fact highlights a key feature: Even when the
microscopic properties are fully understood, global behav-
ior can exhibit novel laws beyond the reach of individual
interactions. The power of CA resides in the intuitive rules
governing interactions between neighboring sites, allowing
us to capture emergent phenomena not readily apparent from
separate components.
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Fig. 1 A typical one-dimensional CA model

The inherent intuitiveness of CA models renders them
highly adaptable, enabling simulations of Li-ion dynam-
ics within battery electrodes, as demonstrated by [36, 37].
However, meticulous attention is necessary when defining
the local rules, as [38] also highlights that factors such as
movement scenarios and adsorbent shapes can significantly
influence model behavior.

This work presents a multi-scale model for adsorption
phenomena, elucidated through an example focusing on the
prevalent Type 1 (favorable) adsorption isotherm, typically
characterized by the Langmuir equation. We propose a com-
plementary model that seamlessly integrates CA and MD,
encompassing particle-scale intricacies and yielding outputs
familiar to laboratory scientists.We leverage the work of Fox
[30, 31] to convert MD simulation results into desorption
probabilities, subsequently utilized within the probabilistic
cellular automaton (CA) model.

In Sect. 2, we discuss the details of the CA and MD mod-
els, and how we aim to interpret the MD model’s results to
get the CA model parameters. In Sect. 3, we first show the
MD simulations for two temperatures and how we calcu-
lated the adsorption and desorption probabilities for the CA
model. This is followed by the CAmodel results and the two
adsorption isotherms for 300 and 750 K. A comparison of
our model results with a similar experiment is presented at
the end of this section. Finally, in Sect. 4, we highlight the
key findings and potential of the existing model and propose
further developments for this protocol.

2 Method

2.1 CA implementation for the intended adsorption
scenario

This research leverages a cellular automata (CA) model
inspired by the work of [36]. To simplify the analysis,
we implement assumptions consistent with the Langmuir

isotherm. It is important to note that these assumptions read-
ily adapt to more complex scenarios, thereby ensuring the
model’s broad applicability.

Typically, the setup of a CA model involves two crucial
steps: initial configuration and time evolution. The initial
configuration entails particle distribution, force specification,
and definition of boundary conditions (local rules).

Consider a box filled with non-interacting particles free
moving in a 3D space (Fig. 2). Since we are only interested
in the adsorption behavior, not the behavior of these mov-
ing particles, the simplest possible model is considered for
their dynamics. This assumption can be easily modified by
the use of more complicated dynamics such as dissipative
particle dynamics [22], Langevin equations [39], or Monte
Carlo moves based on a more complicated interaction poten-
tial [21, 28]. Therefore, in our simple mode, particles do not
feel each other and may even occupy the same position in
some simulation instances.

Each side of the box treats these particles differently. The
four lateral sides act as periodic boundaries, which means
that when a particle exits the box through one side, it re-
enters from the opposing side at the same position and with
unchanged velocity. This approach effectively simulates an
infinite system by eliminating edge effects and ensuring a
continuous environment for particlemovement, as previously
demonstrated [40]. On the other hand, the top wall reverses
the z-component of the velocity of impacting particles and
acts as a rebounding surface. Finally, the bottom box is where
the adsorbent resides. Each particle colliding with this sur-
face has a chance of being adsorbed or rebounded based on
the adsorption probability.

It is noted that the box is cellular,meaning that the particles
are only allowed to occupy positions that are integer multi-
ples of the lattice constant (1 unit was assumed throughout
our simulations). Each cell state transitions between 0 and
1 during each time step, signifying either an unoccupied or
occupied cell. This simplifiedmodel does not require the inte-
gration of any equations, and the particles move in 3D based
on the probability of movement (random walk-like move-
ment). This behavior can be compared to diffusion-limited
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Fig. 2 Simulation box. The box’s lateral walls have periodic boundary
conditions, and the box is re-entered from the opposing wall whenever
a particle passes through it. The top surface reverses the perpendicular

velocity of the impacting particles, acting as a rebounding wall. The
bottom surface is the adsorbent layer

aggregation in that the particles randomly diffuse until they
collide with the adsorbent, where it is decided whether they
are adsorbed [41].

Before the simulation’s commencement, several particles
proportional to their concentration are randomly dispersed
throughout the box. We assume that these particles are in
the gas phase, necessitating the use of the Maxwell–Boltz-
mann distribution to assign their velocities. Consequently,
their velocity magnitudes follow a normal distribution, as
outlined by [42]. The movement of each particle directly
correlates with its assigned velocity, reflected in the prob-
ability of movement during each time step. The system’s
temperature is constant throughout the simulation, ensuring
that movement probabilities remain unaltered.

Three random numbers are generated for each parti-
cle to implement the particle movement, representing their
respectivemovement probabilities in each spatial dimension.
The sign of each random number dictates the direction of
movement, while its magnitude signifies both the movement
probability and the intended velocity. For particles not sub-
ject to interacting forces, isotropic movement is desired. In
other words, the probability of movement to any neighbor-
ing cell should be equal. As demonstrated in the previous

work by [38], this can be achieved by implementing equal-
izer coefficients.

The model presents a nuanced challenge requiring care-
ful consideration. In some scenarios, significant particle
adsorption onto the surface can occur. This phenomenon
can alter the properties of the remaining free-moving par-
ticles. For instance, if a substantial portion of the adsorbate
becomes immobilized, the remaining free particles typically
exhibit diminished movement probabilities along the Z-axis.
Consequently, two key characteristics of the moving parti-
cle population are altered: concentration and velocity. This
phenomenon is effectively equivalent to a reduction in the
system’s apparent temperature.

Two potential strategies can be employed to address these
situations. The first involves adding new particles to the sim-
ulation box, replenishing the free-moving population and
mitigating adsorption effects. Alternatively, the movement
probabilities of the remaining free-moving particles could
be reset, effectively re-establishing their initial kinetic state
(temperature).
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With initial conditions established, the automaton is
poised for evolution according to its local rules. As men-
tioned, each particle is assigned three probabilities, inher-
ently correlated with the Maxwell–Boltzmann distribution.
Collisions between free-moving particles are deemed negli-
gible in their impact on the system’s equilibrium behavior
and are, therefore, disregarded.

As the automaton evolves, particles colliding with the
box’s sides are treated according to the defined boundary con-
ditions. For particles impacting the top surface, their velocity
sign in the z-direction is reversed while the magnitude
remains conserved. Particles reaching planes perpendicular
to the X and Y axes re-enter the box on the opposite side.

Adsorption occurs solely on the bottom surface. The
adsorbent is modeled as a heterogeneous flat surface, permit-
ting only local monolayer adsorption. Interaction is limited
to the attractive force between particles and the adsorbent,
excluding any interaction between adsorbed particles them-
selves. During each time step, a particle placed on the
adsorbent surface may adhere (adsorb) based on a predeter-
mined probability. Conversely, previously adsorbed particles
may desorb according to a separate probability. These proba-
bilities of absorption and desorption are denoted by Pads and
Pdes, respectively.

Our analysis has established a connection between the
model parameters PAds and PDes and the kL coefficient of
Langmuir’s isotherm (Eq. 2). This relationship is expressed
as follows:

kL � 0.1342
PAds
PDes

(2)

When the non-homogenous movement rule is used, we
have shown that the prefactor magnitude is equal to the aver-
age probability of movement in each principal direction.
When we use the movement rule that yields homogenous
speed in three dimensions, the prefactor should be changed to
0.1957 as Eq. (2) is forwhen the non-homogenousmovement
rule is used. In our previous work, we have shown why the
average probability of movement in each timestep for each
direction is equal to 0.1342. For both negative and positive
directions, it would be 0.2684 [38]. We defined the homoge-
nous speed movement rule because the particle would move
based on the magnitude of its velocity vector. Therefore, the
probability of movement in each direction is:

Movement probability � (1 − 0.2684)3

2
� 0.1957 (3)

The equation to correlate model parameters with kL is:

kL � 0.1957
PAds
PDes

(4)

In summary, our CA model has only three parameters
requiring calibration: temperature, PAds, and PDes. Tem-
perature directly influences the movement probabilities of
the free-moving particles within the system. The other two
parameters determine the interaction between the adsorbent
surface and themoving particles.We can generate adsorption
isotherms by systematically adjusting these three parameters
and monitoring the resulting number of adsorbed particles.
The beauty of this CA model lies in its simplicity. With min-
imal parameters, it captures the essential dynamics of the
adsorption process, enabling the generation of readily inter-
pretable isotherms even for complex, large-scale systems.

The desorption probability can be calculated using various
methods. We propose using MD and a simple formulation
proposed by [31] to calculate this coefficient. Consider a
system of molecules where a portion is adsorbed onto an
adsorbent surface while others desorb from it. We denote the
adsorbate density at any location. r j , k as ρ

(
r j , k

)
. Normaliz-

ing this quantity yields the spatial distribution of adsorbates,
represented by ρ(z). Consequently, ρ(z)dadz signifies the
probability of encountering an adsorbate particle within a
volume element dadz. Throughmeticulous calculations, [30,
31] demonstrated that the desorption rate per unit time per
adsorbedmolecule can be determined via the following equa-
tion:

γ �
√
kBT /2πm

∫z0−∞ y(z)dz
(5)

where kB , T , and m are Boltzmann constant, temperature,
and the mass of adsorbates, respectively. In addition, y(z) is

y(z) � ρ(z)

ρ0
(6)

with ρ0 being themean density ofmolecules in the gas phase.
It is assumed that this probability distribution function can
be expressed in terms of the potential of mean force by [31,
43]:

y(z) � exp

(
−φ(z)

kBT

)
(7)

The potential of mean force (PMF) for a surface with a
normal in z-direction with the assumption of ergodicity of
the system is:

φ(z) � −
∫ z

∞
〈Fz〉z dẑ (8)

The force acting on adsorbate particles (Fz) can be calcu-
lated using MD simulations. Then, using Eqs. (5, 7, and 8)
in reverse order results in the desorption rate used in the CA
model.
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Fig. 3 Algorithm of MD-CA
method for the simulation of
adsorption

3 Summary of themethod

To summarize our method, Fig. 3 schematically outlines the
pseudo-algorithm required to carry out this approach, divided
into two main stages: Molecular Dynamics Simulation and
Cellular Automata Simulation. The steps are as follows:

1. Molecular dynamics simulation

• Preparation: This step involves setting up the simu-
lation environment by defining the geometry of the
adsorbent system and specifying the interparticle inter-
actions between the adsorbent and adsorbates.
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• Simulation: In this phase, particles (adsorbates) are
“shot” toward the adsorbent surface, and their interac-
tions with the adsorbent layer are tracked. Key outputs
include the interaction forces between the adsorbent
and the adsorbates, as well as the relative positions of
adsorbates concerning the adsorbent.

• Post-Processing: Using the simulation data, the proba-
bilities of adsorption (PAds) and desorption (PDes) are
calculated. These values are obtained by converting
the raw simulation outputs into meaningful physical
quantities using appropriate unit conversions.

2. Cellular automata simulation

• Preparation: This involves setting up the geometry of
the simulation grid and defining the local rules that
govern particle dynamics.

• Simulation: The adsorption–desorption dynamics of
particles are simulated using the coefficients calculated
from theMolecular Dynamics stage (PAds) and (PDes).

• Post-Processing: The simulation results are analyzed
to compute macroscopic outputs, such as adsorption
isotherms, diffusivity, and other relevant properties of
the system.

4 Results and discussion: adsorption
of Li-ions on anatase sheet

As mentioned before, utilizing the absorption of charge car-
riers onto the battery electrodes during the charge/discharge
cycles is promised to improve battery performance [44].
Thus, as a case study, we investigate Li-ions’ adsorption onto
the anatase polymorph ofTiO2.Anatase is among othermetal
oxides being investigated, which can deliver stable and high
specific capacity, unlike conventional graphitic electrodes
[44–46].

To generate the geometrical configuration of the sheet, we
iteratively replicated the unit cell of anatase (Fig. 4) in 3D
until the desired dimensions were achieved. For this specific
example, a sheet with dimensions of 49.1 Å × 49.1 Å ×
28.1 Å was generated.

WeemployedLAMMPS for allmolecular dynamics (MD)
simulations. A time step of 1 fs was chosen, in conjunction
with the Berendsen barostat [47] and Nose–Hoover thermo-
stat [48] to regulate pressure and temperature, respectively.

Interparticle interactions in this system are governed by
Buckingham’s potential for short-range repulsion, van der
Waals attraction, and Coulomb’s potential for electrostatic
interactions. This combined potential is expressed as follows:

U
(
ri j

) � Ai j exp

(
− ri j

ρi j

)
− Ci j

r6i j
+
qiq j

ri j
(9)

Table 1 Coefficients of Buckingham potential [49]

Interaction Ci j

(
eVÅ

6
)

ρi j
(
Å

)
Ai j (eV)

Ti–O 12.59 0.194 16,957.710

Ti–Ti 5.25 0.154 31,120.528

O–O 30.22 0.234 11,782.884

rij is the distance between particles, and qi and qj are the par-
tial charges of them. The Buckingham potential accounts for
the repulsive and attractive forces arising from electron over-
lap at short distances. The repulsive term dominates at very
close interparticle distances, preventing particle overlap. As
the distance increases, the attractive term becomes dominant,
leading toweak van derWaals forces. TheCoulomb potential
describes the electrostatic interaction between charged parti-
cles. The potential energy is positive and repulsive when like
charges are brought close together and negative and attractive
for opposite charges. Particle–particle particle-mesh (PPPM)
solver accounts for long-range interactions with a cut-off
radius of 10 Å.

The parameters in this function are optimized for TiO2

[49], and we have tabulated them in Table 1. The partial
charges are + 2.196, − 1.098, and 0.549 for Ti, O, and Li,
respectively [50]

The initial stage of our simulation involves relaxing the
anatase sheet at a temperature of 300 K. This process com-
prises two key steps:

1. Geometry Optimization: First, we optimize the sheet’s
geometry using an energy tolerance of 10–6. This step
ensures the initial configuration is free of potential energy
minimization artifacts and overlapping particles.

2. Dynamic Relaxation:With the bottom-layer atoms fixed,
we perform a dynamic relaxation using three different
ensembles:

• NPT: This ensemble allows the temperature and pres-
sure to equilibrate at zero pressure and 300 K for 100
picoseconds (ps).

• NVT (Canonical): We then switch to the NVT ensem-
ble, fixing the temperature (300 K) for another 100 ps.
This further refines the system’s configuration at the
target temperature, lifting the constraint on pressure.

• NVE (Microcanonical): Finally, we employ the NVE
ensemble for 100 ps, where both the temperature and
pressure constraints are removed. This supposition
ensures a stable and well-equilibrated starting point
for the subsequent adsorption studies.

More details on equilibration for this can be found in the
work of [51]. The final relaxed configuration of the sheet
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Fig. 4 Anatase unit cell and anatase sheet with dimensions 49.1 Å × 49.1 Å × 28.1 Å

serves as the foundation for our Li-ion adsorption\desorption
investigation. We introduce Li-ions into the simulation box
and monitor their interactions with the sheet. This method
includes recording the interatomic forces between Li-ions
and the anatase sheet and the position of each Li-ion through-
out the simulation. These data are then used to calculate the
desorption rate.

The investigation of adsorption probability involved the
sequential addition of Li-ions to the simulation box utiliz-
ing the LAMMPS create_atoms command. These ions are
located randomly within a rectangular box defined by the
coordinates x , y ∈ [5,40] z ∈ [30, 35]. This choice ensured
the ion was positioned directly above the sheet and on the
verge of electrostatic interaction (considering a cut-off dis-
tance of 12.5 Å). To comply with the Langmuir assumption
of non-interacting adsorbed particles, ions were introduced
one at a time. Each atom received a random velocity solely
in the z-direction based on its temperature and was granted
a 1.5 ps interaction period with the anatase sheet. Its z-
coordinate was recorded throughout this time. After this
period, the LAMMPS delete_atoms command was used to
remove the ion from the simulation box, and another Li-ion
substituted it at a random location. 100 Li-ions were bom-
barded onto the anatase sheet at each temperature. Figure 5
portrays the findings of this simulation conducted at 300 K
and 750K, alongside the corresponding histogramof the final
z-coordinates of the Li-ions displayed on the right.

Figure 5 shows the z-coordinate of 100 Li-ions colliding
with the anatase sheet. The cut-off distance for long-range
r-6 interactions above the top of the anatase sheet is also
shown in Fig. 5a with a dashed red line. All the ions are ini-
tially placed outside the long-range cut-off. From Fig. 5a,
it is deduced that some ions rebound after the collision and
then get adsorbed. These are deemed “not adsorbed” in the

Table 2 Calculation of CAmodel parameters of adsorption and desorp-
tion probabilities (PAds and PDes) from MD model results

T (K) Desorption rate (s−1) PDes PAds

300 4.35E + 10 0.0435 0.91

750 1.31E + 11 0.1312 0.94

later calculations as the first impact has not yielded adsorp-
tion. The figures on the right-hand side (Fig. 5b, d) show the
histogram of the z-coordinate of these ions 1.5 ps after being
placed above the anatase sheet. Comparing Fig. 5a, c, it is
observed that, on average, the ions impact the surface after
a shorter time because of higher velocities. In addition, the
rebounding ions may get further distances after impact. In
addition, Fig. 5b, d shows that increasing temperature shifts
the end z-coordinate further away from the sheet as the equi-
librium distances increase at elevated temperatures. These
results are used for the calculation of adsorption probability.

Adsorption probability (PAds) is calculated by first mea-
suring how far the Li-ion has rebounded after colliding with
the anatase sheet. Considering a radius of 1.4Åand1.45Å for
Ti andLi atoms, respectively, thoseLi-ions that bounced back
more than 3 Å after the initial impact are not absorbed. Con-
sidering this criterion, the adsorption probability is calculated
by counting the number of the adsorbed Li-ions concerning
the total number of the impacting Li-ions.

On the other hand, desorption probability requires more
calculation based on the equations of the former section. To
this end, force–distance curves of impacting ions are stored,
and smooth spline fits are used to calculate the required inte-
grals. Figure 6 showcases a force–distance curve at 300 K
and the corresponding PMF. The PMF is calculated by plug-
ging Fig. 6a into Eq. (8). The desorption probability is then
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Fig. 5 Adsorption of Li-ions on the anatase sheet at T � 750 K. a, c Z-coordinate of individual Li-ions. b, d Histogram of z-coordinates after 1.5 ps

Fig. 6 Calculation of potential of mean force for T � 300 K
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Table 3 Extracted coefficients of
Langmuir equation from the
isotherms of Fig. 5

Temperature
(K)

Fitted kL (from CA model
results)

kL from Eq. (4) (theoretical
value)

Error
(%)

R-squared

300 3.9764 4.2214 6.1614 0.99967

750 1.3522 1.3570 0.3550 0.99971

TheR-squared values andminor differences between the theoretical andCAmodel’s kL showclose accordance
with theoretical conditions

calculated by inputting the PMF (Fig. 6b) into Eq. (7) and
then Eq. (5), which is presented in Table 2. In summary, the
force exerted on the lithium-ion should be used sequentially
to calculate the desorption rate from Eqs. (8, 7, and 5).

Conversion of units is required to translate the results of
theMD simulations to be an input to the CAmodel. First, the
particle velocity–temperature correlation should be set up.
We assume that the free-moving Li-ions movement proba-
bility (velocity) and the cell size are considered to be the same
for all temperatures, but the time step varies. This is done by
equalizing the adsorbent cell size to the distance between
two of anatase’s octahedral sites since they are reported to
be stable adsorption sites. The effect of thermal expansion is
neglected in this case study. For example, for T � 300 K, the
adsorbent cell size is measured to be 3.776 Å, i.e., the adsor-
bent’s cell size. The movement probability for each direction
is 0.1957 (Eq. 4), and each time step is 1 ps, while according
to the Maxwell–Boltzmann distribution, the average veloc-
ity is 475 m/s. When temperature increases, the model’s time
step is reduced (less than 1 ps), while themovement probabil-
ity in each time step stays the same, so the real-world speed
would be increased. In this sense, if at 300 K each time step
1 ps, at 750 K, the average velocity is 750 m/s, and each CA
timestep equals 475

750 ∗ 1 ps � 0.63 ps. This calibration allows
one to modify the CA’s model size of the adsorbent and time
step based on the available adsorption sites and temperature
of the MD model.

Inputting these rates into the model as Pads and Pdes, the
Langmuir isotherm is presented in Fig. 7

Table 3 presents the fitted kL , R-squared (R2) and the
kL calculated from Eq. (4). The kL is calculated using the
nonlinear least squares (NLLS) optimization method, which
essentially minimizes the sum of the squared vertical dis-
tances (residuals) between the data points and thefitted curve.
As can be seen, increasing the temperature reduces the sur-
face coverage.

Since we can generate the adsorption isotherms from the
CA model, we can use the isotherms to compare the model
results with others. This study assumes Langmuir’s assump-
tions for the adsorption of Li-ions onto a sheet of anatase
and measures the equilibrium surface coverage of the pris-
tine anatase sheet. Due to the lack of the previous works on
this exact adsorption scenario, we can consider a case with

Table 4 Comparison of the proposed simulation model with an adsorp-
tion experiment

Method Adsorption
condition

Temperature
(K)

Maximum
degree of
coverage

MD-CA
simulation

Li-ion onto
anatase sheet

300 0.808

Experiment
[52]

Li-ion onto TiO2
precursor

298 0.869

conditions close to ours. [52] reported the Langmuir adsorp-
tion isotherm of Li-ions onto a specific TiO2 precursor. Their
adsorption experiment was done in a different environment
with a slightly different adsorbent. Although the adsorbent
material and adsorption conditions are not precisely the same,
since they reported theR-squared of the Langmuir adsorption
isotherm equation to their experimental results is 0.9942, we
can use their result to make a comparison. We can do so by
comparing our and their maximum degree of coverage. Cal-
culating the experimental maximum degree of coverage can
be done by dividing the maximum surface coverage attained,
to the maximum theoretical limit derived from Langmuir’s
equation.

Table 4 summarizes our model results and the experi-
ment in [52]. The results show an error of 7%, which is
quite acceptable for a theory-driven model and demonstrates
its ability to simulate similar scenarios. One point to con-
sider is that our CA model uses results calibrated for 298
K, whereas the experiment in [52] was conducted at 300 K.
The study in [52] demonstrated a strong direct relationship
between adsorption capacity and temperature between 298-
313K, which could contribute to the observed difference in
our results.

5 Conclusion

We developed a multi-scale method for the modeling of
adsorption. Themodel beginswith calculations of adsorption
and desorption features using molecular dynamics and tunes
the local rules of a cellular automata model to analyze the
behavior of adsorbate on the adsorbent. Depending on the
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Fig. 7 Isotherms for adsorption of Li-ions on the surface of anatase sheet at 300 K (squares) and 750 K (circles)

local rules assumed, the model’s output can be adsorption
isotherms or any other parameter associated with adsorp-
tion. The absorption of Li-ions on the surface of the anatase
sheet was studied, and isotherms at two temperatures were
reported. The closeness of the maximum degree of cover-
age for our cases underlines the model’s ability to effectively
simulate Li-ions absorption onto an adsorbent, as long as
the CA model’s parameters are meticulously derived from
appropriate experiments such as an MD simulation. In this
work and previous work, we have shown that this model
can simulate theory-driven adsorption isotherms with very
high accuracies [36–38].While the comparisonwith a similar
experiment yielded comparable results, further development
of this model is necessary to extend its applicability to other
experiments. These traits must be theoretically predicted or
experimentally measured and incorporated as CA parame-
ters to account for surface imperfections or other adsorbent
characteristics. This model explicitly assumes the adsorbate
is in the gas phase with no interactions. Therefore, when the
behavior of the adsorbate in a solvent plays a crucial role,
the model must be adjusted to account for the interactions of
free-moving adsorbates and formulated accordingly.

The current example model is the simplest one and
can be easily modified to capture diffusion in the bulk

of the adsorbent, intercalation within the matter, creation
of solid–electrolyte interface (SEI), sputtering, and many
other surface phenomena, as previously shown [36–38]. In
addition, the dynamics of the free-moving particles can be
modified using more complicated models such as diffusive
particle dynamics, off-lattice models, and molecular dynam-
ics. The model’s simplicity lies in the substitution of the
adsorbent by simple local rules, which neglects the details
of its mechano-chemistry.
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