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Abstract 

Leishmaniasis is a parasitic protozoal disease affecting humans and animals with 

phlebotomine sand flies as intermediate vectors. The parasite infects phagocytic cells 

of the mammalian host where they transforme from the flagellated promastigote to 

non-flagellated amastigote phase. There is no effective vaccine in use against this 

parasite and production relies on finding potent immunogenic antigens with a Th1 

bias and long lasting memory response. In this study the immunogenicity of L. 

mexicana Soluble Leishmania Antigens (SLA) prepared by two different methods 

(SLA1&2) was investigated by immunisation of Balb/c mice and challenge with live 

L. mexicana and an in vitro immunological analysis. Immunisation of Balb/c mice 

with SLA mixed with IFA adjuvant significantly protected against challenge with 

live L. mexicana parasites. The SLA2 was also further fractionated into six sub 

fractions by fast protein liquid chromatography (FPLC) using Mono Q columns and 

the immunogenicity of each fraction was analysed either by ability to stimulate CTL 

activity against dendritic cells (DCs) target cells loaded with SLA2 and SLA2 

fractions or by tritiated thymidine uptake proliferation assay. Immunisation of Balb/c 

mice with whole SLA as well as the SLA2 fractions induced a significant CTL 

activity, but responses were higher for the whole SLA. Splenocytes stimulated in 

vitro for 7 and 14 days with SLA2 and SLA2 fractions induced significant 

proliferation responses which was increased when splenocytes were stimulated with 

DCs loaded with these antigens.  

Leishmania parasites require a number of immune-evasion mechanisms to resist 

phagolysosome fusion and prevent activation of more-potent acquired immune 
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responses. Down regulation of MHC class I and II expression on infected phagocytic 

cells may be one of the immune evasion strategies used by the Leishmania parasite. 

In this study the effect of L. mexicana infection on the expression of surface 

molecules was investigated in DCs. Unlike treatment with autoclaved parasite, 

infection of DCs with live L. mexicana parasite down regulated the expression of 

MHC class I, class II, CD11c, CD80 and CD40. Also, in vitro treatment of DCs with 

fungizone as early as 1 hour after the initiation of infection with L. mexicana restored 

their MHC class I expression, as determined by antibody staining and flow cytometry 

analysis. Interestingly treatment of L. mexicana infected DCs with fungizone also 

restored their susceptibility to CTL activity.  

As part of searching for new Leishmania antigens of a potential vaccine application, 

the immunogenicity of L. donovani centrin-3 (Ldcen-3) was investigated in a Balb/c 

model. The immunogenicity of Ldcen-3 has not previously been investigated. Ldcen-

3 is a calcium binding protein that has been shown to be involved in duplication and 

segregation of the centrosome in higher and lower eukaryotes. The Ldcen-3 gene was 

cloned in various vectors and coated on gold particles for gene gun immunisation. 

Significant protection was induced by immunisation with 1μg DNA of pcDNA3.1-

Ldcen-3 or pCRT7/CT-TOPO-Ldcen-3 constructs. Protection against challenge with 

live parasite was vector dependent where better protection was induced by pCR 

T7/CT-TOPO-Ldcen-3. Splenocytes from Balb/c mice immunised with pcDNA3.1-

Ldcen-3 or pCRT7/CT-TOPO-Ldcen-3 has a potent CTL response against DC targets 

loaded with SLA or tumour cells transfected with Ldcen-3 plasmid construct.  
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Collectively, results presented in this study suggest that the whole SLA was more 

immunogenic than any SLA fractions produced by fast protein liquid 

chromatography. Results also suggest that L. mexicana could use down regulation of 

MHC I as a possible mechanism to evade killing by CTL and susceptibility to CTL 

could be restored by treatment of infected cells with fungizone. These findings also 

suggest the potential benefit of combination therapy in controlling Leishmania 

infection. This study has also investigated for the first time the immunogenicity of 

Ldcen-3 gene which was shown to be highly immunogenic via protection against 

challenge with live parasite and induction of CTL in immunised mice.  
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Abbreviations 

 
ACL 

ACP 

Ad5IL-12 

AdjuPrimeTM 

ADV 

Ag 

ALA 

ALM 

Alum-ALM 

APC 

American cutaneous Leishmaniasis 

Amastigote Cysteine Proteinase 

 Administration of an adenovirus expressing IL-12 

carbohydrate polymer AdjuPrimeTM  

Adenovirus  

Antigens 

Autoclaved Leishmania Antigen  

Autoclaved L. major 

Alum autoclaved Leishmania major  

Antigen Presenting Cells 

BCA Bicinchoninic Acid 

BCG Bacillus Calmette-Guerin  

BM-DC Bone marrow- Dendritic Cells  

BSA Bovine Serum Albumin  

CFA 

CL 

CMV 

Complete Freund's Adjuvant  

Cutaneous Leishmaniasis  

cytomegalovirus 

CP Cysteine Proteinase 

CP Corynebacterium parvum (adjuvant) 

CPi cysteine protease inhibitors  

CT 

CTL  

CVL    

CWS           

cholera toxin 

Cytotoxic T- Lymphocyte  

canine visceral Leishmaniasis  

cell wall skeleton 

DC 

DCL 

DDT   

DHFR-TS 

dLNs 

dNTP 

Dendritic Cells 

Diffuse Cutaneous Leishmaniasis 

DichloroDiphenylTrichloroethane 

Dihydrofolate Reductase Thymidylate Synthase gene  

draining lymph nodes 

Deoxy nucleotide triphosphate  

DTT Dithiothreitol 

ECL Enhanced Chemiluminescence 

EDTA Ethylenediaminetetraacetic acid 

ELISA Enzyme Linked Immunosorbent Assay 
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EU European Union 

FCS Foetal Calf Serum 

FML Fucose-mannose ligand  

FPLC Fast performance liquid chromatography  

GM-CSF 

gp63 

gp46 

GPI 

GPIL 

HASPB1 

Granulocyte-Macrophage Colony-Stimulating Factor 

glycoprotein 63 KD 

glycoprotein 46 KD 

glycosylphosphatidylinositol 

glycoinositol phospholipids 

Hydrophilic Acylated Surface Protein B1  

HBcAg Hepatitis B core Antigen  

HIV 

HRP  

Human immunodeficiency virus 

Horseradish peroxidase 

I.D.   Intradermal 

IFA Incomplete Freund's adjuvant 

IFAT Indirect fluorescent Antibody Test 

IFN-γ Interferon-γ 

Ig Immunoglobulins  

I.M.  

I.N. 

iNOS 

Intramuscular 

Intranasal  

 inducible Nitric oxide synthase  

I.P. Intraperitoneal  

KCs Kupffer cells  

KMP-11 

KOAc 

L. donovani Kinetoplastid Membrane Protein 11 

potassium acetate 

LACK Leishmania homolog of receptors for Activated C Kinase 

Lag 

LaAg 

L. donovani promastigote antigens  

L. amazonensis promastigote antigens 

L110f Leishmania poly-protein 

LCL Localized Cutaneous Leishmaniasis  

LCs 

Ldcen-1 

Ldcen-3 

Langerhans cells 

Leishmania donovani centrin-1 

Leishmania donovani centrin-3 

LeIF Leishmania elongation initiation factor 

Leish-111f Leishmania-derived recombinant polyprotein  

LiESAp L. infantum excreted supernatant antigens promastigotes  
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L110f Formulated Leishmania poly-protein  

LmSEAgs L. major exo-antigens  

LmSTI1 L. major stress inducible protein 1 

LPG Lipophosphoglycan 

LPS Lipopolysaccharide 

LRP L. major ribosomal protein  

LST 

MAC 

Man5-DPPE 

MBP 

MØ 

Leishmanin Skin Test 

membrane attack complex  

 liposomes coated with dipalmitoylphosphatidylethanolamine 

Mannan-binding protein  

Macrophages 

MCL Mucocutaneous Leishmaniasis 

MHC  

mDsRed 

MML 

MPL 

MPL-A 

MPL-SE 

MTOC 

MyD88 

NF-κB 

NH36 

Major Histocompatibility Complex 

monomeric red fluorescent protein 

Leishmania poly protein  

Monophosphoryl lipid  

monophosphoryl lipid A  

monophosphoryl lipid A in stable emulsion  

microtubule organising center  

Myeloid differentiation primary response gene (88)  

nuclear factor kappa-light-chain-enhancer of activated B cells 

Nucleoside Hydrolase 36 

NK Natural Killer cells 

NKT Natural Killer T cells 

NO 

NWDCL 

Nitric Oxide  

New World Diffuse Cutaneous Leishmaniasis 

O2
- Superoxide anion 

OX40L OX40 ligand 

PAMP pathogen-associated molecular patterns  

PBMC 

PCR 

PKDL 

peripheral blood mononuclear cell  

Polymerase Chain Reaction 

Post-kala-azar dermal Leishmaniasis 

PMNs Polymorphonuclear leukocytes  

PQ Recombinant protein formed by the genetic fusion of four 

cytoplasmic proteins 

PPGs proteophosphoglycans  
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PSA promastigote surface antigen 

PVP polyvinylpyrollidone  

RES Reticuloendothelial system 

S.C.  Subcutaneous  

ScLL Synadenium carinatum latex lectin 

SLA 

SPi 

TAg 

Soluble Leishmania Antigen 

serine protease inhibitors 

Total Antigen of Leishmania chagasi 

TBS-T Tris Buffered Saline and Tween 20 

TCR 

TDM 

TEMED 

TGF-β 

T-cell Receptor 

trehalose dicorynomycolate  

Tetramethylethylenediamine  
Transforming Growth Factor-β 

Th1 T helper1 

Th2 

TLR 

T helper2 

Toll-Like receptors  

TNF Tumour Necrosis Factor 

TNFR 

TRYP 

TSA 

VL 

Tumour Necrosis Factor Receptor 

Tryparedoxin peroxidase  

Thiol-Specific antioxidant  

Visceral Leishmaniasis 

VLP virus-like particle influenza   

WHO World Health Organisation 
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1 Introduction 

1.1  Leishmania  

The causative agent of Leishmaniasis, a disease causing suffering similar to malaria, 

was first described by William Leishman and Charles Donovan in 1903 (Jacobson, 

2003). The Leishmania species are vector-borne,  protozoans which are responsible 

for a group of diseases referred to as Leishmaniasis (Wheat et al., 2008).  The impact 

of Leishmania is universal, as human Leishmaniasis is endemic in 88 countries 

worldwide and has an approximate incidence of 20 million cases with about 2 million 

new cases occurring annually (Awasthi et al., 2004; Rodriguez-Cortes et al., 2007). 

Annually, Leishmaniasis is responsible for 60,000-70,000 deaths worldwide and an 

estimated 10% of the world’s population is at risk of infection and disease (Reithinger 

et al., 2007; Rodriguez-Cortes et al., 2007). Leishmaniasis is also considered as an 

emerging disease in Europe, the risk of spreading of Leishmaniasis among EU States 

has recently been evaluated for a short 2 to 3 and long-term 15 to 20 years. The main 

threat comes from the spread of two species of the parasites that are endemic in the 

EU, L. tropica and L. infantum, which cause cutaneous and visceral Leishmaniasis, 

respectively (Ready, 2010). Having been identified as a category one disease by the 

World Health Organisation (WHO), Leishmaniasis is considered as an emerging and 

uncontrolled disease and with the advent of HIV, Leishmania co-infection is a rising 

cause for concern in South Europe (Piscopo & Mallia 2007; Reithinger et al., 2007). 

The Leishmania organism is an obligatory intracellular parasite of macrophages and 

other phagocytic cells which are spread by the bite of sandflies (Gomes et al., 2007; 

Rafati et al., 2011). However, the disease is wide spread and exists mainly in the 
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tropical and subtropical regions of the world (McConville et al,. 2007). Leishmania 

parasites are dimorphic, with two morphologically distinct stages that can be 

identified dependent on hosts and developmental stages (Fig 1.1). The first form is 

termed the promastigote stage where it is elongated in shape and consists of long 

flagella. Parasites are found in a promastigote form in the sand fly vector (Alvar et 

al., 1992; Magill, 1995; Wilson, 2010). The promastigote form can be further divided 

into procyclic promastigotes, which are found in the gut of the sand fly and which 

actively, multiply and metacyclic promastigotes, which are found intracellular in the 

anterior gut and mouth region and do not multiply. The other form is called the 

amastigote, which is found in the host. Unlike promastigotes, this form lacks the 

flagella and are round or oval in shape (Olivier et al., 2005). Apart from the 

difference in the location and morphological form, there is also a difference in the 

presence and amount of surface molecules in the different developmental stages of 

the parasites. For example, the metacyclic promastigotes have a thicker glycocalyx 

when compared to procyclic promastigotes, whereas the glycocalyx is absent in 

amastigotes (Pimenta et al., 1991). The structure of LPG (Leishmania possess a 

lipophosphoglycan coat over the outside of the Leishmania cell) is longer in 

metacyclic promastigotes compared to procyclic promastigotes and almost not found 

in amastigotes. The gp63 is more abundant in promastigotes compared to amastigotes 

(McConville & Blackwell, 1991; Abu-Dayyeh et al., 2010). 
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A:                                                                                   B: 

 
 
Figure 1.1 A: Cultured promastigotes of L. mexicana alone or B: in infected dendritic cells at 
NTU lab and C: amastigotes L. mexicana infected macrophages (Costa et al., 2003). 

1.2  Classification of Leishmania species  

Leishmaniasis is divided into four major clinical forms and is caused by parasitic 

protozoa of the genus Leishmania. There are more than 20 species and subspecies that 

infect humans. The clinical features of the disease depend on the causative species 

L. mexicana promastigotes 
(40x)  

Infected DCs with L. Mexicana  
(40x) 

 

Amastigotes of L. mexicana

C: 
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and can range from simple, self-healing skin sores as found in cutaneous 

Leishmaniasis, to severe, life-threatening untreated visceral Leishmaniasis caused by 

Leishmania donovani. Classification and taxonomy of the Leishmania parasite, along 

with its geographical distribution is tabulated in (Table 1.2). The exact identification 

and classification of species of Leishmania is important for epidemiology and control 

of the disease because various species of Leishmania cause various clinical types of 

the disease (Mimori et al., 1998; Mishra et al., 2009). Leishmaniasis diagnosis can be 

made on the basis of epidemiological and clinical data but has to be confirmed by 

laboratory tests to avoid potential misdiagnosis. Because of differences among the 

Leishmania species in levels of virulence and response to chemotherapeutic regimens, 

correct identification is essential in order to determine the clinical prognosis and 

prescribe an appropriate species-specific therapeutic regimen (Berman, 1997; 

Mizbani, et al., 2009). 

Taxonomy of Leishmania parasite 

Kingdom:  Protozoa 

Subkingdom:  Protista 

Phylum:  Sarcomastigophora 

Sub-phylum: Mastigophora 

Class: Zoomastigophora 

Order: Kinetoplastida 

Suborder: Trypanosomatina                

 Genus: Leishmania 
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Species:  

Subgenus Complex Species Main geographic locations Main clinical 

manifestation 

Old World     

 L. donovani L. donovani India,subSaharan Africa, 

China,Pakistan 

VL 

 L. donovani L. infantum Mediterranean, Middle East, 

 north and sub-Saharan Africa, 

 Balkans, China 

VL 

 L. major L. major Middle East, Africa, India, China CL ("wet ulcer")

 L. tropica L. tropica Middle East, India, southern Europe,  

western Asia 

CL ("dry ulcer")

 L. aethiopica L. aethiopica Ethiopia, Kenya, Yemen CL 

New World     

Subgenera 

Leishmania 

L. donovani L. chagasi Latin America VL 

 L. mexicana L.   venezuelens Venezuela CL 

 L. mexicana L. mexicana Mexico, Central America,  

Texas, Oklahoma 

CL 

 L. mexicana L. amazonensis Amazon basin, Brazil CL 

Subgenera  

Viannia 

L. braziliensis L. braziliensis Latin America CL and MCL 

 L. braziliensis L. peruviana Peru and Argentina (highlands) CL 

 L. guyanensis L. guyanensis Northern Amazon basin, Guyanas CL 

 L. guyanensis L. panamensis Panama, Costa Rica, Columbia CL 

Table 1.2 Classification of Leishmania species in new and old world: VL: Visceral Leishmaniasis; 
CL: Cutaneous Leishmaniasis and MCL: Mucocutaneous Leishmaniasis. Leishmania divided in two 
subgenus: viannia and Leishmania (Bari & Rahman, 2008).   
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1.3  Life cycle of Leishmania 

The method of transmission of Leishmania diseases is similar for all Leishmania 

species. When female sandflies of the genus Phlebotomus infected with Leishmania 

take a blood meal from the host, the promastigote stages in their gut can penetrate the 

skin tissue where they are phagocytosed by macrophages (Fig 1.3). Promastigotes 

resist lysis in the phagolysosome and they transform to amastigote stages where they 

develop by binary fission (Bogdan & Rollinghoff, 1998; Handman, 2001; Azizi et al., 

2009). The free amastigotes released from infected macrophages are phagocytosed by 

other macrophages, bloodstream monocytes or dendritic cells. While the spread of 

infections by L. tropica and L. major is limited to the draining lymph node, the L. 

infantum and L. donovani move into the whole Reticuloendothelial system (RES), 

e.g., liver, spleen and bone marrow. The local or general decrease of macrophages 

may lead to hepatomegaly and/or splenomegaly in visceral Leishmaniasis and lesions 

in cutaneous infections (Bogdan & Rollinghoff, 1998; Handman, 2001; Okwor et al., 

2009). 
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Figure 1.3 Life cycle of Leishmania 
Female sandflies infected with promastigote stages in their gut transfer the infection to the new host 
during the feeding process where the promastigotes are phagocytosed by host macrophages and other 
phagocytic cells. Promastigotes are released in the phagolysosome where they transform to amastigote 
stages and divide by binary fission (Handman, 2001). 
 

1.4 Leishmaniasis clinical manifestations 

The clinical manifestations of human Leishmaniasis depend on the parasite species 

and on the immune response of the host. The virulence of Leishmaniasis may range 
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from the more benign cutaneous Leishmaniasis (CL) to visceral Leishmaniasis (VL). 

In VL the parasite infects and devastates macrophages of the spleen, bone marrow 

and liver finally leading to organ failure and death (Dumonteil et al., 2003; Navarini 

et al., 2009). 

1.4.1    Cutaneous Leishmaniasis 

 CL, mainly caused by L. mexicana, L. tropica and L. major,  is self-healing and 

causes skin lesions on any part of the body, but mostly on the face, arms and legs (Fig 

1.4.1) (Selvapandiyan et al., 2006). Cutaneous Leishmaniasis is epidemic in many 

countries, including Pakistan and Afghanistan (Murray et al., 2005; Gazoza., et al 

2010). The major symptoms of cutaneous Leishmaniasis include the presence of skin 

ulcers on exposed body regions after a sandfly bite. This type of infection generally 

heals spontaneously within a few months (3-6) (Schwartz et al., 2006). 

 
 
Figure 1.4.1 Cutaneous Leishmaniasis by L. braziliensis (Schwartz et al., 2006). 

1.4.2  Visceral Leishmaniasis  

 Visceral Leishmaniasis (VL) is caused by many species including L. donovani and L. 

chagasi. This disease is also known as ‘Kala Azar’ and can prove to be fatal if not 
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treated. More than 90% of visceral cases worldwide arise in India, Sudan, 

Bangladesh, and Brazil. Its major clinical symptoms include anaemia, fever, 

cachexia, hepato-splenomegaly and suppression of the cellular immune response (Fig 

1.4.2) (Croft, 2008; Gamboa-Leon et al., 2006; Subba et al., 2008; Sundar et al., 

2000). However, Post-kala-azar dermal Leishmaniasis (PKDL) a cutaneous 

manifestation of VL is characterized by skin lesions, nodules or papules, frequently 

erupting on the face. It often appears 2-7 years after the apparently successful 

treatment of VL by pentavalent antimony drugs. PKDL is caused by Leishmania 

donovani in India and Sudan, with a few cases reported to be caused by L. infantum, 

L. chagasi and historically by either species in China. To date there has been no 

substantial explanation or treatment for this type of Leishmaniasis (Dey & Singh, 

2007; Moore & Lockwood, 2010).  

 
 

Figure 1.4.2 Visceral Leishmaniasis, (Chappuis is et al., 2007). 

1.4.3 Mucocutaneous Leishmaniasis  

Mucocutaneous Leishmaniasis (MCL) affects mucous membranes mainly in areas 

where mucous is attached to skin. This form of Leishmaniasis is also called 

‘Espundia’ (Fig 1.4.3) (Awasthi et al., 2004). MCL is a severe and debilitating form 
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of American cutaneous Leishmaniasis (ACL) caused by infection with Leishmania 

braziliensis (Cabrera et al., 1995; Shimabukuro et al., 2010).  

 
 

Figure 1.4.3 Mucosal Leishmaniasis, (Schwartz et al., 2006). 

1.4.4 Diffuse Cutaneous Leishmaniasis 

New World DCL (NW-DCL) is a serious sickness caused by parasites of the 

Leishmania subgenus in patients with reduced cell-mediated immunity (anergic) to 

Leishmania parasites. The results of the skin test reaction to Leishmania antigens 

(LST) in these patients are negative (Fig 1.4.4). NW-DCL has been reported in 

several countries in Central and South America, and is characterized by widely 

disseminated non-ulcerating skin nodules, papules, and plaques (WHO, 1990). DCL 

also does not heal spontaneously and is highly resistant to chemotherapy. Presently, 

there is no effective treatment for NW-DCL and treatment with antimonial drugs or 

other drugs produces only transitory remissions (Calvopina et al., 2006). 
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Figure 1.4.4 Diffuse cutaneous Leishmaniasis (Calvopina et al., 2006). 
 

1.5     Control of Leishmania  

 1.5.1 Vector control  

Control of Leishmaniasis mainly depends on its epidemiological features. Control 

methods include elimination of sandflies by environmental and chemical control in 

the places where carriers are involved and destruction of dogs; which is the major 

vertebrate host (Claborn, 2010). In India, Nepal and Bangladesh, where chemical 

control is the only choice of control for visceral Leishmaniasis, most methods to 

disrupt any vector borne disease are aimed at decreasing man-vector contact. The 

principle behind environmental control is to manage the environment to make it 

unsuitable for insects to breed. The DDT spray operation has reduced the sandfly 

population to very low levels, resulting in interruption of kala-azar transmission and 

virtual elimination of the disease (Kishore et al., 2006). 
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1.5.2 Chemotherapy of Leishmania 

The treatment of the Leishmania parasite is difficult; it requires time and the 

application of toxic drugs. Leishmaniasis treatment is also very expensive especially 

for developing countries and has side effects (Suryawanshi et al., 2008). Drugs, like 

pentavalent antimony, have disadvantages: patients are hospitalised for 3 to 4 weeks 

for parenteral therapy, which is usually accompanied by side effects such as nausea, 

arthralgia, chemical pancreatitis, abdominal pain and cardiotoxicity. Amphotericin B 

is the drug of choice for Leishmaniasis but it has high nephrotoxicity (Chulay et al., 

1985; Sundar et al., 2000).  

1.5.3 Vaccines 

Substantial efforts have been dedicated to the development of vaccines against 

Leishmania infection and crude or purified antigens have been shown to induce 

considerable levels of protection experimentally in susceptible animals. Vaccination 

is likely to be the main cost-effective measure to control Leishmaniasis (da Fonseca 

et al., 1997; Kedzierski, 2010). There are different types of vaccines namely DNA 

vaccines, recombinant protein vaccines, live attenuated vaccines and killed parasite 

vaccines which are described later. 

1.6  Immune response to Leishmania parasites 

Cummings et al., (2010) have shown that immunity against Leishmania infection is 

dependent on the development of strong T cell responses mostly of a Th1 type. 

Indeed, Th1 cells produce cytokines such as IFN-γ which activates macrophages 
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leading to the destruction of the parasite. Cytokines produced by Th2 cells such as IL-

4 have the opposite effect and exacerbate the infection. Moreover, Verthelyi & 

Klinman, (2003) have shown that both CD8+ and CD4+ T-cells were essential for 

protection. The Th1 cytokine IFN-γ may up-regulate some antibodies such as IgG1 

and IgG3 in humans, whereas the Th2 cytokines IL-4 and IL-5 stimulate the 

production of high levels of IgM, IgE, and IgG isotypes such as IgG4. A study on the 

Leishmania specific Ig isotypes and IgG subclasses in VL patient sera have detected 

elevated levels of IgM, IgE, IgG and IgG subclasses (Anam et al., 1999; Ryan et al., 

2002). Ali et al., (2009) found that, Balb/c mice immunised with a L. mexicana gp63 

DNA vaccine construct using a gene gun, increased IgG2a and IgG1 levels as early as 

7 days after the immunisation.  In addition, studies in mouse models have established 

that immunity is mostly dependent on the cell-mediated immune response and is 

influenced by the genetic background of the host (Mitchell et al., 1981; von Stebut & 

Udey, 2004). Intensive research in cutaneous Leishmaniasis caused by L. major has 

established a dichotomy in the T helper lymphocyte response (Kharazmi et al., 1999; 

Cummings et al., 2010). In resistant mouse strains such as C57BL/6, resistance to the 

Leishmania infections was associated with a Th1 response characterised by activation 

of T cells that produce IFN-γ. The expansion of the Th1 type CD4+ T cells is 

dependent on IL-12 (Afonso et al., 1994; Mattner et al., 1996). In these mice IFN-γ 

activates macrophages which assist in clearing the parasites. In contrast Balb/c mice, 

a susceptible mouse strain, respond to infection with a Th2-type response and high 

IL-4 levels (Alexander et al., 1999; Jones et al., 1998; Manna et al., 2008). This 

suggests that the genetic background of the host determines the disease outcome in 

these models (Fig 1.6).  
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Figure 1.6 Th1/Th2 immune responses in Leishmania infection 
Th1 immune responses observed in C57BL/6 mice is associated with Th1-dependent protective 
immunity. In contrast, Balb/c mice develop progressive lesions which is associated with a Th2-
predominant immune responses (von Stebut et al., 2000). 
 

While it is generally accepted that cellular, rather than humoral immunity, plays an 

important role in host defence against Leishmaniasis, a few studies have shown that 

antibodies are instrumental in providing resistance to many intracellular pathogens 

(Casadevall et al., 1998; Abass et al., 2007). The antibody response isotype profile 

depends on the cytokines created by antigen specific T cells. Furthermore, specific 

subclasses of immunoglobulin (IgG2a, IgG1) are associated with Th1 and Th2 

responses respectively. It is known that IgG2a levels are regulated by IL-12 and IFN-

γ, while IgG1 levels are controlled by IL-4, (Morris et al., 1994; Ramirez et al., 

2010). However, this dichotomy is not absolute and it has been observed that IL-12 

may enhance IgG1 production. It has been reported that IL-12 vaccinated mice 

developed strong Th1 responses and also showed significant increase in parasite 

specific antibody, particularly IgG1 isotypes. This suggests the possibility of IgG1 

Healing protection 

Transmissions of Leishmania 
via sand fly  

Th1 Th2 
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and IgG2a working in tandem rather than acting antagonistically (Wynn et al., 1996). 

Matthews et al., (2000) have shown that IL-13 is a key factor in shaping susceptibility 

to L. major infection. High expression of IL-13 in transgenic mice transforms the 

normally resistant C57BL/6 mouse to become susceptible to L. major infection even 

in the absence of IL-4 expression. This susceptibility is associated with a suppression 

of IFN-γ and IL-12 expression. Moreover, studies in Balb/c mice deficient in the 

expression of IL-4, IL-13, or both IL-13 and IL-4 showed that IL-13-deficient mice 

are resistant to infection and that there is an additive effect of deleting both IL-4 and 

IL-13. In addition, Chu et al., (2010) have shown that mice infected with L. mexicana 

have developed pathways to control host immunity, one of them is via the induction 

of IL-10 which has a suppressive effect on T-cell mediated IFN-γ through binding of 

antibody parasite complex to Fc Receptors for IgG (FcγRs), the cell surface receptors 

for IgG. To develop effective vaccine away from the destructive Ab responses, via 

the induction of IL-10, it is crucial to identify which isotypes of IgG that could 

exacerbate pathogenicity of the parasite to be avoided. It has been shown that IgG1 

and IgG2a induce IL-10 from macrophages in vitro equally well but through different 

FcγR subtypes: IgG1 through FcγRIII and IgG2a mainly through FcγRI but also 

through FcγRIII. In contrast, mice deficient in IgG1 developed stronger and earlier 

IgG2a, IgG3, and IgM responses to L. mexicana infection and were more resistant to 

the infection. Thus, IgG1, but not IgG2a or IgG3, is linked to pathogenicity in vivo, 

and have been demonstrating that FcγRIII is required for the progression towards the 

chronic phase of the disease. 
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a)    Th1/Th2 in Leishmania infection 

Immune responses in Leishmaniasis were intensively investigated in humans, 

susceptible and resistant animal models. Ehrchen et al., (2010) have shown, using L. 

major infection, an activation of the Th1 and Th2 in resistant and susceptible mice 

respectively. Gene expression analysis performed on samples obtained from infected 

skin of resistant and susceptible mice following parasite inoculation clearly 

demonstrated an upregulation of genes linked to either Th1 or Th2 responses 

respectively. Similar Leishmaniasis Th1/Th2 dichotomies were also observed in 

humans. In a study on 14 volunteers with a history of self-healing cutaneous 

Leishmaniasis compared with 18 healthy control volunteers, the profile of IL-5, IL-

10, IL-13 and IFN-γ cytokines produced by purified CD4+/CD8+ T cells in reaction 

to Leishmania antigens was analysed. The results have shown that all the volunteers 

have maintained long-term immune responses against Leishmania antigens as 

determined by Leishmania skin test and IFN-γ production providing evidence of the 

existence of Th1 responses (Rostami et al., 2010). Jiaxiang et al., (2005) have 

investigated the role of regulatory T cells in controlling Th cell activities. High ratios 

of CD4+CD25+CD86+ T cells were detected in the draining lymph nodes as well as 

skin after one to three weeks of parasite inoculation indicating local accumulation of 

T regulatory cells with high levels of FoxP3, TGF-β and IL-10RI transcripts. The 

beneficial effect of T regulatory cells for parasite survival was temporary and 

connected with inhibition of IFN-γ producing effector T cells. This study has 

demonstrated the intriguing role of T regulatory cells in restraining pathogenic 

potential of Leishmania parasite during nonhealing Leishmania infection and 

highlighted a balance between T regulatory and T effector cells in determining the 

outcome of cutaneous Leishmaniasis. 
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1.6.1    Innate immune response to Leishmania parasites  

1.6.1.1  Natural killer cells 

Leishmania induces CD1d-dependent activation of NK T cells in wild type animals 

and increases susceptibility of NK T cell deficient CD1d-/- mice to Leishmania 

donovani infection. The elicited response, occurring as early as 2 hours after 

infection, was Th1 polarized and IL-12 independent. The Leishmania surface 

glycoconjugate Lipophosphoglycan (LPG) and related glycoinositol phospholipids 

bound with high affinity to CD1d and induced a CD1d dependent IFN-γ response in 

naïve intrahepatic lymphocytes. Both these data recognize Leishmania surface 

glycoconjugates as possible glycolipid antigens responsible for protection in this 

model, suggesting an important role for the CD1d–NK T cell immune axis in the 

early response to infection with visceral Leishmania (Amprey et al., 2004). It has also 

been shown that naive natural killer (NK) cells are important in Leishmania infection 

as a source of IFN-γ together with macrophage with the potential to trigger the Th1 

immune response in cutaneous Leishmaniasis (Scharton & Scott, 1993; Scott 1991). 

In addition, using the mutant beige mice with low NK activity, the direct importance 

of NK cells in the development of visceral Leishmaniasis has been shown in mice 

with an intermittent suppression or depletion of NK cells by anti-asialo GM1 or anti-

NK1.1 monoclonal antibodies, which resulted in an increased susceptibility of mice 

to Leishmania major (Kirkpatrick et al., 1985; Laskay et al., 1993). Sanabria et al., 

(2008) have shown the importance of the interaction between NK and DCs in the 

development of anti-viral and anti-tumour immune responses. They developed a DC-

NK cell co-culture system to study the role of NK cells in modulating the functions of 

Leishmania infected DCs. They found that addition of freshly isolated NK cells 
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and/or resting NK cells significantly increased the activation of DCs that were pre-

infected with L. amazonensis promastigotes. These activated DCs in turn stimulated 

NK cell activation mainly by cell contact-dependent mechanisms. 

1.6.1.2    Macrophages in Leishmania infection 

Macrophages play a critical role in resistance against a number of pathogens. These 

cells are not only involved in the initiation or maintenance of cell-mediated immune 

responses (Zhu et al., 2009), they also act as effector cells, functions that are linked to 

their ability to present endogenous and exogenous antigens (Ag) in the context of 

MHC class I and class II molecules, and to generate potent microbicidal molecules 

(Auger et al., 1991). The macrophage is the major host for the Leishmania parasite 

(Colotta et al., 1992). Activation of macrophages contributes to the successful 

elimination of the parasite. This occurs by production of toxic oxygen metabolites 

including nitric oxide (NO), super oxide anion (O2
-) and hydrogen peroxide (H2O2) 

(Assreuy et al., 1994). A diversity of stimuli is able to make the morphological, 

biochemical and functional changes characteristic of activated macrophages. 

Activated macrophages produce different cytokines like TNF-α, IL-6, IL-18, IL-12 

and IFN-γ (Hirohashi & Morrison, 1996; Munder et al., 1998; Gee et al., 2009 ). IL-

12 and IFN-γ are effective adjuvants and there is a Th1 type of immune response in 

most intracellular parasitic infections (Afonso et al., 1994; Ezra et al., 2010). The 

main producers of IL-12 are antigen presenting cells, such as macrophages and 

dendritic cells (Yamane et al., 1999), which produce IL-12 through CD40/CD40L 

interactions (Kato et al., 1996). The nitric oxide production is the final common 

pathway involved in the destruction of Leishmania parasites by macrophages. 

Inhibition of NO production has been shown to render macrophages more susceptible 
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to L. major infection, thus being unable to interfere with the survival of the parasite in 

vitro (Assreuy et al.,1994; Green et al., 1990). The role of IFN-γ in inducing NO 

production in macrophages was demonstrated and found to independently enhance 

iNOS transcription and NO release from stimulated mouse peritoneal macrophages 

(Ding et al., 1988; Khoshdel et al., 2009). However, a number of cytokines have been 

shown to enhance NO production synergistically with IFN-γ thus potentially 

mediating parasite control in vivo. IFN-α is the most extensively studied anti-

Leishmania cytokine, which synergizes with IFN-γ in the induction of iNOS and NO 

production by macrophages in vitro (Green et al., 1990; Moll et al.,1990, Rogers et 

al., 2009).  

1.6.1.3    Neutrophils in Leishmaniasis 

Polymorphonuclear leukocytes (PMNs) are considered to be the main effector cells in 

infection inducing inflammatory reactions in which they serve to destroy invading 

pathogens (Witko-Sarsat et al., 2000). There is increasing evidence to suggest that 

Leishmania pathogens even infect and develop within neutrophils. Taking L. major as 

an intracellular pathogen, PMNs are manipulated in such a way that the pathogens are 

able to use the granulocytes as host cells. The capability to maintain and survive 

infectivity in PMNs subsequently enables these organisms to establish productive 

infection (Laskay et al., 2003). Following experimental skin infection with L. major, 

a local inflammatory process was immediately initiated and a few hours later a wave 

of PMNs was shown to migrate into the skin. Two or three days later on, the second 

wave of cells to enter the site of infection were monocytes and macrophages, (Muller 

et al., 2001; Sunderkotter et al., 1993). In addition to its chemokine activity, IL-8 also 

activates other cell functions of PMNs such as phagocytosis (Scapini et al., 2000). 
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The Leishmania organism induces the production of IL-8 by PMNs, thus increasing 

the infiltration speed of the neutrophils to the site of infection and assists uptake of 

the parasites. IL-8 is the main chemokine not only in the skin but also at other sites of 

entrance used by pathogenic microorganisms (Molestina et al., 1999). Carmo et al., 

(2010) have shown that the co-culturing of infected macrophages with normal 

neutrophils enhanced the destruction of the parasites which did not require a direct 

contact between infected macrophages and neutrophlis. It was also shown that 

parasite clearance by macrophages did not involve the classical activation pathway by 

TNF-α, as reported for other Leishmania species.  

1.6.1.4    Eosinophils in to Leishmaniasis 

Cutaneous Leishmaniasis which induces skin lesions is characterized by a 

granulomatous inflammation in the subcutaneous tissue and the dermis. Eosinophils 

are found in the granuloma as the main constituent of the inflammatory cells, which 

are also found to be associated with the induction of IL-5 (Boom et al., 1990). 

Eosinophil chemotactic activity has been reported in lysates of L. amazonensis 

promastigotes, in vitro and in vivo. The lysate use specific chemotactic activity on 

eosinophils without the contribution of complement activation. Saito et al., (1996) 

and Driss et al., (2009) have shown that tissue eosinophilia was observed shortly after 

intraperitoneal inoculation of L. amazonensis in the subcutaneous tissue of mice 

Elshafie et al., (2010). Also intraperitoneal inoculation of lysed promastigotes from 

five types of Leishmania species (L. donovani, L. tropica, L. chagasi L. braziliensis 

and L. amazonensis) induced eosinophil accumulation in the mouse peritoneum. This 

eosinophil infiltration was detected in C5-/- lack-/- AKR mice C57BL/6, indicating 

complement independent eosinophil chemotaxis by the parasite. In an in vitro study, 
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Watanabe et al., (2004) have shown that the progress of L. amazonensis infection in 

IL-5 transgenic mice in which 50% of peripheral blood leukocytes are eosinophils 

was significantly suppressed. Immunisation by electroporation into muscle of Balb/c 

mice with IFN-γ, IL-4 & IL-5 constructs was also investigated; the IL-5 plasmid was 

most effective in slowing down the progress of the infection in comparison with the 

other two plasmids. Immunisation with IL-4 plasmid had little effect where IFN-γ had 

no effect on the progress of disease. Thus, IL-5 gene transfer into muscle by 

electroporation was helpful in protection against L. amazonensis.  

1.6.1.5    Dendritic cells at the interface of innate and acquired immunity 

DCs are essential in innate immunity and in the initiation of adaptive immunity 

(Banchereau & Steinman, 1998; Behar et al., 2010). The restriction of an adaptive 

immunity pathway by innate immunity is dependent on unique DC functions and on 

the type of DCs resulting from the effect of chemokines and cytokines (Wen et al., 

2008). DCs contribute in cell mediated immunity by taking up antigen and presenting 

peptide on MHC molecules (Trombetta & Mellman, 2005). DC activation by 

pathogen-derived molecules is initiated by a switch in chemokine receptor expression 

that leads to migration to draining lymph nodes in a chemokine receptor-dependent 

manner. The up-regulation of costimulatory CD80, CD86, and CD40 and MHC 

molecules, alongside secretion of chemokines and cytokines, assist DC antigen 

presentation to naive T cells with an antigen-specific receptor (Banchereau et al., 

2000; Leon et al., 2007). Infection with Leishmania induced inflammatory responses 

involving a strong increase in numbers of DCs at the infection site and draining 

lymph nodes (dLNs). Also during Leishmania infection, monocytes are recruited to 

the dermis and differentiate into ''dermal monocyte derived DCs'', which then migrate 
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into the dLNs. In addition, monocyte recruited to the dLNs subsequently differentiate 

into LN ''monocyte-derived DCs'', the kinetic studies of monocyte differentiation into 

DCs during Leishmania infection that lead to specific T cell stimulation have 

suggested that dermal monocyte derived DCs eventually control the initiation of 

defensive Th1 responses against Leishmania. Thus, the demonstration of monocyte 

differentiation potential into DCs during in vivo Leishmania infection and of local DC 

differentiation in inflammatory foci propose that de novo formed monocyte derived 

DCs are important in T cell immunity against pathogens (Leon et al., 2007). 

1.6.1.6   Toll-Like receptors (TLR) 

 One of the first protective systems against invasive microorganisms is the TLR 

signalling pathway (Oda & Kitano, 2006). TLRs are transmembrane proteins that are 

specifically expressed on cells mediating ''Natural'' immunity and are responsible for 

recognition of invasive pathogens causing human disease. The TLR family presently 

consists of 11 members, which have specificity for different pathogens and trigger the 

induction of different cytokines (Janssens & Beyaert, 2003). TLRs are located on 

either the internal membranes or plasma membrane of macrophages, NK and DCs 

cells. B and T lymphocytes also express TLRs. The TLR’s cytoplasmic signalling 

domains are separated from the ligand recognizing extracellular or internal 

membranes by a single membrane spanning domain (Sarkar et al.,  2007; Sarkar et 

al.,  2005). NF-κB becomes activated, after the binding of TLRs to  their specific 

pathogen antigens, and is transported to the nucleus where it triggers the transcription 

and synthesis of pro-inflammatory cytokines (Barton & Medzhitov, 2003). These 

specific pathogen antigens are called pathogen-associated molecular patterns (PAMP) 

and in general are internal structures or surface molecules (proteins, RNA, DNA, and 
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enzymes) produced by microbes but not host cells. These PAMP antigens enable the 

innate immune system to respond immediately to invading microbes (DiDonato et al., 

1996; Ghosh & Bandyopadhyay, 2004). There is an important step between the 

activation of TLR and the release of NF-κB, which is mediated by adaptor molecules. 

MyD88 is the most common adaptor molecule for the activation of NF-κB and is 

present in most TLRs (Fig 1.6.1.6) (Ohnishia et al., 2009). Signal transduction 

leading to TLRs activation is complex where the transcription factor NF-кB plays a 

vital role in the induction of inflammatory mediators. The activation of the 

transcription factor NF-кB requires both phosphorylation and degradation of the IкB. 

As part of TLRs signalling cascades, phosphorylation dependent degradation of IкB 

is an important step in the activation of NF-кB (Janssens et al., 2003). 

a)  TLR pathway and Leishmaniasis  

Several studies have confirmed that different receptors mediate the uptake and 

phagocytosis of Leishmania by macrophages. One of the first studies evaluating 

TLRs and the MyD88-dependent pathway in Leishmania infection was performed by 

(Hawn et al., 2002). The Leishmania major infection and cytokine expression in 

macrophages in MyD88-/- mice was investigated. There was a decreased amount of 

mRNA expression of IL-1α in the MyD88-/- mice as well as an activation of the IL-1α 

promoter in the MyD88+/+mice. This was similar to the levels found with 

lipopolysaccharide (control). By studying the TLRs in a C57BL/6 mouse model 

(Debus et al., 2003; Muraille et al.,  2003) the importance of the MyD88 in the  

(resistance model) Th1 response to cure Leishmania cutaneous lesions has been 

shown. MyD88-/- mice had an increased number of cutaneous lesions compared with 

wild-type C57BL/6 mice (MyD88+/+). 
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Figure 1.6.1.6 TLR and MyD88 pathway in Leishmania infection 
Binding of TLR with pathogen-associated molecular patterns (PAMP) which is the LPG from 
Leishmania parasite initiates signalling cascades that involves a number of proteins, such as MyD88. 
These signalling cascades lead to the activation of transcription factors, such as NF-κB and inducing 
the secretion of pro-inflammatory cytokines and effector cytokines that direct the adaptive immune 
response pro-inflammatory cytokines (Tuon et al., 2008). 

The number of lesions of the MyD88-/- mice was similar to that in Balb/c mice, which 

have a dominant Th2 response and a tendency to have an increased number of 

Leishmania lesions. An increase in IL-4 levels and decrease in IFN-α and IL-12(p40) 

levels were also recognized. In addition de Veer et al., (2003) demonstrated the 

relationship of LPG to MyD88 and TLR2. The LPG was linked with an increased 

level of TNF-α independent TLR4, where NF-kB activation by LPG was mediated by 

TLR2. TLR4 is essential for parasite control, possibly due to the activity of iNOS, 

leading to NO synthesis and Leishmania death (Antoniazi et al., 2004; Kropf et al., 

2004). It has been shown that  LPG has no effect on TLR4 (de Veer et al., 2003; 

Debus et al., 2003). Furthermore, IL-12 is a very important cytokine in the immune 
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response against Leishmania and can be activated by TLR9. The production of pro-

inflammatory cytokines, specially IL-12 by TLR9 was observed in infected mice with 

L. major (Li et al., 2004). TLR9 is expressed only on DC and B lymphocytes in 

humans. NK cells in visceral Leishmaniasis are associated with good protection, and 

TLR9 is necessary for the activation of these cells as it is essential for the production 

of IL-12 by DCs (Schleicher et al., 2007). TLR3 also contributes to the detection of 

Leishmania (Flandin et al., 2006). In addition, receptors such as TLR7, TLR8, and 

TLR9, situated in intracellular endosomal membranes, recognize double-stranded 

RNA, leading to the production of IFN-γ and trigger NF-kB (Alexopoulou et al., 

2001). The localization of TLR3 induces cytokine production by means of a signaling 

pathway (Hoebe et al., 2003). On the other hand, TLR3 also uses a MyD88-

independent pathway to NF-kB and production of IFN-γ (Flandin et al., 2006; 

Ohnishia et al., 2009). The production of TNF-α and the activation of NF-kB that 

occurred in experiments with L. major were similar to results obtained with other 

Leishmania species, such as L. mexicana, L. aethiopica, and L. tropica (de Veer et al., 

2003). Muraille et al., (2003) found that the MyD88 dependent TLR pathway is 

involved in the induction of DC maturation, which was established previously with L. 

major (Table 1.6.1.6). 
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 Model           Species Pathway or TLR Outcome 

Balb/c L. major MyD88-/- Decreased IL-1α promoter activation 

C57BL/6 (B6WT) L. major MyD88-/- Increased number of lesions and IL-4 levels, 

decreased levels of IFN-α and IL-12 

Balb/c L. major MyD88-/- and IL-4- Inhibition of IL-4, increased IFN-γ levels 

C57BL/6 L. major MyD88-/- Absence of TLR2 increased the number of lesions 

Cell culture L. major TLR2 LPG could activate NF-kB by TLR2 ligation 

C57BL/10ScN L. major TLR4-/- Absence of TLR-4 increased the number of lesions 

C57BL/10ScN L. major  TLR4-/- but IL-12 Leishmaniasis control was TLR4 and IL-12 

dependent 

Balb/c L. major TLR9 Vaccine decreased the number of lesions by the 

TLR9 pathway 

C57BL/10ScN L. major TLR4-and TLR4+ Little variation of chemokine levels 

Cell culture L. donovani TLR3  TLR3 was activated by double-stranded RNA 

Balb/c L. major TLR9  IL-18 improved the Th1 response, probably via TLR9

C57BL/6 Leishmania MyD88 Pathway improved DC maturation 

C57BL/6 Balb/c L. major TLR4 Neutrophil elastase activated TLR4 

C57BL/6, Balb/c L. infantum TLR9-/- Cytokine production from DCs was dependent on TLR

  
Table 1.6.1.6 TLR pathway and Leishmaniasis  
MyD88 is the most common adaptor molecule for the activation of NF-κB and is essential for 
activation of most TLRs. MyD88-/- mice had an increased number of cutaneous lesions compared with 
wild-type C57BL/6 mice (MyD88+/+) and TLR responsible for recognition of invasive pathogens 
causing human disease (Tuon et al., 2008).  

 

1.6.2   Adaptive immune system 

1.6.2.1    Dendritic cells as antigen presenting cells  

DCs form a family of leukocytes that play critical roles in the innate and adaptive 

immune systems. It has also been shown that DCs are the source of different 
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cytokines such as IL-12, IL-10 and IFN-γ that are involved in the induction of a 

different type of T cell (Cella et al.,1996; Qi et al., 2003; Stober et al., 2001). It has 

been reported that incubation of Leishmania promastigotes with dendritic cells 

induced early IL-12 production in vitro. In addition, DCs play an active role in the 

initiation of the T cell immune response during Leishmania infection (Guermonprez 

et al., 2002; Donaghy et al., 2010). Activation pathways induced by DCs are 

dependent on their differentiation stage and lineage. For example, immature, non-

activated antigen-loaded DCs either induce anergy of specific T cells or the 

development of regulatory T cells that prevents the activation of T effector cells. At 

this stage, the plasma membranes of DCs display fewer MHC class I and MHC class 

II molecules and either none or very few co-stimulatory molecules. In contrast, 

mature activated antigen-containing DCs display high levels of MHC class I, MHC 

class II and co-stimulatory molecules on their cell surfaces, which leads to activation 

of T cells (Berberich et al., 2003). DCs rather than macrophages are more likely to 

prime T cell responses against Leishmania infection to induce protective immunity, 

since infection of macrophages with this parasite does not normally lead to their 

activation, migration or induction of IL-12. DCs phagocytose Leishmania amastigotes 

or free antigens after they are released into the tissue (von Stebut & Udey, 2004). 

This may lead to DC activation, up regulation of MHC class I and II, as well as co-

stimulatory molecules and migration to the draining lymph nodes where they present 

Leishmania antigen to Th0 cells while releasing IL-12, thus inducing Th1 

development (Fig 1.6.2.1).  
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Figure 1.6.2.1 DC presents Leishmania antigens  
DCs prime T cell responses against L. major and induce protective immunity. DCs phagocytose 
Leishmania amastigotes or free antigens after they are released into the tissues. This may lead to DC 
activation and migration to the draining lymph nodes where they present Leishmania antigen to Th0 
cells while releasing IL-12, thus inducing Th1 development (von Stebut & Udey, 2004). 

1.6.2.2   MHC class I and class II expression in Leishmania infection 

The main factor limiting T cell responses to self-antigens is the regulated expression 

of co-stimulatory molecules (Kaye, 1995; Guerin et al., 2009). T cell activation 

depends on two signals: TCR ligation with MHC antigens provides signal (primary 

activation signal or signal 1) mediated via the activation of protein tyrosine kinases 

and requiring the CD45 protein tyrosine phosphatase. Signal 2 is achieved by the 

interaction of a diversity of receptor- counter-receptor pairs, of which the best 

characterized are those involving CD80/CD86 on APC and CD28/CTLA-4 on T cells, 

which involve biochemical pathways distinct from those initiated by TCR complex 
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activity (June et al., 1994; Benedict et al., 2007). Moreover, Lang et al., (1994) found 

that in vivo, macrophages infected with Leishmania are able to present antigens to 

Leishmania specific CD4+ and CD8+ T lymphocytes, which recognize the processed 

antigens bound to MHC class II and MHC class I molecules respectively. Infected 

macrophages and their role in parasite lysis suggest that these cells are the central 

APC-mediating parasite control mechanism (Alexander & Russell, 1992; Bosschaerts 

et al., 2010). Production of TNF-α, IL-12, (NO) and IFN-γ by macrophages can 

contribute to Th1 polarization, effector Th1 CD4+ T cell maintenance, and parasite 

lysis (Diefenbach et al., 1998; Richard et al., 2010). Macrophage secretion of these 

molecules can be facilitated by MHC II peptide-TCR and CD40-CD40L interactions 

(Campbell et al.,1996; Kamanaka et al.,1996; Rao, 2001). Kwan et al., (1992) have 

shown that during the activation of macrophages, among the important responses to 

IFN-γ are the increased expression of MHC complex class II and class I genes. 

According to Lemos et al., (2004) the control of the intracellular protozoan, L. major, 

requires MHC class II dependent antigen presentation and CD4+ T helper cell 1 

differentiation. However, the Leishmania lesions also contained infected DCs, which 

may directly help in the development of protection in two ways. First, infection of DC 

with L. major would lead to activation of the T cells with upregulation of MHC class 

I and II expression (a scenario that proved incorrect in many cases) as well as 

costimulatory molecules and migration to the draining lymph node, leading to 

priming of T cells. Second, cytokines released by DC are essential for Th1 

differentiation (Belkaid et al., 2000; Mattner et al., 1996; von Stebut et al., 2000). 

CD8+ T lymphocytes are an important component of the protective immune response 

developed in Leishmania infected mice. Leishmania are always located in membrane-

bound compartments belonging to the endocytic pathway, which raises the question 
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of the proximity of Leishmania Ags and MHC class I molecules. Indeed, until 

recently it was generally thought that complexes between processed antigens and 

MHC class I molecules were formed exclusively in one or several compartments of 

the biosynthetic pathway of the APC. Several recent findings however, are also 

consistent with a peptide loading of MHC class I molecules in endocytic 

compartments. The constitutive endocytosis of cell-surface MHC class I molecules 

has been described in several cell types (Vega & Strominger, 1989; Basha et al., 

2008) and macrophages, and perhaps also dendritic cells, seem to be endowed with a 

unique capability to present exogenous Ags in association with MHC class I 

molecules (Debrick et al., 1991; Pfeifer et al.,  1993).  

1.6.2.3    CD4+ T cells in the immune response to Leishmania parasite 

T cell mediated immunity plays a central role in the host response to control 

intracellular pathogens. The Leishmania infection induces an increase of the T cell 

response to different species of the parasite (L. donovani L. amazonensis and L. 

braziliensis), and an increase in levels of IL-2 and IFN-γ production (Gabaglia  et al.,  

2000; Cummings et al., 2010). Studies on T cell activities in Leishmaniasis are likely 

to have a great impact on the understanding of the disease in humans, and assist 

successful vaccine development. This depends on the applicability of these results to 

human disease and on continued studies in murine models to further understanding of 

the mechanisms involved in the generation and maintenance of central memory and 

effector memory (Gollob  et al.,  2005; Kaech et al., 2002). In a study by Ramer et 

al., (2006) a comparison of draining lymph node cells from L. major and L. 

amazonensis infected mice at 10 weeks post infection showed equal percentages of 

memory and effector phenotype CD4+T cells that produce IL-2 and proliferate after 
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antigen stimulation. In other studies IL-13 and IL-4 were detected in the skin after 

initial lesion development, suggesting that Th2 cytokines play an immuno-regulatory 

role in early infections (Bourreau et al., 2003; Murray et al., 2006). However, cure of 

the infection was regularly associated with the production of IFN-γ only, while IL-10 

was present in persisting lesions (Rogers et al., 2002). In addition, treatment of non-

healing cutaneous Leishmaniasis with IFN-γ resulted in the rapid and complete 

resolution of lesions (Kolde et al., 1996; Nylen et al., 2010). 

1.6.2.3.1 Chemokines in Leishmania infections 

Chemokines are a growing group of chemoattractant cytokines that play important 

roles in physiological and pathological processes. Successful immunity to Leishmania 

depends on recruitment of suitable immune effector cells to the site of infection and 

chemokines play an essential role in the process. Leishmania parasites possess the 

ability to modify the chemokine profiles of their host, thereby facilitating 

establishment of progressive infection. They are single polypeptides of about 67 to 

127 amino acid residues in length (Moser & Willimann, 2004). Some chemokines 

have been shown to regulate cell differentiation (Gu et al., 2000), and distinct patterns 

of chemokine secretion have been observed in differentiated cells (Muller et al., 

2003). About 50 human chemokines and 20 chemokine receptors have been 

recognized up to now (Viola & Luster, 2008). L. major has been shown to actively 

modify the chemokine profile of the infection site and thus recruit cells that will 

favour the development of persistent infection (Katzman & Fowell, 2008). An 

important example is LPG, the most abundant glycolipid on the surface of 

Leishmania promastigotes, which inhibits the production of CCL2 also known as 

monocyte chemotactic protein-1 (MCP-1) by endothelial cells thus affecting 
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monocyte transendothelial migration (Lo et al., 1998; Oghumu et al., 2010). 

Moreover, Leishmania infantum infection of human macrophages causes a down 

regulation of the chemokine receptor CCR1 which could potentially restrict 

macrophage recruitment to infected tissues, thereby allowing parasite progression 

(Panaro et al., 2004). In contrast, as several studies have shown, chemokine and 

chemokine receptor expression by Leishmania infected host cells could be a means of 

facilitating the hosts’ ability to restrain the parasite to the site of inoculation and 

mount an effective immune response (Matte & Olivier, 2002). Muzio et al., (2000) 

have shown that L. major infected mice induce overall upregulation of CCL5, CCL3, 

CXCL10 and CCL2 in the footpads and LNs, whereas these chemokines are 

constitutive in the spleens of TLR4-competent and deficient mice. However, the 

expression patterns are not affected directly by the presence or absence of TLR4 

(Antoniazi et al., 2004). The parasite itself also produces a chemoattractant protein 

called Leishmania chemotactic factor, which can attract PMNs (van Zandbergen et 

al., 2002). PMNs are the first cells to arrive at the site of Leishmania infection. In 

humans, PMNs containing Leishmania start secreting chemokines such as IL-8 that 

are essential in attracting more PMNs to the site of infection (Laufs et al., 2002). The 

level of chemokine mRNA was measured in L. major infected ears during the first 48 

hours post infection. In C57BL/6 infected mice, CCL3 mRNA was strongly induced 

within 24 hours of L. major inoculation, while significantly less CCL3 mRNA was 

induced in L. major infected Balb/c mice. L. major induced only a small increase in 

CCL4 and CCL5 mRNA at the site of infection, while infection did not induce 

CCL20 mRNA (Charmoy et al., 2010). 
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1.6.2.4    CD8+ T cells immune response to Leishmania infection 

CD8 T cells are essential in the defence against viruses, yet little is known of their 

participation in the host defence against parasites, such as Leishmania. Mouse models 

of Leishmaniasis studies suggest that CD8 T cells play a significant role in protection 

through IFN-γ production and patients infected with various Leishmania strains 

where CD8 T cell cytotoxicity and apoptosis of autologous Leishmania infected 

macrophages correlate with cure. Dendritic cells activate CD8 T cells through antigen 

presentation (Ruiz & Becker, 2007) and T-cells producing IFN-γ may activate 

macrophage (Chan, 1993; Tierney et al., 2009). Obligatory intracellular parasites 

such as Leishmania species, can deliver antigens to the host cell cytoplasm that are 

presented through MHC class I molecules to protective CD8 T cells. The in vivo 

conditions of specific CD8 T cell activation during natural infection are not fully 

known, but the anti-parasitic mechanisms mediated by CD8 T cells may include both 

IFN-γ dependent and independent pathways. CD8 T cells are strong inhibitors of 

growth, which has prompted several investigators to consider whether stimulation of 

T cells can be a feasible strategy for the development of effective subunit vaccines 

against these parasitic diseases (Bankoti & Stager, 2010). Estimation of the 

lymphocyte proliferation response produced in vitro by L. braziliensis antigens has 

been shown. L. braziliensis specific T cells stimulated in vitro for 5 days were 

collected and typed for CD4+ and CD8+ cells and the results before and after therapy 

were evaluated. Leishmaniasis patients demonstrated an enhanced CD8+ T cell 

response and a decrease in the proportion of CD4+ T cell blasts in culture. The levels 

of IFN-γ in T-cell culture supernatants showed a tendency to increase in cured 

patients. These results confirm a pattern of high proportions of Leishmania reactive 

CD8+ T cells and low proportions of Leishmania reactive CD4+ T cells after cure 
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(Fig 1.6.2.4) (Da-Cruz et al., 1994). As similar result was reported in patients with a 

history of self-healing cutaneous Leishmaniasis (Rostami et al., 2010), the activation 

of CD8+ cells was also reported by in vitro treatment with an influenza virus-like 

particle (VLP) vaccine in a DC T cell co-culture system. VLP pulsed DCs were co-

cultured with autologous CD8+ T cells from 5 donors. CD8+ T cells activation was 

assessed using cell surface and intracellular cytokine staining. The percentage of 

activated CD8+ cells was investigated in 4 of the 5 donors. VLP influenza vaccine 

was shown to stimulate CD8+ T cells using DC antigen presentation, possibly through 

the MHC class I pathway (Song et al., 2010).  

CD8 cytotoxic T lymphocyte kills target cell specifically via different mechanisms 

such as releasing a mixture of granzymes and perforin. Perforin is a pore-forming 

protein that initiates the killing of target cells by inserting itself in their membranes 

causing necrosis. The first sign of perforin induced necrosis is the swelling of 

organelles which then followed by disruption of cytoskeleton leading to complete 

lysis of the target cell.  Granzymes on the other hand induced killing of target cells by 

apoptotsis of target cells. The other mechanism is through Fas/APO ligand (CD95 

ligand) which is expressed on CTLs and interaction with corresponding receptor on 

target cells triggers downstream death message leading to apoptotsis.  Fas/APO 

ligand induced apoptotsis is indistinguishable from that induced by granzymes 

(Groscurth and Filgueira, 1998). 
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Figure 1.6.2.4 Immune responses to Leishmania  
A: Susceptibility or resistance to Leishmaniasis depends on the types of secreted cytokines. Whereas a 
Th1 response leads to parasite destruction, a Th2 response leads to parasite survival and disease 
progression. B: Activation of T cells by cross-presentation, immature dendritic cells (iDC) take up 
antigens, such as soluble antigens, necrotic or apoptotic cells, which are processed and presented to 
CD4 T cells in association with costimulatory molecules. The interaction CD40–CD40L activates CD4 
T cells, which produce cytokines that activate dendritic cells (DC) as well as CD8 T cells. The mDC 
present diverse Leishmania peptides through MHC class I to CD8 T cells, inducing their activation and 
proliferation into effector cells (Ruiz & Becker, 2007). 
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1.6.3   Humoral immunity  

1.6.3.1    Complement activation in Leishmaniasis 

The complement system has three main roles in host immunity: opsonin, lysis of 

target cells or microbes and activation of phagocytes (Fig 1.6.3.1). The classical 

complement pathway is activated via immune complexes. The alternative 

complement pathways are phylogenetically older and proceed through the lack of 

antibody. The lectin mediated pathway constitutes the binding of a serum lectin, 

such as mannan-binding protein (MBP), to target molecule, in addition to the early 

components of the classical pathway which include C1, C4, and C2. Each pathway 

leads to the arrangement of a C3 convertase, a C5 convertase, and a membrane attack 

complex (MAC) (Brittingham & Mosser, 1996). 

 
 
Figure 1.6.3.1The Complement System 
There are three types of complement activation pathways; the classical pathway which is dependent on 
antigen antibody complex, the lectin pathway which is initiated through binding microbe with MBP, 
and the alternative pathway where binding to microbe initiates this process. All pathways leads to the 
arrangement of a C3 convertase, a C5 convertase (Brittingham & Mosser, 1996). 
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The complement system is comprised of a complex network of activators, regulators, 

effector mechanisms and signals. The mechanism of complement activation by 

promastigotes revealed that Leishmania can activate complement by the alternative 

pathway (Brittingham & Mosser, 1996, Lieke et al., 2008). Complement activation by 

L. donovani and the metacyclic stage L. major promastigotes may also involve 

components of the classical pathway. According to previous studies naturally 

occurring antibodies play a major role in the activation of the classical complement 

pathway by L. donovani (Bandyopadhyay et al., 2004), other studies suggest that the 

lectin-mediated pathway of complement activation is another major pathway of the 

complement system activated by Leishmania (Green et al., 1994; Olivier et al.,2005; 

Alonso et al., 2007). The two most abundant Leishmania surface molecules, LPG and 

gp63 participate in the activation of complement, as do all strains and species of 

Leishmania studied to date. Researchers observed that the majority of C3 fixed to the 

surface of L. major promastigotes was bound to LPG (Planck 2000; Soares et al., 

2010). They indicated that purified LPG can compete with intact promastigotes for 

complement fixation (Mosser et al., 1992). The transfection of mammalian cells with 

gp63 could easily be converted to efficient activators of complement by the 

expression of this protein on the surface (Brittingham et al., 1995). The complement 

system is the most important defence mechanism of the innate immune system, which 

helps to clear pathogens from the organism by disrupting the plasma membrane of the 

target cells. Metacyclic promastigotes of Leishmania can activate complement using 

both the classical and the alternative pathways. Opsonization of Leishmania 

metacyclic promastigotes with complement is fast and lysis by the membrane attack 

complex (C5b–C9 complex) following serum contact is 90% efficient in killing all 

immunised parasites in 3 min. Interestingly, Leishmania have evolved to resist and 
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circumvent full complement lysis with many mechanisms (Dominguez et al., 2003). 

Procyclic and metacyclic L. major promastigotes are more resistant to complement 

lysis compared to the amastigotes. This is mediated through alteration of a membrane 

during development that prevents the insertion of the C5b–C9 complex into the outer 

membrane of the parasite (Sacks & Sher, 2002). Another mechanism of inhibition of 

complement by Leishmania parasites is through the expression of protein kinases that 

phosphorylate C3, C5 and C9. Finally, gp63 and LPG enable binding of C3bi to the 

parasite surface. Complement activation results in opsonization-binding of C3bi to 

the surface of the parasite, a process which is used by Leishmania parasites to escape 

from the hostile environment by phagocytosis via complement receptors (CR) 

(Dominguez et al., 2003; Olivier et al., 2005). 

1.6.3.2  B cell immune response to Leishmania infection  

Interaction between B and T lymphocytes results in signalling which is crucial in 

shaping the helper T cell responses (Rolf et al., 2010). During Leishmania infection, 

resistance depends on the generation of a protective Th1 response, whereas 

susceptibility is mediated with the generation of a Th2 response. Attempts were made 

to determine the lymphocyte of B cells for the development of T helper 1 and 2 

responses during infection with Leishmania major (Fig 1.6.3.2). The progression of 

the disease and development of the T helper cell was assessed in mice infected with 

L. major and lacking B cells (by disruption of immunoglobulin M locus: mMT) on 

genetically susceptible Balb/c and resistant C57BL background. Interaction of CD40 

and B7 (expressed on B cells) with CD40L and CD28 (expressed on T cells) 

respectively may be required for the acquisition of helper function (Liu et al., 1995; 

van Essen et al., 1995; Laurent et al., 2010). The importance of B cells was 
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investigated by antibody depletion or by T-cell reconstitution of SCID mice 

(Ronchese & Hausmann, 1993; von Stebu et al., 2004)  or by genetic disruption of the 

immunoglobulin (Ig) locus (Chen et al., 1993; Kitamura et al., 1991).  

 
 
Figure 1.6.3.2 B cells immune response to Leishmania infection 
The peptides from the pathogen are presented by MHC II to T cell resulting in the activation of the B 
cell and then B cells differentiate into antibody-secreting plasma cells, which produce antibodies 
against the pathogen (the digram is constructed based on information obtained from van Essen et al., 
1995). 

In L. major infections in the most resistant mouse strains produced a Th1 response 

and are therefore resistant. However, Balb/c mice showed an increased Th2 response, 

which is unable to restrain the development of the parasite (Reiner & Locksley, 1995; 

Radwanska et al., 2007). If B cells are essential for the production of a Th2 response 

during L. major infection, then Balb/c mice lacking B cells may be able to mount a 

protective Th1 response by default. In fact, Balb/c mice treated with anti-IgM are 

resistant to L. major and Balb/c X-linked immune-deficient (Xid) mice, which lack 

the B1 subset of B cells, showed improved resistance to L. major (Sacks et al., & 

Sher, 1984; von Stebu et al., 2004). 



                                                                                                                      Introduction  

 57

1.6.3.2.1   Antibody  

Sera from patients with either mucosal or visceral manifestations of Leishmania 

infection were examined to determine the antibody class against the causative parasite 

by ELISA assay using intact promastigotes as antigen. Sera from all examined 

patients had significant levels of IgG and little or no IgA or IgM anti-parasite 

antibody. Antibody in the diagnosis of Leishmania infections has mainly relied on the 

detection of total immunoglobulins or IgG specific antibodies (Ho et al., 1983; Azmi 

et al., 2009). Sera from patients with confirmed mucosal or the visceral 

Leishmaniasis was examined to determine the classes and subclasses of Ig containing 

activity specific for the parasite. In a study by Mengistu et al., (1992) the classes of 

anti-Leishmania antibodies were determined in serum from patients with cutaneous 

Leishmaniasis using immunoblotting; differences in the pattern of antigen recognition 

by IgM, IgG, IgE and IgA antibodies were detected in DCL and LCL patient serum. 

All antibody classes demonstrated different patterns of banding to a variety of 

molecular species of antigens of the parasites. There was a significant difference in 

the specificity and reactivity of the IgG antibody among different individual patients. 

The IgM binding patterns were usually homogeneous and limited to antigens with Mr 

>40 kDa. IgA antibodies were the only class of antibodies (Anti-Leishmania) which 

showed a shared pattern of common antigen recognition in all the tested patients. 

However, the target antigens for IgE reactivity included two antigens of Mr 36 and 

46-48 kDa which were not documented for other isotypes. Such antibody class 

reactivity may be useful in the design of serodiagnostic assays for the recognition of 

Leishmania infection (Bhowmick et al., 2009).  
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Antibodies play a number of functional roles in the pathogenesis of Leishmaniasis in 

humans. IgG serum antibodies reactive to L. aethiopica are observed in high titres in 

patients with diffuse cutaneous Leishmaniasis (DCL) and localized cutaneous 

Leishmaniasis (LCL) (Goto et al., 2010). At the level of antigen specific recognition 

the western blot profile of serum antibodies of any given DCL or LCL patient were 

limited to only a subset of the potential antigenic components expressed by the 

parasite and significant heterogeneity in the antibody repertoire of individual DCL 

and LCL patients was observed. It was also shown that the general distribution 

pattern and specificity of the classes of serum antibody developed in patients with 

cutaneous Leishmaniasis (Mengistu et al., 1990; Goto et al., 2010). 

1.7  Immune evasion by Leishmania 

In macrophages, intracellular Leishmania parasites require a number of immune 

evasion mechanisms to resist phagolysosome fusion and prevent activation of more-

potent acquired immune responses. The main adaptive immune evasion strategies by 

the parasite include the inhibition of interleukin IL-12 synthesis, and induction of IL-

10 and transforming growth factor-β (TGF-β) by infected cells. These cytokines 

promote the shift of response from T helper Th1 to Th2 that characterizes 

susceptibility to Leishmania in vivo (Taylor-Robinson, 2001; Ritter et al., 2009). 

Prior to internalisation, Leishmania promastigotes bind to surface molecules such as 

complement receptors 1 and 3 expressed by macrophages. The major macrophage 

ligand for mature promastigotes is CR1, however other parasite surface glycoproteins 

e.g. gp63 membrane protease, and additional macrophage receptors e.g. CR3, have 

been involved in the transformation of promastigotes into intracellular amastigotes 

(Moreno et al., 2010).  
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LPG and gp63 are responsible for the virulence of the parasite. In fact, LPG has been 

shown to be involved in survival within the insect and establishment of infection in 

the macrophage (Descoteaux & Turco, 1999). The roles of the LPG and gp63 

pathogen-associated molecular patterns appear to complement each other, and these 

molecules appear to be the trigger of the immune response against Leishmania 

(Zambrano-Villa et al., 2002; Tuon et al., 2008). Some studies have demonstrated 

that LPG might inhibit the fusion of the phagosome with lysosomes, an essential step 

in the destruction of the pathogen. And, vacuoles formed around a Leishmania mutant 

lacking the cell surface LPG fused extensively with endosomes and lysosomes, 

promoting complete destruction of the parasite (Dermine et al., 2000; Desjardins & 

Descoteaux, 1997; Tuon et al., 2008). gp63 has been shown to inhibit some 

degradative phagolysosomal enzymes (Sorensen et al., 1994) and  although both 

antigens (LPG and gp63) may be considered important inhibitors of macrophage 

activation, other factors are also involved including (i) alterations in the 

cyclooxygenase and lipooxygenase pathways, (ii) suppression of macrophage 

expression of class I and class II MHC gene products, (iii) defective regulation of 

calcium-dependent signalling, (iv) altered activation and translocation of protein 

kinase C, and (v) activation of the Src homology 2 domain containing tyrosine 

phosphatase-1 (Kwan et al., 1992; Olivier et al., 1992; Mukhopadhyay et al., 2006). 

Thus, it could be concluded that complex mechanisms are involved in amastigote 

survival in the macrophage and those are not only related to external proteins and it is 

clear that GPIL, LPG, and gp63 are considered to be the first antigens to encounter 

the innate immune response (Nandan et al., 2002; Tuon et al., 2008).  

It is documented that the presence of Leishmania in a tissue encourages the 

production of cytokines by APCs. IL-12 is one of the main cytokine responsible for 
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the principal Th1 response and the achievement of the adaptive cellular response in 

individuals with Leishmaniasis (Chatelain et al., 1992; Tuon et al., 2007; Berberich et 

al., 2003).  

Mbow et al., (2001) have shown that the expression of co-stimulatory molecules 

influence the product of antigen specific T cell priming. It was found that L. major 

effected the expression of co-stimulatory molecules on different populations of 

epidermal cells. CD86 expression was down-regulated on Th1 epidermal cells 

(keratinocytes) from resistant C3H mice, but not from susceptible Balb/c mice. In 

addition, epidermal cells from Balb/c mice showed a down-regulation of CD80 

expression on DC Langerhans cells. In vitro T cell priming experiments, using 

syngeneic epidermal cells as antigen-presenting cells (APC), showed that the 

production of IFN-γ was inhibited when either CD80 or CD86 signalling pathways 

were blocked. In addition up-regulation of CD80 on Leishmania antigen-treated 

human macrophages and DCs has been shown. Also, human responses to L. major are 

dependent on CD40 co-stimulation and influenced by both CD80 and CD86 

expression (Brodskyn et al., 2001; Goronzy & Weyan, 2008). Moreover, Leishmania 

down regulates the production of antigen specific CD4+ T helper cells which produce 

IFN-γ and IL-12, essential for the activation of the macrophages to kill the 

intracellular amastigotes. Leishmania infection was shown to induce the production 

of TGF-β and IL-10 which prevents the killing of intracellular amastigotes (Bogdan et 

al., 1996; Bhowmick et al., 2009).  

1.8         Vaccination Strategies 

The clinical manifestations of human Leishmaniasis depend on the parasite species 

and on the status of the host immunity. Although chemotherapies against 
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Leishmaniasis do exist, they are few and expensive, particularly for people in 

developing countries. Side effects and drug resistance are also adverse results of 

chemotherapy. Considerable efforts have been devoted to the development of 

vaccines against Leishmania infection and crude or purified antigens have been 

shown to elicit a certain degree of protection in susceptible mouse strains such as 

Balb/c mice. Vaccination has been proposed to be the most cost-effective measure to 

control Leishmaniasis.  

1.8.1  Leishmanisation 

Resistance to Leishmania disease is mediated by antigen specific T cells which give 

life-long immunity against reinfection with the same species. It is known that 

deliberate infection of infants with exudates of cutaneous Leishmania lesion on the 

buttocks prevented subsequent lesions on the face. This process was called 

‘Leishmanisation’. It is generally known in the hyper-endemic Asian countries that 

after recovery from CL, individuals are usually protected against further lesions 

(Coler & Reed, 2005; Nylen & Gautam 2010). Currently, the improvement of a new 

vaccine must meet several strict criteria where safety is the corner stone in every 

vaccine licensed for clinical use. ‘Leishmanisation’, the oldest form of vaccination 

against cutaneous Leishmaniasis, has been practiced for centuries in the Middle East 

and Russia (Handman, 2001; Ali et al., 2009) and where recovery from CL is 

followed by long lasting immunity to the disease (Khamesipour et al., 2006). Live 

virulent L. major promastigotes were harvested and used in large-scale vaccination 

trials during the 1970s and 1980s in Iran and the Soviet Union (Handman, 2001; 

Khamesipour et al., 2005). Though still practiced in Uzbekistan, the noteable side 

effects, including the progress of large constant lesions, psoriasis and 
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immunosuppression, led to the discontinuation of Leishmanisation in many countries 

and the focus of vaccine development consequently shifted towards the use of killed 

organisms. The possibility of using Leishmanisation as a live challenge for the 

evaluation of Leishmanisation vaccines was first considered by the WHO in 1984 

during the large scale Leishmanisation program in Iran (Khamesipour et al., 2005). 

Although Leishmanisation gave a high percentage of successful lesion development 

and subsequent immunity to infection with L. major, it was neither reproducible nor 

safe (Handman, 2001; Ameen, 2009) and is not recommended by the WHO. Live-

non-attenuated vaccines have been experimentally tested using non-pathogenic 

species, such as Leishmania tarentolae, based on the notion that high levels of 

immunological cross-reactivity between species at both the humoral and cellular level 

could provide potent cross immunity against virulent species. Cross immunisation is a 

promising approach to vaccination against visceral Leishmaniasis caused by L. 

donovani since Balb/c mice were able to mount a protective immune response after 

only a single peritoneal vaccination with a live Leishmania tarentolae (Breton et al., 

2005; Rafati et al., 2011).  

1.8.2 Live-Attenuated Vaccines 

The genetic modification of Leishmania parasites to reduce virulence without 

reducing immunogenicity is of current interest in the development of a Leishmania 

vaccine. It is an interesting approach, as attenuated parasites closely mimic natural 

infection that may well lead to similar immune responses without the risks associated 

with infection with virulent live Leishmania parasites (Handman, 2001, Abdus Salam, 

2009). Due to advances in molecular biology and the genomic sequencing of L. 

major, the attenuation of Leishmania parasites by blocking, removing or replacing 
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essential genes became possible (Coler & Reed, 2005; Roberts, 2005). Leishmania 

can be engineered for safe immunisation by knocking out the genes required for a 

long term survival in the host and the deletion of the dihydrofolate Reductase 

Thymidylate Synthase gene (DHFR-TS) in L. major has produced the first 

Leishmania ‘knockout’ vaccine tested. This gave significant, but temporary, 

protection in mice when challenged with the wild type organism and also gave 

unsatisfactory results during additional studies in monkeys (Khamesipour et al., 

2006). The production of Leishmania ‘knockouts’ is not only able to identify 

virulence genes as new potential target antigens, but can also lead to a better 

understanding of the biology of the parasite. Additionally, studies using knockout 

parasites may be key in identifying specific genes for the development of DNA 

vaccines as shown in the study by Selvapandiyan et al., (2007) have demonstrated the 

importance of the centrin proteins for the duplication and progression of the 

Leishmania amastigote cell cycle. Palatnik-de-Sousa, (2008) constructed a DNA 

vaccine cassette suitable for Leishmanisation as an efficient treatment of non 

resolving lesions. On the other hand, parasites can be modified to produce biological 

substances that generate immune attack, such as granulocyte monocyte colony 

stimulating factor (GM-CSF) (Dumas et al., 2003). The attenuated vaccines of 

Leishmania parasites offer a novel approach to immunisation against Leishmaniasis, 

nevertheless there are concerns that the parasite may revert to a virulent form. In 

addition, targeted deletion of essential virulence genes can result in complete damage 

of the parasite or production of mutants that only delay development of lesion (Breton 

et al., 2005). 
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1.8.3  Killed Leishmania parasites 

Killed Leishmania parasites are interesting for their stability, in terms of biochemical 

composition and antigenicity, and also for low cost and safety (Giunchetti et al., 

2008). Killed Leishmania parasites have been used for vaccine studies, with or 

without adjuvants. Autoclaved Leishmania promastigotes, as an example, with or 

without BCG (Bacillus of Calmette and Guerin) as adjuvant have been tested against 

visceral and cutaneous Leishmaniasis in a randomized, BCG-controlled clinical trial. 

It was found that two injections of the vaccine autoclaved L. major (ALM) with BCG 

were significantly better than BCG alone (Khalil et al., 2000; Palatnik-de-Sousa, 

2008). Most of the studies in America using killed Leishmania vaccine have used 

autoclaved L. amazonensis lysates in some instances compared with native species, 

while in most of the studies on vaccines against Old World Leishmaniasis L. major 

has been used. In the Middle East killed Leishmania vaccines failed to give 

significant protection against Leishmaniasis in humans (Handman, 2001). Also, killed 

Leishmania vaccines tested in humans and dogs, in Asia and South America since 

1940 induce low efficacies and poor protection in vaccinated subjects (Palatnik-de-

Sousa, 2008). However, studies using killed Leishmania vaccine in mouse models 

have demonstrated that the injection of vaccines intravenously or intraperitoneally, 

but not subcutaneously, was associated with excellent protection, and subsequently 

several formulations of killed vaccines have been developed. Those studies 

emphasise that the site of administration influences the efficacy of a vaccine 

therefore; In Venezuela, autoclaved L. mexicana is currently used for immunotherapy 

to treat patients with cutaneous Leishmaniasis (Khamesipour et al., 2006).  
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1.8.4  Recombinant Protein Vaccines 

Recombinant protein vaccines are produced from the cells engineered genetically to 

express foreign genes encoding antigenic proteins (Khamesipour et al., 2006). 

Different Leishmania recombinant proteins have been tested for their potential as 

candidate vaccines, such as recombinant hydrophilic acylated surface protein B1 

(HASPB1) which induced protection against challenge with L. donovani in a mouse 

model (Stager et al., 2000). The recognition of defined parasite peptides and proteins 

that promote useful immune responses may contribute to vaccine progress. gp63, the 

major Leishmania surface glycoprotein, is highly conserved across species (Medina-

Acosta et al., 1993, Knox et al., 2010). LACK (Leishmania analogue of the receptors 

of activated C kinase) antigen, in spite of stimulating a strong Th2 response in 

infected mice, induces substantial protection in Balb/c mice if administered in 

conjunction with adjuvants that stimulate a Th1 response. Thus during vaccine 

development, immunogenicity and the amount of antigen expressed by parasite in 

vivo are two important factors which need to be considered  along with the necessity 

for adjuvants to elicit a strong Th1 response. In another recent study, the Leishmania 

elongation initiation factor (LeIF) has been considered as a vaccine candidate based 

on its ability to induce Th1-type cytokines in humans (Coler & Reed, 2005). A 

Leishmania vaccine containing Fucose-mannose ligand (FML) has been tested to 

prevent canine visceral Leishmaniasis in an endemic area in Brazil. This study 

evaluated the immune response of dogs vaccinated (20 vaccinated and 20 controls) 

with FML against total antigen of Leishmania chagasi (TAg) and FML alone. The 

vaccine was given 3 times S.C. at 21 day intervals. The proliferation responses and 

antibody production against FML or total promastigote antigen were determined in 

the PBMCs that have been isolated before and 10 days after vaccination. The vaccine 



                                                                                                                      Introduction  

 66

induced humoral responses in 100% of the tested animals against both antigens but 

less cellular immunity to FML (85%) and total antigen (80%). The supernatants of 

cultured cells stimulated with TAg and FML showed an increase in IFN-γ. Reduced 

numbers of CD4+CD25+ T cells were detected in the vaccinated group compared to 

that observed before vaccination (Lima et al., 2010). 

1.8.5  DNA vaccines 

DNA vaccines represent a relatively simple formulation for both therapeutic and 

prophylactic purposes, containing the gene encoding the antigen which can stimulate 

the immune system, upon gene expression in vivo. The DNA vaccines have now 

entered clinical trials, targeted to prevent and cure many infectious disorders, cancer, 

autoimmune disease and allergic diseases. DNA vaccines are also widely used in 

proteomic research to understand immunological phenomena, such as antigen 

presentation and cross priming (Donnelly et al., 2005; Montalvo-Alvarez et al., 

2008). Cross priming is a process where extracellular antigens are processed by APC 

and transported from endosomes to cystoles to be presented on MHC I and MHC II to 

CD8 and CD4 T lymphocytes respectively. Transfected DCs with DNA vaccine could 

activate CD8+ and CD4+ T cells via MHC class I and MHC class II respectively 

against the DNA encoded antigen. Soluble proteins and fragments from apoptotic 

transfected cells can also be endocytosed by immature DC to be expressed on MHC 

class I or MHC class II, leading to their differentiation into mature DCs. Thus, a DNA 

vaccine can be effective in the stimulation of both CD8+ and CD4+ T cell 

populations (Ali et al., 2009; Vanloubbeeck and Jones 2004). Therefore, cross 

presentation is an essential mechanism for the generation of CTL responses to 

antigens (Han et al., 2005). The history of DNA vaccine development dates back to 
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1990, when Flenger and colleagues showed that a simple bacterial plasmid vehicle 

containing the gene for a marker protein along with a promoter can be functional in a 

mammalian model (Wolff & Budker, 2005). They observed that the intramuscular 

(I.M) injection of formulation containing a gene encoding for a viral protein can 

trigger the generation of the CD8+ cells, CTLs and antibodies in mice. They also 

found that the CTLs were able to protect mice from viral challenge (Donnelly et al., 

1997; Kashyap et al., 2010). DNA vaccines allow protein expression when DNA 

constructs encoding appropriate protective antigens are injected into mammalian cells 

and they have the capacity to strongly induce both humoral and cell mediated 

immunity. The immunogenicity can be increased by manipulating the vector or by 

incorporating a cytokine gene which serves as an adjuvant (Ivory & Chadee, 2004). 

DNA vaccines can be administered intradermally, intramuscularly and even 

intranasally (Mendez et al., 2002; Tesoro-Cruz et al., 2008). DNA vaccines encoding 

some of the Leishmania antigens have been investigated by several groups, based on 

the introduction of a plasmid DNA encoding the gene for an antigenic protein into 

host cells in vivo. The endogenous expression of a foreign antigen may induce strong 

antibody production as well as a complete cell-mediated immune response, because 

DNA vaccines have a strong bias to Th1 response. It has been reported that CPG-

DNA sequences act as adjuvant and stimulate humoral and cellular immunity and 

promote Th1 differentiation in aged Balb/c mice (Maletto et al., 2002).  

Recently, it has been shown that DNA vaccination induced  strong immunoprotection 

against cutaneous and visceral Leishmaniasis (Carrion et al., 2008) potent anti-

Leishmania immune responses in mice, which in these models a combination of 

multiple antigen encoding plasmids have improved protection (Iborra et al., 2004). 

Introduction of DNA into monocytes, macrophages and dendritic cells was shown to 
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increase their antigen uptake and presentation, as well as augment the expression of 

co-stimulatory molecules and the secretion of pro inflammatory cytokines such as IL-

10 and IL-12. These cytokines in turn activate NK cells, CD4+ and CD8+ T cells, 

enhancing their lytic activity and the secretion of high levels of IFN-γ (Krieg, 2002). 

In addition, Balb/c mice immunised with a DNA vaccine encoding the nucleosomal 

histones from L. infantum induced significant protection against VL and dogs 

vaccinated by a prime-boost regime with DNA-LACK followed by an Ankara virus 

triggered a Th1 type immune response, leading to protection against canine VL 

(Carrion et al., 2008; Ramos et al., 2008). This protection correlated with the absence 

of VL symptoms, lower Leishmania-specific antibodies, and a higher degree of T cell 

activation in Leishmania-target organs co-incidental with a higher synthesis of Th1 

cytokines (Dumonteil et al., 2003; Murray et al., 2005). These generate protective 

responses against Leishmaniasis and represent a promising approach to vaccine 

development (Encke et al., 1999; Mendez et al., 2002). DNA vaccines are 

advantageous over other vaccine strategies and several features have made them a 

promising alternative (Donnelly et al., 2000). They are easily produced, simple and 

can be cheaply produced on a large scale; because of their temperature stability they 

can be easily stored and transported.  

A single plasmid encoding several antigens and multiple plasmids encoding different 

antigens, can be delivered in a single administration, thus making DNA vaccines 

extremely flexible (Encke et al., 1999) thus providing resistance against more than 

one species. Furthermore, bacteria derived DNA plasmids are naturally immunogenic 

as their backbones contain unmethylated cytosine phosphate guanosine (CpG) motifs 

which have been shown to readily induce Th1 cytokine expression and increase CD8  

T cell responses (Garmory et al., 2004). This adjuvant property is of great value, 
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ensuring the induction of cell-mediated immunity and in turn conferring protection 

against the parasite. 

1.8.5.1 Administration of DNA Vaccines  

Several methods of DNA vaccine administration have been tested and it is thought 

that the route and site of immunisation plays a critical part in influencing the nature of 

the immune response elicited. To date, successful DNA vaccination has been 

administered through intramuscular, intravenous, intraepidermal, intraperitoneal, 

intravaginal, intranasal, intrasplenic, intrahepatic, subcutaneous or oral routes 

(Handman et al., 2000; Ali et al., 2009). Of these intramuscular administration is the 

most popular (Garmory et al., 2003; Mendez et al., 2002). The dose of DNA vaccine 

necessary for protection in C57BL/6 mice against Leishmania major was 5 times 

smaller when delivered by gene gun (particle-mediated epidermal delivery) than by 

either intramuscular or subcutaneous injection. Furthermore, Ali et al., (2009) found 

that 1µg of DNA encoding L. mexicana gp63, administered using gene gun, conferred 

better protection in susceptible Balb/c mice than 100µg of vaccine administered 

intramuscularly. These findings clearly demonstrate that the efficacy of a DNA 

vaccine is greater using gene gun administration than intramuscular injection. This 

may be due to the fact that gene gun administration can directly transfect APC, such 

as DC, with the plasmid DNA (Encke et al., 1999). In a previous study it was shown 

that, protection of mice against challenge with L. major was dependent on the 

frequency of immunisation with killed parasites either mixed with rIL-12 or alone 

with highest protection in mice immunised 5 times per week. However, no protection 

was obtained from mice immunised with a single or double immunisation of killed 

parasites either alone or with repeated rIL-12 inoculation (Okwor et al., 2010). 
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Flying vaccinator is a novel idea of using genetically engineered hematophagous 

insects to deliver vaccines has been recently reported by Yamamoto et al., (2010). A 

transgenic anopheline mosquito that expressed the Leishmania vaccine candidate, 

SP15, fused to monomeric red fluorescent protein (mDsRed) in its salivary glands 

have significantly induced anti-SP15 in bitten mice demonstrating the ability of 

delivering antigens through blood feeding. Thus, this technology makes the 

generation of transgenic mosquitoes possible to match the original idea of a flying 

vaccinator. This has shown that the field of DNA vaccines is evolving to adopt novel 

technologies and delivery techniques to significantly improve protective immune 

responses. 

1.8.5.2  Immune mechanisms of DNA Vaccines  

 The gene gun delivers DNA-coated gold particles at high velocity directly into cells 

of the epidermis, which include skin cells, LC and dermal DCs. On entering the cells, 

the plasmid travels to the nucleus, where the transcription of the encoded gene into 

protein takes place, which is then processed into peptides by proteases and presented 

on MHC I which stimulates CD8  T lymphocytes (Fig 1.8.5.2) (Encke et al., 1999). 

DC directly transfected with the DNA vaccine can prime CD8  T cells by presenting 

the DNA encoded antigen in the context of MHC class I (Vanloubbeeck & Jones, 

2004). On the other hand, there is evidence to suggest that immature DC can 

endocytose soluble proteins and fragments from apoptotic transfected cells and 

express the coded antigen through MHC class I or MHC class II after differentiating 

into mature DC (Donnelly et al., 2000). DNA vaccination thus can result in the 

stimulation of both CD4  T and CD8  T cell populations. DC, play a major role in the 

induction of both humoral and cell-mediated immunity following DNA vaccination 
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due to its cross priming ability (Vanloubbeeck & Jones, 2004). A number of studies 

have been conducted on potential DNA vaccines against Leishmania and according to 

results  by Handman et al., (2000) such vaccines can be used therapeutically to treat 

cutaneous Leishmaniasis caused by L. major in both genetically susceptible Balb/c 

mice and resistant C3H/He mice.  

There is clearly controversy regarding the nature of the antigens that induce 

protective immunity in different species. 

 

Figure 1.8.5.2 DNA vaccines  
The figure shows, activation of CD8+ T lymphocytes, implicated in host defence against intracellular 
pathogens via cytotoxic T lymphocytes (CTL), and CD4+ T lymphocytes, which secrete cytokines and 
play a role in production of specific antibodies (Kowalczyk & Ertl, 1999).  

Immune response 

Virus   parasite     Bacteria 
Pathogen Isolation of gene for antigenic protein

Cloning in to a vaccine 
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Production by 
Bacteria 

Purification of plasmid Immunisation by 
gene gun 
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9        Aims of study 

The aim of this study is to develop an animal model (Balb/c mouse model) to study 

immunogenicity of SLA antigens fractionated by anion exchange ‘’Mono Q 

column’’ trying to identify immune dominant antigens. Immune responses will be 

measured by CTL assay, proliferation assay and cytokines measurement.  

 

This study aimed to investigate the effect of live and autoclaved L. mexicana on the 

expression of cell surface markers including MHC class I, MHC class II, CD40, 

CD80 and CD11c in DCs and susceptibility to CTL killing. The reverse effect of 

fungizone on susceptibility to CTL killing and the expression of MHC I, MHC II, 

CD40, CD80 and CD11c in the DCs following Leishmania infection will also be 

investigated. 

 

The discovery of new antigens is essential to identify and characterise antigens with a 

potential application as a novel vaccine candidate. The immunogenicity of centrin 

genes, newly identified Leishmania antigens, have not previously been studied and 

very little is known about on their biology in Leishmania. Hence, this study is also 

aimed at determining the immunogenicity of Leishmania donovani centrin-3 (Ldcen-

3). Two plasmid constructs containing Ldcen-3 (pCRT7/CT-TOPO-Ldcen-3 and 

pcDNA3.1/Hygro-Ldcen-3) will be used for immunisation of Balb/c mice by gene 

gun. Immunity will be measured by protection against challenge with live L. 

mexicania parasite and measuring CTL activity levels in immunised mice against 

DCs loaded with SLA and CT26 tumour cells transfected with pcDNA3.1 (-)-Ldcen-

3.
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2          Methods 

2.1     Preparation of Soluble Leishmania Antigen (SLA) 

L. mexicana promastigotes 2×109 (strain Hd18 kindly provided by Dr. Varley, the 

London School of Hygiene and Tropical Medicine) were washed 4 times in PBS and 

resuspended in 3 ml of Leishmania buffer; 100mM Tris buffer, pH 7.3 containing 

1mM EDTA, 0.5mM PMSF (Sigma) and 2.5mg/ml Leupeptin (Sigma). The parasites 

were lysed by sonication for 2 minutes and the lysate was centrifuged at 13000g for 

20 minutes. The supernatant was further ultracentrifuged for 4 hours at 100,000g. The 

antigen produced by this procedure was called SLA1. Another antigen preparation, 

SLA2 was similarly produced but without ultracentrifugation. Both SLA1 and SLA2 

were dialysed against 5 litres of cold PBS overnight with continuous agitation and 

several changes of the PBS. The dialysate was sterilised by passing through 0.2 µm 

filters (Sartorius), then kept at -80˚C. 

2.2      Western Blotting to detect gp63 in SLA 

2.2.1    Protein Assay 

A protein assay was set up to measure the concentration of the unknown protein 

samples (mg/ml). The total protein in each antigen preparation was measured using 

the Sigma Bicinchoninic Acid Protein Assay Kit according to the manufacturers’ 

instructions. The kit contains reagent A which is a 1,000 ml solution containing 

bicinchoninic acid, sodium carbonate, sodium tartrate, and sodium bicarbonate in 0.1 

N NaOH and reagent B which is a 25 ml solution containing copper (II) sulphate 
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pentahydrate. Bovine serum albumin (BSA) was used as standard protein. Briefly, 

25µl per well of the antigen sample (SLA) and a serial dilution of 1mg/ml BSA in 

lysate buffer was used as standard and were placed in duplicate in 96-well plates 

(Biorad). Reagents A and B were mixed in the ratio of 50:1 and 200µl of the mixture 

was added per well. The plate was wrapped in foil and incubated at 37 ºC for 20-30 

minutes to develop the reaction and the plate was then read at 570nm on a 

Spectrophotometer (Tecan). A standard curve was created to determine the protein 

concentration of each unknown sample by Excel Microsoft.  

2.2.2    Western Blotting 

The gel tank was assembled according to the instructions and 10% a resolving gel: 

1165µl acrylamide, (30%) 875µl Tris 1.5 M HCl pH 8.8, 1460µl H2O, 35µl 

ammonium persulphate 10%, 3.5µl Tetramethylethylenediamine (TEMED), was 

prepared and poured into the cassette. The gel was left until it solidified. The 4% 

stacking gel (15% acrylamide /bis, 25% 0.5 M Tris HCL, pH6.8, 60% dH20 plus 

0.1% TEMED and 10% ammonium persulphate) was added on top of the resolving 

gel and the comb was inserted in it. To prepare the samples, 33µl of 1x reducing 

sample buffer (Dithiothreitol DTT is a reducing agent used to disrupt disulphide 

bonds to ensure the protein is fully denatured before loading on the gel) was mixed 

with a 100µg of each sample (SLA2 and SLA2 fractions) and heated to 95˚C for 5 

minutes and then 20µl of each sample was loaded into the gel. Ten to thirty µg of 

samples was run at 90V through the stacking gel and 120V through the resolving gel. 

Standard protein ladder (10-200 kDa) (Invitrogen) was used to assess the molecular 

weight of the sample proteins. After running the samples throughout the gels, the 

resolving gel was incubated in transfer buffer (48mM tris, 39mM glycine, 200ml 
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methanol, 800ml water, pH 9.2)  for 5 minutes and then proteins were transferred 

onto the Bio-trace membrane (nitrocellulose membrane) at 13V for 30-40 minutes 

through a semi-dry transfer system using trans-blot machine (Biorad) according to 

manufacturers’ instructions. To detect Leishmania gp63 protein in SLA preparations, 

the membrane prepared from SDS-PAGE membrane was blocked overnight in TBS + 

0.05% Tween 20 (TBS-T) + 5% Marvel milk powder at 4°C under constant agitation. 

The primary rabbit anti L. mexicana gp63 antibody (Gift from Dr. McGwire, The 

Ohio State University) was then added at 1:1000 dilution in TBS + 0.05% Tween 20 

+ 5% Marvel milk powder and incubated for 1 hr at room temperature with vigorous 

shaking. After washing the membrane 3 times for 15 minutes in TBS-T at room 

temperature, the secondary antibody (HRP conjugated goat anti rabbit IgG (Biorad) 

was added to the membrane at a 1: 2000 dilution in 5% milk-TBS-T and incubated 

for 1 hour at room temperature with vigorous shaking. The membrane was then 

washed 4 times for 15 minutes at room temperature in TBS-T, and detected using 

ECL kit (Amersham). Briefly, equal parts of solutions A and B were mixed and 

incubated for 1 minute. A cellulose membrane was placed down on saran wrap, and 

the bubbles were completely removed. The membrane was fixed by tape to the inside 

of the film cassette in the dark and exposed to a sheet of x-ray film for up to 45 

minutes before developing the band to the film. 

2.3         L. mexicana promastigotes culture 

L. mexicana promastigote strain Hd18 was cultured in Schneider media (Sigma) 

supplemented with 10% FCS at 25 ºC as described by Bates (1994). Leishmania 

mexicana promastigotes were cultured, starting with 1×106 of parasites in 10ml media 

in T25TC flasks, and were counted every two or three days. 10µl of the parasites 

culture was diluted twice in 90µl 1% of paraformaldehyde and counted at 1×106/ml. 
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2.4       Cytotoxic T-Lymphocyte Assay 

2.4.1    Generation of splenocytes 

Between 2-3 days prior to the removal of spleens from immunised mice, naïve 

splenocytes were cultured at 1.5×106 cells/ml in 40ml T cell media (RPMI 1640 

supplemented with 1% L-glutamine, 10% FCS, 20mM HEPES buffer, 50μM 2-

mercaptoethanol, 50U/ml penicillin, 50μg streptomycin and 0.25μg/ml fungizone) 

containing 25µg/ml LPS  the outer membrane of Gram-negative bacteria (Sigma) and 

7µg/ml dextran sulphate in a T75 culture flask and incubated at 37◦C in a 5% CO2 

atmosphere. Naïve splenocytes treated with LPS were irradiated at 3000 rads for 4 

minutes. Cells were washed and pulsed with 100µg/ml SLA for at least 1 hour. Cells 

were then washed, counted and added to culture plates containing splenocytes from 

immunised mice at 5 × 105/well.  

2.4.2   Generation of BM-DCs  

Balb/c mouse BM-DCs were generated as described by Inaba with slight 

modification (Inaba et al., 1992). Bone-marrow cells were flushed out with media 

and harvested.  (About 20×106 BMDCs were usually obtained from each mouse). 

Cells were then centrifuged and resuspended in 1ml BM-DC media, counted and 

plated at 1×106 cells per ml in T75 flask or 24 well plates with 100ng/ml of mGM-

CSF and incubated at 37○ C, 5% CO2 atmosphere. On day 2 and day 4, non-adherent 

cells were washed out by gently replacing 75% of media with fresh DC media 

containing GM-CSF. On day 6, BM-DC was split into two groups. The first group 

(test) was pulsed with 10µg/ml SLA or 10 autoclaved parasites per 1 DC and the 
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second group was used as control. In some experiments, adherent cells were collected 

and treated in the similar way for phenotypic analysis. Control and test groups were 

incubated for 24 hours with 1µg/ml LPS to induce maturation. The following day, 

BM-DCs were washed in serum free RPMI 1640 media, counted and injected 

intradermally at 2×106 per mouse or used as target cells in standard 4-hour 

cytotoxicity assay. 

2.4.3    In vitro generation of CTLs 

Spleens were harvested from immunised and naïve mice and prepared in sterile 

conditions. Cells were flushed out from the spleens with serum-free RPMI 1640 

media using a 25-G needle and 10 ml syringe. The spleen tissue was disrupted by 

pipetting and the cells were collected, washed and resuspended in CTL media. The 

cells were counted and plated in a 24 well plate at 2.5 × 106 cells/500μl/well. 5 × 

105/500μl irradiated and SLA pulsed LPS blasts were then added and cultured for up 

to 5 days at 37°C in 5% CO2. Supernatants were collected usually on day 3 and 5 for 

cytokine testing.  
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Figure 2.4.3 Protocol to generate CTLs from Balb/c mice immunised with SLA and DCs+SLA 
spleens harvested from immunised and naïve mice and splenocytes were collected as described in 2.4.2 
and 2.4.3. 
 

2.4.4    A radioactive Standard 4-hour Chromium Release Cytotoxicity Assay 

On day 5 of the in vitro stimulation, splenocytes were harvested, washed twice in 

serum free medium, counted and resuspended in CTL media (see materials in 

appendix) and used as effector cells. Target cells (DCs or transfected tumour cells) 

were also harvested, washed and labelled at a concentration of 1×106cells/ml with 

100µl Ci  of chromium-51 (Amersham,UK) followed by 1h incubation at 37°C. The 

labelled cells were then washed and suspended in medium and pulsed with SLA (as 

DCs targets) and incubated for 1 hour at 37°C. Effector and target cells were mixed 

in a volume of 200μl in 96 well plates, at ratios of (E: 5×105 to T: 5×103 (100:1), E: 

25×104 to T: 5×103 (50:1), E: 152×103 to 5×103 (25:1), E: 625×102 to T: 5×103 (12:1) 
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and E: 31125×101 to T: 5×103 (1:6) in 200 μl medium and incubated for 4 hours at 

37°C. Maximum 51Cr release was determined by adding 50μl of 0.1% SDS, and 

spontaneous 51Cr release was determined in the wells that contained target cells and 

medium only. Assays were performed in triplicate. The radioactivity of the released 

51Cr (the specific cytotoxicity) was determined using the following formulae; E: 

effector cells, T: target cells. 

( )
( ) 100

 release sspontaneou- release maximum
release sspontaneoureleasealexperimenttycytotoxicipercentage ×

−
=

 

2.5        Antibody/Cytokine Response 

2.5.1    Detection of anti-Leishmania IgG1 and IgG2a isotype antibodies   

Immunised mice were bled 4 times at weekly intervals started one week after 

immunisation. The blood samples were harvested in clean Eppendorf tubes and 

centrifuged at 200g for 10 minutes. The serum was collected and stored at -20ºC until 

tested for specific immunoglobulin by ELISA. Serum samples from naïve mice were 

also collected as controls.  L. mexicana Soluble Antigen (SLA) 1µg/well was coated 

onto the flat bottom 96-well plates (Biorad) and incubated overnight at room temp. 

After 4 washes with PBS, 1:100 dilution of the serum samples in dilution reagent 

(1% BSA, 0.05% Tween 20 in 20mM Trizma base, 150mM NaCl, pH 7.2-7.4) was 

added in duplicate followed by 2h incubation at room temperature and 4 washes with 

PBS. The plates were blocked with blocking buffer (1% BSA, 5% sucrose in PBS 

with 0.05 NaN3) for 1hour, then washed 4 times with PBS. Rabbit anti-mouse IgG1 

and IgG2a (Serotec) were added separately for 1 hour, followed by goat anti-rabbit 
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antibody-HRP conjugated at 1:1000 dilution. The plates were stored at room temp for 

1h followed by 4 washes. 50µl of Streptavidin-HRP; (HRP is a horseradish 

peroxidase enzyme) (DAKO) were added and the plate was kept at room temp for 20 

minutes. 50µl/well from a mixture of equal volumes of A&B reagents were added to 

the plates for 20 minutes. 50μl/well of 2.5M H2SO4 was added to stop the reaction 

and the OD was measured at 450 nm by spectrophotometer.  

2.5.2    Cytokine Assays (IFN-γ, IL-2, IL-4 & IL-12) 

Supernatants were collected from splenocyte cultures during proliferation assays and 

stored at -20ºC until required. Cytokine analysis for IFN-γ, IL-2, IL-4 & IL-12 using 

ELISA kits (R&D Systems, Abingdon, UK) was performed according to the 

manufacturers’ instructions (Fig 2.5.2 and Table 2.5.1). Briefly 96 wells/plates were 

coated with capture antibody 100μl/well and incubated overnight at room 

temperature, then washed three times with wash buffer (0.05% Tween 20 in PBS, pH 

7.2-7.4). The plate was then blocked with 100μl/well of block buffer (1% BSA in 

PBS with 0.05% NaN3) and then incubated for 1 hour at room temperature, then 

washed two times. And then 100 μl/well of sample or standard in reagent diluent (1% 

BSA, 0.05% Tween 20 in 20mM Tris, 150 mM NaCl), pH 7.2-7.4 was added and 

incubated for 2 hours at room temperature, and then washed two times. 100μl/well of 

detection antibody diluted in reagent diluent was added and incubated for 2 hours at 

room temperature, washed two times and then 100 μl/well of working dilution of 

Streptavidin-HRP was added and incubated for 20 minutes at room temperature, and 

then washed two times. 100μl/well of substrate solution (A&B reagents) was added 

and incubated for 20 minutes at room temperature followed by the addition of 

50μl/well of stop solution and the optical density was immediately determined at 450 
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nm by spectrophotometer. A standard curve was created to determine the level of 

cytokine (Fig 2.5.2). 

  

 

 

         

 
Figure 2.5.2 ELISA assay diagram, plate was coated with capture antibody and incubation for one 
hour. The non bound antibodies were washed away and then a samples or standard were added and 
incubated for 2 hours at room temperature, and then washed two times. The detection antibody was 
added followed by incubation for 2 hours. The non bound antibodies were washed away and substrate 
was added. The plate was read at 450 nm using spectrophotometer. 

2.6        Isolation of CD11c+ from BM DCs  

Pure CD11c+ DCs were isolated by a CD11c MicroBeads Column (Miltenyi Biotec). 

Non adherent BM cells were further purified by passing them through a CD11c 

MicroBeads column to isolate CD11c+ cells. DCs were cultured as described in 

section 4.2.3 (About 20×106 BMDCs obtained from each mouse). 2×107 BM DCs 

were centrifuged at 200g for 10 minutes and the pellet was resuspended in 400µl of 

the buffer solution (PBS, pH 7.2, 0.5% BSA, and 2 mM EDTA), and 100µl of CD11c 

MicroBeads was then added and incubated for 15 minutes (2-8 ºC). The cells were 

washed using 1-2ml of the buffer solution and centrifuged at 200g for 10 minutes and 

resuspended in 500µl of the buffer solution and separated using a MACS separator. 

The column was washed 3 times with 500µl of the buffer solution and eluted cells 
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were collected in the waste tube as unlabeled cells (CD11c- cells). The column was 

removed from the separator and flushed with the buffer solution to obtain the labelled 

cells (CD11c+) by firmly pushing the plunger into the column. CD11c+ and CD11c- 

BM DCs were subsequently infected with live parasites and analysed for CD11c 

expression. 

2.7         DCs expression of MHC class I, class II, CD11c, CD40, CD80, F4/80 and 
CD205 

DCs were cultured as described in section 2.4.2 and were split into four groups. Two 

groups; control and test, were pulsed for 24 hours with 1µg/ml LPS to induce 

maturation. The other two groups; control and test, were similarly cultured but 

without LPS. The following day, BM-DCs were washed in serum free RPMI 1640 

media, counted and divided into 2×105 cells/tube. The expression of MHC class I, 

class II, CD11c, CD40, CD80, F4/80 and CD205 DC cells was determined by 

staining with corresponding rat anti-mouse H2-Ld, H2 kd, I/A-I/E, CD40 and CD80, 

F4/80, CD205 and rat anti hamster CD11c FITC labelled monoclonal antibodies 

(Table 2.7). Cells were fixed with paraformaldehyde and then analysed by flow 

cytometry. 

Marker Primary antibody control 

CD11c Hamster anti mouse CD11c FITC Hamster IgG FITC 

CD205 Rat anti mouse CD205 FITC Rat IgG2a FITC 

CD40 Rat anti mouse CD80 FITC Rat IgG2a FITC 

CD80 Rat anti mouse CD80 FITC Rat IgG2a FITC 

F4/80 Rat anti mouse F4/80 FITC Rat IgG2b FITC 

MHC II (A/E) Rat anti mouse I-A/I-E  Rat IgG2b FITC 

MHC I (H2-Kd,H2-Ld) Rat anti mouse H2 Ld & H2 kd Rat anti mouse IgG2a FITC 

 
Table 2.7 The Antibodies used to stain the bone marrow derived cells for phenotypinc 
characterisation. 
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2.8       Effect of autoclaved or live L. mexicana infection on the expression of 
MHC class I, MHC class II, CD11c, CD80 and CD40 

DCs were prepared as previously described and split into two groups. The first group 

was infected with live L. mexicana and the second with autoclaved L. mexicana (the 

parasite was autoclaved at 121ºC under the pressure of 15 PSI for 20 minutes) 10 

DCs for both live and autoclaved for 1 hour, 3 hours, 5 hours and 24 hours for MHC 

class I, II, (1 & 24 hours for CD11c, CD40 and CD80) as indicated for individual 

experiments. The expression of the MHC class I, II, CD11c, CD40 and CD80 

molecules in the infected and autoclaved DC cells was determined by staining with 

rat anti-mouse H2-Ld, H2 kd, I/A-I/E, CD11c, CD40 and CD80 all FITC labelled 

monoclonal antibodies, the cells were fixed with 1% of paraformaldehyde and then 

analysed by flow cytometry.  

2.9        The effect of Leishmania infection and treatment with fungizone on the 
expression of surface molecules 

 
DCs were prepared as previously described and then the DCs culture was split into 

three groups. The first group was infected with ten times the number of DCs with L. 

mexicana promastigotes for 24 hours as described above; the second group was 

similarly infected but treated after one hour with fungizone which killed the parasite 

infected DCs at a concentration of 7.5µg/ml then incubated for overnight at 37°C in 

5% CO2 atmosphere. The third group (non-infected) was used as control. On the 

following day DCs were washed, stained by antibodies for MHC class I, class II, 

CD11c, CD80 and CD40 molecules, the cells were fixed with 1% paraformaldehyde 

and analysed by flow cytometry.  
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2.10     Flow cytometry analysis of CD8+, CD4+ and CD3+ T cells of naïve 
splenocytes cultured with SLA 

 
Splenocytes of Balb/c mice were flushed from the spleens using serum-free RPMI 

1640 media. Cells were washed, counted and plated into 6 well tissue culture plates at 

a concentration of 1×106 per well. Three wells of splenocytes were then stimulated 

with 10µg/ml SLA2 (test group) and the other three wells were used as control 

(control group); splenocytes were incubated at 37°C in 5% CO2 atmosphere. On day 

5, splenocytes of each group were divided into four tubes at a concentration of 

2×105/tube, and stained with FITC labelled anti CD3, CD4, CD8, and IgG2a (isotype 

control) as a negative control and analysed by flow cytometry (Table 2.10). 

Markers Primary antibody control 

CD3 Rat anti mouse CD3 FITC Rat IgG2a FITC 

CD4 Rat anti mouse CD4 FITC Rat IgG2a FITC 

CD8 Rat anti mouse CD8 FITC Rat IgG2a FITC 

 
Table 2.10 Antibodies of CD3, CD4 and CD8 T cell markers (Invitrogen). 

2.11         Proliferation assay 

Splenocytes from naïve or immunised Balb/c mice were flushed from the spleens by 

serum-free RPMI 1640 media. Cells were washed, counted and plated in 96 well 

tissue culture plates at a concentration of 5×104/200µl per well (in triplicate) in T cell 

media. Splenocytes were stimulated with (10µg/ml) whole SLA2 or SLA2 fractions 

(fr1, fr2, fr3, fr4, fr5 and fr6) and media used as a control. Cells were incubated at 

37°C, 5% CO2 atmosphere for 7 and 14 days. 3H was added at 18 hours before 

termination to measure proliferation responses. 

In some experiments DCs pulsed with antigens were used to stimulate splenocytes in 

vitro. DCs were generated as previously described in section 2.4.2. On day 6, DCs 
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were pulsed with 10µg/ml of whole SLA2 or SLA2 fractions and 4-6 hours later 

1µg/ml LPS was added and incubated overnight. On day 7, DC cells were harvested, 

washed and pulsed again with 10µg/ml of corresponding SLA2 or SLA2 fractions 

(fr1, fr2, fr3, fr4, fr5 and fr6) for one hour and used for the stimulation of splenocytes 

(naïve and immunised). On the same day, spleens of naïve or immunised mice were 

harvested, Balb/c mice were immunised S.C. at the tail base with SLA2 or SLA2 

fractions mixed with IFA at a concentration of 100µg/mouse of SLA2 or SLA2 

fractions for 7 days. Cells were flushed from the naïve and immunised spleens by 

serum-free RPMI 1640, and then washed and resuspended in CTL media. Naïve and 

immunised splenocytes, were divided into four groups to be stimulated with each 

antigen (SLA2 or SLA2 fractions): (1) naïve splenocytes stimulated with SLA2 or 

SLA2 fractions (fr1, fr2, fr3, fr4, fr5 and fr6), (2) naïve splenocytes stimulated with 

DCs loaded with SLA2 or SLA2 fractions (fr1, fr2, fr3, fr4, fr5 and fr6) (3) naïve 

splenocytes stimulated with DCs alone as control and (4) media as additional control. 

The proliferation responses were assessed using the 3H uptake assay. 3H was added at 

20μl per well and incubated 18 hours before harvesting. Cells were harvested on days 

7 and 14 using 96 well proliferation filter plates and then dried for 1 hour, 40μl/well 

Microsint (Sigma) was added and the radioactivity was measured using a Top count 

scintillation counter. 

2.12        Preparation of pCR T7/CT-TOPO Ldcen-3  

The pCR T7/CT-TOPO- Ldcen-3 vector (a kind gift from K. Nakhasi FDA, USA) was 

bulked up by transformation of E. coli as follows: 

Day 1: DNA Transformation 
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In order to clone centrin3 from pCR T7/CT-TOPO- Ldcen-3 into pcDNA3.1/Hygro, 

both plasmids required bulking using Escherichia coli strain XLIB (prepared in lab). 

In a 1.5 ml Eppendorf, 1 µl of vector (pCR T7/CT-TOPO- Ldcen-3 or 

pcDNA3.1/Hygro) was added to 200 µl of broth (see materials in appendix) 

containing competent XLIB bacteria, mixed gently and then incubated on ice for 30 

minutes. Next, the bacteria were heat shocked for 3 minutes in a 42ºC water bath and 

then placed on ice for 5 minutes. Subsequently 500 µl of LB broth media were added 

to the bacteria/plasmid mix which was then incubated for 1 hour at 37ºC. After 

incubation, 200 µl of sample was transferred into 3 ml of LB media with 15 µl of 

ampicillin (50μg/ml) and this was incubated in an orbital shaker (Stuart) overnight at 

37ºC. 

 Day 2: Plasmid Extraction 

In duplicate, 1.5 ml of the cultured bacteria was transferred into a 2 ml Eppendorf 

tube and was centrifuged at 18,000 xg for 5 minutes. The supernatant was discarded 

and the pellet re-suspended in 100 µl of GTE (50mM glucose, 10mM EDTA, 25mM 

Tris.HCl, pH 8). This was mixed gently and then incubated on ice for 5 minutes. 

Then, 200 µl of solution (800 µl H2O + 100 µl 10% SDS + 20 µl 10M NaOH) was 

added, the Eppendorf tube was mixed gently and the mixture was incubated on ice for 

5 minutes. Subsequently 150 µl of potassium acetate KOAc (3 M KOAc, pH 4.8) to 

300 ml ddH2O, add KOAc 147.2 g, Acetic acid, cold 57.5 ml) volume adjusted to 500 

ml with ddH2O) was added to the mixture which was then mixed gently and 

incubated on ice for a further 5 minutes. The mixture was then centrifuged at 18,000 

xg for 5 minutes, the supernatant was transferred into a clean Eppendorf tube and the 

pellet was discarded. Next, 800 µl of chloroform was added to the supernatant, mixed 

and then centrifuged at 18,000 xg for 5 minutes. The top layer of the mixture was 
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transferred into a clean Eppendorf tube and the bottom layer of chloroform was 

disposed of appropriately. Next, 1 ml of absolute ethanol was added and the mixture 

was incubated at room temperature for 15 minutes followed by centrifugation at 

18,000 xg for 15 minutes. The supernatant was discarded and 500 µl of 70% ethanol 

was added, centrifuged for 5 minutes at 18,000 xg. The supernatant was discarded 

and the Eppendorf was inverted and allowed to dry for 30 minutes in a 37ºC 

incubator. When dry, the pellet was suspended in 20 µl of molecular grade water and 

1 µl of RNAase was added to degrade unwanted RNA. The Ldcen-3 gene construct 

was also sequenced by MWG-Biotech using the Ldcen-3 primers (Table 2.13) and 

checked for mismatches against the Gene Bank sequence bank 

(http://www.JustBio.com). The presence of the gene insert in plasmid construct was 

usually determined by digestion with restriction enzymes. 

2.13     Detection of Ldcen-3 by PCR 

PCR was performed by using a DNA Thermal cycler (Thermo Hybaid, USA). 

Primers for Ldcen-3 were designed and obtained from MWG- Biotech (Table 2.13). 

1μl of pCR T7/CT-TOPO was mixed with 5 μl of 10x PCR buffer, 0.8 μl, 10mM 

Deoxy nucleotide triphosphate (dNTP) and 3 µl (0.5μg ) of Ldcen-3 forward and 

reverse primers, 1.25 unit of thermostable Taq polymerase (Bioline), 1.5 mM MgCl2 

(Bioline), and water to a final volume of 50 μl. PCR was initiated by a melting step at 

95ºC lasting for 5 minutes, followed by 33 cycles of denaturation at 95ºC for 1 

minute, annealing at 58ºC for 1 minute and extension at 72˚ C for 45 sec. It was 

followed by a final extension step at 72ºC for 5 minutes. PCR products were 

visualized using a 1.5% (w/v) agarose gel containing 1 μg/ml of ethidium bromide 

(BDH Laboratories, UK), or 5μl Safe DNA run gel (Invitrogen). 
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Ldcen-3 primers 
Ldcen-3 Forward 5’-AGA GGC ATT CGT GTT CG-3` 

Ldcen-3 Reverse 5`AGG TTG ATC TCG CCA TCT TGA 3` 

 
Table 2.13 Forward and reverse primers for Ldcen-3 used for PCR and sequencing of Ldcen-3 

2.14   Preparation of pCR T7/CT-TOPO empty vector 

The pCR T7/CT-TOPO-Ldcen-3 vector was digested by XbaI and Hind III restriction 

enzyme and separated by agarose gel electrophoresis. The heavier band 

corresponding to empty vector was then cut out of the gel and the DNA was extracted 

by DNA extraction kit (GeneFlow) according to the manufacturer’s protocol. Two 

sides of the digested vector were ligated together by T4 DNA ligase (Promega). The 

ligation was set up by adding 0.5µl ligase, 1µl buffer and 6.5µl water to 2µl DNA 

(adjusted to 10µl). The ligated DNA was incubated at 4 ºC overnight.  

2.15   Sub cloning of Ldcen-3 in to pcDNA 3.1(-) 

pCR T7/CT-TOPO-Ldcen-3 and pc DNA3.1 (-) vectors (map is shown in Fig 6.2.1.1) 

were digested by Hind III and XbaI restriction enzymes and the digested products 

were separated by 1.5 % agarose gel. The Ldcen-3 and pc DNA3 (-) bands were cut 

and extracted from the gel. The pc DNA3.1 (-) vector and the Ldcen-3 DNA were 

ligated together. The direction of the gene in the vector was checked by cutting the 

new construct (pcDNA3.1 (-) Ldcen-3 DNA) with the same restriction enzymes.  
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2.16   Transfection of CT26 tumour cells with Ldcen-3 

Cell line Description Media Source 

CT-26 N-methylurethane-induced 
Balb/c murine colon carcinoma DMEM+10% FCS Prof Ian Hart (St Thomas 

Hospital) 

CT-26 clone 25 Transfected with LacZ DMEM+10% FCS Prof Ian Hart (St Thomas 
Hospital) 

 
Table 2.16 Cell Lines and their descriptions 
 

2.16.1    Antibiotic sensitivity assay 

CT26 tumour cells at a concentration of 1×106 cells/well were cultured in duplicate in 

24 well plates in the presence of Geneticin (G418) (selective antibiotic required to be 

present in culture media to select transfected cells) from 50 to 900µg/ml. The cells 

were incubated at 37 ºC with 5% CO2 for 10 days. The concentration of the antibiotic 

in which all the CT26 tumour cells died within 7-10 days was chosen for the selection 

of transfected cells (500µg/ml). 

2.16.2    Transfection of CT26 with pcDNA3.1 (-) Ldcen-3 DNA 

CT26 tumour cells were transfected with the pcDNA3.1 (-)-Ldcen-3 DNA construct 

by using lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruction 

for adherent cells with slight modifications. CT26 tumour cells (Table 2.16) were 

cultured at 1×106/cells per well in 24-well plates, to produce 90% confluency on the 

day of transfection. Lipofectamine 2000 and the pcDNA3.1 (-)-Ldcen-3 DNA 

construct were diluted in serum free DMEM media at 2µl/50µl and 0.8µg/50µl 

respectively and incubated at room temperature for 5 minutes. The diluted 

lipofectamine 2000 and DNA were mixed together and incubated again for 20-30 

minutes at room temperature. The CT26 cell culture supernatant was gently removed 
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and the DNA-lipofectamine mixture was gently added followed by 4-6 hours 

incubation at 37 ºC in a 5% CO2 atmosphere. 1ml/well DMEM media supplemented 

with 10% FCS was added. The media was replaced 16-24 hours later with fresh 

media containing 500µg/ml G418.  

2.17        Subcloning of LacZ gene into pCR T7/CT-TOPO vector 

pCR T7/CT-TOPO-Ldcen-3 and pcDNA 3.1 myc LacZ (-) were cut by XbaI and Hind 

III restriction enzymes, then the lacZ gene and the digested pCR T7/CT-TOPO 

vectors were ligated using a DNA ligase enzyme. The ligation was set up by adding 

0.5µl ligation enzyme, 1µl buffer and 6.5µl water to 2µl DNA. The ligated DNA was 

incubated at 4 ºC overnight.  

2.17.1     Expression of β-gal using pCR T7/CT-TOPO –LacZ construct 

The β-Galactosidase staining kit (Sigma) was used to determine the expression of 

LacZ following transient or stable transfection of plasmids encoding LacZ. CT26 

tumour cells were plated at a concentration of 1×106/cells per well, in serum free 

DMEM media. CT26 cells were transfected with the pCR T7/CT-TOPO-lacZ DNA 

construct as detailed in section 2.14.2. On day three following the transfection cells 

were washed twice with PBS then fixed with 1ml glutaraldehyde (0.05%) for 15 

minutes at 37ºC. Cells were again washed twice with PBS and 1ml of X-Gal 

solution/well was added and incubated for overnight. Transfected CT26 are tested 

under the microscope for the development of blue stain which indicating the 

expression of β-galactosidase in transfected cells. 
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2.18         Coating of gold particles by DNA 

The DNA construct was coated onto 1.0 Micron gold particles (Biorad, Hemel 

Hempstead, Hertfordshire, UK) using manufacturer’s instruction and administered by 

Helios gene gun (Biorad). About 200 µl of spermidine was added to 16.6 μg of gold 

followed by sonication. A total of 36µg of DNA was added followed by the addition 

of 200 µl of 1M calcium chloride and incubated at room temperature for 10 minutes. 

Tubes were centrifuged at 16,000 xg for 1 minute and gold particles were 

resuspended in ethanol (Sigma). After repeating the above step 2 more times, 

particles were resuspended in 0.025mg/ml of poly-vinyl-pyrollidone (PVP) in 

ethanol. During these steps, the plastic tube was dried for 15-20 minutes using 

nitrogen gas. The resuspended gold particles were loaded into the dried tube using a 

syringe which was then placed on the roller/dryer (Biorad) followed by incubation for 

15 minutes. Ethanol PVP was gently removed using the syringe and the tube was 

rotated on the roller along with nitrogen gas being passed through it for 5 minutes. 

Bullets were then cut using a guillotine and stored at 4ºC until used for immunisation 

(Fig 2.18). 

 
                                         1                                                                               2 
Figure 2.18 Mouse being injected with gene gun; Particle mediated epidermal delivery of a 
Leishmania DNA vaccine, 1 injecting Balb/c mouse with DNA by gene gun, 2: Balb/c injected with 
gene gun. 
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2.19        RNA Extraction 

The CT 26 cells of transfected and non transfected were centrifuged at 1500 xg for 4 

minutes at 4ºC. The supernatant was discarded and the pellet was resuspended in 1ml 

RNA STAT-60. The cells were homogenized and incubated for 5 minutes at room 

temperature. 0.2 ml of chloroform was added to the cell suspension and mixed 

vigorously. The mixture was then transferred to two 1.5 ml Eppendorf tubes and 

incubated at room temperature for 2 minutes before centrifugation at 18,000 xg for 15 

minutes at 4ºC. The upper phase containing the RNA was collected very carefully 

with a micropipette and transferred into another Eppendorf tube. 0.5 ml isopropanol 

was added to precipitate the RNA which was incubated at room temperature for 10 

minutes. The vials were centrifuged at 14,000 xg for 10 minutes at 4ºC. The 

supernatant was discarded and the RNA pellet was washed with 70% ethanol. The 

samples were centrifuged at 7,500 xg at 4ºC for 5 minutes. The supernatant was 

discarded and the RNA pellet was air dried for 10 minutes. The pellet of both the 

vials were then resuspended in 30 µl distilled water and stored at -80ºC.  

2.20         RT PCR 

The concentration of extracted RNA was measured using a UV spectrophotometer at 

260/280 nm wavelength ratio for both the transfected and non transfected cells. To 

initiate the reaction 1 µl of oligo (dT15) primer to 9 µl of RNA for each of the 

transfected and non transfected cells was added in two separate Eppendorfs. The vials 

were incubated at 70ºC for 5 minutes and cooled on ice for 2 minutes. The mixture 

was prepared by adding the following reagents. 
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Moloney Murine Leukemia Virus (M-MLV) 5 X buffer                  5 µl 

Deoxynucleotide (dNTP) mix (5mM)                                               1 µl 

R Nasin (Ribonuclease inhibitor; 40U/ µl)                                       0.7µl 

M-MLV Reverse Transcriptase (M-MLV RT; 200U/ml)                   1 µl 

Distilled water                                                                                    7.3µl 

15 µl of the above mixture was mixed with 10 µl of RNA and incubated at 39.2ºC for 

80 minutes.  

The PCR sample was prepared in four 1ml Eppendorfs. The following were added to 

the Eppendorfs: 15 µl of 10x HF  (High-Fidelity) PCR buffer, 4.5 µl of 50 mM 

MgCl2, 2.4 µl dNTP, 0.75 µl of Biotaq DNA polymerase (Bioline, Germany) and 

115.5µl of distilled water (Nanopore Diamond water purifier Barnstead). 3 µl of 

forward primer (seq1) and 3 µl of reverse primer (seq 2) (Table 2.20) were added to 

two of the tubes. The other two tubes contained 3 µl each of forward and reverse 

murine GAPDH (A mouse house keeping gene used as positive control) (primers). 

49µl of the sample from each of the Eppendorf tubes containing the Ldcen-3 primers 

were transferred to 5 PCR tubes and the sample containing GAPDH forward primers 

and reverse primers were transferred to 4 PCR tubes. The 2 sets of cDNA from 

transfected and non transfected cells (1µl) were added to the PCR tubes. 1 µl of the 

cloned product (Ldcen-3) was added to one of the PCR tubes, which served as the 

positive control. Two PCR tubes were devoid of DNA which served as the PCR 

controls for Ldcen-3 and GAPDH respectively. The samples and controls were 

subjected to the following conditions in the PCR thermocycler. PCR was initiated by 

a melting step at 95˚ C lasting for 5 minutes, followed by 33 cycles of denaturation at 

95˚ C for 1 minute, annealing at 58˚ C for 1 minute and extension at 72˚ C for 45 sec. 

It was followed by a final extension step at 72˚ C for 5 minutes.       
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Application Name Sequence 

GAPDH 
mGAPDH Forward 5’-ACTCCACTCACGGCAAATTC-3’ 

mGAPDH Reverse 5’-CCTTCCACAATGCCAAAGTT-3’ 

Ldcen-3 
Forward primers 5`AGA GGC ATT CGT GTT CG-3` 

Reverse primers 5`AGG TTG ATC TCG CCA TCT TGA-3` 

 
Table 2.20 Primers used for PCR, sequencing of mouse GAPDH and Ldcen-3         

2.21    Immunisation protocols 

2.21.1 Immunisation with pcDNA3.1 (-)-Ldcen-3 and pCR T7/CT TOPO 
Ldcen-3 constructs by gene gun. 

 
All animal injections mentioned in this thesis were conducted by Dr Selman Ali. Six 

Balb/c mice per group were immunised twice with 1µg DNA of each vector coated 

on gold particles by gene gun on days 0 and 14 on a shaved area of the abdomen (Fig 

2.18). Seven days after the last immunisation mice were challenged with 2×106 live L. 

mexicana promastigotes I.D. on the back at about 1 cm from the tail base. A control 

group of 6 mice was administered with gold particles coated with 1µg of empty 

plasmid by gene gun. An additional control group of 4 mice was immunised by PBS. 

Mice were monitored at least twice a week following the challenge with the parasite. 

2.21.2    Immunisation of mice with SLA1 and SLA2 

Two groups of 6 Balb/c mice were immunised S.C. at the tail base with 100µg SLA 

mixed with IFA (total volume of 200µl per mouse) or 200µl PBS twice (for control 

group) at 2 week intervals. Two weeks later, all mice were challenged with 2×106 L. 

mexicana promastigotes in 50µl PBS. The mice were monitored regularly twice a 

week. 
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2.21.3    Immunisation with SLA, DC and DCs pulsed with SLA  

Three groups of 6 female Balb/c mice were either immunised with 1×106 SLA-pulsed 

or control DCs or, 100µg/mouse SLA alone. A fourth group of 4 mice was injected 

with PBS and used as additional control. All DC immunisations were administered 

I.D. on the right flank twice at two week intervals. Two weeks later all mice were 

challenged with 2 ×106 L. mexicana promastigotes and monitored regularly twice a 

week.  

Statistica analysis: T Test was used to measure P value in all experiments presented in 

this thesis comparing between control to test samples (T test P*≤0.05, P**≤0.01, 

P***≤0.001) and P*≤0.05 considered significant. Standard deviation was also 

determined for all experiments in this study. All fowcytometry data presented in this 

study were based on analysis using WinMDI, a software available free on the web 

(http://www.cyto.purdue.edu/flowcyt/software/Winmdi.htm). 
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Chapter 3 Result 

Immune responses to Leishmania Antigens 
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3.1          Introduction 

In order to develop an effective vaccine against Leishmaniasis, it is important to 

understand the mechanisms of the immune response to Leishmania infection, so that 

vaccines can be engineered to induce a protective response rather than one that 

exacerbates the infection (Kedzierski, 2010). The immune response to Leishmania 

infection is dependent on the species of the parasite and the genetic background of the 

host; therefore some mouse strains are resistant (C57BL/6) whilst others are 

susceptible (Balb/c). Resistance is conferred by Th 1 cells whereas susceptibility is 

conferred by Th 2 cells (Awasthi  et al., 2004; Scott & Hunter, 2002).  

 

There are a number of key factors that control the immune response to Leishmania, 

the outcome of infection being largely dependant on the ability of the host to mount a 

protective Th1 response versus the ability of the parasite to evade and manipulate the 

host’s immune system (Vanloubbeeck and Jones 2004; Richard et al., 2010). It has 

been suggested that the immune response to Leishmania (Th1 or Th2) is dependent 

on the type of Leishmania antigen presented and recognised by T cells therefore, Th1 

responses may be initiated by antigens different to those inducing Th2 responses 

(Awasthi et al., 2004). However, animal studies have indicated that the same parasite 

epitope may induce a Th1 or Th2 response, reflecting susceptibility to the disease 

(Piscopo et al., 2007). A recombinant Leishmania vaccine, using a combination of 

antigens expressed by several Leishmania species offers protection against mixed 

infections (Bastrenta et al., 2003; Berberich et al., 2003). Campos-Neto et al., (2001) 

have shown that the recombinant Leishmania antigens TSA and LmSTI1 induced 

high protection in both murine and rhesus monkey models of human cutaneous 
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Leishmaniasis. Macrophages and effector cells, DC, T-helper cells (CD4+ T cells), 

CD8+ T cells, NK cells and cytokines, are all known to play important roles in the 

regulation of immune response to Leishmania infection (Liese et al., 2008).  

The first attempt to characterise Leishmania antigens used a biochemical approach to 

purify parasite proteins or membrane fractions or secreted proteins mostly from 

promastigotes (Devault & Banuls, 2008). The surface proteins of the parasite appear 

to be more important in the initiation of Leishmania infection and are potential targets 

in developing a vaccine strategy that can be used for serodiagnosis of canine and 

human VL. The mixture of naturally excreted antigens, purified from the supernatant 

of L. infantum promastigotes “LiESAp” was shown to provide immunity in dogs 

infected with L. infantum (Lemesre et al., 2007). Also, two protein fractions of 

different molecular weight, Ric-2 and Ric-1, secreted by L. infantum  promastigotes 

(Ric-1 contains high molecular weight excreted proteins and Ric-2 the low molecular 

weight ones) were shown to stimulate different immune responses, mostly by the 

modulation of the Th1/Th2 cytokine balance (Rosa et al., 2005). Similarly, an anti-

gp63 antigen specific Th1 response was induced in mice immunised with bone 

marrow derived dendritic cells (BMDCs) pulsed with a gp63 peptide (Tsagozis et al., 

2004). The gp46 was also evaluated in different models: in L. major, the resistance 

depends on the source of the gp46 antigen protein and the immune responses induced 

by the adjuvant (Handman et al., 1995), however, susceptible Balb/c mice immunised 

with an attenuated recombinant virus vaccine expressing L. amazonensis gp46 

induced protection against L. amazonensis infection (McMahon-Pratt et al., 1993; 

Launois et al., 2008). The L. donovani Kinetoplastid Membrane Protein 11 (KMP-11) 

is a surface membrane glycoprotein associated with the LPG and is a strong T cell 

stimulating factor (Jardim et al., 1995).  
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Guedes et al., (2010) have reported that intramuscular inoculation of Balb/c mice 

with L. amazonensis promastigote antigens (LaAg) enhanced the susceptibility to CL. 

Mice were immunised intramuscularly with LaAg that was pre-treated with serine or 

cysteine protease inhibitors (SPi and CPi) before challenge with L. amazonensis. The 

resistance was linked to reduced production of IL-10 and TGF-β of the lesion-

draining lymph node cells in response to parasite antigens in comparison to the 

control. In vitro, soluble proteases from LaAg triggered IL-10, IL-4 and TGF-β 

production by immune cells. This clearly suggests that, the outcome of immunistion 

is influenced by the type of triggered cytokines. 

Potent vaccines against Leishmania parasite should ideally contain different antigens 

that stimulate both CD4+, CD8+ and IFN-γ responses biased towards Th1 rather than 

Th2 (Ramirez et al., 2010). SLA was shown to protect Balb/c mice against challenge 

with Leishmania infection, and the produced immunity was associated with the 

induction of IFN-γ, which caused macrophage activation (Bottrel et al., 2001). 

Another study by Sharma et al., (2006) has shown that Leishmania donovani 

promastigote soluble antigens (SLAg) encapsulated in non-phosphatidylcholine (non-

PC) liposomes (escheriosomes) prepared from E. coli lipid induced strong humoral 

and cell mediated immune responses both in hamsters and Balb/c mice. Immunisation 

of Balb/c mice with SLA or SLA administered with Incomplete Freund's adjuvant 

(IFA-SLA) enhanced CD8+ cytotoxic T lymphocyte responses. SLA also induced the 

release of mixed Th1 and Th2 cytokines in the immunised Balb/c mice. Therefore, in 

this study the immunogenicity of SLA and SLA fractions from L. mexicana was 

investigated in order to establish the immunogenicity of each fraction in the Balb/c 

mouse model, the summarizing of experimental work in this chapter shown in (Fig 

3.1).  
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          Figure 3.1 A flow chart summarizing the experimental work in this chapter. 
 

In vitro growth of L. mexicana parasite   
in different growth media:  

    1- Schneider drosophila media 
    2- RPMI 
    3- DMEM 

   Preparation of Soluble Leishmania Antigen (SLA): 
 SLA was prepared from L. mexicana by two methods    
(SLA1&SLA2). 

Immune response to SLA fractions, separated by anion   
exchange using Mono a Q HR5/5 column separation  

    CTL activity in Balb/c mice immunised with:  
   1- SLA1/SLA2 plus IFA  
   2- DCs loaded with SLA1 and SLA2. 

Protection of Balb/c mice against challenge 
with live parasites by immunistion with: 

     1- SLA1 and SLA2 plus IFA  
     2- DCs loaded with SLA 

Immune responses to Leishmania 
Antigens 
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3.2          Results 

3.2.1    Growth of L. mexicana parasite in different growth media 

In this study L. mexicana growth characteristics were investigated in vitro in three 

different growth media: Schneider drosophila media, RPMI and DMEM over a period 

of seven days. The growth rate of the L. mexicana parasite was different depending 

on the type of growth media used. The highest number of parasites/ml was achieved 

using Schneider medium.  The log phase for growth in RPMI was up to 6 days which 

was longer than that of Schneider medium (up to 4 days). The growth of Leishmania 

in RPMI medium is therefore slower as a low number of parasites/ml was obtained 

over a longer period of time. DMEM medium did not support Leishmania growth; the 

number of parasites remained the same for up to 3 days after which the parasites 

started to decrease in number (Fig 3.2.1). 

The number of cells of Leishmania mexicana counted in different 
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Figure 3.2.1 Growth of L. mexicana parasite in different growth media 
A culture of 1×106/10ml of L. mexicana parasites in T25TC flask was initiated in 3 different culture 
media: Schneider drosophila media, RPMI and DMEM. 10µl of the parasites culture was diluted twice 
in 90µl of 1% paraformaldehyde and counted daily for up to 7 days using a haemocytometer. The 
graph represents 3 independent experiments.  
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 3.2.2       Preparation of Soluble Leishmania Antigen (SLA) 

In this study Soluble Leishmania Antigens (SLA) were prepared by two different 

methods, and immune responses to these antigens; SLA1 and SLA2 were investigated 

using a Balb/c mouse model. The Schneider medium was used to culture Leishmania 

parasites (see chapter 2 methods). 

3.2.3   Detection of L. mexicana gp63 in SLA1 and SLA2  

Gp63 protein or Leishmanolysin is the most abundant protein on the surface of the 

promastigote form of the Leishmania parasite. Gp63 assists the parasite to infect 

macrophages and also has shown potential as a protective immunogenicity in mice 

(Yao, 2010). The presence of gp63 protein in SLA1 and SLA2 preparations was 

determined by western-blotting using rabbit anti L. mexicana gp63 antibodies. The 

result demonstrates the presence of gp63 bands in SLA2 compared with SLA1 (Fig 

3.2.3).  

 
                                 1                        2                                    1                                   2     
75KD 
 
63KD 
 
50KD 
                                SLA2                                 SLA1 

 
Figure 3.2.3 Detection of L. mexicana gp63 in SLA1 and SLA2  
L. mexicana parasites were used to prepare SLA1 and SLA2 (chapter 2 methods). The SLA 
preparations were analysed for the presence of L. mexicana gp63 by western blotting using rabbit anti -
L. mexicana gp63 protein. Lanes 1 and 2 represent two preparations produced at different times. 

3.2.4   Protection induced by immunisation with SLA1 and SLA2  

The immunogenicity of SLA1 and SLA2 was tested in a protection experiment in 

Balb/c mice challenged with L. mexicana. Six Balb/c mice were immunised S.C. with 
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100µg/mouse of SLA1 or SLA2 mixed with IFA, twice at two week interval. Seven 

days after the second immunisation all mice were inoculated with 2×106 L. mexicana 

promastigotes on the back, approximately 1cm from the tail base. The results clearly 

demonstrate that mice immunised with SLA1 or SLA2 were significantly protected 

against challenge with live L. mexicana promastigotes. Where 4 out of 6 mice, 

whether immunised with SLA1 or SLA2 remained free of lesions throughout the 

experiment (Fig 3.2.4-A&B). All animals in the control group (4 mice) developed 

progressive cutaneous lesions at the site of infection (Fig 3.2.4-C). 
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   A: Immunisation protocol 

 
  B: 

Immunised Balb/c mice with SLA1, SLA2 and PBS
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Figure 3.2.4 Protection against challenge with L. mexicana induced by immunisation with SLA1 
or SLA2  
A: Immunisation protocol; B: Protection induced by immunisation with SLA1 and SLA2: Two 
groups of six Balb/c mice were immunised S.C. with 100µg/mouse of SLA1 or SLA2 mixed with IFA 
and four control mice were injected with PBS. Seven days after the second immunisation, all mice 
were inoculated with 2×106 L. mexicana promastigotes. Mice were monitored twice a week; the graph 
represents 2 independent experiments. Bars represent the standard deviation of the mean, n=6. 
Protection induced by immunisation with SLA1&2 were statistically significant when compared with 
control using T test, p***≤0.001.C: L. mexicana lesion after infected with 2×106 promastigotes in 
control mice: All mice in the control group developed progressive cutaneous lesions at the site of 
infections.  
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3.2.5   Protection induced by immunisation with SLA1 and SLA1 loaded                
DCs 

Groups of six female Balb/c mice were either immunised S.C. with 100µg 

SLA1/mouse mixed with IFA or 1×106 DCs alone or DCs loaded with 100µg/mouse 

SLA1 or PBS (see chapter 2 methods). The results clearly show that mice immunised 

with SLA1 mixed with IFA but not with DCs loaded with SLA1 were significantly 

protected against challenge with live L. mexicana parasite where 50 % (3 out of 6 

mice) of mice remained lesion free, compared with DCs loaded with SLA1 and 

control groups (4 mice) where all the mice developed lesions (Fig 3.2.5). 

Surprisingly, mice immunised with DC alone had less lesion progression in 

comparison to mice given DCs loaded with SLA1. I.D route was chosen for DCs 

immunisation as they are naturally present in the dermis. 
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A: Immunisation protocol 
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Figure 3.2.5 Protection induced by immunisation with SLA1 plus IFA or SLA1 loaded DCs  
A: Immunisation protocol; B: Protection induced by immunisation with SLA1 or SLA1 loaded 
DCs: Four groups of six Balb/c mice were immunised S.C. with 100µg/mouse of SLA1 mixed with 
IFA or I.D. with 1×106 DCs alone or loaded with SLA1 or with PBS. Seven days later all mice were 
inoculated with 2×106 L. mexicana promastigotes. Mice were monitored twice weekly. The graph 
represents 2 independent experiments. Bars represent the standard deviation of the test mean n=6 
control mean n=4. Protection induced by immunisation with SLA+IFA were statistically significant 
when compared with control using T test, p***≤0.001. 
 

3.2.6    CTL activity in Balb/c mice immunised with SLA1/SLA2 plus IFA 

Balb/c mice were immunised S.C. at the base of the tail with either 100µg/mouse 

SLA1 or SLA2 with IFA. Splenocytes were harvested and cultured in vitro for 5 days 

together with blast cells pulsed with LPS and corresponding SLA (see chapter 2 

methods). On day 5, the splenocytes were used as effector cells in a standard 4-hour 

cytotoxicity assay against non-adherent DCs loaded with the corresponding SLA 

antigen preparations. Splenocytes from Balb/c mice immunised with L. mexicana 

All challenged with 2x106 L. 
mexicana parasite 
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SLAs (SLA1 or SLA2) in combination with Freund's adjuvant (IFA) and mice 

immunised by DC loaded with SLAs induced potent CD8+ cytotoxic T lymphocyte 

(CTL) response compared to control group, against DC targets loaded with 

corresponding SLA. However maximum cytotoxity was even observed at the 

minimum effector to target ratio of 6:1 for SLA1 but at 25:1 for SLA2 (Fig 3.2.6-

A&B compared with Fig 3.2.6-C&D). This is not due to the non specificity of the 

assay since including anti CD8 antibodies significantly inhibited the cytotoxic 

responses in this assay (data not shown). 
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Figure 3.2.6 CTL activity of Balb/c mice immunised with SLA1 or SLA2 
A: Balb/c mice immunised with SLA1; B Balb/c mice immunised with SLA2: Balb/c mice were 
immunised s.c with 100µg/mouse SLA1 or SLA2 plus IFA. Splenocytes were cultured in vitro for 5 
days together with blast cells pulsed with LPS and corresponding SLA. On day 5 splenocytes were 
used as effector cells in a standard 4-hour cytotoxicity assay against DCs pulsed with corresponding 
SLA. The graph represents 3 independent experiments n=9, the response induced by immunisation 
with SLA+IFA were statistically significant when compared with control using T test P***≤0.001.  



                                                                                                             Chapter 3 Results 

 109

Results in Fig 3.2.6-C&D clearly revealed that immunisation of mice with DCs 

loaded with L. mexicana SLA1 or SLA2 also induces specific CTL activity against 

DCs loaded with corresponding SLA. However, the mice immunised with L. 

mexicana SLA1 or SLA2 plus IFA induced much higher CTL activity compared with 

mice immunised with DCs loaded with SLA1 and SLA2.  

  (C): 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (D): 
(D): 

 
 
Figure 3.2.6 CTL activity of Balb/c mice immunised with DCs pulsed with SLA1 or SLA2 
C: Balb/c mice immunised with DCs pulsed with SLA1, D: Balb/c mice immunised with DCs 
pulsed with SLA2: Balb/c mice were immunised I.D. with 2×106 DCs loaded with SLA1 or SLA2 per 
mouse. After two weeks the mice were sacrificed and their splenocytes were cultured in vitro for 5 
days together with blast cells pulsed with LPS and corresponding SLA. On day 5 they were used as 
effector cells in a standard 4-hour cytotoxicity assay against DCs pulsed with corresponding SLA. The 
graph represents 3 independent experiments n=9, the response induced by immunisation with 
DCs+SLA1and DCs+SLA2 were statistically significant when compared with control using T test 
P*≤0.05, p**≤0.01. 
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3.2.7    Fractionation of Soluble Leishmania Antigen (SLA) 

Both SLA1 and SLA2, used with IFA for immunisation, produced similar in vivo 

protection and CTL activity in immunised mice. In this study SLA2 was further 

fractionated and analysed. Six sub fractions of promastigote derived SLA were 

separated by anion exchange using fast performance liquid chromatography (FPLC) 

Mono Q HR5/5 column separation. The elution profile of the separated fraction using 

a linear NaCl gradient from 0 to 1M is shown in (Fig 3.2.7). Six major peaks were 

observed from promastigote SLA which were subsequently eluted by NaCl gradient. 

 
 
Figure 3.2.7 Isolation of promastigote SLA by fast performance liquid chromatography (FPLC) 
anion-exchange chromatography  
Samples of 10 ml SLA promastigote SLA in buffer A (100 mM Tris, 1 mM EDTA pH 8.0) were 
loaded into a Mono Q HR5/5 column. The SLA was eluted using a NaCl gradient of 0-100% in buffer 
B (buffer A with 1 M NaCI) at a flow rate of 0.5ml/min; proteins were detected using UV at 280 nm 
Red: peaks of fractions, green: buffer B and black: gradient NaCl. 
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3.2.8 Detection of L. mexicana gp63 in fractions of Soluble Leishmania Antigen 
(SLA) 

 
All fractions of promastigote SLA were analysed by western-blotting for the presence 

of the gp63 protein using rabbit anti gp63 monoclonal antibodies. According to the 

western-blotting analysis, a strong 63-kD band was only detected in whole SLA2 

compared with a weak band in fractions 2 and 3, and no band in fractions 1, 4, 5, and 

6 (Fig 3.2.8). The gp63 bands were weak or not present in all the fractions after 

separation of SLA2, possibly due to dilution of gp63 between the fractions. The 

protein content of each fraction was measured prior to loading on the gel and an equal 

concentration was loaded into each well. 

 

 
 
Figure 3.2.8 Detection of L. mexicana gp63 in SLA fractions 
L. mexicana parasites were used to prepare SLA fractions (chapter 2 methods). The SLA fraction 
preparations were analysed for the presence of L. mexicana gp63 by western blotting using rabbit anti 
L. mexicana gp63 protein by persulphate) was added on top of the resolving gel and the comb was 
inserted in it. To prepare the samples, 33µl of 1x reducing sample buffer was added to 100µg 
according to the concentration of each sample (SLA2 and SLA2 fractions) and then 20 µl from each 
sample were loaded in the gel. 
 

3.2.9       CTL activity of Balb/c mice immunised with SLA2 and SLA2 fractions  

This study demonstrated that immunisation of mice, with soluble Leishmania 

antigens extracted from the L. mexicana promastigote, protected them against 

challenge with live Leishmania mexicana. In an attempt to distinguish the 

immunogenic antigens within the SLA2 preparation, SLA2 was separated into 

distinct fractions by anion-exchange chromatography, and the ability of each fraction 
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to stimulate immunity was tested by immunisation of Balb/c mice. Balb/c mice were 

immunised S.C. at the tail base either with SLA2, or SLA2 fractions with IFA at a 

concentration of 100µg/mouse. Splenocytes were harvested one week after 

immunisation and cultured in vitro for 5 days together with blast cells pulsed with 

LPS and corresponding SLA or SLA fraction. On day 5, the splenocytes were used as 

effectors in a standard 4-hour cytotoxicity assay against non-adherent DCs loaded 

with corresponding SLA2 fraction. Splenocytes from Balb/c mice immunised with L. 

mexicana SLA fractions in combination with IFA induced a potent CD8+ cytotoxic T 

lymphocyte (CTL) response as compared to the control, but SLA induced the highest 

CTL compared with all other fractions (Fig 3.2.9), although all of the individual 

fractions showed the ability to promote significant CTL killing. 
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Figure 3.2.9 CTL activity of Balb/c mice immunised with SLA fr1-6 
Balb/c mice were immunised S.C. with 100µg/mouse of SLA2 and SLA2 fractions 1 to 6. Non-
adherent DC pulsed with corresponding SLA or SLA2 fractions 1-6 were used as target cells. 
Splenocytes were cultured in vitro for 5 days together with blast cells pulsed with LPS. On day 5 they 
were used as effector cells in a standard 4-hour cytotoxicity assay. Each graph represents 6 mice in 3 
independent experiments, 2 mice in each experiment. Results were statistically significant where 
DCs+SLA fraction was compared with control DCs using T test P*≤0.05, p**≤0.01, p***≤0.001.  
 
 



                                                                                                             Chapter 3 Results 

 114

3.3          Discussion 

Immunity in Leishmaniasis is mediated by the stimulation of Th1 cells to produce 

cytokines, such as IFN-γ, that activates macrophages to kill the intracellular 

Leishmania parasites (Howard, 1986; Cummings et al., 2010). In this study SLA was 

prepared by two different methods, and denoted as SLA1 and SLA2. The presence of 

gp63 as a marker in SLA preparations was determined by western-blotting using 

rabbit anti L. mexicana gp63 antibodies. Glycoprotein gp63 is a main surface 

glycoprotein expressed on amastigotes and promastigotes of all Leishmania species 

(Yang et al., 1990; Yao, 2010). It has an important role in attachment, successful 

presentation of Leishmania parasite on MHC class II molecule and it has been shown 

to be capable of CD4+ T cell activation in visceral Leishmania infection and the 

potential as a protective immunogen in mice (Prina et al., 2004). A greater 

concentration of gp63 protein was detected in SLA2 compared with SLA1. The 

immunogenicity of SLA1 and SLA2 was assessed in protection experiments against 

Leishmania infection in vivo and cellular immune responses were analysed in vitro by 

immunological assays. It was shown that mice immunised with SLA1 or SLA2 were 

significantly protected against challenge with L. mexicana where (4 out of 6) mice, 

whether immunised with SLA1 or SLA2, remained free of lesion (Fig 3.2.4-A&B). 

Similar studies have shown that Balb/c mice immunised intranasally (I.N.) with 

Leishmania-derived recombinant polyprotein (Leish-111f) plus cholera toxin (CT) as 

adjuvant 1 to 3 times, induced significant protection against challenge with 10×106 of 

L. major promastigotes two weeks after the last immunistion. Also, splenocytes from 

I.N. immunised mice produced high levels of IFN-γ but not IL-4 in response to Leish-

111f (Sakai et al., 2010). In addition, Trigo et al., (2010) studied the possible 
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immunotherapeutic efficiency of the subunit vaccine Leish-111f + monophosphoryl 

lipid A in stable emulsion (MPL-SE), which has undergone rigorous preclinical 

testing and been demonstrated safe in human clinical trials. Two separate trials were 

performed in Brazil and Salvador to evaluate the vaccine for therapeutic efficacy 

against CVL caused by natural infection: an Open Trial and a Blinded Trial. In the 

Open Trial 59 dogs with clinically active CVL have                               

four groups: the first group: Leish-111f + MPL-SE, group two: treated with 

Glucantime, group three: a mixture of the vaccine and Glucantime, and final group: 

no treatment as control after six-month the 13 non-treated dogs had died or showed 

no clinical development. In contrast, nearly all dogs in groups 1 to 3 showed initial 

improvement (100%, 80%, and 92%, respectively). 

In this study, it was found that mice immunised with SLA mixed with IFA, but not 

with DCs loaded with SLA, were significantly protected against challenge with live 

L. mexicana parasites, these experiments have also showed that IFA adjuvant alone 

did not stimulate specific anti SLA responses since mixing IFA with poor 

immunogenic ALS fractions did not induce significant responses (Fig 3.2.9). Nashed 

et al., (2000) have shown that IFA adjuvants were necessary to enhance immune 

responses when combined with Ags but on their own did not induce specific immune 

response. Surprisingly Leishmania lesions in mice immunised with DCs alone 

(normal DCs) showed a delayed appearance of lesions in comparison to control mice 

or mice immunised with DCs loaded with SLA. Different DC-based vaccination 

strategies against a number of diseases have been used. Tumour antigen pulsed DCs 

or DCs prepared to secrete cytokines (for example IL-12 or IL-18) are able to 

generate anti-tumour immunity (Tatsumi et al., 2003). Furthermore, DC vaccination 

has been used to promote immunity to infectious diseases; DCs are long-lived and 



                                                                                                             Chapter 3 Results 

 116

can ensure the maintenance of an efficient level of stimulation for T cells in draining 

lymph nodes (Mbow et al.,  2001).  

In this study it was found that, Balb/c mice immunised with DCs loaded with L. 

mexicana SLA1 or SLA2 induced specific CTL activity, but it was at a lower level 

compared with mice immunised with SLA in IFA, against DCs loaded with 

corresponding SLA. Ahuja et al., (1999) have shown that DCs secreting IL-12 and 

pulsed with soluble L. donovani antigens (SLA) in vitro provided a potent vaccine in 

a Balb/c mouse model of L. donovani infection. Antigen-pulsed as well as 

Leishmania-infected DCs were used for vaccination and was shown to be effective. In 

another study, DCs infected with L. major protected Balb/c mice against challenge 

with L. major (von Stebut et al., 2000) and DCs used as natural adjuvant also induced 

protective immunity against Leishmaniasis in this mouse model (Flohe et al., 1998; 

McKee et al., 2010). Moreover, DCs loaded with a combination of the recombinant 

Leishmania antigens gp63, LACK, PSA and KMP-11 or with the single antigen LeIF 

induced significant protection against challenge with L. major parasites (Berberich et 

al., 2003). Scott et al., (1987a). Studies have shown that CD8+ T cells were essential 

for resistance to reinfection in Balb/c mice (da Conceicao-Silva et al., 1994; Titus et 

al., 1987). Ravindran et al., (2010) have compared the effect of two different 

adjuvants, Bacille Calmette-Guerin (BCG) and Monophosphoryl lipid A (MPL) plus 

trehalose dicorynomycolate (TDM) with cationic liposomes, mixed with L. donovani 

promastigote antigens LAg against Balb/c mice visceral Leishmaniasis. All the three 

vaccines induced significant protection against L. donovani in the visceral organs, 

liver and spleen. Significant increase in IgG levels were detected in both MPL-

TDM+LAg and liposomal Lag immunised animals with higher levels of IgG2a than 

IgG1.The highest level of protection was shown in the liposomal LAg immunised 
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group. Assessing immune responses by vaccination stresses the need of stimulation of 

strong cellular immunity that based on both Th1 and Th2 cells responses to confer 

protection against visceral Leishmaniasis. 

In the present study potent CTL activity was demonstrated in splenocytes from Balb/c 

mice immunised with L. mexicana SLA2 and SLA2 fractions in combination with 

IFA against DCs targets loaded with corresponding SLA fraction, irrespective of the 

presence or absence of detectable gp63. Therefore, this suggests that SLA contains 

other proteins which could induce potent CD8+ cytotoxic T lymphocyte activity. 

However only the whole SLA2 was capable of inducing the high levels of CTL 

compared with the SLA fractions. Carrillo et al., (2007) showed that immunisation 

with SLA produced an up-regulation of the IFN-γ mRNA in peripheral blood 

mononuclear cell (PBMC) from asymptomatic animals and Yamakami et al., (2001) 

reported that the co-administration of an IL-12 plasmid construct and SLA could 

prevent the development of lesions in the footpad of susceptible Balb/c mice. The 

protective effect of SLA immunisation was due to the development of a Th1 

response. In addition, Balb/c mice immunised with A-SLA (Amastigote Soluble 

Leishmania Antigen) in combination with IFA followed by injection of  1×106 live 

promastigotes into the footpad, induced long-term protection from Leishmaniasis 

(Rafati et al., 2000). Scott et al., (1987b) separated SLA from L. major into nine 

distinct fractions by anion exchange liquid chromatography, and showed that only 

two fractions (one and nine) stimulated lymphocytes to produce macrophage-

activating factor and elicited significant delayed-type hypersensitivity in vivo.  

Nico et al., (2009) have shown that, Nucleoside Hydrolase (NH36) is the main 

marker of the fucose mannose ligand (FML) complex of L. donovani. The main 

epitopes of the NH36 recognized by MHC class I and II controlled T cells were the 
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sequences of three fragments composed by the amino acids 1-103 (F1), 104-198 (F2) 

and 199-314 (F3) in the pET28b plasmid. Balb/c mice vaccinated with NH36 

recombinant protein and challenged with L. chagasi amastigotes induced significantly 

response to Leishmania antigen. F1 and F3 also induced a significant higher level of 

IFN-γ and TNF-α in spleen cells culture.  

 In another study by Rafati et al., (1997) SLA from both developmental stages of L. 

major was investigated, where sub-fractions three and five of SLA from the 

amastigote and promastigote stages were obtained by FPLC. Biochemical analyses 

revealed that the first fraction of amastigotes of L. major possessed a separate band 

following electrophoresis, corresponding to 24 KD, which induced a strong immune 

response to L. major compared with the other fractions. Rafati et al., (2000) reported 

the purification of a stage specific antigen from Amastigote Soluble Leishmania 

Antigen (A-SLA) of L. major by immuno-affinity chromatography. The purified 

protein was characterized as a cysteine proteinase, named as Amastigote Cysteine 

Proteinase (ACP). Balb/c mice were immunised by two intraperitoneal vaccinations, 

at a month interval, with 5μg of ACP or A-SLA in Freund’s complete adjuvant 

(FCA), and challenged four weeks later with 1x106 L. major promastigotes. The 

immunised mice showed significantly fewer and smaller lesions compared with 

controls.  

Iniesta et al., (2008) have shown that a humoral response occurs in L. major infected 

C57BL/6 and Balb/c mice against three Leishmania antigens: soluble Leishmania 

antigens (SLA), a kinetoplastic membrane protein (Kmp-11) and a chimeric 

recombinant protein formed by the genetic fusion of four cytoplasmic proteins (PQ). 

The results showed a wide difference in the recognition of SLA, Kmp-11 and PQ by 

the sera of both strains. The anti-SLA response of Balb/c mice was 100 times greater 
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than that of C57BL/6 mice. Antibodies against the recombinant Kmp-11 were 

detected only in infected Balb/c during the first stage of the infection, but a response 

to the PQ antigen was detected in a late lesion period. Moreover, Ramirez et al., 

(2010) demonstrated that vaccination with ribosomal protein extracts (from L. major) 

administered in combination with CpG oligodeoxynucleotides protected Balb/c mice 

against primary L. major infection and induced the long-term immunity to secondary 

infection. Soluble L. major exo-antigens (LmSEAgs) are potential candidates for 

vaccination against Leishmaniasis, as evaluated in Balb/c mice and human PBMC. 

Lymphoid cells from the mice immunised against infection with L. major proliferated 

when restimulated with LmSEAgs and produced interferon-γ and IL-4. In addition, 

LmSEAgs stimulated human peripheral blood mononuclear cells to produce large 

amounts of IFN-γ and some IL-5. These findings suggest that LmSEAgs may be a 

vaccine candidate for Leishmaniasis in humans (Tonui & Titust, 2006). 

In this part of the study it was found that Balb/c mice immunised with SLA1&2 and 

SLA2 fractions induced an immune response against L. mexicana in vivo and in vitro 

which confirms and expands the previous findings. 
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4.1          Introduction 

Dendritic cells play an essential role in conferring resistance or susceptibility to 

Leishmania by driving the differentiation and proliferation of CD4+ T helper cells to 

either Th1 or Th2 subsets (von Stebut et al., 2000). On presentation of Leishmania 

antigens to CD4+ T cells, the induction of IL-12 drives the proliferation of IFN-γ 

secreting Th1 cells and NK cells which activate macrophages and inhibit Th2 

responses (Ruiz & Becker, 2007). In contrast the secretion of IL-4 during antigen 

presentation to CD4+ T cells drives Th2 cell development which inhibits Th1 

responses and promotes B lymphocyte growth and development (von Stebut & Udey, 

2004; Ueno et al., 2010). 

DCs are also capable of inducing the clonal expansion of T helper cells; they are 

unable to induce T cell differentiation towards Th1 or Th2 without IL-12 and IL-4, 

respectively (Macatonia et al., 1993; Watchmaker et al., 2010) which confirms the 

importance of these cytokines in the immune response to Leishmania. Remarkably, 

the roles of IL-12 and IL-4 in antagonistic Th1 and Th2 responses were uncovered 

based upon observations with L. major (Alexander & Bryson, 2005; Murray et al., 

2005). The protecting role of IL-12 in Leishmaniasis has been more or less well 

established. In a study by Mattner et al., (1997) IL-12 knockout mice, originally 

derived from a strain genetically resistant to infection with L. major were shown to be 

susceptible to infection with this parasite. However, Vanloubbeeck & Jones, (2004) 

have found that promoting Th1 polarisation of CD4+ T cells, using IL-12 as an 

adjuvant, was not sufficient to offer resistance to L. amazonensis, suggesting that no 

single cytokine alone could elicit protective immunity. 
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The role of IL-4 in disease progression has been suggested by several studies in 

which administration of anti-CD4+ and anti-IL-4 antibodies healed Leishmania 

infection (Awasthi et al., 2004). In addition, Kopf et al., (1996); Ehrchen et al., 

(2010) demonstrated that disruption of the IL-4 gene in susceptible Balb/c mice 

provided them with resistance to L. major infection; this result clearly reveals the 

effects of this cytokine on disease progression. Some studies recognized the role of 

IFN-γ in activating Th1 responses and resistance to Leishmania infection, while IL-4 

is the major cytokine determining Th2 responses and disease susceptibility 

(Guimaraes et al., 2006). However, Noben-Trauth, (2000) has shown that IL-4 

knockout Balb/c mice remained susceptible to L. major infection despite the absence 

of IL-4, indicating that L. major parasites may evade immune killing by different 

pathways other than IL-4. On the other hand, IL-2 is an essential cytokine for the 

production of IL-4 by CD4+ T cells and for the progression of Th2 responses in vitro 

and in vivo (Heinzel et al., 1993). Bryson et al., (2011) have shown that upon 

infection with L. mexicana, initial lesion in Balb/c mice is dependent on non-T cell 

populations receptive to IL-4/IL-13 whilst progressive infection is dependent on 

CD4+ T cells receptive to IL-4. IL-2 also supports IFN-γ production and was shown 

to be important along with IFN-γ and IL-4 in the immunopathology of progressive 

Leishmaniasis (Sadick et al., 1990). In a previous study two different vaccines have 

been used evaluate the influence of IL-10 production on the quality, magnitude and 

protective ability of CD4+ T cell responses to L. major infection in mice. Multi-

parameter flow cytometry was used to define CD4+ T cell production of IFN-γ, IL-2, 

TNF-α and IL-10 after vaccination. Mice immunised with a high dose of adenovirus 

(ADV) expressing Leishmania polyprotein (MML-ADV) had a low frequency of 

multifunctional IFN-γ + IL-2+ TNF + Th1 cells and a high frequency of IL-10 
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producing CD4+ T cells but, were not protected against challenge with live parasites. 

However, in the absence of IL-10, there were no changes in the magnitude, quality, or 

protective ability of the Th1 response obtained by high dose of MML-ADV. In 

contrast, mice immunised with MML + CpG, IL-10 down regulated the production of 

IL-12 by DCs in vivo, thus decreasing the generation of multifunctional Th1 cells. 

Consequently, three immunisations with MML + CpG were required for full 

protection. However, inhibiting IL-10 at the time of immunisation improved the 

magnitude and quality of the Th1 response sufficiently to mediate protection after 

only a single immunisation (Darrah et al., 2010). Furthermore, Zhoua et al., (2010) 

demonstrated that IL-10 aided the progression of cutaneous Leishmaniasis and 

suppression of the asthma allergic responses. Hepatitis B core Antigen (HBcAg) was 

used as a carrier to develop IL-10 peptide based vaccine for the control of IL-10 

related diseases. The vaccine was designed by inserting a peptide from mouse IL-10 

into the carrier molecules (HBcAg) using gene recombination methods. The vaccine, 

however, failed to protect against Leishmanisis because at least in this model the IL-

10 vaccine enhanced the bioactivity of IL-10. 

In a study by Rafati et al., (1997) sub fractions from a L. major amastigote antigen 

preparation were isolated and tested for induction of proliferation of IFN-γ and IL-4 

production in cultures of PBMC from patients with L. major cutaneous 

Leishmaniasis. IFN-γ, but not IL-4, was significantly produced in response to 

stimulation with the first fraction of L. major amastigote. A Leishmania amastigote 

cysteine proteinase (ACP) was detected in the first fraction of the L. major 

amastigote-SLA. ACP, with an apparent molecular weight of 24 KD, was identified 

as a potential protective antigen against Leishmania major. The components of this 

fraction were also shown to induce a high level of IFN-γ which induces protection 
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against cutaneous Leishmaniasis (Rafati et al., 1997). Rafati et al., (2000) have also 

shown that Balb/c mice immunised with whole amastigote soluble Leishmania 

antigen A-SLA or purified ACP alone or in combination with Freund's adjuvant, 

induced long-term protection from Leishmaniasis as evaluated by reduced footpad 

swelling. Furthermore stimulation of splenocytes from mice immunised with purified 

ACP induced significant levels of cell proliferation and IFN-γ production.  

In this study lymphocyte proliferation was used to investigate the splenocyte response 

from either naïve mice or mice immunised with L. mexicana SLA2 or six individual 

SLA2 sub-fractions separated by anion exchange Mono Q HR 5/5 column. An 

attempt was also made to determine the type of immune response (Th1 versus Th2) 

by measuring the levels and the type of antibodies produced in Leishmania sensitive 

Balb/c mice immunised with SLA1 and SLA2. Furthermore ELISA assay was used to 

measure the levels of IL-2, IL-4, IL-12 and IFN-γ in splenocyte cultures of Balb/c 

mice immunised with SLA2 and SLA2 fractions, the summarizing of experimental 

work in this chapter shown in (Fig 4.1).  
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            Figure 4.1 A flow chart summarizing the experimental work in this chapter.  
 

In vitro proliferation responses of 
naïve splenocytes stimulated with: 

  SLA2 and SLA2 fractions 

 In vitro proliferation responses of naïve and 
immunised splenocytes stimulated with: 

     1-SLA2 and DCs loaded with SLA2  
     2- SLA2 fractions and DCs loaded with SLA2 fractions 

In vitro cytokine (IL-2, IL-4, IL-12 & IFN-γ) 
responses of splenocyte cultures following 
immunisation with SLA2 and SLA2 fractions  

ELISA to determine IgG1 and IgG2a:   
Antibody responses to Leishmania vaccines: 
SLA1&SLA2 

 Flow cytometry analysis of CD8+, CD4+ and 
CD3+ T cells of naïve splenocytes cultured with 
SLA  
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4.2          Results  

4.2.1     Proliferation responses of splenocytes stimulated with SLA2 and SLA2 
fractions 

In the present study the proliferation responses of splenocytes from naïve and 

immunised Balb/c mice to stimulation with SLA2 and SLA2 fractions alone or loaded 

on to DCs was investigated using in vitro tritiated thymidine uptake proliferation and 

cytokine assays. 

4.2.1.1   In vitro proliferation responses of naïve splenocytes to stimulation with 
SLA2 and SLA2 fractions. 

In this study the proliferation of splenocytes derived from naïve mice stimulated with 

SLA2 and SLA2 fractions was investigated. Naïve splenocytes of Balb/c mice were 

prepared as described on (chapter 2 methods). The results (Fig 4.2.1.1) show that 

stimulation of naïve splenocytes of Balb/c mice with SLA2 and SLA2 fractions (apart 

from fr4 and fr6) induced a significant proliferation response, after 7 days of culturing 

with Leishmania antigens. The proliferation response nearly doubled when 

splenocytes were cultured with antigens for 14 days when even fr4 & fr6 induced a 

significant proliferation response.   



                                                                                                             Chapter 4 Results 

 127
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Figure 4.2.1.1 Proliferation of naïve splenocytes stimulated with SLA2 or SLA2 fractions (fr1-6) 
Naïve splenocytes of Balb/c mouse were flushed out from the spleens by serum-free RPMI 1640 
media. The spleen cells were washed and resuspended in CTL media. Cells were counted and plated at 
5×104/100µl CTL media per well, with 10µg/ml of whole SLA2 or SLA2 fractions (fr1, fr2, fr3, fr4, 
fr5 and fr6). Cells were incubated at 37°C for 7 and 14 days, control was naïve splenocytes with 
media. 3H was added to each well 18 hours before the termination of the assay. Bars represent the 
standard deviation of the mean n=6 p*≤0.05, p**≤0.01 and p***≤0.001 by T test. 
  

4.2.1.2    Proliferation responses of naïve and immunised Balb/c mice splenocytes 
to stimulation with DCs loaded with SLA2 and SLA2 fractions 

The proliferation responses of naïve and SLA2 immunised mice to DCs loaded with 

corresponding SLA2 or SLA2 fractions were investigated. DCs were generated as 

previously described (chapter 2 methods). Naïve and immunised splenocytes were 

divided into four groups and stimulated with each antigen (SLA2 or SLA2 fractions): 

(1) splenocytes stimulated with SLA2 or SLA2 fractions (fr1-6), (2) splenocytes 

stimulated with DCs loaded with SLA2 or SLA2 fractions (3) splenocytes stimulated 

with DCs alone (as control) and (4) splenocytes cultured in media. The protocol for 

stimulations is shown in Table 4.2.1.2. 3H was added 18 hours before harvesting cells 

on days 7 and 14. 
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Splenocytes source  Stimulated with 

naïve mouse DCs alone DCs +SLA2 SLA2 media 

naïve DCs DCs +fr1 Fr1 media

naïve DCs DCs +fr2 Fr2 media

naïve DCs DCs +fr3 Fr3 media

naïve DCs DCs +fr4 Fr4 media

naïve DCs DCs +fr5 Fr5 media

naïve DCs DCs +fr6 Fr6 media

Immunised mouse DCs DCs +SLA2 SLA2 media

Immunised DCs DCs +fr1 Fr1 media

Immunised DCs DCs +fr2 Fr2 media

Immunised DCs DCs +fr3 Fr3 media

Immunised DCs DCs +fr4 Fr4 media

Immunised DCs DCs +fr5 Fr5 media

Immunised DCs DCs +fr6 Fr6 media

 
Table 4.2.1.2 Stimulation of Splenocytes with DCs loaded with SLA Ags  
Splenocytes were either obtained from naïve or immunised Balb/c mice and cultured with the 
corresponding SLA2 or SLA2 fractions. Mice were immunised 7 days before the start of proliferation 
assay with corresponding antigens. 
 
 
Naïve and immunised splenocytes were stimulated with SLA2, fr1, fr2 or DCs loaded 

with SLA2, fr1 or fr2 as described above. The results show that stimulation of naïve 

splenocytes in vitro with SLA2, fr1 and fr2 or DCs loaded with SLA2, fr1 and fr2 

induced significant proliferation following 14 days incubation compared with 7 days. 

However, stimulation of splenocytes from immunised mice with SLA2, fr1 and fr2 or 

DCs loaded with SLA2, fr1 and fr2 induced significant proliferation following 7 and 

14 days incubation compared with naïve splenocytes (Fig 4.2.1.2.A&B). 
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(A) Naïve mouse                                                              (B) Immunised mouse 
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Proliferation of naïve splenocytes stimulated 
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Figure 4.2.1.2 Proliferation response of naïve (A) and immunised (B) splenocytes stimulated with 
SLA2, fr1 & fr 2 or DCs loaded with SLA2 and DCs loaded with (fr1&2) respectively  
BMDC’s cells were cultured in the presence of GM-CSF for 6 days with washes every 2 days. On day 
6 DCs were pulsed with 10µg/ml SLA2, Fr1 and fr2 and then pulsed 4-6 hours later by 1µg/ml LPS 
then incubated overnight. On day 7, DC cells were pulsed again with 10µg/ml SLA2 or other antigens 
for 1hr and were used to stimulate splenocytes. Splenocytes were harvested one week after 
immunisation or from a naïve mouse and plated into 96 well plates at 5×104cells/well. Cells were then 
incubated with10µg/ml SLA2 or fr1&2 and DCs+SLA2, DCs+ fr1 and DCs+ fr2 or DCs alone or 
media as controls. 3H was added 18 hours before harvesting the cells on days 7 and 14. Bars represent 
the standard deviation of the mean n=6 p*≤0.05, p**≤0.01 and p***≤0.001 by T test.  
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Balb/c mice were immunised with SLA2-fr3, fr4, fr5 or fr6 mixed with IFA seven 

days prior to the proliferation assay. Naïve and immune splenocytes were isolated as 

previously described and stimulated with fr3, fr4, fr5 or fr6 or DCs loaded with fr3, 

fr4, fr5 or fr6 (section 4.2.1.2). Results in (Fig 4.2.1.2.1) clearly show that similar 

proliferation was observed by all fr3, fr4, fr5 and fr6 in naïve and immunised mice for 

7 and 14 days cultures and significant but low proliferation responses were observed 

for these fractions. 
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    (A) Naïve mouse                                                          (B) Immunised mouse 

Proliferation of naïve splenocytes stimulated  with 
fraction 3 

**

**

0

1000

2000

3000

Control N+fr3 N+DCs N+DCs+fr3

 Splenocytes stimulated in vitro 

H
3  C

PM

Day 7 Day 14

Proliferation of splenocytes from immunised mouse 
stimulated with fraction 3 

**
**

0

1000

2000

3000

Control Im+fr3 Im+DCs Im+DCs+fr3

Splenocytes stimulated in vivo

H
3  C

PM

Day 7 Day 14

 
Proliferation of naïve  splenocytes stimulated  with 

fraction 4 

**
****

0

1000

2000

3000

Control Fr4 DCs DCs+Fr4

 Splenocytes stimulated in vitro

H
3  C

PM

Day 7 Day 14

Proliferation of  splenocytes from immunised mouse 
stimulated with fraction 4 

*
*

**

0

1000

2000

3000

Control Fr4 DCs DCs+Fr4

Splenocytes stimulated in vivo

H
3  C

PM

Day 7 Day 14

 
Proliferation of naïve splenocytes stimulated  with 

fraction 5

** **

*

0

1000

2000

3000

Control N+fr5 N+DCs N+DCs+fr5

 Splenocytes stimulated in vitro

H
3  C

PM

Day 7 Day 14

Proliferation of splenocytes from immunised mouse 
stimulated with fraction 5

*
*

0

1000

2000

3000

Contorl Im+fr5 Im+DCs Im+DCs+fr5

Splenocytes stimulated in vivo

H
3  C

PM

Day 7 Day 14

 
Proliferation of naïve splenocytes stimulated  with 

fraction 6

**
**

0

1000

2000

3000

Control N+fr6 N+DCs N+DCs+fr6

 Splenocytes stimulated in vitro

H
3  C

PM

Day 7 Day 14

Proliferation of splenocytes from immunised mouse 
stimulated with fraction 6

**** **

**

0

1000

2000

3000

Control Im+fr6 Im+DCs Im+DCs+fr6

Splenocytes stimulated in vivo

H
3  C

PM
 Day 7 Day 14

 
 
Figure 4.2.1.2.1 Proliferation response of naïve (A) and immunised (B) splenocytes stimulated 
with DCs loaded with fr3-6 respectively  
BM-DC cells were cultured with GM-CSF for six days and then washed every two days. On day six, 
DCs were pulsed with 10µg/ml fr3-fr6 and after 4-6 hours pulsed with 1µg/ml LPS and incubated for 
overnight. On day seven, DC cells were pulsed again with 10µg/ml antigen for 1hr and were used to 
stimulate splenocytes. On day 7 of DCs, splenocytes from naïve or immunised mice with SLA2-fr3, 
fr4, fr5 or fr6 mixed with IFA for 7 days, were divided into four groups and stimulated with DCs 
pulsed with fr3-6 or media. DCs alone were used as control. 3H was added 18 hours before harvesting 
the cells on days 7 and 14. Bars represent the standard deviation of the mean n=6 p*≤0.05, p**≤0.01 
and p***≤0.001 by T test. 
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4.2.2    Flow cytometry analysis of CD8+, CD4+ and CD3+ T cells of naïve 
splenocytes cultured with SLA 

In this study the effect of stimulation with SLA2 on the expansion of CD4+ and 

CD8+ T cells of naïve splenocytes using CD4+, CD8+ and CD3 markers was 

investigated. Splenocytes of Balb/c mice were flushed from the spleens using serum-

free RPMI 1640 media (see chapter 2 methods) splenocytes were stained with FITC 

labelled anti CD3, CD4, CD8, and IgG2a (isotype control) as a negative control and 

analysed by flow cytometry (Table 2.10). The results clearly show an expansion of 

CD4+ and CD8+ T cells as indicated by the increase in the frequency of CD4, CD8 

and CD3 markers compared with control groups (Fig 4.2.2), suggesting T-cell subset 

expansion. The expression of CD3 on control group was less than that of CD8 and 

CD4; it may be due to the poor quality of the antibody used.  
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Figure 4.2.2 The expansion of CD8 + and CD4 + T cells and CD3 following stimulation with 
SLA2  
Splenocytes were flushed out from the spleens by serum-free media. The spleen cells were collected, 
washed and resuspended in CTL media. Splenocytes were divided into two groups at 5×106/well/ml: 
the first group was used as control and the second group was stimulated with SLA2. On day 5 each 
group was divided into four at 2×105 cells per tube, and stained with anti CD3, CD4, CD8, and IgG2a 
as a negative control and analysed by flow cytometry. The graph represents 3 independent 
experiments. Red: control, green: test. 
 

4.2.3    Antibody responses to Leishmania vaccines 

Th1/Th2-type immune responses were assessed by measuring the level and the type 

of antibodies in immunised Leishmania sensitive Balb/c mice. Mice were immunised 

S.C. at the base of the tail either with 100µg/mouse of SLA1 or SLA2 and then bled 4 

times at weekly intervals and the level of anti-Leishmania IgG1 and IgG2a isotype 
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antibodies was determined by ELISA (see chapter 2 methods). The results clearly 

demonstrate an increase of IgG2a and IgG1 in the serum of mice immunised with 

SLA1 and SLA2 as early as 7 days after the immunisation. The antibody response 

against SLA2 in the first 2 weeks was higher than that against SLA1. Both 

IgG2a/IgG1 antibody responses were detected, thus demonstrating a complex 

Th1/Th2 immune response to SLA1 and SLA2 immunisation (Fig 4.2.3). 

 
Figure 4.2.3 Antibody responses in mice immunised with SLA1 and SLA2  
Balb/c mice were immunised S.C. at the tail base with either 100µg/mouse SLA1 or SLA2 mixed with 
IFA. Serum samples were collected after immunisation on days 7, 14, 21 and 28. Levels of IgG1 and 
IgG2a were determined by ELISA and corresponding SLA antigen and serum from naïve mouse was 
used as control. The graph represents 3 independent experiments n=6 p*≤0.05, p**≤0.01 and 
p***≤0.001 by T test.  
.  

4.2.4     Production of IL-2, IL-4, IL-12 & IFN-γ following immunisation with 
SLA2 and SLA2 fractions 

In this study, the production of cytokines following immunisation against L. 

mexicana in the Balb/c mouse model was investigated.  
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4.2.4.1       IL-2 Cytokine Production  

 IL-2 has been considered a key growth and death factor for antigen-activated T 

lymphocytes. IL-2 and IFN-γ have been shown to have important roles in the immune 

response and in the eradication of Leishmania. In order to analyse the T-cell 

responses in immunised and naïve Balb/c mice stimulated with SLA2 and SLA2 

fractions, an ELISA was used to measure IL-2 levels in supernatants of splenocytes 

cultured in vitro with SLA2 and SLA2 fractions. Splenocytes were harvested from the 

spleens of naïve and immunised mice 7 days after immunisation (see chapter 2 

methods). Supernatants were collected and analysed for IL-2 production using an 

ELISA assay. The results clearly demonstrated that stimulation of naïve and 

immunised splenocytes with the unfractioned SLA2 induced a greater amount of IL-2 

than any single fraction, and that IL-2 release appeared to be greater for immunised 

splenocytes than a naïve mice (Fig 4.2.4.1A&B). 
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Figure 2.5.2 IL-2 cytokine standard curve. A standard curve was created to determine the level of 
cytokine by using known concentration. 
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Figure 4.2.4.1-B IL-2 production by splenocytes from naïve and immunised Balb/c mice 
following stimulation with SLA2 and SLA2 fractions 
Mice were immunised S.C. at the base of the tail either with 100µg/mouse of SLA2 or SLA2 fractions. 
Cultured splenocytes for 7 day with or without SLA2 and SLA2 fractions from immunised or naïve 
Balb/c mice were collected for cytokine measurement. Splenocytes from naïve mouse were used as 
control. The graph represents 3 independent experiments Bars represent the standard deviation of the 
mean n=6 p*≤0.05, p**≤0.01 and p***≤0.001 by T test. 
 
 
 

4.2.4.2          IL-4 Cytokine Production  

In this study the levels of IL-4 in supernatants of cultured splenocytes were 

determined by ELISAs. Splenocytes from naïve and immunised mice were collected 

and cultured as previously described in (see chapter 2 methods). The results (Fig 

4.2.4.2), show that low but significant levels of IL-4 could be detected in supernatants 

of both naïve and immune splenocyte cultures in response to stimulation with whole 

SLA2, SLA2-fr4 and SLA2-fr5, but although this was shown to be statistically 

significant for fraction 4, 5 also SLA2, the levels never exceeded twice the control 

values. 

in vitro
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Figure 4.2.4.2 IL-4 production by splenocytes from naïve and immunised Balb/c mice  
Splenocytes cultured for 7 days with SLA2 and SLA2 fractions or without SLA2 as control from 
immunised or naïve Balb/c mice were collected for cytokine measurement. The graph represents 3 
independent experiments Bars represent the standard deviation of the mean n=6 p*≤0.05, p**≤0.01 by 
T test. 

4.2.4.3       IL12-p70 Cytokine Production 

Infection with Leishmania stimulates the production of IFN-γ, via a pathway which is 

dependent upon IL-12. IL-12 is also important for the progress of a host protective T 

cell response to this parasite. Mice were immunised with SLA2 and SLA2 fractions 

as described (see chapter 2 methods). Supernatants were assessed for IL-12-p70 

release using ELISA. High levels of IL-12-p70 were detected in supernatants of both 

immunised and naïve Balb/c mice splenocytes with the highest levels present in 

cultures stimulated with whole SLA2. Interestingly naïve splenocytes stimulated with 

SLA2 or SLA2 fractions induced significant levels of IL-12-p70 (Fig 4.2.4.3). 
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Figure 4.2.4.3 IL-12-p70 production by splenocytes from naïve and immunised mice  
Splenocytes cultured for 7 days with or without SLA2 and SLA2 fractions of immunised or naïve 
Balb/c mice were collected and measured for IL-12. The graph represents 3 independent experiments. 
Bars represent the standard deviation of the mean n=6 p*≤0.05, p**≤0.01 and p***≤0.001 by T test. 
 

4.2.4.4      IFN-γ Cytokine Production 

IFN-γ plays an essential role in the activation of macrophages to kill intracellular 

parasites by inducing the production of nitric oxide. IFN-γ was detected by ELISA 

assay from supernatants of naïve and immunised splenocytes with or without SLA2 

or SLA2 fractions. Splenocytes were stimulated (as described in section 4.2.4.1). The 

results clearly show that IFN-γ significantly increased in both naïve and immunised 

mice compared with the control (Fig 4.2.4.4). 
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Figure 4.2.4.4 IFN-γ production by splenocytes from naïve and immunised mice stimulated with 
SLA2 and SLA2 fractions  
Splenocytes from immunised and naïve Balb/c mice were stimulated with SLA2 or SLA2 fractions for 
7 days. IFN-γ was assessed using an ELISA assay. The graph represents 3 independent experiments. 
Bars represent the standard deviation of the mean n=6 p*≤0.05, p**≤0.01 and p***≤0.001 by T test. 
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4.3         Discussion 

An anti Leishmania immune response is dependent on the host’s genotype. Studies 

using Leishmania mouse models have shown that some strains of mice are susceptible 

to Leishmaniasis, while others are resistant. Resistance of the host against parasitic 

infections is controlled by the activation and differentiation of CD4+ Th1 

lymphocytes. In contrast, immune responses in susceptible mice are associated with 

activation and differentiation of Th2 (Handman, 2001; Bryan et al., 2010). IFN-γ 

secreted by Th1 cells, is a potent cytokine inducing macrophage activation, leading to 

host resistance to infection with Leishmania parasites, while IL-4 secreted by Th2 

cells is associated with down modulation of IFN-γ macrophage activation (Ajdary et 

al., 2000). Scott et al., (1987b) found that I.P. injection of soluble, non-membrane 

fractions of L. major promastigotes SLA combined with the bacterial adjuvant 

Corynebacterium parvum, protected Balb/c mice against infection with L. major as 

effectively as whole irradiated organisms. Inoculation with SLA was found to induce 

both humoral and cell mediated immune responses to Leishmania antigens. In this 

study L. mexicana SLA2 was separated into six SLA2 sub-fractions (fr1-6) by anion 

exchange Mono Q HR 5/5 column separation, and tested for their ability to cause 

lymphocyte splenocyte proliferation using splenocytes from naïve Balb/c mice or 

mice previously immunised with corresponding SLA2 or SLA2 fractions. 

The results presented in this chapter clearly showed that in vitro stimulation of naïve 

Balb/c mouse splenocytes with SLA2 or SLA2 fractions induced a significant, but 

low proliferation response compared with higher responses induced by stimulation 

with DCs loaded with SLA2 or SLA2 fractions. The highest level of splenocyte 

proliferation was observed by stimulation with whole SLA2 and to a lesser extent 
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than with SLA2-fraction one and fraction two (Fig 4.2.1.2). In another study, SLA of 

amastigote and promastigote of L. major were fractionated by FPLC into 3 and 5 

fractions respectively. The fractions were tested for proliferation responses, IFN-γ 

and IL-4 production by human PBMC cultures from patients with cutaneous 

Leishmaniasis. The first fraction of the amastigote SLA induced a higher proliferation 

response and IFN-γ but not IL-4 release, compared with the other fractions. Patients 

PBMC showed different proliferation response profiles to amastigote and 

promastigote SLA fractions; the promastigote SLA fractions induced a lower 

response compared to amastigote SLA fractions (Rafati et al., 1997). A response to 

SLA or SLA fractions seems to be strongly influenced by the Leishmania species 

used, the developmental stage and fractionation methods. Soluble Leishmania antigen 

(S-SLA) derived from highly infective stationary-phase L. major was fractionated by 

gel electrophoresis to isolate a low molecular mass fraction (<31 kDa) of S-SLA 

fraction D (FR D) which was found to strongly stimulate L. major specific Th1 helper 

cell clones (Bogdan et al., 1990). In addition, Nagill and Kaur (2010) have 

investigated the immune response to a 78 kDa antigen of L. donovani alone or with 

various adjuvants against mouse VL. The adjuvants used with the 78 kDa antigen 

were recombinant IL-12, monophosphoryl lipid A (MPL-A), autoclaved Leishmania 

antigen (ALA), liposomal encapsulation and Freund’s adjuvant. Balb/c mice were 

immunised subcutaneously three times with the respective vaccine formulation. 

Significant protection against infection was obtained from the 78 kDa antigen + ALA 

and 78 kDa antigen + Freund’s adjuvant but much less with the 78 kDa antigen alone. 
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It has been suggested that the outcome of infection is dependent on the activation 

pathway of one of the two subsets of CD4 T cells, Th1 or Th2. Th1-type cellular 

immune responses play a critical role in protection against infection with Leishmania 

parasites, but activation of Th2 type cells results in exacerbation of the disease 

(Ajdary et al., 2000; Cummings et al., 2010). ELISA was used to measure the levels 

of IL-2, IL-4, IL-12 and IFN-γ in Balb/c splenocyte cultures following immunisation 

with SLA antigens or infection with L. mexicana. Morris et al., (1994) have 

suggested that the type of antibody responses depend on the cytokines produced by 

antigen specific T cells, whereby IgG2a levels are regulated by IL-12 and IFN-γ, 

while IgG1 levels are controlled by IL-4. Two novel antigens (140 and 152 kDa) 

were extracted from soluble antigen of metacyclic promastigotes of L. major by 

western-blotting and found to induce specific IgG2a responses in Balb/c and 

C57BL/6 mice. The two antigens were also shown to be reactive to IgG antibody of 

cutaneous Leishmaniasis patients (Mohammadi et al., 2006). It has been reported in a 

study by Grimaldi & Tesh, (1993), that Th1 cells secrete IL-2 and IFN-γ when they 

come into contact with parasite antigens displayed on the macrophage membrane. 

IFN-γ can activate infected macrophages from both strains of mice (susceptible and 

resistant) to induce resistance to L. major in vivo.  

 

T cells secreting IFN-γ undergo very slow proliferation against in vitro parasite 

antigens. IFN-γ along with IL-12, GMCSF and TNF-α activate macrophages which in 

turn express the iNOS enzyme, intracellular amastigotes are killed by the nitric oxide 

produced by iNOS. In fact IFN-γ is the only cytokine that can independently enhance 

iNOS transcription and release of nitric oxide from mouse peritoneal macrophages. 

IFN-γ also plays a major role in controlling Leishmania donovani infection (Squires 
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et al., 1989). In contrast Th2 cells secrete IL–10 and IL-4 which deactivates the 

macrophages, thus counteracting the action of Th1 cells. These cytokines promote the 

differentiation of Th2 cells in susceptible Balb/c mice and assist in disease 

progression (Awasthi et al., 2004). The results of this study demonstrated an 

expansion of CD4+ T cells as determined by in vitro stimulation with SLA2 and 

antibody staining for CD4, CD80 and T cell receptor (TCR)-CD3 antigen. The 

cytokine response profile (discussed below) is indicative of a bias towards a Th1 

response. Identifying new antigens with potential immunogenicity to activate Th1, 

rather than Th2 cells would be of a great value in designing new vaccines against 

Leshismania parasite. Rostami (2008) has found that in vitro stimulation with SLA 

for 7 days induced better responses in CD4+ and CD8+ lymphocytes isolated from 

human PBMC than live L. major.  

In this in vitro study high levels of IL-2, IL-12 and IFN-γ but lower levels of IL-4 

were detected in naïve and immunised Balb/c mice splenocyte culture supernatants 

stimulated with SLA2 or SLA2 fractions, suggesting a Th1 response. Resistance to 

Leishmania infection in C57BL/6 mouse strain is due to Th1 response as a result of 

the induction of these cytokines (Alfonso et al., 1994). The primary mechanism 

linked to the elimination of Leishmania is via the activation of macrophages by IFN-γ 

that are secreted by Th1, and NK cells which enable them to kill intracellular 

Leishmania amastigotes in a NO dependant manner (Stenger & Rollinghoff, 2001). 

Inhibiting IL-2 function by using blocking antibodies inhibits the production of IL-4, 

a cytokine normally associated with susceptibility to Leishmania infection by Balb/c 

mice. IL-2 therefore appears to be necessary for the expansion of Th2 CD4+ 

lymphocytes in vivo (Heinzel et al., 1993).  
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The role of IL-2 in the development of Th2 cells in vitro and in vivo in other disease 

models has been reported, and it is not clear whether the use of anti-IL-2 antibodies 

inhibit Th2 development directly by neutralising the activity or indirectly by 

inhibiting IL-4 production. CD4+ T cells from Balb/c mice infected with L. major 

release a wide range of cytokines including IL-2 and IFN-γ during the first week of 

infection (Reiner et al., 1994). In addition Rostami et al., (2010) have evaluated the 

immune response in Balb/c mice immunised three times with two different doses of 

Alum autoclaved Leishmania major (Alum-ALM), (50μg and 200μg), killed 

Mycobacterium vaccae (1 ×106 and 1 ×107) or one dose of BCG (1 ×107). Balb/c 

mice immunised with low dose of Alum-ALM mixed with any of low M. vaccae or 

BCG demonstrated a significantly high level of IFN-γ production and a low IL-4 

level and a significantly lower parasite burden compared to the control PBS injected 

group. Also, immunisation with a low dose of Alum-ALM with an adjuvant induces a 

Th immune response in Balb/c mice. Collectively, these results suggest that immune 

response is influence by antigen type and immunisation regime. 

In summary, in vitro and in vivo stimulation of naïve Balb/c mouse splenocytes with 

SLA2 or SLA2 fractions induced significant but low proliferation responses 

compared with higher responses induced by stimulation with DCs loaded with SLA2 

or SLA2 fractions. Also high levels of IL-2, IL-12 and IFN-γ but less IL-4 were 

detected in naïve and immunised Balb/c splenocyte culture supernatant stimulated 

with SLA2 or SLA2 fractions, the level of IL-2, IL-12 and INF-γ of cytokines 

response detected infer a complex Th1 more than Th2 immune response following 

immunisation with SLA2 and SLA fractions.  
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Chapter 5 Result 

Down-regulation of DC surface molecules is a possible 
immune evasion mechanism in L. mexicana infection 
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5.1       Introduction 

Leishmania requires a number of immune-evasion mechanisms to resist 

phagolysosome fusion and prevent activation of more-potent acquired immune 

responses. The main adaptive strategies include the inhibition of IL-12 synthesis and 

induction of IL-10 and TGF-β by infected cells. These cytokines promote the shift of 

response from Th1 to Th2 (Taylor-Robinson, 2001). LPG and gp63 are responsible 

for the virulence of the parasite. LPG has been shown to be involved in many steps 

that are required for the survival of the parasite inside the insect and establishment of 

infection in the macrophage (Descoteaux & Turco, 1999; Suvercha et al., 2010). The 

generation of cell mediated immunity is dependent on interaction between APC, DCs 

and T cells. Berberich et al., (2003) have shown that plasma membranes of resting 

DCs only display few MHC class I and MHC class II molecules and no, or very few, 

co-stimulatory molecules compared with mature activated antigen-containing DCs, 

where they display high levels of MHC class I, class II and co-stimulatory molecules 

which are associated with potent activation of T cell immunity. MHC class I and class 

II in addition to co-stimulatory molecules remained unchanged in DCs infected with 

Leishmania (Brodskyn et al., 2001; Jimenez et al., 2010). The regulation of the 

expression of surface MHC I & II and co-stimulatory molecules on DC infected by 

Leishmania may be dependant on the species of Leishmania.  

In some species, Leishmania parasites enhance CD40-L induced IL-12 production 

and the expression of co-stimulatory molecules in infected DC. In contrast other 

species inhibit IL-12 production and down-regulate co-stimulatory molecules (Ghosh 

& Bandyopadhyay, 2004). Like many other intracellular parasites, Leishmania have 
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adapted several survival mechanisms to overcome effective immune responses via, as 

an example, the inhibition of pro-inflammatory cytokines essential for T-lymphocyte 

activation. Infection of macrophages with Leishmania parasites has been shown to 

diminish their microbicidal activities through the production of various 

immunosuppressive signalling molecules, such as arachidonic acid metabolites, IL-10 

and TGF-β (Olivier et al., 2005). Leishmania infection also interferes with MHC 

class II antigen and co-stimulatory molecule expression and the antigen presentation 

ability of host cells. Infection of macrophages with L. donovani failed to trigger the 

expression of CD80 and inhibited antigen presentation (Kaye et al., 1995). Also, 

macrophages infection with L. donovani inhibited antigen presentation and reduced 

their ability to activate T cell responses but did not affect  MHC class II antigen 

expression (Meier et al., 2003). In another study, infection of Balb/c macrophage with 

L. donovani reduced activated levels of MHC class II antigen. Collectively, infection 

with Leishmania did not produce a consistent pattern of effects on the expression of 

MHC class II and co-stimulatory molecules which may be influenced by the species 

and the model systems used (Reiner, 1987). Martin, et al., (2010) have shown that 

BMDCs from Balb/c mice can express different levels of CD40 with a subsequent 

effect on regulatory T cell generation where low levels of CD40 expression were 

required for efficient regulatory T cells generation. DCs expressing low levels of 

CD40 induced Tregs, whereas DCs expressing high levels of CD40 induced effector 

T cells, possibly CD8+CD40+ T cells with a contraregulatory activity. The adaptive 

transfer of the former DC exacerbated whereas the latter significantly reduced L. 

donovani infection in Balb/c mice. Similarly, priming of mice with Leishmania Ag-

pulsed DCs expressing high levels of CD40 induced host protection against L. 



                                                                                                             Chapter 5 Results 
                                                                                    

 148

donovani challenge. In contrast, priming with the low CD40-expressing DC resulted 

in aggravated infection as compared with the control mice.  

 DCs have a critical role in the immunity against Leishmania but how they interact 

with the parasite during infection or vaccination is not fully understood. Activation of 

DCs can lead to IL-12p70 production which regulates Th1 responses, IFN-γ 

production and ultimately activates macrophage microbicidal activities. Leishmania is 

capable of inhibiting the migration of DCs in vitro as well as in lymphoid tissue, thus 

inhibiting the presentation of antigen to T-cells (Ato et al., 2006; Jebbari et al., 2002). 

DCs are able to phagocytose Leishmania parasites irrespective of their developmental 

phase (metacyclic promastigotes or amastigotes) or whether they are opsonised with 

either complement C3 component or antibodies. DCs become mature and up-regulate 

the expression of CD24, CD40, CD54, CD80, CD86, OX40L and MHC class II 

molecules only when infected with antibody-opsonized promastigotes or amastigotes, 

suggesting that DCs maturation, at least in this model, was dependent on the status of 

the ingested parasite (Prina et al., 2004). As in the case of macrophages, infection of 

dendritic cells with Leishmania is species specific and affects their antigen 

presentation efficacy to T cells which ultimately either control or exacerbate the 

infection. Some species of Leishmania enhance, but others down regulate the surface 

expression of co-stimulatory molecules and cytokine production such as IL-12  

(Ghosh & Bandyopadhyay, 2004). Infection of BMDCs with L. major but not L 

mexicana amastigotes up regulate the expression of CD80, CD54, and MHC Class II 

antigen related to DC activation (Bennett et al., 2001). Schnitzer et al., (2010) have 

shown that DCs were capable of protection against L. major.  Briefly, L. major 

antigen loaded DCs that had been exposed to UV irradiation or fixed with 

paraformaldehyde were to serve as successful vaccine. Also, they have shown the 
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ability of DC derived exosomes to induce protective immunity against cutaneous 

Leishmaniasis. The method of antigen presentation to receiver T cells involves uptake 

of intravenously injected DC fragments into late endosomal compartments of spleen 

DC in the receiver. In vitro studies showed that DC fragments induce T-cell 

proliferation and IL-12 secretion by splenocytes. The development of a cell free 

vaccine for immunoprophylaxis against Leishmaniasis is possible. Also, Terrazas, et 

al., (2010) have shown that interfering with the activity of DCs can be one of the 

most effective ways to induce a safer environment to parasite development. 

The critical role of DCs in immunity against Leishmania has not been fully 

understood, and the impact of infection or exposure to Leishmania antigens on 

immune responses has to be determined. Hence, in vivo experiments were performed 

to assess whether protective immunity could be induced by immunisation with DCs 

loaded with Leishmania antigens, and whether protection correlates with CTL 

activity. The effect of Leishmania infection on DCs in vitro seems to vary depending 

on the Leishmania species and the model system. In this study the effect of L. 

mexicana infection on MHC Class I and II and co-stimulatory molecule expression in 

Balb/c mouse bone marrow DCs was investigated. The effect of infection with live 

Leishmania parasite on susceptibility of DCs as targets for CTLs was also 

investigated in the presence or absence of fungizone, an anti Leishmania agent.  

Leishmania specific CTLs were generated by immunisation of mice with SLA2 and 

culturing splenocytes in vitro with SLA as previously demonstrated (Ali et al., 2009), 

the summarizing of experimental work in this chapter shown in (Fig 5.1).  
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       Figure 5.1 A flow chart summarizing the experimental work in this chapter 

CTL response of immunised Balb/c mice against:  
1- DCs loaded with autoclaved L. mexicana 
2- DCs infected with live Leishmania parasites 
3- L. mexicana infected DCs treated with fungizone 

      Phenotypic characterisation of DCs using  
MHC I, MHC II, CD11c, CD40, CD80, F4/80 and 
CD205 surface molecules  

Inhibition of down regulation of MHC I, MHC 
II, CD11c, CD80 and CD40 expression in 
Leishmania infected DCs following treatment 
with fungizone 

The effect of infection of DCs with autoclaved 
Leishmania parasite on  
MHC I, MHC II, CD11c, CD80 and CD40 
expression in DCs 

     The effect of infected DCs with live L. mexicana on 
     MHC I, MHC II, CD11c, CD80 and CD40 expression 

Down-regulation of DC surface 
molecules is a possible immune evasion 
mechanism in L. mexicana infection

The effect of infection with L. mexicana on 
purified CD11c+/- DCs in vitro 
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5.2      Results 

5.2.1     CTL activity of immunised Balb/c mice against DCs loaded with 
autoclaved L. mexicana or live Leishmania parasites 

It has been demonstrated that Balb/c mice immunised with SLA1 mixed with IFA but 

not DC loaded with SLA1 were significantly protected against challenge with live L. 

mexicana parasite (chapter 3). Surprisingly, Leishmania lesions in mice immunised 

with DCs alone (normal DCs) were delayed in comparison to those given DCs loaded 

with SLA1. Furthermore, splenocytes from Balb/c mice immunised with L. mexicana 

SLA1 or SLA2 in combination with IFA and mice immunised by DCs loaded with 

SLA1 or SLA2 induced a potent CTL response compared to controls (chapter 3). In 

this study CTL activity of Balb/c mice against DCs infected with live parasite in 

comparison to DCs cultured with autoclaved (killed) parasites was investigated. 

Balb/c mice were immunised with SLA2 with IFA and in order to generate 

Leishmania specific CTLs, splenocytes were harvested and cultured in vitro for 5 

days together with naïve cells pulsed with LPS and SLA2 (see chapter 2 methods). 

On day 5, the splenocytes were used as effectors in a standard 4-hour cytotoxicity 

assay against mature non-adherent DCs. The mature non-adherent DCs were 

produced as previously described (chapter 4). DCs were divided into three groups: 

(A) DC targets cultured with autoclaved L. mexicana at a concentration of 10 

parasites/DC (B) DC targets infected with live L. mexicana at 10 parasites/DC and 

(C) untreated DC alone as control. The results clearly revealed that DCs loaded with 

autoclaved L. mexicana were susceptible to CTL activity which was positively 

correlated with MHC class I expression, but DCs loaded with live parasites showed 

down regulation of MHC I expression and reduced susceptibility to killing (Fig 

5.2.1).  
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CTL activity of Balb/c mice immunised with SLA+IFA aganist DCs 
loaded with live or autoclaved parasites as target  
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Figure 5.2.1 CTL activity of Balb/c mice immunised with SLA2 against DC target cells incubated 
with killed L. mexicana or live L. mexicana  
Balb/c mouse was immunised with 100µg/mouse of SLA2. Non-adherent DCs (10 autoclaved or live 
parasites per DC) were used as target cells. Immunised Balb/c mouse splenocytes were cultured in 
vitro for 5 days together with blast cells pulsed with LPS and SLA2. On day 5 they were used as 
effector cells in a standard 4-hour cytotoxicity assay. The graph represents 3 independent experiments. 
Bars represent the standard deviation n=3 p*≤0.05, p**≤0.01 by T test.  
  

5.2.2    Effect of treatment with fungizone of susceptibility of DCs to CTL killing 

The susceptibility of DCs infected with live parasites compared to DCs cultured with 

autoclaved parasites to CTL activity was investigated. Balb/c mice were immunised 

S.C. with 100µg/mouse SLA2 with IFA. Splenocytes were harvested and cultured in 

vitro for 5 days pulsed with LPS and SLA2. On day 5, the splenocytes were used as 

effectors in a standard 4-hour cytotoxicity assay against mature non-adherent DCs 

loaded with SLA2, autoclaved parasites, live parasites and DCs treated 1 hour after 

infection with fungizone (10 parasites /DC). The results clearly revealed that DCs 

loaded with autoclaved L. mexicana were susceptible to CTL killing which was 

positively correlated with MHC class I expression (Fig 5.2.2). Treatment with 

fungizone restored the expression of MHC I and II in the DCs after Leishmania 

infection (Fig 5.2.2). 
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Figure 5.2.2 CTL activity in the presence of fungizone 
Balb/c mice were immunised with SLA (100µg/mouse) and Splenocytes were cultured in vitro for 5 
days together with blast cells pulsed with LPS and SLA. On day 5 they were used as effector cells in a 
standard 4-hour cytotoxicity assay against DCs + live parasites, DCs infected with live parasites for 1 
hour and treated with fungizone overnight, DCs + autoclaved parasites, and non-infected DCs. The 
graph represents 3 independent experiments. Bars represent the standard deviation n=3 p*≤0.05, 
p**≤0.01 and p***≤0.001 by T test. 

5.2.3    The expression of surface molecules on bone marrow derived cells 

The expression of different surface molecules on bone marrow derived cells was 

investigated. Bone-marrow cells were flushed out of fibula and femur bones with DC 

media and harvested (see chapter 2 methods). The expression of CD11c, CD40, 

CD80, F4/80, CD205 MHC I and MHC II on DC cells was determined by staining 

with corresponding FITC labelled rat anti-mouse antibody and flow cytometry 

analysis (Table 5.2.3). Different types of bone marrow derived cells: mature adhered, 

immature adhered, mature non adhered and immature non adhered cells were stained 

for different cell surface markers, (maturation of DCs was induced by culturing bone 

marrow cells with LPS overnight and adhered cells were removed by scraping off 

from the surface of the culture flasks. Results clearly indicate that only mature non 

adherent cells significantly express all the DC markers such as MHC I, MHC II, 

CD11c, CD205, CD40 and CD80, and do not express the macrophage marker F4/80. 

This clearly indicated that out of four different types of cell only mature non adherent 

e 
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cells contain the highest DC specific markers. According to these findings these cells; 

mature non adherent bone marrow cells were used as DC BM cells (Fig 5.2.3, Table 

2.7). 

A: 

 
 
 
Figure 5.2.3 Phenotyping of the Bone-marrow derived cells subgroups using monoclonal 
antibodies and flow cytometry analysis 
Bone-marrow (BM) cells were cultured in the presence of GM-CSF for 6 days with washes every 2 
days. BMs were harvested (non-adherent and adherent cells). Cells were analysed for the expression of 
MHC class I, MHC class II, CD11c, CD205, F4/80 CD80, and CD40 by flow cytometry using FITC 
conjugated antibodies red=control, green=test. The graph represents one of 3 independent experiments, 
(see more results in the appendix figure 1).  The graph represents all cells (ungated) in the histograms 
obtained by the flowcytometer. 

5.2.4       Effect of infection of DCs with live L. mexicana on MHC class I, MHC 
class II, CD11c, CD80 and CD40 expression  

The effect of Leishmania infection on the expression of MHC class I, MHC class II 

CD11c, CD80 and CD40 was evaluated on bone marrow derived DC (mature non 
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adherent bone marrow cells) infected with L. mexicana (Fig 5.2.4-A,B&C). DCs were 

cultured as described in section 5.2.3 and were split into two groups. The first group 

was infected with live L. mexicana promastigotes (10:1, parasite: cell) for 1 hour and 

24 hours, second group was non infected DCs (control), both groups of DCs were 

assessed for marker expression by staining with rat anti-mouse CD11c, CD80, CD40, 

H2-kd, H2-Ld and rat anti-mouse A/E antibody. The results (Fig 5.2.4-A&B) clearly 

show a down regulation of CD11c, CD80, CD40, MHC class I and class II molecules 

in Leishmania infected DCs compared with controls. It was also shown that the MHC 

I and MHC II expression were completely down regulated as early as 1 hour after 

infection. Finally, almost the same level of down regulation at 1 hour and 24 hours 

was observed. 
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A: 

 
B:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.2.4 The effect of Leishmania infection on the expression of MHC class I, MHC class II 
CD11c, CD80 and CD40 
A: Expression of MHC class I and class II molecules in Leishmania infected DCs: DCs were 
harvested and split into four groups. Two groups were infected with L. mexicana at 10 parasites to one 
DC for 1 hour or 24 hours. Non infected DCs were used as control. Infected and control DCs were 
stained for the expression of MHC class I and MHC II using corresponding FITC antibodies. B: 
Expression of CD11c, CD80, and CD40 molecules in Leishmania infected DCs: DCs were 
harvested and split into two groups. The first group was infected with 10 live parasites to one DC for 
24 hours. The second group of non infected DCs were used as control. Cells were analysed for the 
expression of CD11c, CD80, and CD40 by flow cytometry analysis. Red=control, green and blue=test. 
The graph represents more than one of 3 independent experiments see more result in appendix figure 
2). 
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C: 

 
100   L. mexicana promastigotes                               400   L. mexicana promastigotes                                

 
100 Cultures BMDC cell 7 days                                400 Cultures BMDC cell 7 days 

 
100 Infected DCs with L. mexicana                       400 Infected DCs with L. mexicana 
 
Figure 5.2.4-C L. mexicana promastigotes and DCs infected with L. mexicana DCs were harvested 
and infected with 10 live parasites to one DC. Bone-marrow cells were flushed out with media and 
harvested. Cells were then centrifuged and resuspended in 1ml BM-DC media, after 7 days DCs were 
counted and plated at 1×106 cells per ml and infected with L. mexicana parasites (10 parasite/one DC).  

Promastigotes  

Infected DCs               
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5.2.5    Effect of autoclaved Leishmania parasite on the expression of cell surface 
markers in DCs 

Further experiments were conducted to examine whether killed parasites caused the 

down regulation of surface molecules expressed by DCs. DCs were cultured as 

described in section 4.2.3 and were split into two groups. The first group was infected 

at a multiplicity of 10 autoclaved L. mexicana promastigotes per DC for 1 hour and 

24 hours. DCs were then stained with anti-mouse MHC I, MHC II, CD11c, CD40 and 

CD80 antibodies and analysed by flow cytometry. The results (Fig 5.2.5-A&B) 

clearly show that incubation of BM-DCs with killed L. mexicana parasites for up to 

24 hrs did not inhibit the expression of CD11c, CD40 and CD80 but caused a slight 

up-regulation of MHC I and MHC II molecules expression. No difference was 

observed whether BM-DCs were treated with killed parasite for 1 or 24 hours. 
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A: 

 
B: 

 
 
Figure 5.2.5 Effect of autoclaved Leishmania parasite on the expression of cell surface markers in 
DCs  
A: Expression of MHC I& II molecules: DCs were harvested and split into two groups. The first 
group was divided into two groups and stimulated with autoclaved parasites (10:1, parasite: DC) for 1 
and 24 hours. The second group of non infected DCs was used as control. Cells were analysed for the 
expression of MHC class I and II by flow cytometry using FITC conjugated MHC class I and II 
antibodies and IgG2a and IgG2b as isotype control. B: Expression of CD11c, CD80, and CD40 
molecules: DCs were harvested and split into two groups and stained for marker expression at 1 and 
24 hours. Non infected DCs were used as control. Cells were analysed for the expression of CD11c, 
CD80, and CD40 by flow cytometry using FITC conjugated antibodies or IgG2a the isotype control. 
Red=control, green=test. The graph represents one of 3 independent experiments.  
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5.2.6        The effect of fungizone on the expression of cell surface markers in DCs 
following Leishmania infection.  

The infection of DCs by parasites down regulates the expression of MHC class I, 

class II, CD11c, CD80 and CD40 surface molecules. Here, the effect of fungizone on 

the expression of MHC class I, MHC class II, CD11c, CD80 and CD40 in the DCs 

following Leishmania infection was also investigated. DCs were cultured as 

described in section 4.2.3 and split into three groups. The first group was infected 

with L. mexicana promastigotes (10:1, parasite: DC) for 24 hours; the second group 

was similarly infected but treated after one hour with fungizone at 7.5µg/ml and 

incubated at 37°C overnight. The third group (non-infected) served as control. On the 

following day DCs were washed and stained with antibodies for MHC class I, class 

II, CD11c, CD80 and CD40 and analysed by FACS. The addition of fungizone after 

one hour infection abrogated the inhibition of MHC class I and class II antigen 

expression caused by parasitic infection (Fig 5.2.6). Moreover, fungizone restored to 

normal levels, the expression of CD11c, CD80 and CD40 which restore their 

susceptibility to CTL activity. 
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Figure 5.2.6 The effect of fungizone on expression of MHC I, MHC II, CD11c, CD80 and CD40 
in DCs following Leishmania infection  
DCs were harvested and split into three groups. The first group was infected with parasites (10 
parasites: 1 DC) for 1 hr and then was treated 24 hrs with fungizone, the second group was infected 24 
hrs with parasites (10 parasites: 1 DC). No parasites were added to the third group. Cells were analysed 
for the expression of MHC I, MHC II, CD11c, CD80, and CD40 by flow cytometry using FITC 
conjugated antibodies and IgG2a as control for (MHC I CD80, and CD40), IgG2b for (MHC II) or IgG 
for (CD11c) red=control, blue=test. The graph represents one of 3 independent experiments see more 
result in appendix figure 4). 
 

5.2.7      Effect of live L. mexicana on CD11c+ and CD11c- DCs in vitro 

In a further experiment, non adherent BM cells were further purified by passing 

them through a CD11c MicroBeads column to isolate CD11c+ cells. DCs were 

cultured as described in section 4.2.3. The results in (Fig 5.2.7-A) clearly show that, 

BM-DCs purified by passing though MicroBeads CD11c column express high level 

of CD11c+ cells compared with controls and infection of purified DCs with live 

parasites completely down regulate the expression of the cell surface CD11c+ 

marker. 
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Figure 5.2.7 Effect of live L. mexicana on CD11c+ and CD11c- of DCs in vitro  
A: Analysis of cells following separation: DCs were harvested and separated by CD11c MicroBeads 
into CD11c+ and CD11c-cells and analysed by flow cytometry using FITC of CD11c antibody. B: 
CD11c expression following parasite infection. Cells were analysed by flow cytometry for the 
expression of CD11c before and after infection with L. mexicana. The graph represents one of 3 
independent experiments, red=control, blue=test. 
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5.3        Discussion  

There are many immune evasion mechanisms that assist intracellular parasites to 

survive inside dendritic cells, macrophages and other host cells. The immune evasion 

mechanisms adapted by the parasite could diminish host protection against 

intracellular infection and through active suppression of the synthesis of anti-

microbial effector molecules such as cytokines and chemokines (Sacks & Sher, 2002; 

Ali et al., 2009).   

 

This study focused on the effect of L. mexicana infection and autoclaved parasite on 

the expression of MHC I, MHC II, CD40, CD80 and CD11c on the surface of DCs as 

determined by flow cytometry analysis. Different types of bone marrow derived cells 

i.e. mature adhered, immature adhered, mature non adhered and immature non 

adhered cells were stained with antibodies to look for different cell surface markers 

(maturation of DCs was induced by culturing bone marrow cells with LPS overnight).  

Results presented in this study have repeatedly shown that only mature non adherent 

cells express all the DC markers, MHC I, MHC II, CD11c, CD205, CD40 and CD80, 

and do not express the macrophage marker F4/80. This clearly indicated that out of 

four different types of cells mature non adherent cells contain the highest level of DC 

specific markers. Therefore only this set of cells was used for further analysis. 

Maturation of DCs is crucial for the initiation of immunity since in most tissues 

where DCs exist in an immature form they are unable to stimulate T cells due to lack 

of the required accessory signals (Banchereau & Steinman, 1998; Min et al., 2010). 

Results presented in this study demonstrated down regulation of MHC I, MHC II, 

CD40, CD80 and CD11c at the cell surface of DCs due to L. mexicana infection. It 
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has been previously shown that infection with L. donovani induced suppression of 

MHC class II expression and down-regulation of CD80 as a result of the degradation 

of MHC class II molecules of the host cell by amastigotes inside the vacuole 

(parasitophorous) which is exhibiting phagolysosomal properties. However, infection 

with L. amazonensis induced inhibition of antigen processing and peptide loading of 

MHC molecules. L. donovani and L. major were also shown to prevent the transport 

of the MHC-peptide complexes to the cell surface (Reiner 1987; Muraille et al., 

2010). 

 

The direction of immune response to Leishmania (Th1 or Th2) is controlled by the 

nature and type of Leishmania antigen presented and recognised by T cells; therefore, 

Th1 responses may be initiated by different antigens to those that induce Th2 

responses (Awasthi et al., 2004). However, various animal studies have implicated 

that the same parasite epitope may induce a Th1 response in animals with resolving 

infection and a Th2 response in those susceptible to the disease (Piscopo & Mallia, 

2006). Results presented in this study demonstrated that splenocytes from Balb/c 

mice immunised with SLA2 specifically killed DC targets loaded with autoclaved 

parasite but not DCs infected with live L. mexicana where susceptibility to CTL 

killing was positively correlated with MHC class I expression. This has suggested 

that infection with Leishmania hinders the target recognition phase of effecter CD8+ 

T cells. In vitro depletion of CD8+ T cells by anti-CD8 Ab significantly inhibited 

CTL activity though no strong correlation between CTL activity and resistance to 

infection was found in this model (Ali et al., 2009).  

 

It was important to determine whether the down regulation of DC surface molecules, 

including crucial CTL target ‘MHC’ induced by L. mexicana infection, was reversible 



                                                                                                             Chapter 5 Results 
                                                                                    

 165

and susceptibility of infected DCs could be restored when the infection is eliminated 

by chemotherapy. Hence fungizone, a non DC toxic anti Leishmania agent, was used 

to effectively treat L. mexicana infected DCs in culture. In vitro treatment of L. 

mexicana infected DCs with fungizone restored their MHC class I expression as 

determined by antibody staining and flow cytometry analysis. Interestingly, treatment 

of L. mexicana infected DCs with fungizone also restored their susceptibility to CTL 

activity. Some studies revealed that infection with Leishmania causes the down 

regulation of the MHC II, which represents a potential immune evasion mechanism 

adapted by the Leishmania (Brandonisio et al., 2004). Amprey et al., (2004) has 

shown besides suppression of IL-12, NO, superoxide and the degradation of STAT 

proteins (Signal Transducer and Activator of Transcription; this protein is a member 

of the STAT protein family. In response to cytokines and growth factors) Leishmania 

can also regulate various other immune molecules which activate Th1 cells.  Also 

Soong, (2008) has shown that down regulation of IL-12 by L. mexicana in vitro could 

be possibly due to inadequate antigen presentation as a result of MHC down 

regulation  

 

Soong, (2008) has also reported that the interaction of Leishmania parasites with 

dendritic cells is complex and involves reactions which may induce or inhibit T cell 

responses, ultimately causing either control or progression of the disease. Leishmania 

infection leads to the obstruction of the up-regulation of the MHC I and II at the 

transcriptional level. It also down regulates MHC class II antigen by affecting its post 

translational mechanism; these studies suggest that intracellular amastigotes degrade 

MHC class II molecules (Bogdan et al., 1996; Phillips et al., 2010). In contrast, skin 

DCs from L. major infected C57BL/6 or Balb/c mice both show up-regulation of 
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surface MHC class I and II antigens, CD40, CD54, CD86 and release IL-12p70, thus 

suggesting that genetic susceptibility to L. major is not dependent on DC inability to 

respond to the parasite (von Stebut et al., 2000). However, an increased expression of 

IL-4R was observed on LCs infected with L. major from susceptible but not resistant 

mice (Moll et al., 2002), and the expression of the co-stimulatory molecule CD80 was 

down-regulated in susceptible but not resistant mice (Mbow et al., 2001). Moreover, 

in lymph nodes, DCs from susceptible, but not resistant mice in vivo infected with L. 

major, showed a decreased CD40 activity, which correlated with underproduction of 

IL-12p40 and IL-12p40 mRNA expression (Heinzel et al., 1998; Brandonisio et al., 

2004). 

Flow cytometry analysis demonstrated up regulation of MHC I, MHC II, CD40, 

CD80 and CD11c after stimulation of DCs for 1 and 24 hours with autoclaved (killed) 

parasites, possibly due to some of the components of the autoclaved parasites acting 

as an adjuvant or immunogen. Furthermore, flow cytometry analysis showed that 

fungizone treatment of DCs infected with parasites abrogated the suppression of 

MHC I, MHC II, CD40, CD80 and CD11c on the DCs restoring expression to normal 

levels. Combination therapy was shown to be effective against many infectious 

agents, Kleanthous et al. 1998 and Jha 2006 demonstrated that the combination of 

vaccine and partially effective antibiotic therapy was more effective against H. pylori 

infection in an animal model. This is a good example of a successful combination 

therapy in a microbial model. Leishmaniasis responded much better to treatment with 

crude vaccine preparations or GM-CSF and IFN-γ mixed with chemotherapy (Raman, 

2010). This could be due to enhanced specific immune response by using TLR 

synergy. Anti-Leishmania immune responses in the presence or absence of active 

disease was assessed in mice following administration of L110f, a well established 
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Leishmania poly-protein vaccine candidate, in combination with CpG, 

monophosphoryl lipid A, a TLR4 agonist, or a TLR9 agonist, or a combination of 

these. Mice treated with L110f plus monophosphoryl lipid A-CpG produced the 

highest T cell response and reduced parasite burden compared with mice treated with 

L110f alone or with single adjuvant. 

Moreover, (as shown in Fig 5.2.7-A) BMDCs were further purified by passing though 

MicroBeads CD11c column to isolate CD11c+ from DC cells and showed a high 

levels of CD11c+ cells compared with controls. Infection of purified DC cells with 

live parasites completely down regulated the expression of cell surface CD11c marker 

expression. It has been shown that in C57BL/6 mice lymph node DCs expressing the 

DC specific marker CD11c but not CD11c- were usually heavily infected with 

Leishmania parasites. In contrast, some of the CD11c+- infected cells from Balb/c 

mice were becoming multi-nucleated giant cells with a dramatic accumulation of 

parasites without expressing differentiation markers at their surface (Misslitz et al., 

2004). CD11c+ DCs from the lymph nodes of L. major infected mice express low 

MHC class II levels and no detectable CD86 expression, which suggests that they 

might constitute a reservoir of parasites (Muraille et al.,  2003; Naik, 2010). 

In this study, only mature non adherent BMDC cells were shown to express all the 

DC surface markers, MHC I, MHC II, CD11c, CD205, CD40 and CD80 but not the 

macrophage marker F4/80. DCs loaded with autoclaved but not infected with live L. 

mexicana were susceptible to CTL killing which was positively correlated to MHC II 

& I expression, since infection with live L. mexicana down regulated the expression 

of MHC class I expression. Furthermore, treatment with fungizone restored the 

expression of MHC I and II in the DCs after Leishmania infection and made them 

susceptible to CTL killing.  
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Chapter 6 Result 

Immunogenicity of L. donovani Centrin-3 
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6.1          Introduction 

Immunisation with plasmid DNA encoding Leishmania antigens represents a 

promising approach to vaccination against Leishmaniasis as it has intrinsic adjuvant 

properties, induces both humoral and cell mediated immune responses and results in 

long lasting immunity (Rodriguez-Cortes et al., 2007).  Therefore, in light of its many 

advantages over other vaccination strategies for Leishmaniasis, DNA vaccination 

could potentially treat and prevent Leishmaniasis. Many vaccine strategies have been 

pursued, including the use of whole cell lysate, killed, virulent or irradiated parasite 

(Selvapandiyan et al., 2006). Leishmania DNA vaccines and purified or recombinant 

parasite antigens have also been tested. Most of the studied antigens have so far 

shown a limited degree of effectiveness as a potential vaccine in animal models but 

little or no protection in humans. New antigen discovery strategies are essential to 

identify new antigens with potential as a novel vaccine candidate. The 

immunogenicity of centrin genes, newly identified Leishmania antigens, have not 

been previously studied and very little is known of their biology in Leishmania. A 

DNA-encoding N-terminal domain of the proteophosphoglycan (PPG) gene which is 

a surface-bound protein in both promastigotes and amastigotes was investigated as a 

vaccine in hamsters against challenge with L. donovani. A protection efficiency of 

about 80% was observed in vaccinated hamsters with more than 6 month survival 

after challenge. The efficacy was supported by a surge in inducible NO synthase, 

IFN-γ, TNF-α, and IL-12 mRNA levels along with down-regulation of TGF-β, IL-4, 

and IL-10. The level of Leishmania specific IgG2 was also increased which was 

indicative of an enhanced cellular immune response. It was concluded that the N-
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terminal domain of L. donovani PPG is a potential DNA vaccine against visceral 

Leishmaniasis (Samant et al., 2009).  

Centrins are cytoskeletal, calcium binding proteins that are localized in the 

microtubule organising centre (MTOC) of eukaryotic cells (Baron et al., 1991). There 

are a number of eukaryotic centrin genes that have been recently identified, including 

one in Chlamydomonas and Saccharomyces cerevisiae; four genes identified in mice, 

and three in humans (Errabolu et al., 1994; Salisbury, 1995). The recently completed 

genome database for two trypanosomatids, i.e., Trypanosoma brucei, the causative 

agent of African sleeping sickness and Leishmania, have revealed five centrin genes 

in this group of organisms (Selvapandiyan et al., 2006). The functions of some of the 

centrins have been identified, for example, one group of centrins, which includes: C. 

reinhardtii centrin, Paramecium centrins 2 and 3, mouse centrins 1 and 2 and human 

centrins 1 and 2, are involved in centrosome and basal body segregation (Koblenz et 

al., 2003; Ruiz et al., 2005). The other group containing Leishmania centrin-1, yeast 

centrin, mouse centrin-3 and human centrin-3, plays a role in centrosome and basal 

body duplication (Gavet et al., 2003; Khalfan et al., 2000). The N-terminal non-

conserved domain of centrins, which is variable in length, is considered to be 

responsible for the functional diversity of centrins (Salisbury, 1995; Bhattacharya et 

al., 1993). L. donovani centrin 3  (Ldcen-3) has a significantly smaller N-terminal 

region compared to centrins from other species (Selvapandiyan et al., 2001).  

 

The Ldcen3 gene is 100% homologous in L. donovani, L. major and L. mexicana. 

Therefore, the use of a DNA vaccine to stimulate an immune response against this 

protein could represent a novel approach to immunise humans against more than one 

species of the parasite. A DNA vaccine encoding Ldcen3 could offer protection 
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against both visceral and cutaneous Leishmaniasis because of heterogeneity in DNA 

sequence to that of human centrin-3 (Fig 6.1). 

 

Knocking out the centrin-3 (Ldcen-3) gene reduced the growth rate of both 

promastigotes and amastigotes, and reduced survival in human macrophages in vitro 

(Selvapandiyan et al., 2001; 2009). Other studies showed that dominant negative 

expression of centrin proteins by parasites could result in reduced survival in 

macrophages in vitro or in reduced virulence in mice in vivo (Antoniazi et al., 2000).  

    

Figure 6.1 The amino acid sequence of Ldcen-3 compared with human centrins  
This figure shows the amino acid sequence of Ldcen-3 compared with Pan-troglo and human centrin 
(http:/workbench.sdsc-edu/), Pan-troglo: Chimpanzee.  
 

In the present study the immunogenicity of Ldcen-3 was investigated in a Balb/c L. 

mexicana model, using a gene gun to release a plasmid DNA construct coated on gold 

particles. The immunogenicity of Ldcen-3 has not previously been assessed. The gene 

gun fires DNA coated gold particles at high velocity directly into epidermal cells, 
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which consist of skin cells, LC and dermal DC. Inside the cell, plasmid is transported 

to the nucleus, the encoded gene is transcribed and the protein is subsequently 

produced, processed into peptides by host proteases and then presented in the context 

of MHC class I antigen which then stimulates CD8+ T cells (Encke et al.,1999; ALi 

et al., 2009). DC directly transfected with DNA vaccine can prime CD8+ cells by 

presenting the DNA encoded antigen via MHC class I. Immature DC can endocytose 

soluble proteins and debris from apoptotic transfected cells and express the coded 

antigen through MHC class I or MHC class II following differentiation into mature 

DC. Thus, a DNA vaccine can be effective in the stimulation of both CD8+ T cells 

and CD4+ T cell populations. The ability of DCs to present extracellular antigens into 

MHC class I and MHC class II is known as cross priming, accordingly DCs play an 

important function in the induction of both humoral and cell mediated immunity 

following DNA vaccination, the summarizing of experimental work in this chapter 

shown in (Fig 6.1). 

 

 

 

 

 

 

 



                                                                                                             Chapter 6 Results 

 173

 

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
        
         Figure 6.1 A flow chart summarizing the experimental work in this chapter. 
 
  
 

  Immunogenicity of L. donovani Centrin-3 in Balb/c mice  

   Confirming pCRT7/CT-TOPO as a mammalian vector  
By sub cloning of LacZ into pCRT7/CT-TOP and   
transfection of CT26 tumour cells

  Subcloning of Ldcen-3:  
  From pCRT7/CT-TOPO into pcDNA3.1 (-) 

Protection of Balb/c mice against challenge with live L. 
mexicana immunised with:  
1- pCRT7/CT-TOPO-Ldcen-3 compared with empty    
pCRT7/CT-TOPO  
2- pcDNA3.1 (-)-Ldcen-3 compared with empty pcDNA3.1 
plasmid constructs 

CTL activity in Balb/c mice immunised with:  
Ldcen-3 construct against tumour cells target 
transfected with Ldcen-3 

   Transfection of CT26 cells with pcDNA3.1 (-)-Ldcen-3 
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6.2          Results    

6.2.1     Confirming pCRT7/CT-TOPO as a mammalian vector   

6.2.1.1     Sub cloning of LacZ into pCRT7/CT-TOPO 

To provide evidence that pCRT7/CT-TOPO-Ldcen-3 could transfect and express 

genes of interest in mammalian cells, pCRT7/CT-TOPO-Ldcen-3 was constructed 

incorporating the lacZ gene as a marker and was used to transfect a mammalian cell 

line (Fig 6.2.1.1). Briefly, the lacZ gene was cut from pcDNA3.1myc-His lacZ (-) 

vector from both sides using XbaI and Hind III restriction enzymes. The digested 

fraction was separated by gel electrophoresis (1.5 %). The pCRT7/CT-TOPO vector 

was also digested using the same restriction enzymes (Fig 6.2.1.1-A, B, C&D). The 

Ldcen-3 was extracted from the gel and inserted in pcDNA 3.1(-) as section 6.2.2.2), 

and then the lacZ gene and the empty pCRT7/CT-TOPO vectors were ligated using a 

DNA ligase enzyme. The pCRT7/CT-TOPO-lacZ vector was transfected in CT26 

cells to establish the expression ability in mammalian cells; a suitable CT26 clone 25 

(CT 26-lacZ) mouse tumour cell line stably transfected with lacZ gene, was used as a 

positive control. 
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A: 

 

B: 

 
C: 

 
Figure 6.2.1.1 Sub cloning of lacZ into pCRT7/CT-TOPO 
A: Map representing pCRT7/CT-TOPO and pcDNA 3.1 myc-His/lacZ: pCRT7/CT-TOPO vector 
containing -Ldcen-3 gene and pcDNA 3.1 myc-His LacZ (-) to sub clone LacZ in pCRT7/CT-TOPO.B: 
Digestion of pcDNA 3.1 and pCRT7/CT-TOPO: Both plasmids were cut by XbaI and Hind III 
restriction enzymes: 1- ladder; 2- pcDNA 3.1 myc lacZ (-); 3, 4-the above band is the linear – empty 
pcDNA 3.1 myc-His and lower band is lacZ; 5, pCRT7/CT-TOPO-Ldcen-3 control; 6, 7, above band is 
the linear empty vector pCRT7/CT-TOPO and lower band is Ldcen-3. C: Sub cloning of lacZ into the 
pCRT7/CT-TOPO vector: The lacZ gene and the digested pCRT7/CT-TOPO vector were collected, 
purified and ligated using a DNA ligase enzyme, 1- 1kd ladder; 2- empty pCRT7/CT-TOPO and 3- 
pCRT7/CT-TOPO-lacZ (maps and vectors were obtained from invitrogen). 
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6.2.1.2    Transfection of CT26 cells with pCRT7/CT-TOPO- lacZ  

β-galactosidase, an important reporter gene encoded by the lacZ gene, is commonly 

used for monitoring transfection efficiency in mammalian cells. The β-galactosidase 

staining kit was used to determine the expression of lacZ following transient or stable 

transfection of plasmids encoding lacZ. β-galactosidase catalyzes the hydrolysis of X-

gal producing a blue colour. Transfected CT26 with pCRT7/CT-TOPO-lacZ was 

examined under a light microscope for the development of blue stain, which 

successfully produced a blue colour when compared to control cells CT26-lacZ 

indicating the ability of pCRT7/CT-TOPO to express lacZ in mammalian cells (Fig 

6.2.1.2).  

  
100 CT26-lacZ                                                            100 pCRT7/CT-TOPO- lacZ 

 
400  CT26-lacZ                                                          400  pCRT7/CT-TOPO- lacZ 
 
Figure 6.2.1.2 Expression of β-gal in CT26 transfected with pCRT7/CT-TOPO-LacZ 
CT26 cells transfected with a pCRT7/CT-TOPO-LacZ vector were washed twice with PBS and then 
fixed for 15 minutes with glutaraldehyde. Cells were then stained with X-gal for overnight to test the 
expression of pCRT7/CT-TOPO in mammalian cells. Blue colour staining indicates the expression of 
lacZ; suitable CT26-clone 25, (a stable transfectant with high expression of B-galactosidase) was used 
as a positive control.  
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6.2.2    Subcloning of Leishmania donovani centrin-3 (Ldcen-3) into pcDNA3.1 

6.2.2.1    Confirmation of the presence of Ldcen-3 by PCR 

 The pCRT7/CT-TOPO-Ldcen-3 vector was bulked up to obtain sufficient quantities 

of the plasmid and PCR was used to confirm Ldcen-3 presence using two primers 

designed for Ldcen-3 (541bp), Ldcen-3F, forward 5`AGA GGC ATT CGT GTT CG-3` 

and Ldcen-3R, reverse 5`AGG TTG ATC TCG CCA TCT TGA -3` (Fig 6.2.2.1).  

To determine the sequence of the Ldcen-3 gene, the DNA sample along with two 

primers that were used for the PCR amplification were sent to MWG-biotech.com for 

sequencing (Fig 6.2.2.1-B). This confirmed the presence of the pCRT7/CT-TOPO-

Ldcen-3 gene insert. 
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A:  

 
                                            1                                              2                                3 
Figure 6.2.2.1 Confirmation of the presence of Ldcen-3 by PCR 
A: Confirmation of the presence of Ldcen-3 by PCR: The presence of Ldcen-3 was confirmed by 
PCR amplification using 5`AGA GGC ATT CGT GTT CG-3` forward and 5`AGG TTG ATC TCG 
CCA TCT TGA -3`reverse primers 1- ladder, 2- pCRT7/CT-TOPO-Ldecn3 as a control and not PCR 
result, 3- Ldcen-3  (PCR product).   

6.2.2.2    Subcloning of Ldcen-3 into pcDNA3.1 (-) 

In order to adopt a widely used mammalian vector for DNA immunisation and also to 

transfect CT26 tumour cells it was decided to sub-clone the Ldcen-3 gene into a 

pcDNA3.1 (-) vector (Fig 6.2.2.2), which contained a mammalian selectable marker 

antibiotic gene. Ldcen-3 was cut from both sides by XbaI and Hind III restriction 

enzymes from the pCRT7/CT-TOPO vector. The digested fractions were separated by 

gel electrophoresis (Fig 6.2.2.2.1-A). The pcDNA3.1 (-) vector was also cut using the 

same restriction enzymes. The Ldcen-3 gene and the digested pcDNA 3.1 (-) vectors 

were then ligated using a DNA ligase enzyme. The presence of the Lcen-3 gene in the 

pcDNA3.1(-) vector was determined by restriction enzyme digestion (Fig 6.2.2.2.1-B) 

and PCR amplification (Fig 6.2.2.2.1-C) using forward and reverse primers Ldcen-3F 

5`AGA GGC ATT CGT GTT CG-3` and Ldcen-3R, reverse 5`AGG TTG ATC TCG 

CCA TCT TGA -3`. 
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Figure 6.2.2.2 Map representing pCRT7/CT-TOPO-Ldcen-3 and pcDNA 3.1(-) vectors 
pCRT7/CT-TOPO plasmid vector containing Ldcen-3 gene and pcDNA 3.1(-) for sub cloning of 
Ldcen-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ldcen-3 



                                                                                                             Chapter 6 Results 

 180

                       
 A: 

B: 
                              DNA ladder 

 
 C:                              
 
                                 DNA ladder 

 
 

  
Figure 6.2.2.2.1 Subcloning of Ldcen-3 into pcDNA3.1 (-) 
A: subcloning of Ldcen-3 into pcDNA 3.1 (-) vectors: pCRT7/CT-TOPO-Ldcen-3 was cut by XbaI 
and Hind III restriction enzyme 1- ladder; 2- pCRT7/CT-TOPO–Ldcen-3, 3,4-the above band is a 
linear empty pCRT7/CT-TOPO and lower band is Ldcen-3 B: Confirmation of the presence of 
Ldcen-3 in pcDNA3.1 (-): Restriction digestion with the same enzymes (Hind III and XbaI restriction 
enzymes), 1-ladder, 2-8 the upper bands are linear empty pcDNA3.1 (-) and the lower bands are 
Ldcen-3  after digestion of  pcDNA3.1 (-)-Ldcen-3 with  Hind III and XbaI. C: Confirmation of the 
presence of Ldcen-3 in pcDNA3.1 (-) by PCR: The presence of Ldcen-3 gene was confirmed by PCR 
using Ldcen-3 forward primer F 5`AGA GGC ATT CGT GTT CG-3` and the Ldcen-3 reverse primer 
R, 5`AGG TTG ATC TCG CCA TCT TGA-3`, 1-DNA ladder, 2-empty pcDNA3.1 (-)-Ldcen-3 and 3, 
4 Ldcen-3. 
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Moreover, to ensure that the sub-cloned gene is complete and no mismatches had 

occurred during the cloning procedure the whole gene as compared with gene bank 

(http://www.JustBio.com), (which is shown below) was also confirmed by 

sequencing (Fig 6.2.2.2.2).    

Seq1: the first sequenced gene (published gene bank) 

Seq2: new sequenced gene (sub-cloned) 
 

sequence1        ATGAACATCACTAGTCGCACATCGGGGCCGCTGCGCACCACTGCGCCGGCGGCATCAGCG 
sequence2        ATGAACATCACTAGTCGCACATCGGGGCCGCTGCGCACCACTGCGCCGGCGGCATCAGCG 
                      ****************************************************************************** 

  
 sequence1       CCGTCCGCGGCAGCGCGCCGTCGCTTCCAGCTTACGGAGGAACAGCGCCAGGAGATCCGA 
 sequence2       CCGTCCGCGGCAGCGCGCCGTCGCTTCCAGCTTACGGAGGAACAGCGCCAGGAGATCCGA 
                        ****************************************************************************** 
  
 sequence1       GAGGCATTCGAGCTGTTCGACTCGGATAAGAACGGACTCATCGATGTGCATGAGATGAAG 
 sequence2       GAGGCATTCGAGCTGTTCGACTCGGATAAGAACGGACTCATCGATGTGCATGAGATGAAG 
                         ********************************************************************************* 
  
 sequence1       GTCAGCATGCGAGCACTTGGCTTTGATGCAAAACGGGAGGAGGTGCTGCAGCTCATGCAG 
 sequence2       GTCAGCATGCGAGCACTTGGCTTTGATGCAAAACGGGAGGAGGTGCTGCAGCTCATGCAG 
                         ********************************************************************************* 
  
 sequence1       GACTGCGCTGCCCGGGACCAGAACAATCAGCCGCTTATGGACTTACCGGGCTTCACAGAT 
 sequence2       GACTGCGCTGCCCGGGACCAGAACAATCAGCCGCTTATGGACTTACCGGGCTTCACAGAT 
                         ********************************************************************************* 
  
 sequence1       ATCATGACGGACAAGTTTGCGCAGCGCGATCCTCGGCAGGAGATGGTGAAGGCGTTTCAG 
 sequence2       ATCATGACGGACAAGTTTGCGCAGCGCGATCCTCGGCAGGAGATGGTGAAGGCGTTTCAG 
                         ********************************************************************************* 
  
 sequence1       CTGTTTGACGAGAACAATACCGGCAAAATCTCCCTTCGCTCGCTGCGTCGTGTGGCGCGG 
 sequence2       CTGTTTGACGAGAACAATACCGGCAAAATCTCCCTTCGCTCGCTGCGTCGTGTGGCGCGG 
                        ********************************************************************************* 
  
 sequence1       GAACTGGGCGAGAACATGAGCGACGAAGAGCTGCAGGCAATGATTGACGAGTTTGACGTA 
 sequence2       GAACTGGGCGAGAACATGAGCGACGAAGAGCTGCAGGCAATGATTGACGAGTTTGACGTA 
                         ********************************************************************************** 
  
 sequence1       GATCAAGATGGCGAGATCAACCTAGAAGAGTTTCTTGCCATTATGCTAGAGGAGGACGAC 
 sequence2       GATCAAGATGGCGAGATCAACCTAGAAGAGTTTCTTGCCATTATGCTAGAGGAGGACGAC 
                       ********************************************************************************** 
  
 sequence1       TAC 
 sequence2       TAC 
                          *** 
 

Figure 6.2.2.2.2 Confirmation of the presence of Ldcen-3 in pcDNA3.1 (-) by sequencing 
The sub-cloned gene (Ldcen-3) is completed and no mismatches had occurred during the cloning 
procedure the whole sequencing of Ldcen-3 gene as compared with gene bank 
(http://www.JustBio.com).  
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6.2.3    Construction of pCRT7/CT-TOPO empty vector 

In order to produce a pCRT7/CT-TOPO empty vector to be used as a negative control 

in DNA vaccination and protection studies, the Ldcen-3 gene was cut and removed 

from this vector. The Ldcen-3 gene was cut out from the vector by digestion with 

XbaI and Hind III restriction enzyme and the product was run into an agarose gel. The 

band related to the vector was extracted from the gel (Fig 6.2.3). Both free ends of the 

vector that resulted from digestion were then ligated to each other by the ligase 

enzyme. The absence of the Ldcen-3 gene in the empty vector was confirmed by PCR 

using Ldcen-3 primers.  

 

 

 
Figure 6.2.3 Production of empty pCRT7/CT-TOPO vector  
The pCRT7/CT-TOPO-Ldcen-3 was digested with Hind III and Xba I restriction enzymes, and then 
were extracted Ldcen-3 and empty vector pCRT7/CT-TOPO after extraction, 1- DNA ladder, 2- 
emptypCRT7/CT-TOPO and 3- Ldcen-3. 

6.2.4         Immunogenicity of Ldcen-3  

6.2.4.1       Protection induced by immunisation with pCRT7/CT-TOPO- Ldcen-3 
plasmid construct  

To determine the immunogenicity of Ldcen-3 (L. donovani centrin-3), a pCRT7/CT-

TOPO-Ldcen-3 was used as a DNA vaccine in a Balb/c mouse model (see chapter 2 

methods). L. mexicana gp63 construct (VR1012-gp63) was used as a positive control 

12000 bp 
5000 bp 
2000 bp 
1650 bp 
1000 bp 
800 bp 
650 bp 
500 bp 
400 bp 
300 bp 
200 bp 
100 bp  
 

Empty pCRT7/CT-TOPO 

Ldcen-3  

        1                                               2                             3

DNA ladder  



                                                                                                             Chapter 6 Results 

 183

since this gene (L. mexicana gp63) was shown to induce strong immunity by DNA-

gene gun immunisation (Ali, et al 2009). The results (Fig 6.2.4.1-A&B) clearly 

demonstrated that mice immunised with Ldcen-3 or gp63 were significantly protected 

against challenge with live parasites, 5 out of 6 mice were lesion free in Ldcen-3 or 

gp63 groups.  
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Figure 6.2.4.1 Protection induced by immunisation with pCRT7/CT-TOPO- Ldcen-3 constructs   
A: Immunisation protocol, B: Protection induced by immunisation with pCRT7/CT-TOPO- 
Ldcen-3 construct: Two groups of Balb/c mice were immunised either with centrin-3 (in pCRT7/CT-
TOPO) or gp63 construct by gene gun (1µg/mouse) on days 0 and 14. A third group of Balb/c mice 
was given PBS and used as control. Seven days after last immunisation mice were challenged with 
2×106 L. mexicana promastigotes. Mice were regularly monitored at least twice a week to determine 
the lesion size on each mouse. The graph represents 2 independent experiments. Bars represent the 
standard deviation n=6, P***≤0.001 by T test. 
 
 

6.2.4.2       Protection induced by immunisation with pCRT7/CT-TOPO- Ldcen-3 
and pcDNA3.1-Ldcen-3 plasmid construct 

The immunogenicity of Ldcen-3 cloned in two different vectors was investigated to 

confirm the immunogenicity to Ldcen-3. Balb/c mice were immunised by gene gun 
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with 1μg of pcDNA3.1-Ldcen-3. pCRT7/CT-TOPO-Ldcen-3, empty pcDNA3.1, and 

empty pCRT7/CT-TOPO, PBS was used as a control (chapter 2 methods). The results 

show that a significant protection was induced by immunisation with 1µg Ldcen-3 

constructs which was vector dependent since pCRT7/CT-TOPO-Ldcen-3 (4 out of 6 

free of lesion) induced better protection than pcDNA3.1-Ldcen-3 (3 out of 6 free of 

lesion) (Fig 6.2.4.2-B). The empty pCRT7/CT-TOPO (0/6) vectors did not protect 

mice from challenge. Although immunisation with empty pcDNA 3.1 vector slowed 

down lesion development in immunised mice. 
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Figure 6.2.4 Immunisation by Ldcen-3 constructs 
A: Immunisation protocol; B: Protection induced by immunisation with pCRT7/CT-TOPO- 
Ldcen-3 and pcDNA3.1-Ldcen-3: Five groups of Balb/c mice were immunised, with pCRT7/CT-
TOPO-Ldcen-3, pcDNA3.1 (-) Ldcen-3, empty pCRT7/CT-TOPO, empty pcDNA3.1 (-) and PBS by 
gene gun (1µg/mouse) on days 0 and 14. Seven days after last immunisation mice were challenged 
with 2×106 live L. mexicana. Mice were regularly monitored at least twice a week to determine the 
lesion size on each mouse. The graph represents 2 independent experiments. Bars represent the 
standard deviation n=6, P**≤0.01 P***≤0.001 by T test. 
 

          Day   0                                                  14                                                        21 

All challenged with 2x106 
L. mexicana parasite Empty pcDNA3.1(-).1 

pcDNA3.1(-)-Ldcen-3.1 

Empty pcDNA3.1(-) 

pCRT7/CT-TOPO-Ldcen-3 pCRT7/CT-TOPO-Ldcen-3

Empty pCRT7/CT-TOPO Empty pCRT7/CT-TOPO

 PBS (control) PBS (control) 

pcDNA3.1(-)-Ldcen-3.1 

P≤ 0.001 

P≤0.01 



                                                                                                             Chapter 6 Results 

 185

6.2.5      CTL activity in Balb/c mice immunised with pcDNA3.1 (-)-Ldcen-3 and 
pCRT7/CT-TOPO-Ldcen-3 by gene gun 

To evaluate the role of cytotoxic T cells in immunity to Leishmania, a standard 4-

hour 51Cr-release cytotoxicity assay was used to assess the ability of L. mexicana 

Ldcen-3 construct to generate specific cytotoxic T lymphocytes by immunisation. 

Balb/c mice were immunised with pcDNA3.1 (-)-Ldcen-3 and pCRT7/CT-TOPO-

Ldcen-3 as previously described in section 6.2.4. Splenocytes were harvested from 

immunised mice and cultured in vitro for 5 days together with blasts cells pulsed with 

LPS and SLA2 (see chapter 2 methods). On day 5, the splenocyte cells were used as 

effectors in standard 4-hour 51Cr-release cytotoxicity assay against non-adherent DCs 

loaded with SLAs and DCs alone as target. Splenocytes from Balb/c mice immunised 

with pcDNA3.1 (-)-Ldcen-3 or pCRT7/CT-TOPO-Ldcen-3 induced significant CTL 

activity compared with empty vectors (Fig 6.2.5-A&B).  
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Figure 6.2.5 CTL activity in Balb/c mice immunised with pcDNA3.1 (-)-Ldcen-3 and pCRT7/CT-
TOPO-Ldcen-3 by gene gun 
A: CTL activity of Balb/c mice immunised with 1µg pcDNA3.1-Ldcen-3 or mice immunised with 1µg 
empty pcDNA 3.1(-) by gene gun; B: CTL activity of Balb/c mice immunised with pCRT7/CT-TOPO-
Ldcen-3 or immunised with empty pCRT7/CT-TOPO by gene gun. Splenocytes were stimulated with 
SLA for 5 days and used as effector cells in a standard 4-hour cytotoxicity assay against DCs pulsed 
with SLA.The graph represents 4 mice in 2 independent experiments P**≤0.01, P***≤0.001 by T test. 
 

6.2.6      Transfection of CT26 cells with pcDNA3.1 (-)-Ldcen-3 

In this study CT26 tumour cells were transfected with pcDNA3.1 (-)-Ldcen-3 DNA 

using lipofectamine 2000, according to the manufacturer’s instructions, to investigate 

CTL activity against targets expressing Ldcen-3 antigen. The presence of the Ldcen-3 

gene was determined in the stable transfected cells by RT-PCR using forward and 
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reverse primers: Ldcen-3F 5`AGA GGC ATT CGT GTT CG-3` and Ldcen-3R, 

reverse 5`AGG TTG ATC TCG CCA TCT TGA -3`. The transfected CT26-Ldcen-3 

clearly shows a strong band for Ldcen-3. Also, for unknown reasons, non-transfected 

CT26 cells always showed a faint band when tested with the primers, which is not a 

specific band compared with transfected CT26 this was also observed when CT26 

cells was transfected with L. mexicana gp63 plasmid construct (Ali et al., 2009) (Fig 

6.2.6).  

 
                      1               2            3                4              5                 6               7         

Figure 6.2.6 Expression of Ldcen-3 gene in transfected CT26 tumour cells as detected by RT-
PCR. The expression of Ldcen-3 in transfected and non-transfected CT26 cells, GAPDH is a mouse 
house keeping gene used as a positive control. 1: standard DNA 2: non transfected CT26 3: mouse 
GAPDH, 4, 5, 6 transfected CT26 tumour cells and 7 negative controls.  

6.2.6.1    CTL activity in Balb/c mice by immunisation with Ldcen-3 construct 
against tumour targets 

Balb/c mice were immunised twice at a two week interval with Ldcen-3 construct 

coated on gold particles by gene gun. Mice were sacrificed two weeks following the 

2nd immunisation and spleens were collected. Splenocytes were harvested and 

cultured in vitro for 5 days together with blasts cells pulsed with LPS and SLA2 

(SLA may contain Ldcen-3 protein). On day 5, the splenocytes cells were used as 

effectors in a standard 4-hour 51Cr-release cytotoxicity assay against CT26 tumour 
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cells transfected with Ldcen-3 (Fig 6.2.6.1). The results clearly show that 

immunisation of mice with Ldcen-3 construct induce specific CTL activity against 

CT26 tumour cells expressing Ldcen-3. The in vitro restimulation of CTLs by SLA2 

loaded blast cells was crucial. It was shown that removing the in vitro restimulation 

of the splenocytes prevented the generation of CTL activity in immunised mice and 

levels were comparable with that of naïve mouse splenocytes re-stimulated in vitro by 

blast cells loaded with SLA2. Maximum cytotoxity was observed even at the 

minimum effector to target ratio of 6:1 suggesting the need for further testing with 

different effector to target ratios for unknown reasons. 

 
 
Figure 6.2.6.1 CTL activity of Balb/c mice immunised with 1µg pcDNA-Ldcen-3(-) by gene gun  
Splenocytes were cultured in vitro for 5 days together with blast cells pulsed with LPS and SLA2. On 
day 5 they were used as effector cells in a standard 4-hour cytotoxicity assay against CT26-Ldcen-3 
and parental CT26. The graph represents 3 independent experiments, P***≤0.001 by T test. 
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6.3          Discussion  

Immunisation with naked plasmid DNA represents a promising new approach in 

prevention and treatment of various diseases (Ivory and Chadee, 2004). DNA 

vaccines offer a considerable number of advantages over other vaccines and are 

therefore an appealing approach to vaccination against Leishmaniasis. A number of 

studies have demonstrated encouraging results with DNA vaccines and have 

highlighted their potential in both treatment and protection against Leishmaniasis 

(Ahmed et al., 2004; Dumonteil et al., 2003; Kedzierski 2010). DNA vaccines are 

usually constructed from bacterial plasmids that are designed to express a gene of 

interest in the host cells to initiate antigen specific immune responses (Spier, 1996; 

Giri et al., 2004). The plasmid DNA enters the cell and goes to the nucleus where it is 

transcribed to messenger RNA. The transcribed messenger RNA enters the cytoplasm 

and is translated on the ribosomes. The expressed antigen is presented to 

corresponding cells and generates a humoral and cell mediated immune response. 

There is a homology in the gene sequence of Ldcen-3 between different species of 

Leishmania (Selvapandiyan et al., 2004). Ldcen-3 appears to be a suitable candidate 

for a DNA vaccine, since Ldcen-3 is 100% homologous between L. donovani, L. 

mexicana and L. major. Vaccination with plasmid DNA encoding Ldcen-3 could 

potentially protect against more than one clinical syndrome in the "Old and New 

World".  

Selvapandiyan et al., (2009) have previously shown that immunisation with a live 

attenuated L. donovani centrin 1 gene-deleted parasite (LdCen1) could induce 

significant protection against Leishmaniasis in animals. Balb/c mice immunised with 

LdCen1 (Leishmania mutant) demonstrated early clearance of virulent parasite 
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challenge compared with mice immunised with killed parasites, which was associated 

with a significant increase of cytokine (IFN-γ, IL-2, and TNF) producing CD4+ T 

cells. Immunised mice also showed increased IgG2a and NO production in 

macrophages. Balb/c mice immunised with LdCen1 were cross-protected against L. 

braziliensis suggesting that LdCen1 is a safe and effective vaccine candidate against 

visceral and mucocutaneous Leishmaniasis.  

 

To transfect CT26 tumour cells with Ldcen-3 to be used as targets to assess CTL 

activities in Balb/c mice immunised with Ldcen-3 plasmid construct, it was decided 

to sub clone the Ldcen-3 from pCRT7/CT-TOPO into a known mammalian pcDNA 

3.1 plasmid. Garmory et al., (2003) have reported that pcDNA 3.1 is a suitable 

mammalian vector having the cytomegalovirus (CMV) promoter which is required 

for optimal expression in mammalian cells. Also, pcDNA3.1/hygro is a suitable 

vector for a DNA vaccine. pcDNA3, which is very similar to pcDNA3.1/Hygro, has 

been used in other studies as a back bone for DNA vaccines against Leishmaniasis 

(Ghosh et al., 2002; Mendez et al., 2002). Therefore, Ldcen-3 was sub cloned from 

pCRT7/CT-TOPO into pcDNA 3.1 to be used as a vaccine and also to be transfected 

into CT26 tumour cell to be used as target cells in CTL assays. 

 

CT26 transfected with Leishmania centrin is expected to present centrin-3 antigen on 

their surface MHC I and would be a suitable target for CTL activity against 

Leishmania antigens. Stable transfectants expressing Leishmania antigens would 

provide a suitable alternative target to fresh DCs in cytotoxicity assays. Splenocytes 

from Balb/c mice immunised with pcDNA3.1-Ldcen-3 or pCRT7/CT-TOPO-Ldcen-3 

induced a potent CTL response compared to the control group against either DC 
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targets loaded with SLA2 or CT26 tumour cells expressing Ldcen-3. Tumour cells 

can act as professional APC that would specially generate CTL if they express a 

tumor peptide-MHC class I complex and co-stimulatory molecules (Conry et al., 

1996; Sarobe et al., 2004). The immunogenicity of Ldcen-3 cDNA cloned in the 

pCRT7/CT-TOPO plasmid and pcDNA3.1 was determined via DNA vaccination in a 

Balb/c mouse model in vivo. Mice immunised with Ldcen-3 in pCRT7/CT-TOPO or 

in pcDNA3.1 (-) were significantly protected against challenge with live parasites; the 

known immunogenicity gp63 gene was used as a positive control. A dominant Th1 

response was shown to have been correlated with protection in several animal models 

for Leishmania infection. Immunisation of Balb/c mice with a plasmid DNA vaccine 

containing gp63 gene from L. major, induced a dominant Th1 response that was 

protective against challenges with live parasites in vivo (Xu & Liew, 1995; Ali et al., 

2009). Susceptibility of Balb/c mice to Leishmania major infection was correlated to 

an inability to generate a Th1 response which could be restored by administration of 

IL-12 (Trinchieri, 1995; Barbi et al., 2008). This Th response would aid the 

development of CD8+ CTLs capable of killing cells expressing appropriate antigen. 

 

DNA vaccines produce potent CD8 CTL responses in mice against antigens from 

parasites and tumours. The construction of DNA vaccine-encoded antigens able to 

produce a CTL response includes whole protein, truncated protein and fusion with 

another protein (Horspool et al., 1998; Morcock et al., 2000). Conry et al., (1996) and 

Jacobsen et al., (2007) have found that if the tumour cells are tranfected with plasmid 

DNA containing a tumour antigen gene then a specific CTL may be generated. In this 

work (Fig 6.2.6.1) CT26 tumour cells transfected with pcDNA3-Ldcen-3 were shown 

to be susceptible target cells to CTLs derived from Balb/c mice immunised with 
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pcDNA3-Ldcen-3 by gene gun. Ali et al., (2009) have demonstrated a potent CTL 

activity in cultured splenocytes from Balb/c mice immunised L. mexicana gp63 DNA 

plasmid using I.M. injection and gene gun immunisation with against CT26 tumour 

cells transfected with pcDNA-gp63. Qin et al., (2010) have shown a method of DNA 

immunisation using a prime-boost immunisation strategy (two different vaccines, 

each encoding the same antigen, given several weeks apart); better protection was 

obtained by gene gun immunisation. In addition Gurunathan et al., (1998) have 

reported the presence of long term antigen-specific Th1 activity in mice immunised 

with a DNA vaccine containing a gene that coded for a Leishmania antigen. 

Rodriguez-Cortes et al., (2007) found that a multivalent DNA vaccine, encoding 

TRYP which is a key enzyme of the trypanothione dependent metabolism for removal 

of oxidative stress in Leishmania, LACK and gp63, did not protect dogs against L. 

infantum experimental challenge, inspite of the hypothesis that an effective immune 

response was more likely to be generated following exposure to more than one 

antigen. Alternatively, Carter et al., (2007) established that Balb/c mice immunised 

intramuscularly by parasite enzyme gammaglutamylcysteine synthetase DNA vaccine 

protected them against L. donovani.  

This study has shown for first time that Balb/c mice immunised with pcDNA 3.1-

Ldcen-3 or pCRT7/CT-TOPO Ldcen-3 constructs by gene gun induced potent 

protection against challenge with L. mexicana which was also correlated with CTL 

activity. 
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7.1        Discussion  

Existing vaccine strategies including the use of whole cell lysate, killed parasite and 

recombinant antigens, some degree of effectiveness in animal models but achieved 

little or no protection in humans. Therefore the search for new antigens and new 

vaccine strategies is an ongoing process. Parasite persistence was found to be 

important for an effective protective response that could be achieved naturally or by 

immunisation with live attenuated or mutant parasite (Selvapandiyan et al., 2006 and 

Carvalho et al., 2010). DNA vaccine is one of the most novel ways that can be used to 

develop vaccines against Leishmaniasis. DNA vaccines can also be used to raise all 

types of immune response including T-helper cells, a crucial step for an effective 

immune response against intracellular parasites (Dumonteil, 2007; Choudhury, 2010). 

In the present study cell-mediated immune responses were evaluated in Balb/c mice 

by measuring T-cell proliferation, cytokine production, and phenotypic 

characterisation of splenocyte T-cell populations. Two types of SLA antigens; SLA1 

and SLA2, were produced by two different methods. The main difference between 

SLA 1&2 was: for SLA1 antigen, parasites were lysed by sonication for 45 minutes 

followed by ultracentrifugation of the lysate for 4 hours at 100,000g, while SLA2 

antigen was produced by sonication of the parasites for 2 minutes without 

ultracentrifugation. Comparable immune responses to immunisation with SLA1 and 

SLA2 were observed against Leishmania infections. Immunisation with SLA1 or 

SLA2 significantly protected mice against challenge with live L. mexicana. However, 

immunisation with DCs loaded with SLA did not protect mice against challenge with 

live L. mexicana in spite of the activation of CTL activity as determined by 51Cr 

release cytotoxicty assay.  
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Similar responses to L. major promastigote SLA have been reported by Scott et al., 

(1987a) and Badiee et al., (2007) where the intraperitoneal immunisation of Balb/c 

mice with L. major promastigote SLA induced significant protection against L. major 

infection. It has been revealed that the immunity induced by this vaccine was 

associated with the generation of cell-mediated immunity which did not require the 

development of an antibody response to promastigote surface antigens. Similar results 

were also reported by Ali et al., (2009) where Balb/c mice immunised with SLA 

induced potent CTL activity against DC loaded with SLA. Most of the published 

studies did not correlate protection against challenge with live parasite with CTL 

activities in the immunised mice since only a few studies have measured CTL 

activities in immunised animals (Bhowmick et al., 2010). The poor protection induced 

by immunisation with DCs loaded with SLA reported in this study could not be fully 

explained since potent CTLs were detected in spleens of the immunised mice. 

Since soluble Leishmania antigen has induced effective protection against L. 

mexicana infection in Balb/c mice, it was decided to analyse in more depth the 

component of this Ag and whether it is possible to isolate a highly immunogenic 

single Ag. 

To identify and characterise the immunogenicity and immune responses to 

components of the SLA antigens, SLA2 was separated into a number of fractions. 

SLA2 was fractionated into six sub fractions by FPLC. Fractions of SLA2 were 

separated according to anion exchange by a Mono Q column in order to study the 

ability of each fraction to stimulate T cells by immunisation of Balb/c mice. Gp63 

protein, a well characterised Leishmania protein, was used as a marker and a target 

antigen for a comparative immunological analysis since gp63 was the antigen of 

choice in many vaccine studies (Sachdeva et al., 2010). According to the western-
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blotting analysis, a strong gp63 band was detected in whole SLA1&2 and much less 

in sub fractions 2 and 3, but not in sub fractions 1, 4, 5 and 6. These results suggest 

that this separation technique has failed to concentrate at least this particular protein 

gp63. Immune responses to immunisation with these antigens were measured in vivo 

and in vitro by challenging immunised mice with live parasites and CTL assay 

respectively. Splenocytes from Balb/c mice immunised with L. mexicana SLA2 or 

SLA2 fractions in combination with IFA induced a potent CTL response compared to 

the control group, but the whole unfractionated SLA2 induced the highest CTL 

activity compared with all other fractions. These experiments have also showed that 

IFA adjuvant alone did not stimulate specific anti SLA responses since mixing 

Incomplete Freund's Adjuvant with poor immunogenic fractions did not induce 

significant responses. This observation led to postulating that no single fraction was 

superior in antigenicity to whole SLA. In a study by Scott et al., (1987b) and Vilela et 

al., (2007) Balb/c mice immunised with L. major SLA in combination with 

Corynebacterium parvum (CP) adjuvant, induced high protection against challenge 

with L. major. L. major SLA was further fractionated into nine sub-fractions by anion 

exchange liquid chromatography and investigated for their ability to stimulate T cells 

in immunised Balb/c mice. Two fractions (fractions 1 and 9) only were able to 

stimulate lymphocytes to produce macrophage-activating factor as measured by a 

macrophage Leishmaniacidal assay, and elicited significant delayed-type 

hypersensitivity though the study did not look at CTL responses. It has been reported 

that immunisation of Balb/c mice with SLA in IFA plus Ad5IL-12 (administration of 

an adenovirus expressing IL-12) induced protection against L. major as measured by 

decreases in lesion size (Gabaglia et al., 2004). 
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The results in this study clearly show that immunisation with SLA1&2 prevented the 

development of lesions in susceptible Balb/c mice and the observed protection could 

be due to the development of Th1 responses. In agreement with results presented in 

this study, Trotta et al., (2010) have shown that macrophages from dogs vaccinated 

with L. infantum promastigote soluble antigen formulated with three different 

adjuvants were able to kill Leishmania parasite in vitro for up to 12 months after 

vaccination suggesting potency of this vaccine in dogs. Stacey & Blackwell, (1999) 

have earlier reported that subcutaneous immunisation of Balb/c mice with SLA alone, 

or SLA plus CpG ODN induced significant protection, but mice that received SLA 

plus CPG oligodeoxynucleotide (CpG ODN) had significantly less lesion size 

compared with those receiving SLA alone. Ramirez et al., (2010) also have shown 

that immunisation with ribosomal protein extracts administered in combination with 

CpG oligodeoxynucleotides protects susceptible Balb/c mice against primary L. 

major infection.  

 

The ability of each SLA2 fraction to stimulate T cells from immunised Balb/c mice in 

vitro was determined by a cell proliferation assay. Significant proliferation was 

noticed in splenocytes stimulated with SLA2 and SLA2 fractions, but DCs loaded 

with SLA2 or SLA2 fractions induced much potent responses compared with SLA2 or 

SLA2 fractions alone. It was also noticed that splenocyte proliferation responses to 

whole SLA2, fr1 and fr2 was higher than that of fr3, 4, 5 and 6. Ajdary et al., (2000, 

2009) have compared proliferation responses of PBMCs to L. major antigen between 

two groups of subjects, demonstrating that PBMCs from patients with active lesions 

(newly infected) responded strongly to SLA, but not that of the non-healing patients 

(chronic infection). 
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Additionally, in vitro stimulation of splenocytes from immunised Balb/c mice with 

whole SLA2 induced significant levels of IL-2 compared with stimulation with 

fraction fr1, fr2 and fr3, whereas high levels of IFN-γ and IL-12 were detected in 

supernatants of both naïve and immune splenocytes. No or low levels of IL-4 were 

detected in response to in vitro stimulation with SLA. Ajdary et al., (2000 & 2009) 

have found similar results, PBMC from Leishmania patients with active lesions 

produced high levels of IFN-γ and no or little IL-4 in response to in vitro stimulation 

with SLA, but no or low levels of IFN-γ and high levels of IL-4 production in non-

healing patients suggesting the presence of Th1 and Th2 responses, respectively. 

PBMC from normal controls did not produce significant levels of IFN-γ or IL-4. In 

addition Park et al., (2002) and Cumming et al., (2010) have shown that resistance of 

C57BL/6 mice to Leishmania infection was due to the activation of a Th1 type 

response and IFN-γ production. This response has been shown to be initiated by IL-12 

activation which was subsequently followed by activation of macrophages and NK 

cells. Balb/c mice on the other hand had a Th2 response to Leishmania infection 

which was associated with the production of IL-4 which in turn suppresses the 

receptors for IL-12 and ultimately leads to susceptibility to this parasite (Jones et al., 

1998; Lapara & Kelly, 2010). The control of L. infantum in C57BL/6 and Balb/c mice 

was shown to be dependent on CD4 T cell activation and IL-12 production which 

stimulates IFN-γ production from CD8 T cells and NK cells (Murray, 1997; Beattie et 

al., 2010). Balb/c mice immunised with different concentrations of ScLL 

(Synadenium carinatum latex lectin) associated with SLA induced a high level of 

protection against cutaneous Leishmaniasis, and high levels of IgG2a and an 
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increased expression of mRNA for IL-12, IFN-γ and TFN-α (Afonso-Cardoso et al., 

2007). 

IgG2a and IgG1 antibody response profiles (antibody isotypes) in this study have 

revealed a complex Th1/Th2 response to SLA1 and SLA2 immunisation, since 

increased levels of IgG2a and IgG1 in the serum of mice immunised with SLA1 and 

SLA2 as early as 7 days after the immunisation was demonstrated. The antibody 

responses against SLA2 in the first 2 weeks were higher than those against SLA1. 

Similar results were also reported by Ramirez (2010), Balb/c mice immunised with L. 

major ribosomal protein (LRP) extracts administered in combination with CpG 

oligodeoxynucleotides, induced long-term Th1 dependent protection against L. major 

secondary infection. Also, cells cultured from lymph node and spleens produced high 

levels of IFN-γ but not IL-10 and IL-4. High levels of IgG2a and IgG1 similar to 

results reported in this study were also detected in immunised mice. In addition 

Mohammadi et al., (2006) have identified two novel L. major promastigote antigens 

(140 and 152 kDa) that are able to induce a specific IgG2a response in C57BL/6 and 

Balb/c mice. These two proteins were also shown to induce IgG production in mice. A 

single subcutaneous or intraperitoneal injection of mice with L. mexicana antigens 

induced both Th1 and Th2 responses as determined by IgG1 and IgG2a antibodies 

(Dissanayake et al., 2005; Bhowmick & Ali, 2009). Balb/c mice immunised with SLA 

encased within Man5-DPPE (dipalmitol phosphatidy lethanol- amine) induced a 

potent protective response to L. major infection and increased IgG2a/IgG1 levels in 

the sera of immunised mice (Shimizu et al., 2003). Collectively results presented in 

this study suggest that the immunogenicity of the whole SLA is much superior to any 

of the single SLA fractions.  
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DC subsets may have different functions in terms of Th1/Th2 generation, antigen 

recognition and cytokine production (Sundquist et al., 2004; Nylen & Gautam, 2010). 

DC subsets of murine spleen may differ in their ability to generate IL-12, a potent 

initiator of anti Leishmania responses and phagocytosis of the Leishmania parasite 

(Henri et al., 2002; Steinman & Idoyaga, 2010). The function of B and T 

lymphocytes, as mediators of immunity are largely under the control of dendritic 

cells, DCs residing in the periphery take up and process antigens, express co-

stimulatory molecules, migrate to lymphoid organs, secrete cytokines and interact 

with lymphocytes to initiate an immune response. Down regulation of MHC class I 

and II expression on infected DCs may be used as an immune evasion strategy by the 

Leishmania parasite. It has been shown that mature activated antigen-containing DCs 

display high levels of MHC class I, MHC class II and co-stimulatory molecules on 

their cell surfaces, which leads to activation of T cells (Meyer et al., 2004). This study 

was focused on the effect of live and autoclaved L. mexicana on the expression of 

MHC I, MHC II, CD40, CD80 and CD11c on the surface of DCs derived from the 

bone marrow of Balb/c mice and whether down regulation of MHC class I reduced 

the   of infected cells to CTL killing. In order to establish the phenotypic profile of 

DCs, different types of bone marrow derived cells i.e. mature adherent, immature 

adherent, mature non-adherent and immature non-adherent cells were stained with 

different DC markers and analysed by flow cytometer. Only mature non-adherent 

cells expressed all potential DC markers: such as MHC I, MHC II, CD11c, CD205, 

CD40 and CD80, but did not express the macrophage marker F4/80. These results 

clearly indicated that only mature non-adherent cells have the highest percentage of 

DCs, hence they were chosen for further studies. Maturation of DCs was shown to 

increase the expression of MHC I & Class II and co-stimulatory molecules such as 
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CD40, CD80, CD86 and CD54, and also down-regulated their antigen capturing and 

phagocytic capacity (Brandonisio et al., 2004; Yildirim et al., 2010). On the other 

hand, maturation of DCs enhanced cytokine secretion, induced different patterns of 

chemokine receptor expression and chemokine production, enabling DC migration 

and recruitment of other cell types. Infection of DCs for one or 24 hours with live L. 

mexicana parasite down regulated the expression of MHC I, MHC II, CD40, CD80 

and CD11c. Brandonisio et al., (2004) and Young et al., (2010) have found that DCs 

in humans and mice can be divided into various subtypes dependent on the type of 

surface antigens. On the basis of the expression of CD4, CD8, CD205 and CD11b 

surface markers, myeloid and plasmocytoid DC subsets in humans and mice have 

shown partially diverse functions (Henri et al., 2002; Comabella et al., 2010). Results 

in this study demonstrate that BM DCs of Balb/c mice express high levels of CD11c+ 

and infection with live L. mexicana induced down-regulation of MHC I, MHC II, 

CD80, CD40 and CD11c. Similar results were reported by (Muraille et al., (2003) and 

Griewank et al., (2010) where infection of CD11c+ DC with L. major decreased the 

expression levels of MHC II. Unlike infection with live parasites, treatment of DCs 

with autoclaved parasites did not down regulate, but slightly up-regulated the 

expression of MHC I, MHC II, CD40, CD80 and CD11c and is in contrast to the 

effect of both infective and lysed parasites on CCR2, CCR3 & CCR7 expression by 

DCs (Steigerwald & Moll, 2005; Jimenez et al., 2010).  

 The combination of a therapeutic vaccine with antibiotic was found to be more 

effective in curing the lesions of bacterial infections in animal models (Kedzierski 

2010). Based on this hypothesis, experiments were designed to study the effect of 

treatment with fungizone on the expression of MHC I, MHC II, CD40, CD80 and 

CD11c by DCs following Leishmania infection. It has been postulated that down 
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regulation of MHC I and II on the surface of Leishmania infected DCs would help the 

survival of the parasite inside the target cells despite the presence of potent CTLs, 

thus leading to progression of infection. If the down regulation of MHCs can be 

reversed by the use of fungizone, the combination of vaccine and fungizone could be 

effectively used to treat Leishmania infection. No toxic effect of fungizone on DCs 

was observed, as determined by culturing DCs with increased doses of fungizone for 

24 hrs. The addition of fungizone to DC cultures for one hour subsequent to 

Leishmania infection up-regulated to normal levels the expression of MHC class I, 

MHC class II, CD11c, CD80 and CD40. This also has restored their susceptibility to 

CTL activity. DCs loaded with autoclaved L. mexicana were found to be susceptible 

to CTL killing which was positively correlated with MHC class I expression, but DCs 

infected with live parasites showed decreased levels of surface expression of MHC I 

and subsequently decreased their susceptibility to CTL activity suggesting a possible 

mechanism used by the parasite to evade immunity.  

 

DC responses to Leishmania infection are varied according to the genetic background 

of the mice which determine their resistance or susceptibility to Leishmania infection. 

Skin DCs from L. major infected C57BL/6 (resistant) or susceptible Balb/c mice both 

demonstrate up-regulation of MHC class I and II, CD40, CD54, and CD86 and release 

IL-12p70 (von Stebut et al., 2000; Griewank et al., 2010). IL-4R expression was high 

in LCs infected with L. major from susceptible but not resistant mice (Moll et al., 

2002) and the co-stimulatory molecule CD80 expression was down-regulated on LCs 

from susceptible but not resistant mice (Mbow et al., 2001). Furthermore, CD40 

expression was decreased in the lymph node DCs of susceptible mice infected in vivo 

with L. major, but not of resistant mice, which was also correlated with under-
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production of IL-12p40 and IL-12p40 mRNA (Heinzel et al., 1998; Teixeira et al., 

2010). Collectively these results suggest the presence of more than one factor that 

controls susceptibility or resistance to Leishmania infection. Also, these results 

suggest the potential efficacy of combination treatment of Leishmania.  

 

Plasmid DNA encoding single or multiple proteins from pathogens when introduced 

into host cells by immunisation promotes humoral and cell-mediated immune 

responses (Walker et al., 1998; Moreno & Timon, 2004). It has been reported that 

immunisation with a DNA plasmid encoding one or more Leishmania antigens 

produced protection against the parasite (Kedzierski, 2010). In Balb/c mice, injection 

of L. major gp63 plasmid by gene gun DNA induced high protection against 

Leishmania infection, where IFN-γ but not IL-4 was produced by immune T cells (Ali 

et al., 2009). Immune responses induced by plasmid DNA vaccines can be moderated 

by means of administration and/or the co-administration of immuno-modulator genes; 

this has been well established in animal studies (Ertl, 2009). Several differences in 

responses to DNA vaccination between mice and humans have already been observed. 

In humans, high doses of plasmid DNA are required to induce an immune response 

but in mice, similar responses are normally obtained using 0.1-1µg of DNA 

administered by a gene gun and 10-100µg administered by injection (Fynan et al., 

1993; Roth et al., 2006). Balb/c mice immunised with a DNA vaccine of L. 

amazonensis gene constructs encoding P4 nuclease, L. amazonensis HSP70 and 

adjuvant constructs encoding murine IL-12, induced significant protection against Old 

World and New World cutaneous Leishmaniasis (Campbell et al., 2003; Shaddel et 

al., 2008; de Oliveira et al., 2009).  

In the present study the immunogenicity of Ldcen-3 was determined using DNA 

immunisation in a Balb/c mouse model of the L. mexicania parasite. The Ldcen3 gene 
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is 100% homologous in L. major, L. donovani, and L. mexicana. Thus, vaccination 

with plasmid encoding Ldcen-3 could potentially protect against more than one Old 

and New World clinical syndrome. Ldcen-3 gene was originally constructed in 

pCRT7/CT-TOPO (Selvapandiyan et al., 2006, 2009), but it was not known whether 

it could be expressed in mammalian cells, to determine whether pCRT7/CT-TOPO is 

a suitable vector for use in mammals, a marker gene (LacZ) was cloned in this 

plasmid and used to transfect the mouse cell line CT26. In this study, immunisation of 

Balb/c mice with Ldcen-3 cDNA by gene gun induced specific CTL activity against 

CT26 tumour cells expressing Ldcen-3 was it tested against DCs loaded with SLA as 

well. It was shown that Balb/c mice immunised with pcDNA 3.1-Ldcen-3 or 

pCRT7/CT-TOPO constructs by gene gun induced potent protection against challenge 

with L. mexicana which was also correlated with CTL activity. In a previous study by 

Dumonteil et al., (2003) Balb/c mice immunised with DNA vaccines encoding L. 

mexicana GP63, LACK and CPb in VR1012 induced protection against L. mexicana 

as demonstrated by reduced lesion size and parasite burden. Immunisation of mice 

with a mixture of these three plasmids also increased the protection. The results 

presented in this study demonstrated for the first time the immunogenicity of the 

Ldcen-3 gene and its potential as a vaccine candidate for further investigation. 
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Future Work 
 

• Centrin-3 is homologous in L. donovani, L. major, and L .mexicana therefore, 

it is hopeful that this vaccine could confer protection against all three species.  

However, the immune evasion strategies employed by the parasite vary 

between species.  Therefore, it would be very interesting to conduct a study to 

investigate the ability of pcDNA3.1- Ldcen3 to protect against infection with 

each of these three species. 

 

• Ldcen-3 was sub-cloned successfully from pCRT7/CT-TOPO into pcDNA 

3.1. It was shown that immunisation of Balb/c mice with pcDNA 3.1-Ldcen-3 

and pCRT7/CT-TOPO constructs by gene gun induced potent protection 

against challenge with L. mexicana, although for unknown reasons better 

protection was afforded by pCRT7/CT-TOPO-Ldcen-3 vector immunisation. 

Based upon these findings, further work should be undertaken using the three 

Leishmania genes (gp63, Ldcen-1, Ldcen-3.) cloned into different vectors 

(VR1012, pCR T7/CT-TOPO and pc DNA 3.1), to investigate their ability in 

protection against Leishmania infection in a combination. This could result in 

a novel and more effective vaccination strategy against this disease. 

 
• In this study, DCs infected with live parasites was shown to have decreased 

levels of surface expression of MHC I and subsequently decreased their 

susceptibility to CTL activity suggesting a possible mechanism used by the 

parasite to evade immunity. Leishmania parasites were shown to lose their 

infectivity (virulence) on prolonged culturing in vitro. Virulent and avirulent 

parasite cultures will be further investigated for their ability to infect 
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macrophage and whether they are able to affect the expression of MHC class I, 

II, CD11c, CD40 and CD80 in a similar manner. 
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Appendix I 

Materials 
 
Laboratory Plastics, Glassware and Sharps  
 
Instrument Manufacturer  

PCR tubes Micronic Systems  

Conical Flask Pyrex 

Measuring cylinder Kartell® 

10µl  Micropipettes  Sarstedt, UK 

100µl Micropipettes Sarstedt, UK 

1000µl Micropipettes Sarstedt, UK 

Micro tips 0.5 – 10μl tips Sarstedt, UK 

Micro tips 20 – 200μl tips Sarstedt, UK 

Micro tips 200 – 1000μl tips Sarstedt, UK 

96 well ELISA plates Costar, UK 

Petri dishes Sterilin UK 

25 ml Pipettes Sarstedt, UK 

24 well and 6 well flat bottom culture dishes Sarstedt, UK 

96 well round bottom plates Sarstedt, UK 

Pasteur pipettes Sarstedt, UK 

1.5 ml eppendorf tubes Sarstedt, UK 

0.5 ml eppendorf tubes Sarstedt, UK 

1.2 ml Cryovials TPP, UK 

Pipette tips < 1ml Sarstedt, UK 

96 well ELISA plates Costar, UK 

Petri dishes Sterilin UK 

25 ml Pipettes Sarstedt, UK 

10 ml Pipettes Sarstedt, UK 

5 ml Pipettes Sarstedt, UK 

Haemocytometer Weber 
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96 well plate harvester filters Perkin Elmer 

Scalpels Swann Morton Ltd. 

PCR Tubes Micronic Systems 

0.2μm Filters Sartorius, UK 

Real-time PCR tubes Strategene, Germany 

0.5 – 10μl tips Sarstedt, UK 

20 – 200μl tips Sarstedt, UK 

200 – 1000μl tips Sarstedt, UK 

Dialysis tube Sarstedt, UK 

FACS Tubes Sarstedt, UK 

 
Electrical Equipment  
 
Instrument Manufacturer 
Liquid Nitrogen Freezer Forma Scientific 
-80°C Freezer Ultima II, Revco 
Class II safety cabinets Walker 
37°C incubator Forma Scientific 
96 well plate harvester Packard 
Light microscope Olympus 
96 well plate reader Tecan 
Top count scintillation counter Packard 
Drying Cabinet Scientific Laboratory Supplies Ltd 
PCR Thermal Cycler Hybaid, Germany 
Water Baths Grant Instruments 
Real Time PCR Thermal Cycler Bio-rad 
Microscope Nikon 
Power Packs Bio-rad 
UV Spectrophotometer Sanyo 
Tran illuminator Ultra Violet Products 
Whirl mixer Scientific Industries 
Coulter Flow Centre Beckman Coulter 
-80°C Freezer Ultima II, Revco 
-20°C Freezer Standinova  
Orbital Incubator Stuart 
Incubator Griffin  
Electrophoresis gel tanks Bio-rad 
Power Pack Bio-rad 
Microwave Matsui  
Nanopure Diamond water reservoir  Barnstead  
SP Bio Spectrophotometer  Sanyo 
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Weighing scale Fisherbrand 
Gene Genius Bioimaging system Syngene 
Whirlimixer Scientific Industries 
PCR Thermal Cycler Hybaid, Germany 
Refrigerated centrifuge Mistral 1000, MSE 
Clenz Beckman Coulter 
Isoton Beckman Coulter 
Flow-chekTM   Fluorospheres      Beckman Coulter 

 
Reagents, Bulking 
 
Reagent Company 
Bacterial culture Escherichia coli  XLIB Invitrogen 
pCR®II- T7/CT-TOPO®  4.0kb Invitrogen Ltd. 
pcDNA3.1/Hygro 5.6kb Invitrogen Ltd. 
pcDNA3.1myc-His LacZ (-) 8.6 kb Invitrogen Ltd. 
V1012 gp63 Invitrogen Ltd. 
Sodium chloride Sigma®, UK 
Ampicillin Sigma®, UK 
Kanamycin Sigma 
GTE  Sigma Aldrich, UK  
EDTA (Ethylene Damien Tera Acetic Acid) Sigma Aldrich, UK 
HCL      Sigma Aldrich, UK 
Tris Sigma Aldrich, UK 
Glucose Sigma Aldrich, UK 
SDS (sodium dodecyl sulphate) Sigma Aldrich, UK 
Sodium hydroxide Fisher Scientific Ltd.  
Potassium acetate Sigma Aldrich 
Acetic Acid Fisher Scientific Ltd 
Chloroform alcohol Sigma Aldrich 
Absolute ethanol  BDH 
RNAase Sigma® 
  LB Agar  
7.5 gm Agarose Bioline 
5 gmTryptone Oxoid 
2.5 gmYeast Oxoid 
5 gm Sodium Chloride Sigma 
500 ml distilled water  
LB broth  
10g Tryptone Oxoid 
5 g yeast Extract Oxoid 
10g NaCl Sigma 
15g Agar Bioline 
1ml of 1M NaOH (1M = 0.4g/10ml) Sigma 
Add water to 1L and autoclave.  
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Agarose gel Electrophoresis  
Agarose Bioline 
Sybr® Safe DNA gel stain Invitrogen Ltd.  
Ethidium Bromide Sigma 
Orange G Sigma® 
DNA Ladder  Invitrogen Ltd. 

 
Polymerase Chain Reaction (PCR) 
 
10x Reaction Buffer Promega, USA 
Magnesium chloride Promega, USA  
Deoxy nucleotide triphosphates (dNTP) Bioline 
Taq Polymerase  Bioline  
Primers   MWG Biotech, UK 

 
Restriction Digestion 
 
Bovine Serum Albumin (BSA) Promega, USA 
Buffer B  Promega, USA  
Hind III Restriction Enzyme Promega, USA 
EcoR I Promega, USA 

 
DNA Extraction 
 
Buffer EB Qiagen 
Buffer PE Qiagen 
Buffer QG Qiagen 
Absolute Ethanol BDH 
Isopropanol  Sigma 

 
Ligation Reaction 
  
T4 DNA Ligase Promega, USA  
Ligase Buffer Promega, USA  

 
Coating of gold particles by DNA 
 
Spermidine Sigma 
Nitrogen gas Sigma 
Gold BIO-RAD 
poly-vinyl-pyrollidone (PVP) Sigma 
Magnesium chloride Promega 
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RT-PCR Enzymes and Reagents 
 
Reagent Company 
Oligo dT Primers Promega 
RNasin (Ribonuclease inhibitor;40U/µl) Promega 
M-MLV Reverse Transcriptase (M-
MLV RT ; 200U/ml) 

Promega 

BioTaq Polymerase Bioline 
T4 Ligase Enzyme Promega 
GAPDH (primers) MWG Biotech, UK 
Centrin-3  primers MWG Biotech, UK 
Phusion Taq polymerase Finnzyme 
pcDNA3 plasmid Invitrogen 
SYBR Green Master Mix Biorad 
dNTPs Bioline 
DNA ladder (1Kb plus) Invitrogen 
10x Reaction Buffer Promega 
Magnesium Chloride Promega 
Molecular Grade Water  Sigma, UK 
Absolut Ethanol BDH, UK 
Isopropanol Sigma, UK 
RNA Stat 60 AMS Biotechnology, UK 
Chloroform alcohol Sigma Aldrich 

 
Other Reagents 
 
Media 
 
Culture Media Company 
DMEM Bio Whittaker, Europe 
RPMI 1640 Bio Whittaker, Europe 
Schneider  Sigma 

 
Supplements added to Culture 
 
Media Company 
Foetal Calf Serum (FCS) Bio Whittaker, Europe 
Glutamine synthetase (GS) and 10%  IRH Biosciences 
Bio-FCS (FCS without bovine IgG) Autogen Bioclear, UK Ltd. 
2-mercaptoethanol Bio Whittaker, Europe 
Penicillin/Streptomycin Bio Whittaker, Europe 
HEPES buffer Bio Whittaker, Europe 
Fungizone Bio Whittaker, Europe 
Geniticin (G418) Bio Whittaker, Europe 
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Appendix II 
 
T cell Media 
 
Ingredients Quantity 
Complete RPMI 500 ml 
10% FCS (by volume) 50 ml 
Glutamine 5 ml 
20 mM HEPES 10 ml 
50 μM 2 Mercaptoethanol 500 μl 
50U/ml Penicillin/Streptomycin 5 ml 
0.25 μg/ml Fungizone 500 μl 

 
BM-DC media 
 
Ingredients Quantity 
Complete RPMI 500 ml 
10% FCS (by volume) 25 ml 
Glutamine 5 ml 
20 mM HEPES 10 ml 
50μM 2 Mercaptoethanol 500 μl 
50U/ml Penicillin/Streptomycin 5 ml 
0.25 μg/ml Fungizone 500 μl 

 
Schneider media  
 
Ingredients Quantity 
Complete Schneider's Drosophila Media 1000 ml 
10% FCS (by volume) 100 ml 

 
PBS 
0.15 M NaCl  
0.01 M sodium phosphate, pH 7.2 

 
Other Reagents 
 
Reagent Company 
EMLA Anaesthetic Cream Astra Zeneca, UK 
Chromium 51 Amersham 
Incomplete Freunds adjuvant (IFA) Gibco, UK 
Trypsin Gibco, UK 
Versene Gibco, UK 
Heparin Sigma, UK 
Trypan Blue Sigma, UK 
Trypan Blue Sigma, UK 
X-gal solution Sigma, UK 
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PBS-BSA washes for flow cytometry 
 
Ingredients Quantity 
PBS tablets 10/litre 
BSA 0.1% (1g/litre) 
Sodium Azide 0.02% (0.2 g/litre) 

 
 
RIP Buffer 
 
Reagent gm/500 ml mM 
Sodium Chloride 4.38 150 
Tris 3.027 50 
EDTA, anhydrous 0.931 5 
 
Western Blot Lysis Buffer 
 
Ingredients Quantity 
RIP Buffer 5 ml 
Igepal 50 μl 
Deoxycholate acid 25 mg 
10% SDS 50 μl 
500 mM Benzamidine 10 μl 
100 mM PMSF 5 μl 
200 mM Sodium Valrpoate 25 μl 
1 M Sodium Fluoride 5 μl 
Standard protein ladder (10-200 kDa) Invitrogen 
 
Resolving gel 10% 
1165µl acrylamide, 1165µl 
Tris  875µl 
1460µl H2O, 1460µl 
ammonium persulphate  35µl 
 
Atacking gel 4% 

Acrylamide 15%  
0.5 M Tris HCL 25% 
dH20 60% 
Ammonium persulphate 10% 
TEMED 0.1% 
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Other Buffer 
 
Buffer Composition 

PBS 1 tablet dissolved in 100 ml distilled water 

PBA PBS, 0.1% (w/v) BSA,  0.02% (w/v) Sodium Azide 

TBS 10mM Tris, 150nM NaCl pH 7.4 

1 x TAE (Freshly prepared 
from 10 x TAE) 

40 mM Tris Acetate, 1 mM EDTA  

 
Leishmania Buffer 
 
Reagent 10ml 
Leupeptin 2.5mg/ml 
Tris 10 ml (100mM) 
EDTA 50µl (1mM) 
PMSF 50 µl (1mM) 
 
 
Buffer of fractions Leishmania Soluble Antigens 
 
Buffer A 100mM tris, 1mM EDTA pH 8.0 
Buffer B 100mM tris, 1mM EDTA and 1m NaCLpH 8.0 
 
 
 
The Values of cells expression 
 
CD Imm non 

adherent  
Mat non adherent 
cell  

Imm adherent  Mat adherent 

control test   control test   control test  control test   
CD11c  
 

5.7 % 10.4% 5.44%  17% 16%  13% 0.21%  0.64% 

CD205 
 

0.60%  0.09% 0.31%  63.6% 0.49%  0.04% 0.38%  0.14% 

CD40 
 

0.60%   0.80% 0.0%   53.5% 0.49%   0% 0.38%   0.04 

CD80 
 

0.64%  0.88% 0.06%  65.5% 0.06%  1.86% 11.7% 0.64%  

F4/80 
 

0.64%  2.90% 0.06%  0.07%  6%  4.58% 9.85%  7.39% 

MHC I 
 

1.20%  35.3% 0.31%  35.3% 1.60%  37% 1.20%  0.33% 

MHC II  
 

0.64% 38.6% 0.64%  61.7% 6%  20% 9.85% 48.9% 

Table showing perecentage of positive cells for each antibody used 
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Non-infected DC cell 
expression % 

Infected DC cell expression % 

1hr MHC II:  
control: 1.n44 % test 54.8% 

MHC II:  
control:  0.12% test 8.38% 

24hrs MHC II:  
control: 20% test:  45.5% 

24hrs MHC II:  
control:  0.12% test 2.24% 

1hr MHC I: 
control: 1.78%  test: 4.76% 

1hr MHC I: 
control: 1.78%  test: 0.93% 

24hr sMHC I: 
control: 8.70%  test: 17.6% 

24hr MHC I: 
control: 0.10%  test: 0.66% 

24hrs CD40 
Control: 0.50% test: 4.14 

24hr CD40 
Control: 0.50% test: 0.08% 

24hrs CD80 
Control: 0.10  test: 19% 

24hrs CD80 
Control: 0.36% test: 0.06% 

24hrs CD11c 
Control: 0.12% test 94.8% 

24hrs CD11c 
Control: test: 0.65% 

Non-atuclaved  DC cell 
expression % 

Atuclaved  DC cell expression % 

1hr MHC II:  
control: 0.12 % test 14% 

1hrs MHC II:  
control:  0..33%  test 12.5% 

24hrs MHC I:  
control: 20% test:  45.5% 

24hr MHC I: 
control: 1.12%  test: 12.7% 

1hr MHC II: 
control: 1.78%  test: 4.76% 

1hr MHC I: 
control: 1.17%  test: 14% 

24hrs MHCII: 
control: 20%  test: 45.5% 

24hr sMHC II: 
control: 0.06%  test: 12.7% 

24hrs CD40 
Control: 0.50% test: 4.14 

24hrs CD40 
Control: 0.55% test: 14.14 

24hrs CD80 
Control: 0.10  test: 19% 

24hrs CD80 
Control: 0.11  test: 20% 

24hrs CD11c 
Control: 0.12% test 94.8% 

24hrs CD11c 
Control: 0.12% test 30% 

Table showing perecentage of positive cells for each antibody used 
 
 
Non-infected DC cell 
expression % 

Infected DC cell expression % After Treated with fung 

MHC I  
 Control: test:33% 

MHC I:  
0.01% 

MHC I:  
Control: test: 7.40% 

 MHC II:  
 Control: 0.19 test: 18% 

MHC II:  
Control: 0% test 0% 

MHC II:  
control:  0.06% test 29.7% 

MHC I: 
control: 1.78%  test: 4.76% 

1hr MHC I: 
control: 1.78%  test: 0.93% 

MHC I: 
control: 1.78%  test: 4.14% 

MHC I: 
control: 8.70%  test: 17.6% 
 

24hr MHC I: 
control: 0.10%  test: 0.66% 

24hr MHC I: 
control: 1.17%  test: 4.14% 

Table showing perecentage of positive cells for each antibody used 
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Animals 

Balb/c mice were purchased from the Harlan Olac (Oxon, UK) housed and bred at the 

Nottingham Trent University. All animals were handled in accordance with the Home 

Office Codes of Practice for the housing and care of animals. 

 

Phenotyping of the Bone-marrow derived cells 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Phenotyping of the Bone-marrow derived cells subgroups using monoclonal antibodies 
and flow cytometry analysis, red= control, green= test. 
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The effect of Leishmania infection on the expression of MHC class I, MHC class 
II CD11c, CD80 and CD40 
 
 
 
 
Duration of 
infection 

MHCI MHCII 

1 hour 

 
3 hour 

5 hour 

24 hour 

 
 
24 hour 24 hour 24 hour

CD11c CD80 CD40 

 
Figure 2: The effect of Leishmania infection on the expression of MHC class I, MHC class II 
CD11c, CD80 and CD40, red= control, green= infected Daces and black= non infected D 
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Effect of autoclaved parasite on the expression of MHC class I and MHC class II 
DCs 
 
 
Time 
course 

MHC I MHC II 

1 hour 

 

 

3 hour 

   
 

5 hour 

24 hour 

 

 
 
Figure 3: Effect of autoclaved parasite on the expression of MHC class I and MHC class II DCs 
Red-non infected control (isotype antibody control), blue-non infected test, and green- autoclave 
infected test. 
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Effect of fungizone on the expression of MHC I and II in the DCs following 
Leishmania infection 
 
 
MHC I MHC II 

  

 
Figure 4: Effect of fungizone on the expression of MHC I and II in the DCs following Leishmania 
infection 
Red- non infected control, black-non infected test, green- infected test, blue- infected + fungizone test. 
 

The sequence of Ldcen-3 gene 

ATGAACATCACTAGTCGCACATCGGGGCCGCTGCGCACCACTGCGCCGGC
GGCATCAGCGCCGTCCGCGGCAGCGCGCCGTCGCTTCCAGCTTACGGAGG
CCAACAGCGCCAGGAGATCCGAGAGGCATTCGAGCTGTTCGACTCGGTA
AGAACGGACTCATCGATGTGCATGAGATGAAGGTCAGCATGCGAGCACTT
GGCTTTGATGCAAAACGGGAGGAGGTGCTGCAGCTCATGCAGGACTGCGC
TGCCCGGGACCAGAACAATCAGCCGCTTATGGACTTACCGGGCTTCACAG
ATATCATGACGGACAAGTTTGCGCAGCGCGATCCTCGGCAGGAGATGGTG
AAGGCGTTTCAGCTGTTTGACGAGAACAATACCGGCAAAATCTCCCTTCG
CTCGCTGCGTCGTGTGGCGCGGGAACTGGGCGAGAACATGAGCGACGAA
GAGCTGCAGGCAATGATTGACGAGTTTGACGTAGATCAAGATGGCGAGA
TCAACCTAGAAGAGTTTCTTGCCATTATGCTAGAGGAGGACGACTAC 
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Ldecn-3 forward primer  
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Ldecn-3 Reverse primer  
 

 

The recognition sites of these enzymes are given below 

 

Hind111:-  5’  A AGCT T  3’     Xba1:-    5’   T  CTAG  A  3’ 

                 3’  T TCGA A  5’                  3’   A  GATC  T   5’ 

 

The recognition site for these two enzymes were not present in the Ldcen-3 gene sequence, 

so these two enzymes were conveniently used for restriction digestion purpose 
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A -Cutting pCR®T7/CT-TOPO®-Ldcen-3 by XbaI and HinIII, then subcloned to pcDNA3.1 (-) 
 
 
 
 
 

 
Cutting PCDNA 3.1(-) by XbaI and HinIII A 
 
 
 

 

This is gene Leishmania donovani centrin 3  

Here where was insert pCR®T7/CT-TOPO®-Ldcen-3 after cut. 
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