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Foreword

SET2023 in Nottingham, UK, continued the tradition of this esteemed annual conference, building
upon the momentum regained in 2022 after a 2-year hiatus due to COVID-19.

The 20th International Conference on Sustainable Energy Technologies was a pivotal international
academic conference in the realm of global sustainable energy. The conference served as a platform
for the exchange of the most recent technical insights, the dissemination of current research findings,
and the discussion of major challenges that could influence the future trajectories of human society,
such as sustainable energy technology research, its applications, and energy security.

Held from August 15th to 17th, 2023, in Nottingham, UK, the conference was a collaborative effort
between the World Society of Sustainable Energy Technologies (WSSET) and the University of
Nottingham. Distinguished experts and scholars in the field, as well as representatives from eminent
enterprises and universities, convened to deliberate on new advancements and accomplishments in
the sector, whilst fostering academic exchange, the practical application of scientific discoveries, and
collaborations between universities and industries, as well as between governments and
industries.

The papers included in these proceedings concentrated on the same key topics as the previous year,
such as Energy Storage for the Age of Renewables; Research, Innovation and Commercialisation in
Sustainable Energy Technologies; Integrating Planning & Policy, Architecture, Engineering &
Economics; Energy and Environment; Engineering Thermo-physics; and Systemic Change for Cities.

Over 200 delegates attended SET2023, with nearly 350 abstracts received. Although the number of
papers presented and posters displayed is yet to be confirmed, the conference was a rich forum for
academic and practical discourse.

We extend our gratitude to all participating authors for their invaluable contributions to both the
conference and the publishing of this book. Our international scientific committee deserves special
mention for their advisory role and their meticulous review of papers. We also express our unreserved
thanks to Zeny Amante-Roberts and Celia Berry for their relentless efforts in making SET2023 a
successful event. A special acknowledgement goes to our sponsors PCM Products Ltd., Terry Payne,
and the newly added Stormsaver Ltd, for their generous support.

Professor Saffa Riffat

Chair in Sustainable Energy Technologies

President of the World Society of Sustainable Energy Technologies
SET 2023 Chair
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#48: Rapid evaluation of buildings thermal performance
using infrared thermography and artificial intelligence
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Abstract: Domestic energy consumption significantly contributes to the UK’s overall energy usage. Space and water
heating are responsible for most households’ energy consumption. Any price hike, such as the current energy price
situation, would seriously affect the budget of many households living in poorly insulated buildings. Improving insulation by
deep retrofitting of existing buildings is expected to be a reasonable solution for reducing the domestic heating energy
demands for those households. However, the level of insulation is a key issue, as retrofitting with excess insulation will
incur higher cost and result in longer payback periods, especially in countries with moderate temperatures such as the UK.
Therefore, it is necessary to estimate the thermal performance of existing building stock at the planning stage of retrofitting.
Such evaluation of thermal performance requires, in most cases, prolonged monitoring of buildings using sensors installed
for data analysis leading to significant time and cost issues. To address this knowledge gap and provide rapid evaluation
of expected energy savings of retrofitting, this paper presents a novel technology with a case study to estimate energy
savings between insulated and uninsulated residential buildings using Infrared Thermography and Artificial Intelligence.
The results prove that the suggested Al technology, combined with infrared thermography, can provide rapid evaluation of
heat losses through the building envelop and estimate the potential energy savings due to the enhancement of wall
insulation by retrofitting.

Keywords: Retrofitting; Infrared thermography; Artificial Intelligence; Neural Networks; Insulation; Insulation.
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1. INTRODUCTION

The increase in market economy activities, particularly during the post-COVID era, has resulted in a surge in energy
demand in 2021, which is still growing but at a slower rate (Ritchie, Roser and Rosado, 2022). The recent global situation
has affected household energy prices, increasing them globally by 112.9% (Guan et al., 2023). Despite the growth of
renewable energy, fossil fuels still dominate energy production (BP PLC, 2021). Buildings contribute significantly to
greenhouse gas emissions (UN Environment Programme, 2020), with heating responsible for around 80% of domestic
energy consumption in the UK (Department for Business Energy & Industrial Strategy, 2023). Although a case study has
proven that newly built houses in England and Wales have lower energy demand (The National Energy Efficiency Network,
2019), a significant number of English dwellings fall into the category of poor energy efficiency in existing housing stock,
with 75% of houses being pre-1990 constructions (Piddington et al., 2020). The UK Government is considering strategies
to reduce energy consumption in buildings, such as improving insulation and energy efficiency, to meet their goal of net-
zero emissions by 2050 (Government Property Agency, 2022).

Wall insulation plays a crucial role in improving energy efficiency, but its effectiveness depends on various factors, such
as local weather, insulation materials, level of insulation (U-value), and occupants' behaviour, including working from home
(Al-Habaibeh et al., 2021) or opening of windows (Salim and Al-Habaibeh, 2023). A wide variety of insulation materials are
commercially available in today's market, which are classified as organic materials, inorganic materials, combined
materials, and new technology materials (Papadopoulos, 2005;Sadineni, Madala and Boehm, 2011). Understanding how
these different types of insulation materials impact energy savings is important. Tabrizi, Hill and Aitchison, (2017)
conducted a study to investigate the impact of different insulation materials and thicknesses on energy consumption in a
multi-story residential building in Sydney. The authors tested six types of insulation materials at three different thicknesses
(30mm, 60mm, and 90mm). The study found a significant range variation in heating energy consumption. The most
effective insulation material for saving heating energy was extruded polystyrene. Therefore, selecting the right insulation
material is crucial for optimizing energy savings, as well as considering other factors such as environmental impact,
resistance to sound, moisture, and fire. However, cost of materials and installation will need to be taken into consideration.
Insulation can be applied to both internal and external surfaces of a building's wall, known as internal and external
insulation, respectively. Theoretically, the effectiveness of insulation depends on its layer's thickness rather than its
placement. However, in reality, the thermal performance of walls after retrofitting with improved insulation varies based on
whether they are internally or externally insulated and the building's location and climate (Kossecka and Kosny, 2002).
Several studies have explored the energy performance of externally and internally insulated walls and the changes in
energy performance due to retrofitting in different climates. Some studies found external wall insulation to be more effective
(Kim and Moon, 2009;Kolaitis et al., 2013), while others favoured internal wall insulation (Reilly and Kinnane, 2017;Wang
et al., 2016). Internally insulated buildings consume less energy but have reduced available indoor space, leading to a
trade-off between space requirements and energy demand reduction (Reilly and Kinnane, 2017). On the other hand,
buildings with external insulation have better thermal stability (Wang et al., 2016); but the appearance, for example, of
heritage buildings in such situations will not be preserved.

Infrared thermography is a quick and effective way of evaluating the post-retrofit effectiveness of wall insulation. Infrared
radiation from objects make infrared thermography, following suitable calibrations, a useful tool for non-contact
measurement of walls surface temperature (Marino, Mufioz and Thomas, 2017). It is also useful for estimating the thermal
transmittance in a non-invasive way, such as through a building's windows (Baldinelli and Bianchi, 2014), heat loss through
door openings (Al-Habaibeh, Medjdoub and Pidduck, 2012), and characterizing the thermal performance of building facade
(Bienvenido-Huertas et al., 2019). Several researchers have demonstrated the successful use of this technology, for
example, the estimation of heat flow rate through a thermal bridge (O’Grady, Lechowska and Harte, 2017), estimation of
time shift values of temperature in building elements, and investigation of transient temperature response behaviour over
time (Xie et al., 2019). Moreover, infrared thermography can be used to calculate thermal power and heat losses through
a building's walls (Albatici and Tonelli, 2010; Albatici, Tonelli and Chiogna, 2015; Nardi, Sfarra and Ambrosini, 2014).

Artificial intelligence has been significantly used in many research studies to predict energy consumption in buildings.
Among them, Artificial Neural Networks (ANNs) have been most widely used due to their suitability over conventional
statistical methods (Wang and Srinivasan, 2017; Deb et al., 2017). These studies have tested various types of ANNSs,
including feedforward and recurrent neural networks, and have used different input variables. The feedforward neural
network is suitable for regression, classification, and pattern recognition tasks (Gori, 2018). On the other hand, recurrent
neural networks can be successfully applied to time series problems. However, they have a limitation in terms of vanishing
gradients (Haykin, 2000). To overcome this limitation, Hochreiter and Schmidhuber (1997) developed a special type of
recurrent neural network called Long Short-Term Memory (LSTM) network. The LSTM network is equipped with memory
blocks that process information through different gates, such as forget gate, peephole, input gate, and output gate. These
gates allow the memory blocks to selectively remember or forget information, allowing the LSTM network to overcome the
vanishing gradient problem (Witten et al., 2017). ANNs can achieve high accuracy in predicting energy consumption and
can outperform other methods, such as energy simulation software (Naji et al., 2016; Martellotta et al., 2017; Wang, Lee
and Yuen, 2018). Retrofitting with enhanced insulation can improve the energy efficiency of existing buildings (Al-Habaibeh
et al., 2022), but estimating energy savings prior to retrofit and the payback period of investments is a challenging task.
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Previous research shows that by combining infrared thermography and ANN, it is possible to predict future heat losses
through buildings' walls from midterm (around 8 years) historical climate data with reasonable accuracy (Al-Habaibeh, Sen,
and Chilton, 2021). However, the study does not estimate energy savings. In the current paper, we use infrared
thermography and ANN to estimate energy savings due to retrofitting.

2. METHODOLOGY

The steps involved in the heat loss prediction and energy savings estimations by combining infrared thermography and
ANN is presented in Figure 1. To calculate the heat loss per square meter of a building's wall, we use the thermal power
approach developed by Albatici and Tonelli (2010), as shown in Equation 1.

. TS 4 Text 4
Equation 1: Thermal power P = 5.67 &40+ (m) - (m) + 3.8054v(T, — Toyt)

Where:

—  Tex= outdoor temperature

—  v=wind speed

—  Ts=external wall surface temperature
—  E&or = emissivity

Step 1: Extract wall temperature from Infrared Image for both
insulated and uninsulated budlings.

Ay
Step 2: Calculate hourly and monthly heat losses using historical
temperature and wind speed data for N years.

Avd

Step 3: Split the calculated heat losses into training data set [ 1 to n
years] and comparison data set [(n+1) to N years].

’ Step 4: Train ANN with training data set kﬂ
U
l Step 5: Predict heat losses for (n+1) to N years. I e seni i
Repeat step 93 3 to 7 for
Step 6: Determine mean value of 25 predictions. l n=2 to N-1
times

S

4 and 5 for
25 times o

Step 7: Find percentage error between calculated and predicted heat

losses for (n+1) to N years. \ ),
A2
Step 8: Determine optimum ANN architecture and size of training data
set for heat loss prediction.
Red —/
Step 9: Evaluate energy savings between insulated and uninsulated
building.
U

Step 10: Estimate payback period of the investment on retrofitting. |

Figure 1 A schematic representation of the research methodology; adopted from Al-Habaibeh, Sen, and Chilton (2021)

By taking into account the external wall surface temperature in relation to the respective outdoor temperature at the moment
when the infrared image is captured as an initial point; and 20°C as the secondary point, a linear curve can be generated.
Such linear curves are used for the case study in this paper are illustrated in Figure 2. The external wall surface
temperatures necessary for calculating heat loss using Equation 1; and are extracted from this linear curve at different
outdoor temperatures. For plastered brick walls, the emissivity is considered to be 0.93 (CIBSE, 2006). If 1 W/m? of heat
is radiated for one hour, it will be equivalent to 1 Wh/m? of heat energy transfer. Therefore, the value of P for each hour,
calculated from equation 1, can be considered as the hourly heating energy loss per square meter of the building's wall.
Equation 2 expresses the average heat loss in any given hour i in a given month ; through per square meter of a wall, P;.
The heat loss P; is obtained using equation 1. Likewise, equation 3 expresses the total heat loss in each calendar month
in a year as the summation of hourly heat losses in that month.
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Figure 2 The assumed relationship between outdoor temperature and external wall temperature
1
Equation 2: Heat loss at i" hour of each day in j" month P;; = - 2321 P;

Where:

— = 00:00 to 23.00.
—  j=January to December.
— D =the number of days in j’" month of a given year

Equation 3: Total heat loss through a building’s wall in a calendar month P, = le) 2%4 P

Where:

— D = number of days in that month and
— P =hourly heat loss obtained using equation 1.

Using historical local weather data, the hourly average heat loss and the monthly total heat loss for N years are calculated.
These values are then divided into training and test data sets for neural network analysis. Different combinations of training
and test data sets are formed, ranging from 2 years to N-1 years. The training data set is used to train the neural network,
and the test data set is used to evaluate its performance. Performance evaluation is conducted considering percentage
errors, which are calculated using equations 4 and 5, respectively.

Equation 4: Error € = Z{;l(Yl -P)

Where:

— Y= ANN predicted heat loss and

— P =calculated heat loss from equation 2 for hourly averaged heat loss and the same from equation 3 for monthly
total heat loss, respectively.

— n=288(24 x 12) in case of hourly average heat loss and 12 in case of monthly total heat loss

le]
n
Zi=1 P

x 100

Equation 5: Percentage error ep =
Where:

— e = error calculated using equation 4.

— P =calculated heat loss from equation 2 for hourly averaged heat loss and the same from equation 3 for monthly
total heat loss, respectively.

— n=288(24 x 12) in case of hourly average heat loss and 12 in case of monthly total heat loss

3. CASE STUDY

A case study was conducted in two buildings located in Nottingham, England: an externally insulated mid-terraced building
and an uninsulated end-terraced building. Figure 3 displays an infrared image of the adjacent buildings taken on February
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12th at around 8:30 pm using a FLIR T640 thermal camera during a thermographic survey. The ambient temperature
during the survey was 5°C. The Thermacam Quick Report software from FLIR was utilized to extract the pixelwise
temperature values from the infrared image of the buildings.

3.1. Analysis of infrared image

v
\

Uninsulated Building . Insulated Building

\
\

Average Wall
Average Wall Temperature
Temperature 6.65 °C
8.19°C 6.57 °C
8.24 °C 6.55 °C
8.21°C

pixels

100 200 30Q 400 500 600
| pixels
1

Figure 3 An infrared image of the insulated and the uninsulated house

In Figure 3, the average wall surface temperature is marked for different sections of both the insulated and uninsulated
buildings. The average wall surface temperature for various sections of the uninsulated building ranges from 8.19°C to
8.24°C. In contrast, the wall surface temperature for different sections of the insulated building ranges from 6.55°C to
6.65°C. Additionally, Figure 3 shows that the insulated building has photovoltaic solar cells on its roof to enhance its energy
efficiency. The temperature difference in the average wall surface temperature between the two buildings is approximately
1.6°C. Figure 4 displays the temperature profile along line ABCD in the infrared image, where the wall surface temperature
values along AB represent the uninsulated building, BC represents the insulated building, and CD represents another
uninsulated building adjacent to the insulated one.

Average
Average Average  temperature
temperature 7 gpec
A temperature B g71°c € D
| 7.81°C "

85

o]

Temperature (°C)
~ B

6 .5 ' il 1 1 s il A I
150 200 250 300 350 400 450 500

Pixel

Figure 4 Temperature profiles generated from the infrared image
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3.2. Heat loss calculations

Equation 1 is utilized to calculate the heat transfer through the building's wall in W/m? for both case studies, which is then
multiplied by 1 to convert it into heat energy loss in Wh/m2. The wall surface temperature Ts is first extracted from the
infrared image and then interpolated against the external temperature to estimate the historical heat loss. The outdoor
ambient temperature T.. and wind speed v are obtained from weather station observations. The hourly average and
monthly total heat losses are calculated by extracting the historical hourly ambient temperature and hourly wind speed
between 2004 and 2019 from the Met Office database (2019) for the location of the case studies. The hourly average heat
loss is determined by calculating the average heat loss for all days for a given hour in a particular month. For example, the
hourly average heat loss at 1:00 am in January 2004 will be the average of the heat loss values calculated using equation
1 for 1:00 am each day from January 1st to January 31st, 2004. Similarly, the monthly total heat loss is the sum of the
hourly heat loss for each hour and each day. The historical hourly average heat losses in Wh/m? and monthly total heat
losses in kWh/m?are calculated for both insulated and uninsulated buildings. The historical heat loss values for a building,
calculated using equations 2 and 3, represent the characteristics of heat loss for that building, which can be learned by
ANN to predict future heat losses. Although heat loss is dependent on external temperature and wind speed according to
equation 1, predicting heat loss over temperature and wind speed simplifies and speeds up the prediction process by
reducing the number of parameters to be forecasted and the uncertainty related to the prediction of temperature and wind
speed.

3.3. ANN prediction

The literature review indicates the successful use of feed-forward neural networks and different recurrent neural networks,
such as NARnet, NARxnet, and LSTM neural networks, for predicting energy demand in buildings. Therefore, these four
neural networks are considered for ANN analysis using the hourly average and monthly total heat loss data. The historical
heat loss data from 2004 to 2019 are divided into training and test datasets, with different combinations ranging from 2 to
15 years. For example, if the training dataset includes data from 2004 and 2005, the test dataset will contain data from
2006 to 2019. Fourteen different combinations of training and test datasets are evaluated using the above-mentioned
neural networks for both hourly and monthly heat loss prediction. In each case, the neural networks are used to predict the
heat loss for the same length of data in the test dataset and compared against the test data to evaluate the performance
of the neural network. In the training process of the hourly average heat loss prediction using a feed-forward neural
network, the hour, month, and year are the three parameters considered as inputs, and the hourly average heat loss
obtained from equation 2 is the output. In the case of monthly heat loss prediction using a feed-forward neural network,
the month and year are the two input parameters, and the monthly heat loss obtained from equation 3 is the output for the
network.

The recurrent neural network works differently than the feed-forward neural network, where the output of the previous time
step is considered an additional input for the next time step. The training process of the recurrent neural network involves
sequential training, and the time step is one of the default inputs for these networks. In the case of hourly average heat
loss prediction, the hourly average heat loss obtained from equation 2 for the previous time step is chosen as the other
input. For monthly heat loss prediction, the monthly total heat loss obtained from equation 3 is chosen as the second input
instead of the hourly average heat loss. However, the NARxnet accepts additional inputs. Therefore, hour, month, and
years are chosen as the additional inputs in the case of hourly average heat loss prediction, and month and year are
chosen as the additional inputs in the case of monthly total heat loss analysis for NARxnet. The heat loss at the current
time step is chosen as the output for all recurrent neural networks. For hourly average heat loss prediction, it will be the
heat loss value obtained from equation 2, and for monthly total heat loss prediction, it will be the heat loss value obtained
from equation 3.

4. RESULT AND DISCUSSION

To determine the best architecture for the artificial neural network (ANN), a sensitivity analysis is performed based on the
number of layers and neurons in each layer. The training data set consists of the first four years of the entire data set
(2004-2007), while the next four years (2008-2011) are used as the test data set. Heat loss data for insulated and
uninsulated walls are included, and the average percentage error (APE) is used to measure performance. The feed-forward
neural network can have multiple hidden layers with multiple neurons in each layer, so both the number of hidden layers
and the number of neurons in each hidden layer are evaluated. Recurrent neural networks typically have one hidden layer
with multiple neurons, so only one hidden layer is used for the NARnet, NARxnet, and LSTM networks in this study. The
sensitivity analysis includes the number of neurons in the hidden layer for hourly average and monthly total heat loss
predictions. Finally, the optimal ANN is used to predict heat loss for both insulated and uninsulated walls, and the energy
savings are calculated based on the difference between the predicted heat loss for the two types of walls.
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4.1. Sensitivity analysis

The sensitivity analysis for hourly average and monthly total heat loss predictions is presented in Figures 5 and 6,
respectively. Figure 5-a shows the sensitivity of the number of hidden layers, while Figure 5-b shows the sensitivity of the
number of neurons in each hidden layer for the feed-forward neural network. The sensitivity of the number of neurons in
the hidden layer for recurrent neural networks is presented in Figure 5-c. From Figure 5-a, it is found that the average
percentage error decreases as the number of hidden layers increases from two to six and then slightly increases with
seven hidden layers. Figure 5-b shows that the minimum average percentage error is obtained with three neurons in each
hidden layer. Therefore, the best network architecture for hourly heat loss analysis with the feed-forward neural network is
composed of six hidden layers and three neurons in each hidden layer. From Figure 5-c, it is found that the NARnet and
NARxnet networks show the lowest APE with 20 neurons in the hidden layer, while for the LSTM network, the minimum
average percentage error is found with 40 and 140 LSTM cells in the hidden layer. However, the performances of all three
recurrent neural networks are poor compared to the performance of the feed-forward network, possibly due to the small
sample size of the training data set. Therefore, NARnet and NARxnet with 20 neurons in the hidden layer are selected for
hourly heat loss prediction, while the LSTM network with 100 cells in the hidden layer is selected for hourly heat loss
analysis due to previous research showing that 100 cells in the hidden layer provide the best performance without
significantly increasing computing time.

Hourly Prediction: Feed Forward Neural Network Hourly Prediction: Recurrent Neural Network
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Figure 5 Results of sensitivity analysis for hourly heat loss

Figure 6 presents the sensitivity analysis for monthly predictions. From Figure 6-a and 6-b, it is found that the APE
decreases with the increase in the number of hidden layers and increases with the increase in the number of neurons in a
hidden layer. However, the APE reaches the minimum and remains stable between 10 to 12 hidden layers. Therefore, 11
hidden layers are selected as it is in the mid of the stable range. For the sensitivity of the number of neurons in a hidden
layer, the minimum APE is obtained with two neurons in each hidden layer. Thus, the feed-forward network configuration
with 11 hidden layers and two neurons in each hidden layer is selected for monthly heat loss prediction. Figure 6-c shows
the sensitivity analysis results for NARnet and NARxnet networks and the LSTM neural network regarding the number of
neurons/cells in the hidden layer. Again, the APE of the LSTM neural network is much lower than the APE of NARnet and
NARXxnet, as found in the first case study. The minimum APE for NARnet and NARxnet is found to be 60% with 12 neurons
in the hidden layer, indicating poor prediction accuracy. However, these two networks are further considered to evaluate
their performance with the full data set for monthly heat loss prediction. The APE of the LSTM neural network remains
stable and below 10% with all different combinations of LSTM cells in the hidden layer. Therefore, the LSTM neural network
with 12 cells in the hidden layer is selected for the current case study, as the same configuration showed excellent
prediction accuracy in the first case study. Moreover, keeping the number of cells in the hidden layer as low as possible
facilitates faster calculation in a shorter time.
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Figure 6 Results of sensitivity analysis for Monthly heat loss
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4.2. Heat loss prediction
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Figure 7 The comparison of performance among feed forward, NARnet, NARXnet and LSTM neural network

Figure 7 presents the average percentage errors (APE) in heat loss prediction for the feed-forward, NARnet, NARxnet,
and LSTM neural networks trained using two to fifteen years of heat loss data. Among all four neural networks, the feed-
forward neural network shows the lowest APE for the insulated wall in all cases, except when trained with 15 years of heat
loss data (shown in Figure 7-a). The APE reaches around 10% when the feed-forward network is trained with 7 to 11 years
of heat loss data. For the uninsulated wall, the APE of the feed-forward neural network is the lowest throughout all training
cases (shown in Figure 7-b). The APE stays below 20% for both walls when the feed-forward network is trained with 7
years or more of heat loss data, except with 10 years of training. When the feed-forward network is trained with 10 years
of heat loss data, the APE slightly goes over 20% for the insulated wall, while for the uninsulated wall, it jumps to around
40%. Despite this aberration in the uninsulated wall, the feed-forward network achieves 80% accuracy in all cases when
trained with 7 years or more of heat loss data. The APE of NARnet and NARxnet mostly stays above 50%, except for
NARnet, which shows below 40% APE when trained with 13 and 15 years of heat loss data, respectively. The LSTM neural
network shows close to 20% APE when trained with 12 years or more of heat loss data, with the lowest APE achieved by
the network trained with 15 years of heat loss data. Figures 7-c and 7-d show the mean percentage errors in monthly heat
loss prediction for the insulated and uninsulated walls for different networks trained with 2 to 15 years of heat loss data. It
is found from these two figures that the LSTM neural network shows the best performance in predicting monthly heat loss,
with the APE remaining around 10% throughout. In comparing the feed forward neural network and the LSTM network, the
APE of the former remains slightly higher, ranging between 10% and 20%. However, there are cases where the APE is
the same for both networks, such as when the network is trained with 9 or 12 years of heat loss data for an insulated wall.
Similar results are observed for an uninsulated wall when trained with 8 years and 10 years of heat loss data. The NARnet
and NARxnet perform poorly compared to the LSTM and feed forward networks, with only NARxnet showing below 20%
APE when trained with 15 years of heat loss data. The feed forward neural network is suitable for predicting hourly average
heat loss with over 80% accuracy when trained between 7 and 9 years of heat loss data, while the LSTM network is 90%
accurate for predicting monthly heat loss when trained with 8 years of data. Hence, for prediction of future heat loss for
both hourly and monthly cases, the feed forward neural network is chosen for hourly heat loss prediction, and the LSTM
network is chosen for monthly heat loss prediction. These predictions are made using 8 years of training data (2004 to
2007) to forecast the next 8 years (2012 to 2019) of heat loss. The predicted heat loss from these two ANNs is used in
energy savings estimation. However, the NARnet and NARxnet are not recommended for hourly and monthly total heat
loss prediction due to their high APE.
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Figure 8 The comparison between the calculated and the ANN (feed forward) predicted hourly heat loss for the years 2012 to 2019

In Figure 8, the predicted heat loss curve of the feed forward neural network is compared to the calculated heat loss curve
for both insulated and uninsulated walls from 2012-2019. Overall, the ANN predicted heat losses are very close to the
calculated heat loss, with few exceptions. For example, the calculated heat loss is significantly higher in February and
March of 2013 and 2018.
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Figure 9 A heatmap representation of average temperature in each month from 2004 to 2019 in Nottingham
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The heatmap of average temperature in Figure 9 shows that these months were cooler than in other years. Conversely,
the calculated heat loss is far less than the ANN predicted heat loss for July 2013 and 2018, which were exceptionally
warmer than in other years. The calculated heat loss curves also show negative heat loss or heat gain due to solar
irradiation during the summer. This is not captured by the ANN prediction algorithm, which is designed to predict heat loss.
However, this is sensible as heat gain during daytime summer does not contribute to heating energy savings, which is a
key factor in estimating the payback period for retrofitting a building with improved insulation. In Figure 10, the calculated
heat loss is compared to the LSTM neural network predicted heat loss for both insulated and uninsulated walls. It is
observed that both the actual and ANN predicted heat loss curves have an identical trend, with some deviations noted. For
example, the higher calculated heat loss in February-March of 2013 and 2018 can be attributed to extreme weather, as
discussed in the hourly heat loss predictions.
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Figure 10 The comparison between the calculated and the ANN (LSTM) predicted monthly heat loss for the years 2012 to 2019
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4.3. Energy savings

The case study presented in this paper demonstrates that the feed forward neural network is suitable for predicting hourly
average heat loss, while the LSTM neural network is suitable for monthly total heat loss prediction with significant accuracy
when trained with more than 8 years of heat loss data. However, it is also important to consider the estimated energy
savings using ANN predicted heat losses. Figure 11 shows the estimated energy savings if an uninsulated building were
retrofitted with improved insulation to match the level of an insulated building. The hourly average heat loss predicted by
the feed forward network and the monthly total heat loss predicted by the LSTM neural networks are used for energy
savings estimation, with all networks trained with 8 years of heat loss data. Energy savings are represented by the
difference in yearly total heat loss between insulated and uninsulated buildings, calculated for the years 2012 to 2019. The
calculated heat loss for both buildings in these years is compared to the ANN results. It is found that the difference between
ANN predicted energy savings and calculated energy savings remains within +15 kWh/m? (+10%) for all years except 2013,
where the deviation is £22 kWh/m? (+16%). Upon examining the heat map in Figure 9, it is observed that the winter in 2013
was cooler than any other year in the heat map, while the summer was warmer than any other year in the heat map.
Therefore, extreme weather conditions in 2013 are responsible for the high deviation in ANN energy savings. The case
studies confirm that the ANN can guarantee 84% accuracy in estimating energy savings, despite the influence of extreme
weather conditions. It is highly unlikely to regularly experience extreme winters and summers like in 2013, and therefore,
the ANN is expected to achieve 90% prediction accuracy in estimating energy savings in the majority of cases.
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Figure 11 The comparison of energy savings for calculated heat loss and ANN predicted heat loss

5. CONCLUSION

Although monitoring of a building for years is a common practice for estimating energy savings, it is not always an accurate
method due to the complex and variable nature of environmental parameters and human behaviour. However, this study
presents a simplified novel approach that can provide sufficient information on future energy savings with reasonable
accuracy by utilising Al and infrared thermography; combined with some reasonable assumptions. The use of Al in simple
experimental work can allow for reasonable estimation of heat losses or energy savings, with ANN demonstrating an 84%
accuracy rate in estimating energy savings according to the case studies. The LSTM neural network is suitable for monthly
heat loss prediction, while the feed forward neural network is appropriate for hourly heat loss prediction. Both ANNs can
accurately estimate heat loss with just 8 years of historic weather training data. The current study did not account for the
impact of occupants' behaviour on energy savings. Future research will aim to include this factor to improve the estimation
of energy savings.
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