1	Identification of avian remains contained within wrapped ancient Egyptian
2	mummies: Part 1, A critical assessment of identification techniques.
3	
4	Authors – <u>Lidija McKnight¹</u> , Judith White ² , Amy Rosier ² , Joanne Cooper ² , Richard Bibb ³
5	¹ School of Earth and Environmental Sciences, University of Manchester, 3.503 Stopford
6	Building, Oxford Road, Manchester, UK. lidija.mcknight@manchester.ac.uk Telephone: 0161
7	306 4184
8	² Bird Group, Department of Life Sciences, The Natural History Museum, Akeman Street, Tring,
9	Hertfordshire, HP23 6AP, UK.
10	³ School of Design & Creative Arts, Loughborough University, Epinal Way, Loughborough,
11	Leicestershire, LE11 3TU, United Kingdom
12	
13	Keywords - avian, experimental, identification, morphology, 3D printing
14	
15	Highlights -
16	• A targeted study of bird remains mummified as offerings to the gods in ancient Egypt.
17	• An experimental study to investigate the difficulties encountered when attempting to
18	identify incomplete and comingled bird remains within wrapped mummy bundles.
19	• A comparative study evaluating experts' opinions of bird identification using
20	radiographic modalities (X-ray and CT scanning) compared to bone-in-hand
21	identification of physical bird bones.

22 Abstract -

23 Ancient Egyptian bird mummies manufactured in huge numbers present a unique and intriguing 24 body of material with great archaeological and zooarchaeological significance. Research into this 25 ancient practice is gaining momentum; however, one area that lacks clarity, but that is vital for 26 the accurate interpretation of mummies as objects of ritual significance, is our ability to proffer 27 accurate identifications of remains contained within wrapped mummy bundles. This is 28 particularly relevant in the case of bird mummies where morphological variation between species 29 can be minimal. 30 This paper presents the results of a multi-faceted research project combining non-invasive 31 radiographic modalities, experimental techniques and 3D replication, designed to assess the 32 accuracy of avian skeletal identification when physical access to the bones themselves is not 33 possible.

34

35 1. Introduction

36 1.1 The Importance of Birds in the Religious Landscape of Ancient Egypt

37 The Egyptians lived in close harmony with their natural environment, witnessing the forces of

38 nature and the appearance and behavioural characteristics of animals as they went about their

39 daily lives. Animals were believed to occupy a liminal space between the living and the gods

40 (Scalf 2012), and were themselves considered semi-divine. Each deity in the pantheon was

41 associated with one or more animal species, appearing in art as hybridized creatures, often with

42 the body of a human and the head of an animal.

47

Fig. 1 - This photograph depicts a plaster-cast reproduction of a wall scene from the temple of Esna. The original dates to c.50 AD. The scene shows the pharaoh, the Roman Emperor Claudius, being ritually washed by two gods in hybridized form; Thoth is depicted with the head of an ibis (left) and Horus with the head of a falcon (right).

The Egyptians believed that objects created in the image of the god – in either animal or hybrid form - from man-made or organic materials could act as a communication device, effectively enabling a dialogue between the devotee and the deity. Mummified animal remains concealed within linen wrappings, or housed within containers made from wood or metal, were popular votive offerings (Fig. 2). Votives often outwardly resemble the god with their votive efficacy

- 53 enhanced by the inclusion of animal remains from one of the god's earthly representatives (Price
- 54 2015).
- 55

56 57

Fig. 2. Photograph of a) an Ibis mummy (Acc. No. 11501, Manchester Museum) with appliqué detail depicting the 58 god, Thoth (Reproduced by permission of Manchester Museum, University of Manchester); b) votive bronze 59 statuette in the form of the seated lion-headed deity, Sekhmet, goddess of warfare (Plymouth City Museum and Art 60 Gallery, Acc. No. Learn0844 / AEABB596); c-d) an area of damage reveals the presence of a fabric package 61 concealed within the seat. Radiography confirmed the presence of disarticulated skeletal remains, believed to belong 62 to a cat (Photographs by L. McKnight).

64 Although the majority of faunal taxa were considered sacred, evidence suggests that aviformes 65 occupied a position of elevated significance (McKnight 2020). The power of flight allowed them to travel physically closer to the heavenly gods, leading to birds being closely associated with the 66 67 sun god, Re and with the human 'soul' (ba) depicted as the so-called ba-bird, represented as a human-headed hawk (Fig. 3). This hybridized creature was able to leave the tomb each night 68 69 through the false door (a symbolic architectural construct representing a sealed door) before 70 returning to the sanctuary of the tomb at dawn (Assman 2005).

Fig. 3 – Photograph of a painted wooden ba bird (Ptolemaic Period c.332–30 BC) (Metropolitan Museum of Art, New York, acc. No. 44.4.83) and the false door located on the west wall of the Tomb Chapel of Raemkai at Saqqara, (5th Dynasty c. 2446–2389 B.C.) (Metropolitan Museum of Art, New York, acc. No. 08.201.1e).

77 In total, 243 avian native and migratory species have been identified from ancient Egyptian

78 hieroglyphic inscriptions, artistic representations, skeletal and mummified remains. Of this total,

79 77 species have been identified from mummified remains (John Wyatt, pers. Comm; see also von

80 den Driesch et al 2005). The most commonly mummified birds include the Sacred Ibis

81 (Threskiornis aethiopicus), worshipped as the avatar of Thoth, god of wisdom and writing; and

82 raptors such as the Common Kestrel (Falco tinnunculus) and the European Sparrowhawk

83 (Accipiter nisus), sacred to Horus, god of the sky and of the living pharaoh.

Bespite the enormous numbers of mummified birds interred in subterranean catacomb
complexes in Egypt, relatively few have been studied in any detail (Atherton-Woolham et al.

86 2019). With the difficulties associated with the generally poor condition of the majority of these

- 87 specimens and problems accessing material on archaeological sites in Egypt, specimens in
- 88 museum collections are a particularly valuable resource. Research at the University of
- 89 Manchester conducted over the past two decades has comprehensively studied in excess of 1200

90 votive animal mummies from 69 museum collections worldwide, around one third of which 91 represent aviformes (McKnight 2012; McKnight and Atherton-Woolham 2016). Non-invasive 92 radiography of ancient mummies, coupled with the experimental mummification of modern bird 93 cadavers, have been applied to expand our understanding of votive animal mummification. 94 95 **1.2 Research Considerations** 96 Animal mummies present unique challenges for researchers because, unlike human mummies, 97 the range of potential taxa contained within varies extensively. The identification of skeletal 98 remains to species level is vital to our understanding of the role of these offerings within the 99 ancient religious landscape. The high likelihood (>60%) that a bundle will contain incomplete or 100 disarticulated remains of one or more individual or species (McKnight et al. 2015a) makes the 101 identification of diagnostic elements difficult. Visualization and interpretation are often 102 hampered by the compression of the bundle, the application of mummification substances, the 103 use of packing materials, and the multiple layers of linen bandages, all of which constitute 104 distracting radiographic 'noise'. 105 In collaboration with colleagues at the Natural History Museum's Bird Group in Tring, 106 Hertfordshire (NHM, Tring), the authors present evidence for the radiographic accuracy of avian 107 species identification within wrapped bundles, and the implications for zooarchaeology and 108 Egyptology. 109 Research has shown that only approximately one third of animal mummy bundles contain a 110 complete and articulated skeleton. The remaining percentage contain either incomplete or co-111 mingled remains (from one or more individual or species) or are fabricated entirely from non-112 animal material (McKnight et al. 2015a). Providing positive identifications for avian remains 113 from within wrapped mummies using radiography is problematic even when the specimens are 114 complete and articulated. The presence of incomplete, co-mingled and fragmented elements 115 compounds these issues and reduces the likelihood of reaching a positive identification using 116 radiography alone (McKnight et al. 2015a). In collaboration with colleagues at the Natural 117 History Museum's Bird Group in Tring, Hertfordshire (NHM, Tring), the authors present 118 evidence for the radiographic accuracy of avian species identification within wrapped bundles, 119 and the implications for zooarchaeology and Egyptology. 120

121 2. Materials and Methods

122	2.1 Experimental Mummification Protocol – Partial Cadavers and Multiple
123	IndividualsResearch has shown that only approximately one third of animal mummy bundles
124	contain a complete and articulated skeleton. The remaining percentage contain either incomplete
125	or eo mingled remains (from one or more individual or species) or are fabricated entirely from
126	non animal material (McKnight et al. 2015a). Providing positive identifications for avian
127	remains from within wrapped mummics using radiography is problematic even when the
128	specimens are complete and articulated. The presence of incomplete, co-mingled and fragmented
129	elements compounds these issues and reduces the likelihood of reaching a positive identification
130	using radiography alone (McKnight et al. 2015a).
131	Zooarchaeological identification traditionally relies on the 'bone in hand' method in which
132	archaeological remains are compared directly to skeletal collections. Sight and touch allow the
133	often-miniscule differences in the size, morphology and texture of the skeletal elements to be
134	compared, thereby narrowing the potential list of species to which the archaeological bones
135	belong. When the bones themselves are hidden from view as is the case with mummies, the
136	'bone in hand' method is impossible and researchers must rely on radiographic images in order
137	to attempt identification.
138	In 2015, six packages of partial and co-mingled avian remains assembled by an NHM
139	curator (White) were delivered to the University of Manchester. The individual contents of the
140	packages were recorded at source, and the identity of the remains kept secret from other
141	members of the team so as not to influence the experiment. Each package was numbered (EM11-
142	16), and mummified following a published experimental protocol designed to mimic ancient
143	animal mummies (Atherton and McKnight 2014) (Fig. 4).

144

145

146Fig. 4 – Photographs showing the mummification process; a) the six packages of co-mingled bird remains as they147arrived at The University of Manchester, b) EM12 following the application of a molten beeswax and pine resin

148	emulsion, and the initial layer of linen, and c) EM12 once completely mummified [Note the area of intense
149	discolouration to the exterior of the linen wrappings caused by the leakage of fluids from the remains] (Photographs
150	by L. McKnight).
151	
152	The mummies were transported to the Royal Manchester Children's Hospital for radiographic
153	study using dual modalities - digital X-ray and CT scanning. The radiographic data was shared
154	with a second member of NHM staff (Rosier) who, without prior knowledge of their identity,
155	was tasked with attempting identification using only the radiographs and the museum's extensive
156	skeletal reference collection. Avoiding inaccurate results caused by 'suspected identifications',
157	Rosier was unable to identify the remains beyond tentative species groupings in all cases.
158	Considering the high quality of the radiographic data obtained through the dual imaging
159	techniques and the availability of post-processing software to enable data manipulation, this
160	confirmed that so-called 'definitive identifications' offered for incomplete avian remains are
161	likely to be inaccurate when based upon radiographic evidence alone.
162	After six months, the mummies were dissected to reveal completely desiccated bird
163	remains. The linen wrappings were cut away and discarded, and the feathers and soft tissue
164	removed by hand as far as was possible. The skeletal 'portions' were macerated in cold water in
165	glass laboratory beakers and stored in a fume cupboard with the water changed weekly. The
166	waste-water was sieved to ensure that no small bones were lost. Once clean, the bones were
167	placed on paper towels on labelled trays to dry before being bagged, labelled and taken to the
168	NHM (Fig. 5).
169	

Fig. 5 – This image shows the stages of dissection and maceration used to obtain the skeletal elements from EM12. Image a) the removal of the outer layers of linen wrappings, b) the desiccated remains are revealed, c) the isolated body parts removed from the mummy, d) maceration in cold water, e) the maceration liquid after one week, and f) the skeletal remains from the various body parts once fully clean (Photographs by L. McKnight).

3. Results

- 177 Table 1 provides details of the original contents of the six bundles (as compiled at the NHM by
- 178 White), alongside the radiographic (X-ray and CT) and the 'bone in hand' identifications
- 179 conducted by Rosier.

Table 1 - Comparisons between identification methods					
No.	Actual	X-ray Observations	СТ	Bone in Hand	
	Contents		Observations	Identification	
EM11	Anthropoides	A skull and tibiotarsus	Slightly improved	Anthropoides virgo	
	virgo	are visible. The lateral	visualisation, except for the	Skull and mandible	
	Head	view of the skull	skull which required data	Right tibiotarsus	
	Tibiotarsus	suggests the Gruidae	processing to view from an	-	
		family. The tibiotarsus	alternate angle.	With the actual specimen in	
		suggests Gruidae,	_	hand it was possible to	
		Ciconiidae or Anatidae		confidently identify the skull	
		family.		and tibiotarsus to species, by	
		-		physically comparing the	
				specimen with those in the	
				reference collection.	
	Tyto alba	Two articulated wings	Presence confirmed, but	Tyto alba	
	Left wing	belonging to different	lacking sufficient detail for	Left wing	
	-		further identification.	Left humerus	

				T O
		individuals of a smaller		Left carpometacarpus
	Falco	species.		Falco tinnunculus
	tinnunculus			Left wing
	Right wing			Left radius
				Left ulna
				Left humerus
				Left carpometacarpus
	Charadrius	Trunk and legs belonging	Presence confirmed, but	Calidris/Charadrius
	hiaticula	to a smaller bird.	lacking sufficient detail for	Trunk and leg
	Trunk		further identification.	Sternum
	Right leg			Left and right scapula
				Left and right coracoid
				Furcula
				Pelvic girdle
				Supportum
				Bight femur
				Right tibiotoraug
				Right tiblotalsus
53410	4 4 1			Right tarsometatarsus
EMIZ	Anthropoides	An articulated wing,	The carpometacarpus of the	Anthropoides virgo
	virgo	possibly from the left	separate wing is clearly	Left wing
	Right wing	side is visible, but the	visible in the dorsal view,	Left ulna
	Leg	details are not clear. A	and provides the only	Left radius
		separate tarsometatarsus	diagnostic element	Left humerus
		and foot are present and	indicative of the Gruidae	Left carpometacarpus
		do not appear to	family.	Right tarsometatarsus
		articulate with the trunk.		
	Anser	The trunk (including	The thinner bones (sternum	Anser albifrons
	albifrons	coracoid and furcula) and	and pelvis) are not as visible.	Trunk
	Trunk	a femur and tibiotarsus	The rounded shape of the	Leg
	Leg	from the right side are	furcula is similar to that	Humerus
	Humerus	visible, however the	found in Anatidae,	Sternum
		outlines are faint and	reinforced by the shape of	Pelvic girdle
		further identification was	the scapula and coracoid.	Left and right coracoid
		not possible. The left	The details of the distal end	Left and right scapula
		humerus may be present	of the tibiotarsus are clear	Right femur
		but could be broken	and this detail combined	Right tibiotarsus
			with lopsided shape is	rught dorotatouo
			indicative of <i>Anatidae</i>	Ansor/Branta
			indicative of manuale.	Furcula
				Left humerus – broken
				However, these elements
				articulate to the others and
				therefore the identification can
				be confirmed on Anger
				allifumed as Anser
	Tuto all a	Trans and data and a	The share list of the state of the	
	Tyto alba	Two rounded masses are	The skull to the side of the	Tyto alba
	неаа	visible, one to the side of	trunk is present, but only	Head
		the trunk and one inside	identified as such from the	Skull and mandible
		the trunk. Possibly both	denser mandible. The round	
		skulls.	mass inside the trunk is	Easily identifiable once the
			visible as an internal organ.	actual specimen was seen.
EM13	Anthropoides	Close by there is another	The proximal end of the	Anthroides virgo
	virgo	humerus of similar size	isolated humerus has a	Right humerus (with
	Humerus	but does not appear to	jagged form and may have	pathology, identified as bony
		articulate with any other	pathology.	growth on the proximal end)
		elements.		

	Anser albifrons Head Wing	The x-ray shows a skull with cervical vertebra attached, and from the lateral view it appears to be in the Anatidae family. There is a humerus that appears to articulate with an ulna and radius.	The skull is not clearly visible in the CT although the mandible and tongue are very clear. A fractured ulna and radius articulate with the humerus. From the x-ray and CT, the skull and wing were identified from the reference collection as <i>Aix</i> <i>galericulata</i> , Mandarin Duck.	Anser albifrons Skull and mandible Right humerus Right ulna Right radius Identification amended from Aix galericulata upon physical identification.
	Tyto alba Leg	It is also possible to see from the x-ray that there is a tibiotarsus articulated with tarsometatarsus and toe bones of a smaller bird.	The CT provides a good frontal and lateral view of the distal tibiotarsus. The lack of supratendinal bridge and shape of the outline suggests it could be Barn Owl. The size and shape of the tarsometatarsus and claws supports this identification.	<i>Tyto alba</i> Left tibiotarsus Left tarsometatarsus
	<i>Falco tinnunculus</i> Trunk		A small trunk is vaguely visible in the CT that was not apparent in the x-ray, the furcula being the most noticeable part as it is the densest.	Falco tinnunclus Left and right scapula Sternum Furcula Synsacrum Left coracoid Right coracoid
EM14	Anser albifrons Wing Foot	The x-ray shows a large tarsometatarsus in articulation with toe bones and a large articulated wing consisting of radius, ulna, carpometacarpus and wing digits. Carpometacarpus looks similar to those in the Anatidae family.	CT provided greater clarity of the larger limbs. The proximal end of the ulna of the large articulated wing could be seen in finer detail which supported the identification of Anatidae of the articulating carpometacarpus.	Anser albifrons /Branta canadensis Left ulna Left radius Left carpometacarpus Left wing phalanx Right tarsometatarsus and foot bones
	<i>Tyto alba</i> Sternum	Separate trunk present		<i>Tyto alba</i> Sternum Left and right coracoid
	<i>Falco</i> <i>tinnunculus</i> Wing Leg	A smaller articulated wing is visible and also a smaller articulated leg consisting of femur, tibiotarsus, tarsometatarsus and toe bones.	Smaller articulated leg could not be made out clearly.	Falco tinnunculus Right ulna Right radius Right humerus Right carpometacarpus Right tibiotarsus Right farsometatarsus Right femur
	<i>Charadrius</i> <i>hiaticula</i> Head	Skull visible	Skull not visible	Charadrius hiaticula/Vanellus vanellus Skull and mandible
EM15	Anthropoides virgo	The X-ray shows an articulated leg consisting	Where the bones are articulated it can be difficult	Anthropoides virgo Left tarsometatarsus

	Leg Foot Wing	of tibiotarsus, tarsometatarsus and toes. A large wing is visible consisting of ulna and radius and what appears to be a clipped carpometacarpus. An articulated leg is	to see the distinctive features, for example, the bent leg. The extended leg allows the	Left tibiotarsus Foot bones Left ulna Left radius Left carpometacarpus (clipped)
	<i>albifrons</i> Leg Foot	visible consisting of the femur, tibiotarsus, tarsometatarsus and toes. This belongs to a different species than the other leg represented.	distinguishing features of the tibiotarsus – supratendinal bridge – and both the anterior and posterior views accessible allowing it to be tentatively identified as a goose.	Left temur Left tibiotarsus Left tarsometatarsus
	Tyto alba Wing	The smaller wing includes the humerus, ulna, radius, carpometacarpus and wing digits.		Tyto alba Right ulna Radius Humerus Carpometacarpus Distinctive spiny projections on the bony bridge of the intermuscular line suggested corvids or owls. Through direct comparison of the ulna, this was narrowed down to Barn owl
	<i>Falco tinnunculus</i> Head	A small skull is also visible that looks similar to that of a raptor.	The skull is not so visible in the CT scan, only a vague outline of the mandible is noticeable.	Falco tinnunculus Skull and mandible
EM16	Anser albifrons Wing	A wing consisting of carpometacarpus, and wing digits. The carpometacarpus that looks like it's from the Anatidae family	Presence confirmed, but lacking sufficient detail for further identification.	Anser albifrons Right carpometacarpus Right phalanx Direct comparison of the wing was needed to identify it as goose.
	<i>Tyto alba</i> Leg	The x-ray shows a leg consisting of femur, tibiotarsus, tarsometatarsus and toe bones.	The larger leg is visible in the scan and from this you can see that there is no supratendinal bridge, which is indicative of parrots and owls. This is supported by a nice profile of the lateral side of the tibiotarsus, suggestive of Barn Owl.	<i>Tyto alba</i> Right femur Right tibiotarsus Right tarsometatarsus
	Falco tinnunculus Leg	A smaller leg consisting of femur, tibiotarsus, tarsometatarsus and toe bones.	Presence confirmed, but lacking sufficient detail for further identification.	Falco tinnunculus Left femur Left tibiotarsus Left tarsometatarsus Easily identified from 3 holes very distinctive of falcons, and

			using the reference collection narrowed down to Kestrel.	
181		L		

182 183

184

Table 1 – The results of the avian identification assessment as compiled from the different study techniques described in relation to the original bundle contents.

185 4. Discussion

186 4.1 Radiographic Identification – X-Ray

187 Conventional radiography is an excellent triage method used in the study of mummified remains

188 enabling an initial insight into the contents of wrapped bundles. However, there are a number of

189 widely reported complications which hamper the effectiveness of the technique on desiccated

190 material. By producing a two-dimensional image of a three-dimensional object, structures

191 located within the artefact appear overlapped and superimposed (Fig. 6a-b). Elements appear

192 magnified depending on their position in relation to the X-ray source. This causes structures to

193 appear overlapped, leading to difficulties in gauging depth and perspective of the contents, all of

194 which hinder the identification process (Adams 2015).

195

196 Fig. 6 – a) Anterior-posterior digital radiograph and b) sagittal digital radiograph of EM12 demonstrating the vast

difference in the visibility of skeletal elements between the two projections, and c) an example of a volume render
 created from the CT data showing the capability of the technique to offer increased visibility of individual skeletal

199	elements (Images courtesy of the Ancient Egyptian Animal Bio Bank, The University of Manchester and the
200	Manchester University NHS Foundation Trust).
201	
202	With wrapped animal mummies, there are no 'standard' contents, unlike the living human or
203	animal body where the position of skeletal elements is known. Difficulties in the visualization of
204	spatial relationships between elements, compounded by the often fragmentary and incomplete
205	nature of the remains, and the inability to manipulate the image to view the elements from
206	another angle, all proved critical (McKnight et al. 2015a). Identification was only possible using
207	X-ray where the outline and form of elements could be clearly visualised and was immediately
208	recognizable.
209	
210	4.2 Radiographic Identification – CT
211	CT proved beneficial in demonstrating the shape of long bones and therefore increased potential
212	for identification. Image rotation enabled a clearer understanding of the placement of individual
213	elements and the spatial relationship between them (Fig. 6c). The slight reduction in contrast
214	resolution in CT meant that lower density elements visible on X-ray were either not visible at all
215	or more difficult to visualise using this method.
216	Thresholding of the CT data based upon the radiographic density of tissues was
217	conducted to enable the creation of volume renders; however, the results were not totally
218	successful as low-density elements such as the sternum, cranium and smaller skeletal elements
219	became 'lost' during processing (Fig. 7). Attempts to counteract this were attempted by manually
220	altering the threshold values. Decreasing the threshold caused more of the non-skeletal content
221	and wrappings to be visible, thereby further concealing diagnostic traits. Raising the threshold to
222	remove the wrappings caused more of the skeletal information to be lost.
223	

225226227228229

Fig. 7 – Reformatted CT data of a bird mummy demonstrating the problems encountered when thresholding skeletal remains within wrapped mummy bundles - a) threshold too low resulting in interference from adjacent desiccated soft tissues, b) optimal threshold for bone, and c) threshold too high resulting in the loss of clarity of the skeletal remains (Image courtesy of R. Bibb).

230 Although CT was able to contribute additional detail over that offered by digital

231 radiography, the process requires extensive data processing which is both time- and labour-

232 intensive. Access to scanning equipment is costly and logistically difficult unless collaborations

233 with clinical facilities can be formed. In addition, it should be noted that this study had access to

state-of-the-art imaging and 3D replication technology, and a world-renowned reference

collection; realistically, studies adopting less sophisticated resources and methods will be lesseffective.

237

238 **4.3 Bone in hand Identification**

The ability to hold physical remains and compare these to reference collections enables positive identifications to be made in all cases. Miniscule variations in size, form and texture of the bones enables a specialist to narrow down species identifications with relative ease, particularly when skilled in the navigation of reference collections.

243	In cases where skeletal elements appeared articulated in the radiographic data, it was
244	possible to link identifications for now-isolated bones. For example, in EM12, a number of
245	elements were positively identified to Anser albifrons. The furcula and left humerus suggested an
246	identification of Anser/Branta; however, as they clearly articulate to the elements belonging to
247	Anser albifrons, their identification could be updated.

249 5. Conclusions and Future Research

250 The project enabled a critical appraisal of the radiographic modalities and post-processing 251 techniques in use in mummy studies, and their relative potential value when attempting to 252 identify avian remains to species. Although disheartening in terms of the difficulties with 253 confident identifications of avian remains using radiography alone, this research establishes an 254 important baseline upon which researchers working on this type of material can build. 255 Identifications should be provided based upon the level of certainly with which the researcher is 256 confident of their identification, with suspected identifications being discounted as such. The 257 study of archaeological artefacts and their interpretation as ancient material culture is more 258 worthwhile when tentative identifications are discounted, to limit the chances of inaccuracies 259 leading to misinterpretations. With bird mummies, an incorrect identification could skew the 260 interpretation of an archaeological site or falsely challenge existing knowledge of ancient 261 religious practices. As researchers, it is advantageous to be certain that we do not know the 262 answer, rather than be uncertain that we do. 263 Research projects such as this are important in gauging our current level of expertise and 264 in adding to our existing knowledge base. As an archaeological resource, ancient Egyptian 265 animal mummies demonstrate extensive variation in their contents, construction and external appearance. They are complex artefacts, the production of which was motivated by intangible 266 267 religious practices, further enhanced by social, economic and political nuances. As 268 archaeologists, our best hope of understanding this ancient practice is through the analysis of the 269 artefacts themselves. The levels of confidence we can attribute to our methods assists in the 270 validation of current research, and helps to measure the reliability of the results. 271 As a direct result of this research, the authors attempted segmentation of the most 272 diagnostic elements from within two of the mummies with a view to obtaining 3D-printed

273 replicas of the mummy bones. This technique has proved beneficial in previous cases where a

Formatted: Indent: First line: 0.5"

274	definitive identification was impossible using radiography alone (McKnight et al. 2015b).
275	Segmentation proved problematic due to the inability to clearly visualise the bone boundaries in
276	the CT data, further exacerbated by the close proximity of the elements to each other. In effect,
277	the researcher was required to make subjective anatomical judgements about where the
278	boundaries of each element lay. This research will enable exact replicas of diagnostic elements
279	wrapped within ancient mummies (where unwrapping is not possible) to be manufactured with
280	the potential to permit identification using the bone in hand method (Bibb and McKnight, in
281	review).
282	This paper, along with further research (i.e. Bibb and McKnight, in review), highlights
283	the issues faced by researchers working on this material in the hope that future work can be
284	aware of its limitations and objective of its capabilities.
285	
286	Bibliography -
287	Adams, J. 2015. 'Imaging animal mummies: history and techniques' in L. McKnight and S.
288	Atherton-Woolham (eds) Gifts for the Gods: Ancient Egyptian Animal Mummies and the British.
289	Liverpool University Press, Liverpool, pp. 68-71.
290	
291	Assman, J. 2005. Death and Salvation in Ancient Egypt. Cornell University Press, New York.
292	
293	Atherton, S. D. and McKnight, L. M. 2014. 2014. 'The Mummification of Birds: Past and
294	Present' in Experimental Archaeology 2014/1. Available online at http://journal.exarc.net/issue-
295	2014-1/ea/mummification-votive-birds-past-and-present.
296	
297	Atherton-Woolham, S. D., McKnight, L. M., Price, C. and Adams, J. 2019. 'Imaging the gods:
298	animal mummies from Tomb 3508, North Saqqara, Egypt' in Antiquity 93, 367: 128-143.
299	DOI: https://doi.org/10.15184/aqy.2018.189
300	
301	Bibb, R. and McKnight, L.M. In Review. 'Identification of bird taxa species in ancient Egyptian
302	mummies: Part 2, An evaluation of the utility of CT scanning and 3D Printing' submitted to the
303	Journal of Archaeological Science: Reports.

305	Brettell, R., Martin, W., Atherton-Woolham, S., Stern, B. and McKnight, L. 2017. 'Organic
306	residue analysis of Egyptian votive mummies and their research potential' in Studies in
307	Conservation, 62:2, 68-82, DOI: 10.1179/2047058415Y.0000000027.
308	
309	Buckley, S.A., Clark, K.A. & Evershed, R.P. 2004. 'Complex Organic Chemical Balms of
310	Pharaonic Animal Mummies' in Nature, 431: 294–99.
311	
312	Buckley, S.A. & Evershed, R.P. 2001. 'Organic Chemistry of Embalming Agents in Pharaonic
313	and Graeco-Roman Mummies' in Nature, 413: 837-41.
314	von den Driesch, A., Kessler, D., Steinmann, F., Berteaux, V., & Peters, J. 2005. Mummified,
315	Deified and Buried at Hermopolis Magna-the Sacred Birds from Tuna el-Gebel, Middle Egypt.
316	Ägypten Und Levante / Egypt and the Levant, 15: 203–244.
317	
318	Ikram, S. 2005. Manufacturing Divinity: the Technology of Mummification in S. Ikram (ed)
319	Divine Creatures: Animal Mummies in Ancient Egypt. American University in Cairo Press,
320	Cairo, pp. 17-43.
321	
322	McKnight, L. M. 2020. 'On a Wing and a Prayer: Ibis Mummies in Material Culture at Abydos'
323	in Arts, 9 (4), 128; DOI: https://doi.org/10.3390/arts9040128.
324	
325	McKnight, L. M. and Atherton-Woolham, S. D. 2016. 'The Evolution of Imaging Ancient
326	Egyptian Animal Mummies at the University of Manchester, 1972 – 2014', Mummies, Magic and
327	Medicine in Ancient Egypt: Multidisciplinary Essays for Rosalie David. Manchester, Manchester
328	University Press. Pp. 345-354.
329	
330	McKnight, L. M., Atherton-Woolham, S. D. and Adams, J. E. 2015a. 'Clinical Imaging of
331	Ancient Egyptian Animal Mummies' in RadioGraphics, 35, 3, pp. 2108-2120. DOI:
332	10.1148/rg.2015140309.

334	McKnight, L. M., Adams, J. E., Atherton-Woolnam, S. D. and Bibb, R. 2015b. Application of
335	clinical imaging and 3D printing to the identification of anomalies in an ancient Egyptian animal
336	mummy' in Journal of Archaeological Science: Reports, 3, 328-332.
337	
338	McKnight, L.M. 2012. 'Studying Avian Mummies at the KNH Centre for Biomedical Egyptology:
339	Past, Present and Future' in R. Bailleul-LeSuer (ed) Between Heaven and Earth - Birds in Ancient
340	Egypt. Chicago, Oriental Institute, University of Chicago. pp.99-106.
341	
342	Price, C. 2015. 'Votive Practice in Ancient Egypt' in L. McKnight and S. Atherton-Woolham
343	(eds) Gifts for the Gods: Ancient Egyptian Animal Mummies and the British. Liverpool
344	University Press, Liverpool, pp. 21-22.
345	
346	Scalf, F. 2012. 'The Role of Birds within the Religious Landscape of Ancient Egypt' in R.
347	Bailleul-LeSuer (ed) Between Heaven and Earth: Birds in Ancient Egypt. Oriental Institute
348	Publications 35. The Oriental Institute of the University of Chicago, Chicago, pp. 33-40.
349	
350	Acknowledgements
351	The authors would like to express sincere thanks to colleagues at the Manchester University
352	NHS Foundation Trust for their assistance with the radiographic imaging of the ancient and
353	modern mummies; Stephanie Atherton-Woolham for her assistance with the experimental
354	process; Rhea Brettell at the Department of Archaeological Science, University of Bradford for
355	her work on the analysis of the resins used in mummification; and the curatorial staff and
356	volunteers at the Natural History Museum, Tring for their support of this project.
357	
358	Funding
359	This research is supported by awards from the Leverhulme Trust (RPG-2013-143) and the Arts
360	and Humanities Research Council (AH/P005047/1).
361	
362	Figure Legends
262	Table 1. The set $M_{\rm eff} = 0.01$ is $M_{\rm eff} = 0.01$ in the set of the set $M_{\rm eff} = 0.01$ is $M_{\rm eff} = 0.01$

1.5

224

. .

Table 1 – The results of the avian identification assessment as compiled from the different study
 techniques described in relation to the original bundle contents.

365	
366	Fig. 1 - This photograph depicts a plaster-cast reproduction of a wall scene from the temple of
367	Esna. The original dates to c.50 AD. The scene shows the pharaoh, the Roman Emperor
368	Claudius, being ritually washed by two gods in hybridized form; Thoth is depicted with the head
369	of an ibis (left) and Horus with the head of a falcon (right).
370	
371	Fig. 2. Photograph of a) an Ibis mummy (Acc. No. 11501, Manchester Museum) with appliqué
372	detail depicting the god, Thoth (Reproduced by permission of Manchester Museum, University
373	of Manchester); b) a votive bronze statuette in the form of the seated lion-headed deity, Sekhmet,
374	goddess of warfare (Plymouth City Museum and Art Gallery, Acc. No. Learn0844 /
375	AEABB596); c-d) an area of damage reveals the presence of a fabric package concealed within
376	the seat. Radiography confirmed the presence of disarticulated skeletal remains, believed to
377	belong to a cat (Photographs by L. McKnight).
378	
379	Fig. 3 – Photograph of a painted wooden ba bird (Ptolemaic Period c.332–30 BC) (Metropolitan
380	Museum of Art, New York, acc. No. 44.4.83) and the false door located on the west wall of the
381	Tomb Chapel of Raemkai at Saqqara, (5th Dynasty c. 2446–2389 B.C.) (Metropolitan Museum of
382	Art, New York, acc. No. 08.201.1e).
383	
384	Fig. 4 – Photographs showing the mummification process; a) the six packages of co-mingled bird
385	remains as they arrived at The University of Manchester, b) EM12 following the application of a
386	molten beeswax and pine resin emulsion, and the initial layer of linen, and c) EM12 once
387	completely mummified [Note the area of intense discolouration to the exterior of the linen
388	wrappings caused by the leakage of fluids from the remains] (Photographs by L. McKnight).
389	
390	Fig. 5 – This image shows the stages of dissection and maceration used to obtain the skeletal
391	elements from EM12. Image a) the removal of the outer layers of linen wrappings, b) the
392	desiccated remains are revealed, c) the isolated body parts removed from the mummy, d)
393	maceration in cold water, e) the maceration liquid after one week, and f) the skeletal remains
394	from the various body parts once fully clean (Photographs by L. McKnight).
395	

- Fig. 6 a) Anterior-posterior digital radiograph and b) sagittal digital radiograph of EM12
- 397 demonstrating the vast difference in the visibility of skeletal elements between the two
- 398 projections, and c) an example of a volume render created from the CT data showing the
- 399 capability of the technique to offer increased visibility of individual skeletal elements (Images
- 400 courtesy of the Ancient Egyptian Animal Bio Bank, The University of Manchester and the
- 401 Manchester University NHS Foundation Trust).
- 402
- 403 Fig. 7 Reformatted CT data of a bird mummy demonstrating the problems encountered when
- 404 thresholding skeletal remains within wrapped mummy bundles a) threshold too low resulting in
- 405 interference from adjacent desiccated soft tissues, b) optimal threshold for bone, and c) threshold
- 406 too high resulting in the loss of clarity of the skeletal remains (Image courtesy of R. Bibb).
- 407

Table 1 - Comparisons between identification methods				
No.	Actual Contents	X-ray Observations	CT Observations	Bone in Hand Identification
EM11	<i>Anthropoides</i> <i>virgo</i> Head Tibiotarsus	A skull and tibiotarsus are visible. The lateral view of the skull suggests the <i>Gruidae</i> family. The tibiotarsus suggests <i>Gruidae</i> , <i>Ciconiidae</i> or <i>Anatidae</i> family.	Slightly improved visualisation, except for the skull which required data processing to view from an alternate angle.	Anthropoides virgo Skull and mandible Right tibiotarsus With the actual specimen in hand it was possible to confidently identify the skull and tibiotarsus to species, by physically comparing the specimen with those in the reference collection.
	<i>Tyto alba</i> Left wing	Two articulated wings belonging to different individuals of a smaller species	Presence confirmed, but lacking sufficient detail for further identification.	<i>Tyto alba</i> Left wing Left humerus Left carpometacarpus
	<i>Falco</i> <i>tinnunculus</i> Right wing			<i>Falco tinnunculus</i> Left wing Left radius Left ulna Left humerus Left carpometacarpus
	<i>Charadrius hiaticula</i> Trunk Right leg	Trunk and legs belonging to a smaller bird.	Presence confirmed, but lacking sufficient detail for further identification.	Calidris/Charadrius Trunk and leg Sternum Left and right scapula Left and right coracoid Furcula Pelvic girdle Synsacrum Right femur Right tibiotarsus Right tarsometatarsus
EM12	Anthropoides virgo Right wing Leg	An articulated wing, possibly from the left side is visible, but the details are not clear. A separate tarsometatarsus and foot are present and do not appear to articulate with the trunk.	The carpometacarpus of the separate wing is clearly visible in the dorsal view, and provides the only diagnostic element indicative of the <i>Gruidae</i> family.	Anthropoides virgo Left wing Left ulna Left radius Left humerus Left carpometacarpus Right tarsometatarsus
	<i>Anser</i> <i>albifrons</i> Trunk Leg Humerus	The trunk (including coracoid and furcula) and a femur and tibiotarsus from the right side are visible, however the outlines are faint and further identification was not possible. The left humerus may be present, but could be broken.	The thinner bones (sternum and pelvis) are not as visible. The rounded shape of the furcula is similar to that found in <i>Anatidae</i> , reinforced by the shape of the scapula and coracoid. The details of the distal end of the tibiotarsus are clear and this detail combined with lopsided shape is indicative of <i>Anatidae</i> .	Anser albifrons Trunk Leg Humerus Sternum Pelvic girdle Left and right coracoid Left and right scapula Right femur Right femur Right tibiotarsus Anser/Branta Furcula Left humerus – broken [However, these elements articulate to the others and

				therefore the identification can be confirmed as <i>Anser</i>
	<i>Tyto alba</i> Head	Two rounded masses are visible, one to the side of the trunk and one inside the trunk. Possibly both skulls.	The skull to the side of the trunk is present, but only identified as such from the denser mandible. The round mass inside the trunk is visible as an internal organ	<i>Tyto alba</i> Head Skull and mandible Easily identifiable once the actual specimen was seen
EM13	Anthropoides virgo Humerus	Close by there is another humerus of similar size but does not appear to articulate with any other elements.	The proximal end of the isolated humerus has a jagged form and may have pathology.	Anthroides virgo Right humerus (with pathology, identified as bony growth on the proximal end)
	Anser albifrons Head Wing	The x-ray shows a skull with cervical vertebra attached, and from the lateral view it appears to be in the Anatidae family. There is a humerus that appears to articulate with an ulna and radius.	The skull is not clearly visible in the CT although the mandible and tongue are very clear. A fractured ulna and radius articulate with the humerus. From the x-ray and CT, the skull and wing were identified from the reference collection as <i>Aix</i> <i>galericulata</i> , Mandarin Duck.	Anser albifrons Skull and mandible Right humerus Right ulna Right radius Identification amended from Aix galericulata upon physical identification.
	<i>Tyto alba</i> Leg	It is also possible to see from the x-ray that there is a tibiotarsus articulated with tarsometatarsus and toe bones of a smaller bird.	The CT provides a good frontal and lateral view of the distal tibiotarsus. The lack of supratendinal bridge and shape of the outline suggests it could be Barn Owl. The size and shape of the tarsometatarsus and claws supports this identification.	<i>Tyto alba</i> Left tibiotarsus Left tarsometatarsus
	<i>Falco tinnunculus</i> Trunk		A small trunk is vaguely visible in the CT that was not apparent in the x-ray, the furcula being the most noticeable part as it is the densest.	<i>Falco tinnunclus</i> Left and right scapula Sternum Furcula Synsacrum Left coracoid Right coracoid
EM14	Anser albifrons Wing Foot	The x-ray shows a large tarsometatarsus in articulation with toe bones and a large articulated wing consisting of radius, ulna, carpometacarpus and wing digits. Carpometacarpus looks similar to those in the Anatidae family.	CT provided greater clarity of the larger limbs. The proximal end of the ulna of the large articulated wing could be seen in finer detail which supported the identification of Anatidae of the articulating carpometacarpus.	Anser albifrons /Branta canadensis Left ulna Left radius Left carpometacarpus Left wing phalanx Right tarsometatarsus and foot bones
	<i>Tyto alba</i> Sternum	Separate trunk present		<i>Tyto alba</i> Sternum Left and right coracoid
	Falco tinnunculus Wing Leg	A smaller articulated wing is visible and also a smaller articulated leg consisting of femur,	Smaller articulated leg could not be made out clearly.	<i>Falco tinnunculus</i> Right ulna Right radius Right humerus

		tibiotarsus, tarsometatarsus and toe bones.		Right carpometacarpus Right tibiotarsus Right tarsometatarsus Right femur
	<i>Charadrius</i> <i>hiaticula</i> Head	Skull visible	Skull not visible	Charadrius hiaticula/Vanellus vanellus Skull and mandible
EM15	Anthropoides virgo Leg Foot Wing	The X-ray shows an articulated leg consisting of tibiotarsus, tarsometatarsus and toes. A large wing is visible consisting of ulna and radius and what appears to be a clipped carpometacarpus.	Where the bones are articulated it can be difficult to see the distinctive features, for example, the bent leg.	Anthropoides virgo Left tarsometatarsus Left tibiotarsus Foot bones Left ulna Left radius Left carpometacarpus (clipped)
	Anser albifrons Leg Foot	An articulated leg is visible consisting of the femur, tibiotarsus, tarsometatarsus and toes. This belongs to a different species than the other leg represented.	The extended leg allows the distinguishing features of the tibiotarsus – supratendinal bridge – and both the anterior and posterior views accessible allowing it to be tentatively identified as a goose.	Anser albifrons Left femur Left tibiotarsus Left tarsometatarsus
	Tyto alba Wing	The smaller wing includes the humerus, ulna, radius, carpometacarpus and wing digits.		<i>Tyto alba</i> Right ulna Radius Humerus Carpometacarpus Distinctive spiny projections on the bony bridge of the intermuscular line suggested corvids or owls. Through direct comparison of the ulna, this was narrowed down to Barn owl.
	<i>Falco tinnunculus</i> Head	A small skull is also visible that looks similar to that of a raptor.	The skull is not so visible in the CT scan, only a vague outline of the mandible is noticeable.	<i>Falco tinnunculus</i> Skull and mandible
EM16	Anser albifrons Wing	A wing consisting of carpometacarpus, and wing digits. The carpometacarpus that looks like it's from the Anatidae family	Presence confirmed, but lacking sufficient detail for further identification.	Anser albifrons Right carpometacarpus Right phalanx Direct comparison of the wing was needed to identify it as goose.
	Tyto alba Leg	The x-ray shows a leg consisting of femur, tibiotarsus, tarsometatarsus and toe bones.	The larger leg is visible in the scan and from this you can see that there is no supratendinal bridge, which is indicative of parrots and owls. This is supported by a nice profile of the lateral side of the tibiotarsus, suggestive of Barn Owl.	<i>Tyto alba</i> Right femur Right tibiotarsus Right tarsometatarsus

Falco tinnunculus Leg	A smaller leg consisting of femur, tibiotarsus, tarsometatarsus and toe bones.	Presence confirmed, but lacking sufficient detail for further identification.	<i>Falco tinnunculus</i> Left femur Left tibiotarsus Left tarsometatarsus
			Easily identified from 3 holes very distinctive of falcons, and using the reference collection narrowed down to Kestrel.

Declaration of interests

⊠The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: