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Abstract

A graph H is an isometric subgraph of G if dH(u, v) = dG(u, v), for every pair u, v ∈
V (H). A graph is distance preserving if it has an isometric subgraph of every possible
order. A graph is sequentially distance preserving if its vertices can be ordered such that
deleting the first i vertices results in an isometric subgraph, for all i ≥ 1. We give an equiv-
alent condition to sequentially distance preserving based upon simplicial orderings. Using
this condition, we prove that if a graph does not contain any induced cycles of length 5 or
greater, then it is sequentially distance preserving and thus distance preserving. Next we
consider the distance preserving property on graphs with a cut vertex. Finally, we define a
family of non-distance preserving graphs constructed from cycles.

Keywords: Distance preserving, isometric subgraph, sequentially distance preserving, chordal, cut
vertex, simplicial vertex.

Math. Subj. Class.: 05C12, 05C69

1 Introduction
The distance between two vertices in a graph plays an important role in many areas of graph
theory. Moreover, computing graph distances is integral to many real-world applications,
especially in areas such as optimisation theory. Computing distances between vertices in
large graphs is extremely expensive, such as social networks with millions of vertices. It is
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2 Art Discrete Appl. Math.

often desirable to know the distances between vertices in subgraphs of the original graph,
yet this requires recomputing all the distances. One solution to this problem is to consider
subgraphs where the distances between all vertices is equal to their distance in the original
graph, such a subgraph is called isometric.

In this framework all graphs are finite, non-empty, simple and connected, unless as-
sumed otherwise. A graph G is distance preserving if G has an isometric subgraph of every
possible order. The notion of distance preserving graphs is a generalisation of distance-
hereditary graphs, where a graph is distance-hereditary if every connected induced sub-
graph is isometric. Distance-hereditary graphs where first introduced by Howorka in [13]
and have since been studied in various papers, see [2, 8, 12]. Distance-hereditary graphs
have many nice properties, for example they are known to be perfect graphs [11], and
many NP-hard problems have polynomial time solutions on distance-hereditary graphs,
such as finding dominating sets [9], Hamiltonian cycles [14], and optimal communication
trees [10]. The set of distance-hereditary graphs is a subset of distance preserving graphs,
and the less restrictive definition of distance preserving graphs allows for more complex
structure.

Isometric subgraphs play an important role in metric graph theory, which is the study of
classes of graphs satisfying certain properties of classical metric geometries, see [1]. Metric
graph theory, and thus isometric subgraphs, has important applications in a variety of ar-
eas, including geometric group theory, concurrency and learning theory, and combinatorial
optimisation [18].

Distance preserving graphs where introduced in [21], along with a clustering algorithm
which partitions a graph into distance preserving subgraphs. The algorithm is applied to
real-world social networks, where it is shown that clustering based on the distance pre-
serving property is an effective way to extract communities from large networks. This was
further supported in [19] where it was shown that known communities within social net-
works form subgraphs that are distance preserving, or almost distance preserving, such as
UK members of parliament within the Twitter network. However, limitations are encoun-
tered with this clustering approach, in part due to the lack of a theoretical understanding of
distance preserving graphs.

Some of the first theoretical results appeared in [20], along with a variety of conjectures,
including that almost all graphs are distance preserving. The key result of [20] is that if
an n-vertex graph G has minimum degree δ(G) ≥ 2n

3 − 1, then G is distance preserving,
and it is conjectured that this bound can be lowered to δ(G) ≥ n

2 , which was partially
proved in [16] for all graphs over a certain size threshold. In [15, 25] results are given on
the behaviour of the distance preserving properties under the Cartesian and lexicographic
graph products and modular decomposition. A construction is given for distance preserving
regular graphs of all possible orders and degrees of regularity in [22]. Algorithmic results
were developed in [3, 24] for finding isometric and almost isometric subgraphs.

One way to show that a graph G is distance preserving is to give an ordering of the ver-
tices v1, . . . , vn of G, such that removing v1, . . . , vi results in an isometric subgraph, for
all i ≥ 1. If such an ordering exists we say that G is sequentially distance preserving. Note
that every distance-hereditary graph is sequentially distance preserving, and every sequen-
tially distance preserving graph is distance preserving. See Figure 1 for some examples of
graphs satisfying these properties.

Few results exist for sequentially distance preserving graphs. The concept was first
introduced in [5] under the name distance-preserving orderings, and considered in relation
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(a) Windmill Graph W (4, 4). (b) Grid graph G(4, 4).

(c) 7-Cycle with a chord C7 ∪ e. (d) Cycle Graph C5.

Distance-Hereditary Sequentially Distance
Preserving

Distance Preserving

W (4, 4) ✓ ✓ ✓
G(4, 4) ✗ ✓ ✓
C7 ∪ e ✗ ✗ ✓
C5 ✗ ✗ ✗

(e) Distance properties satisfied by the above graphs.

Figure 1

to domination elimination orderings, which were introduced in [7]. In [5] it is shown that
pseudo-modular and house-free weakly modular graphs are sequentially distance preserv-
ing. The lexicographic product of two sequentially distance preserving graphs is shown
to be sequentially distance preserving in [15]. It was shown in [6] that determining if a
sequentially distance preserving ordering exists is NP-complete.

A graph is k-chordal if the largest induced cycle is of length k. It was shown in [23] that
3-chordal graphs are sequentially distance preserving. This is proved using the fact that all
3-chordal graphs have a certain type of ordering of the vertices called a simplicial ordering.
A generalisation of simplicial orderings is introduced in [17]. We apply this generalisation
in Section 3 to show that 4-chordal graphs are sequentially distance preserving.

A connected graph has a cut vertex x if removing x disconnects the graph. In Section 4
we consider graphs of the form G∪H , where G and H are non-trivial graphs with E(G) ̸=
∅ and E(H) ̸= ∅ and have exactly one common vertex x, so x is a cut vertex. We denote
such graphs by G +x H . We characterise the distance preserving property in G +x H in
terms of G and H , which reduces the complexity of testing if such graphs are distance
preserving. Finally, in Section 5 we study the class of non-distance preserving graphs,
presenting a result on how to add vertices to cycle graphs whilst maintaining the non-
distance preserving property.
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2 Background
In this section we recall some necessary graph theory concepts. For any definitions and
notation not given here, and a general overview of graph theory, we refer the reader to [4].
Let G be a graph with vertex set V (G) and edge set E(G). For ease of notation, we let |G|
be the number of vertices of G. A path in G is a sequence of distinct vertices v0, . . . , vk
such that vivi+1 ∈ E(G), for all i = 0, . . . , k − 1. The length of a path is k, the number
of edges. A path P is chordless if there is no edge of G between any non-consecutive pair
of vertices of P . The interior of a path P is obtained by removing the end points v0, vk
from P . The distance between two vertices u, v in G, denoted dG(u, v), is the minimum
length of a path between these vertices. If G is clear from context, we will use d(u, v),
instead of dG(u, v). A path from u to v with length dG(u, v) is called a u–v geodesic path.

An induced subgraph H of G is called an isometric subgraph, denoted H ≤ G,
if dH(a, b) = dG(a, b), for every pair of vertices a, b ∈ V (H). We say that G is dis-
tance preserving, for which we use the abbreviation dp, if there is an i-vertex isometric
subgraph, for every 1 ≤ i ≤ |G|. Given a set A ⊆ V (G), let G[A] be the graph induced on
the set A and G− A := G[V (G) \ A]. We say that G is sequentially distance preserving,
which we abbreviate to sdp, if there is an ordering v1, . . . , vn of V (G) such that deleting
the first i vertices results in an isometric subgraph for all i ≥ 1.

The cycle graph Ck is the graph with vertices v1, . . . , vk and the edge set E(Ck) =
{vivj : |i− j| = 1} ∪ {v1vk}. If G contains Ck as a subgraph we say it contains a cycle
of length k or a k-cycle. If G is connected, then a vertex v ∈ V (G) is called a cut vertex
if G− {v} is not connected. The graph Gℓ is the graph whose vertices are those of G and
there is an edge between any two vertices u, v ∈ G with dG(u, v) ≤ ℓ. The set of vertices
adjacent to v ∈ V (G) is called its open neighbourhood and is denoted NG(v). The closed
neighbourhood of v is NG[v] = NG(v) ∪ {v}. A clique in G is an induced subgraph that
has an edge between every pair of its vertices.

3 All 4-chordal graphs are distance preserving
It was shown in [23] that 3-chordal graphs, often just called chordal graphs, are sequentially
distance preserving. This is shown using the well known property that all chordal graphs
have a simplicial ordering. This property is generalised to k-chordal graphs in [17], using
the notion of a k-simplicial ordering.

Definition 3.1. A vertex v of a graph G is weakly k-simplicial if NG(v) induces a clique
in (G − {v})k−2. Furthermore, v is k-simplicial if it is weakly k-simplicial and for
each non-adjacent pair x, y in NG(v), every chordless x, y-path whose interior is entirely
in G−NG[v] has at most k − 2 edges. A vertex ordering v1, . . . , vn of G is a (weakly)
k-simplicial ordering if vi is (weakly) k-simplicial in G[{vi, . . . , vn}].

We use this generalised simplicial ordering to prove the conjecture in [20] that all
4-chordal graphs are distance preserving. In order to do this we need the main result
from [17], which we present next. Note that there is a third equivalent statement in the
original theorem which we omit here as we do not require it for our results.

Theorem 3.2 ([17, Theorem 1]). Consider a graph G and integer k ≥ 3. The graph G
is k-chordal if and only if G has a k-simplicial ordering.

Before proving the main result of this section we present the following lemma, which
is a generalisation of Lemma 3.1 of [23].
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Figure 2: A non-4-chordal graph that is sdp. The vertex labels give an sdp ordering.

Lemma 3.3. Consider a graph G and vertex v ∈ V (G). The graph G − v is isometric if
and only if v is weakly 4-simplicial.

Proof. Suppose v is weakly 4-simplicial. This implies that NG(v) induces a clique in
(G− v)2, that is, any pair x, y ∈ NG(v) have a distance of at most 2 in G − v. Consider
any path P which contains v in its interior. There must be a subpath x − v − y of P ,
where x, y ∈ NG(v). Because v is weakly 4-simplicial we know that x and y are either
neighbours or have a common neighbour z ̸= v. Therefore, we can either remove v or
replace it with z to get a path that is at least as short as P lying in G − v. It follows
that G− v is isometric.

Suppose G − v is isometric. Consider any pair u,w ∈ NG(v), then we know that
dG(u,w) ≤ 2 which implies dG−v(u,w) ≤ 2. Therefore, NG(v) induces a clique in
(G− v)2, so v is weakly 4-simplicial.

The following proposition is an immediate result of Lemma 3.3.

Proposition 3.4. A graph is sdp if and only if it admits a weakly 4-simplicial ordering.

Proof. Lemma 3.3 implies that a vertex ordering is a weakly 4-simplicial ordering if and
only if it is an sdp ordering.

Now we have all we need to prove Conjecture 5.2 of [20]:

Theorem 3.5. Any 4-chordal graph is sdp, and thus dp.

Proof. Applying Theorem 3.2 with k = 4 shows that for any 4-chordal graph there is a
4-simplicial ordering of the vertices. Moreover, Proposition 3.4 implies this ordering is an
sdp ordering.

The graph in Figure 2 is not 4-chordal, because it contains an induced 5-cycle, so by
Theorem 3.2 the graph cannot have a 4-simplicial ordering. However, the ordering given
by the vertex labels is a weakly 4-simplicial ordering, so the graph is sdp. To see the
ordering is not 4-simplicial, note that the vertex labelled 1 is not 4-simplicial because the
path 2−3−4−5 violates the 4-simplicial condition. Theorem 3.5 implies that a graph that
is dp but not sdp cannot contain an induced 4-cycle, combining this with [23, Corollary 3.2]
gives the following corollary:

Corollary 3.6. Any dp graph that is not sdp must contain an induced cycle of length k ≥ 5.
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4 Separable graphs
A connected graph is said to be separable if it can be disconnected by removing a vertex,
which we call a cut vertex. In this section we consider the distance preserving property in
separable graphs. A separable graph can be represented in the following way:

Definition 4.1. Consider two non-trivial graphs G and H , with E(G) ̸= ∅ and E(H) ̸= ∅,
with a single common vertex x. Let G+x H be the union of G and H .

So G +x H is a separable graph with a cut vertex x. We characterise the isometric
subgraphs of G+x H . To do this we introduce the following lemma.

Lemma 4.2. Consider a graph G +x H and two induced subgraphs H ′ ⊆ H , G′ ⊆ G,
with x ∈ V (G′) ∩ V (H ′), then:

G′ +x H ′ ≤ G+x H if and only if H ′ ≤ H and G′ ≤ G.

Proof. First we consider the forward direction. Since x is a cut vertex any geodesic path
between a pair of vertices of H ⊆ G +x H is contained in H , thus H ≤ G +x H . The
same is true when replacing G and H by G′ and H ′, respectively. Combining this with our
assumption we have:

dH′(u, v) = dG′+xH′(u, v) = dG+xH(u, v) = dH(u, v),

for every pair of vertices u, v ∈ V (H ′), so H ′ ≤ H . An analogous argument shows
that G′ ≤ G.

Now consider the backward direction. Using the fact H ≤ G+xH and the assumption
H ′ ≤ H , we have

dG′+xH′(u, v) = dH′(u, v) = dH(u, v) = dG+xH(u, v), (4.1)

for every pair (u, v) ∈ V (H ′)× V (H ′). An analogous argument shows that

dG′+xH′(a, b) = dG+xH(a, b), (4.2)

for every pair (a, b) ∈ V (G′) × V (G′). Next consider a pair (a, u) ∈ V (G′) × V (H ′).
Any geodesic path from a to u can be considered as the concatenation of an a–x geodesic
path in G′ and a x–u geodesic path in H ′. Applying Equations (4.1) and (4.2) implies that:

dG′+xH′(a, u) = dG′+xH′(a, x) + dG′+xH′(x, u)

= dG′(a, x) + dH′(x, u)

= dG(a, x) + dH(x, u)

= dG+xH(a, u).

This completes the proof.

To state the main result of this section, we use the following definition and notation.

Definition 4.3. For a graph G and a vertex x ∈ V (G), let

DP(G) = {A ⊆ V (G) : G[A] ≤ G},
dp(G) = {|A| : A ∈ DP(G)},
dpx(G) = {|A| : A ∈ DP(G) & x ̸∈ A},
dpx(G) = {|A| : A ∈ DP(G) & x ∈ A}.

For sets R, S and T of integers, define R+S+T := {r+s+ t : r ∈ R, s ∈ S & t ∈ T}.



Acc
ep

te
d m

an
usc

rip
t

J. P. Smith et al.: On distance preserving and sequentially distance preserving graphs 7

x y

G H

P (x, y)

Figure 3: The figure for Gx
r—Hy .

Theorem 4.4. Consider a graph G+x H . Then:

dp(G+x H) =
(
dpx(G) + dpx(H) + {−1}

)
∪ dpx(G) ∪ dpx(H).

Proof. We consider two cases based upon whether A ∈ DP(G+xH) contains x. If A does
not contain x, then A is fully contained in either G or H , so dpx(G +x H) = dpx(G) ∪
dpx(H). If A does contain x, then Lemma 4.2 implies A = G′ +x H ′, where G′ ≤ G,
H ′ ≤ H and both contain x. Therefore, dpx(G+xH) = dpx(G)+dpx(H)+{−1} where
the minus 1 accounts for the common vertex x in G′ and H ′. Combining these two cases
with the formula dp(G+x H) = dpx(G+x H)∪ dpx(G+x H) completes the proof.

We can connect any two disjoint graphs by a path of length r, for any r > 0.

Definition 4.5. Consider two disjoint graphs G and H . Let Gx
r—Hy be the graph obtained

by connecting x ∈ V (G) and y ∈ V (H) with a path P (x, y) of length r.

These graphs are separable, so applying a simple iteration of Theorem 4.4 gives the
following corollary:

Corollary 4.6. Consider two disjoint graphs G and H . If r > 0 then:

dp(Gx
r—Hy) =

(
dpx(G) + dpy(H) + {−1, . . . , r − 1}

)
∪ dpx(G) ∪ dpy(H).

5 Maintaining the non-dp property
In this section we investigate the class of non-dp graphs. It is conjectured in [20] that
almost all graphs are dp. So understanding this class is a logical step towards a full clas-
sification of the class of dp graphs. The simplest non-dp graphs are the cycle graphs Ck,
for all k ≥ 5. We investigate how we can add vertices to the cycle graphs and preserve the
non-dp property. To this end we introduce the following class of graphs.

Consider the cycle Ck and a set of vertices A, with |A| = ℓ, such that A ∩ V (Ck) = ∅.
For each a ∈ A, select three consecutive vertices of Ck and join a to at least one of the
three selected vertices. Let Ck,ℓ denote the family of graphs that can be constructed in this
way. Given a graph G ∈ Ck,ℓ, let C(G) be the original cycle vertices of G and A(G) the
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G

Figure 4: A counterexample to the converse of the Theorem 5.1

added vertices. Note that the addition of the vertices to the cycle graph cannot change the
distance between any pair of vertices in C(G), so Ck ≤ G.

Recall that we label the vertices of Ck as v1, . . . , vk, and let vk+1 := v1 and v0 := vk.
So there is an edge between two vertices vi and vj if and only if i = j ± 1.

Theorem 5.1. If k > 2(ℓ+ 2), then any graph in Ck,ℓ is non-dp.

Proof. Consider a graph G ∈ Ck,ℓ. If an added vertex a is connected to two cycle ver-
tices ci−1 and ci+1, then the removal of either a or ci results in isomorphic subgraphs.
Therefore, when constructing an isometric subgraph of G, by removing a set of vertices
of G, we can assume that a is always removed before ci. Also recall that the added ver-
tices do not alter the distance between any of the cycle vertices. Combining these two
points implies that given a graph H ≤ G there is a geodesic path in H between any
two elements of C(H) that is entirely contained in H[C(H)]. Therefore, if H ≤ Ck,ℓ,
then H[C(H)] ≤ Ck.

We show that there is no isometric subgraph of G with order ⌊k
2 ⌋ + 2. Suppose for a

contradiction that such a subgraph does exist, we denote it H . We know that ℓ < k
2 − 2, so

to obtain H we must remove a set of s cycle vertices, where ⌈k
2 ⌉ − 2 > s > 0. However,

this implies that C(H) has t vertices, where k > t > ⌊k
2 ⌋+ 2, and it is straightforward to

see that there is no isometric subgraph of Ck with t vertices. Therefore, H is not isometric,
so G is non-dp.

Note that the converse of Theorem 5.1 is not true. For example in Figure 4, the graph G
is not dp, since there is no isometric subgraph of order 9, but k = 10 ̸> 10 = 2(ℓ+ 2).

By Theorem 3.5 we know that all non-dp graphs must contain a cycle of length n ≥ 5.
We propose that the above approach can be extend to give a constructive algorithm to build
all non-dp graphs from a collection of cycles joined together by sequentially adding new
vertices. However, how to achieve this construction we leave as an open problem.
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