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We examine the scattering of Ostrovsky wave packets,
generated from an incident solitary wave, in a
two layered waveguide with a delamination in the
centre and soft (imperfect) bonding either side of
the centre. The layers of the waveguide are assumed
to consist of different materials, and the strains
are described by a system of coupled Boussinesq
equations. A semi-analytical approach consisting
of matched asymptotic multiple-scale expansions
is applied, leading to Ostrovsky equations in soft
bonded regions and Korteweg-de Vries equations
in the delaminated region. This semi-analytical
method has good agreement with direct numerical
simulations, validating the approach, as well as
providing a significant reduction in the computation
time.

In the delaminated regions, Ostrovsky wave
packets evolve into a train of solitary waves, which
subsequently evolve into Ostrovsky wave packets in
the second bonded region. Analysis of the phase shift
in the wave packet, introduced from the delaminated
region, allows us to predict both the position and
the length of the delamination; the first time this has
been achieved using nonlinear waves. These results
motivate experiments to validate the theoretical
results, with the aim of creating a tool to monitor the
integrity of layered structures.

1 Introduction
Extensive research has been undertaken on developing
nonlinear models for strains in elastic waveguides, and
many studies found that Boussinesq-type equations
describe long longitudinal bulk strain waves in elastic
waveguides, such as rods, bars and metal plates (see e.g.
[1–7]). Laboratory experiments have confirmed the
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existence of longitudinal bulk strain solitons in rods and bars [8–11]. More recently, dispersive
shock waves have been experimentally observed and theoretically studied for a viscoelastic
waveguide [12]. These experiments are focused on transparent materials to allow the use of
interferometry for detecting strain waves. We note also that linear waves methods can be
employed in a wider range of materials at present, for example probing shock wave distribution
in opaque solids [13].

In practical applications using layered structures, it is imperative that the bonding between
layers remains intact, otherwise they could suffer catastrophic failure under stress. If we assume
there is a flaw in the bonding such as delamination (where the material is completely debonded),
the mathematical model takes the form of a scattering problem with continuity of longitudinal
displacement and normal stress on the interface between bonded and delaminated sections. For a
perfectly bonded waveguide (represented in experiments by cyanoacrylate), the displacements
are described by Boussinesq equations [4] and solitons fission in the delaminated regions
providing a clear sign of delamination [4,14]. For an imperfect ‘soft’ bonding (represented in
experiments by polychloroprene), a model based upon a series of anharmonic coupled dipoles
gives rise to coupled regularised Boussinesq (cRB) equations describing displacements in a bi-
layer, assuming sufficiently soft bonding [15]. When the materials in the layers have similar
properties, an incident solitary wave evolves in the bonded region into a solitary wave with a
one-sided, co-propagating oscillatory tail, known as a radiating solitary wave. In the delaminated
regions, the solitary wave detaches from its tail and this can be used to provide a measure of the
delamination [16].

In this paper, we focus on the case when the materials in each layer have significantly different
properties. A limiting case was previously studied in [17] where the displacement in the lower
layer was assumed to be zero. The displacements are governed by Boussinesq-Klein-Gordon
(BKG) equations with the leading-order strains described by Ostrovsky equations [18]. The
evolution of wave packets generated from an initial pulse has been extensively studied [19–21]. In
these studies, changes in the wave amplitude and phase shift in the transmitted wave field were
used to identify the delamination length [16,17,22]. Here we establish, for the first time, estimates
for both the position and size of the delamination using theoretical properties of the Ostrovsky
wave packet, a key development in the field.

The paper is organised as follows. In Section 2 we outline the problem formulation for the
scattering of zero mass wave packets in a bi-layer with a ‘sandwiched’ delamination. An overview
of the constructed weakly-nonlinear solution to the problem is presented in Section 3. In Section
4, the direct numerical solution to the problem is compared to the constructed semi-analytical
solution to confirm their agreement and demonstrate a significant reduction in the computation
time with the semi-analytical approach. Using observed changes in the transmitted wave field,
we create ‘fans’ consisting of the phase shift of the leading peak against delamination length,
for a range of delamination positions. Using the data from both layers, or considering waves
transmitted in both directions through the waveguide, we solve the inverse problem to uniquely
determine both the position and length of delamination, laying the groundwork for experimental
validation and the development of a technology for industry.

2 Problem Formulation
Consider the layered waveguide illustrated in Figure 1, where we have two cases: a semi-infinite
delamination that extends to the end of the waveguide, and a delamination sandwiched between
two bonded sections. The inclusion of a homogeneous region is inspired by the experimental
setup in [10]. The limiting case when the material in the lower layer is not displaced by the
initial impact is considered in [17], arising, for example, when the lower layer has a much larger
density than the upper layer. In this paper we assume that the characteristic speeds in the layers
are significantly different, but not the limiting case. The long longitudinal displacements in this
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(a) Semi-infinite delamination case (b) Finite delamination case

Figure 1. Schematic of two bi-layer structures that both include a homogeneous region for x0 <x< x1, a soft bonded

region for x1 <x< x2 and a delaminated region for x2 <x< x3. In subplot (b) there is an additional soft bonded region

for x3 <x< x4. We assume the homogeneous section has the same material properties throughout and for the other

sections the materials in both layers have significantly different properties.

system are governed by coupled regularised Boussinesq (cRB) equations in the bonded sections
of the bar and uncoupled Boussinesq equations in the delaminated sections of the bar [15,16].

We denote longitudinal displacements in the upper layer for the i-th section as u(i) and for the
lower layer asw(i). We are describing strain waves and therefore we set f (i) = u

(i)
x and g(i) =w

(i)
x .

For the soft bonded regions we have
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for i∈ {2, 4}. The values of the constants α, β and c depend on the physical and geometrical
properties of the waveguide, while the constants δ and γ depend on the properties of the
soft bonding layer, and ϵ is a small amplitude parameter [15,16]. For the homogeneous and
delaminated regions we have the system
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(2.2)

for i∈ {1, 3}, where i= 1 represents the homogeneous region with α= β = c= 1 and i= 3 the
delaminated region.

These equations are complemented with continuity conditions at the interfaces between the
sections, namely continuity of longitudinal displacement

u(i)|x=xi = u(i+1)|x=xi , w(i)|x=xi =w(i+1)|x=xi , i= 1, 2, 3 (2.3)

and continuity of normal stress. The latter condition is imposed by writing the cRB equations (2.1)
in the form
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so that we have

σ
(i)
f

∣∣∣
x=xi

= σ
(i+1)
f

∣∣∣
x=xi

, (2.5)

σ
(i)
g

∣∣∣
x=xi

= σ
(i+1)
g

∣∣∣
x=xi

, (2.6)



4

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

for i∈ {1, 3}. Note that the corresponding equations for i∈ {2, 4} are obtained using (2.2) in place
of (2.1), which results in a system of the form (2.4) with δ= γ = 0.

Previous works have examined the case when c− 1 =O (ε) [16] and the limiting case when
c→∞ and correspondingly w→ 0 [17]. We will investigate the scenario where the materials
have significantly different properties, characterised by c− 1 =O (1), but not the limiting case
examined in [17]. The order symbol here relates to powers of ε.

3 Weakly-Nonlinear Solution
To find an approximate solution to the system describing long longitudinal strains, we construct
a weakly-nonlinear solution up to O (ϵ) and use the continuity conditions to obtain ‘initial
conditions’ for the derived equations. Here we only summarise the results required for the
computations in Section 4; the full derivation can be found in Appendix A. The process is as
follows. We introduce a weakly-nonlinear solution of the form

f (i) = T (i) (ξ,X) +R(i) (η,X) + ϵP (i) (ξ, η,X) +O
(
ϵ2
)
, (3.1)

g(i) = S(i) (ν,X) +G(i) (ζ,X) + ϵQ(i) (ν, ζ,X) +O
(
ϵ2
)
, (3.2)

for i= 1, . . . , 4, where T and S are transmitted waves, R and G are reflected waves, and P and
Q are higher-order corrections, for each layer respectively. We make two modifications to the
general framework of (3.1) and (3.2): there are no reflected waves in the fourth section, and in
the first section both layers are assumed to be the same as the upper layer i.e. g(i) = f (i) and our
“transmitted” wave in the first section is an incident wave. This assumed form of the solution
is substituted into either (2.1) or (2.2) (the appropriate equation is chosen), giving an expression
relating the functions in the substitution.

To obtain equations for T , S, R and G, we use fast space averaging in the form

lim
xi−1→−∞

1

xi − xi−1

∫xi

xi−1

...dx (3.3)

for i= 1, 2, 3, 4, at either constant ξ or η, or similarly constant ν or ζ.
Applying this averaging gives us four sets of equations. In the first region we find two KdV

equations of the form
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In the bonded regions (sections 2 and 4), we obtain four uncoupled Ostrovsky equations of the
form
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Finally, in the third region we find KdV equations of the form

T
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(3)
ξξξ = 0, (3.10)
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(3)
ηηη = 0, (3.12)

G
(3)
X − 6

α

c2
G(3)G

(3)
ζ + βG

(3)
ζζζ = 0. (3.13)

Expressions forP andQ can be found at this stage, but these are not required for the computations
in the rest of the manuscript and therefore we leave their derivation for Appendix A.

To find ‘initial conditions’ for the derived equations within each region of the waveguide, we
use the continuity conditions (2.3), (2.5) and (2.6). The weakly-nonlinear solution in each region
is substituted into the appropriate continuity conditions, noting that we differentiate (2.3) with
respect to time, as in previous works [14,16,17]. We can then express the transmitted and reflected
wave in terms of the wave incident on the boundary, giving rise to reflection and transmission
coefficients.

For the upper layer, the equation system that we solve is identical to the one considered in [17],
where we found

R(i+1)|x=xi =C
(i)
R T (i)|x=xi , T (i+1)|x=xi =C

(i)
T T (i)|x=xi , (3.14)

i= 1, 2, 3. As the material is the same throughout the upper layer, we find the reflection and
transmission coefficients are C(i)

R = 0 and C(i)
T = 1, respectively, representing full transmission of

the incident wave at leading order.
For the lower layer, the equation system is similar, namely

G(i+1)|x=xi =C
(i+1)
G S(i)|x=xi , S(i+1)|x=xi =C

(i+1)
S S(i)|x=xi , (3.15)

i= 1, 2, 3. In regions 2 - 4, the materials in the lower layer are the same in each region and so
we have full transmission as with the upper layer. For the interface between the first and second
region, our transmission and reflection coefficients take the form

C
(1)
G =

c− 1

c+ 1
, C

(1)
S =

2

c (1 + c)
. (3.16)

4 Numerical Results
We use two numerical techniques for solving the systems of equations derived here. For the
system of equations (2.1) - (2.2), in conjunction with the continuity conditions (2.3), (2.5) and
(2.6), we perform direct numerical simulations based upon the scheme outlined in [23]. We briefly
outline the scheme here. Let us asssume that we can discretise u and w in both x and t variables
with step sizes ∆x and ∆t. The integrated forms of (2.1) and (2.2) are discretised using central

difference approximations with accuracyO
(
∆x2

)
andO

(
∆t2

)
(or an appropriate combination)

in each term. At the boundaries for each equation, we introduce “ghost points” which lie outside
the domain. A modified tridiagonal algorithm can be implemented to find an implicit solution to
each equation, in terms of these ghost points. We then discretise the continuity conditions (2.3)
and the integrated form of (2.5) - (2.6), again introducing ghost points. Assuming zero strain on
the boundaries at the end of the waveguide, we obtain a system of equations that can be solved
to find the ghost points, and thus the explicit solution at each time step. In the sequel, we use step
sizes of ∆x=∆t= 0.01.

For the weakly-nonlinear solution, we employ a semi-analytical method by solving the derived
equations using a pseudospectral scheme, which aligns with the methodology utilised in [16,17].
For the pseudospectral method, we can take a larger step size due to the nature of the scheme,
while maintaining the same level of accuracy as the direct numerical simulations. We use a
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step size of 0.3 for the characteristic variables ξ, η, ν, ζ and take ∆X = 0.001. The coefficients are
α= β = 1 + ε, δ= γ = 0.5, and ϵ= 0.005. These parameters are chosen for numerical convenience
in this paper, however we can relate them to physical parameters using the values found in
[24] and presented in [17]. For the values chosen here, we would consider a PMMA bar of
1mm × 1mm cross-section, with a length of approximately 2m. These values would change for
different materials and so our work should be considered a proof-of-concept. We assume that
the displacement at the boundary where the incident wave enters is constant and that the wave
propagates into an unperturbed medium, therefore we have boundary conditions ux = f = 0 at
both ends of the bar. This is the same boundary condition that was imposed for the development
of the numerical method in [23].

The Ostrovsky equation clearly has a zero-mean constraint, found by integrating the equation
in the spatial variable e.g.

1

2L

∫L
−L

I(ξ,X) dξ.

In the initial-value problem, this can be overcome by explicitly calculating the mean value of
the Boussinesq-Klein-Gordon [25] or cRB equations [26] and constructing a weakly-nonlinear
solution in the regime where all functions necessarily have zero-mean. This approach is yet to be
adapted for the scattering problem, so we circumvent this issue by considering localised strains
that already satisfy the zero mean requirement [16,17].

Explicitly, for the weakly-nonlinear solution, the initial condition is assumed to be the exact
solitary wave solution to the incident wave equation (3.4), with an adjustment for zero-mean,
namely

I (ξ,X0) =A sech2
(
ξ

Λ

)
− Γ

10

[
sech2

(
ξ + 5

10Λ

)
+ sech2

(
ξ − 5

10Λ

)]
, (4.1)

where

A=−v
2
, Λ=

2√
v
, Γ =

A tanh
(
L
Λ

)
tanh

(
L+5
10Λ

)
+ tanh

(
L−5
10Λ

) .
This gives a solitary wave with a long well to spread the mass. To determine the initial conditions
in other sections of the bi-layer, we make use of the relations outlined in Section 3 to express them
in terms of (4.1). The corresponding initial conditions for the cRB equations are chosen as

u(x, 0) =w(x, 0) = I(x, 0), ut(x, 0) =wt(x, 0) =−dI

dξ
(x, 0), (4.2)

which ensures that we only have a right-propagating wave in regions 2 to 4 of the bar at leading
order.

(a) Semi-infinite delamination
Firstly we examine the bi-layer waveguide featuring semi-infinite delamination, as depicted

in Figure 1(a), and compare the outcomes of direct numerical simulations against semi-analytical
results. The size of each section of the bar is specified by taking x0 =−100, x1 = 0, x2 = 200

and x3 = 1600. The comparative analysis, as illustrated in Figure 2, demonstrates an excellent
agreement across all regions in the waveguide. In the upper layer, the incident soliton evolves into
an Ostrovsky wave packet within the bonded region, consistent with the anticipated outcomes
outlined in [17,25]. This wave packet undergoes evolution into solitons within the delaminated
region. We observe a lead soliton that has almost fully separated from the well to travel on a zero
background, while others could still be trapped and would appear with a larger computational
domain. In the lower waveguide, the wave exhibits behaviour similar to that observed in the
upper waveguide. However, due to the higher wave speed and shorter duration spent in each
region, we observe comparatively less evolution.

In Figure 3 we present a computation for the same configuration of the waveguide shown in
Figure 2 for the third region, but with ε= 0.01. It is difficult to perform a full error analysis as ε→ 0
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Figure 2. Waves in a bar with semi-infinite delamination computed via direct numerical simulations (blue, solid line) and

the semi-analytical method (red, dashed line). Parameters: v= 4, c= 1.5, α= β = 1 + ε, δ= γ = 0.5. For the finite-

difference method, the full computational domain is [−100, 1600]. In the pseudospectral method, we have N = 32, 768.

(a) t= 1600 and ε= 0.01. (b) t= 1600 for ε= 0.005.

Figure 3. Comparison of the solutions in the third section of the bar shown in Figure 1(a), at t= 1600 for (a) ε= 0.01

and (b) ε= 0.005. The parameters are the same as for Figure 2, with the direct numerical simulation (blue, solid line)

and semi-analytical solution (red, dashed line), with better agreement for smaller ε. For the finite-difference method, the

full computational domain is [−100, 1600]. In the pseudospectral method, we have N = 32, 768.

due to the equation essentially becoming the linear wave equation for an initial wave. However,
we can clearly see that the error is larger for larger ε by noting the difference in position and
amplitude between the two sub-plots in Figure 3. The accuracy of the semi-analytical method
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could be improved by the inclusion of higher-order terms, but this is beyond the scope of this
paper as we will use ε= 0.005 in subsequent calculations, where the agreement is good.

(b) Finite delamination
The next natural case to consider is when the delamination is sandwiched between two soft

bonded regions, as depicted in Figure 1(b). We firstly aim to show agreement between the two
numerical schemes, before considering how to detect delamination.

Figure 4. Comparison of the schemes in the final section of the bar shown in Figure 1(b), at t= 1560 for the lower

waveguide and t= 2320 for the upper waveguide. The parameters are the same as for Figure 2, with the direct numerical

simulation (blue, solid line) and semi-analytical solution (red, dashed line) in good agreement. For the finite-difference

method, the full computational domain is [−100, 2300]. In the pseudospectral method, we have N = 32, 768.

We modify the semi-infinite delamination scenario by introducing an additional soft bonded
region for 1600<x< 2300. The results in the first three sections can be seen in Figure 2, while
the comparison in the final region is shown in Figure 4. In both layers, we observe that any
emerging solitary waves are now evolving into Ostrovsky wave packets, leading to a complex
behaviour. In comparison to the previous soft bonded region there are significantly more peaks
and the amplitude has also decreased significantly, a clear sign of delamination. It is worth
noting that, while there is good agreement around the leading wave packet, the agreement is
weaker elsewhere, particularly characterised by a phase shift, due to the absence of higher-order
correction terms.

At this stage, we have shown good agreement between the two approaches. The computations
were undertaken on an Intel Core i7-1255U processor, with 10 cores, 12 threads, and a maximum
frequency of 4.70GHz. For the direct numerical approach to the cRB equations, the computation
took 16 hours and 40 minutes, while the semi-analytical approach took 25 minutes, 40 times
faster. Therefore, as the agreement is good for the leading peaks, we will use the semi-analytical
approach in all subsequent regions of the manuscript. It is worth noting that, for larger values of
ε, if the agreement is reasonable then the semi-analytical computation scales with this parameter,
so the computation time can potentially be even further reduced.

(c) Characterising the delamination
To understand how the length and position of the delaminated region impact a bonded

structure, we must explore how varying the delamination position, represented by x2, and the
delamination length, denoted asD= x3 − x2, influence the waves within the final bonded region.
We observed previously that the wave structure changes significantly, but we require a direct
measure that can be used for classification.

In [17] it was noted that the linear dispersion relation for the derived KdV or Ostrovsky
equations can help determine changes in the wave packet. Indeed, the wave speed of the
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(a) D= 0 (b) D= 500

(c) D= 1000 (d) D= 1500

Figure 5. Identifying the leading peak in the Ostrovsky wave packet. The leading peak for D= 0 is identified in red, while

the next leading peak that appears as the delamination length increases is marked in blue. We can see that the red peak

moves back into the main wave packet, while the blue peak becomes more distinct as delamination length increases.

Ostrovsky wave packet is the maximum of the group speed (< c), while solitons move with a
speed in the phase gap (> c). Therefore, for a longer delaminated region, a larger phase shift will
be introduced. However, this can be masked by the complex evolution of the wave packet. In
order to identify a characteristic that can be used to characterise the delamination, we plot the
solution for four different values of delamination length in Figure 5.

Note that our initial condition is negative, therefore we will refer to the local minima as a
“peak” with reference to the initial condition. If instead the initial condition was positive (and
correspondingly the nonlinear term was also positive) then we would consider local maxima
instead. In Figure 5(a), when there is no delamination, we can see a small leading peak in the wave
packet (red dot) and a subsequent point of interest is also shown (blue dot). As the delamination
length is increased, this leading peak increases in amplitude and begins to move backwards, while
the second point of interest has begun to develop into a peak. Therefore, the overall wave packet
has moved forward, despite the leading peak moving backwards. Finally, for large delaminations,
the first peak is not identifiable in the main wave packet, but the second peak is clear and indicated
by the blue dot in Figure 5(d). There are also further peaks forming, but we only indicate the first
two that formed to illustrate the concept. This shift in the overall wave packet agrees with the
expectations of the linear dispersion relation analysis.

Manually measuring the front of the wave packet can be difficult, although this was done with
some success in [17]. In the subsequent sections of this paper, we will employ spline interpolation
to interpret the data between discretised points and improve the tracking of the leading peak. The
region where the leading peak is expected to reside is chosen using information on the distance
the wave packet propagates, as illustrated in Figure 5. We work from right-to-left, looking for
the first peak that lies above a threshold defined as 0.1×min (f). This avoids any low-amplitude
oscillations being falsely included.

Firstly, we focus on the upper layer within the structure, using the same parameters as
Section 4(b). The delamination length is varied from D= 0 in increments of 50 up to D= 400.
Simultaneously, the delamination position is varied from x2 = 0 to x2 = 550. The maximum
computational time considered for the calculation is set at t= 2000. By tracking the peak, we
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(a) x2 ∈ [0, 300] (b) x2 ∈ [350, 550]

Figure 6. ‘Fan’ plots of the change in phase shift in the upper layer, with reference to the fully bonded case, compared

against changes in delamination length. The position x2 is varied from (a) 0 to 300 and (b) 350 to 550, and the

delamination length D is varied from 0 to 400.

can measure the phase shift in comparison to the case without delamination. The result is plotted
in Figure 6.

For x2 = 0 to x2 = 300 the phase shift curve decreases in gradient, creating a ‘fan’ shape,
and then for x2 = 350 to x2 = 550 the phase shift curve is increasing in gradient. Hence, for
an observed phase shift, we may obtain multiple possible values for the delamination length
and position due to multiple intercepts with the curve, and for some values the curves may
coincide. At this stage, we comment on the time required to compute these fans. Each line of
the fan contains nine points and we have 12 lines in total in Figure 6. Using the semi-analytical
approach, this takes approximately 44 h to compute. If we used the direct numerical scheme, it
would take 1844 h. We can also improve the speed of the calculation by noting that the code
does not utilize parallelization, so multiple runs can be performed simultaneously. Using the
device mentioned earlier (Intel Core i7-1255U processor, with 10 cores and 12 threads), we can
run 12 computations at the same time, giving a time of 3 h and 40 min. Therefore, using the
semi-analytical approach allows for the computation to be undertaken in a reasonable timeframe
without access to specialist hardware.

Furthermore, if the material under consideration is changed, the computations will need to be
re-run as the parameters will be different. This means that each time a new material is tested, the
computations must be performed again. Using the semi-analytical approach presented here will
save a significant amount of computation time when testing different materials.

We can naturally obtain another measure for this structure by considering the lower section
of the waveguide and performing the same analysis. We consider two cases, when c= 1.25 and
c= 1.5, both of which are shown in Figure 7. These fans are similar to those for the upper layer,
however for c= 1.5, we observe more x2 values prior to the reversal of gradient due to the
decreased rate of evolution. Additionally, for c= 1.5, we notice overlapping lines, attributed to
the aforementioned slower evolution. This overlap becomes more prominent for larger values
of c and thus limits the applicability. However, we present a method to relax this limitation in
Section 4(d).

We now outline a method to identify the position and size of the delamination using the results
shown in Figures 6 and 7. Let us assume that we have tested a material and found that the phase
shift in the upper layer, in comparison to the case without delamination, is 0.96, as indicated
by the dashed horizontal line in Figure 8(a). We have extracted only three lines from Figure 6
for illustrative purposes, to avoid clustering. We find intersections with the fan at x2 = 0, 50, 100,
with corresponding delamination lengths ofD= 89, 158, 300, respectively. Similarly, for the lower
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(a) c= 1.25 (b) c= 1.5

Figure 7. ‘Fan’ plots of the change in phase shift in the lower layer, with reference to the fully bonded case, compared

against changes in delamination length, for (a) c= 1.25 and x2 ∈ [0, 250], and (b) c= 1.5 and x2 ∈ [0, 500]. In both

cases the delamination length D is varied from 0 to 400.

layer, we find a phase shift of -0.34 in comparison to the case without delamination. This is
indicated by the dashed line in Figure 8(b). Again we have only extracted only three lines from
Figure 6 for illustrative purposes. The only intersection is for x2 = 100 and D= 300. The only
common value is for x2 = 100 and D= 300, thus we can identify a delaminated region from
x= 100 to x= 400. This process could, in theory, provide multiple potential values. However it
could then be complemented with more conventional linear short wave methods at the identified
locations to determine the correct value.

(a) Upper layer. (b) Lower layer.

Figure 8. Example of interception with fan plots for a given phase shift, identifying interceptions to determine the common

delamination length and position.

(d) Reversing the sample
As previously noted, for larger values of c we observe a bunching of the branches in the fan

due to less evolution (see Figure 7(b)). In this case, an observed phase shift will give a large
number of possible values for D, while for even larger values of c e.g. c= 2, the fan curves are
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almost superimposed, making it impossible to use the technique outlined in Section 4(c). Here we
present an alternative approach.

For a given sample, we can send waves from left-to-right, or alternatively we can reverse the
sample and send waves from right-to-left. In this reversed configuration, the initial homogeneous
region is found between x̃4 = 2400 and x̃3 = 2300 (= x4). The interval from x̃3 to x̃2 (= x3)

constitutes the first soft bonded region, the delaminated region is from x̃2 to x̃1 = x̃2 −D (= x2),
while x̃0 = 0 (= x1) is the end of the second soft bonded region. The fan generated in the upper
layer for this case is presented in Figure 9.

0 100 200 300 400
-1

-0.5

0

0.5

1

Figure 9. ‘Fan’ plot of the change in phase shift in the upper layer of the reversed sample, with reference to the fully

bonded case, compared against changes in delamination length for x̃2 ∈ [500, 750]. The delamination length D is varied

from 0 to 400.

The fan shape results here are similar to those found in Figure 6 for waves moving from left-to-
right. To apply the results in Figure 9 for identifying delamination, we assume that experiments
were performed with incident waves in both directions and that the corresponding phase shifts
were detected and recorded in the upper layer only where c= 1. For example, assuming that
we detect phase shifts of −1.510 for the left-to-right incident wave and 0.129 for the right-to
left incident wave, then we can check the fan intersections in Figures 6 and 9, respectively. For
the right-to-left case we find intersections at x̃2 = 750, 700, 650 with corresponding delamination
lengths of D= 207, 221, 300. Hence the minimum possible coincident x2 value for the left-to-
right case is given by x2 = 650−D= 650− 300 = 350, since x2 is taken at the left side of the
delaminated region and x̃2 at the right side. For the left-to-right case, we therefore consider
intersections in the range x2 ⩾ 350 and obtain a unique intersection at x2 = 350 (or x̃2 = 650)
with a delamination length of 300. Hence, we can identify a delaminated region from x= 350 to
x= 650. In practice, we may need to interpolate between curves to find the exact intersections;
we only provide a proof of concept here.

5 Conclusions
In this paper we have considered the propagation of waves in a layered waveguide with soft
bonding between the layers, including a delamination where the bonding has eroded. Previous
studies have considered cases where the layers are identical with perfect bonding [4,14], and
soft bonding with similar material properties [16]. This study has examined the emergence of
Ostrovsky wave packets in this system when the layers have distinct properties.

Direct numerical simulations can be performed for these problems [23], but we can learn
more about the underlying physics through developing a semi-analytical approach based upon
the use of several matched asymptotic multiple-scale expansions and averaging with respect
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to the fast space variable. This shows that the leading order waves are governed by Ostrovsky
equations and thus Ostrovsky wave packets emerge. Furthermore, the semi-analytical approach
provides a significant gain in computational efficiency over direct numerical simulations, with a
computational time saving of approximately 97.5%. We have also shown that the schemes are in
good agreement around the main wave packet, with some divergence in the trailing radiation,
which could be remedied by the inclusion of higher order corrections in the weakly-nonlinear
solution, as shown for the corresponding initial-value problem in [26].

Our study has revealed that the presence of delamination leads to an amplitude decay and a
phase shift in the Ostrovsky wave packet, giving a measure of the delamination. Using this phase
shift, we constructed ‘fans’ that represent the corresponding phase shift for different positions and
lengths of delamination. By performing experiments to detect these phase shifts, the intersections
with the fans can be calculated for each layer and the common intersection gives the precise
position and length of delamination. If the layers have significantly different properties, the fan
in the lower layer is condensed and provides limited information, so the sample can be reversed
and a second fan created for the waves propagating in the opposite direction through the upper
waveguide. The intersections can then be compared for both fans to identify the coincident
value(s).

This is a significant step forward in the field, as it is the first time to our knowledge that
nonlinear waves have been shown to identify both the position and length of delamination, in
contrast to previous studies [14,16,17]. If multiple values are identified, linear wave methods
could be used to supplement our results at the identified locations to determine the precise
position and length.

Solitons have been observed in a layered PMMA waveguide with cyanoacrylate between
the layers [8–11] and radiating solitary waves have been observed in a two-layered PMMA bar
with PCP (polychloroprene-rubber-based) adhesive [10]. Our study motivates further laboratory
experimentation with soft bonding and distinct material properties in each layer to confirm these
estimates and provide a significant step towards a new technology that can be deployed in
industrial settings.

Data Accessibility. The codes (C/MATLAB) used to generate and process the results in this paper are
available via Zenodo at https://dx.doi.org/10.5281/zenodo.14170296.
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A Weakly-Nonlinear Solution
To find an approximate solution to the system describing long longitudinal strains, we construct
a weakly-nonlinear solution up to O (ϵ) and use the continuity conditions to obtain ‘initial
conditions’ for the derived equations. This is implemented for the four-section waveguide
here, with a sandwiched delamination, while for the three-section waveguide with semi-infinite
delamination, the final soft bonded region can be discounted.

(a) Homogeneous section
Consider the first section of the bar shown in Figure 1(b), which is a homogeneous region

where the two layers are identical and thus the longitudinal displacements are governed by a
Boussinesq equation in each layer. Therefore, following the notation from Section 2, we introduce
a leading order weakly-nonlinear solution in the first region of the structure, which is described
by (2.2), and takes the form

f (1) (ξ, η,X) = g(1) (ξ, η,X) = I(1) (ξ,X) +R(1) (η,X) + ϵP (1) (ξ, η,X) +O
(
ϵ2
)
, (A 1)

where we have introduced the characteristic variables ξ = x− t, η= x+ t and X = εx. The
function I(1) represents the incident wave in the bar for both layers, which becomes a transmitted
wave in other sections of the waveguide. Reflected waves are denoted by R(1) , and the higher
order corrections atO (ϵ) are given by P (1). Substituting (A 1) for terms up toO (ϵ) into the system
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(2.2) gives

−4P
(1)
ξη =

(
2I

(1)
X − 12

(
I(1)I

(1)
ξ

)
+ 2I

(1)
ξξξ

)
ξ
+

(
2R

(1)
X − 12

(
R(1)R

(1)
η

)
+ 2R

(1)
ηηη

)
η

− 12
(
I
(1)
ξξ R

(1) + I(1)R
(1)
ηη + 2I

(1)
ξ R

(1)
η

)
. (A 2)

We can introduce fast space averaging for all sections of the bar in the form

lim
xi−1→−∞

1

xi − xi−1

∫xi

xi−1

...dx (A 3)

for i= 1, 2, 3, 4. For i= 1 here, the aim is to average at constant ξ or η to obtain equations in
only I(1) or R(1), respectively. Averaging the left-hand side of (A 2) in the fast space variable x at
constant η gives

lim
x0→−∞

1

x1 − x0

∫x1

x0

P
(1)
ξη dx= lim

x0→−∞
1

2(x1 − x0)

∫2x1−η

2x0−η
P

(1)
ξη dξ

= lim
x0→−∞

1

2(x1 − x0)

[
P

(1)
η

]2x1−η

2x0−η
= 0. (A 4)

A similar result can be found for constant ξ. Applying the averaging to the right-hand side yields
two KdV equations of the form

I
(1)
X − 6I(1)I

(1)
ξ + I

(1)
ξξξ = 0, (A 5)

R
(1)
X − 6R(1)R

(1)
η +R

(1)
ηηη = 0. (A 6)

Substituting (A 5) and (A 6) back into (A 2), then integrating twice, we obtain the higher order
correction P (1) as

P (1) = 3

(
2I(1)R(1) +R

(1)
η

∫
I(1) dξ + I

(1)
ξ

∫
R(1) dη

)
+ ϕ(1) (ξ,X) + ψ(1) (η,X) (A 7)

where ϕ(1), ψ(1) are arbitrary functions.

(b) Imperfectly bonded sections

We now consider the case with soft bonding and we have c− 1 =O (1). The leading-order
behaviour to the cRB equations should take the form of Ostrovsky wave packets [27] in agreement
with the observed results in the corresponding initial-value problem [28]. We present the
derivation for both regions 2 and 4 of the waveguide here, but in the final region we assume that
there is no leading order reflected wave (the waves have not reached the end of the waveguide
and reflected back), so these terms can be omitted in region 4. Let us assume a weakly nonlinear
solution of the form

f (i) = T (i) (ξ,X) +R(i) (η,X) + ϵP (i) (ξ, η,X) +O
(
ϵ2
)
, (A 8)

g(i) = S(i) (ν,X) +G(i) (ζ,X) + ϵQ(i) (ν, ζ,X) +O
(
ϵ2
)
, (A 9)

i= 2, 4. The characteristic variables ξ, η and X are the same as before, but we now have different
characteristic variables for the second layer, ν = x− ct and ζ = x+ ct. Substituting (A 8) into (2.1)
gives

−4P
(i)
ξη =

(
2T

(i)
X − 12T (i)T

(i)
ξ + 2T

(i)
ξξξ

)
ξ
− δ

(
T (i) − S(i)

)
+

(
2R

(i)
X − 12R(i)R

(i)
η + 2R

(i)
ηηη

)
η
− δ

(
R(i) −G(i)

)
− 12

(
T
(i)
ξξ R

(i) + T (i)R
(i)
ηη + 2T

(i)
ξ R

(i)
η

)
, (A 10)
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for the upper layer, and substituting (A 9) into (2.1) gives

−4c2Q
(i)
ξη =

(
2c2S

(i)
X − 12αS(i)S

(i)
ξ + 2βc2S

(i)
ξξξ

)
ξ
+ γ

(
T (i) − S(i)

)
+

(
2c2G

(i)
X − 12αG(i)G

(i)
η + 2βc2G

(i)
ηηη

)
η
+ γ

(
R(i) −G(i)

)
− 12α

(
S
(i)
ξξ G

(i) + S(i)G
(i)
ηη + 2S

(i)
ξ G

(i)
η

)
, (A 11)

for the lower layer. Applying the averaging (A 3) for i= 2, 4, holding each of the characteristic
variables (except X) constant, leads to four uncoupled Ostrovsky equations of the form(

R
(i)
X − 6R(i)R

(i)
η +R

(i)
ηηη

)
η
= δR(i), (A 12)(

T
(i)
X − 6T (i)T

(i)
ξ + T

(i)
ξξξ

)
ξ
= δT (i), (A 13)(

c2G
(i)
X − 6αG(i)G

(i)
ζ + βc2G

(i)
ζζζ

)
ζ
= γG(i), (A 14)(

c2S
(i)
X − 6αS(i)S

(i)
ν + βc2S

(i)
ννν

)
ν
= γS(i). (A 15)

Substituting these back into (A 10) and (A 11) we find

−4P
(i)
ξη =−12

(
T
(i)
ξξ R

(i) + T (i)R
(i)
ηη + 2T

(i)
ξ R

(i)
η

)
+ δG(i) + δS(i), (A 16)

−4c2Q
(i)
ξη =−12α

(
S
(i)
ξξ G

(i) + S(i)G
(i)
ηη + 2S

(i)
ξ G

(i)
η

)
+ γT (i) + γS(i). (A 17)

In (A 16) and (A 17) we have terms involving the other characteristic variables, namely S(i) and
G(i) for (A 16), with T (i) and R(i) appearing in (A 17). We can rewrite these in terms of the
corresponding characteristic variables for P (i) and Q(i), to allow us to perform the integration.
For example, we can rewrite ζ = x− ct as

ζ =
(1− c)ξ + (1 + c)η

2
. (A 18)

Making the appropriate change for each of the terms, we can then integrate to find expressions
for P (i) and Q(i) as

P (i) = Ĝ+ Ŝ + h1 + ϕ
(i)
1 (ξ,X) + ψ

(i)
1 (η,X) , (A 19)

Q(i) = R̂+ T̂ + h2 + ϕ
(i)
2 (ν,X) + ψ

(i)
2 (ζ,X) , (A 20)

where ϕ(i)1,2 and ψ(i)
1,2 are arbitrary functions and we have introduced

Ĝ=− δ

1− c2

∫ζ
−∞

∫v
−∞

G(i)(u,X)dudv, Ŝ =− δ

1− c2

∫ν
−∞

∫v
−∞

S(i)(u,X)dudv,

R̂=
γ

1− c2

∫η
−∞

∫v
−∞

R(i)(u,X)dudv, T̂ =
γ

1− c2

∫ξ
−∞

∫v
−∞

T (i)(u,X)dudv,

h1 = 3

(
2T (i)R(i) +R

(i)
η

∫
T (i) dξ + T

(i)
ξ

∫
R(i) dη

)
,

h2 = 3α

(
2S(i)G(i) +G

(i)
η

∫
S(i) dν + S

(i)
ξ

∫
G(i) dζ

)
.

(c) Delaminated section
In the third region of the waveguide, where the delamination is present we employ a

similar methodology as described in Section A(a) but as the Boussinesq equations have different
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coefficients we need to use a different set of characteristic variables in each layer, as in Section
A(b). Namely, we take a leading order weakly-nonlinear solution in the form

f (3) = T (3) (ξ,X) +R(3) (η,X) + ϵP (3) (ξ, η,X) +O
(
ϵ2
)
, (A 21)

g(3) = S(3) (ν,X) +G(3) (ζ,X) + ϵQ(3) (ν, ζ,X) +O
(
ϵ2
)
. (A 22)

Substituting into (2.2) we obtain

−4P
(3)
ξη =

(
2I

(3)
X − 12

(
I(3)I

(3)
ξ

)
+ 2I

(3)
ξξξ

)
ξ
+

(
2R

(3)
X − 12

(
R(3)R

(3)
η

)
+ 2R

(3)
ηηη

)
η

− 12
(
I
(3)
ξξ R

(3) + I(3)R
(3)
ηη + 2I

(3)
ξ R

(3)
η

)
, (A 23)

for the upper layer, and for the lower layer we find

−4c2Q
(3)
νζ =

(
2c2S

(3)
X − 12α

(
S(3)S

(3)
ν

)
+ 2βc2S

(3)
ννν

)
ν

+
(
2c2G

(3)
X − 12α

(
G(3)G

(3)
ζ

)
+ 2βc2G

(3)
ζζζ

)
ζ

− 12α
(
S
(3)
νν G

(3) + S(3)G
(3)
ζζ + 2S

(3)
ν G

(3)
ζ

)
. (A 24)

Applying the averaging (A 3), holding each of the respective characteristic variables constant,
leads to KdV equations for the transmitted waves of the form

T
(3)
X − 6T (3)T

(3)
ξ + T

(3)
ξξξ = 0, (A 25)

S
(3)
X − 6

α

c2
S(3)S

(3)
ν + βS

(3)
ννν = 0, (A 26)

while for the reflected waves we find

R
(3)
X − 6R(3)R

(3)
η +R

(3)
ηηη = 0, (A 27)

G
(3)
X − 6

α

c2
G(3)G

(3)
ζ + βG

(3)
ζζζ = 0. (A 28)

Substituting (A 25) - (A 28) into (A 23) and (A 24), then integrating twice, gives expressions for
the higher-order corrections of the form

P (3) = 3

(
2T (3)R(3) +R

(3)
η

∫
T (3) dξ + T

(3)
ξ

∫
R(3) dη

)
+ ϕ

(3)
1 (ξ,X) + ψ

(3)
1 (η,X) , (A 29)

and

Q(3) = 3α

(
2S(3)G(3) +G

(3)
ζ

∫
S(3) dν + S

(3)
ν

∫
G(3) dζ

)
+ ϕ

(3)
2 (ν,X) + ψ

(3)
2 (ζ,X) , (A 30)

where ϕ(3)1,2 and ψ(3)
1,2 are arbitrary functions.


	1 Introduction
	2 Problem Formulation
	3 Weakly-Nonlinear Solution
	4 Numerical Results
	(a) Semi-infinite delamination
	(b) Finite delamination
	(c) Characterising the delamination
	(d) Reversing the sample

	5 Conclusions
	References
	A Weakly-Nonlinear Solution
	(a) Homogeneous section
	(b) Imperfectly bonded sections
	(c) Delaminated section


