
RESEARCH

Conservation Genetics
https://doi.org/10.1007/s10592-025-01676-4

over which functional population connectivity can exist 
(McMahon et al. 2014). However, this is challenging as 
the genetic structure of the population is often difficult to 
detect, being masked by stronger historical gene flow that 
may have long since disappeared (Milligan et al. 2018; 
Lucena-perez et al. 2020). Thus, methods used widely to 
infer contemporary gene flow, such as assigning individuals 
captured from distinct populations to their natal population, 
typically lack power where there is minimal variation in 
genetic structure (Proctor et al. 2020). Also, relatively large 
overall population size limits the power of traditional indi-
vidual pairwise genetic pedigree methods via the detection 
of closely-related pairs of individuals to inform ongoing 

Introduction

In recent decades, agricultural intensification and the sub-
sequent loss and fragmentation of rural habitats have had 
severe impacts on the distribution and abundance of many 
previously common species (Tilman et al. 2017). This is par-
ticularly relevant in Western Europe, where such changes in 
farmland have led to substantial declines and range frag-
mentation for many common species including birds (Don-
ald et al. 2001; Rigal et al. 2023), amphibians (Petrovan and 
Schmidt 2016; Băncilă et al. 2023), and butterflies (Habel 
et al. 2022). Understanding current gene flow between local 
populations can provide insights into the scale and extent 
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population despite the populations being separated by unoccupied agricultural land. Spatial autocorrelation was significant 
in adult female hedgehogs, but non-significant in adult males, revealing male driven contemporary gene flow between 
local populations. The results suggest that male hedgehogs are capable of moving between population patches separated 
by at least 3 km across the agricultural matrix. This finding is crucial to aid the development of a conservation strategy 
for hedgehogs as, for the first time, it shows the extent that previously assumed isolated populations across a perceived 
inhospitable landscape are connected by current gene flow. Higher within patch relatedness, and lower allelic richness 
were found from smaller suburban patches, largely reflecting local population size, indicating an early stage of genetic 
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and local genetic diversity together is important to better understand habitat effects on genetic variation and to inform 
future conservation management.

Keywords  Contemporary gene flow · Sex-biased dispersal · Genetic diversity · Metapopulation dynamics · 
Agroecosystem · Erinaceidae

Received: 21 November 2024 / Accepted: 23 January 2025
© The Author(s) 2025

Unexpected landscape-scale contemporary gene flow and fine-scale 
genetic diversity in rural hedgehogs

Hongli Yu1,3  · Lauren J. Moore1 · Axel Barlow2 · Louise K. Gentle1 · Deborah A. Dawson3 · Gavin J. Horsburgh3 · 
Lucy Knowles3 · Philip J. Baker4 · Adam Bates1 · Helen Hicks1 · Silviu Petrovan5 · Sarah Perkins6 · Richard W. Yarnell1

1 3

http://orcid.org/0009-0005-5715-9260
http://crossmark.crossref.org/dialog/?doi=10.1007/s10592-025-01676-4&domain=pdf&date_stamp=2025-2-22


Conservation Genetics

gene flow, as such individuals are often difficult to capture 
or detect (Taylor 2015).

A potential method for overcoming these issues that is 
applicable to species exhibiting sex-biased dispersal is 
through inferring asymmetric genetic structure between 
sexes (Li and Kokko 2019), using biparental inherited auto-
somal genetic markers. When species show sex-biased dis-
persal, contrasting genetic structure patterns between males 
and females is possible to be detected. However, this is only 
possible where gene flow occurs between local populations, 
as the signal of this asymmetric sex-biased genetic structure 
is lost in just one generation if gene flow ceases (Prugnolle 
and de Meeus 2002). Consequently, this method has the 
potential to reveal current gene flow, whilst bypassing the 
confounding effects of historical gene flow. For example, 
a strong social genetic structure was found in female Afri-
can striped mice (Rhabdomys pumilio) living along a 7 km 
dry riverbed, whereas only weak structure, was found in the 
dispersing males, the latter indicative of coming from one 
population (Solmsen et al. 2011). The contrasting structure 
patterns between the males and females suggest that gene 
flow was occurring between populations of African striped 
mice, albeit largely from the wider-ranging males. However, 
the method remains largely untested, especially for popula-
tions that are separated by unoccupied landscapes where the 
signal of sex-biased genetic structure might be less visible 
if inter-patch movement is highly restricted (Prugnolle and 
de Meeus 2002).

The West-European hedgehog (Erinaceus europaeus) is 
considered a model species in agroecosystems for inform-
ing rural habitat connectivity (e.g., Moorhouse et al. 2014) 
and evaluating agri-environment schemes (e.g., Hof et al. 
2012; Pettett et al. 2017). The species has undergone sig-
nificant population decline across its geographic range (e.g., 
Roos et al. 2012; Hof and Bright 2016; Taucher et al. 2020), 
with rural habitat loss and fragmentation thought to be the 
principal drivers (Wilson and Wembridge 2018). Recent 
studies also suggest that rural hedgehogs have a patchy 
and discontinuous distribution (Williams et al. 2018), and 
where present in rural environments, they tend to occur in 
small populations near residential buildings (Schaus et al. 
2020) where they will occasionally use the surrounding 
agricultural matrix (Parrott et al. 2014; Hof et al. 2012). 
As hedgehog home ranges are relatively small (e.g., 0.12 
km2 for females and 0.22 km2 for males; Pettett et al. 2017) 
and their dispersal ability is poorly understood, questions 
remain about their ability to move between suburban cen-
tred populations separated by a largely uninhabited agricul-
tural matrix (Yarnell et al. 2014). If hedgehogs are unable 
or unwilling to traverse the agricultural matrix, and the 
suburban populations are indeed isolated, they are likely 
to experience increased genetic drift and a subsequent loss 

of genetic diversity and lowered population viability (Reed 
and Frankham 2003; Spielman et al. 2004).

The isolation of populations and their likelihood of los-
ing genetic diversity will depend on the distance between 
populations and the size of the populations. A lack of suit-
able habitat will also play a role in shaping the within-
population genetic variation, leading to reduced genetic 
diversity at local scales. This is because smaller patches can 
only accommodate lower effective population sizes and, 
consequently, local populations will experience higher lev-
els of genetic drift and retain lower levels of genetic diver-
sity (Keyghobadi 2007). However, very few studies have 
considered the effects of landscape structure on genetic 
diversity within populations (Dileo and Wagner 2016). In 
hedgehogs, whilst much work has focused on hedgehog 
genetic structure, genetic diversity remains insufficiently 
understood (Rasmussen et al. 2020).

Interpretation of previous studies on hedgehog gene flow 
is also hampered by ascertainment bias in analysis, histori-
cal gene flow (Araguas et al. 2022), and the unknown wider 
genetic population structure across its geographical range. 
For example, Becher and Griffiths (1998) showed popu-
lation differentiation between eight populations within a 
15 km radius in Oxfordshire but could not identify if natu-
ral barriers to intrinsic dispersal or human induced habitat 
fragmentation were the cause. In Zurich, hedgehog popu-
lation structure might be confounded by sampling biases 
caused by sampling closely related individuals (Braaker et 
al. 2017; Barthel et al. 2020). Furthermore, a population in 
central London was found to have low genetic diversity, but 
whether this was due to current isolation, historic or recent 
founder effects remains unknown (O’Reilly 2016).

Here, we used nuclear autosomal genetic data from 
hedgehogs residing in four local suburban sites with varying 
local hedgehog population sizes to investigate contempo-
rary gene flow across a perceived inhospitable agricultural 
matrix. We expected that if gene flow between local popu-
lations still occurred, asymmetric genetic patterns struc-
ture between sexes, due to sex-biased dispersal, might be 
detectable. Otherwise, if gene flow between local popula-
tions ceased, asymmetric genetic patterns structure between 
sexes should be lacking, and genetic structure between 
local populations might become detectable. We used differ-
ent methods to infer genetic structure. We also investigated 
relatedness patterns, and genetic diversity, both within and 
across sites, to evaluate the effects of habitat composition on 
the genetic variation in the hedgehogs.
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Methods

Study area and sampling design

Hedgehogs were sampled from four suburban centers 
(Farnsfield, Halam, Kirklington, and Southwell) in rural 
Nottinghamshire, England (Fig.  1). The spatially-varying 
distribution of the hedgehogs within our study is representa-
tive of most rural hedgehog populations in England as: (1) 
sites were < 10 km apart from their nearest neighbour, and 
hedgehogs have been sighted in 91.4% of 10 × 10 km grids 
across England (Hof and Bright 2016) and (2) sites were 
largely separated by agricultural land which takes up 69% 
of land cover in England (National Statistics 2022). The 
sites had varying local hedgehog population sizes, and dif-
fering amounts of preferred suburban and grassland habitats 
(Fig. 1; Table S1; Table S2).

Between 2020 and 2021, 276 hedgehog samples were 
collected from a ~ 1 km2 area in each suburban population. 
The majority of samples (n = 247) were hairs plucked from 
live hedgehogs during systematic spotlight transects. Addi-
tional soft tissue samples mainly from ears (n = 29) were 
collected from road killed hedgehogs within the suburban 

centers. Geographic coordinates, sex, and age informa-
tion were recorded where possible (Supplementary Table 
S7). For hedgehogs with multiple captures, the midpoint 
between sampling coordinates was taken as the location of 
that hedgehog’s sample. ‘Juvenile’ hedgehogs were defined 
as those born that calendar year. All tissue samples were 
stored in 50 ml of absolute ethanol in screw-topped rubber-
sealed falcon tubes and transferred to a -20 °C spark-proof 
freezer as soon as possible until DNA extraction.

Local hedgehog density (number of individuals per km2 ) 
was estimated based on spatial-capture-recapture as part of 
a wider research project (Moore 2023). Landscape compo-
sition was qualified using both node-based and link-based 
methods, with the former focusing on within-patch habitat 
availability and the latter inter-patch permeability (Dileo 
and Wagner 2016). For node-based landscape composition, 
the density (proportion) of suburban, grass, and arable land 
within a 1 km radius of each sampling location was calcu-
lated based on UKCEH Land Cover Map 2021 (Marston et 
al. 2022), with all types of grasslands included as ‘Grass’. 
In addition, densities (proportions) of buildings and roads 
were calculated for the same area based on Ordnance Sur-
vey Open Built Up Areas v.1.0, 2022, and Ordnance Survey 

Fig. 1  Sampling locations of hedgehogs from 4 sites in Nottingham-
shire, UK (n = 183; only for those with coordinates available). Darker 
blue shaded points indicate geographically close or overlapped sam-

ples. Grey lines indicate roads. *Abbreviations: KL: Kirklington; FF: 
Farnsfield; HM: Halam; SW: Southwell. Base map: UKCECH Land 
Cover Map 2020 (Marston et al. 2022); projection: EPSG:4326
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Gene flow was then explored using two alternative 
genetic clustering methods: discriminant analysis of prin-
cipal components (DAPC; Jombart et al., 2008), and spatial 
principal component analysis (sPCA; Montano and Jom-
bart, 2017), using the package adegenet (Jombart 2008). In 
DAPC, we used four sites as prior populations to show how 
the genetic distribution of individuals was related to their 
original sampled sites. Then in sPCA, allele frequencies and 
their spatial autocorrelation were analysed on an individual, 
rather than population, basis. The analyses were run with 
both males and females combined and separated, with the 
former being indicative of the overall population structure 
across sites, and the latter the potential sex-biased struc-
ture. sPCA allows tests of global and local spatial struc-
ture, with high global structure indicating that individuals 
are genetically similar to their geographic neighbours, and 
high local structure indicating genetic dissimilarity on local 
scales (Montano and Jombart 2017). The genetic structure 
in sPCA was estimated from lagged scores summarizing 
genetic variability which also account for the geographic 
location of samples. The lagged scores of each component 
can be translated into a colour from the RGB colour chan-
nel such that the different shades of the red, green, and blue 
colour system give an indication of genetic differentiation 
with similar colours representing genetic similarity. In our 
analysis, the first two components were retained as sug-
gested by the eigenvalues, and the results were plotted on 
25 m land cover grids based on the UKCEH Land Cover 
Map 2021 (25  m rasterised land parcels, GB; Marston et 
al. 2022), using the package terra (Hijmans et al. 2023). To 
detect any influence of sex on genetic structure, analyses 
were undertaken separately for all hedgehogs, adult males 
only, and adult females only.

Relatedness

Relatedness was inferred using the package related (Pew et 
al. 2015), with group-based population simulations (Supple-
mentary 1.5).

Genetic diversity

In order to characterize genetic diversity on different spatial 
scales, the following metrics were calculated across all sites 
overall, and for each site separately, using the package hierf-
stat (Goudet 2022): observed heterozygosity (HO), expected 
heterozygosity (HS = within sites; HT = across sites), allelic 
richness (AR), and inbreeding coefficient (FIS), where high 
genetic diversity, indicative of increased gene flow, is asso-
ciated with high heterozygosity and allelic richness, and a 
low inbreeding coefficient.

Open roads v.2.4, 2023, respectively. As different base maps 
were used, some buildings and roads were included in the 
suburban category, thus densities (proportions) of these 
habitat compositions combined do not equal 1. The average 
landscape composition densities were calculated for each 
site to provide a within-site landscape composition (Table 
S1; individual-based landscape composition is included in 
Supplementary Table S8). For link-based landscape com-
position, densities (proportions) of the same variables were 
calculated within a 1 km buffer around lines drawn between 
pairwise site centroids (Table S2), using the same maps.

All hedgehog surveying and sampling were performed in 
accordance with ethical standards of the Animals (Scientific 
Procedures) Act, 1986, under a Natural England licence to 
capture and handle hedgehogs (2018-36011-SCI-SCI), and 
supported by Nottingham Trent University ethics commit-
tee (codes: ARE192014a and ARE192014b).

DNA extraction and genotyping procedures

DNA was extracted from all samples collected (n = 276) 
using an ammonium acetate precipitation method (Nicholls 
et al. 2000). Twenty-eight hedgehog-specific primer pairs 
(Becher and Griffiths 1998; Henderson et al. 2000; Curto 
et al. 2019) were tested. The final analysis included geno-
type data from 14 primer pairs from 236 unique individuals 
(Detailed DNA extraction and genotyping procedures are 
included in Supplementary 1.2, 1.3; Genotype data are pro-
vided in Supplementary Table S7). Genetic markers being 
genotyped are nuclear loci, with genotyping for length vari-
ation of microsatellites.

Genetic structure and gene flow

Patterns of gene flow between sites were first investigated 
by analysing pairwise FST (Weir and Cockerham 1984), 
with all individuals included, using the package hierfstat 
(Goudet and Jombart 2022). Private alleles (alleles that are 
only found on one site) were identified using the package 
adegenet (Jombart 2017).

Patterns of gene flow were investigated further by under-
taking an individual-based clustering analysis using the 
package LEA (Frichot and François 2015) as it is suggested 
to be more robust to Hardy-Weinberg equilibrium (HWE) 
assumptions (Frichot and François 2015) than commonly 
employed genetic clustering software like STRUCTURE 
(Pritchard et al. 2000) or ADMIXTURE (Alexander and 
Lange 2011). All individuals were included. Ancestry coef-
ficients were calculated for each individual with K = 2–4 
where K is the number of assumed ancestry populations, 
and coefficients were compared.
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as no obvious effects were found in the following analysis. 
More information is provided in Supplementary 1.4.

Genetic structure and gene flow

FST values were low for all pairwise site comparisons, indi-
cating that the local populations are not strongly genetically 
differentiated (all < = 0.02; Table S5).

Individual-based clustering analyses failed to recover 
any discernible geographic population structure, with all 
sites containing a mixture of individuals assigned to each 
of the K population clusters, for each investigated value of 
K (Fig. 2).

Findings from the DAPC analysis with the four study 
sites as prior populations showed the genetic distribution of 
samples roughly mirrors geography, suggesting an effect of 
geographic distance on the genetic divergence. But notably, 
samples from each site were not discretely clustered, instead 
showing considerable overlap across sites, indicating an 
absence of discrete, well-structured populations (Fig. 3).

Findings from the sPCA global structure analysis indi-
cated that there was a significant positive spatial auto-
correlation for individuals of all ages and sex (λ = 0.015, 
n = 183, p < 0.001; Fig.  4A), indicating that individuals 
were more genetically-similar to their close geographic 
neighbours. When analysing adult males only, the positive 
spatial autocorrelation becomes non-significant (λ = 0.023, 
n = 70, p = 0.367; Fig. 4B), whereas it is significant for adult 
females only (λ = 0.032, n = 64, p = 0.013; Fig.  4C). Tests 
for negative spatial autocorrelation (decreased genetic 
similarity between close geographic neighbours) found no 
significant correlation (p > 0.05) between genetic variation 

As considerable variance in genetic diversity was 
observed between sites, we investigated how this was 
impacted by sample size and habitat type, using two meth-
ods: (1) heterozygosity values were calculated as an effect 
of increased sample size using the package hierfstat (Gou-
det 2022); and (2) 6–10 samples from a 100 m radius around 
each sampling location were grouped, with locations with 
less than 6 samples excluded, and genetic diversity values 
calculated for each group using the package sGD (Shirk and 
Cushman 2011), and visualised using the packages sf (Pebe-
sma 2018; Pebesma and Bivand 2023 ), and tmap (Tennekes 
2018). All six samples from Halam were combined into one 
group.

All data analysis was carried out in R Statistical Software 
(v.4.2.2; R Core Team 2023).

Results

Data from 236 unique individual hedgehogs, genotyped 
using 16 markers, were included in the preliminary analy-
sis. Loci EEU36H and W30 had low amplification success 
rates, and EEU36H was also not in Hardy-Weinberg equi-
librium (HWE), possibly due to genotyping errors, thus 
were not included in the following analyses (although no 
obvious effects were found in the structure analyses either 
including or excluding both loci). The remaining 14 loci 
were potentially from 12 different autosomal chromosomes. 
For loci located on the same chromosomes, no consistent 
linkage-disequilibrium was detected between pairs of loci in 
more than 3 out of 4 sites. One locus (W10) showed a higher 
probability of the presence of null alleles but was retained 

Fig. 2  Genetic clustering for the 4 hedgehog populations, estimated using the package LEA (n = 236). Cluster proportions are showing in y-axis 
(range: 0–1), and each bar represents one hedgehog, for K = 2–4. *Abbreviations: KL: Kirklington; FF: Farnsfield; HM: Halam; SW: Southwell
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and thus was selected as the best estimator for subsequent 
analyses (Supplementary 1.5).

A total of 190 hedgehogs of known age were grouped as 
‘juvenile’ or ‘adult’ and were taken as input in one run using 
the package related: the juveniles showed significantly 
higher relatedness within-group (observed relatedness 
r = 0.014, n = 55, p < 0.05), and adults significantly lower 
relatedness within group (r = -0.004, n = 135, p < 0.05), than 
expected when being randomly mixed across age groups, 
indicating age effects on the relatedness potentially due to 
delayed natal dispersal and the lack of generation overlaps 
in juveniles. Thus, juveniles were excluded from the follow-
ing analyses.

and geographic distance for any of the hedgehog groups 
(all: λ = 0.009, n = 183; male only: λ = 0.021, n = 70; female: 
λ = 0.024, n = 64; Fig. 4), showing no genetic dissimilarity 
on a local scale. The difference in positive spatial autocorre-
lation between the sexes indicates that gene flow is currently 
being maintained across the study area, and this is mainly 
driven by the males.

Relatedness

Among the seven estimators of relatedness that were tested, 
lynchrd had a slightly higher Pearson’s correlation coef-
ficient (0.80) between observed and expected relatedness, 

Fig. 4  Spatial genetic variation of hedgehogs inferred from the spa-
tial principal component analyses (sPCA), using the first two principal 
components. Points represented individual hedgehogs, with the simi-

larity in the colours indicating genetic similarity. A: all hedgehogs, B: 
adult males, C: adult females

 

Fig. 3  Cluster analysis of genetic variation using DAPC (n = 236), with 
the four study sites as the prior groups. Individual hedgehogs are repre-
sented by points and coloured by their sampled site (not genetic clus-

ters). *Abbreviations: KL: Kirklington; FF: Farnsfield; HM: Halam; 
SW: Southwell
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that the hedgehogs were unevenly distributed across the 
study area, indicating an early stage of varied genetic diver-
sity in relation to habitat type.

Discussion

In this study, we utilized the asymmetry in genetic varia-
tion between sexes as a powerful measure of current gene 
flow. This provided evidence of population-level, long-dis-
tance movement in a declining farmland mammal across a 
perceived inhospitable agricultural matrix. Smaller subur-
ban patches had lower allelic richness and heterozygosity, 
reflecting local population size, indicating an early stage of 
varied genetic diversity due to habitat loss and the associ-
ated fragmentation.

The low FST values, no private alleles in any sites, and 
little evidence of differentiation in structure across the sites, 
indicate that the hedgehogs across the study area still belong 
to one genetic population. The genetic similarity observed 
here is in accordance with studies in urban Berlin (Barthel 
et al. 2020), and urban Helsinki (Osaka et al. 2022), which 
also suggested that their hedgehogs were not genetically dif-
ferentiated. This is, however, in contrast to studies in rural 
Oxfordshire (Becher and Griffiths 1998), and urban Zurich 
(Braaker et al. 2017), in which distinct genetic differen-
tiation patterns were observed. Nevertheless, the recent 
human-induced fragmentation, which is of direct conser-
vation relevance, could not be concluded in these studies 
as influencing the observed genetic variation patterns as 
they were likely confounded by other factors, such as his-
torical gene flow patterns. Such historical gene flow might 
obscure current fragmentation, leading to little to no genetic 
structure being detected. Conversely, where genetic struc-
ture is detected, it could be due to natural barriers and not 

When the adult individuals of both sexes combined were 
grouped into their four original sites (FF, HM, KL, SW), 
individuals from the same site showed significantly higher 
relatedness than expected when being randomly shuffled 
with individuals across sites (n = 135, p < 0.05) for each site 
except for HM which had low sample size (n = 4), suggesting 
individuals from within-sites are more related than across 
sites. The two larger sites (SW and FF) had lower within-
site relatedness than the two smaller sites (KL and HM), but 
relatedness values were low for all sites (Table S6). Then, to 
infer sex effects on the relatedness distribution, this analysis 
was run for adult males and adult females separately. A sig-
nificantly higher within-site relatedness than expected when 
being randomly shuffled with individuals of same sex across 
sites were only found for females only at site FF (n = 47, 
p < 0.05), potentially reflecting a reduction in statistical 
power compared to the combined-sex analysis.

Genetic diversity

Genetic diversity parameters for each primer pair are 
included in Supplementary 1.4. Mean AR (2.45; values from 
the four sites averaged) was 30% lower than overall AR 
(3.5; samples from the whole area were taken as panmictic), 
showing severely reduced genetic diversity on local scales, 
which potentially reflects demographic change, whereas 
mean observed heterozygosity was close to overall hetero-
zygosity, suggesting such demographic change happened in 
relatively recent times. Estimates of inbreeding coefficients 
were low (< 0.1) for all sites (Table S6), but some locations 
showed higher inbreeding (within 6–10 individuals per 
location) (Fig. 5, C).

Values for observed heterozygosity (HO), expected het-
erozygosity (HS), and Allelic richness (AR) were generally 
higher on larger suburban patches (Table S6, Fig. 5), and 
this is not due to sample size effects (Fig. S2), suggesting 

Fig. 5  Distribution of genetic diversity for groups of 6–10 samples within a 100 m radius of each sampling location (n = 183). A: diversity allelic 
richness (AR), B: observed heterozygosity (Ho), C: inbreeding coefficient (FIS)
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largely reflecting lower local population sizes, which sug-
gests an early stage of genetic diversity loss in relation to 
small suitable habitat patches and associated fragmentation. 
Mean allelic richness across all four sites was lower than 
overall richness, while mean observed heterozygosity was 
close to overall heterozygosity, further suggesting the popu-
lations in this study were showing signs of recent habitat 
fragmentation. This is based on the theoretical prediction 
that allelic richness for neutral loci generally respond more 
strongly and rapidly to demographic change than heterozy-
gosity when the population is experiencing recent decline 
and restricted gene flow (Barrandeguy and García 2021). 
Our results, thus highlight that for declining species which 
often show varied local density, variability in spatial pat-
terns of genetic diversity can happen at a fine scale, even 
when some gene flow is still apparent and population dif-
ferentiation is negligible. Similar results, i.e., reduced local 
genetic diversity despite large-scale gene flow, were also 
found in the declining common woodland birds in Australia 
(Harrisson et al. 2012). This suggests that although popula-
tion differentiation is generally suggested to proceed faster 
than loss of genetic variation following habitat disruptions 
(e.g., Keyghobadi 2007), this might not always hold true, 
especially for species that are still with large population 
sizes, or that are mobile enough to maintain gene flow, 
but suffering different levels of local declines. Our results 
thus illustrate that considering current gene flow and local 
genetic diversity together is important to better understand 
habitat effects on genetic variation and to inform conserva-
tion management.

Conclusions

We have demonstrated several unexpected findings for the 
genetic status of a declining common mammal species across 
an agricultural matrix. The most important finding was that, 
despite the small size and high temporal stability of adult 
hedgehog home ranges, there is clear evidence that long-
distance movement (at least 3 km) in hedgehogs is more fre-
quent than previously thought based on home ranges. This 
finding is crucial to aid the development of a conservation 
strategy for hedgehogs as, for the first time, it shows the 
extent that previously assumed isolated populations across 
a perceived inhospitable landscape are connected by cur-
rent gene flow. Higher within population relatedness, and 
lower allelic richness were found on sites with lower sub-
urban land cover, largely reflecting local population size, 
indicating an early stage of reduced genetic diversity in 
relation to habitat loss and associated fragmentation. We 
suggest hedgehog conservation can aim to prevent further 
declines by identifying what features are needed to facilitate 

necessarily due to recent landscape changes (Milligan et al. 
2018; Lucena-perez et al. 2020).

To better understand contemporary gene flow, we used 
asymmetric genetic variation between sexes. For species 
exhibiting sex-biased dispersal (Li and Kokko 2019), such 
as the hedgehogs, it is possible to detect contrasting genetic 
structure patterns between males and females using bipa-
rental inherited genetic markers. However, this is only pos-
sible where gene flow occurs between local populations, as 
the signal of this asymmetric sex-biased genetic structure 
is lost in just one generation if gene flow ceases (Prugnolle 
and de Meeus 2002). Consequently, this method has the 
potential to reveal current gene flow without the confound-
ing effects of historical gene flow (Solmsen et al. 2011). We 
found a sex-biased difference in genetic variation, where 
the sPCA showed a significant positive spatial autocorrela-
tion between allele frequency and geographical location in 
adult females (λ = 0.032, n = 64, p = 0.013; Fig. 4C), but not 
in adult males (λ = 0.023, n = 70, p = 0.367; Fig.  4B). This 
indicates that contemporary gene flow is occurring across 
the studied agricultural matrix, and is mainly driven by the 
movement of males.

This is the first evidence of the status of contemporary 
gene flow among local hedgehog populations on a land-
scape scale. Our results suggest that long-distance move-
ment across the agricultural matrix (at least 3  km here) 
in hedgehogs might be more extensive and frequent than 
often suggested by spatial-capture-recapture, and GPS 
tracking studies which are often short-term, small-scale, 
and restricted to adult hedgehogs due to ethical consider-
ations (Glasby and Yarnell 2013). For example, Pettett et 
al. (2017), estimated home ranges of adult females and 
males to be ~ 0.1, and ~ 0.2 km2, respectively, and move-
ments across agricultural matrix were rare. Our results 
suggest that hedgehogs require suitable corridors through 
which they can move between suburban population centres 
to maintain connectivity. Increasing the extent and quality 
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