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A B S T R A C T

In an era of rapid climate change and its adverse effects on food production, technological intervention to
monitor pollinator conservation is of paramount importance for environmental monitoring and conservation for
global food security. The survival of the human species depends on the conservation of pollinators. This article
explores the use of Computer Vision and Object Recognition to autonomously track and report bee behaviour
from images. A novel dataset of 9664 images containing bees is extracted from video streams and annotated
with bounding boxes. With training, validation and testing sets (6722, 1915, and 997 images, respectively),
the results of the COCO-based YOLO model fine-tuning approaches show that YOLOv5 m is the most effective
approach in terms of recognition accuracy. However, YOLOv5s was shown to be the most optimal for real-time
bee detection with an average processing and inference time of 5.1 ms per video frame at the cost of slightly
lower ability. The trained model is then packaged within an explainable AI interface, which converts detection
events into timestamped reports and charts, with the aim of facilitating use by non-technical users such as
expert stakeholders from the apiculture industry towards informing responsible consumption and production.
1. Introduction

The decline of pollinators, particularly bees, has emerged as a
critical concern with adverse effects on global food security. In re-
cent times a loss of 1%–10% biodiversity per decade has also been
observed (Kluser et al., 2007).

Various species of bee play a key role in agricultural production,
supporting a wide array of crops, including fruits, vegetables, oilseeds
and legumes, just to name a few; animal pollination supports 30% of
global food production (Khalifa et al., 2021). In the United Kingdom
alone, 34% of all pollination is provided by one species, the European
honey bee (Apis mellifera) (Breeze et al., 2011). Factors such as habitat
loss and rapid climate change have led to a worrying decline in bee pop-
ulations around the world, which poses a direct threat to agricultural
sustainability.

During these troubling times, the potential of technological in-
tervention through computational intelligence presents a promising
approach to mitigate these problems. The notion of Agriculture 4.0
is largely based on data-centric automation (Ampatzidis et al., 2020;
Liu et al., 2023; Fountas et al., 2024; Abbasi et al., 2022), which will
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lead to improvements in agricultural practices in terms of speed and
efficiency through the use of technologies such as the Internet of Things
(IoT) and edge-based processing, Big Data, Artificial Intelligence (AI)
and Machine Learning, as well as Robotics, among others. Precision
agriculture applied to apicultural practices can help us autonomously
monitor bee behaviour and, in the future, could provide a noninva-
sive real-time approach to monitor colonies in the long term. This
article introduces a novel application of vision-based computational
intelligence algorithms towards bee identification and tracking from
video streams, which aim to streamline otherwise labour-intensive
manual processes. We show that state-of-the-art recognition algorithms
such as those within the YOLO suite of research can provide real-
time and highly precise bee tracking and that their findings can be
distilled into an accessible format for non-technical stakeholders from
industry. As shown in Bhuse et al. (2022) and Isa et al. (2022), data
augmentation and hyperparameter optimisation are key considerations
when aiming for approaches that are useful in the real world beyond
the laboratory; the novel combination and application of these state-
of-the-art approaches, along with the release of our dataset for future
https://doi.org/10.1016/j.compag.2024.109665
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interdisciplinary research, aims to facilitate academic research on the
conservation of pollinator populations.

These aforementioned abilities of object recognition algorithms pro-
ide timely benefits to saving time and effort in an autonomous moni-
oring process and further enabling larger-scale bee behaviour analysis.
s argued by Ngo et al. (2019), real-time imaging plays a critical role

n monitoring honeybee behaviours to assess colony health (Biesmeijer
et al., 2006). This is especially important during a time of great habitat
oss, insecticide use, and rapid climate change.

In addition to collecting and annotating a novel large-scale dataset,
his study also features scientific novelty in the evaluation of several

data augmentation and object detection approaches for bee detection.
In addition to the data, all algorithms and models are also released
s open-source. Literature review reveals that many object detection
xperiments taking place within precision agriculture and biodiversity
tudies focus primarily on model ability, while this work also explores
he potential for real-time execution. The results show that YOLOv5m
merges as the most accurate approach overall, while YOLOv5s exhibits
he most promising performance for real-time use in industry. This
tudy also highlights preliminary results on the significant reduction
f inference time for bee detection when using keyframe selection.

Beyond technical achievements, this work encapsulates a broader
ision for the future of sustainable beekeeping and the conservation
f bee colonies. In addition to the trained machine learning models
eleased as open source, an explainable AI interface is also produced
hat infers the predictions made by the model and distils them into
eaningful and useful information for key stakeholders. Therefore,

he addition of this module aims to bridge the gap between complex
computational intelligence algorithms and practical apiculture in the
real world. Thus, this approach not only improves the state-of-the-art
in pollinator observation with a focus on bees, but also contributes
to the global agendas of responsible production, climate action, and
the preservation of terrestrial ecosystems. The survival of the human
species depends on these natural ecosystems.

The scientific contributions arising from this comprehensive explo-
ation of object recognition for bee tracking are a combination of both
ata and vision models. We collect, annotate, and release a dataset
f 9664 images which is open source and available to the research
ommunity. In addition, our proposed approach yields several sets of
romising results, including the YOLOv5m model, which achieves an
AP@0.5 of 85.6% at 8.1 ms per frame. We also release an explain-

ble AI interface prototype to make the model’s findings accessible to
on-technical key stakeholders in order to facilitate real-world appli-
ation and contribute to broader goals of sustainable agriculture and
nvironmental conservation.

Pollinator detection is a task of small object detection, which faces
several technical challenges in the state of the art (Mirzaei et al., 2023).
These include size, given that there are often fewer pixels available
hat capture the object that is to be detected. Environmental variabil-

ity is also a concern, since pollinator detection takes place in situ,
where lighting and weather conditions can have a significant impact
on data distribution. There also exists a trade-off between processing
speed and accuracy, where objects must be accurately detected within
a timeframe where such detections remain useful for the end user.
Towards overcoming these issues, this article proposes the use of data
augmentation for increased synthetic variability beyond that which
was captured within the dataset, and benchmarking of several YOLO
variants to explore the performance vs. computational resource usage
trade-off.

The remainder of this article is as follows. A review of the literature
s presented in Section 2, covering the relevant work in apiculture and
roviding a technical background on the techniques applied in this

work. The methodology followed in this work is described in Section 3,
before the results are discussed in Section 4. Section 5 then suggests
future work arising from the findings of this study and finally concludes
this article.
2 
2. Background and related work

This section explores relevant state-of-the-art literature in the field.
irst, we explore work from an agricultural background before de-

scribing the state-of-the-art in object detection techniques, which are
relevant to the experiments carried out in this article.

2.1. Agriculture, conservation, and biodiversity

Bees are an important pollinator in the global ecosystem, helping
plant reproduction and crop quantity and quality. Pollinator services
are critical for food production and security; however, bee populations
have recently declined. This decline presents a substantial danger to
agricultural productivity and the long-term viability of food produc-
tion (Aizen et al., 2008), which not only contributes significantly to
GDP, but maintains the survival of the human species (Klein et al.,
2007).

This decline in pollinators, particularly bees, has become a critical
concern with adverse effects on global food security. As described in
the introduction, the bee plays a key role in the agricultural produc-
tion of both food and industrial crops. Animal pollination supports
0% global food production (Khalifa et al., 2021), and, beyond food,

also plays a significant role in industrial crops. This includes fibres,
biofuels, medicinal, material, and ornamental plants (Komlatskiy and
Makarova, 2023). Contributing to the wider discussion of environmen-
tal sustainability, pollinators, including bees, play a significant role
n the cultivation of biofuel crops (Gardiner et al., 2010; Romero

and Quezada-Euán, 2013). That is, by facilitating the pollination of
biofuel crops such as canola and sunflowers, bees directly improve
seed production and thus the availability of these resources, which are
critical in sustainable solutions to energy in the global initiative to
move away from fossil fuels.

Key stakeholders and beneficiaries, such as farmers in the api-
cultural field, can implement pollinator-friendly practices that im-
prove agricultural sustainability. For example, avoidance of harmful
insecticides (Kremen et al., 2007; Sánchez-Bayo et al., 2016). Some
insecticides can be harmful to bees; symptoms include disruption of
avigation, feeding behaviour, and reproduction and immune sys-
ems (Johansen et al., 1983; Pashte and Patil, 2018). These negative
ffects result in a decrease in colony survival rates and contribute to

population decline (Sánchez-Bayo et al., 2016). Furthermore, climate
change has become another risk to bee populations globally (Potts
et al., 2016); availability of flowers, nesting locations, and general
natural dynamics are negatively affected by the observed rise in tem-
peratures and altered precipitation patterns. Autonomous monitoring of
bees can provide additional information on their response to these en-
vironmental changes, with the benefit of not requiring human presence
throughout the whole data collection process.

This technique contributes to the wider field of environmental
monitoring, which is the systematic analysis of the natural environ-
ment (Kumar et al., 2012). This can enable researchers to understand
he current state of the environment, forecast future trends over time,
nd ultimately assess the impact of human activity on natural systems.
lthough this article focuses on pollinator behaviour with a focus on

he bee, environmental monitoring also encapsulates, but is not limited
o, air, water, and soil quality, as well as biodiversity and climate
nalysis. In the context of this article, monitoring refers to in situ
nalysis of bee habitats and behavioural patterns to better understand
heir ecological importance and contribute to conservation efforts with
utonomous analysis and data collection.

Technological intervention to monitor the decline in biodiversity
has been promoted in recent times, especially due to the autonomous
nature of artificial intelligence and its ability not only to save time
and effort, but also to perform tasks for which key stakeholders and
beneficiaries simply do not have time to do manually (Ratnayake et al.,
2021a; Stark et al., 2023). To this end, researchers suggest that tracking
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pollinator behaviour can inform agricultural practices and potentially
protect or even improve current crop yield. This could be, for exam-
ple, information to help optimise crop placement, ensure pollination
coverage, and improve the overall efficiency of agricultural systems.

Bee behaviour is often monitored through various modalities of
ensor-based data collection and machine learning, such as in Ramsey

et al. (2020), where swarming behaviour was recognised from vibro-
acoustic accelerometer data at an accuracy greater than 90%. Related

ork in the field includes (Magnier et al., 2018), which argues that
visual alterations, such as background clipping and approximations,
can improve pollinator detection through data preprocessing. In Ngo
et al. (2019), researchers suggested the use of techniques that include
background subtraction, Kalman filtering, and the Hungarian algorithm
to produce a system that can monitor the activity that occurs at
the entrance of the beehives. The approach achieved around 93.9%
accuracy (±1.1%) compared to manual counting. Similar augmentation
techniques were proposed in Ratnayake et al. (2021b), where bees
n complex outdoor environments were tracked with 86.6% accuracy
sing the YOLOv2 object detection model.

Environmental monitoring has benefitted from data augmentation
as a method to improve the ability to perform automated recognition.
In Bittner et al. (2022), the authors propose that the use of GAN-
based synthetic data can help improve the detection of various objects
resent in forest environments to form a more technologically enhanced

environmental monitoring system. Kaur et al. proposed a data augmen-
tation strategy to better recognise honeybee disease (Kaur et al., 2022),
which used a GAN-based approach to improve classification accuracy
over conventional augmentation methods. In De Nart et al. (2022), re-
earchers showed that traditional image augmentation techniques could

improve computer vision-based classification of honeybee subspecies,
and Buschbacher et al. (2020) also followed a similar methodology in
autonomous recognition of bees.

Real-time detection is important for several reasons, such as for pur-
poses of monitoring and intervention. While latency due to algorithm
inference is expected, a higher temporal resolution would provide more
detailed insight into behavioural patterns. Related literature suggests
several figures for the length of time of a pollination activity; Silva
et al. (2013) observed that honeybees spend an average of 44.5 (±51.1)
seconds with an open flower, suggesting that video matching fram-
erates (i.e., 30 or 60 FPS) may not necessarily require detection to
be considered real-time. Results from Chittka et al. (1997) suggest
that variability in these figures is high, with two bees from the same
pecies Bombus pascurorum spending 7.3 and 2.2 s handling the flowers,
espectively. Statistical analyses in the aforementioned study show that
andling time differs significantly between species.

The concept of autonomous object detection is at the core of several
f the reviewed related works, as well as the main technology behind
he approach proposed by this study. This technique is discussed in the
ollowing section.

2.2. Object detection

Several related works to this study make use of Bounding Box
bject Detection (BBOD) for pollinator monitoring. BBOD is a computer

vision technique that predicts the location of a bounding box, or
everal bounding boxes, around objects of interest. For example, vision
ystems within an autonomous vehicle aim to draw boundaries or com-

pletely segment entities from an image to understand the scene (Amit
t al., 2021), such as the detection of an emergency situation where a
edestrian has been detected on a high-speed road.

In Redmon et al. (2016), a model architecture known as You Only
ook Once (YOLO) was proposed, with the aim of implementing real-
ime BBOD. YOLO is a common deep learning architecture for BBOD
hat performs the detection task as a single regression problem, directly
redicting bounding boxes and class probabilities from full input im-
ges in one evaluation. This is unlike many other techniques, where
 L

3 
proposals are first generated and then later classified iteratively. YOLO
operates a grid-based approach, where predictions are made for each
rid cell for bounding box coordinates and two confidence scores (one
or the box containing the object and one for the class label of the object
tself). More details on the differences between model architectures can
e found in Jiang et al. (2022).

Several metrics are important for object detection, which are fea-
tured in this work due to their importance in the state-of-the-art.
They include Intersection over Union (IoU), which is a metric used to
evaluate the accuracy of an object detection algorithm on a particular
dataset. IoU is the overlap between the predicted bounding box and the
ground-truth derived from the expert annotation:

IoU =
Area of Overlap
Area of Union (1)

Several different IoU variants, such as GIoU (Generalised IoU) and DIoU
(Distance IoU) metrics, have been proposed in the relevant literature
o improve the accuracy of object detection algorithms (Zheng et al.,

2020). These metrics consider the size and shape of the predicted and
ground-truth bounding boxes, as well as their location and orientation.

Similarly to other machine learning problems, precision and recall
are also used as part of the evaluation process. Firstly, precision:

Precision = True Positives
True Positives + False Positives , (2)

which is the accuracy of the positive predictions. In this case, precision
is the proportion of correctly detected bees out of all instances detected
as bees that were incorrect. A True Positive denotes a predicted bound-
ing box that contains a bee, and a False Positive denotes a predicted
ounding box that does not contain a bee.

Recall is also considered:

Recall = True Positives
True Positives + False Negatives . (3)

Recall is a measure of the ability of the model to detect all relevant
instances. That is, the proportion of true bee instances that were
detected by the model out of all instances present in the dataset. False
Negative in this sense thus denotes a bee in an image that did not receive
a predicted bounding box.

Given the trade-off between precision and recall, the mean Average
Precision (mAP) is a useful metric in object detection. mAP@0.5 is the
mAP calculated at an IoU threshold of 0.5:

mAP@0.5 = 1
𝑁

𝑁
∑

𝑖=1
AP𝑖|IoU=0.5, (4)

with regards to this work, this means that a prediction is considered a
True Positive if IoU ≥ 0.5.

Beyond a single threshold, the mAP@0.5:0.95 metric measures mAP
over multiple thresholds. In this case, {0.5, 0.55, 0.6,… , 0.95}:

mAP@0.5:0.95 = 1
10

0.95
∑

𝑡=0.5
mAP@𝑡. (5)

The use of multiple thresholds allows for a more rigorous approach, by
iterating by increasing levels of strictness for overlap, or IoU.

In addition to the prominent metrics for validation, Region of
Interest (RoI) is also an important consideration made by the model.
 RoI in the example of bee detection may be a flower patch or even

anthers, or the entrance to a hive.
Given automatic recognition of RoIs, further analysis can be per-

formed within these areas, and computational resources can be saved
y focusing on the parts of the image most likely to contain a bee.

Several prominent works in the related literature show that effective
RoI detection can significantly reduce the likelihood of false positives
from the background (Xiang et al., 2019; Cores et al., 2020). For
xample, without RoIs, an object detection algorithm trained on a
ataset prominent in images of bees collecting pollen may mistakenly
lassify all flowers as containing bees. This study uses the You Only
ook Once (YOLO) approach for BBOD. Generally, the YOLO networks
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Fig. 1. Presence of the number of bees per image within the dataset.
Fig. 2. Annotation size and bounding box aspect ratio distributions within the dataset.
t
c
b

f
m

are generally comprised of three architectures (Jiang et al., 2022;
Terven et al., 2023). First, the backbone network which is a Convo-
utional Neural Network (CNN) trained to extract features from a given
mage.1 Features are then further processed at the neck component,

a Feature Pyramid Network (FPN) which learns to generate useful
feature maps from various levels of the backbone, towards detection
of objects at different sizes, and, given the stages of downsampling of
the CNN, different levels of abstraction. Finally, the head architecture
provides predicted outputs (locations of bounding boxes, classes of
objects within those boxes, and confidence scores).

3. Method

This section describes the methods used in this work. This includes
ata collection and preprocessing (with a link to download the data

attributed to this work), augmentation machine learning approaches,
and finally a description of the method of farmer-facing inference for
accessibility.

3.1. Data collection and preprocessing

Initially, a dataset of images is collected from various locations
in the United Kingdom and annotated by several of the authors of
this study, with 9664 annotated images that feature a total of 13,402

1 Technical details on the YOLO CNN backbone can be found at: https:
/github.com/ultralytics/yolov5.
 w

4 
Table 1
Information derived from the dataset.

Metric Value

Total Number of Images 9,664
Total Number of Bees 13,402
Average Number of Bees per Image 1.39
Standard Deviation of Bees per Image 1.39
Maximum Number of Bees in a Single Image 11
Minimum Number of Bees in a Single Image 0
Number of Images with No Bees 1,436

bounding boxes. On average, there are 1.4 bees per image. Although
most of the images (6272) contain one bee, there are a maximum of
11 bees per image. Information derived from the dataset can be found
in Table 1. Of the total of 9664 images, 8228 contained at least one
instance of a bee. The considerable majority of the images contained
one bee, so both the average and standard deviation of bees per image
were around 1.39.

This can be further observed within Fig. 1, which shows the dis-
ribution of the number of bees per image within the dataset. Higher
ounts of bees were less frequent, with only one image containing 11
ees, 8 containing 10 bees, and 20 containing 9 bees.

Fig. 2 shows the distribution of annotation sizes and aspect ratios
or the entire dataset. The annotation sizes are relatively consistent for
ost of the dataset, but it should be noted that there are a number of

images that contain larger bounding boxes. Bounding box sizes vary
ithin the dataset, with most annotations covering a standard size

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
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Fig. 3. Examples of annotated (yellow bounding boxes) and preprocessed images within the dataset, selected at random.
and subsets featuring closer and further views, resulting in larger and
smaller annotations. The bounding box ratios exhbit variation due to
different poses and angles captured within the images.

During the annotation stage, annotators individually checked each
image for those that were deemed to be low quality (such as excessive
motion blur), removing them from the dataset. The original images are
on average 0.92mp (0.18mp to 2.59mp). The original median image
ratio is 1280 × 720 px. In the data preprocessing stage, the original
data collected for this study were resized to 416 × 416 to meet YOLO
input requirements. Bounding box annotations were resized to match
via OpenCV’s resize function to maintain the spatial relationship after
resizing.

Fig. 3 shows examples of annotated images selected from the dataset
at random. The dataset contains various bee species including Bombus
and Apis mellifera. The dataset generated for this study is available for
public download.2

3.2. Machine learning and data augmentation

Following data collection and preprocessing, several state-of-the-art
object detection algorithms are then benchmarked on the Bee Detection
in the Wild dataset. This includes YOLOv5, YOLOv5m (variants of
frozen and unfrozen weights), YOLOv5s, and YOLOv8m (Ultralytics,
2021).3

Given that data augmentation strategies were benchmarked in detail
within each of the respective studies for the YOLO-type models, this
study thus opts to make use of the default recommended parameters by
the original authors. Due to differences in recommended augmentation
strategies, pre-processing time was also recorded. Before learning on
the full dataset, an initial preliminary exploration is performed into the
feasibility of data augmentation; 2000 images are selected at random
from the dataset and used to train YOLOv5 both with and without
augmentation strategies for 30 epochs to discern whether the strategy
could be useful for this problem. A preliminary test is chosen due to the
constraints of computational resources, but a more in-depth exploration

2 Dataset available from: https://www.kaggle.com/datasets/birdy654/bee-
detection-in-the-wild.

3 Further details on YOLO can be found at: https://github.com/ultralytics/
ultralytics.
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with the full set could be performed in the future. It is worth noting that
augmentation is performed during the training process of the model.
That is, the dataset is unchanged in terms of storage, and is augmented
in real-time during training.

Following the selection of the data preprocessing strategy, each
model is trained for 100 epochs. The aforementioned validation metrics
of precision, recall, mAP@.5, mAP@.5:.95, preprocessing time training
time, and inference speed are measured and compared. Considerations
are given to both model ability in terms of object detection, and also
the computational resources required (i.e. comparison of inference
time) given that real-world deployment of this model could require
recognition frequency to be performed in real-time.

3.3. Stakeholder-facing bee detection and time stamping

An overview of the proposed system can be seen in Fig. 4, which
shows an overview of the approach. Furthermore, Fig. 5 shows the
prototype system for bee detection and subsequent timestamping to
automate the YOLO inference process, implemented with Flask. The
interface is web-based and accepts video uploads (such as those col-
lected from an outdoor camera). The system then extracts keyframes
from the video at 𝐹 𝑃 𝑆∕2, infers via the selected model, and finally
distils the inference results into a report. The system extracts keyframes
at the specified intervals, which are then processed by the object
detection model to detect the presence of bees. Detection events are
then timestamped, and the number of bees per frame is recorded into
a CSV file for visualisation.

4. Results and discussion

This section presents the results for training and validation, as well
as the testing of the object detection models on unseen data. Following
that, an example of the user interface for accessibility from the stake-
holder’s perspective is presented, along with pertinent discussions of all
the results arising from the experiments carried out in this work.

4.1. Preliminary exploration

An example of data augmentation and its effect on training using
a subset of data can be seen in Figs. 6 and 7. Validation losses for

https://www.kaggle.com/datasets/birdy654/bee-detection-in-the-wild
https://www.kaggle.com/datasets/birdy654/bee-detection-in-the-wild
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
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Fig. 4. An overview of the proposed approach for training and inference.

Table 2
YOLOv5 model training summary.

Metric YOLOv5s YOLOv5m YOLOv5m-frozen Base YOLOv5

Precision 81.4 81.0 75.5 80.0
Recall 78.6 80.8 64.8 72.1
mAP@.5 80.9 81.5 69.0 76
mAP@.5:.95 34.2 35.6 27.5 30.6
Inference Speed (ms) 6.3 7.6 8.3 6.9
GPU Training Time (min) 124 163 128 119

both the bounding box (Fig. 6(b)) and objectiveness (Fig. 6(d)) are
lower when augmentation strategies are implemented. After 30 epochs
using non-augmented and augmented validation data, the bounding-
box losses were 0.0415 and 0.0377 respectively (to 3 S.F.). Similarly,
for objectiveness loss, non-augmented and augmented validation data
losses were 0.00677 and 0.00497 respectively (to 3 S.F.). These results
demonstrate the effectiveness of data augmentation during validation.

Interestingly, this effect cannot be seen during training, where the
augmented losses are higher for the same metrics (Figs. 6(a) and
6(c) respectively). After 30 epochs, training on nonaugmented and
augmented data lead to a bounding-box loss of 0.0122 and 0.0393
respectively, with 0.00282 and 0.00695 reported for objectiveness loss
(to 3 S.F.).

4.2. Training results

A summary of the training results of the YOLOv5 series of models
can be found in Table 2. It was observed that YOLOv5m has a lower
precision than YOLOv5s (81.0 and 81.4, respectively); however, it
experiences higher mAP scores for both related metrics (81.5 and
35.6 compared to 80.9 and 34.2, respectively). YOLOv5m with frozen
weights has significantly lower recall and mAP values at 64.8, 69.0, and
27.5, respectively. This suggests that the dataset diverges from COCO-
related detection activities. Although the Base YOLOv5 model was the
6 
Table 3
Indirect training comparison between YOLOv5 variants with YOLOv8.

Model Summary YOLOv5s YOLOv5m YOLOv8

Precision 81.4 81.0 81.8
Recall 78.6 80.8 80.4
mAP@.5 80.9 81.5 83.3
mAP@.5:.95 34.2 35.6 37.8
Inference Speed (ms) 6.3 7.6 4.2
GPU Training Time (min) 124 163 214

Table 4
Object recognition ability for the models on the testing data. Inference denotes the
total average time taken to fully process an input frame.

Model Precision Recall mAP@.5 mAP@.5:.95 Inference (ms)

Base YOLOv5 81.5 76.6 81.4 38.3 4.8
YOLOv5s 82.6 79.7 84.6 41 5.1
YOLOv5m 83.1 81.4 85.6 42.2 8.1
YOLOv5m-frozen 77.2 67.5 75.9 34.7 8.5
YOLOv8m 81.9 80.3 83.3 37.8 12.5

Table 5
Breakdown of average processing time for the models on the testing data.

Model Average processing time (ms)

Pre-process Inference NMS Total

Base YOLOv5 0.1 3.4 1.3 4.8
YOLOv5s 0.1 3.4 1.6 5.1
YOLOv5m 0.1 6.7 1.3 8.1
YOLOv5m-frozen 0.1 6.9 1.5 8.5
YOLOv8m 0.8 10.3 1.4 12.5

quickest to train, the YOLOv5s has a much lower training inference
time of 6.3 ms, with a higher speed suggesting that it is more suitable
for real-time application.

The results in Table 3 show a comparison between the YOLO models
v5 and v8. Since both follow their default, recommended, and different
augmentation strategies, the comparison is indirect. Although YOLOv8
has a lower recall score than YOLOv5m, all other metrics outperform it;
this includes precision, both mAP scores, and a lower inference speed.
It is also worth noting that YOLOv8 takes a considerably longer time to
train, suggesting a larger initial investment in computational resources
before improving real-time detection ability.

4.3. Testing results

The results in Table 4 show the test results for each of the models.
Given these data, it was observed that YOLOv5m has the highest
precision at 83.1%, suggesting that it was the best model to identify
relevant objects. This approach also scored the highest recall, so it
missed the fewest bees when making recognition and classification
predictions. At both mAP values, YOLOv5m also scored the highest.
Figs. 8 and 9 show examples of mistakes made by the YOLOv5m model.
The results show that, even with a precision of 83.1%, the model can
miss both relatively small bees (Figs. 8(a) and 8(c)) and relatively large
bees (Figs. 8(b) and 8(d)). To this end, examples of misclassified data
suggest that additional data could be collected in the future to further
improve the robustness of the approach.

Real-time object detection, of paramount importance when trans-
ferring research from the laboratory to real-world actionable insights,
is the ability to perform inference at suitable speeds as outlined by
the problem it is designed to solve; for example, a model that may
contribute to a critical decision (such as an autonomous vehicle) should
have a low latency time to avoid causing an emergency. In apicul-
ture, a low inference time for bee detection is important for real-time
monitoring and responses to changes in activity or health, as well as
lower computational complexity making the algorithms more accessible
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Fig. 5. Graphical overview of the workflow for bee detection and timestamping.
Fig. 6. Metric comparison of bounding box loss (Figs. 6(a) and 6(b)) and objectiveness loss (Figs. 6(c) and 6(d)) for a non-augmented and augmented subset of training and
validation data measured over 30 epochs.
Note: y-axis scales are not comparable.
to those who may not have access to high-end computing resources.
Table 5 shows a more extensive set of results for time-based metrics.
In these experiments, the testing dataset of 996 images was used
as input for prediction. The difference in default and recommended
augmentation strategies can be seen in the pre-processing time, where
YOLOv8 takes 0.7 s compared to 0.3. As also observed, YOLOv8m
has the highest inference time, with the lowest being the Yolov5 and
YOLOv5s models. Non-Maximum Suppression (NMS) was relatively
similar across all models, with the lowest being 1.3 ms (V5 and V5m)
and the highest was 1.6 ms (V5s). Overall, the quickest model was
Base YOLOv5 at 4.8 ms, closely followed by V5s at 5.1 ms. The highest
performing model, YOLOv5m, took longer at 8.1 ms per frame.
7 
4.4. Stakeholder-facing interface

As suggested during the literature review, the use of video streams is
showing promise for autonomous monitoring of pollinator behaviour.
They are non-intrusive and can be used to capture critical data such
as hive health and population decline. Given that Python code and
machine learning models are often presented in technical formats, they
are therefore inaccessible to a wider audience. Following the training
and validation of the models, this article proposes an encapsulation of
the work in a format that is accessible to the stakeholder.

Fig. 10 shows the impact of keyframe selection on API response
time. As expected, when frames per second are reduced by half, that is,
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Fig. 7. Metric comparison of (a) precision, (b) recall, (c) mAP@0.5, and (d) mAP@0.5:0.95, for a non-augmented and augmented subset of training and validation data measured
ver 30 epochs.
ote: y-axis scales for Figs. 7(a) to 7(c) are not comparable to Fig. 7(d).
Table 6
An excerpt of an example report showing the event of a bee entering the camera view and being detected by the object detection model.

D H M S Video Time Time (formatted) DD_HH_MM_SS Detected

0 0 15 59 959 0 days 0 h 15 mins 59 secs 00:00:15:59 0
0 0 16 0 960 0 days 0 h 16 mins 0 secs 00:00:16:00 0
0 0 16 1 961 0 days 0 h 16 mins 1 secs 00:00:16:01 0
0 0 16 2 962 0 days 0 h 16 mins 2 secs 00:00:16:02 0
0 0 16 3 963 0 days 0 h 16 mins 3 secs 00:00:16:03 0
0 0 16 4 964 0 days 0 h 16 mins 4 secs 00:00:16:04 0
0 0 16 5 965 0 days 0 h 16 mins 5 secs 00:00:16:05 0
0 0 16 6 966 0 days 0 h 16 mins 6 secs 00:00:16:06 1
0 0 16 7 967 0 days 0 h 16 mins 7 secs 00:00:16:07 1
0 0 16 8 968 0 days 0 h 16 mins 8 secs 00:00:16:08 1
0 0 16 9 969 0 days 0 h 16 mins 9 secs 00:00:16:09 1
0 0 16 10 970 0 days 0 h 16 mins 10 secs 00:00:16:10 1
0 0 16 11 971 0 days 0 h 16 mins 11 secs 00:00:16:11 1
r
a

g
i
s

𝐹 𝑃 𝑆∕2 keyframes from video streams, the processing time is reduced.
ideos of 5, 8, 13, and 20 s could be processed in 9, 19, 26, and
8 s, respectively. In the future, keyframe selection strategies could be
enchmarked according to the relevant literature, which is discussed in
ection 5.

An example of the user interface can be found in Fig. 11. The
ystem encapsulates all model inference and replaces the need to either
rite Python code or use the command-line interface by enabling the

upload of a video file. This video is then automatically processed by the
object detection model, and a report is generated along with images of
the detected bees for viewing and further analysis. For demonstration
purposes, random bee facts are printed onto the screen, but this can be
eplaced or removed entirely in the future.

Following the submission and processing of a video stream, an ex-
ample of the aforementioned report can be found in Table 6 with frames
selected once per second as an example. These rows are exemplars
extracted from the generated CSV file, and show how at 16:06, the
model predicted that a bee had entered the frame and thus received
 s
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a bounding box. It is important to note that this report was generated
solely by following three steps: (1) clicking the ‘‘Choose File’’ button,
(2) choosing a video file, and (3) clicking the ‘‘Detect bees’’ button.
No interaction with code or the command line interface is required,
with the aim of democratising the technology arising from the scientific
contributions of this work.

5. Conclusion and future work

This study has contributed a significantly large dataset for the
esearch community and explored the application of object detection
lgorithms for the detection and tracking of bees. The use of these

data and/or these algorithms are part of an endeavour to provide a
technological intervention in conservation management and analysis.
It is particularly pertinent to explore these interventions for pollinators
iven that food security and the overall survival of the human species
s dependent on their services. The democratisation of research is also
upported by the approaches proposed by this work, given the open-
ource nature of all the data, models, and software produced. The
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Fig. 8. Examples of ground-truth bees missed by the YOLOv5m model. Left images show ground truth data with yellow bounding boxes, right image shows a lack of model
predictions.
findings showed that two particular models benchmarked in this work
are promising, the YOLOv5m model which achieved 85.6& mAP@0.5
with an inference time of 8.1 ms per frame, and the more efficient
YOLOv5s at 5.1 ms inference at a slightly lower 84.6% mAP. At 5.1 ms
per frame, the algorithm is able to execute at approximately 196 frames
per second ( 1

5.1×10−3 s = 1
0.0051 s ≈ 196.08).

Beyond data collection and machine learning implementation, this
work also argued in favour of stakeholder-friendly and accessible ap-
plication, and contributed to this in the form of a web application for
automated analysis using the selected model. This meant that operators
did not need to use any computer code to analyse video streams, such
as those collected from an apiary.

A potential scientific limitation of this work lies in the choice of
default data augmentation strategies, which were based on the exten-
sive benchmarking performed in the original studies for the YOLO-type
models. For additional specificity towards pollinator detection, future
work could explore additional data augmentation strategies to bet-
ter suit this problem. In relation to this, the proposed strategy was
restricted to a data subset due to the availability of computational
resources. In the future, multiple augmentation strategies could be
explored using the full dataset to discern a more general view of which
is most effective to use. This, along with combinatorial optimisation
of the augmentation parameters, could lead to a better overall model.
In terms of real-time processing, a relatively simple keyframe selection
strategy of 𝐹 𝑃 𝑆∕2 was implemented; however, this process could be
improved by making use of a more in-depth keyframe selection strategy
9 
according to the literature (Rashmi and Nagendraswamy, 2018; Huang
and Wang, 2019; Savran Kızıltepe et al., 2023).

In the future, the application of these models in real-world situa-
tions, such as an apiary, could provide valuable insight into behavioural
analysis. Furthermore, multimodality could improve detection tech-
niques, such as combining audio collected alongside images. Future
work could also explore multiple classes, such as the detection of
individual species, or behaviours, such as the automatic recognition
of pollination events. If used in conjunction with a flower recognition
algorithm, this algorithm could then enhance the reporting system
towards more detailed information about events that have taken place.
Implementation of additional algorithms or types of data would require
further work on model architectures beyond those proposed by the
original authors.

Towards the next iteration of this work, Fig. 12 shows an example of
how the pipeline could be improved. This includes sending notifications
to stakeholders and beneficiaries (such as an alert to a population
decline) along with the transition away from local to cloud storage.
Additionally, the user interface printed random bee facts for demon-
stration purposes; improvements could be made to the interface in the
future, such as replacing this block with a live feed of the detection
process, that is, by showing images of some of the bees detected and
live graphs that update as the inference process is performed.

Towards integration reflective of Agriculture 4.0, future imple-
mentations of this framework could consider wireless communication,
such as inference on the edge and wireless communication (5G, 6G,
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Fig. 9. Additional examples of ground-truth bees missed by the YOLOv5m model. Left images show ground truth data with yellow bounding boxes, right image shows a lack of
model predictions.
Fig. 10. Impact of keyframe selection on API Response.
LoraWan, etc.). Additionally, enhancements through Geographic Infor-

mation System (GIS) and Global Positioning System (GPS) data could

enable the provision of further context through geographic and location

metadata. Furthermore, given long-term data collection and modelling,
10 
findings could be used to infer design decisions when building digital
twins of the relevant ecosystems.

To finally conclude, this work has proposed the use of a novel
dataset and object detection algorithms to facilitate technological in-
tervention in conservation management, with a focus on pollinator
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Fig. 11. A screenshot of the interface for the non-technical interaction with the inference model. For demonstration purposes, random bee facts are printed to the screen.
Fig. 12. Proposed future pipeline for improved use in industry.
behaviour. Food security, reacting to climate change, the conservation
of the natural world, and responsible consumption and production are
critical issues that support human survival, and the use of technol-
ogy to monitor their improvement is possible given the transfer of
interdisciplinary knowledge from the laboratory to the real world.
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Data availability

All data collected and subsequent code written is made publicly
available for future work.

The Bee Detection in the Wild dataset, collected for and analysed
n this study, is released via the Kaggle data science platform under
he MIT license. It can be downloaded from: https://www.kaggle.com/

datasets/birdy654/bee-detection-in-the-wild.
The code for the web interface used to encapsulate the models is

available on Github. It can be downloaded from: https://github.com/
AjayJohnAlex/Bee_Detection.
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