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 A B S T R A C T

Hierarchical architectures are complex structures composed of multiple materials arranged at a microstructural 
level to achieve specific macroscopic properties. Despite the advantages offered by hierarchical architectures 
which are offering broad design freedom, this extensive design space also poses significant challenges for 
inverse designing hierarchical architectures. This paper addresses the inverse design of strain fields for 
hierarchical architectures by integrating efficient forward prediction with precise inverse optimization. Forward 
prediction models are developed to accurately predict the physical properties and performance metrics of 
these materials, while inverse optimization algorithms determine the optimal material distribution to achieve 
desired outcomes. We propose a machine learning approach that utilizes a recurrent neural network (RNN)-
based forward prediction model trained on finite element analysis data, achieving over 99% accuracy. 
An evolutionary algorithm-based inverse optimization model is then used to identify the optimal material 
configuration to reach the desired strain fields. The results, validated through simulation and experimental 
testing, demonstrate the potential of machine learning to accelerate the design and optimization of strain 
fields in hierarchical architectures, paving the way for advanced material applications in the fields of aerospace 
engineering, biomedical devices, robotics, structural engineering, and energy storage systems.
1. Introduction

Hierarchical architectures [1] are heterogeneous structures com-
posed of multiple distinct material phases arranged across different 
length scales to achieve synergistic properties that cannot be real-
ized by single-component materials. These architectures encompass a 
broad range of engineered materials, including digital materials and 
metamaterials. Digital materials [2] represent a subset of hierarchi-
cal architectures, where material compositions are discretized into 
binary or multi-phase voxel-based units, typically denoted as 0 and 
1 [3], enabling precise microstructural control. The precise control 
over material placement in the hierarchical architecture can be en-
abled by advanced manufacturing techniques like 3D printing [4–7], 
allowing for the creation of complex, multi-material systems with 
tailored mechanical [8–13], thermal [14–18], and other properties. 
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Hierarchical architectures have a wide range of applications, including 
aerospace [19–25], biomedical devices [26–31], renewable energy sys-
tems [32–35], and automotive industries [36–41], where the tailored 
properties of these materials can lead to significant advancements in 
performance and efficiency.

The design of hierarchical architecture involves addressing two fun-
damental research questions: efficient forward prediction and precise 
inverse optimization. Forward prediction involves determining how a 
given design will behave and perform under certain stimuli. These 
stimuli include force and displacement for the mechanical behavior, 
heat, humidity, and magnetic fields for the 4D printing effect, and so 
on. The forward question focuses on developing models and methods 
to accurately predict the physical properties and performance met-
rics of hierarchical materials based on their structural configuration. 
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Fig. 1. Schematic diagram for proposed methods. (a). Research questions for the design of hierarchical architecture. (b). Workflows for forward prediction and inverse optimization 

of strain fields in hierarchical architecture. (c). Interaction among target, simulation results, and experiment results.
Inverse optimization, on the other hand, tackles the problem of design-
ing hierarchical architectures to achieve specific desired behaviors or 
performance characteristics. This involves developing algorithms and 
frameworks that can backtrack from the desired outcomes – such as 
optimal mechanical behavior [42–46] and 4D printing effects [47–53] 
– to the structural parameters and material compositions that would 
produce these results. By integrating efficient forward prediction with 
precise inverse optimization, a robust framework for the design of 
hierarchical architectures can be created, as illustrated in Fig.  1(a). 
Forward prediction models help in understanding and simulating the 
behavior of potential designs, providing critical feedback for the opti-
mization process. Inverse optimization algorithms, informed by these 
2 
predictive models, guide the exploration of the design space, ensuring 
that the search is both comprehensive and targeted. This integrated 
approach accelerates the discovery and development of advanced mate-
rials with superior properties, applicable in various fields such as sensor 
design [54,55], actuator design [56,57], metamaterial design [58,59], 
energy harvester design [60,61], and beyond.

The design of hierarchical architecture is a complex and pressing 
problem that attracts a lot of attention. This challenge arises from 
the huge design space inherent in hierarchical systems and interde-
pendencies between different components. First, designing an effective 
and efficient hierarchical architecture involves navigating a vast array 
of potential configurations. For example, if a hierarchical architecture 
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contains two materials and has 1000 voxels, then its design space is 
21000 ≈ 1.07 × 10301, which is overwhelming. Each component must 
be carefully designed to ensure overall system coherence and optimal 
performance, making it difficult to identify the most suitable design 
that meets all required criteria. Furthermore, the interdependencies 
between different components add another aspect of complexity. De-
cisions made on one component may have significant influences on the 
entire structure, necessitating a holistic approach to design. Balancing 
performance, scalability, reliability, and cost-effectiveness within such 
a broad and complex design space requires advanced methodologies 
and innovative solutions.

Given these challenges, developing effective strategies and tools for 
hierarchical architecture design is crucial [62]. The design of hier-
archical architectures can be pursued through two primary research 
directions: optimizing mechanical properties and predicting and inverse 
designing the deformed shape of the architecture when subjected to 
stimuli. Some researchers aim to design hierarchical architectures to 
achieve optimal configurations with maximal mechanical performance, 
including enhanced stiffness, toughness, and stress–strain behavior. Gu 
et al. [63,64] utilized machine learning in a hierarchical system, accu-
rately predicting mechanical properties such as toughness and strength. 
The method optimized designs with significantly better properties than 
the mean of the input training data. The results demonstrated the 
ability of machine learning to efficiently search for optimal designs 
with limited training data, making it a promising tool for hierarchical 
architecture design. Exploiting more advanced machine learning algo-
rithms, Chen & Gu [65] also presented a general-purpose inverse design 
approach using generative inverse design networks to obtain the opti-
mal design of hierarchical architecture with maximized toughness. The 
method employed backpropagation to calculate gradients of an objec-
tive function with respect to design variables and used active learning 
to enhance performance and reduce training data. Kim et al. [66] 
proposed a deep neural network-based forward design approach, which 
used active transfer learning and data augmentation to search for 
superior materials beyond the initial training set to get the optimal 
design of hierarchical architecture with maximal stiffness or strength. 
Qian et al. [67] developed an adaptive artificial neural network-based 
method combined with a generative adversarial network for designing 
architectured composite materials with optimal toughness or stiffness. 
Sui et al. [68] used a deep Q network (DQN) to design hierarchical 
architectures for maximal equivalent modulus. Yang et al. [69] em-
ployed principal component analysis (PCA) and convolutional neural 
networks (CNN) to predict stress–strain curves of binary hierarchical 
architecture. The model achieved a mean absolute error of less than 
10% using only 10%–27% of possible microstructure configurations. 
Li et al. [70] introduced a pipeline integrating physical experiments, 
numerical simulations, and artificial neural networks to discover mi-
crostructured hierarchical architecture with optimal stiffness-toughness 
trade-offs. This method efficiently bridged the gap between simulation 
and reality, and identified toughness enhancement mechanisms auto-
matically, demonstrating a robust approach to computational design. 
Some other studies research on the design for deformed shape of 
hierarchical architecture after stretching or heating. Zhang & Gu [71] 
introduced a physics-informed neural network (PINN) for analyzing 
the deformed shape of hierarchical architecture without ground truth 
data, using the minimum energy criterion as the loss function. Zhao 
et al. [72] integrated machine learning with an evolutionary algorithm 
to obtain the hierarchical architectures that can follow with the desired 
deformed shape by optimizing grayscale distributions in digital light 
processing 3D printed blocks. Jin et al. [73,74] proposed the resid-
ual neural network-based-forward prediction method and evolutionary 
algorithm-based inverse optimization method for inverse design of 
4D printed hierarchical architecture with non-rectangular shape. Sun 
et al. [75,76] developed machine learning methods for inverse design 
of 4D printed active beam and plate to achieve desired behaviors.
3 
Few studies have focused on the inverse design for stress–strain 
fields hierarchical architectures. However, stress and strain fields are 
very important for in-depth study of the performance of hierarchi-
cal architecture, because stiffness, toughness, stress–strain curve, and 
deformed shape are all based on stress and strain fields. Some re-
search focuses on efficient forward prediction for stress and strain 
fields of hierarchical architecture. Yang et al. [77] reported a deep 
learning method to predict residual strain and stress tensors from 
input hierarchical architecture. They also implemented similar model 
to predict complete strain and stress tensors [78]. The model ad-
hered to continuum mechanical principles and improved efficiency 
in predicting mechanical behaviors of composites, enhancing design 
capabilities for multifunctional composites and hierarchical structures. 
Rashid et al. [79] employed a Fourier neural operator (FNO) to predict 
stress and strain tensor fields in 2D composites. The FNO model demon-
strated high-fidelity predictions, zero-shot generalization on unseen 
geometries, and zero-shot super-resolution capabilities. These studies 
have proposed some good and efficient forward prediction methods. 
However, previous studies have primarily focused on optimizing me-
chanical properties (e.g., stiffness, toughness) or predicting stress–strain 
behavior. Our work uniquely advances the field by pioneering the 
inverse design of strain fields as functional targets, enabling applica-
tions such as strain-activated anti-counterfeiting patterns and adaptive 
optical modulation. Unlike conventional optimization approaches, our 
method does not solely aim for optimal mechanical properties but 
introduces a paradigm shift toward strain-driven functionalities.

In this paper, we will propose a machine learning approach to 
inversely design the strain fields of hierarchical architectures as demon-
strated in Fig.  1(b). We will develop a recurrent neural network (RNN)-
based forward prediction model that leverages finite element analysis 
data to rapidly and accurately predict the strain field of a component 
given its material allocation, achieving an accuracy of over 99%. 
Building on this, we will introduce an inverse optimization model 
powered by evolutionary algorithms to determine the optimal material 
distribution that aligns the strain field with preset performance goals, 
demonstrating the potential of machine learning to accelerate material 
design and optimization of strain fields for hierarchical architectures. 
The optimal material allocation determined by the inverse optimization 
model will be input into finite element analysis to obtain simulation 
results of the optimal solution as described in Fig.  1(c). This opti-
mal material configuration will also be fabricated using multi-material 
digital light processing (DLP). The resulting physical object will be 
subjected to tensile testing, and the experimental strain field will be 
measured using digital image correlation (DIC). By comparing the 
experimental results, simulation data, and target strain fields, we will 
validate and refine our design approach.

2. Materials and methods

2.1. Specimen manufacturing

In this paper, we use centrifugal multi-material digital light process-
ing 3D printing technology to manufacture the designed hierarchical 
architecture [80–83], inspired by the principle of non-contact resin 
removal via centrifugal force. As shown in Fig.  2(a), the system employs 
a bottom projection approach where UV light patterns are projected up-
ward through a transparent glass plate to cure liquid resin in sequential 
layers. Two resin tanks — containing Agilus (soft material) and Vero 
(hard material) — are positioned beneath the printing platform.

This centrifugal multi-material digital light processing 3D printing 
technology represents a significant advancement over conventional 
multi-material 3D printing methods. Traditional approaches rely on 
direct contact with wipers [84–86] or fluid flows [87–89] to remove 
residual resin during material switching, which often contaminates the 
printed part or limits the maximum build area. In contrast, our method 
employs centrifugal force (6000 rpm for 60 s) to remove uncured resin 
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Fig. 2. Specimen manufacturing, part design, and material characterization. (a). Schematic diagram for the multi-material digital light process technique used in this paper. (b). 
Design of dog-bone structure for tensile test. (c). Tensile test results for Vero (hard material). (d). Tensile test results for Agilus (soft material). (e). Comparison of the modulus 
for hard and soft materials.
Table 1
3D printing parameters for hierarchical architectures.
 Parameter Agilus white (Soft) Vero black (Hard) 
 UV intensity (mW/cm2) 12.16 16.22  
 Exposure time (s/layer) 10 12  
 Layer thickness (μm) 100
 Centrifugation speed (rpm) 6000
 Centrifugation time (s/layer) 60
 Post-curing time (min) 10

without physical contact, inspired by the efficiency of mammalian 
body-shaking mechanisms [80]. The system’s ability to handle resins 
with viscosities spanning 10−3 to 101 Pa s allows the simultaneous 
use of soft Agilus White and stiff Vero Black without compromising 
resolution.

The printing process begins by lowering the printing platform into 
the first resin tank (Agilus White) to a layer thickness of 100 μm. UV 
light with an intensity of 12.16 mW/cm2 is projected for 10 s to cure 
the soft material. After solidification of each material, the platform 
is lifted and rotated at 6000 rpm for 60 s to centrifugally remove 
uncured resin from both the printing platform and the printed part, 
ensuring minimal cross-contamination between materials. The printing 
platform is then reset to its original configuration, and then the process 
is repeated for the second resin tank (Vero Black), where UV intensity 
is set to 16.22 mW/cm2 with a 12 s exposure time to solidify the stiff 
material. After printing the second material, centrifuge again to remove 
the adhered uncured resin. This cycle of printing and centrifugation 
repeats layer by layer until the printing is completed. Post-processing 
included rinsing in ethanol for 5 min to remove residual resin and UV 
post-curing at 365 nm for 10 min to achieve full material crosslinking. 
The key parameters for 3D printing are summarized in Table  1.

The resolution of the UV light source is 1920 × 1080 dpi in the 
𝑥 and 𝑦 directions, with each dpi corresponding to 20 μm. In the 𝑧
direction, the minimum accuracy of our printer can reach 10 μm. For 
our printing, we set the size of each voxel to 400 μm by 400 μm, with 
a layer thickness of 100 μm. To achieve optimal results, we designed 
the structure shown in Fig.  2(b). The black material represents the 
4 
hard material, the white indicates the soft material, and the light 
yellow signifies the transparent soft material. The part corresponding 
to the optimized material distribution is positioned in the middle of 
the entire structure, flanked by two hard dog bones at both ends to 
facilitate clamping by the tensile test machine. Additionally, the entire 
structure is wrapped with a layer of transparent soft material above 
and below the hierarchical architecture layer. This ensures the structure 
maintains its integrity during tensile testing and prevents premature 
breakage due to insufficient bonding between adjacent voxels in the 
hierarchical architecture. During the printing, we first print four layers 
of transparent soft material, followed by four layers of dog bones with 
optimized material distribution, and finally, four layers of transparent 
material, resulting in a total thickness of 1.2 mm. The procedure for 
the hierarchical architecture manufacturing using multi-material digital 
light processing is demonstrated in Figure S1.

2.2. Material selection and characterization

To achieve optimal performance in the hierarchical architecture, it 
was essential to select two materials with significantly different stiffness 
properties, designated as the soft and hard materials. For this study, we 
selected Agilus as the soft material, available in two colors (white and 
clear), and Vero Black as the hard material. As depicted in Fig.  5(b), 
the optimized material allocation within the central structure, along 
with the dog bones at both ends, was fabricated using Agilus White 
and Vero Black. The outermost layers, consisting of a transparent soft 
material, were printed using Agilus Clear, effectively encapsulating the 
core structure.

In addition to material selection, it was imperative to thoroughly 
characterize the mechanical properties of both the soft and hard ma-
terials. To this end, we fabricated standard dog bone specimens of 
each material and subjected them to tensile testing using a univer-
sal testing machine (Model E45, MTS Systems Corporation, USA). 
The resulting stress–strain data are presented in Figs.  2(c) and (d). 
During this characterization process, we observed notable differences 
between the mechanical properties of pure specimens and those of 
specimens impregnated with another material following multi-material 
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printing. Despite the centrifugation process used to remove uncured 
resin, residual traces of the other material were inevitably retained, 
leading to modifications in the mechanical behavior of the impregnated 
specimens. Specifically, the hard material exhibited a reduction in 
stiffness, while the soft material became slightly more rigid. Addition-
ally, the fracture strain of both materials decreased as a result of the 
impregnation.

To clearly differentiate between the two conditions, we refer to 
the unimpregnated material as ‘‘pure material’’ and the impregnated 
material as ‘‘polluted material.’’ To characterize material contamination 
during multi-material printing, two sets of dog-bone specimens were 
fabricated: pure and polluted. Pure specimens were printed entirely 
within a single resin tank. For polluted specimens, after printing each 
layer of the target material (e.g., Agilus), the part was immersed in the 
second material tank (e.g., Vero) and centrifuged (6000 rpm, 60 s) to 
replicate residual contamination. This process ensured that pollution 
levels mirrored those in actual multi-material printing. Centrifugation 
parameters and material viscosity were held constant, resulting in uni-
form contamination across polluted specimens. The tensile test results 
for Vero are shown in Fig.  2(c), while the corresponding results for 
Agilus are displayed in Fig.  2(d). We conducted eight tensile tests 
for each material and compiled Young’s modulus data for both pure 
and polluted Vero and Agilus, as summarized in Fig.  2(e). From the 
results, it is evident that the stiffness of Vero is 134 times greater than 
that of Agilus, which satisfies our design requirements for creating a 
hierarchical architecture with distinct material properties.

2.3. Simulation

The simulation process involves the utilization of Dassault Systèmes’ 
Abaqus (Dassault Systèmes SIMULIA Established Products 2022, John-
ston, United States) finite element simulator to automatically generate 
the data necessary for training a forward prediction model. The simu-
lator predicts the strain field based on the distribution of soft and hard 
materials. Python scripts are employed to automatically create Abaqus 
input files (.inp) tailored to our specific requirements. These input 
files encapsulate the parameters and conditions needed to simulate the 
behavior of the hierarchical architecture. The Neo-Hookean material 
model is applied to two materials in a 2D setting, specifically Agilus 
(soft material) and Vero (hard material).

To improve the accuracy of the simulation, each voxel is subdivided 
into a 10 × 10 mesh, resulting in 100 elements per voxel. The hierarchi-
cal architecture is discretized using CPE8H elements (eight-node hybrid 
quadratic plane strain elements) to mitigate volumetric locking effects. 
Displacement boundary conditions in the tensile direction (x-axis) are 
enforced with one end fixed (𝑢𝑥, 𝑢𝑧 = 0 at the whole edge, 𝑢𝑦 = 0 at 
the center vertex of the edge), while a displacement of 5 mm is applied 
to the other end. A fixed displacement is used instead of a fixed force 
to account for variability in Young’s modulus due to different mate-
rial distributions, preventing inconsistent deformations across different 
structures. An implicit solver is chosen for time integration to enhance 
numerical stability.

To ensure diversity in the simulation data, the proportion of soft 
material in the overall structure is uniformly distributed, as shown 
in Fig.  3(a). The simulation and forward prediction model training 
employ binary numbers (0s and 1s) to represent the hard and soft 
materials, respectively, as illustrated in Fig.  3(b). The strain field distri-
bution is extracted from the Green–Lagrange strain tensor, facilitating 
direct comparison with experimental digital image correlation results 
to validate the numerical predictions.

To maximize throughput, 48 different material allocations are
batched and simulated concurrently, achieving optimal CPU utiliza-
tion. The finite element simulations are performed on a worksta-
tion equipped with a 13th Gen Intel® CoreTM i9-13900K processor 
(3.00 GHz) and 64 GB RAM. This method significantly reduces the time 
required to obtain simulation data, enabling the acquisition of 48 data 
sets in just 2 min, compared to the 2 min typically required for a single 
data set.
5 
2.4. Forward prediction model

2.4.1. Model architecture
In this paper, we employ RNN as the forward prediction model for 

the strain fields of hierarchical architectures. RNN offers significant 
advantages in the forward prediction of strain fields for hierarchical 
architectures. One of the primary benefits is its ability to effectively 
capture and utilize sequential dependencies within the data. In the con-
text of predicting strain fields, the spatial relationships and interactions 
between soft and hard materials and regions within the hierarchical 
structure can be inherently sequential. RNN, with its unique archi-
tecture designed to process sequences of data, is adept at learning 
these dependencies, leading to more accurate and reliable predictions 
of strain fields across complex material distributions. Moreover, RNN 
is good at handling time-series data and can be particularly beneficial 
when dealing with the dynamic response of materials under varying 
conditions. By leveraging their internal memory, RNNs can remember 
previous states and use this information to inform future predictions. 
This capability is important for modeling the behavior of hierarchical 
materials, where the current strain state can be influenced by the mate-
rial’s previous states and interactions. Consequently, RNN can provide a 
more precise and detailed understanding of how hierarchical materials 
will respond under different stress and strain conditions [90–92].

The RNN model we build employs a Bidirectional Long Short-Term 
Memory (LSTM) architecture implemented in TensorFlow. Machine 
learning models were implemented in Python 3.7.16, leveraging Ten-
sorFlow 2.5.0 with GPU acceleration. The hyperparameters for this 
model are listed in Table  2. The RNN model is composed of three 
types of layers — input, hidden, and output layers — as illustrated 
in Fig.  3(c). The input layer is 40 × 40 binary array representing 
the material allocation. The hidden layer is designed to sequentially 
handle the input data, capturing the intricate dependencies and inter-
actions between the voxels. As the RNN processes the input through 
its hidden layers, it leverages its recurrent structure to maintain and 
update information about previous voxel states, thereby understanding 
the material’s spatial relationships and mechanical properties over the 
entire grid. The core of the model is a Bidirectional LSTM layer with 
25 units in each direction (forward and backward), totaling 50 hidden 
units. This layer processes the input sequence bidirectionally to capture 
spatial dependencies across the hierarchical architecture. The LSTM 
uses hyperbolic tangent (tanh) activation for cell state updates and 
sigmoid activation for input/forget/output gating. A recurrent dropout 
rate of 0.2 is applied during training to prevent overfitting. Finally, the 
output layer of our RNN model translates the processed information 
into a 40 by 40 array representing the elongation of each voxel in the 
𝑥 direction. The output layer is a fully connected dense layer with 40 
neurons and linear activation, which reconstructs the predicted strain 
field into a 40 × 40 matrix. This output layer mirrors the input layer’s 
structure, providing a direct and interpretable mapping from material 
distribution to mechanical response. 

2.4.2. Data preprocessing and training
After obtaining the data from the Abaqus simulation, it undergoes 

a processing phase to prepare it for model training. This preparation 
involves normalizing both the input and output data to ensure they 
possess suitable characteristics for the training process. For the input 
data, which consists of matrices indicating hard (0) and soft (1) material 
allocations, we apply a specific normalization equation: 𝑥𝑛 = 2𝑥 − 1, 
where 𝑥 represents the original input data and 𝑥𝑛 is the normalized 
version. This transformation shifts the original values of 0 and 1 to 
−1 and 1, respectively, centering the mean near 0 and the standard 
deviation near 1. This adjustment facilitates better convergence during 
the training phase. For the output data, normalization is performed 
using the mean and standard deviation of the dataset. We use the 
formula 𝑦𝑛 = (𝑦 − 𝑦𝑚𝑒𝑎𝑛)∕𝑦𝑠𝑡𝑑 , where 𝑦 represents the original output 
data, 𝑦  is the normalized output data, 𝑦  is the mean, and 𝑦  is 
𝑛 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑



L. Jin et al. Composites Part B 299 (2025) 112372 
Fig. 3. Forward prediction model. (a). The distribution of 20,000 data in the dataset considering the ratio of soft materials. (b). Digital representation of soft material and hard 
material. (c). The schematic diagram for the RNN-based forward prediction model. (d). Loss comparison between RNN and CNN model for forward prediction. (e). Training loss 
and validation loss with optimal hyperparameters. (f). Comparison of machine learning predicted and finite element analysis calculated strain fields. (g-l). The influence of (g) the 

number of training data, (h) batch size, (i) learning rate decay, (j) learning rate, (k) hidden size, and (l) ratio of validation data on loss.
the standard deviation of all output data. This process ensures that the 
output data is transformed to have a mean of 0 and a standard deviation 
of 1, thereby promoting consistency and stability during training.

Following the normalization process, the data is split into training 
and validation sets. This split is crucial for evaluating the model’s 
performance on unseen data and mitigating overfitting. Typically, 80% 
of the normalized data is allocated to the training set, while the re-
maining 20% is reserved for the validation set. This allocation strategy 
ensures that the model is trained on a substantial amount of data while 
retaining a separate portion for evaluation, thereby providing a robust 
framework for assessing the model’s generalization capabilities.

Once the data and model architecture are prepared, the training 
process starts. The machine learning training is conducted on a work-
station equipped with a GPU–an NVIDIA GeForce RTX 4090, which 
6 
accelerates the training of the deep learning models. The model is 
compiled using the Adam optimizer, a popular choice due to its effi-
ciency and adaptability in handling sparse gradients and noisy data. 
The mean squared error (MSE) is selected as the loss function, which 
quantifies the discrepancy between the predicted outputs and the actual 
outputs by averaging the squares of the errors. This choice of loss 
function helps ensure that the model accurately captures the underlying 
patterns in the data by minimizing large errors. To enhance the training 
process and prevent overfitting, early stopping is implemented, which 
involves continuously monitoring the validation loss during training. If 
the validation loss does not show improvement for a predetermined 
number of consecutive epochs, the training process is halted. Early 
stopping ensures that the model does not overfit the training data, 
thereby maintaining its generalization capabilities on unseen data. 
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Table 2
Hyperparameters of the bidirectional LSTM model.
 Parameter Value  
 Input dimensions 40 × 40  
 Output dimensions 40 × 40  
 Hidden layer type Bidirectional LSTM  
 Units per direction 25  
 Total hidden units 50  
 Learning rate 0.025  
 Learning rate decay 1∕

√

2 every 25 epochs  
 Batch size 50  
 Maximum epochs 500  
 Validation split 20%  
 Early stopping patience 25 epochs  
 Loss function Mean Squared Error (MSE) 
 Optimizer Adam (𝛽1 = 0.9, 𝛽2 = 0.999) 

This approach strikes a balance between underfitting and overfitting, 
leading to a more robust and reliable model.

2.4.3. Model validation and comparative analysis
To explore the efficacy of RNN and CNN as forward prediction 

models, we analyzed their performance on the task of minimizing 
prediction errors. Fig.  3(d) illustrates the comparative results, demon-
strating the advantage of using RNN over CNN. Specifically, RNN 
was able to achieve lower prediction errors across multiple test cases, 
confirming its suitability for our model. The recurrent nature of RNN 
allows it to effectively capture temporal dependencies and sequential 
patterns within the data, which is crucial for accurate predictions in our 
application. In contrast, CNN, despite its strong capability in handling 
spatial data, falls short in this context due to its limited ability to model 
sequential dependencies.

The performance of the forward prediction model for strain fields 
of hierarchical architecture is good. As depicted in Fig.  3(e), with an 
increasing number of epochs, the model’s loss converges to a remark-
ably low value, nearing 10−3. Notably, the model exhibits no signs 
of overfitting, maintaining generalization across varying datasets. The 
forward prediction results for the strain fields in the 𝑦 direction, as 
illustrated in Figure S2(a), demonstrate similar trends to those observed 
in the 𝑥 direction. As the training process progresses, with the number 
of epochs increasing, both the training loss and validation loss exhibit 
a significant exponential decrease, ultimately converging to a minimal 
value.

To rigorously assess the model’s predictive accuracy, we employed 
it to generate strain field predictions for 10,000 new datasets and 
compared these predictions against actual simulation results. Fig.  3(f) 
demonstrates that the majority of the predicted strain values align 
closely with the true values, clustering around the 𝑦 = 𝑥 line. The 
concentration of points around 0.125 mm in the red area indicates 
the distribution of strain when the sample is uniformly stretched by 
5 mm, translating to 0.125 mm per voxel in a 40-voxel sample. This 
high degree of correlation is quantitatively supported by an R-squared 
value of 0.9927, underscoring the model’s precision and reliability in 
forward prediction tasks. Figure S2(b) provides a comparison between 
the machine learning-based predictions for the strain fields in the 𝑦
direction and the corresponding simulation results obtained through 
finite element analysis. The scatter plot illustrates that the predicted 
strain values closely align with the simulation results, as evidenced by 
the majority of points clustering around the line defined by the function 
𝑦 = 𝑥 with the R-squared value of 0.9988. This alignment confirms the 
machine learning model’s capability to predict strain fields across all 
directions with high accuracy. We can also notice that the red points 
(high density) are basically distributed near 0 mm, indicating that the 
strain fields in the 𝑦 direction are minimal when the part is stretched 
in the 𝑥 direction. That is why only the results in the 𝑥 direction are 
analyzed in the main text.
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2.4.4. Parameter selection criteria
To refine the performance of our forward prediction model, we sys-

tematically explored the influence of various machine learning parame-
ters on model accuracy and efficiency. The key parameters considered 
were the number of training data sets, batch size, learning rate and 
decay, hidden size, and the ratio of validation data.

The number of training data sets plays a crucial role in reducing 
model loss. As depicted in Fig.  3(g), when the dataset size is below 100, 
the model exhibits high loss values and minimal improvement with 
additional data, indicating insufficient training samples for effective 
learning. However, once the dataset size exceeds 1000, we observe a 
sharp reduction in loss, signifying that the model begins to capture 
meaningful patterns in the data. As the dataset size further increases 
to 5000 and 10,000, the loss continues to decline, but at a slower 
rate. Beyond 20,000 samples, the loss reaches an asymptotic value, sug-
gesting that additional data yields diminishing returns in performance 
improvement.

Batch size also significantly impacts the model’s performance and 
computational efficiency. Fig.  3(h) illustrates that increasing the batch 
size reduces the loss but at the expense of longer training times. 
This trade-off necessitates a balanced approach, leading us to select 
a batch size of 50. This choice strikes an optimal balance, ensuring 
sufficient gradient updates per epoch while maintaining reasonable 
training durations.

The learnning rate and its decay are critical for the convergence 
of the model. Fig.  3(i) shows that without learning rate decay, both 
training and validation losses exhibit high volatility, indicating insta-
bility and poor convergence. Applying a learning rate decay smoothens 
the loss curves and results in lower final losses, highlighting its role in 
stabilizing training. Moreover, Fig.  3(j) reveals that the loss initially 
decreases with increasing learning rates but starts to rise beyond a 
certain point. An optimal learning rate of approximately 0.025 was 
identified, ensuring rapid yet stable convergence.

The hidden size parameter, which dictates the number of neurons 
in hidden layers, influences the model’s capacity and risk of overfitting. 
Fig.  3(k) shows that while increasing the hidden size initially reduces 
both training and validation losses, a hidden size above 100 leads to 
overfitting, evident from the widening gap between the two losses. 
Therefore, a hidden size of 50 was chosen to balance model complexity 
and generalization ability.

The ratio of validation data to total data is another vital factor. As 
shown in Fig.  3(l), an excessively high proportion of validation data can 
lead to overfitting, as the model may not have enough training samples 
to learn from. Conversely, too little validation data fails to provide an 
adequate assessment of model performance. We found that allocating 
20% of the data for validation and 80% for training provided a robust 
evaluation framework, ensuring the model was both well-trained and 
appropriately validated.

By elaborately selecting these parameters, we have optimized our 
forward prediction model to achieve high accuracy and efficiency, 
ensuring robust performance across various hierarchical architecture 
scenarios.

2.5. Inverse optimization model

2.5.1. Evolutionary algorithm mechanism
In this paper, an evolutionary algorithm is developed to perform in-

verse optimization on strain fields with hierarchical architecture. Evo-
lutionary algorithms, unlike gradient-based methods like topology op-
timization [93–96], leverage principles of natural selection and evolu-
tionary processes to explore the solution space more comprehensively. 
This non-gradient-based approach significantly reduces the risk of get-
ting trapped in local optima, a common challenge in high-dimensional 
and complex optimization problems.

Our evolutionary algorithm operates on a population of candidate 
solutions, each represented as an individual or chromosome. In this 
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Fig. 4. Inverse optimization model. (a). The schematic diagram for the evolutionary algorithm from inverse optimization. (b-d). The fitness evolution when the generation increases 
for (b) Christmas tree, (c) Mona Lisa, and (d) Mickey Mouse cases. (e). Evolution of all individuals in the population during the inverse optimization. (f). The influence of the 
selection, crossover, and mutation ratio on optimization results. (g). The influence of number of population on the optimization performance and time cost.
context, individuals encode various configurations of hierarchical archi-
tectures, combining soft and hard materials in different arrangements. 
The initial population is generated randomly, ensuring a diverse set of 
potential solutions to start the optimization process.

The algorithm iteratively evolves this population through three 
main operations: selection, crossover, and mutation. During selection, 
individuals with higher fitness, measured by their performance in the 
given optimization criteria, are chosen to pass their genes to the next 
generation. Crossover, or recombination, mixes the genetic information 
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of selected individuals to create new offspring, promoting the exchange 
of beneficial traits. Mutation introduces random changes to individuals, 
enhancing diversity and enabling the exploration of new regions in the 
solution space.

2.5.2. Evolutionary algorithm design
The evolutionary algorithm we designed is illustrated in Fig.  4(a). 

The process begins with the random generation of 2000 individuals 
to form the initial population. Each individual is represented as a 
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40 × 40 matrix composed of 0s and 1s, corresponding to soft and hard 
materials, respectively. These individuals are then normalized using 
the same normalization method employed for the forward prediction 
model, ensuring consistency in data preprocessing.

Subsequently, the normalized population is input into our previ-
ously established machine learning-based forward prediction model 
to predict the strain fields for each individual configuration, and the 
machine learning output is subjected to a denormalization operation. 
These predicted strain fields are then compared to the target strain 
fields using a fitness function, which outputs a value analogous to error, 
thereby evaluating each individual’s performance. The fitness function 
for the designed evolutionary algorithm is the root mean squared error.

The individual with the highest fitness score is identified as the 
best candidate. If this candidate meets the predefined performance 
criteria, the algorithm terminates, having successfully optimized the 
material allocation for the desired strain field. If the best candidate does 
not meet the performance requirements, the algorithm proceeds with 
selection, crossover, and mutation to generate a new population.

During the selection process, the population is sorted based on their 
fitness scores. The top 5% of individuals with the highest scores are 
designated as elite individuals. Additionally, 75% of the population is 
randomly selected for crossover operations. The crossover method is 
to randomly select a random number of columns from two parents and 
exchange them with each other, as illustrated in Figure S3. The material 
allocation after the exchange forms two children.

Mutation is performed on random-choose 20% of the population, 
where a random number of columns in selected individuals undergo 
random mutations as demonstrated in Figure S3. Each voxel in the 
chosen columns has a 50% probability of being assigned as either soft 
or hard material. The mutated individuals, along with the elite and 
offspring, constitute the new generation.

This iterative process of fitness evaluation, elite selection, crossover, 
and mutation continues until the algorithm reaches a satisfactory level 
of convergence or the required performance is achieved. The evolution-
ary algorithm’s ability to explore the solution space comprehensively 
through these genetic operations ensures a robust search for the optimal 
hierarchical material configuration. This method not only leverages 
the principles of natural evolution but also incorporates advanced 
computational techniques to efficiently navigate complex optimization 
landscapes.

To refine the algorithm’s efficiency and effectiveness, we incor-
porated several enhancements. The selection process includes a tour-
nament selection mechanism, ensuring that only the most promising 
individuals contribute to the next generation. Crossover operations 
are customized to preserve the hierarchical structure of the material 
configurations, maintaining the integrity of the encoded solutions.

Moreover, to prevent redundant evaluations and enhance compu-
tational efficiency, a hash-table-based deduplication mechanism was 
employed [97]. This mechanism ensures that identical configurations 
are not re-evaluated, significantly reducing unnecessary computations 
and speeding up the optimization process.

Despite being evaluated separately, the modular implementation 
of our evolutionary algorithm allows seamless integration into the 
broader computational discovery pipeline. This flexibility facilitates 
easy switching between optimization algorithms and enhances the 
algorithm’s applicability to a wide range of hierarchical architecture 
design problems.

2.5.3. Optimization performance
The performance of the inverse optimization model is comprehen-

sively illustrated in Figs.  4(b), (c), and (d). These figures depict the 
evolution of three cases presented in Section 3.2. It is evident that 
as the number of generations increases, the errors for all three cases 
progressively decrease. The optimized best candidate becomes increas-
ingly similar to the target over successive generations. Notably, the 
errors for the Mona Lisa and Mickey Mouse cases are larger than those 
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for the Christmas Tree case. This discrepancy arises due to specific 
requirements that must be met when setting the target: (1) the sum 
of strain fields in each row should be the same, that is the total 
displacement, and (2) the displacement fields of cell 𝑐𝑖,𝑗 should not 
exceed those of 𝑐𝑖+1,𝑗+1, 𝑐𝑖+1,𝑗 , and 𝑐𝑖+1,𝑗−1. The first number after 𝑐
represents the column in which the cell is located, and the second 
number after 𝑐 represents the row in which the cell is located. While 
the Christmas Tree design strictly adheres to these criteria, the Mona 
Lisa and Mickey Mouse designs do not fully comply, leading to patterns 
that cannot entirely match the target and causing some cells in these 
two patterns to never reach the target. Consequently, these designs 
exhibit larger errors during evolution. However, despite these larger 
errors, the resulting designs remain close to the target. In addition, we 
plotted the fitness of all individuals over the first 100 generations of the 
Christmas Tree pattern’s evolution algorithm optimization in Fig.  4(e). 
This plot reveals that with increasing generations, the performance 
of most individuals within the population improves. A small number 
of mutant and crossover individuals exhibit poor performance, which, 
although suboptimal, contributes to the overall development of the 
population by introducing diversity.

Fig.  4(f) examines the impact of different proportions of selection, 
crossover, and mutation on the population’s evolution. The proportions 
of selection ∶ crossover ∶ mutation = 5% ∶ 75% ∶ 20% were found 
to deliver near-optimal performance. We also observed that crossover 
plays a more significant role in group evolution than mutation, as 
higher crossover proportions accelerate evolutionary progress.

Moreover, Fig.  4(g) demonstrates the effect of population size on 
optimization results, specifically for the Christmas Tree case. For a 
constant number of generations (100), smaller population sizes re-
sult in larger errors and higher standard deviations, which is a bad 
performance. However, increasing the population size also extends 
optimization time, indicating a trade-off between accuracy and compu-
tational efficiency. The optimization time correlates with the number 
of individuals undergoing forward prediction, necessitating a balance 
between population size and time constraints.

These findings highlight the robustness and effectiveness of our 
evolutionary algorithm in achieving optimal hierarchical material con-
figurations. The iterative refinement process, driven by natural selec-
tion principles, enables comprehensive exploration and ensures that 
the final solutions are both robust and optimal, efficiently navigating 
complex optimization landscapes.

2.6. Physical validation

After fabricating the specimens, we utilized digital image correla-
tion to measure the strain field of the hierarchical architecture with 
optimized material allocation during stretching [98–101]. This tech-
nique allowed for the capture of high-resolution strain maps, providing 
a detailed understanding of the mechanical behavior under load.

First, the printed specimens were preprocessed to ensure accurate 
strain measurement . The surface of each specimen was sprayed with 
matte black and white paint (Sanhe Automotive Paint from Guangzhou 
Sanhe Coating Technology Co., Ltd., Guangzhou, China) alternately at 
a 60 ∶ 40 ratio, creating a random speckle pattern essential for DIC. 
The speckle pattern is illustrated in Figure S5(a) in the Supplementary 
Materials. The speckle pattern has an average speckle size of 5.2 
pixels, as quantified in Supplementary Figure S5(b). This size falls near 
the optimal range of 3–5 pixels, minimizing DIC measurement errors 
while preserving spatial resolution [102]. This speckle pattern served 
as a reference grid, enabling the software to track displacements and 
deformations during the testing process.

The prepared specimens were then clamped securely at both ends 
and mounted in a tensile testing machine (PURI Materials, Shen-
zhen, China). The specimens were stretched at a controlled speed 
of 0.1 mm/s, and a high-resolution camera (Basler acA4112-30um) 
recorded the deformation process. The camera was preset with a 
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resolution of 3400 × 2110 pixels, a frame rate of 10 frames per second, 
a shutter speed of 1/1000 s, and an aperture of f/5.6. Uniform LED 
illumination minimized shadows and reflections. The camera continu-
ously recorded images until the specimens were elongated by 5 mm, 
resulting in a total of 500 images captured during the experiment.

The collected images were then processed to obtain the strain field 
of the hierarchical architecture. The images were imported into the DIC 
software (VIC-2D, Correlated Solutions), where initial preprocessing 
ensured correct alignment, compensating for minor shifts or rotations 
during the experiment. The software analyzed the speckle pattern on 
each image, identifying and tracking the movement of the speckles 
between successive frames. This tracking allowed for the calculation 
of displacement fields across the specimen surface.

Specific parameters for DIC analysis were set to optimize accuracy 
and efficiency. The subset size was configured to 80 × 80 pixels, and 
the step size was set to 8 pixels, balancing resolution and processing 
speed. The correlation criterion used was the zero-normalized sum of 
squared differences (ZNSSD), chosen for its robustness and resistance 
to noise.

Using the displacement fields obtained from speckle tracking, the 
software computed the strain fields through the finite difference
method, deriving local strain values from the displacement gradients. 
To enhance the clarity of the strain maps, noise reduction techniques 
such as Gaussian filtering were applied, eliminating high-frequency 
noise and ensuring smooth strain contours. The final strain fields were 
visualized as contour plots, clearly depicting the strain distribution 
across the specimen.

3. Results and discussion

3.1. Forward prediction results

3.1.1. Model development and training
In our research, we developed an RNN-based forward prediction 

model to forward estimate the strain fields of hierarchical architectures. 
The studied architecture consists of 40 × 40 voxels, resulting in a design 
space of 21600 configurations, a remarkably vast and complex configu-
ration. Each voxel has the size of 400 μm by 400 μm, resulting in a total 
structure size of 16 mm by 16 mm. To evaluate model performance, we 
examined the mechanical behavior of these hierarchical architectures 
under tensile loading, as illustrated in Fig.  5(a), with one side fixed and 
a load applied on the opposite side along the 𝑥 direction, or horizontal 
axis. And the final displacement is set at 5 mm. For accurate modeling 
and simulation, we aimed to keep most voxels deformations within the 
elastic range of the materials, ensuring linear behavior as shown in Fig. 
5(b).

The RNN model we build is specifically designed to handle the com-
plexity of predicting strain fields in hierarchical architectures. RNNs are 
well-suited for sequence data and can capture temporal dependencies, 
which, in our case, translates to understanding the spatial relationships 
between voxels in the material grid. The input of the forward prediction 
model is the distribution of soft and hard materials, as shown in Fig. 
5(a). The red voxel represents the soft material, and the blue voxel 
represents the hard material. In machine learning, we use 0 to represent 
hard materials and 1 to represent soft materials, so the input of machine 
learning is a 40 by 40 array consisting of binary values–0 and 1. The 
output is the amount of elongation of each voxel. Here, we mainly 
discuss the strain in the 𝑥 direction, which is the stretching direction, 
because, in the stretching scenario, the deformation mainly occurs in 
the stretching direction. We will also show the results in the 𝑦 direction, 
which is perpendicular to the stretching direction, in the supplementary 
materials. Therefore, the output is the 40 by 40 elongation value, each 
value represents the elongated length of the corresponding voxel. The 
RNN model was trained with hyperparameters, including a learning 
rate of 0.025, which was reduced to 1∕

√

2 of its original value every 25 
epochs, and the batch size is set to 50. We used finite element analysis 
to generate 20,000 data (input and output) in eight hours to train our 
forward prediction model.
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3.1.2. Evaluation of model performance
The results of our RNN model training are shown in Fig.  5(c), where 

we present four random cases. The first column displays randomly 
generated material allocations. These material allocations are then 
input into finite element analysis to obtain the simulation results shown 
in the second column. The same material allocations are input into an 
RNN-based machine learning model to predict the strain fields, with 
the results shown in the third column. The comparison indicates that 
our machine learning model predictions are highly consistent with the 
finite element analysis simulations, demonstrating the model’s accuracy 
and performance. Moreover, our machine learning based forward pre-
diction model reduces the forward prediction time from the simulation 
time of finite element analysis of two or three minutes to less than 
0.01 s. This efficiency lays a strong foundation for subsequent inverse 
optimization.

Figure S4 presents the comparison for forward prediction results 
obtained by finite element analysis and proposed machine learning 
methods to predict the strain fields along the 𝑦 direction. The material 
distributions for these cases are identical to those utilized in the 𝑥
direction. The model’s ability to accurately predict strain fields in the 
𝑦 direction is evident, as the results show a remarkable consistency 
with those in the 𝑥 direction. The machine learning-based forward 
predictions for the 𝑦 direction strain fields exhibit the same high level 
of accuracy and reliability, perfectly aligning with the results obtained 
through finite element analysis.

This consistency highlights the robustness and versatility of the 
machine learning model in handling complex hierarchical architec-
tures. By applying the same training methodology across different 
directional strains, the model demonstrates its capability to generalize 
well, ensuring that the predictions remain precise irrespective of the 
strain direction.

3.2. Inverse optimization results

In this paper, we employ an inverse optimization approach utilizing 
evolutionary algorithms. Traditional gradient-based optimization tech-
niques, like gradient descent, become computationally intensive when 
optimizing complex, high-dimensional loss functions with numerous 
model parameters (such as neural network weights) due to the need 
for repeated derivative evaluations of the loss function. In contrast, 
evolutionary algorithms, which do not require derivative evaluations, 
are more efficient and better suited for these scenarios.

Once our forward prediction model, based on machine learning, is 
established, it provides a highly efficient foundation for our inverse 
optimization process. The evolutionary algorithm we employ requires 
performing a vast number (typically over 100,000) of forward predic-
tions to evaluate the performance of each individual. This evaluation 
is crucial for executing the selection, crossover, and mutation steps 
inherent in evolutionary algorithms. If we were to use finite element 
analysis to simulate the behavior of the same design, each simulation 
would take approximately two minutes. Consequently, 100,000 for-
ward predictions would demand around 200,000 min, or more than 
3000 h. However, our machine learning model significantly reduces 
the time required for forward predictions to about 0.01 s per prediction, 
bringing the total time for 100,000 predictions down to around 16 min, 
with only a marginal accuracy trade-off (i.e., more than 99% R-squared 
accuracy vs. FEM).

The results of our inverse optimization using the evolutionary algo-
rithm are illustrated in Fig.  6. We examined three cases: Christmas tree, 
Mona Lisa, and Mickey Mouse. The first row displays the target strain 
fields we aim to achieve in the samples after stretching. The second 
row shows the optimized material allocations designed to produce 
these target strain fields. The third row presents the simulation results 
obtained from finite element analysis of these optimized allocations. 
The close resemblance between the simulation results and the targets 
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Fig. 5. Boundary conditions and comparison between finite element ground truth and machine learning predicted result. (a). Boundary conditions of tensile test. (b). Demonstration 
diagram for the stress–strain curve and the strain field. (c). Comparison of the strain field results (in 𝑥 direction) represented by elongation from the finite element analysis and 
the machine learning prediction with the same material allocation.
demonstrates the effectiveness of our optimization process. Minor dis-
crepancies in the blank areas, which do not form part of the patterns, 
are inevitable due to the interweaving of soft and hard materials.

In addition, we also fabricated samples of the optimized material 
allocations using digital light processing. These printed samples are 
shown in the fourth row, with their dimensions specified in Sec-
tion 3.1.1. The fifth row features the strain fields of the experimental 
results, obtained by conducting tensile tests on the printed samples 
and detecting the strain fields using digital image correlation. The con-
tours of the experimental results closely match those of the simulation 
results. However, some discrepancies are reasonable because of the in-
herent errors in additive manufacturing, the contamination challenges 
of multi-material printing, and the small scale of the problem under 
study. These results validate the accuracy and efficiency of our inverse 
optimization approach using evolutionary algorithms.

3.3. Discussion

3.3.1. Observation
The results of this study highlight the potential of machine learning 

and evolutionary algorithms in advancing the design and optimization 
of hierarchical architectures. Beyond the high accuracy of our RNN-
based forward prediction model, a significant finding is the model’s 
ability to generalize across different directional strain fields. This gen-
eralization is crucial for developing versatile predictive tools that can 
be applied to a wide range of material configurations and loading 
conditions, which is particularly important as the complexity of the 
hierarchical structures increases.
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Moreover, the application of evolutionary algorithms for inverse op-
timization demonstrates a promising approach to solving high-
dimensional design problems. Traditional optimization methods, such 
as gradient descent, often struggle with the computational demands of 
large-scale problems, particularly those involving non-linear material 
behaviors or complex boundary conditions. Evolutionary algorithms, 
however, offer a robust alternative by effectively exploring the de-
sign space through selection, crossover, and mutation processes. This 
capability allows for the identification of optimal material distribu-
tions that achieve desired strain fields with greater efficiency and less 
computational overhead.

Additionally, the research opens up new avenues for exploring the 
impact of different material properties and geometries on the perfor-
mance of hierarchical architectures. Future studies could investigate the 
integration of more complex material models, such as those accounting 
for viscoelasticity or plasticity, to further enhance the predictive capa-
bilities of the machine learning models. Moreover, expanding the scope 
of the optimization to include dynamic loading conditions or multi-
objective criteria could lead to the development of even more advanced 
and resilient material systems.

3.3.2. Limitation
Although this study demonstrates the efficacy of machine learn-

ing and evolutionary algorithms for strain field design in hierarchical 
architectures, several limitations exist.

First, the forward prediction model relies on FEA-generated training 
data, which inherently assumes idealized material behavior (e.g., Neo-
Hookean elasticity) and boundary conditions. Discrepancies between 
simulation assumptions and real-world material nonlinearities, such 
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Fig. 6. Inverse optimization performance and case studies.
as viscoelasticity or plasticity, may introduce biases in the model’s 
predictions. Additionally, the dataset, though extensive, may not fully 
represent the entire design space of 21600 configurations, potentially 
limiting generalization to highly irregular or unseen material distri-
butions. Normalization procedures applied to input/output data could 
further amplify biases if extreme strain values or rare configurations 
are underrepresented in the training set.

Second, the experimental tests conducted in this study aim to char-
acterize the mechanical response of hierarchical architectures, provid-
ing valuable insights into their material behavior and validating the 
optimized designs. However, directly correlating experimental results 
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with machine learning predictions poses challenges due to fabrication-
induced variations, material inconsistencies, and the inherent complex-
ity of the response. In practical manufacturing processes, factors such as 
layer adhesion, multi-material contamination, and microstructural het-
erogeneities introduce discrepancies between experimental measure-
ments and computational predictions, making it difficult to establish 
a precise one-to-one numerical comparison. Additionally, the machine 
learning model is trained under idealized conditions, predicting strain 
fields based on predefined input parameters, whereas real-world ex-
perimental settings involve additional complexities such as boundary 
effects, localized stress concentrations, and variations in loading con-
ditions. Furthermore, the DIC technique assumes planar deformation 
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under quasi-static loading, neglecting out-of-plane displacements and 
dynamic effects. The small-scale specimens (16 mm × 16 mm) may 
also exhibit size-dependent behaviors not captured in bulk material 
characterization, potentially limiting extrapolation to macroscale ap-
plications. Despite these challenges, qualitative validation remains a 
viable approach, as the experimental strain fields exhibit strong agree-
ment with the deformation patterns predicted by the model, reinforcing 
the reliability of our framework. Nevertheless, the observed discrepan-
cies highlight the challenges of translating computational designs into 
physical prototypes, particularly in additive manufacturing. Addressing 
these issues in future research, such as through high-resolution dig-
ital image correlation methods for precise strain measurements and 
improved alignment of computational simulations with experimental 
boundary conditions, will enhance model validation and improve the 
fidelity of printed architectures to their designed counterparts. By tack-
ling these aspects, this study contributes to bridging the gap between 
data-driven predictions and experimental verification in hierarchical 
material design.

Furthermore, the computational framework is currently optimized 
for 40 × 40 voxel grids. Scaling to larger architectures would expo-
nentially increase the design space, raising computational costs for 
both FEA data generation and evolutionary optimization. While the ML 
model reduces prediction time, training on larger grids would require 
architectural modifications (e.g., memory-augmented networks) to han-
dle increased dimensionality. Manufacturing scalability is similarly 
constrained by the resolution limits of DLP printing (400 μm voxels) 
and the difficulty of maintaining interlayer adhesion in multi-material 
systems at larger scales. Additionally, the evolutionary algorithm’s 
population size and mutation rates may require recalibration for high-
dimensional problems to avoid premature convergence or excessive 
computation time.

3.3.3. Perspective
Although the current study demonstrates the effectiveness of ma-

chine learning-driven design for hierarchical architectures, several av-
enues remain open for further exploration. Below, we outline key 
directions for future work.

First, although the current RNN-based model achieves high accu-
racy, future studies could investigate alternative architectures such as 
transformers, graph neural networks (GNNs), or physics-informed neu-
ral networks (PINNs). Transformers may better capture long-range spa-
tial dependencies in hierarchical architectures, while GNNs could ex-
plicitly model voxel connectivity. PINNs, which embed governing phys-
ical laws (e.g., equilibrium equations) directly into the loss function, 
will reduce reliance on large FEA datasets and improve extrapolation 
to unseen boundary conditions.

Besides, although our current implementation considers a fixed set 
of loading conditions, the deep learning model fundamentally pos-
sesses the capacity to generalize across varying loading scenarios. This 
generalization capability stems from the neural network’s ability to 
map material property distributions to strain field responses within 
high-dimensional design spaces.

Moreover, this study focuses on binary material systems (soft/hard). 
Expanding to ternary or functionally graded materials would enable 
richer property tailoring but requires redefining the design space and 
training datasets. Incorporating nonlinear material behaviors — such as 
viscoelasticity, plasticity, or strain-rate dependence — would enhance 
the model’s applicability to dynamic loading scenarios. Experimental 
validation could further explore anisotropic or temperature-sensitive 
resins to broaden practical relevance.

Finally, although this work focuses on 2D architectures for compu-
tational tractability, the methodology is extensible to 3D. 3D neural 
networks (such as the Conv3D-based model) can replace the RNN for 
forward prediction of 3D strain fields, and the evolutionary algorithm 
can optimize 3D voxel distributions. However, computational costs 
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grow exponentially in 3D—e.g., a 100 × 100 × 100 architecture in-
volves 106 design variables versus 104 in 2D. Future work will integrate 
parallel computing and adaptive sampling to mitigate these challenges. 
The multi-material DLP technique used here has been validated for 3D 
printing [80], suggesting strong potential for hierarchical 3D design 
with optimized computational frameworks.

The ability to precisely design and control strain fields in voxel 
heterogeneous microstructures opens up various advanced engineering 
and biomedical applications. Below, we highlight several promising 
directions:

• Anti-Counterfeiting Tags: Microstructures with hidden strain-
activated patterns (e.g., logos, QR codes) that become visible 
only under specific tensile loads, as demonstrated in Fig.  6. Such 
features are nearly impossible to replicate without knowledge of 
the encoded material distribution.

• Adaptive Optical Devices: Stretch-tunable lenses or diffraction 
gratings where strain-induced deformations modulate light trans-
mission or focal length. For example, a Fresnel lens pattern could 
emerge when stretched, enabling dynamic optical systems.

• Bio-Inspired Sensors: Mimicking mechanoreceptors in skin, hier-
archical architectures could map strain fields to electrical signals 
for high-resolution tactile sensing in robotics or prosthetics.

• Programmable Metamaterials: Structures designed to exhibit neg-
ative Poisson’s ratios or strain-dependent acoustic bandgaps for 
vibration isolation, energy harvesting, or acoustic cloaking.

• Smart Biomedical Implants: Microstructures that generate strain 
gradients promoting controlled tissue regeneration or drug release 
in response to physiological loads.

4. Conclusions

This paper presents a comprehensive approach to the design of 
hierarchical architectures using advanced machine learning techniques, 
specifically focusing on strain fields. We developed a recurrent neu-
ral network-based forward prediction model that demonstrated excep-
tional accuracy in predicting strain fields of hierarchical materials, 
achieving over 99% accuracy in significantly reduced computation 
times. This model serves as a foundational tool for inverse optimization, 
facilitating the efficient exploration of vast design spaces inherent in 
hierarchical systems.

Our inverse optimization framework employs evolutionary algo-
rithms to determine optimal material distributions, aligning strain 
fields with desired performance targets. The effectiveness of this ap-
proach was validated through finite element analysis and experimental 
results, showcasing the ability to accurately replicate target strain fields 
in complex patterns such as the Christmas tree, Mona Lisa, and Mickey 
Mouse.

The integration of efficient forward prediction and precise inverse 
optimization offers a robust methodology for the design of hierar-
chical architectures. By drastically reducing computation times and 
improving prediction accuracy, our approach accelerates the material 
design process, enabling the discovery of advanced materials with 
superior properties. This method holds significant potential for various 
applications.

The experimental validation, using digital light processing and dig-
ital image correlation, further substantiates the practicality of our ap-
proach. Despite minor discrepancies due to manufacturing limitations, 
the strong correlation between simulation and experimental results 
underscores the reliability of our models.
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