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A B S T R A C T

Asian hornets (Vespa velutina nigrithorax) are an invasive species that have spread across Europe since 2004. As V. 
velutina largely predate on honeybees, assessing their presence at apiaries would be useful for invasive species 
control programmes and beekeepers to help protect their hives. At present, hornet monitoring techniques are 
both costly and time consuming. A promising alternative is a remote detection strategy at apiaries, which would 
promote straightforward, non-invasive data acquisition. The remote capture of flight acoustics should benefit 
hornet detection as wingbeat frequencies have previously been described as ‘the fingerprint’ of some flying 
invertebrate species. We here demonstrate a non-invasive method of V.velutina detection using their hovering 
flight sounds, captured by microphones that can be left at an apiary over the long-term. Paired with a training 
algorithm (principal component analysis and discriminant function analysis) that discriminates between hornet 
flight and other external noises (honeybee flight sounds and general background noise), we demonstrate that 
hornet hovering acoustics exhibit specific spectral features that promote the detection of individuals at an apiary. 
The training algorithm in our study was highly accurate (98.7 %) when testing just under 1-hour of apiary re-
cordings. Utilising two-dimensional-Fourier-transforms has also benefited this algorithm, as the analysis tech-
nique is ideal for identifying repeating features in sound/vibrational data, which are an inherent consequence of 
hovering hornet sounds. The experimental design and training algorithm used in this study have demonstrated 
excellent potential for hornet detection in the field, and are now ready to be tested on long-term, continuous data 
to further assess their success.

1. Introduction

The Asian hornet, or yellow-legged hornet (Vespa velutina nig-
rithorax), is native to Asia, but has been spreading across Europe and the 
UK as a result of accidental importation to France in 2004, followed by 
natural colonisation of the species (Lioy et al., 2022). For the European 
honeybee (Apis mellifera), this invasion poses a huge threat. Honeybees 
are the preferred food source of this hornet, whose predation technique 
involves ‘hawking’ (hovering) around the honeybee colony entrance for 
prolonged periods until a bee is caught, dismembered, and eaten 
(Laurino et al., 2019). The presence of hornets at an apiary can lead to a 
reduction in fitness (Dong et al., 2023), as well as cause ‘colony foraging 
paralysis’, where honeybees reduce their engagement in flight activities 

around the hive entrance, therefore impacting upon foraging success 
(Requier et al., 2019). This paralysis has a negative effect on honey 
stores over the critical winter months and can lead to low overwintering 
survival in colonies (Requier et al., 2019). There is also an impact on egg 
laying and the number of workers produced in colonies of A. mellifera 
that are stressed from hornet attacks which has been shown to lead to 
colony death (Dong et al., 2023). Unfortunately, European honeybee 
defence strategies in response to hornet attacks are not as efficient as 
those of the Asian honeybee, which evolved in sympatry with the 
predator (Lioy et al., 2022). Reports show that European apiaries can be 
severely damaged by hornet presence, demonstrated through the 
weakening or destruction of colonies in high numbers (Requier et al., 
2019; Laurino et al., 2019).
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In addition to predation, the negative impacts associated with the 
presence of an invasive species like V.velutina can be numerous, 
including ecosystem modification, resource competition with native 
species, and the introduction of new diseases (Simberloff, 2010). Aside 
from the obvious (to prevent invasions in the first place), the best course 
of action against such species is to monitor and control (or where 
possible, eradicate) their populations (Simberloff, 2010; Laurino et al., 
2019).

Currently, hornet population tracking and control appears to be 
mostly limited to expensive and complex nest identification techniques 
(Laurino et al., 2019; Lioy et al., 2022), such as harmonic radar 
(Milanesio et al., 2017; Maggiora et al., 2019; Lioy et al., 2021a), and 
radio tracking (Kennedy et al., 2018; Kim et al., 2019), both of which 
have also been paired with thermal imaging (Lioy et al., 2021b), and the 
use of unmanned aerial vehicles (UAV) (Reynaud & Guérin-Lassous, 
2016; Kim et al., 2019; Kim et al., 2022). A more simplistic approach to 
hornet monitoring (already employed in some countries) is the 
involvement of citizen science, where reports of hornet sightings can be 
logged by the public, promoting trapping and destruction of nests, as 
well as knowledge on the species’ distribution (Leza et al., 2021). 
Identifying hornet presence in new areas early on is considered an ideal 
strategy for slowing the spread of the species and enabling nest 
destruction/population control (Robinet et al., 2017). It is suggested 
that involving beekeepers in this type of hornet monitoring would be 
advantageous because of the predator’s preference for bees (Simberloff, 
2010; Laurino et al., 2019). A surveillance programme has previously 
benefited from this strategy (Leza et al., 2021).

At present, hornet detection strategies, as far as we know, are all 
carried out in person, not remotely. Employing an automatic, remote 
hornet monitoring procedure at apiaries could therefore be advanta-
geous for quicker species recognition and faster action to prevent their 
spread. Rather than relying on in-person inspections to establish hornet 
presence (by the time the threat has been identified, the hornets may 
have already been predating on colonies for hours or days), a remote 
system could alert a beekeeper immediately via their phone or other 
device. Population control measures would benefit from swift informa-
tion sharing as a result of this automatic detection. Nest identification/ 
control is considered superior to other hornet control techniques (the 
fitting of beehive muzzles (mesh, protective cages) to colony entrances 
that allow bees to pass through, but not hornets (Requier et al., 2019; 
Bonneford et al., 2021), or using traps or poisoned bait to control hornet 
numbers (Turchi & Derijard, 2018; Lioy et al., 2020; Rojas-Nossa et al., 
2022) that can be employed at apiaries (Robinet et al., 2017), and as a 
result, beekeepers would also benefit from automatic monitoring as 
hornet populations would be reduced more quickly, lessening their 
negative impacts on colonies.

Remote monitoring techniques are already employed for a range of 
honeybee/apiary parameters that can be continuously measured, such 
as colony temperature, colony weight, and the number of bees entering 
and exiting the hive (Zacepins et al., 2015). This allows beekeepers to 
keep up to date with changes that occur in their colonies without 
needing to be present or involved in physical inspections (Zacepins 
et al., 2015). Extending the repertoire of parameters that can be moni-
tored by these systems to predator recognition should therefore be ad-
vantageous for informing apiary management decisions and improving 
colony health.

Non-invasive, acoustic monitoring has recently been successfully 
researched at apiaries, revealing important information on bee behav-
iour and activities such as swarming events and queen presence (Terenzi 
et al., 2020; Abdollahi et al., 2022; Uthoff et al., 2023). Sound analysis 
has good potential for its application in hornet detection in this envi-
ronment as well. Several studies have confirmed that an insects’ wing- 
beat frequency can be used for its successful identification, with this 
particular parameter even being referred to as the ‘fingerprint’ of flying 
invertebrates (Moore et al, 1986; Batista et al., 2011; van Roy et al., 
2014; Potamis & Rigakis, 2015; Kawakita & Ichikawa, 2019; Parmezan 

et al., 2021; Parmezan et al., 2022; Herrera et al., 2023). Two types of 
technology have so far been used to identify the characteristics of hornet 
flight sound, (i) microphones, and (ii) optical sensors (which gather 
acoustic frequency data via lasers), both paired with machine learning 
and feature extraction analyses for species classification (Kawakita & 
Ichikawa, 2019; Herrera et al., 2023). Both studies demonstrate that 
hornet flight sounds can be successfully discriminated from those of 
other hymenopteran species and background noise, but neither have 
been tested at an apiary setting for remote hornet detection purposes 
(Kawakita & Ichikawa, 2019; Herrera et al., 2023).

In this study, we have chosen to use microphones paired with ma-
chine learning to discriminate V.velutina flight sounds from those of 
honeybees in an apiary setting. Optical sensors are considered to be 
more accurate than microphones as they avoid capturing background 
noise, providing clean data for only those signals of interest (Potamis & 
Rigakis, 2015). However, for our study, we have concluded that mi-
crophones are the better choice, for reasons that will now be discussed. 
Regarding hornet species in general, microphones have so far only been 
used to detect the acoustic features of Vespa simillima xanthoptera (yel-
low hornet) (Kawakita & Ichikawa, 2019), but we seem to provide the 
first careful study regarding V.velutina. Microphones are easy to main-
tain in an apiary environment and offer a cheaper monitoring system 
than those already commercialised (such as hive scales for measuring 
weight changes) (Zacepins et al., 2015). Additionally, microphones 
demonstrate advantages over the use of optical sensors when consid-
ering placement in an apiary setting, because although optical sensors 
can be inexpensive (Batista et al., 2011; Parmezan et al., 2021; Parme-
zan et al., 2022), they require insects to fly directly through the light 
sensor for acoustic frequency data to be captured. In previous studies, 
optical sensors have either been implemented in the lab, e.g., using flight 
tents or boxes (Batista et al., 2011; van Roy et al., 2014; Potamis & 
Rigakis, 2015; Kalfas et al., 2022; Chatzaki et al., 2023; Herrera et al., 
2023), or placed over the colony entrances of the wasp/hornet/bee 
species to ensure overlap with the light beams (Parmezan et al., 2021; 
Parmezan et al., 2022). It has been suggested that under natural field 
conditions, there would be a need for attractants e.g., pheromones or 
protein bait, to lure hornets past the sensor (Herrera et al., 2023). Mi-
crophones, on the other hand, can easily be clipped to a colony landing 
board, to record audio data within the vicinity where hornets engage in 
hawking behaviour, without this requirement.

We here explore a remote, V.velutina (henceforth ‘hornet’ in this 
manuscript) monitoring system for use at apiaries that can discriminate 
between hornet and honeybee flight sounds. We establish that, as a 
consequence of hovering, the sound spectra of both species oscillate, not 
in magnitude (vertical axis), but in frequency (horizontal axis), although 
this occurs less commonly for the honeybee than for the hornet. This 
frequency modulation feature is here characterised in detail using two- 
dimensional-Fourier-transform (2DFT) images and is a component of 
hornet and honeybee acoustics that benefits feature extraction for 
discrimination of the two species. This is the first study that we are 
aware of, that (i) identifies and characterises the resonant frequency 
features of hornet and honeybee flight sounds, and (ii) utilises 2DFT 
imaging for hornet/bee/background discrimination. We demonstrate 
that this method, which is in its pilot stage, can currently reliably detect 
hornets at an apiary, and further discuss that this technique may have 
future potential as a remote ‘alert-system’ to inform of hornet presence 
in this environment.

2. Methods

2.1. Data collection

Data was collected at an apiary in Portugal between October 2022 
and September 2023 (40◦10′55.4″N 8◦24′51.5″W). The Asian hornet 
arrived in this region in 2014 and numbers of reported nests have now 
stabilised. In the last five years, nest density has fluctuated between 1.5 
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and 3 nest/km2. Although the city of Coimbra hosting the apiary is 
neither coastal or mountainous, it has the Mondego river providing the 
water known to promote Vespa Velutina. The 2023 yearly and October 
monthly temperatures are, respectively, mean = 16.8 ◦C and 18.5 ◦C, 
min = -1.2 ◦C and 9.4 ◦C, max = 41.5 ◦C and 33.3 ◦C.

To capture video and audio data for building and testing the hornet 
discrimination training database, a microphone (BEEP, Netherlands) 
was attached to the landing board of three hives (one hive at a time on 
different days) which connected to a camera (Panasonic DMC-FZ300). 
This camera was set-up on a tripod facing the hive, to capture video 
data of the landing board and surrounding areas. The microphone was 
plugged into the camera mic input slot to enable synchronous video and 
audio recording (see Fig. 1). Microphone data was recorded at a sam-
pling rate of 48000 Hz and video data was captured at 25 FPS.

2.2. Building the training database

Code written specifically for this study (Matlab, 2020a), at Not-
tingham Trent University, was used for all analyses. The audio data from 
five videos was used to build the training database. The videos 
amounted to 85 min and 47 s, with 301 s contributing to training 
database creation (hornet = 88 s from 3 videos, honeybee = 112 s from 
three videos, winter background = 81 s from two videos, summer 
background = 20 s from one video). Two of the videos were filmed on 
13.10.22, two on the 15.12.22, and one on the 16.05.23. Hornets were 
visibly and audibly present in 4/5 of these videos (intermittently in 2/5, 
and continuously 2/5). Honeybees were present in all five videos and 
regularly flew in and out of the hive throughout the three videos where 
hornets were seen intermittently or not at all. In the other two videos, 
where hornets were continuously present, honeybees were not seen to 
fly often and were mostly observed gathered around the hive entrance. 
When honeybee or hornet sounds did not occur, background noise was 
detected.

Each video was exhaustively, critically assessed for hornet, honey-
bee, and background presence, to ensure that timings were selected from 
the recordings that contained only the acoustic data of interest, i.e., just 
hornet flight, just honeybee fight, or just background noise. The number 
of high-quality extractions was limited to those portions of video where 
two signal types did not overlap, as there were time periods where, for 
example, hornets and honeybees could be heard flying simultaneously, 
or where multiple honeybees or multiple hornets could be seen and 
heard flying at the same time. That said, only instances where in-
dividuals were flying alone in the videos were chosen for the database, 
to ensure that the sounds heard could be attributed to those honeybees 
and hornets. All time periods in the videos that did not contain over-
lapping signals and were therefore clearly attributed to a single hon-
eybee or hornet individual were included in the training database. All 
periods of background noise were included that contained only general 
background acoustics i.e., without instances of other, identifiable 

sounds such as vehicle noise or bird calls. Each second of audio data that 
contributed to the training database was transformed into a two- 
dimensional-Fourier-transform (or 2DFT, see Fig. 2) with a multiplica-
tion factor (a tool for visualising the spectral details of a waveform over 
the x axis) of 4 and a temporal resolution of 0.04 s. These parameters 
were found to provide the clearest assessment of acoustic features. 
2DFTs are a visual tool used to identify the repetition frequency of a 
waveform over a selected time-period. This repetitive element appears 
to be typical of insect hovering and as such, is captured by this analysis. 
A detailed explanation of the 2DFT process and uses is outlined in the 
thesis of Hall (2023).

To ensure that only the features of interest were kept in the 2DFTs, a 
selection of 2DFT images were assessed for frequency harmonic pres-
ence (n = 34 for hornet, n = 47 for honeybee). Originally, the bandwidth 
of the vertical axis of the 2DFT was 0 – 24000 Hz, but these were 
cropped to 1500 Hz because on closer inspection of the images, there 
were no frequency features of interest beyond this value. Although some 
harmonics beyond 1500 Hz were present in some of the honeybee 2DFTs 
(30 %), these were faint traces, and it was expected that the clear fre-
quency differences seen below 1500 Hz for the two species would be the 
most relevant ones for discrimination. A low frequency band of 0 – 75 Hz 
was also cropped from the vertical axis of the 2DFT images to reduce the 
effect of strong background frequencies on the clarity of the 2DFT fea-
tures. All 2DFTs were scaled identically (by the maximum) to remove 
the flight sound signal strength from the discrimination exercise.

The training database used in this study is based on several rounds of 
machine learning algorithm improvements, as is typical with this type of 
analysis. The fourth training database was the final one, and yielded the 
best outcome achieved so far, following improvements and the addition 
of extra data to promote discrimination success. Although the total time 
duration of our training database perhaps appears small, our work 
provides convincing results within the context of out pilot study, and 
uses and algorithm which (unlike deep learning) does not necessitate a 
very large training database.

It was important to define ‘winter background noise’ from ‘summer 
background noise’ as the two were very different, with ‘winter’ being 
quieter, and ‘summer’ containing loud, generic buzzing from inside the 
colony as well as on the landing board due to honeybees fanning at the 
colony entrance.

2.3. Training database analysis

Once built, the training database underwent principal component 
analysis (PCA) to determine which features in the database exhibited 
high variance, and then discriminant function analysis (DFA), where the 
features with the highest variance were used as a reduced dataset for 
supervised classification (Ramsey et al., 2018; Ramsey et al., 2020; Hall, 
2022; Hall et al., 2023). From these analyses, a scatterplot and two 
discriminant images were created. The scatterplot demonstrates the 

Fig. 1. Sketch and photo showing the experimental setup.The microphone at the landing board captures the flight sound of bees landing and taking off, and 
hornets hovering nearby. The camcorder records the signal from said microphone (instead of using its own built-in microphone) and provides video footage used to 
corroborate the presence, or absence of hornets.

H. Hall et al.                                                                                                                                                                                                                                     Computers and Electronics in Agriculture 235 (2025) 110307 

3 



clustering of each group of signals (hornet, honeybee, summer back-
ground, winter background) in DF space. The two discriminant images, 
transformed into 2DFTs, enabled visualisation of the feature variation 
that allowed the high-quality clustering between the categories of 
signal. Optimum clustering of the groups and clarity of the discriminant 
2DFT images was achieved using 31 % of the total deviations in the 
dataset.

The peripheral points of each cluster in the DF space scatterplot were 
identified as a polygon and used to determine the boundary of each 
group. The areas within these boundaries are here referred to as ‘masks’ 
and are representative of the location that each group inhabits in DF 
space.

New data points from the recordings that contributed to the training 
database, as well as from novel recordings that did not contribute, could 
then be projected onto the DF space scatterplot to determine if they fell 
into the correct area, e.g., if hornets were present in the tested recording, 
we expected the corresponding datapoints to fall into the hornet mask 
area, if successful. This exploration allowed us to establish if indepen-
dent hornet, honeybee, and background sounds could be correctly 
classified using the training data.

Initially, to determine if the classification algorithm was working as 
expected, the recordings that contributed to the training database were 
tested. As each recording lasted from 2 min to 28 min, they were 
composed of many time durations that contained hornet, honeybee, and 

Fig. 2. Feature extraction by means of 2DFT. The figure shows the time course (top) of an imaginary signal, highly representative of the flight sounds that we have 
processed in our study. Here, instead of flight sounds, we show two sinusoidal oscillations, respectively at 100 and 300 Hz, regularly frequency-modulated 
respectively 4 times and 7 times per second, by +/- 20 Hz. Said frequency modulation is clearly seen by displaying the stacked short-duration individual spectra 
of the signal in the form of a spectrogram (middle). The faster modulation of the 300 Hz component is clearly seen. By further computing the frequency spectrum of 
each horizontal line of the spectrogram, the 2DFT is obtained (bottom). Two bright signals are seen at vertical coordinates 100 Hz and 300 Hz, on the extreme left- 
hand side, as the spectrogram is made of power spectra with only positive (or zero) magnitude, necessarily resulting in a non-zero averaged spectrum at the zero 
spectral repetition frequency horizontal coordinate. However, the vertical coordinates 100 Hz and 300 Hz are also seen to have substantial signal at respective 
horizontal coordinates 4 Hz and 7 Hz, due to the frequency-modulation of the original signal. The oscillations picked up by the spectra undertaken on the horizontal 
lines of the spectrogram are not necessarily sinusoidal, and therefore result in smaller harmonic peaks, such as that seen for the 8 Hz spectral repetition of the 100 Hz 
component. Although here, and in our data, spectral repetition signals appear in the 2DFT due only to the frequency modulation of the original signals, they may also 
appear due to other mechanisms, such as the rapid repetition of a given short-lived signal, for instance.
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background sounds that did not contribute to the training data (301 out 
of 85 min and 47 s used for training). Specific periods of recording that 
contained the acoustics for each type of signal (hornet, honeybee, 
summer, and winter background) were identified by critical listening 
and video observation. These time periods were then prepared in the 
same way as the training data (transformed into 1-second-long 2DFTs, 
scaled, cropped).

Cross-correlation product analysis was then implemented between 
the first 1-second-long 2DFT of the selected time period of the recording 
and the two discriminant 2DFTs that resulted from PCA/DFA. This 
produced the two DF space scores necessary for projection of the data 
onto DF space. This analysis was then repeated on the next 1-second- 
long extract of the selected time period, by moving on in a step of one 
second. Co-ordinates were then obtained for this extract as well. This 
was repeated until the end of the time selection. The acquired set of co- 
ordinates for the entire tested period could then be plotted onto the DF 
space to identify if the data had been correctly classified or not, 
dependent on the position of the projected datapoints in relation to the 
signal masks. By using recordings containing known sounds, correct 
discrimination could be established with high certainty, further sup-
ported by critical listening and visualisation of the plotted data. Of the 
85 min 47 s of video, 57 min 40 s were tested.

If any datapoints of known acoustic features fell outside of the ex-
pected mask, this data could then be added to the training database for 
the purpose of improving the training, as is typical with machine 
learning techniques. As previously mentioned, the database underwent 
four such rounds of training improvement.

The training database was then tested for its ability to correctly 
classify data using recordings that did not contribute at all to its 

creation. Two videos were tested, amounting to 54 min 28 s. Of this time 
duration, 52 min 25 s were tested, omitting periods where human noise 
interfered in the recording and prioritising periods where hornets were 
both present and absent.

Overall, including recordings that contributed to the training data-
base and those that did not 110 min 5 s of recording were tested. Of 
these, 17 time periods were tested from the data that partially contrib-
uted to the training database (12/17 = hornets present, 5/17 = hornets 
absent) and 7 time periods were tested from the novel recordings (3/7 =
hornets present, 4/7 = hornets absent).

3. Results

3.1. Characterisation of hornet and honeybee flight sounds

Hornets were typically seen to hawk for periods of several seconds to 
several minutes around the hive landing boards and produced uninter-
rupted hovering sounds, but they were also seen to fly more quickly in 
and out of the area in some cases, which created shorter bursts of sound 
(see Video 1). For the purpose of hornet flight characterisation and 
detection, in this study we chose to focus on the more common and 
acoustically prominent hovering flight sounds. Honeybees, in contrast to 
hornets, flew quickly in and out of the hive entrance on a regular basis 
and hovered less commonly (see Video 1).

Video 1: Hornet and honeybee flight sounds 
A video to demonstrate hornet hovering flight (0 to 5 s), an example of brief hornet 
flight past the recording area (5 to 7 s), and honeybee colony enter/exit sounds (8 to 
13 s).

Fig. 3. Spectrogram and 2DFT images representative of each of the noise categories of interest. Representative spectrograms and 2DFT images for all acoustic 
extracts of interest. Each image comprises of one second of sound data for typical (‘regular’) hornet, honeybee, summer background, winter background (all 
contributing to the TDB), ‘irregular’ hornet (differing in acoustic features to other observed hornets, but also included in the ‘hornet’ category of the TDB), and 
vehicle noise (not included in the TDB). The ‘regular’ hornet (a, d), ‘irregular’ hornet (b, e), and vehicle (c, f) are placed side-by-side for ease of feature comparison, 
with honeybee (g, j), summer background (h, k), and winter background (i, l) placed side-by-side below these. Each of the six spectrogram panels (a, b, c, g, h, i) 
exhibit the frequency components of the sound data (y axis) over time (x axis). Each of the six 2DFT panels (d, e, f, j, k, l) exhibit both data against frequency data (y 
axis) and spectral repetition rate (x axis). Data has been cropped to 1500 Hz along the y axis to better showcase the details of interest. All panels are scaled identically 
for ease of comparison. Sound amplitude is logarithmic (a.u.) where the highest magnitude is dark red (8.8 x 10-1 a.u.) and the lowest magnitude, dark blue, is forced 
to be 1/1000 of the maximum.
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This is the first detailed description of the acoustic features of V. velutina 
nigrithorax hornet flight sounds (see Fig. 3) in the vicinity of a honeybee 
hive entrance. Hovering flight frequencies in hornets were highly 
consistent (number of one second extracts inspected as spectrogram and 
2DFT images = 50, from 8 hornet individuals), exhibiting a lowest 
fundamental frequency of 100 to 120 Hz and a second harmonic of 200 
to 250 Hz (96 %) (see Fig. 3). The remaining 4 % lacked the 100 to 120 
Hz frequency band, instead showcasing the 200 to 250 Hz band as the 
fundamental frequency. A third harmonic at 320 to 350 Hz was seen in 
76 % of extracts, accompanied by a range of higher frequency harmonics 
of weaker strength (see Fig. 3). Strong harmonics beyond 250 Hz were 
not seen in the other 24 % of extracts.

Viewing the one second extracts as 2DFT images revealed repeating 
frequencies, also known as the spectral repetition rate, in the audio data 
along the x axis (Hz). Any vertical band appearing on the right-hand side 
of the 0 Hz line of the 2DFT provides a highly specific feature of any 
sound that regularly repeats over time, such as hornet hovering noise. 
There are two separate sound features that can result in a clear vertical 
trace on a 2DFT, (i) sound magnitude which may increase and decrease 
regularly, and (ii) the sound spectrum which may expand and shrink 
regularly. In the case of insect hovering in these results, the 2DFT feature 
is a consequence of the sound spectrum. Of the 50 hornet extracts, 76 % 
demonstrated a clear vertical trace at a non-zero spectral repetition rate. 
The most common repeating frequencies observed in hornet hovering 
flight were found between 2 and 8 Hz, with 79 % between 3 and 5 Hz 
(see Fig. 3). Of the 2DFTs that exhibited spectral repetition frequencies, 
14 % showcased an additional, weaker trace at 9 to 16 Hz alongside the 
lower one.

In contrast to hornets, hovering behaviour was less common in 
honeybees. Occasionally, individuals hovered up to a few seconds before 
entering the hive, but most often they entered and exited their hives 
quickly, with corresponding short bursts of sound (see Fig. 3 and Sup-
plementary Video 1). The frequency features of honeybee enter/exit 
sounds were highly uniform. Of 53 one-second-long extracts, 100 % 
exhibited a fundamental frequency of 200 to 250 Hz. A second main 
harmonic of 400 to 480 Hz was seen in 87 % of extracts, whereas the 
remaining 13 % showcased a slightly higher bandwidth of 500 to 520 
Hz. All 53 honeybee extracts displayed a range of weaker, higher fre-
quency harmonics (most commonly 600 to 650 Hz, 700 to 750 Hz, 850 
to 900 Hz, 1000 Hz, 1100 Hz) (see Fig. 3). Clear vertical traces at non- 
zero spectral repetition rates were observed in 35 of the honeybee 2DFTs 
(66 %) residing between 2 and 8 Hz, occasionally (11 % of those with 
spectral repetition) with a higher frequency component of 9 to 11 Hz. 
The vertical traces found at non-zero repeating frequencies in honeybee 
2DFTs were less clear than those observed for hornets (see Supple-
mentary Fig. 1).

A single, specific hornet individual was observed to hover with a 
different spectral repetition rate, and frequency harmonics than seen in 
the other eight hornets. We here refer to this individual as an ‘irregular’ 
hornet, in comparison to the eight ‘regular’ hornets discussed above. For 
this individual, 38 one second extracts were inspected. The fundamental 
frequency seen was 200 to 280 Hz, with an additional strong harmonic 
at 350 to 380 Hz (see Fig. 3). In 34 % of extracts, a lower frequency 
harmonic of 50 to 120 Hz, of similar amplitude to the 200 to 280 Hz 
band, could be seen (see Fig. 3). Clear vertical traces at non-zero spectral 
repetition frequencies were seen in 76 % (n = 29) of the inspected ex-
tracts when viewed as 2DFTs at 4 to 8 Hz, often accompanied by a higher 
frequency of 17 to 21 Hz (39 % of those with spectral repetition) (see 
Fig. 3).

Background noise was characterised for both summer and winter 
recordings. Summer recordings contained loud colony buzzing/wing 
fanning sounds that contributed to the background soundscape, in 
comparison to winter recordings where the colony was quieter. No 
significant traces of interest were observed in any background extracts 
that contributed to the training database (see Fig. 3). In rare instances, 
vehicle noise could be heard in the background of the recordings (see 

Fig. 3) (the effects of external noise on hornet discrimination and the 
percentage of time this was heard in recordings is discussed later).

3.2. Discrimination of hornet, honeybee, and background sounds

A training database (TDB) was created that contained 301 one- 
second-long audio extracts for (i) hornet hovering flight sounds (both 
‘regular’ (n = 50 from winter recordings) and ‘irregular’ individuals (n 
= 38 from winter recordings)), (ii) honeybee flight sounds (n = 54 (from 
winter recordings), n = 58 (from summer recordings)), (iii) summer 
background noise (n = 20), and (iv) winter background noise (n = 81) 
(see Supplementary Fig. 2). These waveforms were transformed into 
2DFT images. A simple machine learning algorithm (principal compo-
nent analysis (PCA) and discriminant function analysis (DFA)) was used 
to search the TDB for features that exhibited high variation between the 
four groups. When using 31 % of all deviations, clear clustering of the 
hornet group in DF space was achieved (see Fig. 4). The honeybee and 
summer/winter background groups clustered together with heavy 
overlap (see Fig. 4); however, the purpose of this study was to achieve 
hornet detection, and as a result, the poor clustering of the non-hornet 
groups was inconsequential and expected to have little effect on the 
identification of hornet flight sounds in future tested data.

Two discriminant function images were also obtained as a result of 
PCA/DFA, and monitored to enable visualisation of the features that 
contributed to the discrimination outcome (see Fig. 4). Variation linked 
to the horizontal and vertical axes of DF score space can be seen in 
discriminant 2DFT no.1 and no.2, respectively (see Subplot b and c, 
Fig. 4). The colour-coding of the two images represents the level of in-
fluence that each feature had on this outcome, where dark blue is 
indicative of features that had little to no impact on the clustering 
outcome, and dark red is indicative of features that strongly impacted 
the discrimination outcome (see Subplot b and c, Fig. 4). Both 
discriminant images showcase a frequency harmonic between 150 and 
200 Hz, seen in hornet flight data, but not that of honeybees, and 
another between 400 and 520 Hz, seen in honeybee data but not that of 
hornets (see Subplot b and c, Fig. 4). This demonstrates that frequency 
differences were a strong discriminatory feature along both axes. 
Spectral repetition rate also somewhat influenced the discrimination 
outcome. Discriminant 2DFT no.2 exhibits a trace at 9 Hz, a repeating 
frequency seen in some hornet and honeybee flight sounds (see Subplot 
b and c, Fig. 4). Both images also showcase traces at 19 Hz, indicating 
that the inclusion of ‘irregular’ hornet flight data benefited the 
discrimination outcome (see Subplot c, Fig. 4).

3.3. Classification of apiary recording data that contributed to the TDB

When establishing the accuracy of the training algorithm, it was first 
necessary to test new sections of the same recordings that had contrib-
uted to the building of the TDB. The full recordings (n = 5) from which 
the TDB was built ranged from 2 min to 30 min in length, and as such, 
not all the acoustic data within each recording was utilised (n = 301 s) 
(see Supplementary Fig. 2). This is because the TDB was built from 
specifically selected, clear extracts that corresponded to each category. 
Time periods within each recording were critically assessed and iden-
tified for hornet presence or absence, and the discrimination outcome 
for each was then projected onto DF space for categorisation purposes 
(see Fig. 5). Overall, 3460 s of data were tested, comprising of 17 
separate, homogenous time periods (hornet present 12/17, hornet ab-
sent 5/17) (see Table 1).

The performance of the classification analysis was very high, with 
the datapoints most often falling into the correct cluster area based on 
the known acoustics occurring in each selected period (see Fig. 5). A 
negligible number of datapoints fell into the incorrect cluster area in 2/ 
17 of the tested time periods (see Table 1). For these two periods, hor-
nets were detected when there were no individuals present in the frames 
(see Table 1). Upon closer inspection of the data, i.e., through critical 

H. Hall et al.                                                                                                                                                                                                                                     Computers and Electronics in Agriculture 235 (2025) 110307 

6 



assessment of both the video/audio recording and the 2DFT images that 
corresponded to the timestamps of the specific datapoints that fell into 
the incorrect area, it was confirmed that 18 s related to loud vehicle 
noise (see Fig. 3) and 13 s corresponded to honeybee flight sounds. No 
behavioural differences were identified in these honeybees that could 
explain why they were miscategorised. The vehicle sounds exhibited 
two main frequency bands at 200 to 250 Hz and 300 to 380 Hz (see 
Fig. 3), which overlap with those of both the ‘regular’ and ‘irregular’ 
hornet, and may explain why the training algorithm incorrectly cat-
egorised these extracts. Overall, mis-categorisation accounted for just 
0.9 % of the tested data.

Hornets were detected by the algorithm even in instances where 
flight sounds were audibly faint, or the hornets were only present in the 
recording briefly (4/17 selected time periods) (see Table 1, see Sup-
plementary Fig. 3). The 2DFT likely detected the spectral repetition 
feature when hornets flew quickly through the recording area because 
even when flying rapidly (flight sounds of less than 1 s), the repeating 
frequency elements could still be observed in the spectrograms (see 
Supplementary Fig. 3).

3.4. Classification of apiary recording data that did not contribute to the 
TDB

Following the success of the algorithm using known data, recordings 
that did not contribute to the TDB were then further tested. Two videos 
(each approximately 30 min in length) were critically (visually and 
acoustically) assessed in the same way as previous recordings to deter-
mine periods of time that did or did not contain hornet presence. Seven 
specific, homogenous periods were selected, amounting to 3145 s. 

Hornets were present in three of the selected time periods and absent in 
the other four. The data were correctly classified in 4/7 of the periods 
(see Table 2). In the remaining three, hornets were detected when none 
were present. Following the same assessments as recordings that 
contributed to the TDB, it was determined that the mis-categorised 
datapoints related to loud vehicle and human related noise (41 s, 1.3 
% of the tested data).

As with the recordings that partially contributed to TDB creation, in 
the novel recordings, the training algorithm still correctly detected the 
presence of hornets that were audibly faint or flew loudly, but briefly 
past the microphone (3/7 of the selected time period (see Table 2, see 
Supplementary Fig. 3).

4. Discussion

Excellent V.velutina discrimination has been achieved using the 
training database and algorithm in this study. When testing data that 
partially contributed to the database, hornet presence/absence was 
correctly identified in 99.1 % of the recordings. When testing novel data, 
the accuracy was 98.7 %.

4.1. The advantages of utilising 2DFT analysis for species discrimination

Both our discrimination outcome and exploration into the features of 
V. velutina nigrithorax flight sounds benefitted from 2DFT analysis. Prior 
to this investigation, Japanese yellow hornet (Vespa simillima xan-
thoptera) flight sounds had been characterised in terms of frequency and 
amplitude (Kawakita & Ichikawa, 2019), and the species in question, 
V. velutina nigrithorax, only had the fundamental frequency of its 

Fig. 4. The outcome of the PCA/DFA exploration. The results gathered from the PCA/DFA exploration of the training database. Panel ‘a’ exhibits the scatterplot 
outcome of the four groups (hornet = red points, honeybee = black points, winter background = blue points, summer background = cyan points). The centroid for 
each dataset is also shown to help clarify where the clusters fall in relation to one another (hornet = yellow, honeybee = green, winter background = magenta, 
summer background = black). Panels’ ‘b’ and ‘c’ show the discriminant 2DFT images for the horizontal (‘b’) and vertical (‘c’) axes of DF space. In these panels, sound 
amplitude is logarithmic (a.u.), where dark red represents the maximum (4.7 x 10-1 a.u.) and dark blue is the minimum (forced to be 1/500 of the maximum). Both 
panels are scaled identically for ease of comparison. Areas of dark blue represent the features in the 2DFTs of the four groups that had low influence on the 
discrimination outcome, whereas areas of dark red are features that had the highest influence.
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Fig. 5. The outcome of the training algorithm testing phase. This figure shows the mask areas for each of the four categories and the outcome of projecting data 
onto the same DF space plot. Each panel shows the scatterplot that is the outcome of PCA and DFA exploration (hornet = red line and red points, honeybee = black 
line and black points, winter background = blue line and blue points, summer background = cyan line and cyan points). The peripheral datapoints for each cluster 
area were used to define the masks. Data taken from recordings that contributed to the training database is projected onto the scatterplot to demonstrate the success 
of the algorithm in discriminating hornet, honeybee, and background as the projected points fall into the same area of DF space as the corresponding mask (this 
projected data is shown as green stars, each star is representative of 1 second of data). Panel ‘a’ shows 90 seconds of projected data where hornets were present 
alongside some honeybee activity and background noise. Panel ‘b’ shows 30 seconds of projected data where honeybee activity occurred during the winter period. 
Panel ‘c’ shows 60 seconds of projected data where honeybee activity occurred during the summer period, with background noise containing colony buzzing and 
fanning activity.
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wingbeat pattern described (Herrera et al., 2023). In our study, the 2DFT 
revealed the additional feature of spectral repetition frequency, which 
can be observed in any waveform that regularly repeats over time. This 
explorative exercise has determined that the hovering flight of a hornet 
results in a systematically recurring waveform.

Our results have additionally shown that in 7 of the tested time pe-
riods (novel and known), hornets were detected even if their flight 
sounds were quiet or very brief. This is the same for the honeybee flight 

sounds that were attained in our study. Even though the majority of 
honeybee enter/exit traces had a short time duration, the 2DFT still 
detected the elements of the sounds that repeated (albeit with less clarity 
than for consistent hornet hovering). These findings highlight the 
strength of the 2DFT as a feature in determining this specific, repeating 
acoustic feature; even without prolonged or strong hovering flight traces 
in the analysed time window, the 2DFT can establish the repeatability of 
a waveform. This has also previously been demonstrated in our study 
investigating Varroa gait patterns (Hall et al., 2023). Not all Varroa 
walking vibrational traces were detected by vibration sensors, yet the 
2DFT successfully determined the repeating elements by ‘filling in the 
data blanks’ (Hall et al., 2023).

As an additional bonus of using the 2DFT, the discriminant 2DFT 
images in our study emphasise the importance of repeating frequency 
components in the machine learning exercise for discriminating be-
tween hornet, honeybee, and background. Despite both hornet and 
honeybee exhibiting similar spectral repetition frequencies, there were 
small, observable differences between the two species that have clearly 
been detected by the algorithm for clustering purposes. Hornet and 
honeybee spectral repetition traces overlapped in frequency at 2 to 8 Hz, 
yet for hornets these most prominently occurred at 3 to 4 Hz and above. 
A more apparent feature was the presence of a second repeating 
component in some hornet 2DFTs, at a higher frequency than that of 
honeybees (9 to 16 Hz (‘regular’ hornet), 17 to 21 Hz (‘irregular’ hor-
net), compared to 9 to 11 Hz (honeybee)). Alongside the strong fre-
quency harmonic differences between the two species, these diminutive 
features also played a role in identifying variation between the groups.

This result additionally emphasises the value of including the 
‘irregular’ hornet in the training data. This individual exhibited the 
highest spectral repetition rate (17 to 21 Hz), featured in the discrimi-
nant 2DFT images (at approximately 19 Hz). This benefitted the 
discrimination of hornets from honeybees and furthermore did not 
adversely affect the detection of any hornet during the algorithm testing 
phase (individuals were correctly detected regardless of ‘regular’ or 
‘irregular’ features). The fact that the two hornet categories formed a 
single, clear cluster in DF space (see Fig. 5) further strengthens the claim 
that the training algorithm can discriminate hornets from other noise 
without affecting hornet classification.

The inclusion of both hornet ‘types’ will benefit detection at apiaries, 
regarding those whose wingbeat frequencies do not conform to the 
‘norm’. V.velutina individuals vary in body size and weight, as well as 
wing size and shape, dependent on caste, gender, season, and individual 
differences (Monceau et al., 2013; Pérez-de-Heredia et al., 2017). Size, 
body mass, and wing morphology are factors known to affect wingbeat 
frequency and natural frequency in insects (San Ha et al., 2013). 
Although we could not visibly identify any specific morphological dif-
ferences between the hornets in our recordings (we did not catch the 
hornets seen at the apiary to assess the effects of these variables), it is 
likely that the detected acoustic properties varied based upon individual 
size, weight, and wing characteristics. It is also possible that environ-
mental factors affected the frequencies of hornet flight, as hymenop-
teran flight performance, speed, and frequency can be influenced by 
abiotic conditions such as temperature, humidity, and illuminance 
(Spiewok & Schmolz, 2006; Parmezan et al., 2021). This may also 
explain the differences observed in the small number (n = 13) of hon-
eybee flight sounds that were mis-categorised as hornets in our study – 
these variables may have influenced honeybee acoustics and caused 
variation that more closely resembled that of a hornet. However, it is 
worth noting that hornets were correctly identified in both summer and 
winter recordings, despite the hornet category in the training database 
being built only from winter recordings. This demonstrates that hornet 
flight sounds can be successfully detected by our algorithm regardless of 
potential seasonal/temperature effects, and implies that the ‘irregular’ 
hornet flight sounds may have differed due to morphological rather than 
abiotic factors. Overall, our training algorithm has demonstrated strong 
robustness when faced with acoustic variation, which may have been 

Table 1 
Tested time periods for data that partially contributed to the TDB.

Tested Time 
Period 
(seconds)

Hornets present in 
recording?

Hornets detected by 
algorithm?

Matching 
outcome?

Video 1.1 (60) Yes (multiple, loud) Yes ✓
Video 1.2 

(110)
Yes (multiple, loud) Yes ✓

Video 2 (100) Yes (multiple, loud) Yes ✓
Video 3.1 (80) Yes (singular, faint/ 

brief)
Yes ✓

Video 3.2 
(180)

No Yes ⨯

Video 3.3 
(100)

Yes (singular, faint/ 
brief)

Yes ✓

Video 3.4 (50) No No ✓
Video 3.5 

(650)
Yes (multiple, loud) Yes ✓

Video 3.6 
(100)

Yes (singular, faint/ 
brief)

Yes ✓

Video 4.1 (89) Yes (multiple, loud) Yes ✓
Video 4.2 (37) Yes (singular, faint/ 

brief)
Yes ✓

Video 4.3 
(110)

Yes (singular, loud) Yes ✓

Video 4.4 (30) No No ✓
Video 4.5 (30) No No ✓
Video 4.6 (30) No No ✓
Video 4.7 (50) Yes (singular, loud) Yes ✓
Video 5 

(1654)
No Yes ⨯

A table to demonstrate the number of time periods that were tested using the 
training algorithm per recording that partially contributed to the TDB. Whether 
hornets were present or absent in each time period, and if the algorithm 
correctly categorised the data, is listed here. The table highlights whether hor-
nets were present in multiple or singular numbers, as well as whether the hornet 
flight sounds were audibly loud, faint, or brief.

Table 2 
Tested time periods for data that did not contribute to the TDB.

Tested Time 
Period 
(seconds)

Hornets present in 
recording?

Hornets detected by 
algorithm?

Matching 
outcome?

Video 1.1 (45) No No ✓
Video 1.2 (55) Yes (singular, faint/ 

brief)
Yes ✓

Video 1.3 
(163)

Yes (singular, faint/ 
brief)

Yes ✓

Video 1.4 
(115)

Yes (singular, faint/ 
brief)

Yes ✓

Video 1.5 
(310)

No Yes ⨯

Video 1.6 
(890)

No Yes ⨯

Video 2 
(1567)

No Yes ⨯

A table to demonstrate the number of time periods that were tested using the 
training algorithm per novel recording. Whether hornets were present or absent 
in each time period, and if the algorithm correctly categorised the data, is listed 
here. The table highlights whether hornets were present in multiple or singular 
numbers, as well as whether the hornet flight sounds were audibly loud, faint, or 
brief.
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affected by morphological and environmental variables. However, in 
future long-term recordings, previously un-encountered ‘irregular’ 
hornet individuals may be present, which could affect the success of the 
algorithm (should these new individuals have wing-beat frequencies 
that vary in comparison to those already included in the training data-
base). Under such circumstances, the training database would benefit 
from being updated to include instances of new hornet hovering sounds, 
or instances of honeybee and/or hornet spectral changes due to local 
variations in the species, resulting in moderately different flight sound 
frequency spectra.

4.2. The advantages of microphone implementation for hornet data 
capture at an apiary

As highlighted above, the training algorithm demonstrated strength 
in its discrimination ability and detection of specific acoustic features for 
hornet identification. Using a microphone to capture acoustic data has 
also benefited the results in our study (advantages discussed below), 
supporting our choice to use this form of recording equipment over the 
alternative optical sensor approach, which is the only other technology 
that has so far been employed to capture hornet flight sounds (Kawakita 
& Ichikawa, 2019; Herrera et al., 2023). Other methods of measuring 
wing-beat frequency are the use of a stroboscope or a radar, but these 
were unsuitable for the purpose of our study as they require flying in-
sects to be caught and tethered, or fitted with measuring devices (Wang 
et al., 2017; Long et al., 2020).

Microphones may be considered less accurate than optical sensors, as 
they capture many external sounds alongside those of interest, whereas 
the second type of sensors are free from such interference (Potamis & 
Rigakis, 2015). In our study, vehicle sounds were captured, as was bird 
song, dog barking, and human noise. However, as a result of our suc-
cessful training algorithm, the percentage of external noises that actu-
ally interfered with hornet classification was extremely low, and only in 
the form of some vehicle and human noise (0.9 % of recordings that 
contributed to TDB creation; 1.3 % of novel recordings). These results 
are similar to those of a study that successfully detected and classified 
V. simillima xanthoptera using microphones and machine learning tech-
niques (Kawakita & Ichikawa, 2019). It is also worth noting that a study 
by Potamis & Rigakis (2015), compared optical sensor and microphone 
recordings of insect wing flapping and found almost identical results, 
determining that acoustic feature clarity is not adversely affected by 
microphone use. In our study, hornet flight noises commonly benefited 
from high signal-to-noise ratio, but as mentioned above, we have also 
determined that even when faint or brief, their flight sounds were 
detectable amongst background noises. Although our measurements 
were acquired in an apiary where background noise is relatively strong, 
including even traffic noise, we have not quantitated the actual 
threshold of external noise level beyond which the method will start 
failing, and it is possible that hives exposed to strong anthropogenic 
noise cannot benefit from our monitoring technique.

Microphones are also free from some of the constraints potentially 
faced by optical sensors, when used in the field. The microphone in our 
study captured hornet flight sounds without interfering with the flight 
paths of individuals. Optical sensors require insects to fly through the 
laser beams, and it has been noted that for hornets under natural con-
ditions, a lure would be needed to manipulate their movements via the 
sensor area to capture frequency information (Herrera et al., 2023). Our 
results were also not affected by the heavy traffic of honeybee in-
dividuals coming and going from the hive, or the presence of multiple 
hornets, whereas optical sensor data capture can be negatively affected 
by the presence of simultaneously occurring signals (Parmezan et al., 
2021). Optical sensors are also heavily influenced by changes in illu-
minance, requiring them to be protected from external light sources 
(Parmezan et al., 2021; van Roy et al., 2014). In a field setting, where 
sunlight levels are changeable, it would be difficult to avoid negative 
impacts on data capture, whereas microphones are free from this. One 

study has, however, demonstrated optical sensor wingbeat detection 
success under various light conditions (Potamis & Rigakis, 2015).

4.3. Future utilisation of the training algorithm and experimental set-up 
over the long-term at apiaries

This study has identified the advantages of a training algorithm that 
includes both the frequency and spectral repetition characteristics of 
insect flight sounds, as well as the benefits of using inexpensive 
microphones.

It is important to note that this is a preliminary study and therefore 
the algorithm is presently not expected to be fully functional on any 
future data set. The training database for this study using the video data 
that has been captured so far, is exhaustive in capturing all categories of 
sound. Within ‘deep learning approaches’, the size of the database is 
paramount to the quality of the machine learning obtained. In our work, 
we simply require the full extent of the deviations within each category 
to be captured in the training data, and that each category of the data-
base be comprised of elements that have generic features, to promote 
correct feature identification in further assessment of the data.

It is now timely to test this experimental design at an apiary over the 
long-term. Future investigations that use such novel data to test the 
robustness of the algorithm will undoubtedly lead to more improve-
ments being made.

For this purpose, we have already recorded continuous, remote 
microphone measurements at the apiary over a 3-month period, addi-
tionally capturing web-cam footage of the landing board area at a rate of 
1-frame-per-second, for the purpose of corroborating audio data de-
tections with visual evidence of hornet presence/absence. Whilst it was 
not within the scope of this study to investigate the success of the 
training algorithm on this long-term dataset, the measurements are now 
available for a follow-up investigation.

Verifying the audio data with the web-cam footage will also allow us 
to further establish the success of the set-up, as well as identify and 
account for the effects (if any) of variables such as weather conditions 
and colony activities on the captured acoustic data, e.g., in this study we 
observed audible differences between winter and summer colony re-
cordings, related to wing fanning activity.

This future exploration will additionally determine how often 
external noise affects the classification outcome. In the current study, 
only 0.9 % of data that partially contributed to the creation of the 
training database and 1.3 % of novel tested data corresponded to mis-
categorised sounds, amounting to just over one minute of the overall 
tested recorded time. Prior to the fourth and final training database, 
vehicle noise was included as a separate category to explore if the ma-
chine learning algorithm could discriminate it from hornet sounds. At-
tempts were unsuccessful, but as miscategorised vehicle noise was not 
often encountered, it was deemed to be unproblematic for the current 
training algorithm. Carrying out analysis on the long-term data will 
confirm whether this remains the case, or if further training is required 
to reduce the impact of external noises on detection success.

4.4. Conclusion

We have here explored a remote V.velutina monitoring system under 
natural field conditions, to promote the early detection of this invasive 
predator at apiaries. Implementing a simple microphone set-up to cap-
ture acoustics has shown to be highly successful in recording the flight 
sounds of both hornets and honeybees for automated species detection 
and discrimination purposes. We have shown that our algorithm can 
detect hornet presence even when there is only one individual in the 
vicinity of a hive. Previous studies have only characterised hornet fre-
quency and amplitude flight features, whereas we have emphasised the 
benefits of pairing these acoustic elements with spectral repetition fre-
quency, to produce an enhanced discrimination outcome. The 2DFT has 
previously only been employed by our research group for specific 
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honeybee and Varroa mite (Varroa destructor) vibrational pulses 
(Ramsey et al., 2018; Ramsey et al., 2020; Hall, 2022; Hall et al., 2023). 
Our current study has revealed an additional application for this analysis 
technique in the field of bioacoustics, where we show that it can be used 
to detect a hovering flying insect. Our successful training algorithm now 
requires testing over the long-term, but shows remarkably good promise 
for remote, continuous detection of V.velutina.
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Kennedy, P.J., Ford, S.M., Poidatz, J., Thiéry, D., Osborne, J.L., 2018. Searching for nests 
of the invasive Asian hornet (Vespa velutina) using radio-telemetry. Commun. Biol. 1 
(1), 88. https://doi.org/10.1038/s42003-018-0092-9.

Kim, S., Ju, C., Kim, J., Son, H.I., 2019. A tracking method for the invasive Asian hornet: 
a brief review and experiments. IEEE Access 7, 176998–177008. https://doi.org/ 
10.1109/ACCESS.2019.2958153.

Kim, B., Pak, J., Ju, C., Son, H.I., 2022. A Multi-Antenna-based Active Tracking System 
for Localization of Invasive Hornet Vespa velutina. In: 2022 22nd International 
Conference on Control, Automation and Systems (ICCAS). IEEE, pp. 1693–1697. 
https://doi.org/10.23919/ICCAS55662.2022.10003757.

Laurino, D., Lioy, S., Carisio, L., Manino, A., Porporato, M., 2019. Vespa velutina: an alien 
driver of honeybee colony losses. Diversity 12 (1), 5. https://doi.org/10.3390/ 
d12010005.
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2022. Effectiveness of electric harps in reducing Vespa veltunia predation pressure 
and consequences for honeybee colony development. Manag. Sci. 78 (12), 
5142–5149. https://doi.org/10.1002/ps.7132.

San Ha, N., Truong, Q.T., Goo, N.S., Park, H.C., 2013. Relationship between wingbeat 
frequency and resonant frequency of the wing in insects. Bioinspiration 
Biomimetrics. 8 (4), 046008. https://doi.org/10.1088/1748-3182/8/4/046008.

Simberloff, D., 2010. Invasive species. Conservation biology for all 1, 131–152.
Spiewok, S., Schmolz, E., 2006. Changes in temperature and light affect the flight speed 

of hornets (Vespa crabro L.). Physiol. Biochem. Zool. 79 (1), 188–193.
Terenzi, A., Cecchi, S., Spinsante, S., 2020. On the importance of the sound emitted by 

honeybee hives. Veterinary Sciences. 4, 168. https://doi.org/10.3390/ 
vetsci7040168.

Turchi, L., Derijard, B., 2018. Options for the biological and physical control of Vespa 
velutina nigrithorax (Hym.: Vespidae) in Europe: a review. J. Appl. Entomol. 142 (6), 
553–562. https://doi.org/10.1111/jen.12515.

Uthoff, C., Homsi, M.N., von Bergen, M., 2023. Acoustic monitoring and vibration 
monitoring of honeybee colonies for beekeeping-relevant aspects of presence of 
queen bee and swarming. Comput. Electron. Agric. 205, 107589.

Van Roy, J., De Baerdemaeker, J., Saeys, W., De Ketelaere, B., 2014. Optical 
identification of bumblebee species: effect of morphology on wingbeat frequency. 
Comput. Electron. Agric. 109, 94–100.

Wang, R., Hu, C., Fu, X., Long, T., Zeng, T., 2017. Micro-doppler measurement of insect 
wing-beat frequencies with W-band coherent radar. Sci. Rep. 7 (1), 1396. https:// 
doi.org/10.1038/s41598-017-01616-4.

Zacepins, A., Brusbardis, V., Meitalovs, J., Stalidzans, E., 2015. Challenges in the 
development of precision beekeeping. Biosyst. Eng. 130, 60–71.

H. Hall et al.                                                                                                                                                                                                                                     Computers and Electronics in Agriculture 235 (2025) 110307 

12 

https://doi.org/10.1109/JSEN.2015.2424924
https://doi.org/10.1109/JSEN.2015.2424924
https://doi.org/10.1038/s41598-018-32931-z
https://doi.org/10.1038/s41598-020-66115-5
https://doi.org/10.1038/s41598-020-66115-5
https://doi.org/10.1007/s10340-018-1063-0
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0165
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0165
https://doi.org/10.1111/1365-2664.12724
https://doi.org/10.1002/ps.7132
https://doi.org/10.1088/1748-3182/8/4/046008
http://refhub.elsevier.com/S0168-1699(25)00413-2/h9000
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0190
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0190
https://doi.org/10.3390/vetsci7040168
https://doi.org/10.3390/vetsci7040168
https://doi.org/10.1111/jen.12515
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0205
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0205
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0205
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0210
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0210
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0210
https://doi.org/10.1038/s41598-017-01616-4
https://doi.org/10.1038/s41598-017-01616-4
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0220
http://refhub.elsevier.com/S0168-1699(25)00413-2/h0220

	Remote and automated detection of Asian hornets (Vespa velutina nigrithorax) at an apiary, using spectral features of their ...
	1 Introduction
	2 Methods
	2.1 Data collection
	2.2 Building the training database
	2.3 Training database analysis

	3 Results
	3.1 Characterisation of hornet and honeybee flight sounds
	3.2 Discrimination of hornet, honeybee, and background sounds
	3.3 Classification of apiary recording data that contributed to the TDB
	3.4 Classification of apiary recording data that did not contribute to the TDB

	4 Discussion
	4.1 The advantages of utilising 2DFT analysis for species discrimination
	4.2 The advantages of microphone implementation for hornet data capture at an apiary
	4.3 Future utilisation of the training algorithm and experimental set-up over the long-term at apiaries
	4.4 Conclusion

	Data availability statement
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Data availability
	References


