
Identification of mechanistic CKD 
biomarkers in a rat SNx kidney 
fibrosis model by transcriptomics 
and proteomics detectable in 
biofluids
Karin Barnouin1,6, Elisa Tonoli2, Clare Coveney3, John Atkinson1,7, Margarida Sancho1,8, 
Andrew Skelton1, David J. Boocock3, Linghong Huang1,9, Joseph Shephard1,  
Timothy S. Johnson1,5,9, Elisabetta A. M. Verderio2,4 & Breda Twomey1

The rat sub-total nephrectomy (SNx) is a functional model of general chronic kidney disease (CKD) 
where the main pathological driver is glomerular hypertension representative of several subtypes 
of CKD. Comprehensive transcriptomics and proteomics analyses on the SNx rats were performed 
to identify biomarkers in plasma or urine that correlate with kidney disease and functional kidney 
loss. Kidneys were subjected to collagen I and III staining for fibrosis scoring, SWATH-MS proteomics 
and bulk RNA-sequencing transcriptomics, with SWATH-MS also performed on plasma and urine. 
Differential expression analysis demonstrated significant dysregulation of genes and proteins 
involved in fibrosis, metabolism, and immune response in the SNx rats compared to controls. Gene 
ontology analysis of the intersecting genes and proteins from both studies demonstrated common 
biology between animal cohorts that reached the predefined kidney disease thresholds (serum 
creatinine > two-fold or proteinuria > three-fold increase over sham-operated). Thirteen significantly 
differential molecules were detected with consistent directional changes in both omics datasets. These 
molecules were detected independently in kidney (both RNA and protein) and urine (protein only), 
but not in plasma. Bioinformatics analysis enabled the identification of mechanistic CKD biomarkers 
including lumican and collagen alpha-1(III) chain, whose co-expression has previously been both 
implicated in fibrosis and detected in urine in CKD patients.

Chronic kidney disease (CKD) affects up to 16% of the population across the world and it is associated 
with significant mortality and morbidity1. CKD is strongly linked to diabetes and hypertension. However, 
environmental factors and genetic background also concur with the aetiology of this complex condition. A 
common feature of failing kidneys is glomerulosclerosis and tubulointerstitial fibrosis that ultimately causes 
progressive kidney failure. Fibrotic remodelling is characterised by excess fibrous connective tissue and 
proliferation of fibroblasts, which is believed to be aberrant wound healing in response to chronic insult from 
the primary disease. During fibrotic remodelling, fibroblasts not only proliferate but assume an α-SMA positive 
myofibroblastic phenotype, epithelial cells can either die or undergo epithelial mesenchymal transformation 
leading to a more stromal extracellular matrix (ECM) producing phenotype while pericytes proliferate and 
take on myofibroblast characteristics2. Overexpression of ECM components, accompanied by metabolic re-
programming is a histopathological hallmark of tissue fibrosis. The deposition, accumulation, increased 
crosslinking and stabilisation of collagens and fibronectin result in the hardening and scarring of tissues. 
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These changes cause pathological remodelling of the organ which lead to its failure3,4. The development of 
tubulointerstitial fibrosis is the best predictor of progression5.

Initial detection of CKD is typically by use of protein dipstick in the urine, with subsequent characterisation 
and tracking of the stage of disease (CKD stage 1–5) determined by assessment of kidney function. This 
normally uses serum creatinine levels to estimate the glomerular filtration rate (eGFR) using the Modification of 
Diet in Renal Disease (MDRD) or CKD Epidemiology Collaboration (EPI) equations. More detailed assessment 
of stage also incorporates albuminuria measurements with high albuminuria being indicative of more rapidly 
progressing disease6,7.

Kidney biopsy remains the gold standard to diagnose fibrosis within the kidney; however, it not only causes 
risk and discomfort to the patient but is an imperfect test, susceptible of sample bias and only useful when 
fibrosis is fully established. Moreover, the biopsy approach neither provides an early diagnosis nor a prognosis 
response. Importantly, it also limits the development of new anti-fibrotics due to the long time required to 
determine the effectiveness of a therapeutic fibrosis development.

Serum creatinine and proteinuria levels constitute the main biofluid biomarkers for detection and monitoring 
of CKD. However, these do not reflect all aspects of kidney disease pathophysiology (for example, kidney tubular 
health), do not always predict GFR decline, and are late disease markers requiring significant damage to occur. 
Several recent studies have tried to identify earlier, better, more predictive, and reliable markers of kidney disease 
in serum and urine to enable both clinical management and clinical trials8–12. The identification of progression 
or mechanistic biomarkers and the underlying pathobiological processes in experimental animal models could 
enable their use in drug discovery and the translation of pre-clinical to clinical research.

The application of experimental models of CKD are useful for pre-clinical evaluation. However, because 
CKD progresses in humans over many years with a complex mix of genetics, environmental, age, sex, and 
lifestyle elements as underlying risk factors, it has been extremely challenging to mimic disease progression with 
animal models, that at the same time allow a fast and reliable assessment of disease progression or stability. Many 
experimental models have been developed that can be performed within acceptable time frames, have functional 
measurements relatable to human kidney disease, and that induce morphological and biochemical changes 
at the organ level translatable to the clinic, but all have some limitations. The models that enable readout of 
functional parameters while also displaying the collagen ECM accumulation in kidney tissue are most relevant 
for clinical translation.

Several kidney damage models such as the mouse unilateral ureteral obstruction (UUO), mouse and rat 
Adriamycin, mouse aristolochic acid nephropathy (AAN) and rat subtotal nephrectomy (SNx) models have been 
employed by us and others to simulate CKD13–20. The SNx model is generally accepted as a general model that 
mimics many aspects of human CKD such as focal segmental glomerular sclerosis (FSGS), diabetic nephropathy 
(DN), membranous nephropathy (MN), IgA nephropathy (IgAN), membranoproliferative glomerulonephritis 
(MPGN), polycystic kidney disease (PKD), membranous glomerulonephritis (MGN) and rapidly progressive 
glomerular nephritis (RPGN). It displays some of the histological and pathobiological features typical of changes 
of focal segmental glomerular sclerosis21 with an increase in proteinuria and loss of kidney function associated 
with tubulointerstitial involvement. CKD in this model is driven by a combination of glomerular hypertension 
and inflammation, that are key factors in human disease progression. SNx rats also have cardiac defects, one of 
the co-morbidities for human CKD20,22. The model therefore provides a platform with ready access to biofluids 
and tissues enabling the identification of disease relevant biomarkers.

In this investigation we have therefore aimed to use the SNx model to identify mechanistic markers of CKD 
development (fibrosis) that are detectable in biofluids and associated with changes in tissue biology, rather than 
those of plasma that appear in biofluids resulting from fibrotic renal structure deterioration such as currently 
used proteinuria and serum creatinine. It is anticipated that these could reflect the active nature of disease in 
humans and be employed as early diagnostic or progression biomarkers.

We have performed two independent rat SNx experiments and tracked disease progression by proteinuria 
and serum creatinine. Plasma, urine, and kidney tissue were analysed at predefined disease criteria, by label-
free quantitative proteomics using the data-independent (DIA) analysis technique called sequential window 
acquisition of all theoretical fragmentation spectra (SWATH) mass spectrometry (MS) (SWATH-MS). This type 
of MS acquisition method provides greater depth in protein identification and better quantification than data-
dependent analysis (DDA) analysis, especially when the data is interrogated by an in silico generated library23,24. 
Kidney tissues were concurrently analysed by bulk RNA-seq transcriptomics. The readouts of both omics’ 
experiments were compared and integrated, to identify strong reproducible disease biomarkers symptomatic of 
disease development in the rat SNx model of CKD.

Results
Preparation of diseased rat kidneys for omics analyses
As the objective of this work was identification of kidney disease biomarkers representative of progressive 
phenotypes that could correlate with biomarkers in the more accessible serum and urinary compartments, we 
thought it imperative to synchronise the animals for disease development, with tissue recovery occurring when 
disease thresholds had been reached. Two separate SNx studies (named study 1 and study 2) were performed at 
two independent sites with similar pre-defined disease monitoring criteria as summarised in Fig. 1a. Animals 
were only terminated when they reached the disease threshold functional levels of twofold increase in serum 
creatinine or threefold increases in proteinuria over sham-operated controls. However, the time to reach these 
disease thresholds varied between the studies where study 1 animals were terminated between days 81–116 and 
study 2 animals between days 52–98, reflecting variability not only between groups but also between individual 
animals within the same study. All the animals in study 1 were included in the analysis. However, only six 
out of eighteen rats reached the predetermined threshold in study 2. Representative kidney sections, stained 
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Fig. 1.  Characterisation of rat SNx study samples. (a) The surgical procedure in rats termed sub-total 
nephrectomy (SNx) where 5/6 of the functioning kidneys are removed and post-surgery the animals develop 
failing kidney function from day 50 onwards, depicted on a timeline with monitoring of the failing kidneys 
using a combination of serum creatinine and proteinuria measurements. (b) Study 1 kidney sections from 
either sham (n = 3) or SNx rats (n = 3), stained with Picrosirius Red (PSR) and the PSR-stained kidneys were 
scanned, the percentage of PSR area plotted alongside the other functional kidney readouts, Proteinuria, Serum 
creatinine and Protein creatinine ratio. Scale bar: 200 µm. (c) Study 2 kidney sections from 1/4 sham rats or 2/6 
SNx rats, stained with PSR and PSR-stained kidneys from all rats were scanned, percentage of PSR area plotted 
alongside the other functional kidney readouts, Proteinuria, Serum creatinine and Protein creatinine ratio. 
Scale bar: 4 mm or 500 µm, as indicated.
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for collagens I and III content using pico-sirius red (PSR) from both study 1 and 2, are shown in Figs.  1b, 
c, respectively. Urine and serum samples from both studies collected before termination were analysed for 
serum creatinine, proteinuria, and urinary proteinuria creatinine ratio as measurements of kidney function 
and glomerular damage (Figs.  1b, c), as well as processed for proteomics. Kidney sample preparation for 
transcriptomic and proteomic analyses were similar between the two studies.

RNA-Seq transcriptomics–global observations
Bulk-RNA seq were performed on rat SNx, Adriamycin, and UUO kidney tissues. About 12,000 genes were 
profiled in each RNA-sequencing experiment (Table 1, Supplementary Fig.  1, and Supplementary data 1). 
Unsupervised PCA analysis of the two SNx studies transcriptomics data showed that, despite intra- and inter-
study variability, the diseased SNx animals could be separated from sham (healthy) controls (Fig. 2a-I, b-I). In 
study 1, over 4000 proteins changed significantly (FDR < 0.05) after SNx treatment with over 1700 genes down- 
and up-regulated (Fig. 2a-II, Table 1). In study 2, over 4700 genes were significantly modulated (FDR < 0.05) 
with over 2800 genes that were down- and up-regulated (Fig. 2b-II, Table 1). Gene Pathway Ontology analysis 
showed that the most abundantly upregulated genes are represented by gene products involved in complement, 
immunological, and STAT signalling, associated with response to inflammation and ECM organisation pathways. 
Most of the significantly down-regulated genes are involved in the metabolism of amino acids, fatty acids or in 
mitochondrial processes (Fig. 2a-III, b-III).

Heatmap comparison of transcriptomics profiles of rat SNx with Adriamycin and UUO kidney disease rat 
models revealed that although most of the genes that are up- or down-regulated in each experiment are similar, 
the magnitude of change differs between them. Overall, genes involved in T-cell inflammatory processes are 
upregulated in both studies, whereas down-regulated genes are involved in metabolism. Expectedly, ECM 
modelling pathways implicated in kidney fibrosis regulation are more upregulated in the aggressive UUO and 
Adriamycin models than in both SNx studies (Supplementary Fig. 1).

DIA-SWATH proteomics – global observations
Over 6000 proteins were identified in the rat kidneys, and more than 450 proteins in study 2 plasma and urine 
were identified (Table 1, Fig. 3, Supplementary Fig. 2, and Supplementary data 1). As with the transcriptomics 
data, PCA analysis of the protein expression could clearly separate Sham (Healthy) and SNx rats for both kidney 
and urine datasets. In contrast, the separation was less distinct for plasma (Supplementary Fig. 3).

Gene ontology analysis of proteins
To gain a deeper understanding of the changes in the biological processes and molecular functions as well 
as in which cellular compartment these occur in CKD, Gene Ontology (GO) analysis was performed on the 
up- and down-regulated genes or proteins that were identified in both the proteomic and transcriptomic data. 
The web-based application Rivigo, that employs an algorithm that clusters GO terms according to semantic 
similarity, was used to summarise the data. The data was visualised as TreeMaps where the larger the square, 
the larger the log10 p-value, the more significant the enrichment. For the up-regulated kidney proteins, post-
SNx processes involved in stress and structural pathways were the most significantly enriched, for example, 
regulation of collagen fibril organization and cellular response to reactive nitrogen species (Supplementary 
Fig. 6a and data 2). The most enriched GO biological processes for down-regulated kidney proteins post SNx 
included responses to translation, oxidative stress, detoxification, cell matrix adhesion and metabolic pathways 
(e.g., glucose 6-phosphate metabolic process) (Supplementary Fig. 6b and data 2). In urine the identified down-
regulated proteins have been shown to play roles in immune response, proteolysis, transport, or cell adhesion. 
Up-regulated proteins in urine are involved in endopeptidase activity, small molecule transport, plasminogen 
activation or cell structure while in plasma up-regulated proteins are implicated in complement activation, lipid 
metabolism, transport, and cytolysis (Supplementary Fig. 4 and data 2).

We then performed GO analysis of the intersecting proteins. The most significantly enriched biological 
processes in the up-regulated proteins in proteomics kidney studies were those involved in catabolic, metabolic, 
cell polarity and immune responses. Notably, the most CKD relevant significantly enriched GO biological 
processes were the proteins and genes that were in common between study 1 and 2 in the kidney proteomics 
and transcriptomics. Those proteins are involved in cell adhesion, cell differentiation, matrix organisation, 
cell proliferation, phagocytosis, and immune system processes. Furthermore, the cellular compartments were 
similar in study 1 and 2 kidneys in the proteomics and transcriptomics data and mainly corresponded to the 
localisation of proteins that play a role in cell shape and structure. Please refer to TreeMaps and tables for more 
details (Fig. 4, Supplementary Fig. 5 and 6, and data 2).

Differential expression

Proteins Transcripts

Kidney study 1 Kidney study 2 Plasma study 2 Urine study 2 Kidney study 1 Kidney study 2

Total 6329 6871 488 632 12,714 11,533

Unchanged 5151 2593 444 184 8618 5667

Downregulated 220 659 2 207 1797 2812

Upregulated 958 3619 42 241 2299 3054

Table 1.  Number of total, unchanged and significantly changing FDR < 0.05 proteins in SWATH-DIA and 
genes in RNA-seq experiments.

 

Scientific Reports |        (2025) 15:11200 4| https://doi.org/10.1038/s41598-025-93894-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 2.  RNA seq analysis of kidneys from SNx compared to sham rats. PCA (I), differential gene analysis 
Volcano plot (II) and Gene Pathway Ontology CAMERA Functional enrichment analysis (III) were performed 
for both study 1 (a) and study 2 (b).
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Translatable CKD biomarker identification by data integration
Upset plots were used to identify the intersecting proteins and genes between the up- or down-regulated genes or 
proteins in both proteomics and transcriptomics methods (Fig. 5, Supplementary Fig. 5). Thirteen proteins were 
significantly differentially regulated (six upregulated, seven downregulated) at both protein and transcript levels 
in kidney and urine in all the analyses. The upregulated proteins were lumican (Lum), profilin 1 (Pfn1), collagen 
alpha-1(III) chain (Col3a1), complement component C6 (C6), collagen type VIII alpha1 chain (Col8a1) and 
Immunoglobulin Heavy Constant Mu (Ighm) (Fig. 5a, b, Supplementary Fig. 7a). The downregulated proteins 
were solute carriers Slc7a13 and Slc3a1, gamma-glutamyl transferase (Ggt1), the hydrolases alpha/beta hydrolase 
domain containing 14b (Abhd14b), Erythrocyte Membrane Protein Band 4.1 Like 3 (Epb41l3), trimethyllysine 
hydroxylase (Tmlhe) and the dipeptidyl peptidase 4 (Dpp4) (Fig. 5c, Supplementary Fig. 7b). Although these 
proteins are commonly detected in plasma, none of them passed the FDR 0.05 threshold for significant fold 
change in this biofluid. All these proteins except for DPP4 were also found to be similarly differentially regulated 
on the transcript level in the kidneys of Adriamycin and UOO rat models (Supplementary transcriptomic and 
proteomics Limma analysis data).

Discussion
CKD animal models are of value in the preclinical setting for identifying biomarkers and surrogate target 
engagement biomarkers25. Several models have been developed but inherently display differences in their 
capacity to monitor functional kidney data alongside quantitative gene and protein changes. Selecting the right 
model of CKD is crucial in pre-clinical research to test interventions aimed at controlling CKD. Transcriptomic 
comparison of different models performed here has shown variation in the quantitative and qualitative gene 
expression profiles of TGF beta and SMAD pathways known to be modulated in fibrosis and extracellular matrix 
remodelling (Supplementary Fig. 1). Although none of the models are perfect predictors of human disease, the 
choice of model and rodent depends on the specific project and therapeutic target requirements, such as the 
option for functional correlation, representation of distinct pathway changes, and model duration, which can 

Fig. 3.  Significantly changed proteins in SNx compared to sham rat kidneys. Volcano plots showing up- and 
down-regulated proteins in study 1 kidney (a) and study 2 kidney, plasma and urine (b). (c) Summary of 
protein counts expressed as percentages of downregulated (red), upregulated (green) and unchanged (blue) 
proteins compared to total number of proteins quantified in each sample.
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distinguish acute versus chronic phases of disease progression. The ideal model for biomarker discovery would 
enable monitoring of the molecular changes non-invasively as the disease evolves.

The SNx model was selected because it is the best characterised and has the capacity for real-time functional 
monitoring of disease progression using serum creatinine and proteinuria measurements before termination. 
Typically, widespread glomerulosclerosis and tubulointerstitial fibrosis gradually develop, mimicking the 

Fig. 4.  GO of up-regulated intersecting proteins and genes in kidney. TreeMaps showing enriched Molecular 
Functions (a), Biological processes (b) and Cellular compartments (c) of the significantly up-regulated 
proteins/genes in the kidneys of both studies.
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Fig. 5.  Proteomics and gene expression intersections. (a) Upset plots showing up-regulated proteins/genes in 
common between study 1 and study 2 proteomics-transcriptomics data (kidneys, plasma, urine; FDR < 0.05). 
Red asterisk indicates proteins/genes up-regulated in all analyses apart from plasma. (b) Protein and gene 
expression of lumican and collagen type III alpha1 chain (Col3a1). (c) Upset plots showing down-regulated 
proteins/genes in common between study 1 and study 2 proteomics-transcriptomics data (kidneys, plasma, 
urine; FDR < 0.05). Red asterisk indicates proteins/genes down-regulated in all analyses apart from plasma.
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progressive renal failure in humans consequent to loss of functional renal mass. However, the accurate 
interpretation of the data generated from the models is not straightforward because of the high variability of 
the response of the rats to the subtotal nephrectomy surgery. The analysis of the two SNx models independently 
generated in this study demonstrated both inter- and intra-model differences in the time it took to reach a 
specific disease threshold determined by functional analyses. The variability between animals was evident in the 
Principal Component Analysis (PCA) plots of both the RNA-seq and proteomics, where the healthy rats cluster 
close together, whereas the SNx rats are in comparison further apart (Fig.  2a, b and Supplementary Fig.  3). 
Integrating the omics data acquired from the two independent SNx studies has enabled the identification of 
CKD and fibrosis-specific biomarkers. Many genes were differentially expressed at both protein and transcript 
levels in kidney tissue in the two SNx studies. Many proteins also changed significantly in the urine, but not 
in plasma. Among those changing, six proteins were upregulated at both the protein and transcript level in 
the kidney and urine in all the analyses, including in the RNAseq studies performed in UUO and Adriamycin 
kidney tissues: Lum, Col3a1, Col8a1, Pfn1, C6, and Ighm. Interestingly, Lum, a proteoglycan, and Col3a1, co-
express and regulate keratan, TGFbeta2, and FasL that in turn, modulate MDM2-p53, apoptosis, as well as 
TGF-beta signalling pathway26. These pathways have previously been implicated in growth suppression and cell 
adhesion (KEGG pathway proteoglycans in cancer), lung disease27, kidney (Supplementary Fig. 8), and other 
fibrotic diseases28

Notably, Lum mRNA levels has been found to be present in significantly higher levels in RPGN, DN, IgAN, 
FSGS, MGN, lupus nephritis (LN) and hypertensive nephropathy (HT). In the same study, lumican protein 
stained positive in DN patients29. Interestingly, lumican was only detected in the urine of stage 3 CKD patients 
and not in healthy controls in a glycoproteomics study indicating that it could be used as an early biomarker30. 
Furthermore, Lum was recently identified as an early diagnostic biomarker for children with Alport Syndrome31. 
Col3A1 kidney mRNA and protein in urine was also found to be elevated in a puromcyin aminonucleoside 
(PAN)- induced nephropathy rat model32. It is thought that during ECM remodulation fragments of collagen 
degradation products are secreted in urine preceding proteinurea, and therefore could be used as an early 
marker of progressive renal fibrosis33. Indeed, 55 fragments of Col3A1 were detected in a urine proteomic study 
of CKD patients34. Downregulation of Pfn1 has been shown to be regulated by CK2 and has a protective effect 
against kidney fibrosis35. In contrast, C6, Col8a1, and Ighm are all involved in the complement pathway, and 
their upregulation is related to a general immune response to injury and disease (Figs. 4b and 7a) and have also 
previously been shown to contribute to CKD progression36.

Proteins and genes downregulated in urine as well as kidneys (but not plasma) at both the protein and 
transcript levels were Slc7a13, Slc3a1, Ggt1, Abhd14b, Epb41l3, Tmlhe and Dpp4. Slc7a13 and Slc3a1 are 
both involved in amino acid transport and are highly expressed in kidneys. Downregulation or dysfunction of 
solute carriers has previously been observed in kidney disease37. Ggt1 catalyses the transfer of glutathione to 
small molecules and generally plays a protective role against toxins and oxidative stress, but also specifically in 
kidneys38,39. Tmlhe is involved in amine, polyamine, and carnitine biosynthesis. Increased levels of L-carnitine 
have been shown to attenuate kidney fibrosis development40. Interestingly, Dpp4 acts as a serine endopeptidase 
and inhibitors against its activity are used to treat diabetes and has also been shown to metabolise collagen in 
kidney41. Epb41l3 is an adaptor protein that interacts with cytoskeletal proteins and is believed to modulate the 
activity of methyl transferases such as PRMT3 and PRMT542,43. DNA-methylation is thought to contribute to 
epigenetic causes of diabetic kidney disease44. Taken together, all these CKD biomarkers identified herein have 
been shown to be modulated during the development of fibrosis.

The aim of our analysis was to identify proteins that were detectable in all the transcriptomics and proteomics 
datasets that could be used as candidate mechanistic CKD markers. From the CKD biomarker candidates 
detectable in urine in the proteomics study conducted by Kim et al.45 we also found significantly increased levels 
of Pros1 and Tf, but only in study 2 kidney and urine proteomics. Interestingly, established CKD marker NGAL1 
(LCN2) transcript was significantly increased (log2 5-fold change (FC) (or 32 FC) in both studies 1 and 2). 
Protein levels were up by log2 1.3 FC (or 2.5 FC) and log2 2.3 FC (or 5 FC) in studies 1 and 2, respectively, but not 
in urine. Whereas KIM1 (Havcr1) was only significantly up in study 2 (log2 2.7 FC or 6.5 FC) kidney proteomics 
but not in urine proteomics or kidney transcriptomic. These observations indicate that KIM1 and NGAL1 may 
not be suitable as urine prognostic markers.

In summary, the data presented here is, to our knowledge, the first time that SWATH-MS data has been 
collected on SNx rat kidney tissue, plasma, and urine and systematically compared. In addition, there are no 
previous reports that compare the proteome profile with mRNA expression levels in SNx models. Whilst mRNA 
and protein expression levels do not always correlate, analysis of the differential expression of the proteins and 
genes in all the datasets and enriched gene ontologies have enabled the identification of Lum and Col3a1 as 
relevant translatable mechanistic CKD biomarkers that can be detected in urine as a single assay. The possibility 
of developing a multiplexed assay that tracks changes in several of the identified proteins could offer a platform 
for detecting early signs of progressive human renal disease before glomerular lesions and tubulointerstitial 
lesions become measurable. Furthermore, it could provide a signature to rapidly monitor response to anti-
fibrotic therapies in clinical studies or the effectiveness of existing therapies earlier in clinical care. Finally, this 
unique multi-omics profiling data of renal tissue and biofluids post-SNx also serves as a repository together with 
others46 for scientists in the field to obtain information that can be reanalysed and validated using orthogonal 
or targeted methods.

Methods
Subtotal nephrectomy rat, UUO mouse, and adriamycin mouse model generation
Subtotal Nephrectomy (SNx) was performed on male Wistar Han rats (200–400 g Charles River, UK) essentially 
as described22,47 using 2/3 resection of the right kidney followed two weeks later by left kidney nephrectomy. 
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Study 1 (performed at UCB Pharma) contained 3 non-op and 3 SNx rats. Study 2 (performed at the University 
of Sheffield) had 5 sham and 18 SNx operated rats. Serum creatinine was measured weekly and proteinuria 
biweekly with animals culled using a Schedule 1 method when proteinuria reached > 3–fivefold increase or 
serum creatine reached > twofold increase over sham-operated. At termination, 24-h urine and plasma samples 
were collected and snap frozen at − 80 °C. Following Schedule 1 killing, kidney tissue was recovered, with 1⁄4 
fixed in NBF for histology and the three other 1⁄4 snap frozen in liquid nitrogen for SWATH or Transcriptomics.

For comparison to other models, UUO, and Adriamycin mouse models of CKD were generated alongside 
the SNx at UCB Pharma under project licence (30/3051). Procedures were performed as described in48,49, 
respectively. Detailed methods for the generation of the models and histology analyses can be found in the 
Supplementary Information 1 methods section.

The studies were carried out under license according to the regulations of housing conditions, husbandry, 
and procedures laid down by Her Majesty’s Government, UK (Animals Scientific Procedures Act 1986). Study 1 
was performed at UCB Biopharma under project license 30/3051 and study 2 at the University of Sheffield under 
project license (PBE09C70E). This study was reported according to ARRIVA guidelines.

Kidney clinical measurements
SNx rats were placed in metabolic cages to collect 24-h urine samples. Urine was centrifuged to remove any 
sediment from food or faeces prior to analysis. Protein content in urine was determined using a modified 
Lowry method50. Urine creatinine was measured using an enzymatic creatinine assay (Crystal Chem, USA, 
Cat: 80,340) and serum creatinine a StatSensor Xpress (Nova Biomedical, USA) with creatinine Stat Strips. The 
protein:creatinine ratio was calculated as mg protein per mmol of creatinine.

Bulk RNA sequencing
Material was quantified using RiboGreen (Invitrogen) on the FLUOstar OPTIMA plate reader (BMG Labtech) 
and the size profile and integrity analysed on the 2200 or 4200 TapeStation (Agilent, RNA ScreenTape). RIN 
estimates for all samples were between 1.3 and 7.8. Input material was normalised to 30ng prior to library 
preparation. The RNA was depleted of ribosomal RNA using NEBNext rRNA Depletion Kit (NEB, Human/
Mouse/Rat) following manufacturer’s instructions. Strand specific library preparation was completed using 
NEBNext Ultra II mRNA kit (NEB) following manufacturer’s instructions. Libraries were amplified (14 cycles) 
on a Tetrad (Bio-Rad) using in-house unique dual indexing primers (based on51). Individual libraries were 
normalised using Qubit, and the size profile was analysed on the 2200 or 4200 TapeStation. Individual libraries 
were normalised and pooled together accordingly. The pooled library was diluted to ~ 10 nM for storage. The 
10 nM library was denatured and further diluted prior to loading on the sequencer. Paired end sequencing was 
performed using a NovaSeq6000 platform (Illumina, NovaSeq 6000 S2/S4 reagent kit v1.5300 cycles).

RNA-seq data analysis
Raw sequencing data was initially assessed with the FastQC and MultiQC utilities. Transcripts were quantified 
using the Rn6 reference transcriptome, and pre-built selective alignment index from RefGenie. Quantifications 
were summarised to the length scaled TPM unit via tximport and voom transformed with the Limma framework. 
Differential expression analysis was performed with Limma, and functional analyses with the CAMERA function 
and Mitch framework, using MSigDB reference gene sets52.

Proteomics sample preparation and LCMS SWATH analysis
SNx and sham kidney sections were processed as previously described53 with minor modifications. Specifically, 
after kidneys were lysed in lysis buffer [9.5 M urea, 2% (w/v) DTT, 1% (w/v) N-octyl-β-glucopyranoside, 
protease inhibitors; 1 mL of buffer every 100 mg of tissue], protein extracts (75 μg) were vacuum concentrated 
to dryness and stored at − 20°C for 16 h. Samples were then resuspended in solubilisation buffer [5% SDS (w/v), 
100 mM triethylammonium bicarbonate (TEAB), pH 7.55] and proteins digested by S-Trap (PROTIFI, US) 
according to manufacturer’s instructions. Urine samples were thawed on ice and supplemented with protease 
inhibitors (Roche), centrifuged at 5000 × g, passed through a 0.45 μm syringe filter, concentrated and desalted 
using centrifugal concentrator tubes (Vivaspin 500, 5 kDa MWCO, Sigma-Aldrich). Urinary proteins underwent 
reduction, alkylation, and trypsin digestion for 16 h as previously described53. Plasma samples were thawed 
on ice and supplemented with protease inhibitors (Roche), then cleared using Spin-X® Centrifuge Tube Filters 
(Corning) and 50 μg processed as described above. The resulting peptides were vacuum dried and stored at -20° 
C until reconstitution for MS analysis.

6.6 µg of sample was injected and trapped onto a YMC Triart-C18 pre-column (5 × 0.3 mm, 3 µm) at a flow 
rate of 10 µL/min for 2 min prior to switching the valve to run the gradient elution through a YMC Triart-C18 
analytical column (150 × 0.3 mm, 3 µm, 5 µL/min) in line with the Sciex TripleTOF 6600 via a Duospray Source 
using a 50 µm electrode in positive mode, + 5500 V. The following linear gradients were used for SWATH-MS 
acquisition, mobile phase B increasing from 3 to 30% over 38 min, 30% to 40% over 5 min, 40% to 80% over 
2 min for wash and re-equilibration (total run time 57 min). Data independent (SWATH) acquisition was 
performed using 100 variable SWATH windows (optimised on sample type) with the following parameters: 
TOFMS m/z 400–1250, MSMS m/z 100–1500, 25 ms accumulation time; 2.6 s total cycle time.

Label-free SWATH mass spectrometry data analysis
SWATH mass spectrometry data was converted to MZML using MSConvert (Proteowizard MS Covert Version: 
3.0.21075-41cb77451) and processed using DIA-NN (ver1.8) (Demichev, 2020). Default settings in DIA-NN were 
used except that Match Between Runs (MBR) was also selected. In addition, to increase the depth of our proteome 
analysis, an in silico generated PROSIT library24 of the annotated human proteome was generated within the 
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software and used to directly interrogate the DIA data. DIA-NN aggregates peptide level quantifications to the 
protein level. The resulting CSV was pivoted within R and further analysed in Perseus54. Protein abundances 
were Log2 transformed, and proteins filtered for a minimum of three valid values per sample. Missing values 
were imputed following a normal distribution using the default values within Perseus. The dataset was then 
normalised using median abundances. The resulting spreadsheet was exported for further analysis and data 
visualisation in the R environment.

Differential protein and transcript expression, upset plots, and gene ontology analysis
Limma Bioconductor R package was used to determine fold changes between groups. Volcano plots were 
generated by R package ggplot255. UpsetR package56 was used to visualise and determine the numbers of unique 
genes in each sample set as well as intersecting proteins and their identities between datasets. Gene ontology 
analysis was then performed on the intersection proteins to determine the biological processes, molecular 
function, and cellular components and pathways involved in CKD using the Gene Ontology Database for 
Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resource (v2022q3). Rat protein 
accession numbers were converted to gene names and imported into the database. Rivigo web server ​(​​​h​t​t​p​:​/​/​
r​e​v​i​g​o​.​i​r​b​.​h​r​/​​​​​) was subsequently employed to reduce the complexity and redundancy of the GO annotations. 
TreeMap R scripts generated in Rivigo were exported, and figures generated in R Studio after modification of the 
scripts to include -log10 p- values on the maps.

Data availability
The mass spectrometry proteomics data generated during the current study is available in ProteomeXchange 
Consortium via the PRIDE57 partner repository with the dataset identifier PXD048564. The transcriptomics 
data discussed in this publication have been deposited in NCBI Gene Expression Omnibus58,59 and are acces-
sible through GEO Series accession numbers (​h​t​t​p​s​:​​/​/​w​w​w​.​​n​c​b​i​.​n​​l​m​.​n​i​h​​.​g​o​v​/​​g​e​o​/​q​u​​e​r​y​/​a​c​​c​.​c​g​i​?​​a​c​c​=​G​S​E​x​x​x). 
The following accession numbers have been assigned to the data: GSE253009 (encompasses both study 1 and 
2 kidney datasets), GSE253008 (subseries kidney study 1 dataset) and GSE253007 (subseries kidney study 2 
dataset). All data analysed during this study are included in this published article (and its Supplementary Infor-
mation files).
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