

Children Missing from Education in Nottingham

The Follow-up Report

A report to

Nottingham City Council's CME Team

**Nottingham Business School,
Nottingham Trent University**

December 2024

Contents

Executive Summary	3
1. Introduction, background, and research methods	6
1.1 Background	6
1.2 Research Design and Method	7
1.3 Statistical Methods	7
2. Geographical and demographical analysis of CME cases in Nottingham	8
2.1 CME Cases per year within Nottingham City Council boundary	8
2.2 CME Cases per month	8
2.3 CME cases by location and levels of deprivation within the city	10
2.4 CME in-year trends by location	16
2.5 CME and areas of multiple deprivation in the city	18
2.5.1 The Rate of CME cases by population	21
2.5.2 School places analysis	25
3. Analysis of the characteristics of CME Cases in Nottingham City.	28
3.1 CME Cases by Gender	28
3.2 CME Cases by National Curriculum Year	28
3.3 CME Cases by ethnicity	31
3.4 CME Cases by referral base	34
4 CME case outcomes	38
4.1 Case Status and Outcomes	38
4.2 Length of time to resolve cases	40
4.3 Outcomes and days to resolve cases for the CME cases in the most deprived areas.	43
5. Workforce and workload	45
6. Unsolved Cases and Case Length: Regression Analysis	47
7. Summary and conclusions	51
References	54
Appendix 1: CME Cases by NCY 2016-2023 (%)	56
Appendix 2: CME Cases by DfE Ethnicity Main Code All (2016-2023 %)	57
Appendix 3: Trends of the CME Cases by DfE Ethnicity Main Code 2016-2023 (%)	58

Contributors to this report

Dr. Yu-Ling Liu-Smith, Research Fellow, Nottingham Business School

Dr. David Candon, Senior Lecturer, Nottingham Business School

Dr. Caitriona Logue, Senior Lecturer, Nottingham Business School

Professor Peter Murphy, Nottingham Business School

The team would like to express thanks to the Nottingham City Council CME team for their help and assistance with this project. We would wish to acknowledge the assistance of James MacLean and Wayne Smith who acted as both sponsors and the key source of data and advice for this project. Any errors or omissions are the responsibility of the authors.

Executive Summary

This report is a follow up report to the CME team at Nottingham City Council following an earlier report in 2022. In Feb. 2024, the previous government released the estimated Children Missing in Education (CME) census, the official statistics which they labelled as 'in development'. This contained a new non-compulsory collection of aggregated data from local authorities (LAs) and provided the estimated figures of CME for Autumn 2023 (GOV.UK 2024).

To the media and the publics surprise, the estimated figures showed a significant increase in CME from 24,700 in 2022 to 33,000 in 2023 with the numbers opting for home education, increasing from 87,700 in 2022 to 92,000 in 2023 (GOV.UK 2023; 2024). A rise in the numbers of CME and EHE is not a new phenomenon although it has been exacerbated by COVID but clearly these national figures should be treated with some caution. In our previous report, we examined the patterns of CME pre-pandemic, during the pandemic and in the early post-pandemic (Liu-Smith, et al. 2023). The results of our two studies do mirror several of the findings from the detailed investigation of the national CME situation among some local authorities (LAs) in a recent Children's Commissioner Report (2024) focussing on the challenges in supporting children missing education.

The latest report in Nottingham examines whether the trends for CME have changed since the completion of the first project as schooling in the city continues to recover post-pandemic. In collaboration with the Children Missing in Education team, at Nottingham City Council (CME, NCC), this follow-up project is the extension of the first project (2016-2021) and examines the situation relating to "children missing education" in the city in 2022 and 2023.

As with the first report, we first looked at the geographical and demographical pattern of CME cases in Nottingham. We again found a remarkably stable in-year pattern of cases notified to the team (particularly during the 'transition' period each year in the month of September) but a smoother in-year pattern for case resolution. The CME team works to resolve the cases continuously throughout the year regardless of whether there has been an influx of cases or a dip in referrals in a particular month. Examining the trend by National Curriculum Year (NCY) in 2022 and 2023 revealed that there were two notable peaks of referrals, one in the NCY 2-4 groups and the other one in NCY 7-10 groups, rather than a bell curve established between NCY 5-8 in the first project.

Geographically, the study found three 'tiers' of CME case distribution with a) two areas (NG7 and NG8) each accounting for more than 20% of cases; b) four postcodes (NG2, NG3, NG5, and NG6) accounting for more than 10% and c) the remaining postcodes all having less than 3%. We briefly explored whether this might be related to housing tenure as NG7 and NG8 contain a high percentage of rentable properties as indicated by the councils' 'Estates Lettings Areas' records, and recent changing patterns of migration and/or historical and relatively stable patterns of multiple deprivation in the city.

A high percentage of the CME cases living in the most deprived areas may not be a surprising finding to local educationalists or to local political representatives in the city. This outcome

is also in line with one of the key findings from the investigation of CME in the recent Children's Commissioner Report (2024). However, it reinforces the fact that children living in the most deprived households are the ones who most need to be in education, but those households are also most likely to have children missing from education.

Additionally, in the follow-up project, the trend in the number of school places in NCC was examined. Overall, there was a 29% increase in the number of secondary school places from 2016 to 2024 but only 3% increase in the number of primary school places. When we examined the number of school places by ward areas, it surprisingly showed a decrease in the number of places at some wards within the most deprived bottom 10% areas.

The study also analysed the characteristics of CME Cases in Nottingham City. As with the first report, it found a fairly stable pattern over time, with reassuringly little difference in their distribution by gender. When examining the distribution of ethnicity in the follow-up project, although the number of cases of *information not obtained/Refused* relating to ethnicity has significantly reduced from 2021 (the year end in the first project) due to the digitalisation of the referral process, there is still some way to go on this issue as the gap was still substantial when compared to the results of the School Census in 2024. Further research and information are clearly needed to understand the reasons and barriers to obtaining children's ethnicities from the families of CMEs, but this lay outside of the scope of this project.

The study also looked again at the origins of referrals. Our previous report found an increase in the number of referrals from academies and a reduction from schools maintained by the Local Authority reflecting the rising number of academies and the decreasing numbers in LA maintained schools within the city. Nevertheless, the data from the follow-up project suggested a different trend, with a decrease in the number of referrals from the academies but an increase in the number of referrals, not from NCC maintained schools but from other LAs.

The study also examined case outcomes both in terms of the process and in terms of the success in resolving cases. Of all the cases examined, 79% of the cases had been resolved by the CME team (as against 71% in the first project), with 21% open ongoing cases. A sharp increase in the category of *other LAs agreed to maintain* from 7% in 2021 to 38.8% in 2022 and 41.9% in 2023 was found in the follow-up project. Again, this reflects the recent increasing families' movements into and out of Nottingham City boundary. Our analysis also demonstrates that the CME team continuously resolved the cases. There is no annual deadline for the CME team and the team regularly reviews 'old' cases until the case is resolved or when the children are not within the compulsory school age. There is a huge variation in the length of time that it takes to resolve individual case, but while this is well known to the team, this also highlights two factors, which are probably less appreciated by those not directly involved in CME teams. They are the importance of the quality and access to databases (which is largely outside the control of the CME team) and the importance of developing, maintaining and improving networking and collaboration within the city council and across the 'community of interest' that provides the service in local authorities as well as with the CME teams in other LAs. Looking at the data from the follow-up project (2022-2023), there was a 9% improvement in the percentage of the cases resolved by the CME team within

7 days. We investigated what kinds of outcomes were achieved to see if they differed from the general caseload and we looked at the outcomes and duration of resolved cases in the most deprived areas of the city. In both instances, we (reassuringly) found they reflected the general population of all cases.

The findings relating to the CME workforce reveal that the team works on a very clearly defined on-going task but also highlights and emphasises the importance of local knowledge and experience in this area of work and the importance of the often 'hidden' skills of trust, reciprocity, perseverance, diligence, and empathy with clients that are essential for the efficient and effective delivery of the service.

The study undertook two simple regression analysis, (specifically using the binary logistic model), to help enhance the understanding of the relationships between whether cases were solved or unsolved; and how long it took if the case was solved. We investigated gender, type of education, ethnicity, location and deprivation. There was no significant difference between male and female cases with regards to cases being solved or unsolved or in terms of case length. Cases from secondary schools had a lower probability to be unsolved but took almost 23 days longer on average when compared to cases from primary schools.

Knowledge of ethnicity is however significant as the study found that not only was the likelihood of an unsolved case with ethnicity information (White, Asian, Mixed, or Black background) lower than a case without the ethnicity information, but it also took fewer days for the CME team to resolve the case when the ethnicity information was provided. This might appear obvious, but it does re-emphasise the importance of obtaining ethnicity information for CME cases. Moreover, we found that cases from a more deprived area had a lower probability to be unsolved although deprivation did not appear to affect the length of time required to solve cases.

Finally, the results from these two projects reflect a lot of the recent findings from the Children's Commissioner Report (2024). They also demonstrated that the NCC team are already carrying out some of the key recommendations from the Children's Commissioner's report, such as adopting a proactive approach to resolving cases and partnership working with internal teams, agencies and other LAs. However, the inconsistent use of the definition of 'children missing education' across local authorities is hindering cross-border collaboration. How different LAs are operating in fulfilling this statutory duty, i.e. how LAs 'are interpreting what CME is' varies greatly, depending on LAs financial situation, size of workforce, local needs and the composition of populations (Children's Commissioner Report 2024).

Without conducting a comparative study, it is impossible to truly understand the embedded reasons. However, in order to significantly advance NCC strategic knowledge and understanding of the service in the city, we suggest the team should support a comparative study of the work of the CME services teams in a neighbourhood local authority (preferably Nottinghamshire County Council) and/or in the similar 'under bounded' local authority such as Leicester City.

Children Missing in Education in Nottingham City

The Follow-up Report

1. Introduction, background, and research methods

In collaboration with the Children Missing in Education team, at Nottingham City Council (CME, NCC), this follow-up report is the extension of the first project which covered the years 2016-2021 to continue examining the situation with regard to “children missing education” in the city in 2022 and 2023. To best appreciate the results, it is recommended this follow-up report be studied with the first report conveniently to hand.

1.1 Background

In February. 2024, the previous government released the estimated Children Missing in Education (CME) census, official statistics which were marked as ‘in development’ as a new non-compulsory collection of aggregated data from local authorities (LAs) provided the estimated figures for Autumn 2023¹(GOV.UK, 2024). It is likely that more robust figures will be available in future years.

To media and public surprise, the estimated figures showed a large increase in CME from 24,700 in 2022 to 33,000 in 2023 accompanied by the numbers opting for home education, increasing from 87,700 in 2022 to 92,000 in 2023 (GOV.UK 2023; 2024). The rising numbers of CME and EHE is not a new phenomenon although it was thought to be exacerbated by COVID. In our first project report, we examined the patterns of CME in Nottingham pre-pandemic, during pandemic and early post-pandemic (Liu-Smith et al. 2023). The results of our study reflect several findings from a detailed national investigation of CME in a recent Children’s Commissioner Report (2024).

The current report examines whether the trends for CME in Nottingham have changed since the completion of the first project as the schooling continues to recover post-pandemic. Its objectives are similar to the first project and investigated the local experience of the CME Team in the City Council for the purposes of:

- Understanding the changing demographic of the CME group.
- Understanding the changing characteristics of the CME group.
- Identifying the main patterns and ‘triggers’ that have resulted in referrals of CMEs from schools and elsewhere to the service.

¹ This is the first time that these statistics from ONS have been issued as ‘in development’ and indicates the need for caution in their interpretation.

- Identifying the determinants of whether a CME case is resolved, and how long it takes if it has been resolved.

1.2 Research Design and Method

Building on a short literature review of the guidance, policies, and practice relating to CME, and adopting a quantitative research approach, utilizing existing data extracted from the databases compiled and used by the CME team in Nottingham City Council, this follow-up project continues to examine and analyse:

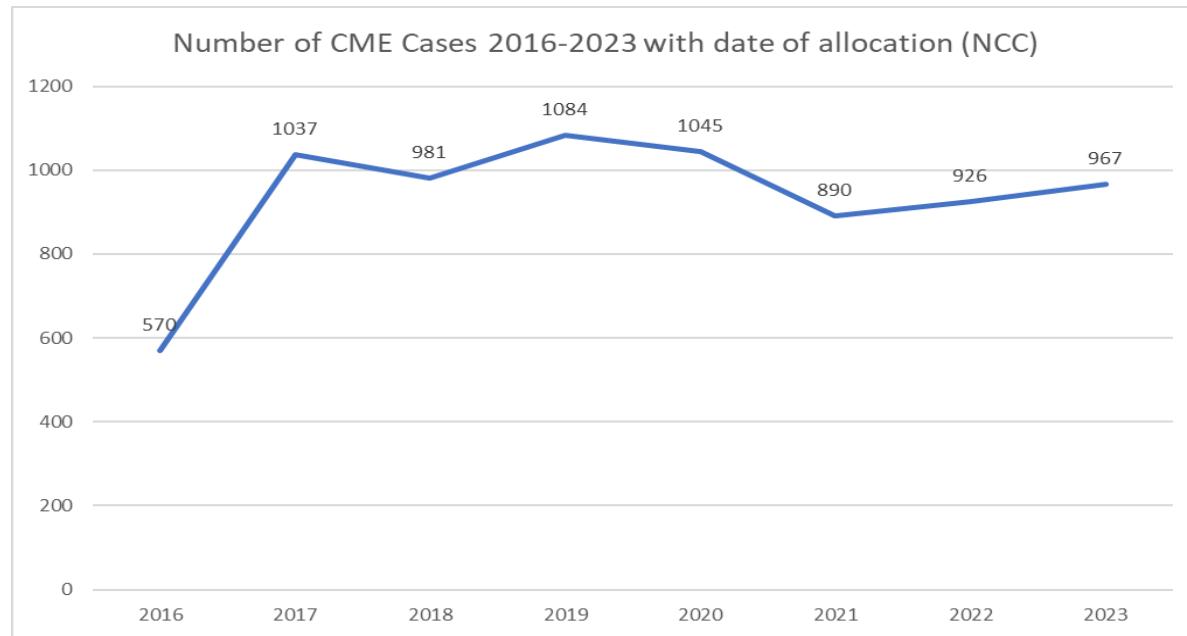
- The demographic of the CME group including its distribution across the city, level of deprivation, gender, national curriculum year group, and ethnicity.
- Trends and changes of the number of school places within Nottingham City Council boundary over 7-year period.
- Trends within the CME workload (number of cases, days taken to resolve cases, patterns, and trigger points to referral from schools' overtime).
- The relationships between whether a CME case is unsolved and how long it took if it has been solved against factors, such as gender, type of education, ethnicity, location and deprivation.

Additional data relating to the populations in different age groups, the index of multiple deprivation data for the city and pupils' ethnicity data from the school census at local authority level were also applied to enable meaningful comparisons.

The data regarding the number of school places within NCC were also provided by NCC to carry out the analysis for studying the supply of the school places.

The data were supplemented by qualitative information from the meeting with the CME team and various correspondences via emails as well as the examination of notes from previous team meetings.

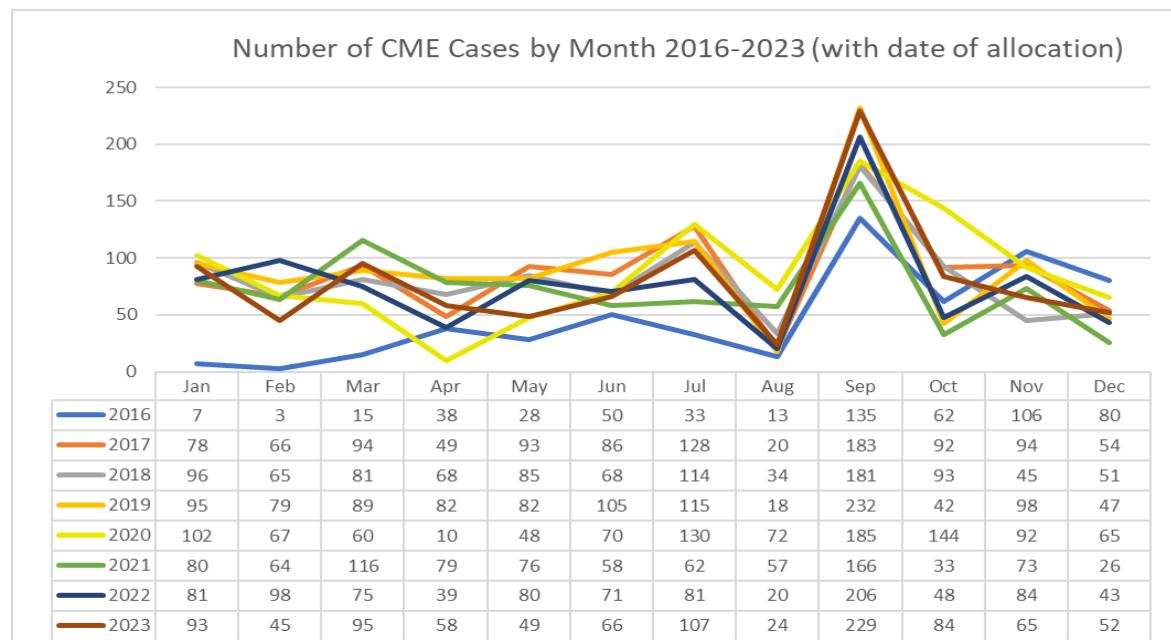
1.3 Statistical Methods


The data were analysed with the use of MS Excel, the Statistical Package for the Social Sciences (SPSS), and Stata. We first applied the descriptive statistics and inferential statistical methods, and these facilitated some binary logistic regression analysis to be performed.

With the assistance of the Geographical Information System at the City Council we were able to identify the locations of the CME within the NCC boundary. This information has been mapped and is presented in the PDF version in this report. The following sections present the results of the descriptive and inferential statistics and analysis from the period of 2016 to 2023.

2. Geographical and demographical analysis of CME cases in Nottingham

2.1 CME Cases per year within Nottingham City Council boundary


Figure 1: Number of CME Cases per year in Nottingham City 2016-2023

There were 1,890 CME cases from 2022 to 2023 within Nottingham City that are analysed in this follow-up project. Along with the data from 2016-2021 (5,607 CME cases), Figure 1 shows the trend of the CME cases over time by the date of case allocation from 2016-2023. The data from the follow-up project continued to reveal a relatively stable pattern from 2022 and 2023, and there has been approximately 1000 cases per year from 2017 to 2023.

2.2 CME Cases per month

Figure 2: Number of CME Cases by Month (by case starting date) 2016-2023

Examining in-year profile of CME cases by month, Figure 2 shows the in-year trends of cases by looking at the cases from their allocation date in each year. Consistent with the trend found from the first project (2016-2021), the data for 2022 and 2023 also showed a sharp increase in the month of September which represents approximately 23% (on average) of the cases within the year. Combining the data from 2016-2021, there was 20% on average in the month of September. The second highest peak was in July representing 10% (on average) of the cases within the year. The next highest peak was in November which represented around 9% of the cases within the year.

The sharp rise in September is associated with the fact that typically September is a transition period within the school year, a critical time when schools return after the summer break, especially for pupils moving from primary school (year 6) to secondary school (year 7). It is a time when all the children come back to school, rather than the occasional child going missing and partially accounts for so many places being referred to CME in September.

Their absence may be due to families still being on holiday, particularly those travelling to Eastern European countries where the summer holidays are longer. Schools, most of which are over-subscribed in Nottingham, are anxious to fill places where pupils have failed to return after the summer break so tend to make CME referrals more quickly during this time.

It might be a 'watershed' moment when parents make decisions about their child's future and decide to move elsewhere at a convenient time, educationally. Alternatively, it could be due to parents applying for more than one school located in different authorities, or having offers from more than one school, accepting one offer but not informing anyone (School or authority) about the offer they did not take up.

Any child who has a start date, which has been agreed by the admission authority and parent, is legally on the 'roll' from that start date whether they actually turn up for school on the first day or not. Therefore, for a school to take a child off the roll, assuming they don't know where the child is, the local authority, via the CME team has to undertake investigations prior to the school considering whether to take that child off roll or not. This may encourage schools to complete referrals at this stage.

The results indicate that the CME team works to resolve the cases continuously throughout the year regardless of whether there has been an influx of cases or a dip in referrals in a particular month. The cases which have not been resolved or closed in the previous year are carried forward to the following year, so it presents a continuous stream of work for the CME team as cases are 'live' until they get resolved or the child exceeds the age for compulsory education. The compulsory school leaving age in the UK is 16 (National Curriculum Year 11 henceforth NCY 11) after which they are not the responsibility of the CME team. Children above the compulsory school leaving age are not therefore included in the CME database for this project.

2.3 CME cases by location and levels of deprivation within the city

Figure 3: CME Cases by Locations 2016-2023

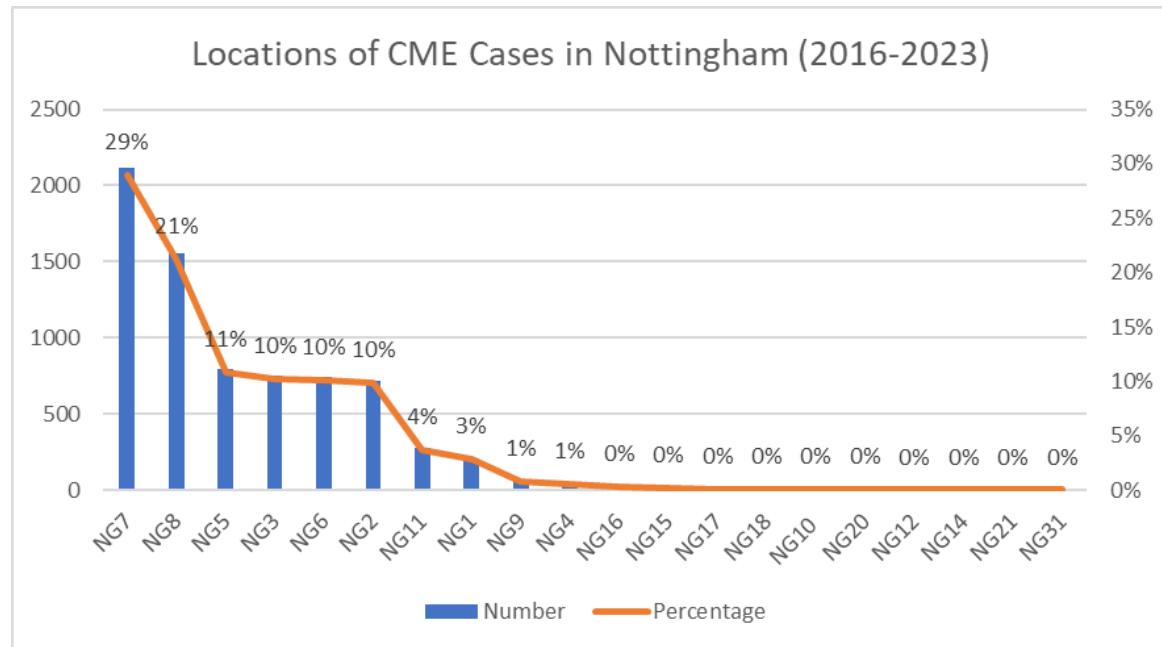


Figure 4: CME Cases by Locations 2022-2023

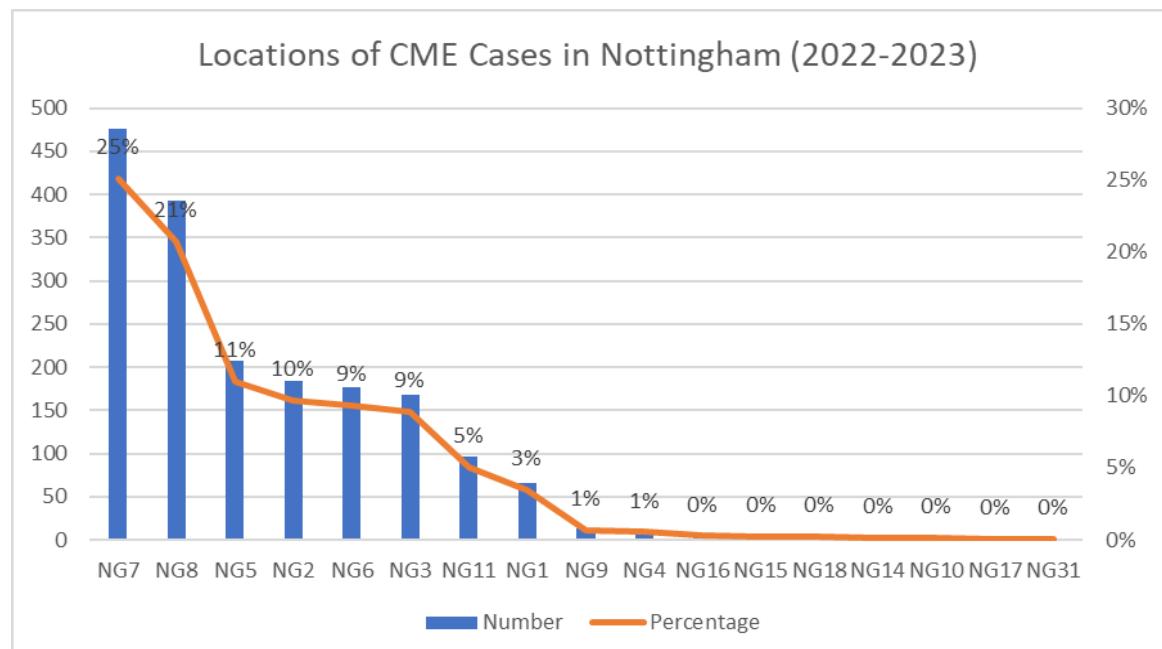
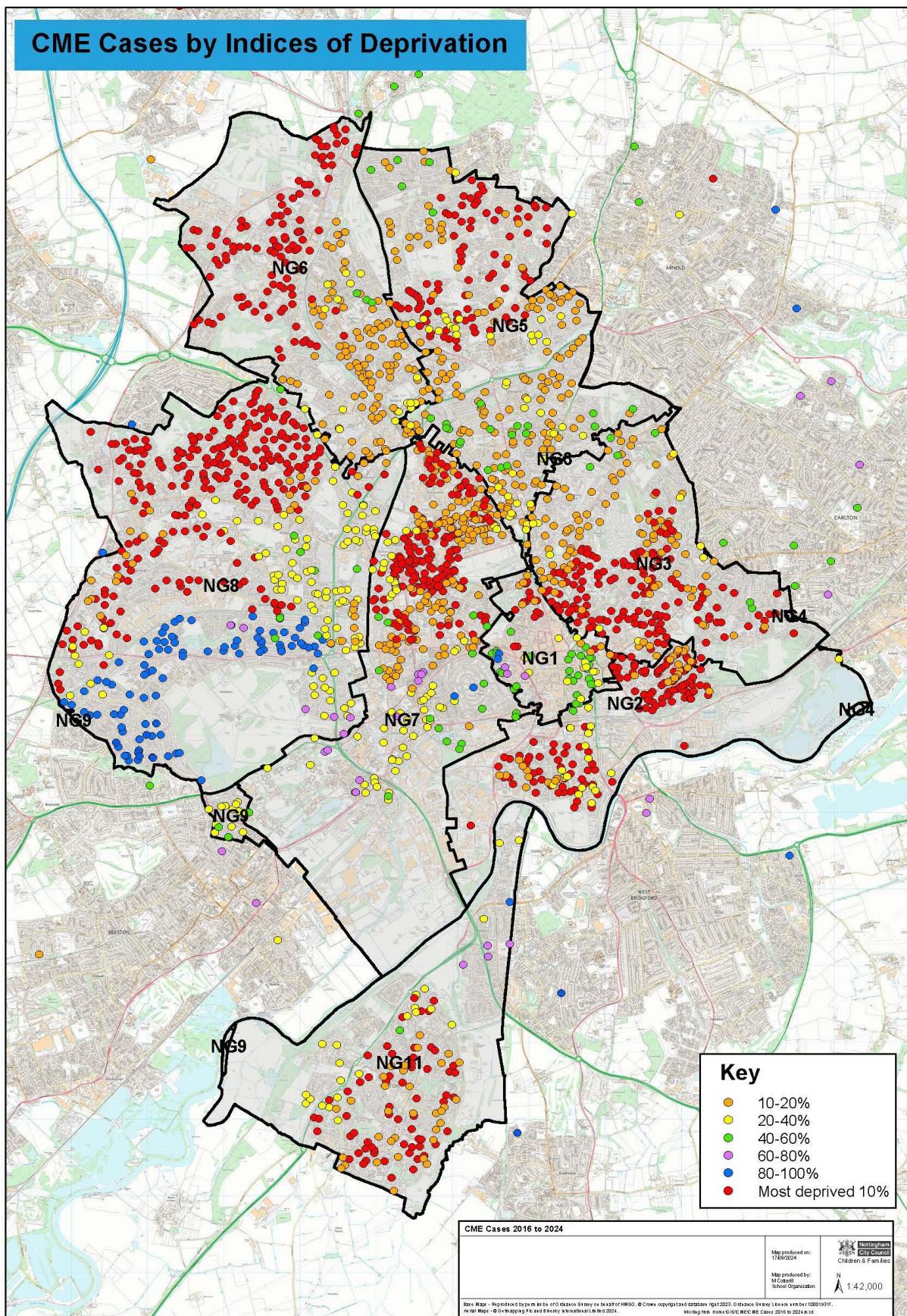
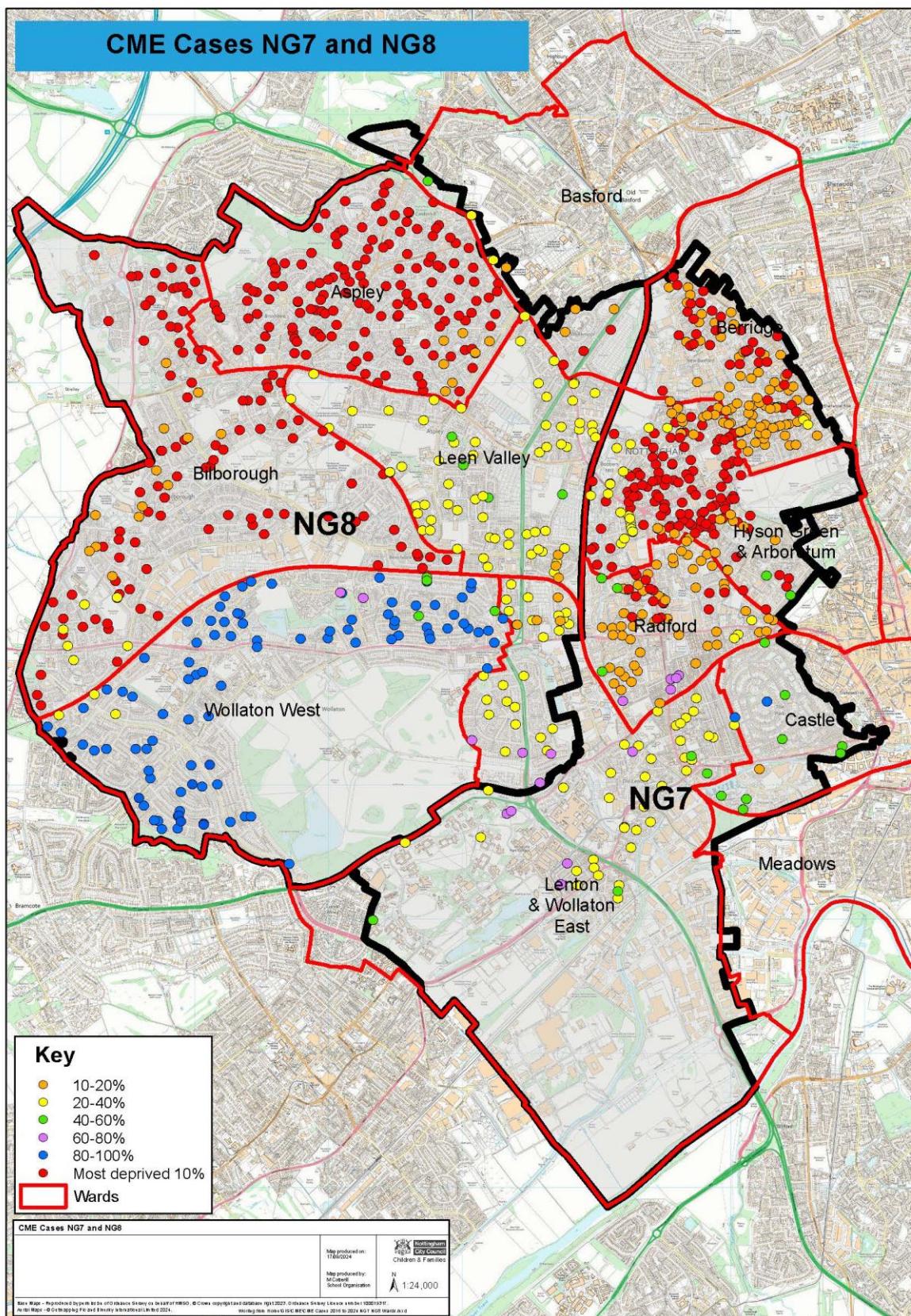


Figure 3 and Map 1 demonstrate where the CME cases were located within the city boundary. Three tiers can be observed from the figures. The data from the follow-up project (2022-2023, Figure 4) established a consistent pattern with that of the first project (2016-2021).


Tier 1. More than half of the CME cases are in two postcode areas. 29% of the cases were from the NG7 postcodes (25% in 2022 and 2023) (including New Basford, Forest Fields, Hyson Green, Radford, and Lenton) and 21% of the cases were from NG8 postcodes (21% in 2022 and 2023) (including Aspley, Leen Valley, Wollaton, and Bilborough). See Map 2.

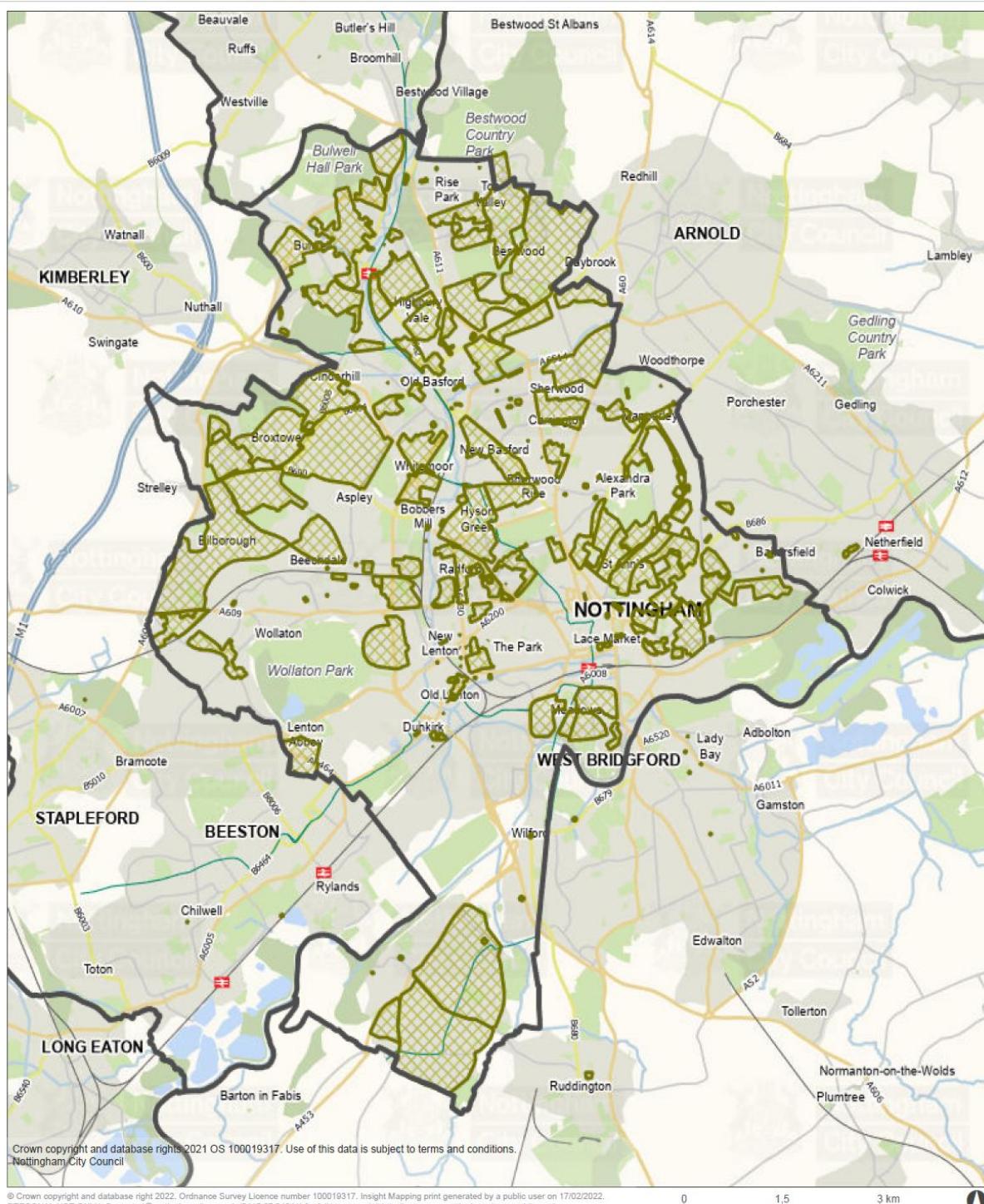
Tier 2. Four postcodes have between 10% and 11% of cases. These were NG5 (Sherwood, Bestwood, Carrington, Top Valley, and Rise Park), NG3 (9% in 2022 and 2023) (Sneinton and St. Anns), NG6 (9% in 2022 and 2023) (Bulwell and Old Basford), and NG2 (City centre, Sneinton, and Meadows).


Tier 3. Postcodes have less than 10% of the cases. These are NG11, Clifton area (5% in 2022 and 2023 and 4% in 2016-2023) NG1 mainly within the city centre area (3%), NG9 Lenton (1%), and NG4 Dale (1%).

There are a small number of cases from outside of the city boundary mostly from adjoining postcodes adjacent to the boundary (NG16, NG15, NG17, NG10, NG18, NG13, NG20, NG12, NG14, and NG21). Some of these cases may be accounted by either former addresses of cases moving into the city from county addresses or families living in the county, being referred to the city by a city school. In the latter cases these would be sent to Nottinghamshire County Councils CME team to investigate and closed to city CME (so they are only briefly a city CME case, prior to handover).

Map 1: CME Cases for 2016 - 2023 Showing Deprivation Level

Map 2: CME Cases from NG7 and NG8 with Deprivation Level 2016-2023


One factor influencing the Tier 1 areas is that the NG7 and NG8 postcodes contain a high percentage of properties for rent as shown by overlaying the 'Estates Lettings Areas' shown on Map 3, with case locations shown on Map 2. It is highly likely that there will be a relatively high number of families moving in and out of those 'letting' areas and therefore generating cases of children missing education as families relocate. Moreover, NG7 and NG8 are bordering postcodes close to each other, where family extensions could easily happen across these two postcodes. In Nottingham City, a mixture of cheaper and expensive properties can be located within the same postcode and hence, the stark difference between a wealthy area and a poorer area can be distinctly noticeable just a few streets away (CME NCC meeting 2024/07/25).

NG2 was another area (10% of the cases) which had a high percentage of rental accommodations, (although only parts of NG2 fall within the city i.e. parts of the city centre and the Meadows,).

Another factor may be associated with levels of migration. The locations with high percentages of the CME cases historically also had relatively high numbers of people who had migrated from Europe to Nottingham for employment purposes but have since returned to the country of origin (or previous homeland) after the UK left the EU. There were also people from transient communities, (such as Roma and Travellers) within those areas which contributed to the high rates of family movement.

These cases often have logistical, and technical issues, some of which it will be very difficult to address solely by the CME team as there are root causes that require action by other agencies. For example, when a family is likely to be evicted by a registered social housing provider, the children's schooling needs have to be considered. This may lead to reconsideration of an eviction or, if it's a relocation, then it could be within reach of current school. Similar practices could also be part of processes of assessment within social care, the home office and other welfare services.

Map 3: Letting Area in Nottingham City Council

© Crown copyright and database right 2022. Ordnance Survey Licence number 100019317. Insight Mapping print generated by a public user on 17/02/2022.

PERSONAL USE ONLY. Contact g1@nottinghamcity.gov.uk (0115 87 64341) for full terms or visit <http://geoserver.nottinghamcity.gov.uk/terms/>.

0 1.5 3 km

Key

Districts

Lettings Areas (Estates)

Description

No description provided

2.4 CME in-year trends by location

Figure 5: Trend of CME Cases by Location for 2016 to 2023

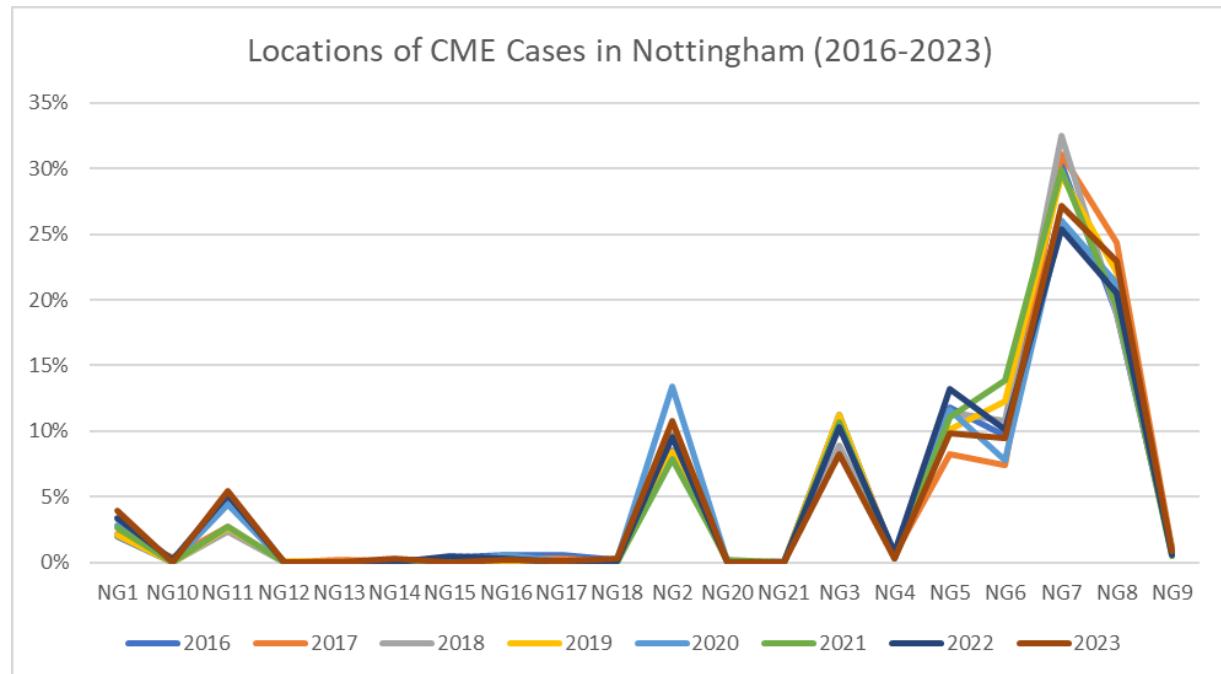


Figure 5 displays the pattern of the CME cases by location for each year (2016-2023) when an extraordinarily consistent pattern has been established in each year. NG7 (25% to 32%) and NG8 (19% to 24%) had the highest percentages of the cases, followed by NG2 (8% to 13%) and NG3 (8% to 11%) with a small percentage of NG11 (2% to 5%).

Figure 6: CME Cases by Location in Nottingham from 2016 to 2023

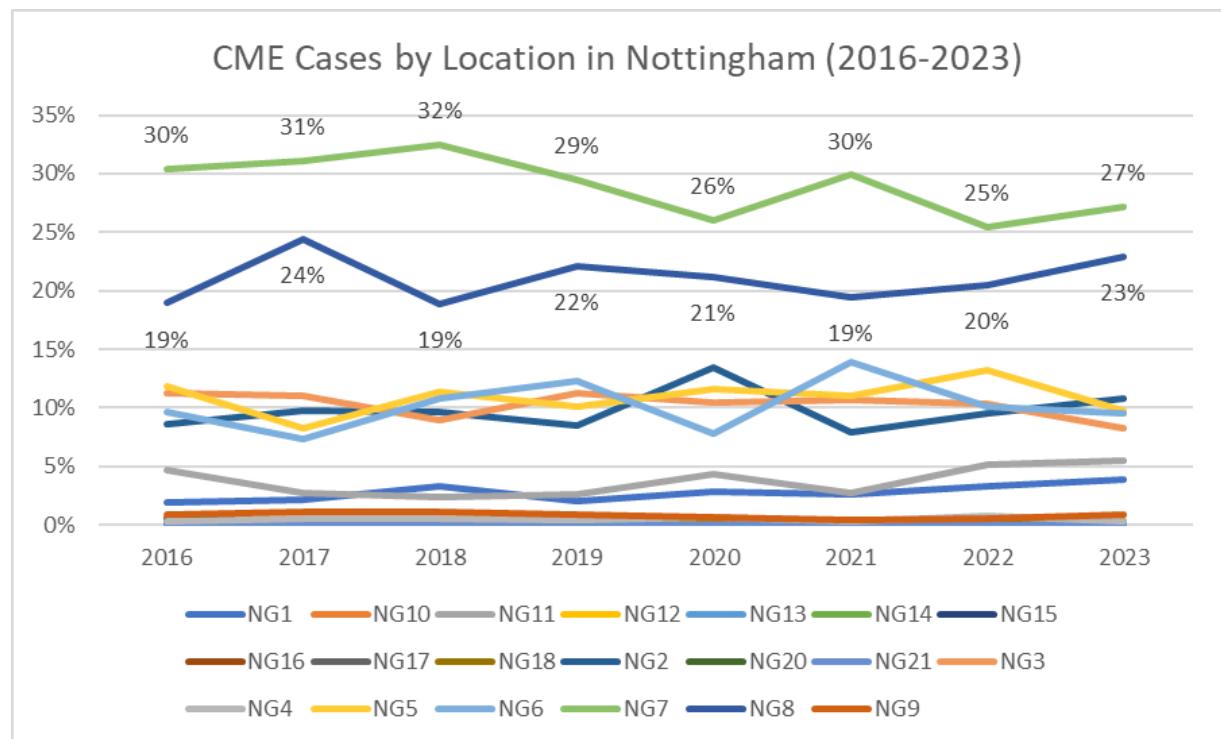


Figure 6 shows the trends in CME cases for each location (by postcode) from 2016 to 2023. Overall, the trend was relatively consistent for all postcode areas throughout 2016 to 2023 with only relatively minor fluctuations over time.

Figure 7: CME Cases by Ward in Nottingham City 2016-2023

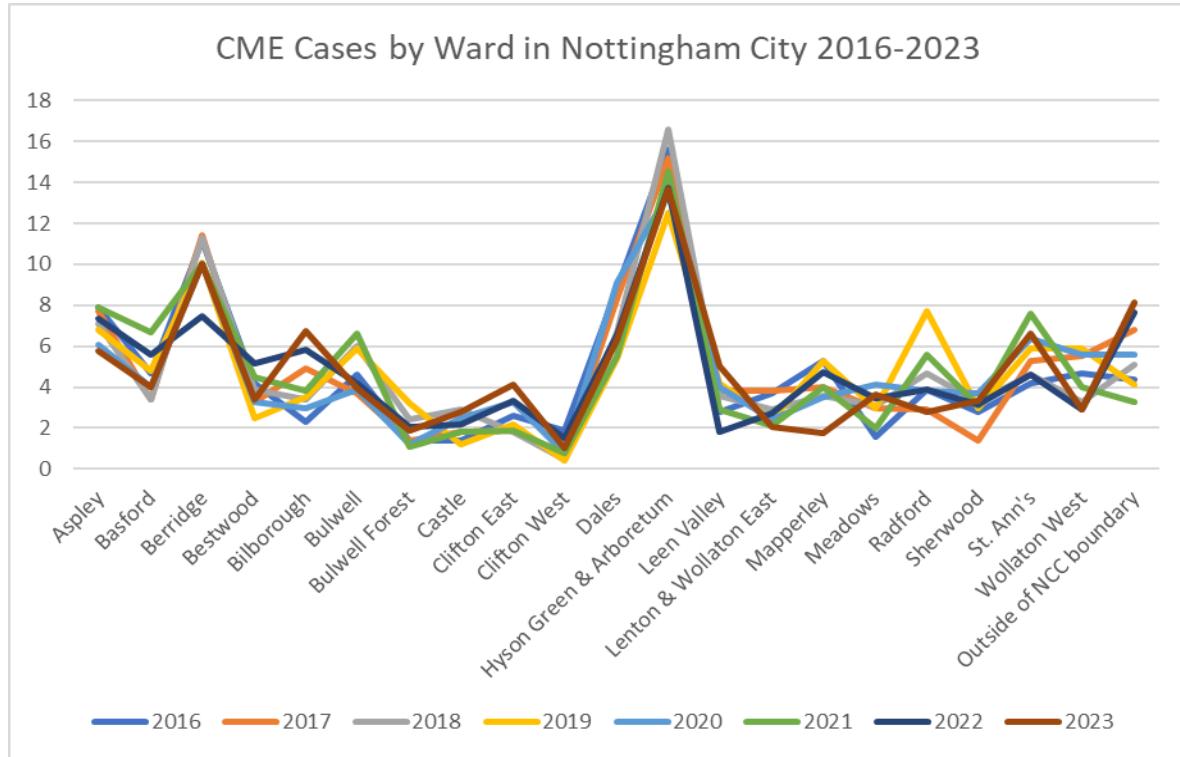


Table 1: CME Cases by Ward in Nottingham City (2016-2023)

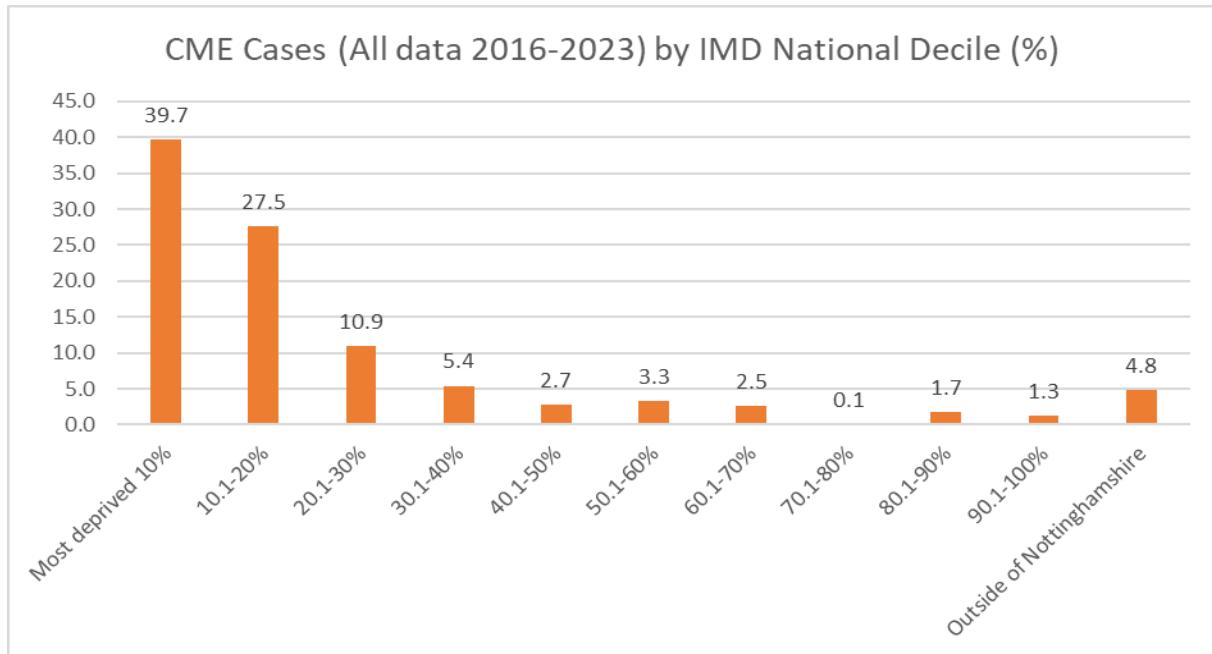
Ward	National Decile	2016	2017	2018	2019	2020	2021	2022	2023
Aspley	Most deprived 10%	7.9	7.7	7.1	6.8	6.1	7.9	7.3	5.8
Basford	10-20%	4.7	3.4	3.4	4.8	4	6.7	5.6	4.0
Berridge	10-20%	11.2	11.4	11.3	10.1	10	10	7.5	10.0
Bestwood	Most deprived 10%	4.2	3.3	3.9	2.5	3.3	4.5	5.2	3.4
Bilborough	Most deprived 10%	2.3	4.9	3.4	3.5	3	3.8	5.8	6.7
Bulwell	Most deprived 10%	4.6	3.7	6	5.9	3.9	6.6	4.2	3.9
Bulwell Forest	10-20%	1.4	1.4	2.4	3.2	1.2	1.1	2.1	1.9
Castle	40-60%	1.4	1.8	2.9	1.2	2.5	1.8	2.2	2.8
Clifton East	Most deprived 10%	2.6	1.9	1.8	2.2	3.3	1.9	3.3	4.1
Clifton West	20-40%	1.9	0.7	0.5	0.4	0.8	0.8	1.5	1.0
Dales	Most deprived 10%	8.8	8.3	6.7	5.4	9.1	5.5	6.6	6.3
Hyson Green & Arboretum	Most deprived 10%	15.6	15.2	16.6	12.5	13.5	14.5	13.7	13.7
Leen Valley	20-40%	2.8	3.8	3.6	4.2	4	2.9	1.8	5.1
Lenton & Wollaton East	20-40%	3.7	3.8	2.9	2.4	2.4	2.1	2.7	2.1
Mapperley	10-20%	5.3	4	3.6	5.3	3.5	4	4.8	1.8
Meadows	Most deprived 10%	1.6	3	3.1	3	4.1	2	3.5	3.6
Radford	10-20%	3.9	2.9	4.7	7.7	3.8	5.6	3.9	2.8
Sherwood	10-20%	2.8	1.4	3.3	3	3.7	3.1	3.1	3.3
St. Ann's	Most deprived 10%	4.2	5.3	4.6	5.9	6.4	7.6	4.6	6.6
Wollaton West	80-100%	4.7	5.5	3.3	5.9	5.6	4	2.9	2.9
Outside of NCC boundary		4.4	6.8	5.1	4.1	5.6	3.3	7.7	8.2
Total		570	1037	981	1084	1045	890	926	967

A similar pattern can be found when looking at the CME cases by ward in Nottingham City from 2016-2023 (Table 1 and Figure 7). Hyson Green & Arboretum, one of the 10% most deprived wards in Nottingham City had the highest percentage of the cases over time and the trend was remarkably consistent. It was followed by Berridge (a 10-20% most deprived ward) having the second highest percentage and Dales and Aspley having the third highest percentage of the cases. However, over the last two years there has been a noticeable rise in the number of cases coming from outside of Nottingham City boundary with an almost 5% increase in 2022 and 2023. This pattern is in line with the increasing number of referrals (Section 3.3) made from other LAs in 2022 and 2023 indicating a greater increase in family migrations into and out of Nottingham City from 2022.

The implications from these very consistent (Figure 5 and 7) and relatively stable patterns (Figure 6 and Table 1) by location (postcode and ward area) are two-fold. It identifies and potentially predicts the areas where the CME cases are most likely coming from, and it provides the CME team and NCC with relatively robust information in terms of workload planning as to which area that work needs to be focussed upon and which schools or communities to prioritise and/or reassess in their resource deployment. This predictable and constant pattern also provides evidence which could help engage local ward counsellors in resolving CME cases in their areas. It also strengthens the case for maintaining the relatively limited resource of the CME workforce at a time when NCC like all Local Authorities are experiencing financial reductions in central government support. This intensive exercise carried out by the collaboration between NBS and the NCC CME team is the sort of proactive approach and prevention strategy that are commended in the recent Children's Commissioner report as one of her recommendations to support children missing education.

2.5 CME and areas of multiple deprivation in the city

Historically, Nottingham City is a city with relatively high and widespread areas of multiple deprivation when compared to other cities in England. In 2019 the BBC reported that it had been named the UK's "poorest city" by government - the fifth time in seven years' (BBC News 2019). This was based upon Office for National Statistics (ONS) figures for gross disposable household income (GDHI).

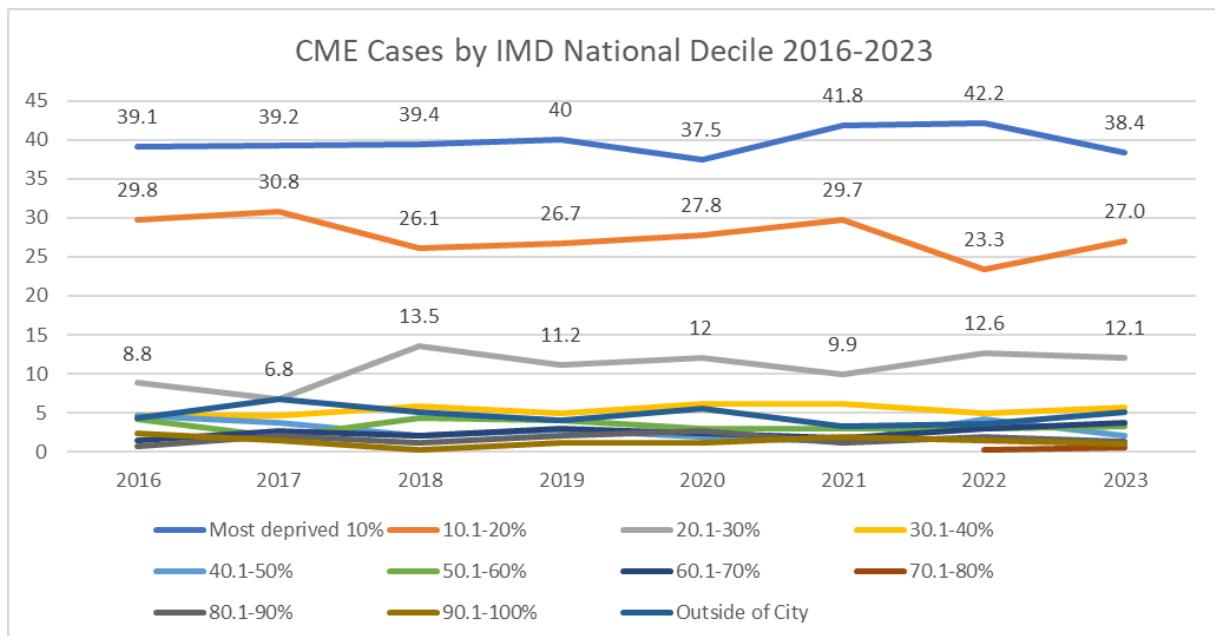

According to the Nottingham Insight Report (2019), Nottingham was ranked nationally as the 15th for the proportion of Lower Super Output Areas² (LSOAs) in the 10% most deprived areas nationally, with less disposable household income, high unemployment rate, low educational attainment, and high university student population. Nottingham has a high concentration of its population living within the most deprived areas. Comparing their Average Scores, Nottingham was ranked the fourth most deprived of the 9 'Core Cities' behind Liverpool, Manchester and Birmingham in England. Figure 8 shows the percentage of CME cases falling

² Lower-Layer Super Output Areas (LSOAs) are a standard statistical geography designed to be of a similar population size, with an average of approximately 1,500 residents or 650 households. There are 32,844 LSOAs in England (Ministry of Housing, Communities & Local Government 2019)

into the areas of the top national decile of the Index of Multiple Deprivation³ (IMD) that are within the city boundary i.e. areas that are amongst the most deprived 10% areas in the country.

Figure 8: CME Cases by IMD National Decile (All cases 2016-2023)

Map 1 on page 6 shows the locations of all CME cases (2016-2023) with red dots in the areas falling within the first most deprived 10% areas, orange dots in the second (10.1% - 20%) most deprived areas, yellow dots in the 20.1% - 40% areas, green dots in the 40.1% - 60%, pink dots in the 60.1% - 80%, and blue dots in the 80.1-100% least deprived areas of the city. 40% of the CME cases (red dots) were from nationally the most deprived 10% areas (40.3% in 2022 and 2023), followed by 28% of the CME cases (orange dots) from the second most deprived 10.1%-20% areas (25.2% in 2022 and 2023) and 11% of the CME cases from the third most deprived 20.1%-30% areas (12.4% in 2022 and 2023) (Figure 8).


A high percentage of the CME cases living in the most deprived areas may not be a surprising finding to local educationalists or to local political representatives in the city. This outcome is also reflected in the findings in the recent Children's Commissioner Report (2024). However, it reinforces the fact that children living in the most deprived households are the ones who most need to be in education and those households are also most likely to have children missing from education.

An analysis of the trends of the CME cases by national decile of IMD areas over time is shown in Figure 9. This demonstrates that to a great extent, there has been a consistent pattern

³ The Index of Multiple Deprivation provide a set of relative measures of deprivation for all areas across England, based on seven different domains, or facets, of deprivation: Income, Employment, Education, Skills and Training, Health and Disability, Crime, Barriers to Housing and Services, and Living Environment Deprivation (Ministry of Housing, Communities & Local Government 2019)

established for the percentages of the CME cases within those areas from 2016 to 2023, with only very few minor fluctuations in some years.

Figure 9: CME Cases by IMD National Decile (2016-2023)

The results clearly evidence that the majority of the CME cases are associated with households living within nationally the most 10% deprived and the 10.1% - 20% deprived areas within the City Council boundary and this has remained unchanged over the last seven years.

While the CME teams experience is that there are some cases or families where an historical culture of transience and low school attendance is regarded as 'normal', the majority seek stability; they want to settle, build roots and have their children attending a local school. They generally move because circumstances force them to move, for example due to circumstances such as eviction, family break up or unresolved problems within the neighbourhood.

It should however be noted (as it is clearly exacerbating the issue) that the annual Local Government Financial Settlement from Central Government, which provides financial support from central government to local service provision, has significantly and progressively reduced the consideration of 'multiple deprivation' since 2013.

Changes to the HM Treasury model for distributing the Local Government Financial support from central government effectively 'locked in' the structure and pattern of distribution of central government revenue support to local authorities, based on the pattern of distribution at 2013 (Amin-Smith 2019). This meant that the already suboptimal and regressive Council Tax would inevitably become more regressive and unfair over time, as it would not react to changing circumstances (Ogden & Phillips 2020).

By 2016 the UK government accepted that major parts of the calculation were inadequate and unfair, and the "Fair Funding Review" was established with CIPFA and the LGA committed

to seek a new mechanism based upon an up-to-date assessment of authority's relative needs and resources (Sanders 2021). By 2018, the government agreed that the three core components or 'cost drivers' of any new model should 'population', 'deprivation' and 'sparsity', together with additional cost drivers related to specific individual local authority services (Sanders 2018). Six years after acknowledging the need to fundamentally change the model for distributing central government support to local areas, there has been no substantial change and the recent government's policy statement on local government finance (MHCLG 2024) has exposed what the IFG refers to as difficult distributional issues as it relies purely on redistribution of funding between authorities and a one-off £600m "Recovery Grant" (Hoddinott 2024).

2.5.1 The Rate of CME cases by population

This section examines the rate of CME cases by population in City Council ward areas. To compare CME cases within the population for different sizes of age groups, we have used the number of CME cases per 1000 population. As reported in our first report the population data by ward and for single years was only available for 2017 and for 2020. Therefore, the calculation was only applied to these two years to look at the rate of CME cases in each ward of NCC. For the CME cases, the age groups were defined by the national curriculum year for this project.

Table 2: The Rate of CME Cases Per 1000 Population by Wards in NCC

Ward	2017				2020			
	Aged 0 - 4	Aged 5-9	Aged 10-14	Aged 15-19	Aged 0 - 4	Aged 5-9	Aged 10-14	Aged 15-19
Aspley	0	13.50	24.97	3.88	0.59	12.88	15.06	4.08
Basford	0	6.30	21.92	5.55	0.00	16.08	17.77	2.75
Berridge	0	18.21	73.10	20.57	0.00	36.19	45.24	8.90
Bestwood	0	6.21	19.80	3.86	1.49	6.14	16.12	4.79
Bilborough	0	14.03	24.29	4.34	0.00	8.03	10.51	6.73
Bulwell	0	10.52	20.81	2.02	0.80	10.86	18.85	3.99
Bulwell Forest	0	1.20	13.18	5.83	1.23	6.13	7.29	1.47
Castle	0	44.44	80.88	2.97	0.00	76.92	71.43	3.52
Clifton East	0	4.24	11.64	2.91	0.00	14.05	9.45	5.63
Clifton West	0	5.54	8.53	0.00	0.00	3.35	6.04	2.69
Dales	0	18.67	47.86	14.07	0.80	20.94	43.67	16.22
Hyson Green & Arboretum	0	34.43	89.45	7.84	0.00	34.88	62.39	7.38
Leen Valley	0	11.44	30.45	22.49	0.00	18.55	31.16	14.68
Lenton & Wollaton East	0	20.58	51.06	0.74	0.00	18.27	26.75	0.22
Mapperley	0	16.91	18.83	8.99	1.07	19.78	14.14	3.62
Meadows	0	12.05	27.50	14.33	0.00	26.52	29.80	10.35
Radford	0	15.69	49.87	1.46	0.00	35.92	34.84	1.95
Sherwood	0	2.17	11.55	2.36	0.00	14.05	15.77	2.15
St. Ann's	0	12.04	39.28	2.91	0.00	28.31	39.02	4.49
Wollaton West	0	14.97	27.03	18.92	2.22	26.79	22.09	3.41
City total	0	13.03	32.30	5.80	0.46	18.75	24.56	4.52

Table 1 shows the rate of CME cases of different age groups in each ward. There was no CME case for 0-4 years group in 2017 and only a few CME cases (a small rate) in 2020.

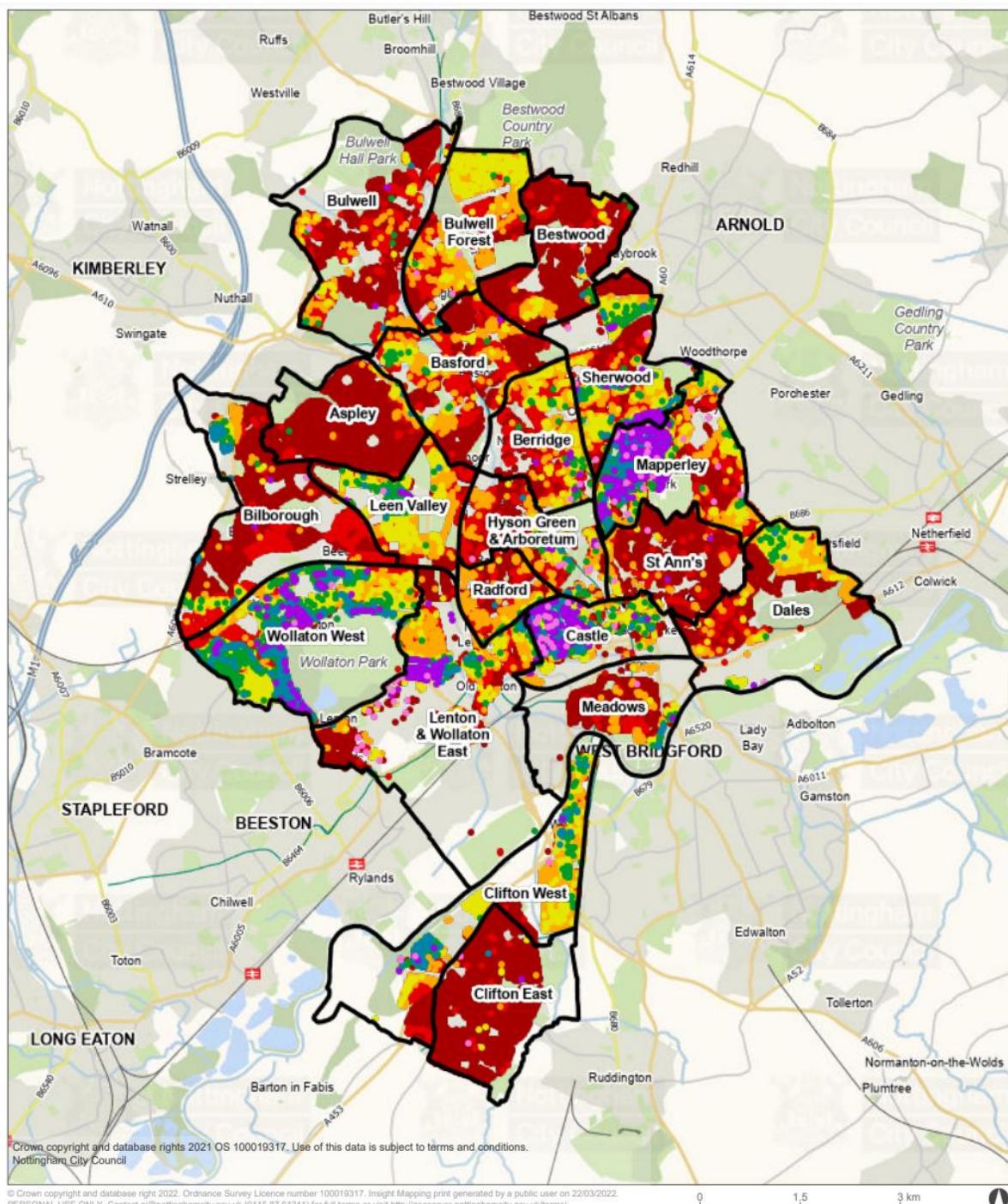
For the **5-9-year age groups**, in 2017 the CME city average rate was 13.03 per 1000 children in those ages and the top three wards with the highest rates were in three wards, namely Castle, Hyson Green & Arboretum, and Lenton & Wollaton East. In 2020, the CME city average rate for this year group was 18.75 per 1000 children: a higher rate than in 2017. The top three wards with the highest rates were Castle (a substantially higher rate of 76.92 per 1000 compared to 44.44 per 1000 in 2017), Berridge and Radford, closely followed by Hyson Green & Arboretum.

For **10-14-year age groups**, the CME city average rate in 2017 was 32.30 per 1000 children population. The top three wards with the highest rates were Hyson Green & Arboretum, Castle and Berridge. In 2020, the CME city average rate was 24.56 per 1000 children, lower than that in 2017. The top three wards with the highest rates were Castle, Hyson Green & Arboretum and Berridge, all with a lower rate as compared to that in 2017. The results indicate that the 10-14 years group had a higher CME rate per 1000 compared to the younger age groups and this may reflect the results shown in the section of the National Curriculum Year as this relates to the transition period from primary to secondary school in the city at this age.

The compulsory school leaving age in UK is 16 (NCY 11) so included in the 15-19 years group, are older teenagers (17-19 years old and some who are not yet 16) who will not necessarily be the responsibility of the local authorities and the children missing from education team. The statutory school age is from the first school term after a child is five until the 3rd Friday in June in year 11. After this time (whatever the precise age) they are outside of compulsory schooling and the scope of this project, and they are not therefore included in the CME database for this project.

It is clear therefore that the rates and inferences for this age group (15-19) will not be as robust as those for other age groups, for the reason that the City Ward 15-19 population included the 17-19 years olds but not the CME dataset for this project.

The CME city average rate in 2017 was 5.8 per 1000 children, much lower as compared to the other age groups. The top three wards with the highest rates were Leen Valley, Berridge and Wollaton West. In 2020, the CME city average rate was 4.52 per 1000 children and the top three wards with the highest rates were Dale, Leen Valley and Meadows. The wards with high rates in this age group were therefore different from those for the younger age groups.


In general, Berridge, Castle and Hyson Green & Arboretum were the three wards with high CME rates. When referring to Map 1 (on page 7) and Map 3 (on page 10), Berridge and Hyson Green & Arboretum were the two wards within the NG7 postcode area with a high concentration of CME cases and letting properties (Estates Lettings Area). This provides evidence to support engagement with local ward councillors aimed at further reducing CME cases in these ward areas.

Although Castle ward also had high CME rates for the age groups of 5 to 9 year-olds and 10 to 14 year-olds, it is also the ward with the least number of 5 to 9 year-olds population (135 in 2017 and 130 in 2020) and 10 to 14 year-olds (136 in 2017 and 168 in 2020) population in Nottingham City. The high rates are possibly due to the concentration of hotel

accommodation in the area being used as a temporary address to accommodate families of refugees and asylum seekers short term.

Moreover, the ward areas of Lenton & Wollaton East and Wollaton West also appeared to have some high CME rates in different age groups. This may be influenced by the two universities, one with a medical school, which are close to these two wards and that the academic and medical professionals with relatively high incomes which historically are likely to move in and out of these areas. Map 4 shows the Residential Properties by Council Tax Band and shows residential properties with the high council tax band (E, F, and G) are concentrated in the areas of Lenton & Wollaton East and Wollaton West. The advantages of proximity and better housing, suggests these areas are likely to be appealing to these professionals.

Map 4: NCC Residential Properties by Council Tax Band

Key

Ward Labels

Wards

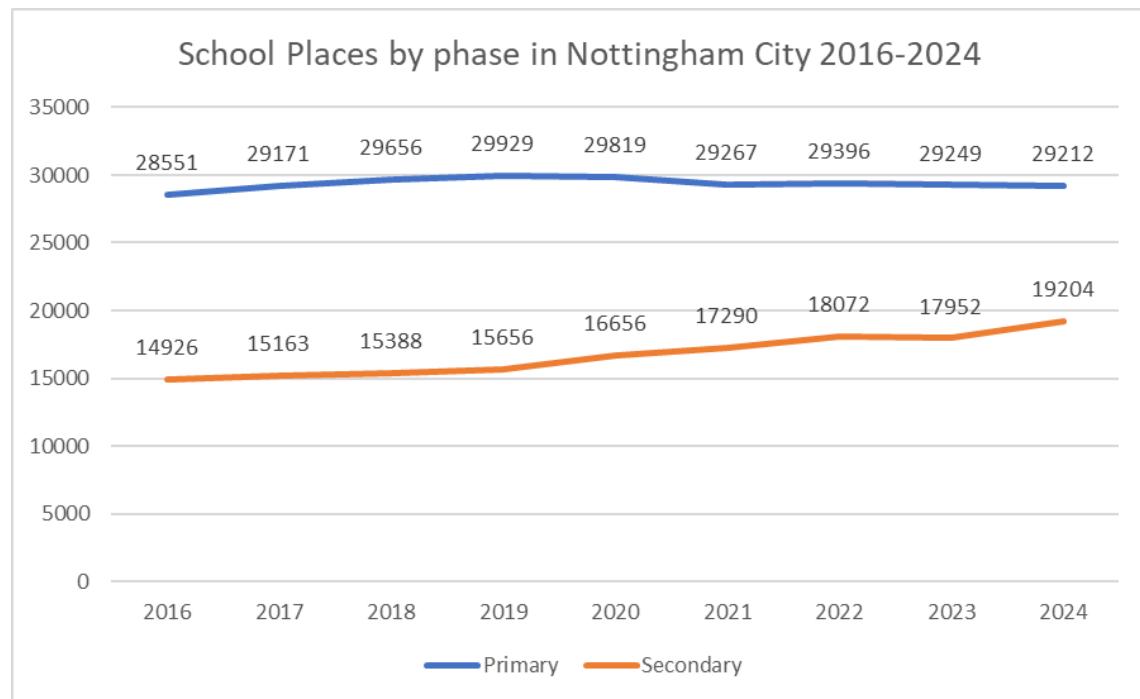
Residential Properties by Council Tax Band

- A A
- B B

- C C
- D D
- E E
- F F
- G G

Description

No description provided



Nottingham
City Council

2.5.2 School places analysis

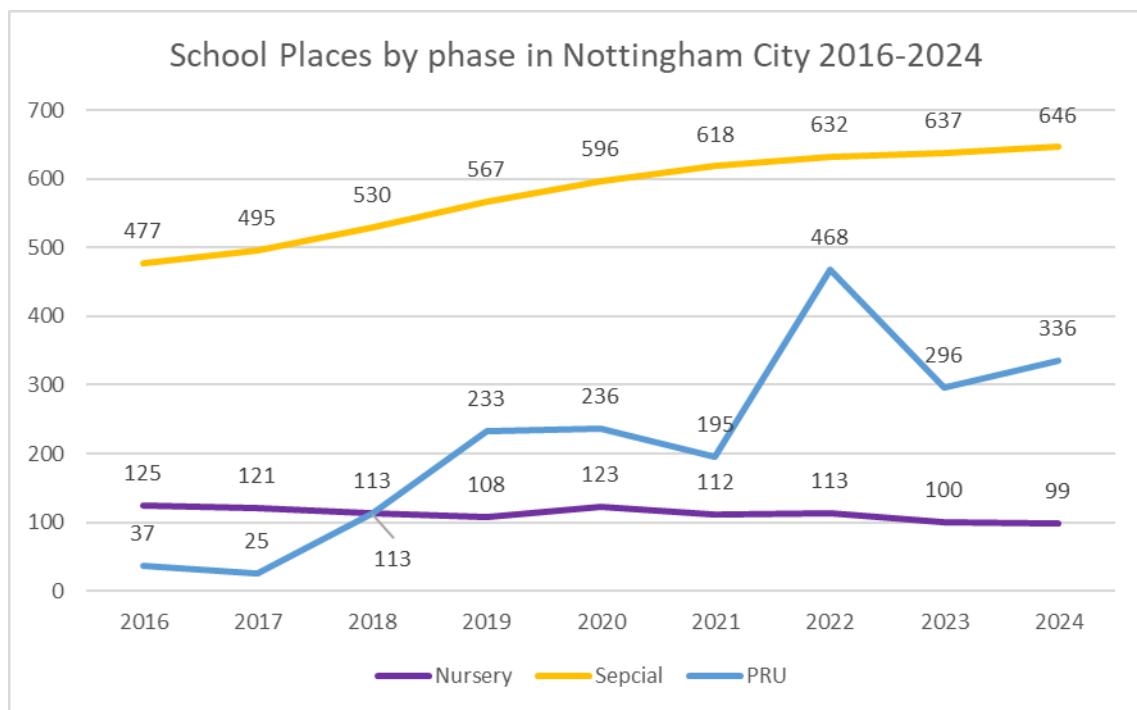

Additionally, in this follow-up project, we examined for the first time, the trends in the number of school places over time from 2016 to 2024 in Nottingham City to explore whether a shortage of school places is a contributing factor to CME cases, particularly at Secondary School phase. This issue was raised during a discussion with the NCC, CME officers. They acknowledged that the shortage school places had become a national issue that was also affecting Nottingham most notably at secondary school level, with schools already having over 30 children in each group on their waiting lists.

Figure 10: School Places (Primary and Secondary) in Nottingham City (2016-2024)

Figures 10 and 11 show the trends of the school places by phase in Nottingham City from 2016 to 2024. Number of school places at nursery and primary phase remained stable over time. There was a 29% increase in school places at secondary phase and 35% increase at special schools. The biggest increase in school places was in the Pupil Referral Unit (PRU), the alternative education provision. Although there was an increase at secondary phase over time, NCC is still under pressure to expand the capacities for the often-oversubscribed secondary school places (Nottingham Post 2024).

Figure 11: School Places (Nursery, Special and PRU) in Nottingham City (2016-2024)

The 5 years hence shortage of the secondary school places, anticipated by the Local Government Association in 2018 was based on a surge of the population in primary schools; it was forecasted that 71 councils would not be able to meet the demand of almost 14,000 secondary school places by 2023/2024 (LGA 2018).

Table 3: NCC School Places by Ward comparison between 2016 and 2024

Grand total	2016-2024			No of school	
	Primary	Secondary	All	2016	2024
Aspley	-96	0	-96	2	2
Basford	140	-46	94	5	5
Berridge	253	947	1200	5	6
Bestwood	106	0	106	5	5
Bilborough	293	440	779	11	12
Bulwell	-233	137	-96	7	7
Bulwell Forest	-126	204	78	6	6
Castle	0	0	-28	1	
Clifton East	-18	225	279	8	8
Clifton West	60	0	60	2	2
Dales	-232	-592	-824	5	5
Hyson Green & Arboretum	-117	0	133	4	6
Leen Valley	-2	166	194	6	7
Lenton & Wollaton East	-60	690	709	4	5
Mapperley	-18	702	684	3	4
Meadows	48	0	46	4	4
Radford	205	0	179	3	3
Sherwood	-110	0	-110	4	4
St Ann's	247	0	268	7	7
Wollaton West	368	1199	1567	3	4
Outside of NCC	-47	206	159	3	3
Total				98	105

Hyson Green & Arboretum, Berridge, Dales and Aspley were the wards where most of the CME cases were located (see Table 1). Simply comparing the number of the school places within the ward areas, Table 3 reveals no secondary school places and a slight decrease in primary school places from 2016 to 2024 in Hyson Green & Arboretum and Aspley and both wards are in the most deprived bottom 10% areas of multiple deprivation. A better situation was experienced in Berridge, where there were 1,200 more school places in 2024 compared to that in 2016. However, there was a decline in both primary and secondary school places in Dales, the worst ward in NCC. Wollaton West had the biggest increase in school places with 1,567 more school places in 2024, the biggest increase in the number of school places at both primary phase and secondary school phase. This ward is within the least deprived area of the city.

Table 4: NCC School Places by Postcode comparison between 2016 and 2024

Grand total	2016-2024			No of school	
	Primary	Secondary	All	2016	2024
NG1	0	0	-28	1	0
NG11	42	225	339	10	10
NG2	43	-438	-397	10	10
NG3	2	702	725	10	11
NG5	-131	1442	1311	18	18
NG6	-84	91	7	13	13
NG7	314	451	1068	12	16
NG8	475	1805	2356	24	27
Total				98	105

Table 4 presents a different picture when examining the school places by postcode. In section 2.3, we mentioned that 50% of the CME cases were located within the NG7 and NG8 areas and both areas saw an increase in school places (both primary and secondary) and more schools being established by 2024, particularly in NG8 with 2,356 more school places, the biggest increase when compared to the situation in 2016. Referring to the analysis by ward, in NG8, the wards which saw the big increase in school places were located in Bilborough, Leen Valley and Wollaton West, among the least deprived wards in the city. It is also notable that there was a significant increase in secondary school places in NG5 with 1,442 more secondary places in 2024, accompanying the largest (albeit much smaller) drop in primary places.

3. Analysis of the characteristics of CME Cases in Nottingham City.

3.1 CME Cases by Gender

Figure 12: CME Cases by Gender 2016-2023

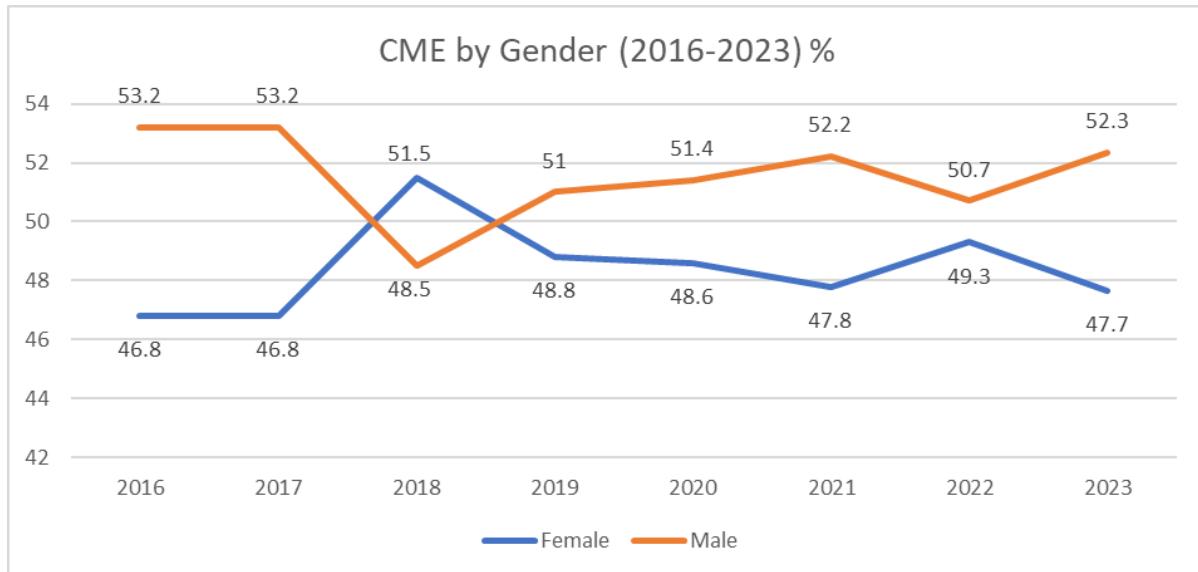
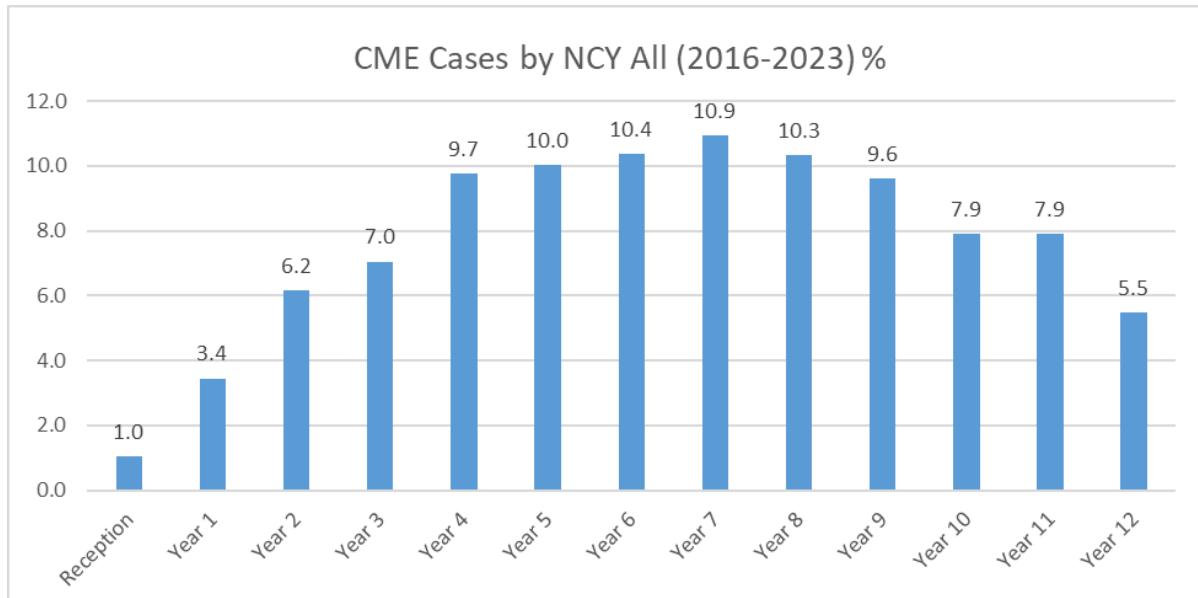



Figure 12 shows the trends of the percentage of cases by gender over time in both phases of the study. Overall, there has been a fairly even distribution of male (51.5%) and female (48.5%) CME cases in the City. Generally, the patterns were stable and show that there were slightly more male CME cases, apart from in 2018 where there was an increase in female CME cases. The results indicate that the pattern of children missing from education are not gender based but are more likely to be associated with family situation and family composition.

3.2 CME Cases by National Curriculum Year

Figure 13: CME Cases by National Curriculum Year (NCY All) 2016-2023

Examining CME cases by the distribution of the National Curriculum Year (NCY), Figure 13 shows a 'bell shape' distribution, reaching its peak in Year 7 (10.9%) with relatively high percentages between Year 5 to Year 8 with all data from 2016-2023.

Figure 14: Trends of CME Cases by NCY Yearly (2016-2023)

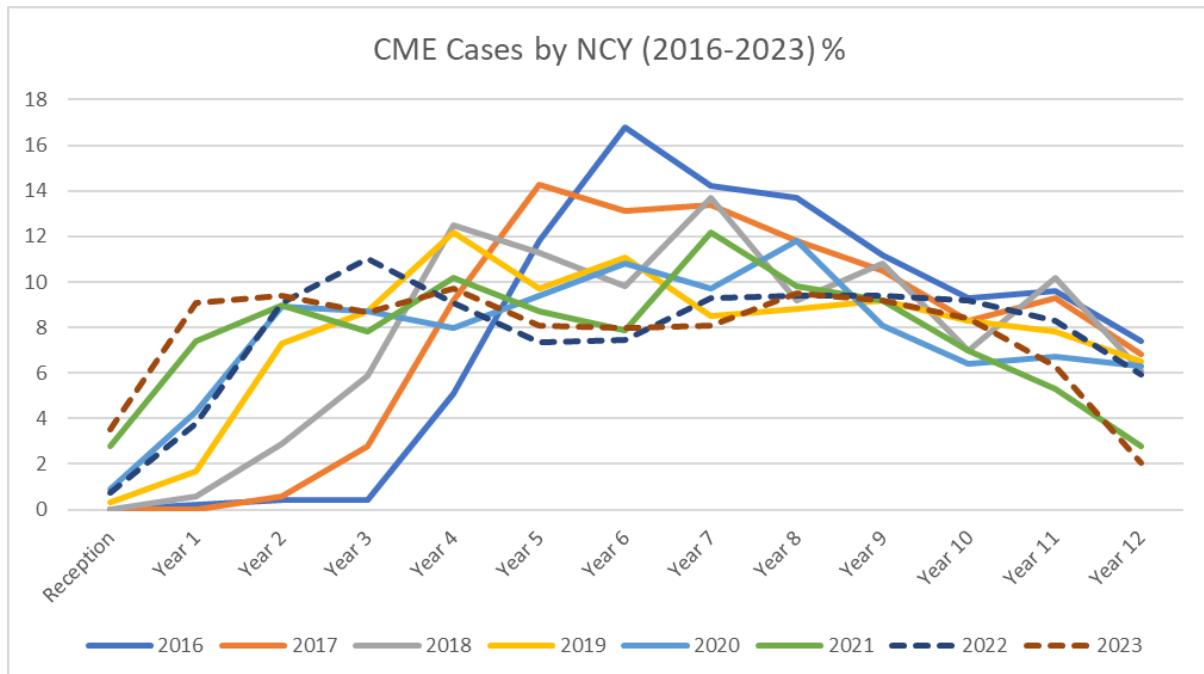
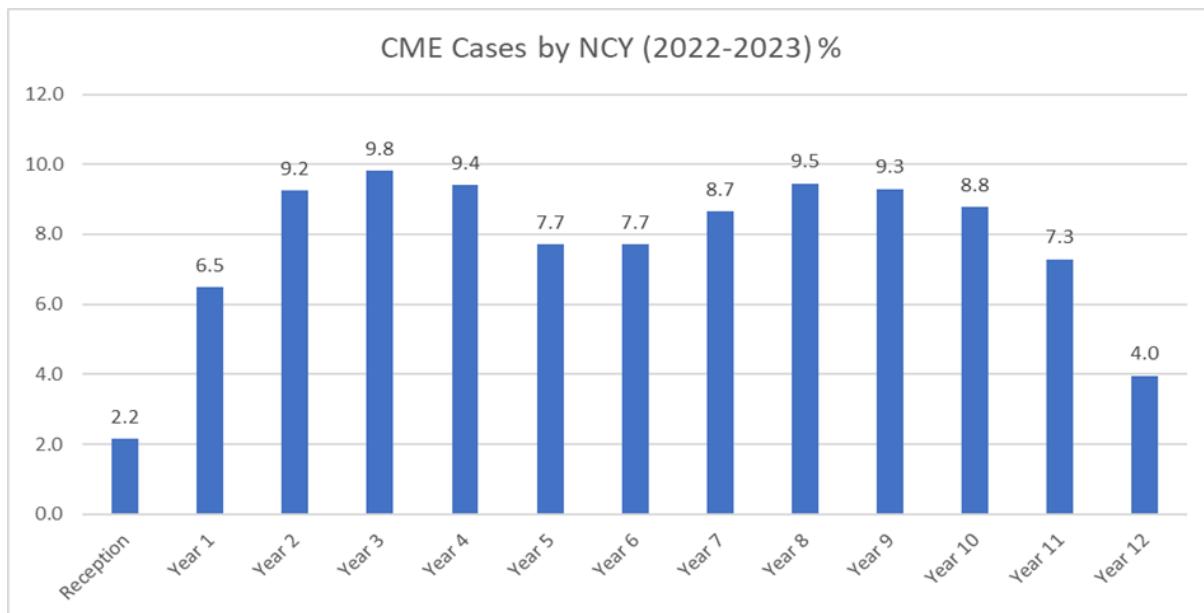
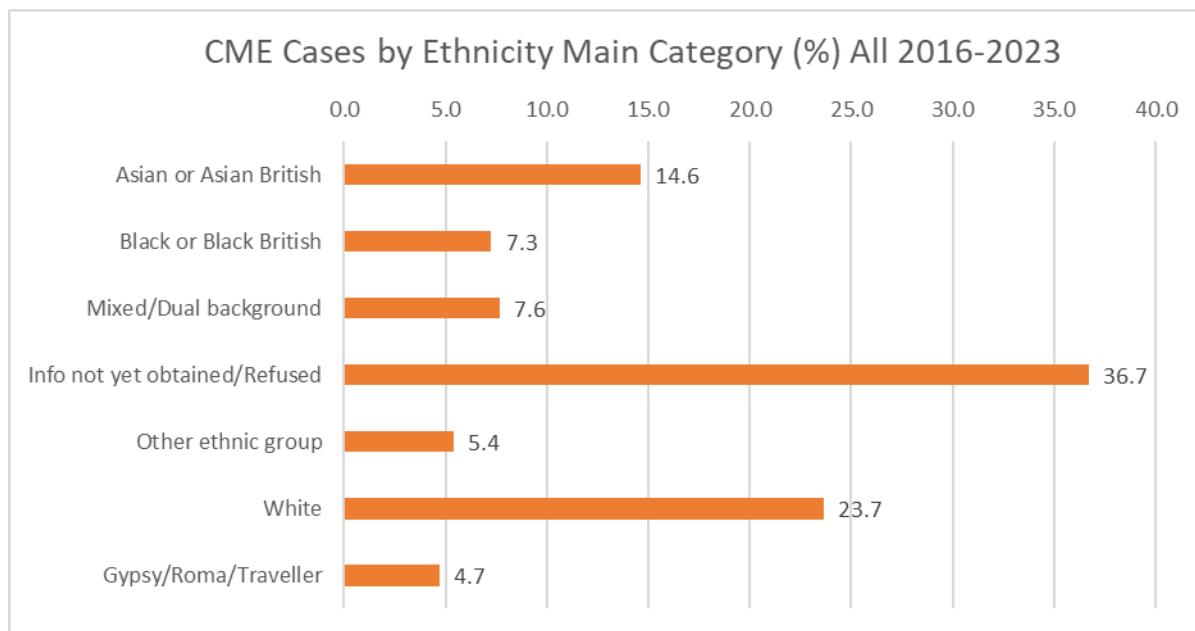



Figure 15: CME Cases by National Curriculum Year (NCY) 2022-2023


Looking at the annual patterns of CME cases by NCY over time from 2016 to 2023, however reveals a different trend established in the 2022 and 2023 data (Figure 14 and Figure 15). Unlike the trends found between 2016-2021, the 2022 and 2023 data demonstrated two peaks: one between Year 2 and Year 4 and the other one between Year 7 and Year 10.

The increase in the younger year groups was acknowledged in the previous project report where we stated that it was an area where more investigation was needed and at the least suggested a need for continuous monitoring on the development of the CME cases for these year groups. However, the increase in the older year groups is a new finding to the CME team. The CME team suggested that two possible factors might be part of the reasons for the different trend in 2022 and 2023. For the increase in the younger groups, some external factors might be the reasons. Firstly, as the timeline was coincident with COVID period, some young children might be overly anxious about starting school or returning school due to a lack of experience in socialisation at an early age after spending more time at home with parents. The non-attendance could lead to CME referral if schools failed to communicate with the families to understand such circumstances. Some studies (Hamilton 2024; Lester and Michelson 2024) also confirmed the concerns of some primary and secondary school pupils' long absence and the anxiety of returning school after the pandemic and recommended some strategies for education leaders to support students back in the school environment. Secondly, as Nottingham city is one of the larger hubs for asylum seeker families in the East Midlands, there has been an increase in these types of families coming in and leaving Nottingham City. Informally, according to the NCC CME officers' experiences, asylum-seeking families tend to have younger children. As these families are disproportionately transient, this could be one of the contributing factors to the increasing trend.

For the increase in the older year groups, this might be due to parental choice as NCY 10 and 11 are crucial years for their children to obtain qualifications but changing one school to another during NCY 10 and 11 can be problematic and destabilising, especially if schools following different curriculum. Transferring children to a different school during NCY 7, 8 or 9 might be less destabilising. It also could be that parents were finding it more difficult to register their child at a new school as at times, the school waiting lists were long and children were waiting months for a new school to start their education, particularly in the secondary school phase where school places are scarce.

3.3 CME Cases by ethnicity

Figure 16: CME Cases by Ethnicity Main Category (%) All 2016-2023

It is now mandatory to provide the information of CME's ethnicity on the referral form after the referral process has been digitised, which is a new development since the completion of the first project. When examining the distribution of the CME cases among different ethnicity groups using the ethnicity main category with all data from 2016 to 2023, Figure 16 reveals that 36.7% (the highest percentage) of the CME cases still fell into the category of *Information not obtained/Refused*. The *White* ethnic background had the second highest percentage (23.7%) of CME cases, followed by 14.6% (the third highest) of the CME cases from the *Asian or Asian British* ethnic background. A more detailed breakdown of ethnicities produced with the use of the Department of Education's main codes can be found as Appendices 2 and 3 to this report.

Table 5: School Census: Pupils' Ethnicity from 2020/21 to 2023/24

	2020/21	2021/22	2022/23	2023/24
Asian	18.4	18.9	20.1	21.3
Black	11.9	12.3	12.9	14.2
Mixed	13.7	13.8	13.8	13.7
Unclassified (Information not yet obtained/Refused)	2.1	2.1	2.0	1.8
Other ethnic group	3.3	3.7	3.8	4.0
White	50.1	48.3	46.5	44.2
Gypsy/Roma/Traveller	0.7	0.8	0.8	0.8

The CME team suggested that providing information relating to their ethnicity remained challenging for some ethnic minorities, particularly if they had previous unpleasant experience of revealing their ethnicities. We will discuss other reasons contributing to the

high percentage of *Information not yet obtained/Refused* later when looking at the trend of the CME ethnicity yearly.

When compared to the results of the School Census in 2023/2024, the gap was substantial (Table 5). In the school census for Nottingham City, the categories of *Information not yet obtained* and *Refused* were replaced by *Unclassified* and there was only 1.8% of pupils categorised as *Unclassified* in the school census, with 44.2% of *White* (the highest percentage in the school census) and 21.3% *Asian* (the second highest percentage) (GOV.UK 2024). This suggests that more research and information are clearly needed to understand the reasons and barriers to obtaining children's ethnicities from the families of CMEs, but this is outside of the scope of this project.

The experience from the CME team suggests that cases from the *White* ethnic background predominantly could be resolved more quickly. In contrast, CME cases from ethnic minorities appeared to be more difficult to track and trace, sometimes with the added complication of communication issues. Some cases "are due to the family returning to their former country of residence and there are countries where it can be very difficult to establish which school their children are attending in that country, particularly if the country discourages the use of e-mail communication or the schools have very limited access to technology". Nevertheless, it remains the duty of the CME team to identify all children who were missing from school and help them back to education regardless of where they were from or what their ethnicities are.

Figure 17: Trends of the CME Cases by Ethnicity Main Category from 2016 to 2023

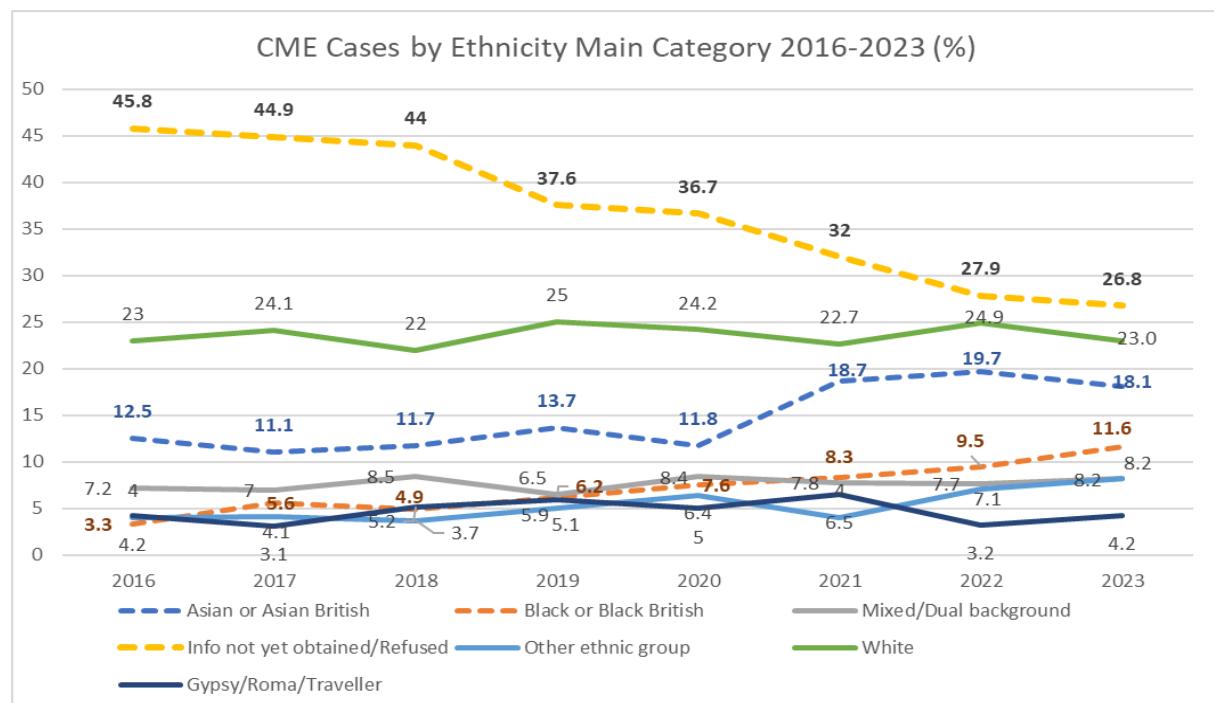
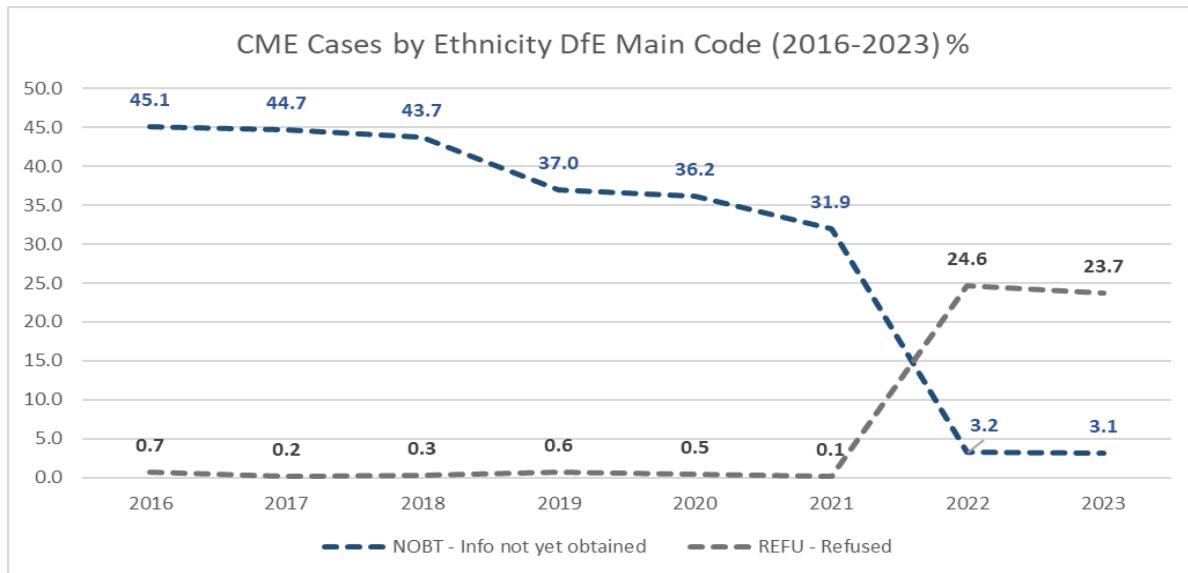



Figure 17 explores the trends of the ethnicity groups yearly from 2016 to 2023. It demonstrates that although the percentages for the *Information not yet obtained/Refused* group remained high, there was a significant decrease of nearly 20% (from 46% to 26.8%) between 2016 and 2023 in this group. This shows a continuously improvement in the

recording of ethnicity information for the CME cases. The percentages for the *Asian or Asian British* increased noticeably (almost a 7% increase) from 2020 to 2021 and remained steady from 2021 to 2023. The percentages for the *Black or Black British* increased gradually overtime, reaching an 8% increase between 2016 and 2023. The trends for other ethnic groups stayed relatively stable with small fluctuations overtime.

Figure 18: CME Cases by Ethnicity DfE Main Code (NOBT and REFU) yearly (2016-2023) %

An interesting pattern was observed in 2022 and 2023, when we examined the detailed ethnicity codes (Figure 18 and Appendix 3). The percentages for the *Information not yet obtained* decreased dramatically from 31.9 % in 2021 to only 3.2% in 2022 and 3.1% in 2023. On the other hand, the percentages for *Refused* code increased radically from 0.1% in 2021 to 24.6% in 2022 and 23.7% in 2023. The results for these two codes seemed to switch. One possible explanation could be that as the CME referral process has become digitised and the referrers must specify ethnicity to continue, therefore, it seems that the *Refused* code is the likely option for the referrers to choose from to progress the form. This suggests that the CME Team need to keep monitoring while communicating with the referrers. Another possible explanation could also be that the families seeking asylum refused to give out the ethnicity information due to suspicions about how the ethnicity information might be used and whether it could be used against them in some way. Staff from the agencies often help the asylum-seeking families with completing the school application forms, and perhaps sufficient reassurance and explanation were not provided by the staff during the process. To improve the situation, it is crucial for the staff to assure the families that the information regarding ethnicity will not be used for different purposes.

The local authority has been providing training workshops to schools to raise awareness of the importance of the quality of data collected and recoding of ethnicity, as well as the process being digitised. Although the trend is encouraging, it also indicates the amount of work that still needs to be done to approach the standard established by the school census. To continuously improve the quality of information relating to ethnicity, NCC has to engage and generate 'ownership' from schools, education establishments and relevant agencies to

consciously act to collect the information regarding children's ethnicities, whether it was in the initial meeting of completing school applications or admissions, or when children commenced their schooling at the school or establishment.

3.4 CME Cases by referral base

This section examines the CME cases by the origin of the referral, distinguishing the types of schools making the referral.

Figure 19: CME Cases by Referral Base and School Type (All)

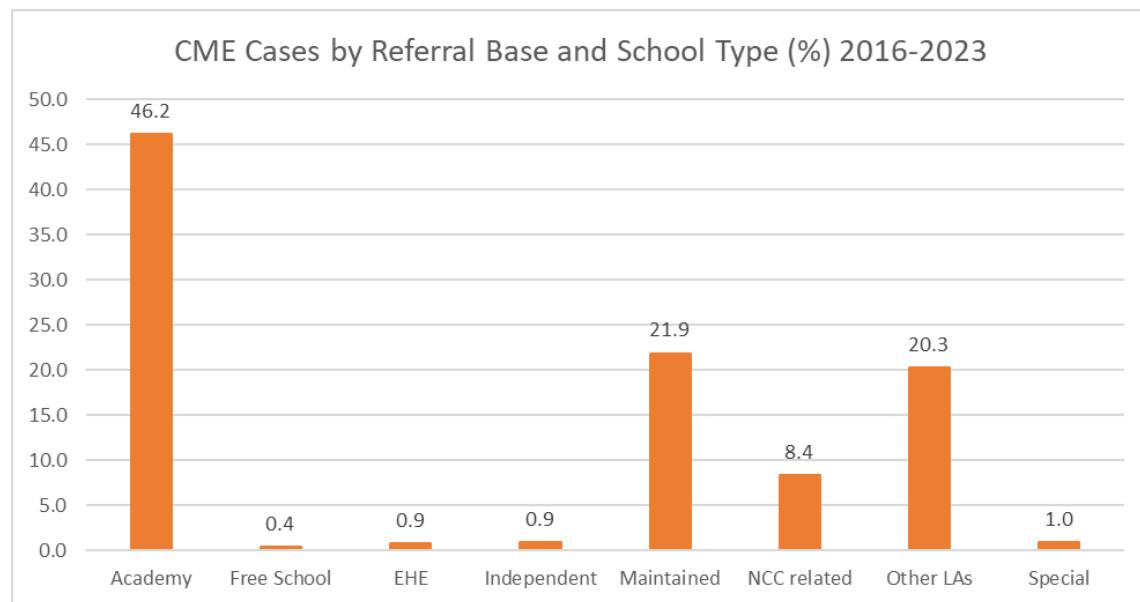


Figure 19 shows that there was a wide range of sources referring children who might have missed full-time education to the NCC, CME team for investigation from 2016 to 2023. 46.2% of the CME cases were referred by the Academy schools, followed by 21.9% by NCC maintained schools (community schools), 20.3% by other local authorities related sources, such as CME teams, children's centres and health centres, along with 8.4% NCC related sources, for example NCC internal teams, private nursery and early years provisions, health provisions and customer hubs. Much smaller numbers came directly from independent or special school or those from Elected Home Education (EHE).

Figure 20: Schools in Nottingham City by type of establishment % (data as June 2024)

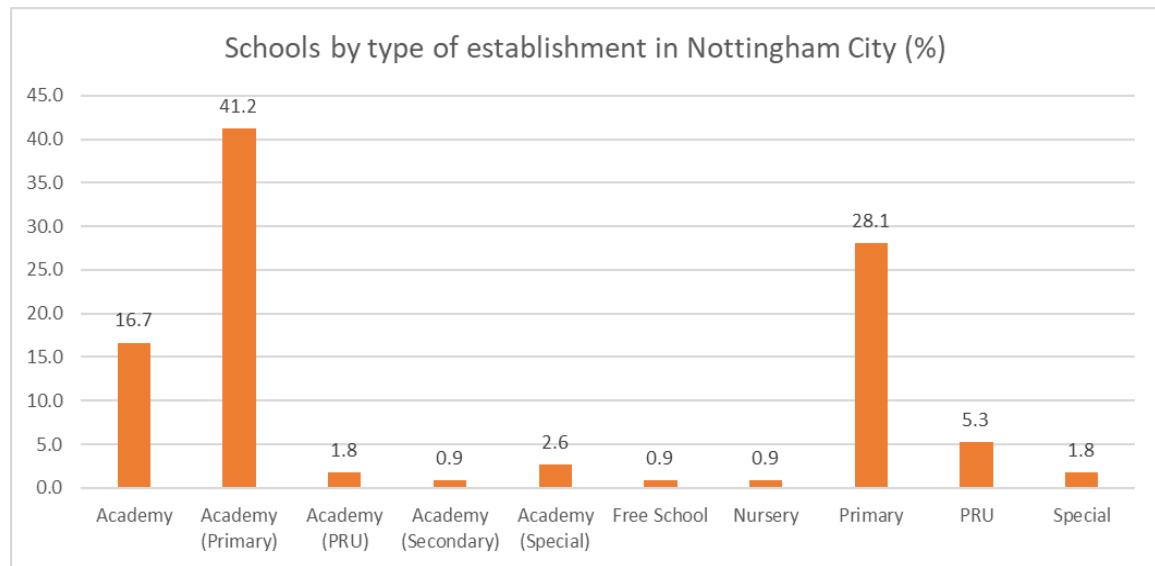


Figure 20 shows that in Nottingham City Council, out of total 116 schools, more than 60% of the schools were academy type of schools. Therefore, it could be anticipated that about half of the CME referral would have come from Academy schools.

Figure 21: CME Cases by Referral and School Type (2016-2021)

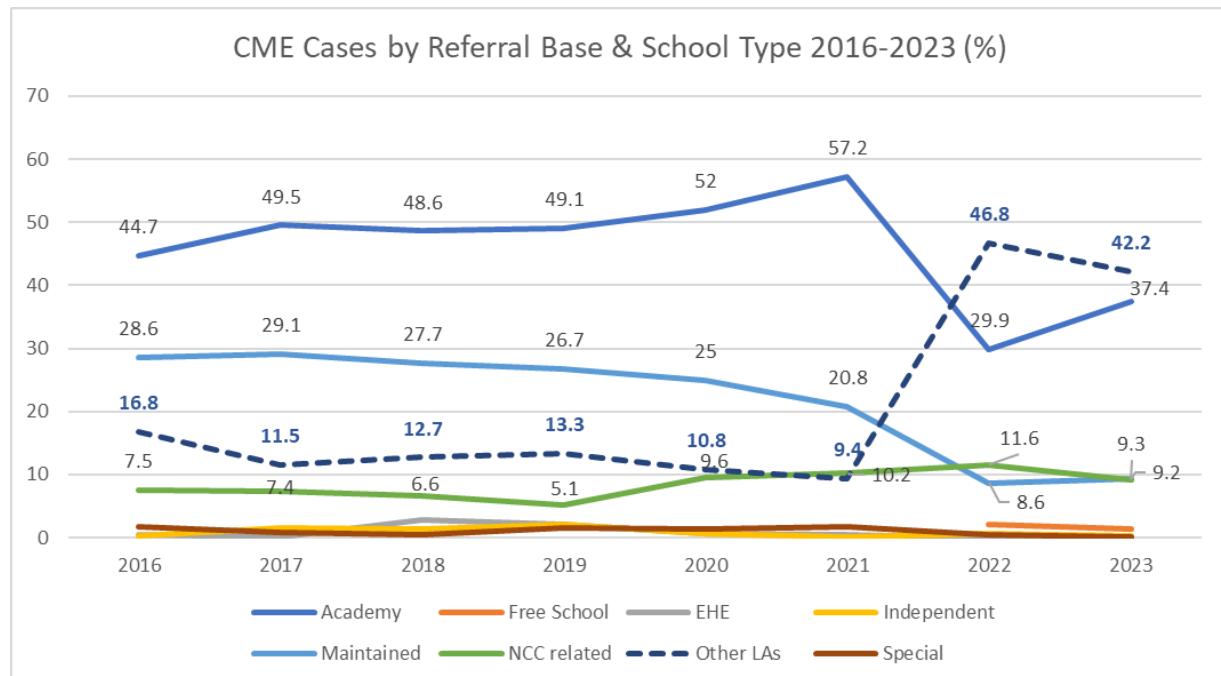
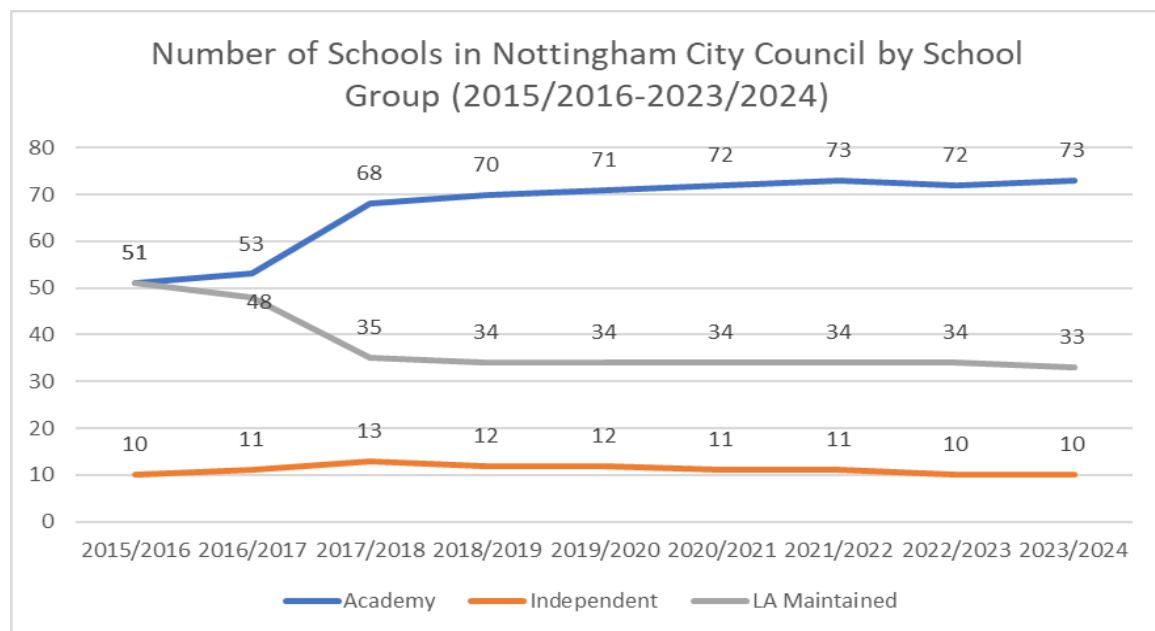


Figure 21 presents the trends by examining the CME cases by referral base yearly from 2016 to 2023. The result shows that the percentages of the referrals from the academy schools increased steadily from 2016 to 2021, followed by a big dip in 2022 and a slight increase in 2023. On the other hand, the percentages of the referrals from maintained community schools declined gradually from 2016 to 2021, then a sharp decline in 2022 and small rise in 2023. The percentages of the referrals from other LAs gradually decreased from 16.8% to 9.4% from 2016 to 2021 but increased significantly to 46.8% in 2022 and remained relatively


stable in 2023. The percentages of referrals from NCC related sources also gradually declined (7.5% to 5.1%) from 2016 to 2019 but climbed up to 9.6% in 2020 and 10.2% in 2021 and became stable afterwards.

According to the CME team, the remarkable surge in the referrals from the other LAs in 2022 and 2023 could be explained in two ways. Firstly, as COVID was coming to an end in 2022, people started to move around more freely and the increase in referrals from other LAs might be a reflection on people moving to other cities, moving to close relatives or family circles, or returning to the countries where they were from.

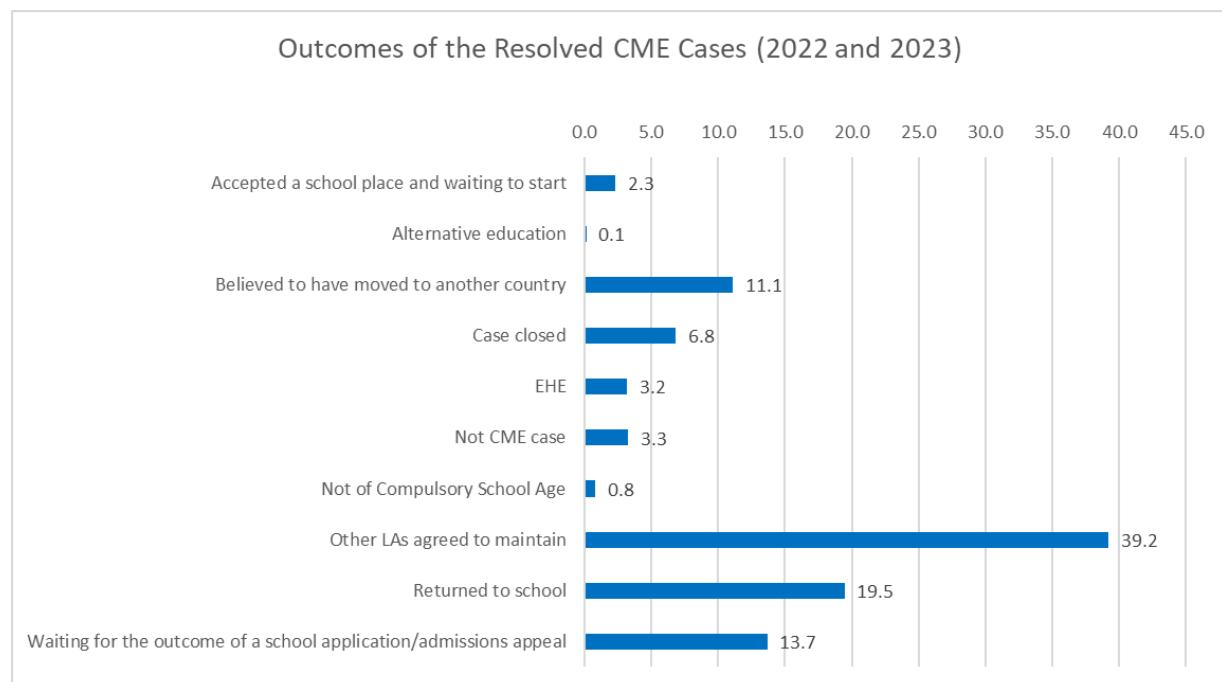
Secondly, there are two large concentrations in [Name redacted] and in the [Name redacted] where asylum seekers tend to stay in Nottingham City and the Ukraine and Hong Kong crisis might have contributed to the increasing numbers. Initially, the CME team dealt with the growing referrals and helped the families with the school applications but now NCC has delegated officers going into these blocks and working with the families to get the school applications processed. The Public Health service in NCC who oversees this duty is providing two-year funding to recruit a dedicated staff member for this particular task and this is anticipated to happen in January 2025. Moreover, the CME team has been building links with the Housing team and the Refugee forum so as to receive timely notifications when new families are coming into the city to support the families.

The NCC CME team has established good working partnerships not only with schools (academy schools, NCC community schools, independent schools and special schools) but also with internal council teams (school admission, Special Education Needs team, Children & Family Directory, Social Care), wider NCC partners and agencies (Health provisions, Housing team, private nursery and early years provisions, school nurse, Customer Hubs, Children Centre Multi Agency Team and Refugee Forum), as well as with external partners (the CME teams, schools and services from other local authorities). These examples demonstrate the kind of proactive partnership working approach recommended by the recent Children's Commissioner Report (2024).

Figure 22: Number of Schools in Nottingham City Council Local Authority from 2015/2016 to 2023/2024 by school group.

One part of the explanation for an increase in referrals from the academy schools and a decrease in referrals from the NCC maintained schools over time is provided by Figure 22. According to the data from GOV.UK (2024), in the NCC administrative area, the number of academy schools gradually increased from 51 in 2015/2016 to 73 in 2023/2024 while the number of NCC maintained schools reduced from 51 in 2015/2016 to 33 in 2023/2024, with a notably sharp decline between 2016/2017 and 2017/2018. Therefore, it would have been anticipated that the number of referrals coming from the academy schools would be growing over time.

4 CME case outcomes


4.1 Case Status and Outcomes

To explore the case status and outcomes in this follow-up study, we examined 7452 cases altogether from 2016 to 2023, 79% of the cases were resolved by the CME team, with 21% open ongoing cases, compared to 5615 cases from the previous project (2016-2021), 71% resolved and 29% open ongoing cases.

In the previous report we recommended a review of the categories for the outcomes of the CME resolved cases as some of the categories were either too general or no longer adequate or fit for purpose. In this follow-up project, there has been a change to the NCC system and detailed CME case outcomes were recoded from 2022. Therefore, in the report, the categories for the outcomes of the CME resolved cases (in 2022 and 2023) were re-defined by adapting some categories from the CME Census.

Figure 23 *inter alia* shows the outcomes of the cases that were resolved with the highest percentage of the cases were *other LAs agreed to maintain* (39.2%). Moreover, the outcomes of *accepted a school place and waiting to start*, *alternative education*, *EHE*, *returned to school* and *waiting for the outcome of a school application/admission appeal* all indicated children formerly missing from education were back in schooling (38.7%) which is the ultimate objective of the CME team.

Figure 23: Outcomes of the CME Cases resolved 2022-2023

Although some comparisons with the outcomes of the CME cases from the previous project, are no longer like for like, there is a clear change for the category of “*other LAs agreed to maintain*” which remained the same in both projects.

Figure 24: The Outcome of other LAs agreed to maintain over time (2016-2023)

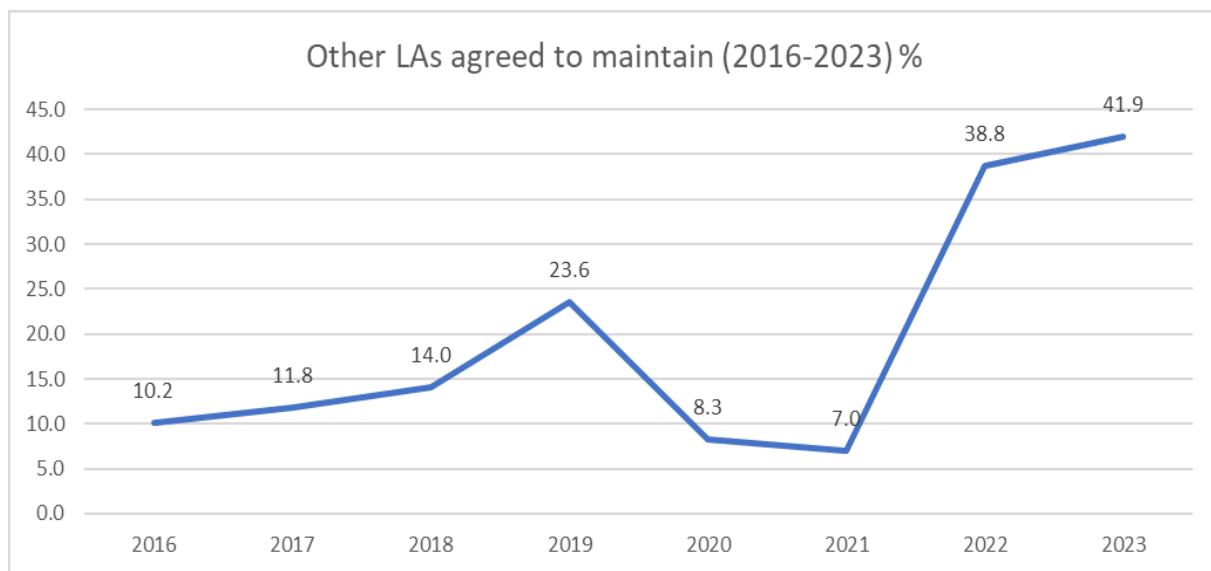
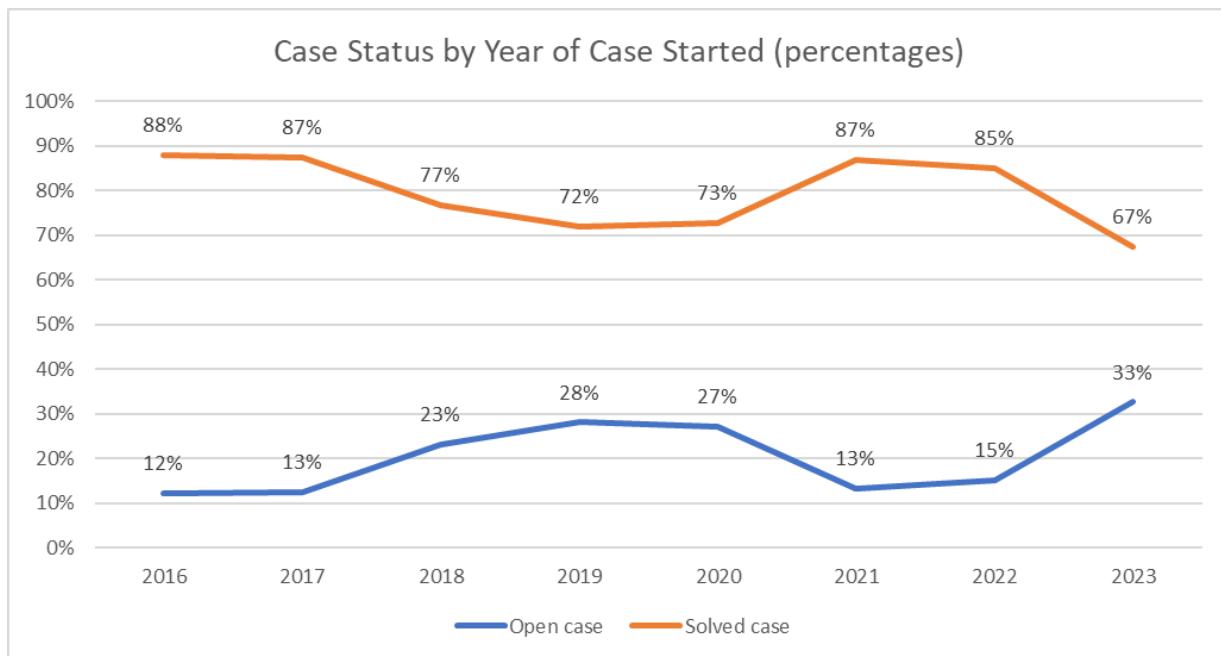


Figure 24 shows the trend for the outcome of *other LAs agreed to maintain* yearly from 2016 to 2023. In the previous project, a stable increase was observed until 2018, then a bigger increase to 23.6% in 2019 and then a declined to 8% in 2020 and 7% in 2021. This decline was partly a reflection of the pandemic period when the family movement was restricted. However, a sharp increase from 7% to 38.8% in 2022 and 41.9% in 2023 was found in the follow-up project. As there has been an increase in the percentage of the CME referrals coming from other LAs, this outcome reflects an increase in CME families' movement both in and out of Nottingham City.


The CME team faced a frustrating situation regarding the previous government's apparently arbitrary decision to move CME families out of NCC without giving a notice period to the LA or to the families themselves even though the families appeared to be settling well in NCC. Moreover, due to the housing shortage nationally, hotels have largely been used as a form of accommodation for asylum seekers or refugees, and refugee families from NCC could be placed in the hotels in Leicester or Birmingham and vice versa. The impact on the children is likely to be significant as it creates a further lack of stability in their lives.

'because of the housing shortage in the city a lot of families are being housed in hotels that ... are not even in the LA... you'll have, for instance a Birmingham authority placing families in hotels in Nottingham, and Nottingham placing families in hotels in Leicester, Birmingham, all these other places! And when they're moving the families around, they're not thinking about a holistic approach and the kind of effect on the family dynamic. Some families that are being moved from hotel daily, they find out where they are that day or the next day. And being moved round when you have four, five children that should be in school, and nobody's communicating with the schools [and] leaves parents in that much of a dilemma, as school for them is the last people to communicate with'.

4.2 Length of time to resolve cases

As mentioned earlier, of 7452 total cases, 79% of the CME cases were resolved and 21% of the cases were under ongoing investigation (as at the date of data collected).

Figure 25: CME Case Status 2016-2023 %

Looking at the trends in the status of cases (resolved and open cases) from 2016 to 2023 yearly by case allocation year with 'live data', Figure 25 shows that the percentages for resolved case gradually decreased from 2016 (88%) to 2018 (77%) and remained steady until 2020 but went up again to 87% in 2021 until 2022 and then dropped to 67% in 2023 with mirroring trends for the open cases.

Table 6: Days of Solving Cases: 7 Days 2022-2023

Days	Frequency	Cumulative Percent
0	103	7.2
1	112	14.9
2	38	17.6
3	34	19.9
4	43	22.9
5	25	24.7
6	52	28.3
7	43	31.3
30		62.1
60		76.4
89		83.1

Table 6 shows the analysis of the duration of time that it takes for the CME team to resolve individual cases. For the resolved cases allocated in 2022 and 2023, the range of cases being

resolved varied considerably. Some cases could be resolved on the same day as when the CME team started the investigation, while in contrast, some cases took more than 700 days to be solved. Nearly a third of the cases, were resolved within 7 days after the CME team started the investigation. Typically, these cases are where families have moved within the UK and their contact details are known and enabling swift actions from the CME team.

In 2022/2023, 62.1% of the cases were resolved within a month, followed by 76.4% being resolved within two months and 83.5% resolved within three months. Usually, these longer cases are where families have moved abroad but the CME team has obtained details of destination schools to allow the cases to be closed.

Table 7: Trends of percentages of CME cases being resolved yearly

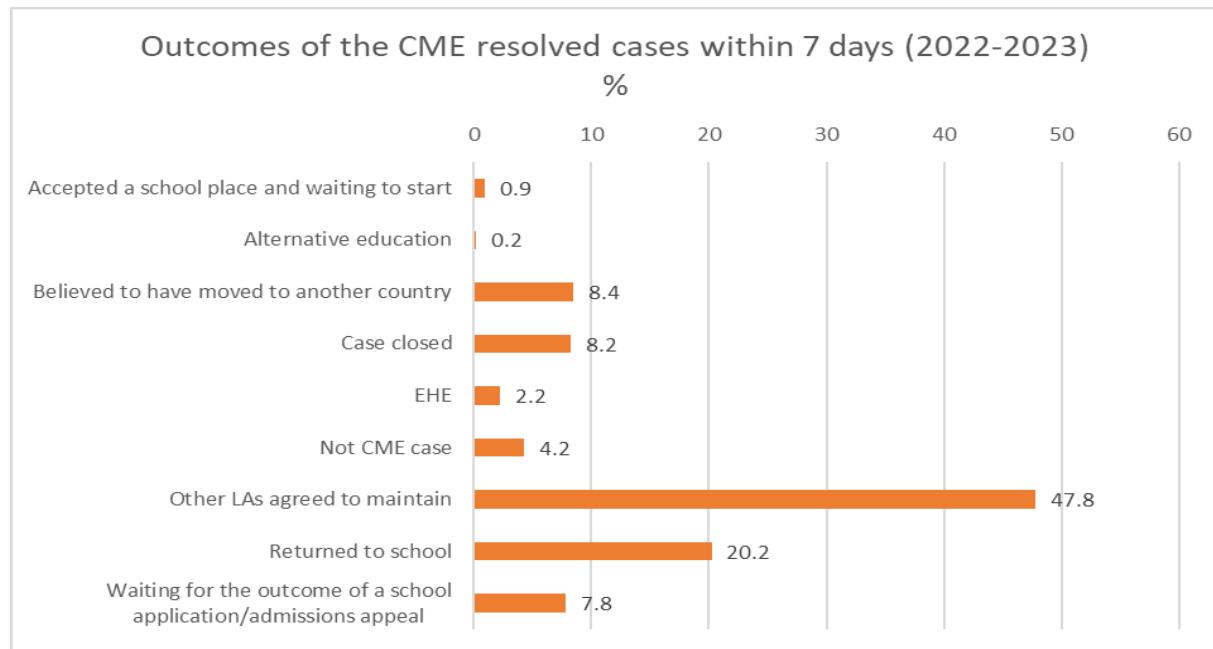
Year	Open	2016	2017	2018	2019	2020	2021	2022	2023	2024
2016	12.1	35.2	32.1	2.6	2.7	12.6	1.3	0.2	0.0	1.3
2017	12.5		46.4	17.9	4.2	12.3	2.5	2.4	0.3	1.5
2018	23.2			41.6	13.9	3.9	13.2	2.9	0.5	0.9
2019	28.0				39.2	15.3	12.2	2.4	1.6	1.3
2020	27.2					41.2	24.1	3.6	3.2	0.6
2021	13.2						67.2	15.8	2.9	0.9
2022	15.0							70.2	13.7	1.1
2023	32.6								59.2	8.3

Moreover, Table 7 demonstrates that CME cases are being continuously resolved by the CME team. More than a third of the cases (highest percentage in bold) were resolved within the same year as the case was allocated and cases carried on being resolved over future years. The results indicate continuous working to resolve the CME cases as the previous unsolved cases were rolled forward into the next year regardless how long it would take for the team to resolve an individual case. There is no annual deadline for CME team resolutions and the team regularly reviews 'old' cases as the work will not finish until the case is resolved or when the children exceed the compulsory school age. Although the capacity of the CME team is limited, the LGA strongly believe work to safeguard this vulnerable group of children and families is "crucial and should not be deprioritized" (Local Government Association 2020).

One of the CME officers explained how the internal system help them to track the CME:

I think what helps as well is having flags on our system. So for instance, say if somebody else say from admissions goes into the Capita system on a child that one of the CME officers may have opened (as a CME) that might have returned to the city, unknown to us, but if an application is submitted, that will flag on the system that that's a child missing education case.

The tables above and Figure 25 reveal the persistence needed to carry out the work. It takes time to solve complicated cases but once a piece of new information occurs that will enable the team to locate the families and help the children back to education, the team need to respond and persevere, regardless of how long the case has been open. The numbers of long-standing unresolved CME cases were a key concern in the Children's Commissioner's Report (2024). Exploring the experience of the CME team helps us to understand the rooted reasons.


According to the team, approximately 90% of the unresolved cases are those families who have moved abroad but the CME team either has no further details or no email address; or the destination schools cannot be found, or families simply do not respond to the request from the CME team.

For example, the CME officers reflected on the unresolved cases:

...unfortunately, we're always going to have families that leave the area and leave the country, that just don't communicate at all. One of the positives for us in Nottingham is that we keep cases open until they're non-statutory school age.

These... cases left unresolved whilst the public perception from the headlines would be of those children roaming the streets of the UK. However, if a child goes to Iran or Iraq and ... you don't hear from their family, the family aren't answering e-mails, then it's very, very difficult to establish they're in a school there, and sending an e-mail to some of these countries is very difficult per se. ... most of the long-term unresolved cases are those who have stayed abroad, and we can't get hold of the parents.

Figure 26: Outcomes of Cases Solved within 7 Days 2022-2023

As almost a third of the cases were resolved by the CME team within 7 days (Table 6) between 2022 and 2023, we were able to investigate what kinds of outcomes were achieved by acting promptly. Figure 26 shows that the highest percentage (47.8%) of the CME cases were resolved by communication with other local authorities and 20.2% of the CME pupils returned to school, followed by 8.4% of cases moving out of the country and 8.2% cases closed due to it being opened in error or was a case re-assigned to another CME officer.

"Cases are resolved quickly by having named CME officers in all local authorities (although N. Ireland and Scotland's systems are less robust). The named officers also have access to a number of databases which help to resolve cases.

It is worth noting that communication with neighbouring local authorities to ensure that children are back in education illustrates the importance of partnership working, sharing information, and collaborating with other local authorities to resolve CME cases. The NCC CME team are members of the Midlands Regional Group which holds regional meetings four times a year to share and update recent policies, guidance, and good practices regarding children missing from education.

Good communication and collaborative working have also been established between the CME team and various internal teams and agencies, such as Health, Social Care, Housing and Benefits, Refugee Forum, Women's Aid, and Youth Justice within the NCC. This results in cases being referred by a wide range of partners and agencies (see section 3.3 above).

Proactive partnership working among internal agencies and local authorities was highlighted and encouraged by both the LGA (2020) and by the recent Children's Commissioner Report (2024). Our previous report and this follow-up project have demonstrated just how crucial it is in practise.

4.3 Outcomes and days to resolve cases for the CME cases in the most deprived areas.

As 40% of the CME cases in the city are from the 10% most deprived areas from 2016-2023, it is worth examining the outcomes and duration of resolving cases for this particular cluster. Regrettably only the cases allocated in 2022 and 2023 can be analysed in this report due to the changes in the outcome categories, but there is no reason to believe these are abnormal years. In total, 762 cases were coming from the most deprived areas and 574 (80%) cases were resolved.

Figure 27: Outcomes of the resolved cases within nationally the most deprived 10% areas

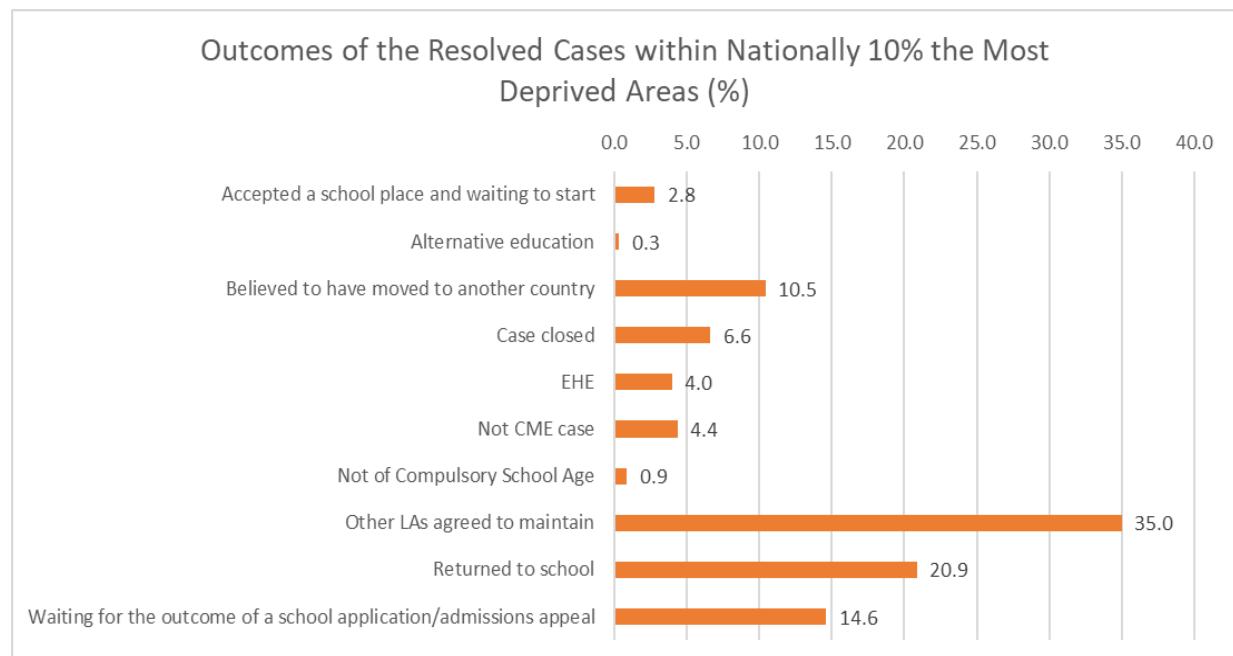
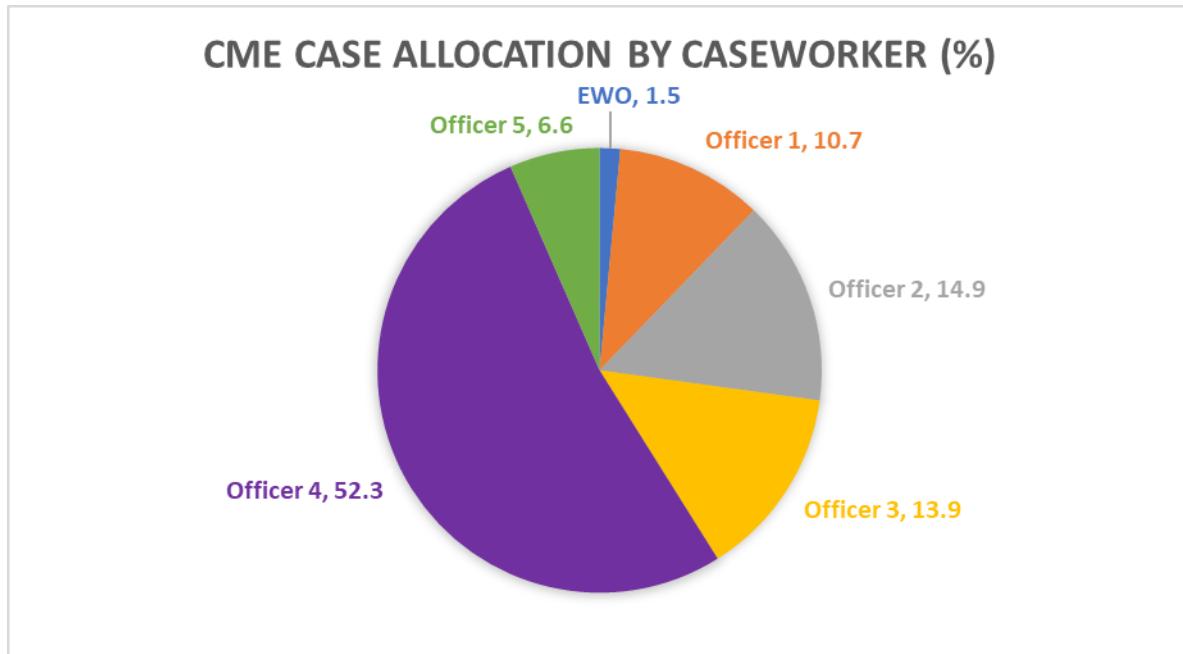


Figure 27 shows that similar percentages for the outcomes of the investigations were established for the CME cases (574) within the most deprived 10% areas when compared to all 1439 resolved cases during the period of 2022 and 2023 (Figure 23).

Among the 574 CME cases, 20% of them were open on-going cases as compared to 22% of all cases from 2022 to 2023 together. Among the resolved cases, many of the cases (35% compared to 39.2% for 1439 cases) were maintained by other local authorities, followed by 20.9% (compared to 19.5% for 1439 cases) of the CME cases returned to school and 14.6% (compared to 13.7% for 1439 cases) of the cases were waiting for the outcome of a school application or admission appeal.

Table 8: Days of solving the cases for the CME cases within nationally 10% the most deprived areas 2022-2023


Days	Frequency	Cumulative Percent
0	36	6.3
1	51	15.2
2	16	17.9
3	11	19.9
4	17	22.8
5	12	24.9
6	21	28.6
7	22	32.4
30		62.0
60		76.0
82		81.4

Comparing the duration taken to resolve the cases within the most deprived 10% areas in the city produces an almost identical table (Table 8) for this cluster when compared to 1439 cases (Table 6 on page 40).

Which to recap showed 32.4% of the cases were resolved within 7 days when the CME team started the investigation (31.3% for 1439 solved cases). 62% of the cases were resolved within a month (62.1% for 1439 solved cases) and 76% of the cases were resolved within two months (76.4% for 1439 solved cases). 81.4% of the cases were resolved within three months (83.1% for 1439 solved cases).

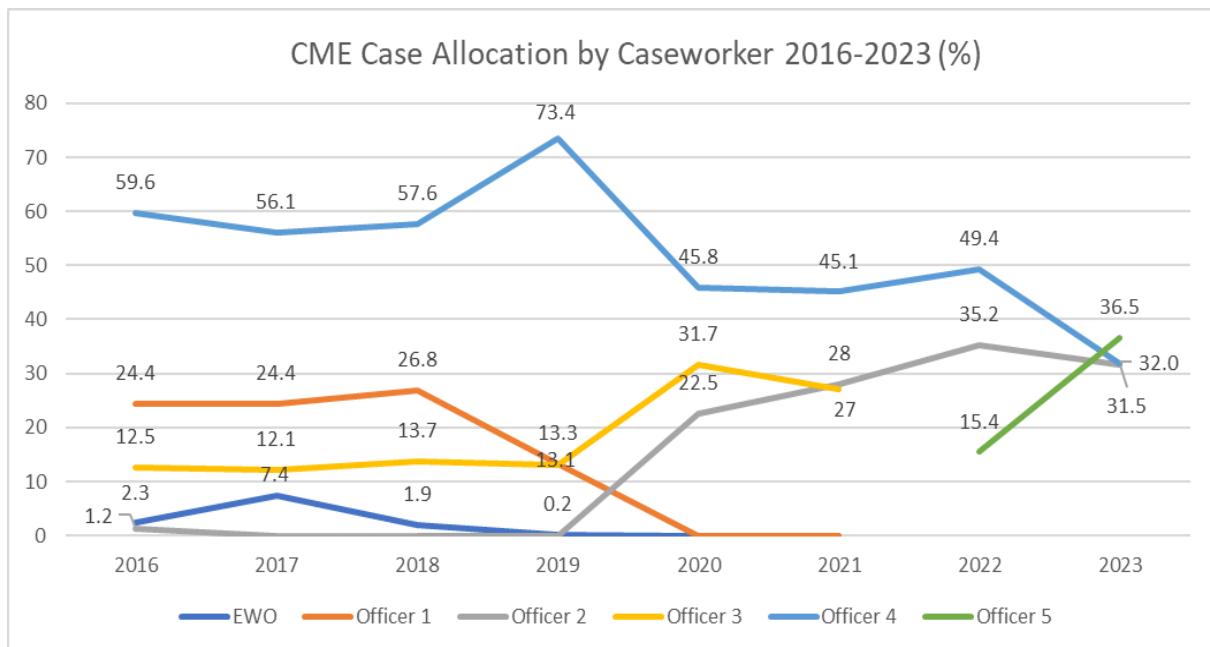

5. Workforce and workload

Figure 28: CME Case Allocation by Caseworker (all cases 2016-2023)

The CME team currently comprises three full-time staff (one with managerial responsibility) and one part-time member of staff, an increase of one full-time staff when compared to that from the previous report. Figure 28 demonstrates that since 2016 there have been five CEM officers at some stage of the working cycle on the cases, with some Education Welfare Officers' support (1.5%). It also shows that one officer (a full-time member of staff) was responsible for more than half (52.3%) of the case allocation.

Figure 29: Trends of CME Case Allocation by Caseworker 2016-2023

Upon a closer examination, Figure 29 shows that Officer 4's case allocation remained high from 2016 to 2018, then a sharp increase to 73.4% in 2019 but was reduced to less than 50% between 2020 and 2022, followed by a further decrease in the case allocation to 32% in 2023, with Officer 2, Officer 3 (two new members of the team from 2020) and Officer 5 (another new member from 2022) picking up the case load. The support from the Education Welfare Office and the work by Office 1 ceased from 2020.

Figure 30: Percentage of CME Case Solved by Caseworker (All cases 2016-2023)

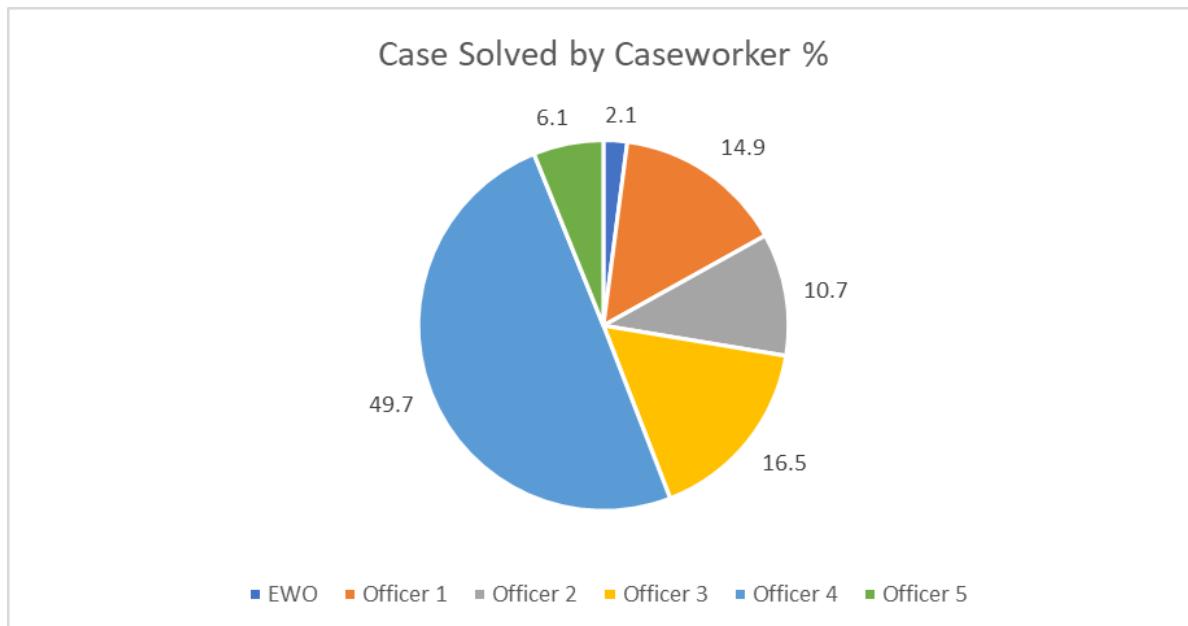


Figure 30 shows the percentages of the cases solved by the CME officers. Officer 4 solved half of the cases, followed by 16.5% by Officer 3 (a part-time officer) and 14.9% by Officer 1 (who left in 2020).

There were approximately 1000 CME cases on average each year. The size and constitution of the workforce and the number of cases have clear implications for the amount of time officers are able to spend on each case. The more cases the officer has, the less depth he or she will be able to go into each case. Better databases and improved technology have helped the investigations. Examples of databases include the Department for Education's Get Information About a Pupil, a government agency and Benefits database, Liquid Logic Database, Capita One databases (both education and admissions), and the National Health Spine. Improved speed and accuracy of search engines has also helped.

Since our last report, the CME team has recruited another full-time member of staff in 2022 to work on the cases and this has eased the Officer 4's workload shown on the Figure 29.

6. Unsolved Cases and Case Length: Regression Analysis

As for the previous report, we undertook two simple regression analysis, (specifically using the binary logistic model), to further enhance the understanding of the relationships between whether cases were solved or unsolved; and if the case was solved how long it took using variables, such as gender, type of education, ethnicity, location and deprivation.

The purpose of applying this analysis is to measure the probabilities of the cases being unsolved (the dependent variable) based on some explanatory variables i.e., gender, type of education, ethnicity, location and deprivation (Osborne 2008).

A second regression analysis was undertaken to examine the relationships between the length of time (in days taken) to resolve the cases if the case was resolved and the variables of gender, type of education, ethnicity, location and deprivation.

When results reach the level of statistical significance ($p<0.1$; $p<0.05$; $P<0.01$), we can confidently reject the idea (the null hypothesis) that there is no relationship between the variables that we were testing (Fraenkel and Wallen 2008).

Table 9: Determinants of unsolved cases and case length

	(1) unsolved		(2) Days of solving	
Gender (Female)	0.012	(0.010)	-3.977	(8.459)
Education Level (Secondary)	-0.035***	(0.010)	22.953***	(8.495)
Ethnicity (No Info Base)				
White	-0.130***	(0.014)	-79.039***	(11.375)
Asian	-0.087***	(0.016)	-81.263***	(13.266)
Mixed	-0.114***	(0.021)	-55.945***	(16.476)
Black	-0.087***	(0.021)	-97.901***	(16.818)
GRT	-0.025	(0.026)	-27.556	(22.217)
Other	0.054**	(0.024)	-33.084	(21.152)
Region (NG7 Base)				
NG1	-0.086**	(0.035)	21.940	(29.499)
NG2	-0.116***	(0.019)	-43.836***	(15.964)
NG3	-0.191***	(0.019)	-68.516***	(15.365)
NG4	-0.153	(0.141)	-49.364	(108.960)
NG5	-0.147***	(0.019)	-51.974***	(15.451)
NG6	-0.168***	(0.019)	-61.625***	(15.476)
NG8	-0.164***	(0.017)	-36.559***	(13.481)
NG9	-0.289***	(0.078)	-80.983	(57.961)
NG11	-0.219***	(0.029)	-49.154**	(22.205)
Other NG	-0.273***	(0.099)	-160.938**	(72.524)
West Midlands	-0.340	(0.436)	-78.370	(301.449)
IMD (0-20% Base)				
20.1-40%	0.029	(0.018)	-6.976	(14.828)
40.1-60%	0.073**	(0.032)	-5.051	(27.317)
60.1-80%	-0.128**	(0.055)	-129.690***	(41.351)
80.1-100%	0.206***	(0.028)	27.716	(24.461)
Constant	0.450***	(0.014)	245.657***	(11.937)
Observations	7097		5092	
R ²	0.065		0.029	

Note: Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Table 9 shows the results from the regression analysis performed on the data provided by the CME team. In the first model, we regress whether a CME case is solved on a number of demographic variables. Because this outcome variable is binary (solved versus unsolved), the results from the model can be interpreted as simple percentage points. For example, the probability of a case being unsolved is 1.2 percentage points (pp) higher if the child is female, as opposed to male. However, there is a very large standard error associated with this result and it is not statistically significant. The probability of a case being unsolved is 3.5 pp lower for secondary school students, when compared to primary school students. This result is statistically significant at the 1% level.

We also used the students' ethnicity as an explanatory variable in the model. Because there are a large number of students for which we have no information, we set this as our base category against which all other groups would be tested. From the results, we can see that the probability that a case is unsolved where the student is white is 13 percentage points lower when compared to cases where there is no ethnicity information for the student. The results for students with Asian, Mixed, or Black ethnicity can be interpreted in a similar way and all of these results are statistically significant. There is no difference in the probability of a case being unsolved between children for which there is no ethnicity information and students from Gypsy, Roma, or Traveler background. If the student's ethnicity is listed as one of the "Other" ethnicities, then the probability that the case is unsolved increases by 5.4 percentage points.

The children's postcode is also an important determinant of whether the case is solved. Compared to a base category of NG7, the probability of a case being unsolved is lower in almost every other postcode, particularly in NG9, where the probability of a case being unsolved is 29 percentage points lower compared to NG7. The exception to this is NG4 (where there is no statistically significant difference with NG7).

Finally, we also include a measure for the level of deprivation in the local area with the IMD decile. The results show that compared to a base category of the most deprived 20% areas, the probability of a case being unsolved is 7.3 pp higher within the worst 40.1-60% IMD areas and 20 pp higher within the least deprived 80.1-100% IMD areas but almost 13 pp lower within the 60.1-80% IMD areas.

The results for the most deprived areas appear surprising but Nottingham has been acknowledged as one of the most deprived core cities in England. The city council has over a long period invested and implemented intervention projects in collaboration with various agencies and has embedded links with social care and family support workers to work with families in these areas. Therefore, it is possible that the CME cases within the most deprived areas in the city were likely to be resolved quickly because of the extra support and the effectiveness of these networks to identify children, contact with the families and get them back to education as quickly as possible.

In addition to determining whether the case is solved, we looked at the determinants of case length for the resolved cases. This is the second model that we estimate in Table 9. The explanatory variables that we use are the same as in the first model, but the outcome variable has now changed. We are now looking at the length of time between when the case begins and when the case is closed. Therefore, the coefficients can be interpreted in terms of numbers of days.

Like the previous model, there was no difference between male and female cases with regards to case length. With regards to education level, cases that stem from secondary schools take almost 23 days longer to solve when compared to cases from primary schools. This is an interesting result as the previous model showed that secondary school cases have a lower probability of being unsolved when compared to primary school cases.

The ethnic background variables show a similar pattern to the previous model. When compared to having no information on ethnic background, cases where the student is White, Asian, Mixed, or Black take fewer days to solve. However, there is no statistically significant difference in case length between the group with no information and the Gypsy, Roma, or Traveller group, or the group with the other ethnicities.

The postcode variables also show a similar pattern to the previous models. Compared to the cases that originate in NG7, cases in every other postcode take fewer days to solve, apart from NG1. All of these results are statistically significant, except for the cases that originate in NG1, NG4, NG9 and the West Midlands. However, unlike the previous model, deprivation does not appear to affect the length of time required to solve cases, apart from 60.1-80% IMD areas.

7. Summary and conclusions

This follow-up project follows the same principal of the previous project to examine the number and pattern of “children missing education” in the city over a seven-year period (2016-2021 from the first project and 2022-2023 from the follow-up project) and to look for insights, patterns and/or trends that might help the CME team and the council respond to the changing challenges they present.

Children missing education are difficult to identify; are from heterogenous backgrounds and are often vulnerable with complex social, behavioural, educational, medical, or mental health needs.

There are several suggestions for improvement, further work and/or research within the main text of the report that the team may wish to consider, although we do not intend to repeat these detailed suggestions in this section.

Similar to the findings from the first project, the geographical and demographical analysis in section 2 still suggests very clear and relatively stable geographic patterns and trends within the CME cases referred to the team across the city, a remarkably stable in-year pattern of cases, particularly a sharp increase each year in the month of September. However, in this study we found two notable peaks of referrals, one in the NCY 2-4 groups and the other one in NCY 7-10 groups identified in the follow-up project.

There is still a clear pattern of cases across the city where we identified three ‘tiers’ of case prevalence. The analysis of the follow-up data also identified an increasing trend of migration into and out of the city. The geographical and demographical analysis therefore provides useful evidence for potential service enhancement, service deployment (or redeployment) and resource allocation and workforce planning in NCC. Additionally, in the follow-up project, the trend in the number of school places in NCC was examined. Overall, there was a 29% increase in the number of secondary school places from 2016 to 2024 but only 3% increase in the number of primary school places from 2016 to 2024. When the number of school places by ward was examined, it showed a decrease in the number at some wards within the most deprived bottom 10% areas.

The analysis of the characteristics of cases in the city provided in section 3 indicates there are no significant differences between genders nor the pattern of ethnicity in the follow-up period, and although the number of cases of *information not obtained/Refused* relating to ethnicity has continuously reduced from 2021 (the year end in the first project) due to the digitalisation of the referral process, the analysis shows there is still some way to go on this issue. As for the origin of the referrals, our previous report addressed an increase in the number of referrals from academies and a reduction from schools maintained by the Local Authority as the situation reflected the rising number of academies and the decreasing numbers in LA maintained schools within the city. Nevertheless, the data from the follow-up project suggests a changing trend, a decrease in the number of referrals from the academies but an increase in the number of referrals from other LAs. This is coincidental with greater family’s movement and greater migration into and out of the city.

Section 4 looked at the status of cases in the caseload and focused on the outcomes of cases. Of all the cases examined, 79% of the cases had been resolved by the CME team (71% in the first project), with 21% open ongoing cases. There is a huge variation in the length of time that it takes to resolve individual case, but while this is well known to the team and NCC, this section also revealed and highlighted two factors, which are probably less appreciated by those not directly involved in CME teams. They are the importance of the quality and access to databases (which is largely outside the control of the CME team) and the importance of developing, maintaining and improving networking and collaboration within the city council and across the 'community of interest' that provides the service in local authorities. Looking at the data from the follow-up project (2022-2023), there was a 9% improvement in the percentage of the cases resolved by the CME team within 7 days. We then investigated what kinds of outcomes were achieved to see if they differed from the general caseload and this time also looked at the outcomes and duration of resolved cases in the most deprived areas of the city. In both instances we (reassuringly) found they reflected the general population of all cases.

Section 5 investigated the workforce and its workload. The CME is a relatively small team, as it will be in most local authorities. It works on a very clearly defined on-going task. This section also highlighted the importance of local knowledge and experience in this area of work and the importance of the often 'hidden' skills of trust, reciprocity, perseverance, diligence, and empathy with clients that are essential for the efficient and effective delivery of the service.

Finally, section 6 explored the relationships between cases unsolved, along with the length of time to resolve cases, and the impact of gender, type of education, ethnicity, location and deprivation. Were factors such as the phase of education (primary school or secondary school), ethnicity, location, and/or deprivation associated with the probability of whether the case was solved or unsolved as well as the length of time for the case being solved. Notably we found that not only was the likelihood of an unsolved case with ethnicity information (White, Asian, Mixed, or Black background) lower than a case without the ethnicity information, but it also took fewer days for the CME team to resolve the case when the ethnicity information was provided. This might appear obvious, but it does re-emphasise the importance of obtaining the ethnicity information for CME cases.

The results from these two projects mirror findings from the Children's Commissioner Report (2024) to a great extent but they also demonstrate that NCC CME service has already had embedded some of the key recommendations of the Children's Commissioner's report. However, the inconsistency of the use of the term of 'children missing education' among local authorities, hindering the cross-border collaboration was mentioned by the Children's Commissioner Report (2024). It appears from her report that how LAs are interpreting 'what CME is' varies vastly, depending on their financial situation, size of workforce, local needs and the composition of populations. Without conducting a comparative study, it is impossible to truly understand the embedded reasons.

However, in order to significantly advance NCC strategic knowledge and understanding of the service in the city and elsewhere, we suggest that a comparative study of the work of the CME

services teams in a neighbouring local authority or in a similar 'under bounded' local authority or preferably both.

References

Amin-Smith, N., 2019. *Oral evidence to the Housing, Communities and Local Government Committee's Local Government Finance and the 2019 Spending Review inquiry*. London: Parliament TV.

BBC News, 2019. *Is Nottingham really the UK's 'poorest city'*? Available at <https://www.bbc.co.uk/news/uk-england-nottinghamshire-48465112>

Botham J., 2011. The complexities of children missing from education: a local project to address the health needs of school-aged children. *Community Practice*. 2011 May; 84(5):31-4. PMID: 21667712.

Children's Commissioner, 2019. *Skipping School: Invisible Children- How children disappear from England's schools*. February 2019.

Children's Commissioner, 2024. *Children Missing Education: The Unrolled Story*, September 2024.

Fraenkel, J. R. and Wallen N. E., 2008. *How to Design and Evaluate Research in Education* (Seven Edition). McGraw-Hill Higher Education

GOV.UK., 2023. *Academic year 2022/23 - Children missing education*. Published date: 18 May 2023. Available at <https://explore-education-statistics.service.gov.uk/find-statistics/children-missing-education/2022-23>

GOV.UK., 2024. *Academic year 2023/24 - Children missing education*. Published date: 29 Feb. 2024. Available at <https://explore-education-statistics.service.gov.uk/find-statistics/children-missing-education>

GOV.UK., 2024. Academic year 2023/24 - Schools, pupils and their characteristics. Published date: 6 June 2024. Available at <https://explore-education-statistics.service.gov.uk/find-statistics/school-pupils-and-their-characteristics>

Hamilton, L. G., 2024. Emotionally based school avoidance in the aftermath of the covid-19 pandemic: neurodiversity, agency and belonging in school. *Education Sciences*, 14(2), 156. Available at <https://doi.org/10.3390/educsci14020156>

Hoddinott, S., 2024. *The government is making tentative steps towards local government finance reform*. Institute For Government Comment. Available at <https://www.instituteforgovernment.org.uk/comment/local-government-finance-reform>

Lester, K. J. and Michelson, D. 2024. Perfect storm: emotionally based school avoidance in the post-covid-19 pandemic context. *BMJ Mental Health*, 27(1), e300944. Available at <https://doi.org/10.1136/bmijment-2023-300944>

Liu-Smith, Y.-L., Candon, D. and Murphy, P., 2023. Children missing from education in Nottingham. *NTU Institute of education Working Paper Series 'Meeting New Challenges in*

Education' Issue 1. Available at

https://www.ntu.ac.uk/_data/assets/pdf_file/0018/2022066/Issue-1.pdf

Local Government Association, 2018. *Thousands of children to miss out on secondary school place in five years.* Available at <https://www.local.gov.uk/about/news/thousands-children-miss-out-secondary-school-place-five-years>

Local Government Association, 2020. *Children Missing Education.* ISOS PARTNERSHIP

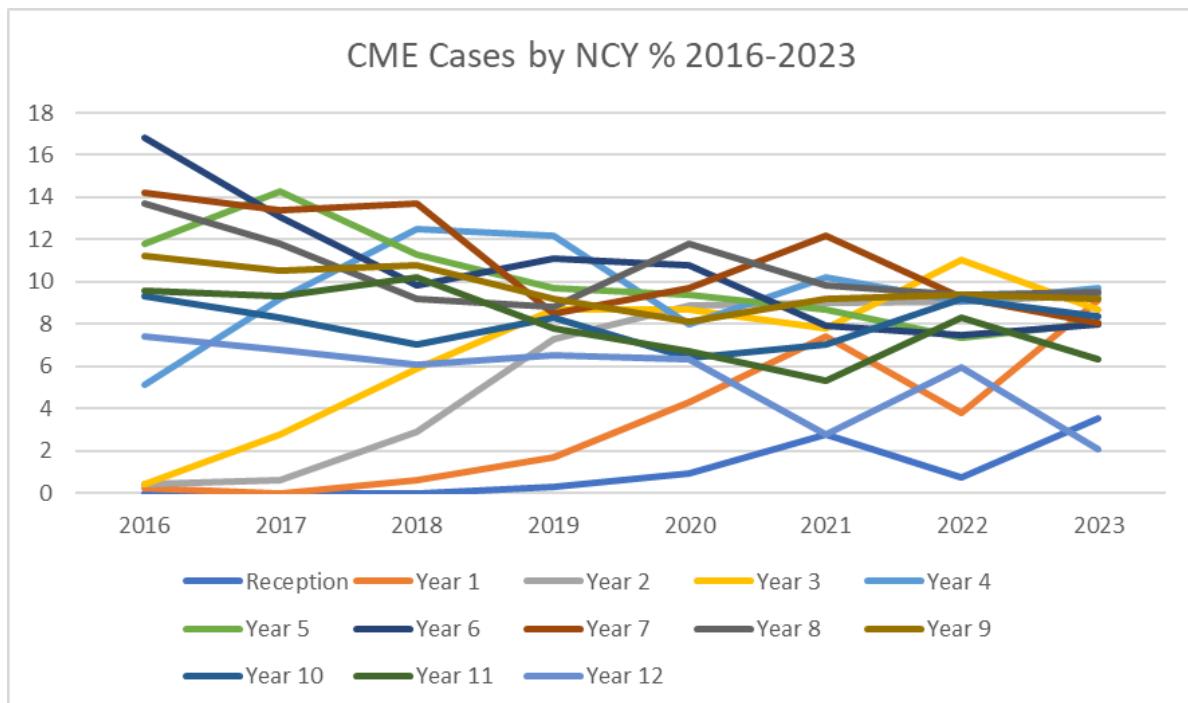
May-Chahal, C. and Broadhurst, K., 2006. Integrating Objects of Intervention and Organizational Relevance: The Case of Safeguarding Children Missing from Education Systems. *Child Abuse Review* volume 15, issue 6, P440-455 2006 DOI: 10.1002/car.96

Ministry of Housing, Communities & Local Government., 2024. *Local government finance policy statement 2025 to 2026.* Policy Paper 28th November 2024. London: TSO.

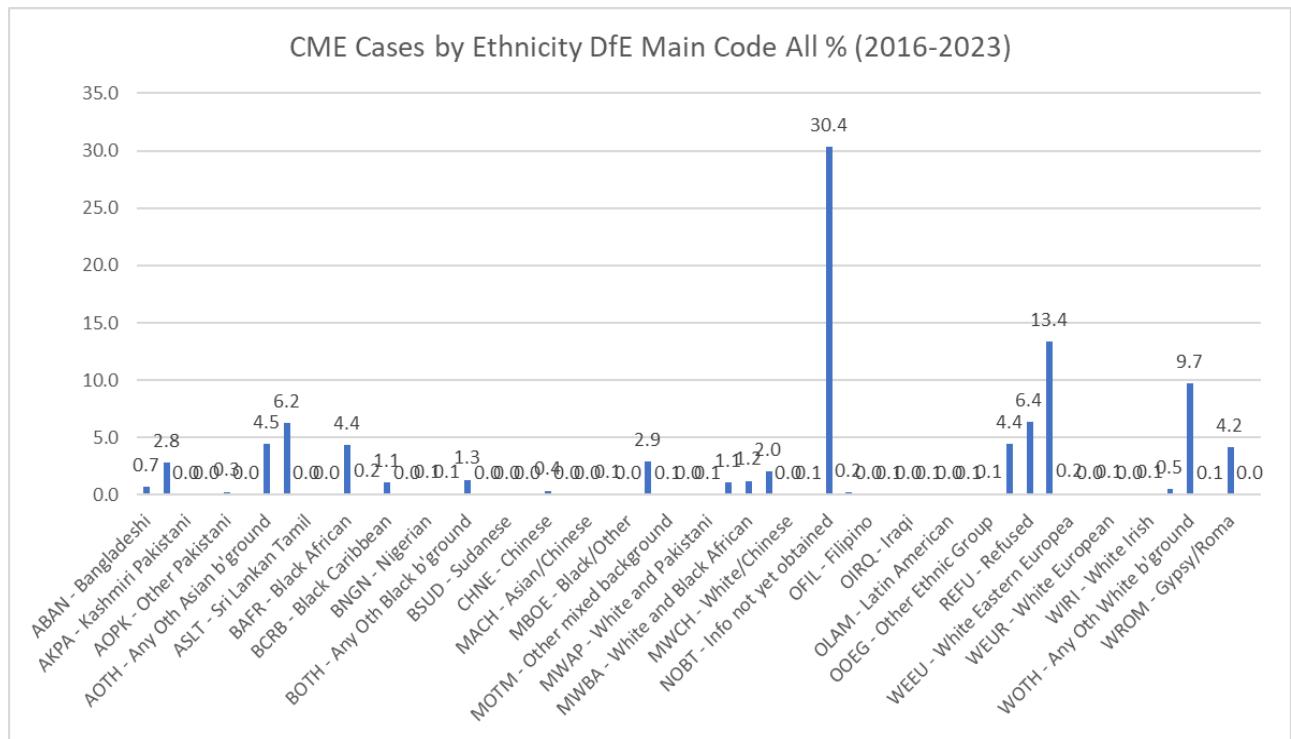
Nottingham Post 17 July, 2024. *'Significant pressure' on Nottingham school places for next 5 years as one academy expands by 300.* Available at

<https://www.nottinghampost.com/news/local-news/significant-pressure-nottingham-school-places-9418941>

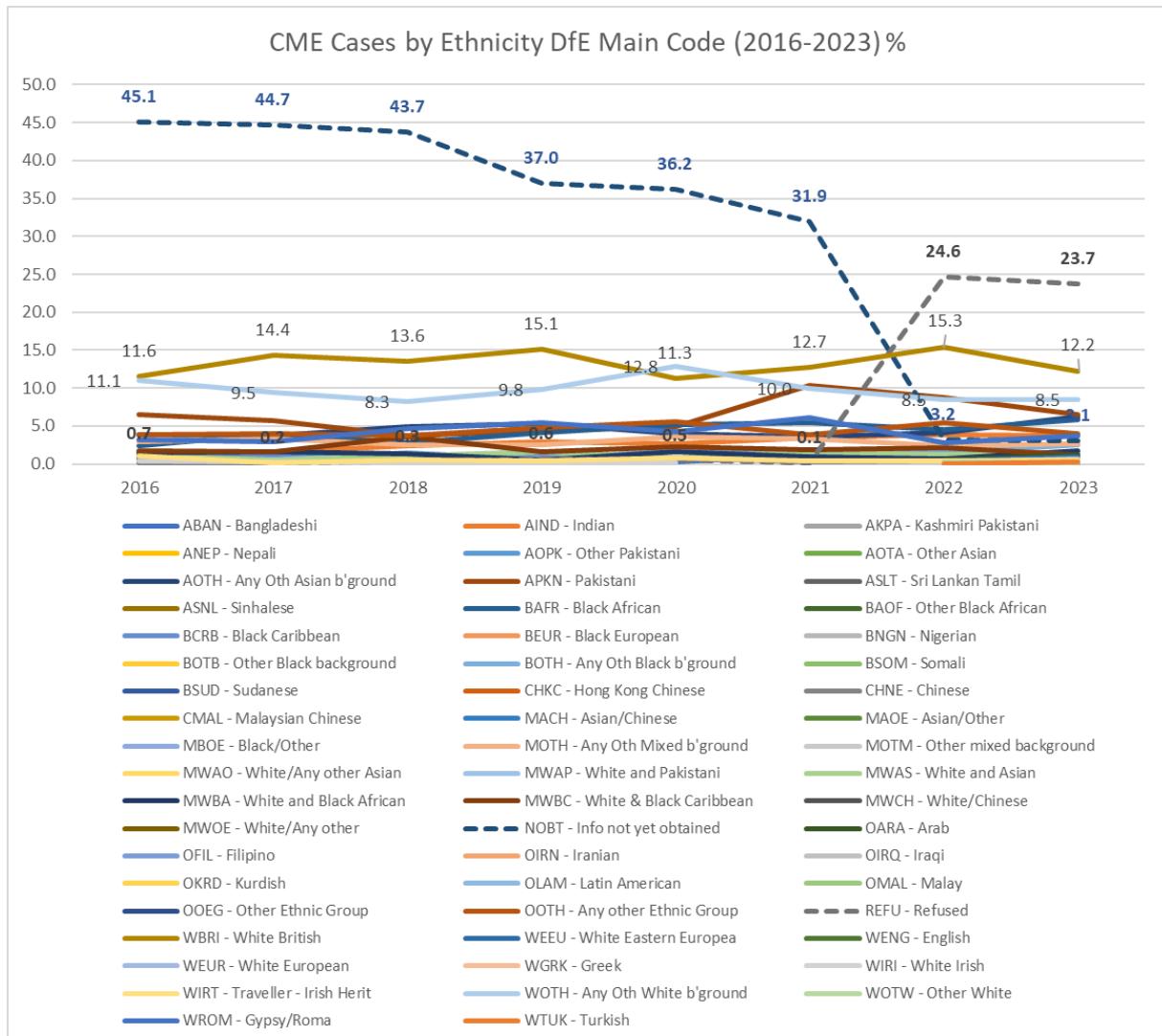
Ofsted, 2013. *Pupils missing out on education Low aspirations, little access, limited achievement.* Available at www.ofsted.gov.uk/resources/130048.


Ogden, K., & Phillips D., 2020. *The financial risk and resilience of English local authorities in the coronavirus crisis.* Institute for Fiscal Studies Briefing Note BN296 London: IFS.

Osborne, J. edited, 2008. *Best Practices in Quantitative Methods.* SAGE Publications


Sandford, M., 2018. *The Fair Funding Review: What does it mean for local government?* House of Commons Briefing Insight 31st May 2018. London TSO.

Sandford, M., 2021. *Reviewing and reforming local government finance.* House of Commons report Number 07538. London TSO.


Appendix 1: CME Cases by NCY 2016-2023 (%)

Appendix 2: CME Cases by DfE Ethnicity Main Code All (2016-2023 %)

Appendix 3: Trends of the CME Cases by DfE Ethnicity Main Code 2016-2023 (%)

