
 
Science 

 

 

 

ABSTRACT Objective: Neonatal Respiratory Distress Syndrome (NRDS) poses a significant threat to newborn health, 

necessitating timely and accurate diagnosis. This study introduces NDL-Net, an innovative hybrid deep learning framework 

designed to diagnose NRDS from chest X-rays (CXR). Results: The architecture combines MobileNetV3 Large for efficient image 

processing and ResNet50 for detecting complex patterns essential for NRDS identification. Additionally, a Long Short-Term 

Memory (LSTM) layer analyzes temporal variations in imaging data, enhancing predictive accuracy. Extensive evaluation on 

neonatal CXR datasets demonstrated NDL-Net's high diagnostic performance, achieving 98.09% accuracy, 97.45% precision, 

98.73% sensitivity, 98.08% F1-score, and 98.73% specificity. The model's low false negative and false positive rates underscore 

its superior diagnostic capabilities. Conclusion: NDL-Net represents a significant advancement in medical diagnostics, improving 

neonatal care through early detection and management of NRDS. 
 

INDEX TERMS   AI-driven diagnosis, chest X-ray imaging, computational pediatric radiology, hybrid deep learning framework, 

neonatal respiratory distress syndrome. 
IMPACT STATEMENT   NDL-Net revolutionizes neonatal care by enhancing NRDS diagnosis from CXR, ensuring timely, accurate 

interventions, reducing errors, and significantly improving health outcomes in NICUs through advanced deep learning. 

 

 

I. INTRODUCTION1 

HE NRDS presents as a neonates struggle to sustain 

breathing shortly after birth [1]. Rapid diagnosis and 

management are imperative due to its high mortality rate, 

particularly in countries with limited resources, where access 

to neonatal care is constrained [2]. Despite significant 

progress in high-income countries over the past decades, 

NRDS remains a major contributor to neonatal mortality in 

developing countries [3]. This challenge impedes the ability 

of developing nations to achieve the World Health 

Organization's Sustainable Development Goal 3, which 

targets reducing neonatal mortality rates to below twelve 

deaths per thousand live births by 2030 [4]. Therefore, 

healthcare professionals must attain proficiency in 

diagnosing and treating. NRDS to reduce the neonatal 

mortality rate and accomplish global health objectives. 

This imperative is particularly crucial during the neonatal 

period, defined as the initial twenty-eight days after the birth 

of a newborn [5]. During this period, infants with conditions 

like premature birth, NRDS, infections, congenital 

anomalies, and cardiac issues may require treatment during 

the Neonatal Intensive Care Unit (NICU) [6]. NRDS is a 

 
 

critical condition frequently addressed in the NICU.[7]. 

Consequently, early detection of NRDS symptoms is 

essential [8]. The likelihood of NRDS in both full-term and 

premature infants was explored by analyzing the antenatal 

features using a predictive model [9]. Additionally, 

analyzing pulmonary function test data offers an alternative 

approach to identifying NRDS, complementing traditional 

predictive models [10]. As a case in point, Pederiva et al. 

(2023) employed data from pulmonary function tests to 

detect congenital respiratory abnormalities associated to 

NRDS [11]. 

Building on this research, recent advancements have 

introduced noncontact thermal imaging as an innovative 

method for diagnosing NRDS in neonates, effectively 

classifying newborns as healthy or ill. [12]. When neonates 

present with NRDS, CXR is often performed to determine 

the most appropriate diagnosis and possible treatment, 

ensuring timely and tailored medical interventions [13]. This 

underscores the importance of interpreting CXR images in 

the clinical evaluation of respiratory pathologies in neonates, 

guiding the development of effective management strategies 

[14]. Moreover, computer-assisted systems alleviate the  
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Fig. 1. Schematic representation of the hybrid deep learning framework 

for NRDS diagnosis 

burden on specialists by performing complex tasks 

efficiently, allowing for increased patient throughput and 

improved healthcare delivery [15, 16]. 

In the field of medical diagnostics, artificial intelligence 

(AI) and deep learning algorithms are deployed to detect and 

diagnose chest diseases [17]. Amidst the COVID-19 

pandemic, these innovative approaches have proven 

essential in detecting COVID-19 and supporting healthcare 

practitioners [18, 19]. In this study, the routine examination 

of CT images and chest X-rays demonstrated the adaptability 

of AI and advanced computational techniques in medical 

imaging analysis [20, 21]. Research in the NICU has focused 

on using AI and advanced machine learning to predict 36 

morbidity conditions, 12 mortality outcomes, and five 

lengths of hospital stays [22]. Furthermore, AI technologies 

have been instrumental in enhancing neonatal care by 

enabling the monitoring of vital signs, predicting diseases 

including congenital conditions, assessing risks, developing 

novel image recognition tools, and facilitating neurological 

diagnoses [23]. Recent studies underscore AI's growing role 

in neonatal healthcare by using it to estimate mortality rates 

in infants with neonatal sepsis, the third leading cause of 

neonatal death [24]. This highlights the growing interest in 

using AI for neonatal disease diagnosis, as evidenced by 

increased research efforts in this area [25].  

Following this, they extended their methodology to 

pediatric CXR, attaining a ROC AUC score of 96.8%.In 

parallel, Mahomed et al.[26] developed CAD4Kids,  

software designed for analyzing the CXR of 858 children 

under five at Chris Hani Baragwanath Academic Hospital, 

South Africa. Their approach involved image segmentation, 

model training, feature extraction, and classification using 

Gaussian filters, yielding an AUC of 0.85 and corresponding 

sensitivity and specificity rates of 76% and 80%. In a related 

study, Jain et al.[27] trained six CNN models on pediatric 

CXR to distinguish between pneumonia and non-pneumonia 

cases, including VGG16, VGG19, Inception v3, ResNet50, 

and two and three-layer CNN, optimized with various 

parameters, attained an accuracy of 92.31%. Chouhan et 

al.[28] achieved a remarkable 96.4% accuracy in pneumonia 

diagnosis by employing a hybrid ensemble of top-

performing models to analyze CXR data from the GWCMC. 

Utilizing the same dataset, Yue et al.[29] implemented an 

enhanced MobileNet model to diagnose pneumonia in 5,840 

children aged 1–5 years. Their refined approach yielded an 

accuracy of 92.9%, building upon the insights gained from 

the previous study. 

 In a separate investigation, Chen et al.[30] explored three 

diagnostic approaches for common pediatric lung diseases: a 

YOLOv3-based model and both one-versus-one and one-

versus-all schemes. Among these, the one-versus-one 

scheme emerged as the most effective, achieving an accuracy 

of 92.47%. Chagas et al.[31] developed an instantaneous IoT 

platform and evaluated various CNN models for diagnosing 

pneumonia from 6,000 pediatric CXR images. Their 

investigation revealed that the VGG19 architecture, coupled 

with an RBF kernel and SVM classifier, attained a peak 

classification accuracy of 96.47%. Similarly, researchers 

including [32] investigated the differentiation of sepsis and 

respiratory distress syndrome (RDS) in neonates using cry 

signals. Their research employed Multilayer Perceptron 

(MLP), SVM, and other machine learning methods, resulting 

in a top accuracy of 95.3%. Notably, the MLP method 

demonstrated superior performance across all metrics except 

the AUC. In a similar vein, Prakash et al.[33] employed 

feature extraction using Mobile Net and Dense Net models 

(121, 169, 201), and these features were incorporated with a 

stacked ensemble classifier to diagnose pediatric pneumonia. 

This methodology resulted in an impressive accuracy of 

97.11%. Overall, the literature review dataset does not 

differentiate between adults and children, achieving the 

highest recorded accuracy of 97.58%. A hybrid deep learning 

framework is proposed to diagnose NRDS from neonatal 

CXR images, enhancing clinical decision-making at the edge. 

However, despite the increasing focus on AI in neonatal care, 

a notable gap exists in the literature. Specifically, there is a 

lack of studies that systematically assess CXR images of 

neonates for the diagnosis of NRDS, a common and 

potentially life-threatening respiratory condition. 

Additionally, the absence of publicly available neonatal 

CXR datasets further compounds the challenge of 

developing and validating AI-based diagnostic tools for 

NRDS. To address these issues, it is essential to employ more 

sophisticated and effective methods. Fig. 1. illustrates the 

overview of a hybrid deep-learning model designed for 

diagnosing NRDS in neonates using CXR images. The 

potential enhancements brought about by this model raise 

two critical questions: 

1. How does a hybrid Convolutional Neural Network 

(CNN) with an LSTM layer, incorporating feature 

extraction from MobileNetV3 and ResNet50, enhance 

the performance of NRDS image classification 

compared to conventional CNN architectures? 

2. How does integrating LSTM layers for handling 

temporal data influence the interpretability and 

predictive reliability of CNN-based NRDS 

classification models? 
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The main contributions of this article are:  

1. Overcoming the limitations of conventional CNN 

architectures in NRDS image classification by 

integrating MobileNetV3 and ResNet50 for advanced 

feature extraction, such as depth wise separable 

convolutions, Edge detection features, fine-grained 

features, textures features, hierarchical features, and 

residual features with LSTM to process temporal 

dependency features, enhancing diagnostic accuracy 

and utility. 

2. Development of a hybrid CNN-LSTM model leveraging 

the strengths of MobileNetV3 and ResNet50 for robust 

feature extraction integrating LSTM for dynamic 

temporal data analysis. 

3. Extensive validation demonstrates the hybrid model's 

augmented performance over traditional CNNs, 

evidenced by marked improvements in classification 

accuracy, diagnostic sensitivity, and diagnostic 

specificity. 

4. Evaluation results indicate that the hybrid approach 

surpasses traditional CNNs, demonstrating higher 

accuracy, increased sensitivity, and improved specificity. 

5. Introduction of a novel integration technique for 

combining convolutional and LSTM networks, 

advancing the domain of medical imaging analysis. 

II. RESULTS  

This section presents the performance metrics and model 

evaluation (see Supplementary Materials Section I.A.B).  

A.  Performance metrics/Evaluation 

Performance metrics were used by the research community 

to assess the effectiveness of classification models, Key metrics 

include F1-score, recall, accuracy, specificity, and precision. To 

compute these metrics and validate the proposed model, four 

measures are needed: True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). 

• True Positive (TP): This metric indicates the total number 

of cases correctly identified as having NRDS during the 

classification task. 

• True Negative (TN): This metric represents the number of 

cases correctly identified as not having NRDS within the 

classification task. 

• False Positive (FP): This metric denotes the number of 

cases incorrectly classified as having NRDS in the 

classification task. 

• False Negative (FN): This metric represents the number 

of cases incorrectly classified as not having NRDS in the 

classification task. Based on the four measures above, the 

performance metrics were calculated as follows: 

• Accuracy: Accuracy quantifies how often the 

classification model correctly identifies the condition 

across the entire dataset. It is calculated as the ratio of 

correctly predicted cases (both positive and negative) to the 

total number of predictions as described by equation 1: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                        (1) 

• Precision: Precision represents the proportion of actual 

positive classifications out of all predicted positive 

classifications specified in equation 2: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                             (2) 

• Recall (Sensitivity): Recall measures the proportion of 

actual positive cases the model correctly identifies. It is the 

ratio of true positives to the total actual positive cases, 

calculated using this formula given by equation 3: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (3) 

• Specificity: Specificity indicates the proportion of true 

negative classifications made by the model. It is calculated 

by equation 4: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                        (4) 

• F1-Score (Dice coefficient): The F1-score evaluates the 

balance between precision and recall, indicating how well 

the model handles false positives and false negatives. The 

score ranges from 0 to 1, with higher values indicating 

better performance, outlined by equation 5: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+1
2⁄ (𝐹𝑃+𝐹𝑁)

                   (5) 

Table I summarizes the classification model's performance 

metrics, showcasing strong results. The plot depicting training 

and validation accuracy over epochs revealed a model that 

consistently improved with training, as evidenced by the gradual 

increase in accuracy from epoch 0 to 25. At the end of training, 

the model reached training and validation accuracies of 0.9912 

and 0.9945, respectively, indicating excellent performance on 

both datasets and no significant overfitting. The most noticeable 

improvements occurred in the initial epochs, where validation 

accuracy steadily rises, surpassing training accuracy around 

epochs 0 to 5. There were slight fluctuations from epoch 5 to 

around 15, but the overall trend remained positive. After epoch 

15, training and validation accuracies continue to increase 

consistently, showing similar high values and demonstrating the 

model's steady learning and effective convergence, as shown in 

Fig. 2. The loss curves for training and validation indicate that 

the model quickly converged to low error values. From this 

curve, during the initial 1-2 epochs, there was a sharp decrease 

in both training and validation losses, with the training loss 

dropping significantly from around 1.8511 to approximately 

0.01. In contrast, the validation loss showed a similar trend, 

starting at 0.2381 and falling to about 0.01. After this initial 

sharp decline, both losses stabilized, suggesting that the model 

rapidly minimized error. From approximately the third epoch 

onwards, training and validation losses were maintained 

consistently, with low values and minimal fluctuation, reflecting 

effective training that ensured the model minimized error on 

both datasets. The close alignment of training and validation 

loss values throughout the epochs suggested the model 

generalized well to unseen data with minimal overfitting, as 

shown in Fig. 3. 
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Fig. 2. Accuracy Variation Across Epochs 

 
Fig. 3. Learning curve 

 
Fig.4. Evaluation of performance metrics includes: (a) precision, (b) sensitivity, 

(a) F1 Score, and (d) Specificity. 

Fig. 4. presents the performance metrics of the proposed 

approach, including precision, sensitivity, and F1-Score, 

specificity. In the evaluation of the proposed NDL-Net network 

architecture, ten advanced deep learning models were selected 

for comparative analysis. The models chosen for this analysis 

included RetinaNet and Mask R-CNN[34], Ensemble 

(AlexNet, GoogleNet and ResNet) [35], AlexNet [36], VGG-19 

[37], SqueezeNet [38], DenseNet-121 [39], InceptionV3 [40], 

GoogleNet [41], Xception [42] and EfficientNet [43]. 

Each of these models was implemented and tested using the 

same experimental conditions and the identical CXR dataset 

employed for the proposed model, ensuring a consistent and fair 

comparison across all models. 
TABLE I 

PERFORMANCE METRICS OF THE NDL-NET MODEL 

Accuracy Precision Sensitivity F1 Scores Specificity 

98.09 97.45 98.73 98.08 98.73 

 

III. DISCUSSION 

This section discusses the convergence of Backbone and 

Branch Network, evaluation of Loss Function and 

comparative analysis with state-of-the-art methodologies 

(see Supplementary Materials Section II.A.B). 

 

A. Convergence of Backbone and Branch Network 

The proposed model primary innovation is in the choice of 

backbone and branch networks, which significantly influenced 

its classification performance. Drawing from extensive prior 

research, MobileNetV3 and ResNet-50 were selected as 

backbone network and LSTM for the branch networks. These 

two networks were paired to create three configurations: MR 

and RD and NDL-Net where M represents MobileNetV3 and R 

denotes ResNet-50. As shown in Table II, using ResNet-50 for 

both the backbone and branch networks yielded best results, 

which is our final choice. The results indicate that the NDL-Net 

configuration significantly outperformed the two configurations, 

this confirms the efficacy of using ResNet-50 as both the 

backbone networks in achieving high-performance metrics for 

the classification tasks. These findings underscore the 

robustness of our model in delivering accurate and reliable 

diagnoses, thereby supporting improved neonatal care. 
TABLE II 

ANALYSIS OF BACKBONE AND BRANCH NETWORK COMBINATIONS IN THE 

NDL-NET 
Performance MR RM NDL-Net 

Accuracy 95.95 96.02 98.09 

Precision 96 96.0 97.45 

Sensitivity 96 96.04 98.73 

F1 Scores 96 96.07 98.08 

Specificity 99 96.07 98.73 

IV. CONCLUSIONS  

NDL-Net, a hybrid deep learning framework, was 

introduced to diagnose NRDS from chest X-rays. By 

utilizing advanced neural network architectures, this 

approach achieves high diagnostic accuracy 98.09 %, 

demonstrating its potential as a valuable tool in neonatal 

healthcare. The findings show that NDL-Net performs better 

than traditional diagnostic methods and other existing 

models in accuracy and robustness. This improvement in 

diagnostic performance can be crucial for the early detection 

and timely treatment of NRDS, potentially reducing neonatal 

mortality and morbidity rates. 

However, this study has some limitations. The dataset, 

although comprehensive, is not sufficient and could benefit 

from an additional inclusion of multiple cases, particularly 

with varying demographic and clinical backgrounds, to 

enhance the model's generalisation. Moreover, while the 

dataset size is sufficient for training, it may still constrain the 

model's ability to address rare instances, which could impact 

its robustness in real-world situations. The research 

presumes that images from chest X-rays alone provide for 

precise diagnosis, neglecting the incorporation of additional 

clinical aspects or patient data that could offer a more 

comprehensive understanding of NRDS.  

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2025.3548613

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 
Science 

 

 

Multiple aspects must be taken into account while 

assessing the model validity. The primary concern is the 

dataset intrinsic biases, as it may not adequately represent the 

wide range of NRDS across diverse healthcare environments 

or patient demographics. Furthermore, although the model 

exhibits strong performance in a controlled research context, 

its real-time diagnostic capabilities may encounter 

difficulties when used in clinical settings characterised by 

diverse equipment, imaging techniques, or image quality. 

Future work will integrate additional imaging modalities 

and patient data to enhance the diagnostic capabilities of 

NDL-Net further. Explainable AI techniques will also be 

explored to provide clinicians with more transparent and 

interpretable diagnostic insights. Based on current 

understanding, prior research has not explicitly addressed 

NRDS diagnosis using deep learning frameworks, making 

NDL-Net a groundbreaking effort in this area. Overall, NDL-

Net signifies considerable progress in utilizing deep learning 

techniques in medical imaging for neonatal care. By 

improving diagnostic accuracy and providing reliable 

support to clinicians, this framework can significantly 

influence the identification and management of NRDS. 

V. METHODS 

In this section, the neonatal CXR dataset is discussed, while 

the detailed descriptions of the network architecture and the 

classification branch (see Supplementary Materials, Section 

III.A and B). 

A. NEONATAL CXR DATASET 

In this study, to demonstrate the implications of the 

proposed hybrid model, experimental analysis was 

performed on datasets of CXR images collected during 

neonatal care in the NICU at Sakina Child Care Hospital, 

Pakistan. The CXR images, which expert radiologists 

validated, were utilized following the acquisition of the 

required ethical approvals. The dataset comprises CXR 

images from 5,000 neonatal patients, with 3,500 of these 

cases labeled as normal. (not having NRDS) and 1,500 with 

NRDS were included in the dataset. The patients ranged from 

0 to 4 days old, considering the susceptibility of neonates to 

NRDS within this early postnatal period. 

In the dataset, represented in Fig. 5, the CXR images 

labelled as Normal and NRDS are distributed as follows:70% 

(3,500 images) are allocated for training, allowing the model 

to learn and adapt to specific classification features. 

Meanwhile, 15% (750 images) are employed in the 

validation set to optimize the model's parameters and 

mitigate overfitting. and the remaining 15% (750 images) are 

reserved for testing to ensure an impartial assessment of the 

model's performance on previously unseen data as shown in 

Table III. 

 

 
(a) (b) (c) 

Fig. 5. Sample Images (a)Normal (b)NRDS (c) Data distribution among 

dataset for binary classification 

TABLE III 
CLASS DISTRIBUTION AND PARTITIONING OF TRAINING, TESTING, AND 

VALIDATION DATASET 

Class No of CXR 
images 

No of CXR 
images from 

NRDS Class 

No of CXR 
images from 

Normal Class 

Training data 3500 1000 2500 

Validation data 750 250 500 

Test data 750 250 500 

Total 5000 1500 3500 
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