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A B S T R A C T

Background & aims: Early pregnancy folate has been associated with GDM and possible adiposity in the newborn. 
The present study examined associations between maternal early pregnancy folate levels and sex-specific 
neonatal anthropometry. We further explored possible mediation by maternal glycemia on the association be
tween folate and neonatal adiposity.
Methods: Sub-group data (n = 511) from a UK multi-ethnic early pregnancy longitudinal study (micronutrients in 
Pregnancy as a Risk factor for gestational Diabetes and Effects on mother and baby; PRiDE) was used. Maternal 
serum folate was assessed during early pregnancy (Mean ± SD = 12.5 ± 1.6 gestational weeks) and infant 
anthropometry including skinfold thickness (SFT) and mid-upper arm circumference (MUAC) at birth. Multiple 
linear regression was performed to analyse the relationship between maternal folate and infant adiposity indices. 
Interaction analysis was used to identify maternal glucose mediation of this relationship.
Results: Excess folate levels (≥45 nmol/l) were found in 40.3 % pregnant women (n = 206). Early pregnancy 
folate (1 SD unit) was positively associated with male newborn triceps SFT (std β = 0.17 (95 % CI: 0.06, 0.29; p 
< 0.05)) after adjusting for key maternal and infant confounders in multiple comparisons using Benjamini- 
Hochberg procedure. However, no associations were seen in female newborns. No influence of maternal fast
ing (FPG) and 2-h plasma glucose (2 h-PG) were detected on the association between folate and newborn 
anthropometry.
Conclusion: Our findings suggest a potential sex-specific influence of maternal folate on infant anthropometric 
indices. The association between early pregnancy folate on newborn adiposity was not mediated by maternal 
FPG and/or 2 h-PG at 24–28 weeks.

1. Introduction

Adequate maternal folate is crucial for optimal foetal growth and 
preventing congenital anomalies such as neural tube defects and 
congenital heart disease [1,2]. Folate plays a pivotal role in various 
cellular processes, including DNA synthesis, amino acid metabolism and 
epigenetic regulation [3]. Therefore, prenatal folic acid (FA) supple
mentation (at a daily dose of 400 μg) has become a standard practice to 

account for increased foetal requirements during pregnancy [4,5]. For 
this reason, some countries have adopted FA fortification as a strategy to 
enhance maternal folate levels [6]. Recent studies have shown that 
excess folate and unmetabolized folic acid (UMFA) is present in 
maternal and umbilical cord blood [7,8]. Concerns have also been raised 
that elevated gestational folate levels might be linked to an increased 
risk of masking B12 deficiency, DNA repair dysregulation and gesta
tional diabetes mellitus (GDM) that might lead to metabolic imbalances 
in the offspring [7,9].
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Excess maternal folate has been shown to be associated with an 
increased propensity for fat accumulation, insulin resistance and altered 
cardiometabolic health regulation in children, thought to be through 
adverse epigenetic programming [10–12]. However, the evidence is 
equivocal. Longitudinal cohort studies from India found that higher 
maternal folate was positively correlated with fat mass, percent fat mass 
and insulin resistance in school aged children [10,11]. In contrast, 
another study from the Netherlands found protective effects of maternal 
folate on child BMI and android-to-gynoid fat ratio [13]. Experimental 
studies in animals have suggested adverse alterations in adipose tissue 
gene expression and energy expenditure in offspring exposed to higher 
maternal folate levels [14,15]. Additionally, the observation of a direct 
correlation between higher folate and maternal glycemia needs further 
investigation, as poorly controlled hyperglycaemia is a known risk factor 
for higher infant adiposity and higher neonatal fat mass [7,16–19].

Infant adiposity is an indicator of foetal growth and development. 
Fat serves as an energy reserve to support the demands of the developing 
brain [20]. However, significantly higher neonatal adiposity is corre
lated with childhood overweight at the age of 5, thereby potentially 
predisposing individuals to obesity later in life [21]. Neonatal skinfold 
thickness (SFT) is a measure of subcutaneous fat at distinct locations in 
newborn infants, encompassing areas such as triceps, subscapular, and 
thigh regions and is commonly used to evaluate newborn nutritional 
status and body composition [22]. Specifically, triceps skinfold mea
surement offers insights into peripheral adipose tissue reserves, while 
the subscapular and thigh SFT reflects trunk and lower body adiposity 
respectively [23]. While it is commonly acknowledged that fat distri
bution is different for male and female neonates, more research is 
needed to unravel the intricacies of sexual dimorphism in the relation
ship between maternal excess folate on infant adiposity [14,15,24].

In the present analysis, using a multi-ethnic UK-based longitudinal 
birth cohort, we aim to examine whether maternal folate status is related 
to newborn adiposity, and whether this relationship demonstrates sex
ual dimorphism. We also aim to explore the interplay between maternal 
glycemia and folate on neonatal body fat.

2. Subjects, materials and methods

2.1. Participants

This analysis was conducted in a single-centre subgroup of the PRiDE 
study (micronutrients in Pregnancy as a Risk factor for gestational 
Diabetes and Effects on mother and baby). The PRiDE study recruited 
4746 women in their first trimester between 2012 and 2018 at ten study 
centres across the UK. While all centres collected the primary outcome 
data, George Eliot Hospital (GEH) was the only centre that systemati
cally collected and documented the secondary infant anthropometry 
outcomes as part of routine clinical practice. The study findings have 
been previously described [7]. Detailed information on participant de
mographics and their serum micronutrients status at less than 16 weeks 

of gestation, and their fasting (FPG) and 2-hr (2 h- PG) plasma glucose 
levels at 24–28 weeks of gestation at the time of a 75-g oral glucose 
tolerance test (OGTT) were collected. GDM diagnosis was based on NICE 
criteria, defined as FPG ≥5.6 mmol/l or 2 h-PG ≥7.8 mmol/l and In
ternational Association of Diabetes and Pregnancy Study Groups 
(IADPSG) criteria, defined as FPG ≥5.1 mmol/l or 2 h-PG ≥8.5 mmol/l 
[25,26]. Of the infants of mothers from one study centre (George Eliot 
Hospital- NHS Trust, Nuneaton, UK; n = 1637), 511 were assessed for 
birth outcomes and evaluated for neonatal anthropometry indices with 
complete newborn anthropometry and skinfold thickness data. In this 
exploratory analysis, we aimed to identify the possible association be
tween maternal early pregnancy folate and offspring anthropometry at 
birth. Therefore, no imputations were not performed, and participants 
were excluded primarily due to incomplete data(Supplementary Fig. 1). 
Maternal and infant characteristics of those excluded are provided in 
supplementary files (Supplementary Table 1). All participants provided 
written informed consent, and ethical approval was obtained from the 
National Research Ethics Committee.

2.2. Biochemical analysis

Blood sampling was done at a mean of 12.5 ± 1.6 weeks of gestation 
and samples were transferred to − 80oc freezers within 30 min of 
collection. Serum B12 and folate levels were assessed using an electro- 
chemiluminescent immunoassay (Roche Cobas analyser from Roche 
Diagnostics, Burgess Hill, UK). Plasma total homocysteine (tHcy) levels 
were estimated by stable isotopic dilution analysis using a Shimadzu 
HPLC system equipped with an auto-sampler, linked to the detection 
system of an API 6500 QTrap tandem mass spectrometer (liquid chro
matography mass spectrometry [LCMS]) (Applied Biosystems, War
rington, UK). A detailed description of this biochemical procedure has 
been given elsewhere [7]. Early pregnancy serum folate deficiency was 
defined as <10 nmol/l and excess folate as >45 nmol/l [27]. B12 
insufficiency in pregnancy was defined as <220 pmol/l [7].

2.3. Infant anthropometric assessment at birth

The current analysis was done in 511 mother-infant pairs of PRiDE 
cohort from George Eliot Hospital NHS Trust, UK, with complete 
neonatal anthropometry including birthweight, crown-heel length, 
occipitofrontal head circumference (HC), abdominal (AC) and chest 
circumference (CC) and mid-upper arm circumference (MUAC), triceps 
SFT, and subscapular SFT. These were conducted by trained research 
midwives. Birthweight was measured using a Seca infant scale with 
accuracy to the nearest 50 g and crown-heel length was measured using 
a portable length board with accuracy to the nearest 0.1 cm. Triceps and 
subscapular SFT on the left side of the body were measured using Har
penden skinfold callipers with a precision of 0.2 mm. Similarly, stand
ardised techniques were used to measure infant HC, AC, CC, MUAC [28]. 
All measurements were taken within 72 h of birth. Each measurement 
was performed in duplicate, and the mean value was used.

2.4. Statistical analysis

All analyses were performed in R software, version 4.2.2 (2022-10- 
31) (https://www.R-project.org/) [29]. The infant anthropometric 
variables were found to be normally distributed(Supplementary Fig. 1). 
Continuous variables were reported as mean and standard deviation 
(SD), while percentages were used to report categorical variables. Stu
dent’s t-test was used to compare group differences in continuous var
iables, while Chi-square tests (χ2) were used to compare categorical 
variables between the groups. An unadjusted regression model was 
performed to explore the association between maternal folate and infant 
anthropometric measures, stratified by infant gender (Mode 1) 1. An a 
priori set of multiple linear regression models were then performed to 
investigate the sex specific effects of maternal folate on infant body 

Abbreviations:

FA Folic acid
SFT Skinfold thickness
MUAC Mid-upper arm circumference
HC Head circumference
CC Chest circumference
AC Abdominal circumference
GDM Gestational diabetes mellitus
OGTT Oral glucose tolerance test
FPG Fasting plasma glucose
2 h-PG 2- hour plasma glucose
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composition due to the marked differences in the effect estimates of 
male and female newborn triceps SFT, MUAC and AC measurements 
(Supplementary Fig. 2) following an interaction analysis between 
maternal folate and newborn anthropometry. Three additional models 
were tested adjusting for relevant covariates that thought to be related 
to infant anthropometry. Model 2 adjusted for maternal and infant 
covariates (maternal age, BMI, GA at booking visit of one carbon 
metabolite measurement including vitamin B12 and homocysteine, 
ethnicity, parity and infant birthweight, GA at birth, length, HC and CC 
at birth). As maternal lipids and glycaemia are also shown to be asso
ciated with infant adiposity, these were tested in model 3 (high density 
lipoprotein (HDL), triglycerides (TG) and total cholesterol (TC)) and in 
model 4 (FPG, 2 h- PG at OGTT and gestational weight gain). Multiple 
linear regression models were stratified based on newborn sex adjusting 
for potential covariates in unadjusted and adjusted models. Because of 
the strong collinearity between smoking status and folate levels (p-value 
= 0.03), we excluded maternal smoking status from the adjusted anal
ysis to maintain statistical validity. As there is evidence of direct asso
ciations between early pregnancy folate levels and plasma glucose levels 
at 24–28 weeks of gestion, interaction analysis was performed to explore 
whether the association between maternal folate and neonatal anthro
pometry is mediated via maternal glucose levels during pregnancy [7,
30]. All analyses were two-sided, and a p-value of <0.05 was considered 
statistically significant in all models. Additionally, we performed 
Benjamini-Hochberg procedure to control the false discovery rate (FDR) 
to obtain adjusted p-value calculations for multiple comparisons in 
Model 2–4.

3. Results

3.1. Baseline characteristics

Maternal antenatal characteristics are summarized in Table 1. Excess 
folate (>45 nmol/l) was reported in a significant proportion of women 
(40.3 %) in this cohort. Folate deficiency (<10 nmol/l) was observed in 
1.2 % and B12 insufficiency in 47.0 % (<220 pmol/l) of women in early 
pregnancy. Fifty-five (10.8 %) women were diagnosed with GDM at the 
time of OGTT by NICE criteria and eighty-four (16.4 %) by IADPSG 
criteria. These proportions were similar to that of the parent PRiDE 
study (Supplementary Table 2) [7]. There were no significant differ
ences observed in maternal clinical characteristics of male and female 
infants (maternal age, BMI, FPG and 2 h- PG at OGTT and lipid mea
surements including HDL, total cholesterol, and triglyceride). Table 2
shows the comparison of birthweight and other neonatal anthropo
metric measures between male and female infants. As expected, birth
weight, length, and HC were greater in male infants compared to female 
infants (Table 2).

3.2. Association between early pregnancy folate, B12 and infant 
birthweight

Early pregnancy folate (std β = 0.06; 95 % CI: − 0.01, 0.13; p-value =
0.10) and B12 (std β = − 0.07; 95 % CI: − 0.14, 0.002; p-value = 0.06) 
were not associated with infant birthweight after adjusting for infant sex 
and gestational age at birth. However, excess folate (>45 nmol/l) was 
positively associated with infant birthweight after adjusting for gender 
and GA at birth. No significant association was observed between 
insufficient B12 levels at <220 pmol/l and birthweight(Supplementary 
Table 3).

3.3. Association between early pregnancy folate and infant 
anthropometric indices

Maternal early pregnancy folate was positively associated with tri
ceps SFT, subscapular SFT and MUAC in the unadjusted model (model 1; 
Supplementary Table 4) in male but not in female infants. Fig. 1 and 

Supplementary Table 4 shows the sex-specific association between early 
pregnancy folate and infant anthropometric indices. The association 
remained significant for triceps SFT in adjusted model for key maternal 
and newborn anthropometric indices in Model 2 but attenuated for 
MUAC and subscapular SFT in Model 2 after correcting for Benjamini- 
Hochberg procedure. It was not significant for AC and no association 
was seen in female newborns across all anthropometry measurements. 
No such associations were found between maternal early pregnancy B12 
or homocysteine levels (Supplementary Table 5). The positive associa
tions between folate and infant anthropometry indices in males 
remained significant after adjusting for potential confounders (models 2; 
Supplementary Table 4). An interaction analysis showed statistically 
significant interactions (Infant sex*folate) in relation to triceps skinfold 
and AC (p < 0.05), but this was not significant for MUAC (p = 0.07), and 
subscapular skinfold thickness (p = 0.15) (Supplementary Fig. 2).

3.4. Exploring the effect of maternal glucose levels on the association 
between folate and infant anthropometry

Maternal glycemia showed no significant relationship with infant 
anthropometric indices in an adjusted model. Sub-group analysis of 
women who did not develop GDM at 24–28 weeks (n = 456; male: n =

Table 1 
Maternal antenatal characteristics stratified by infant sex.

Maternal characteristics All Female Male p- 
value

(n = 511) (n = 269) (n = 242)

Age (years) 29.9 ± 5.3 29.9 ± 5.1 30.0 ± 5.5 0.98
Height (cm) 165 ± 6.8 164 ± 7.0 166 ± 6.6 0.24
Weight (kg) 87.1 ±

21.4
87.1 ±
22.6

87.2 ±
20.0

1.00

BMI (kg/m2) 31.8 ± 7.2 32.0 ± 7.5 31.7 ± 6.7 0.92
GA at booking (weeks) 12.5 ± 1.6 12.4 ± 1.6 12.6 ± 1.5 0.67
Waist circumference (cm) 103 ±

16.7
102 ± 17.3 104 ±

16.0
0.46

Ethnicity ​ ​ ​ 0.99
Caucasian 419 (82.0 

%)
219 (81.4 
%)

200 (82.6 
%)

​

aOther 27 (5.3 %) 14 (5.2 %) 13 (5.4 %) ​
South Asian 65 (12.7 

%)
36 (13.4 
%)

29 (12.0 
%)

​

Parity 1.3 ± 0.8 1.3 ± 0.7 1.4 ± 0.9 0.91
Primigravida 402 (78.7 

%)
211 (78.4 
%)

191 (78.9 
%)

0.99

Folate (nmol/l) 48.2 ±
33.1

47.0 ±
32.2

49.6 ±
34.0

0.69

Excess folate (>45 nmol/l) 206 (40.3 
%)

104 (38.7 
%)

102 (42.1 
%)

0.71

B12 (pmol/l) 247 ±
97.6

245 ± 88.8 249 ± 107 0.89

B12 insufficiency at <220 
pmol/l

240 (47.0 
%)

121 (45.0 
%)

119 (49.2 
%)

0.64

Homocysteine (μmol/l) 12.8 ± 5.7 12.7 ± 6.0 12.8 ± 5.4 0.97
Cholesterol (mmol/l) 4.8 ± 0.8 4.8 ± 0.8 4.9 ± 0.9 0.41
HDL (mmol/l) 1.7 ± 0.4 1.6 ± 0.4 1.7 ± 0.4 0.95
Triglyceride (mmol/l) 1.4 ± 0.6 1.4 ± 0.6 1.4 ± 0.6 0.85
GA at OGTT (weeks) 26.9 ± 2.5 27.1 ± 2.5 26.8 ± 2.6 0.59
bWeight gain (kg) 5.9 ± 4.8 5.8 ± 4.9 6.1 ± 4.6 0.78
FPG (mmol/l) 4.6 ± 0.5 4.6 ± 0.5 4.5 ± 0.5 0.68
2 h- PG (mmol/l) 5.9 ± 1.5 5.9 ± 1.5 5.8 ± 1.4 0.44
GDM treatment 51 (10.0 

%)
30 (11.2 
%)

21 (8.7 %) 0.65

Data are presented as mean ± SD or n (%) unless otherwise indicated.
Abbreviations: GA- Gestational age; OGTT- Oral glucose tolerance test; FPG- 
Fasting plasma glucose; 2 h-PG- 2 h plasma glucose in OGTT; HDL- High density 
lipoprotein.
p-value <0.05 was considered significant.

a Other ethnic group includes North African, Black African, Caribbean, Asian, 
Southeast Asian, Middle Eastern, and mixed ethnicity.

b Gestational weight gain was defined by ‘kg’ weight gained by a pregnant 
woman at the time of OGTT since prenatal booking visit.
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221 and female: n = 235) also showed no association between maternal 
FPG and 2-hr PG with infant anthropometry (Supplementary Tables 6 
and 7) in male and female infants respectively). The interaction analysis 
between early pregnancy folate and maternal FPG and 2-hr PG showed 
no significant association with triceps and subscapular SFT and MUAC 
(Data not shown).

4. Discussion

The present study examined the association between early preg
nancy folate and neonatal anthropometric indices (triceps and sub
scapular SFT, MUAC, and AC) and the role of maternal glycemia as a 
possible mediator in this association. Our study, involving a multi-ethnic 
cohort of 511 mother-neonate pairs, had two main findings. Firstly, 
maternal folate was positively associated with infant anthropometric 
indices in a gender specific manner where significant associations were 
only observed in male infants. Secondly, the associations were present 
even after adjusting for maternal pre-pregnancy BMI and infant birth
weight, significant predictors of newborn anthropometry. To our current 
knowledge, there have been no prior studies that have examined the 
association of maternal folate in early pregnancy on neonatal anthro
pometry and subcutaneous fat in a gender-specific manner.

Newborns’ subcutaneous fat deposits serve as indicators of their 
nutritional status, providing survival benefits by acting as an energy 
reserve and regulating body temperature [20]. However, previous 
studies have reported that subcutaneous SFT predicts neonatal fat mass 
and may increase the risk of adiposity and insulin resistance [31]. 
Studies from India have shown that higher maternal folate levels during 
pregnancy were associated with greater childhood adiposity [10,11]. 
Given the sexual dimorphism in neonatal body fat stores, our study 
explored sex-specific association of maternal folate and adiposity mea
sures at birth (triceps SFT and MUAC). Studies done in children suggest 
that MUAC predicts obesity and body fat distribution and could be a 
useful screening tool for central adiposity [32,33]. Our data indicate 
that folate positively predicted triceps SFT and MUAC but the 

association with subscapular SFT was not observed when adjusted for 
potential maternal and newborn confounders.

The sex-specific associations of early pregnancy folate on neonatal 
anthropometric indices raise questions about whether this observation 
demonstrates increased adipocyte proliferation or is due to the ampli
fication of lipogenic transcription factors in the offspring [34,35]. 
Furthermore, body fat distribution in male infants may involve a more 
intricate process, with contributions from adipokines such as leptin and 
adiponectin [36]. Notably, boys with lower cord blood leptin at birth 
were found to have higher adiposity (SFT measurements) at age 3 [37]. 
We hypothesize that this sex-specific growth expansion occurred in the 
later stages of pregnancy, where maternal micronutrient-rich foods 
accelerate fat accumulation in the male fetus [38]. Currently, there are 
no plausible mechanisms that can explain the sex-specific relationship of 
maternal folate status with neonatal adiposity in humans. However, the 
following animal studies suggest possible mechanisms. First, male 
offspring of excess FA fed dams had higher bodyweight change and in
sulin resistance compared to female pups [15]. They also exhibited 
altered appetite regulatory gene expression such as, proopiomelano
cortin (POMC), leptin receptor, neuropeptide Y, and agouti-related 
protein. Second, maternal folate dependent DNA methylation and 
epigenetic changes were more pronounced in male offspring compared 
to females. In their landmark randomised controlled study in sheep, 
Sinclair et al. showed that 53 % of adiposity, insulin resistance and blood 
pressure associated loci in the affected male offspring genome compared 
to 12 % in females, albeit with a ‘low methylating cocktail diet’ [39]. In 
a recent study by Schoonejans et al., sex-specific expression of proin
flammatory genes were observed in male rodents exposed to maternal 
obesity and metformin highlighting the sexual dimorphism in develop
mental programming [40]. This study also showed while these adverse 
changes were obvious in male offspring at birth, similar changes were 
seen much later in life in female offspring. It is plausible that similar 
sex-specific changes may happen in humans but will require longer term 
studies. It has been shown that periconceptional multivitamin intake 
had sex-specific DNA methylation profiling with differential methyl
ation levels of IGF2R in girls, and GTL2 in boys [41]. Finally, fetal 
growth is influenced by other factors such as placental characteristics, 
hormone levels, paternal anthropometric influences and maternal 
micronutrients interact in complex ways to affect the growth and 
metabolic programming of the fetus [19,42].

The results from our mother-infant pairs are consistent with previous 
findings that male neonates tend to be slightly heavier, longer with 
slightly larger head circumference and higher lean mass than female 
neonates [24,43]. Maternal folate status has been linked to higher blood 
glucose levels and risk of GDM in pregnancy [7,31,37]. Hence, we 
explored whether the association between folate and neonatal adiposity 
was mediated by maternal glycemia. Our findings did not support this, 
suggesting the folate association with maternal glycaemia and offspring 
adiposity may be due to different underlying pathophysiological 
mechanisms.

4.1. Strengths

The key strength of our study is the inclusion of the PRiDE cohort 
dataset, a large, multi-ethnic, prospective study that enhances the 
generalizability of our findings. Furthermore, the availability of accu
rate micronutrient status, maternal glycemia and lipid measurements 
enabled adjustment for key maternal confounders in our models.

4.2. Limitations

This study has the following key limitations. First, we used triceps 
and subscapular SFT as a surrogate measure of neonatal adiposity, 
instead of more robust methods such as air displacement plethysmog
raphy or magnetic resonance imaging. However, all the measurements 
were done within 72 h of birth which is shown to have higher accuracy 

Table 2 
Infant anthropometric indices measured at birth stratified by sex.

Infant anthropometry All (n =
511)

Female (n =
269)

Male (n =
242)

p-value

Birthweight (gms) 3420 ±
540

3350 ± 536 3510 ±
533

0.004

GA at birth (weeks) 39.3 ±
1.5

39.3 ± 1.6 39.3 ± 1.5 0.93

Length (cm) 50.5 ±
3.7

49.9 ± 3.8 51.2 ± 3.5 0.001

Ponderal Index (gm/cm3) 2.7 ± 0.5 2.7 ± 0.6 2.7 ± 0.5 0.30
Head circumference (cm) 34.7 ±

1.6
34.5 ± 1.5 35.0 ± 1.7 <0.001

Chest circumference (cm) 34.3 ±
2.5

34.1 ± 2.6 34.6 ± 2.4 0.16

MUAC (cm) 11.2 ±
1.5

11.1 ± 1.5 11.4 ± 1.5 0.21

Abdominal circumference 
(cm)

33.4 ±
2.6

33.3 ± 2.7 33.6 ± 2.6 0.40

Triceps SFT (mm) 5.9 ± 1.9 5.9 ± 2.0 5.8 ± 1.9 0.66
Subscapular SFT (mm) 5.7 ± 1.9 5.6 ± 1.9 5.7 ± 1.9 0.98
Subscapular: Triceps SFT 

ratio
1.0 ± 0.2 0.9 ± 0.2 1.0 ± 0.2 0.73

Infant Birth size
LGA at birth (>90th 
percentile)

61 (11.9 
%)

31 (11.5 %) 30 (12.4 
%)

0.98

SGA at birth (<10th 
percentile)

41 (8.0 
%)

21 (7.8 %) 20 (8.3 %) ​

Data are presented as mean ± SD or n (%) unless otherwise indicated.
Abbreviations: LGA- Large for gestational age; SGA- Small for gestational age. 
LGA and SGA outcomes were calculated based on WHO (World Health Orga
nisation) growth charts.
p-value <0.05 was considered significant.
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than later on in infancy [22]. Second, we did not have access to lower 
limb SFT, such as the thigh or calf. Including these measurements could 
have enabled to calculate the subcutaneous fat mass. Third, the present 
study is limited by its observational design, which prevents us from 
establishing causal relationships. Finally, we did not have any data on 
pre-pregnancy, mid- and late pregnancy and cord blood folate levels, 
therefore could not ascertain their role in relation to maternal early 
pregnancy folate levels. Moreover, the original PRiDE cohort was con
strained by its focus on maternal characteristics, and we recognise that 
paternal anthropometry and adiposity may also impact neonatal 
adiposity. While there is currently no evidence suggesting that these 
factors may introduce bias to our results, it would be valuable for future 
studies to investigate and clarify their respective roles on neonatal 
adiposity (maternal and cord blood folate levels). A significant limita
tion of our study is that newborn anthropometric measurements were 
only available from a single study centre within the larger PRiDE cohort, 
which could have affected our findings. Nevertheless, the key maternal 
and newborn characteristics have been similar between the groups 
(single centre vs. other centres data) including early pregnancy folate 
levels, infant birth weight, and head circumference.

5. Conclusion

In conclusion, our study indicated that higher maternal folate levels 

may be associated with adverse metabolic programming of adiposity in 
males. It can be potentially explained by the notion that the male fetus is 
more responsive to maternal nutrition, glycemia and pre-pregnancy BMI 
and are more vulnerable to experiencing adverse neonatal outcomes 
during any intra-uterine disruption [40,44]. Additional larger cohort and 
randomised controlled trial studies are required to understand whether 
any causal, adverse relationship exist in a gender-specific manner be
tween excess folate and offspring adiposity and metabolic health. In the 
meantime, it is important to strike a balance between adequate prenatal 
folate status vs. excess folate levels in early pregnancy. Maternal serum 
levels are easy to measure in early pregnancy and folic acid supplements 
should be stopped if adequate/excess folate levels are observed in early 
pregnancy.
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Fig. 1. Association between maternal folate and infant triceps and subscapular skinfold thicknesses, MUAC, AC and estimated percent fat mass stratified by gender 
Linear regression models showing the association between 1 SD unit change in maternal folate and estimates of neonatal triceps and subscapular skinfold thicknesses, 
MUAC and AC measured at birth and estimated percent fat mass. Blue lines showed the coefficients, and 95 % confidence intervals of male infant anthropometry; Red 
lines showed the coefficients and 95 % confidence intervals of female infant anthropometry. A: Association between maternal folate and triceps skinfold thickness 
(mm). B: Association between maternal folate and subscapular skinfold thickness (mm) C: Association between maternal folate and infant mid-upper arm 
circumference (cm). D: Association between maternal folate and infant abdominal circumference (cm). 
Regression models were adjusted for the covariates as follows: 
Model 1: Unadjusted model 
Model 2: Adjusted for maternal age, BMI, gestational age at booking visit, ethnicity, parity, vitamin B12, homocysteine levels and infant birthweight length, head, 
and chest circumference measured at birth, and gestational age at birth 
Model 3: as model 2, with adjustments to maternal HDL, triglyceride, and total cholesterol 
Model 4: as model 3, with additional adjustments to fasting and 2-h plasma glucose at the time of OGTT, gestational age at the time of OGTT, weight gain, and GDM 
treatment. The blue and red dots represent the coefficient estimates from each model and the vertical lines represents 95% confidence intervals for the standardised 
regression coefficient (β) for male and female newborn respectively.
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