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ABSTRACT 
Infrastructure defects pose significant public safety risks and, if undetected, can lead to costly repairs. 
While machine learning (ML) technologies have significantly enhanced the capabilities for inspecting 
infrastructure, a comprehensive synthesis of these advancements and their practical application across 
various infrastructures is lacking. This study addresses this gap by providing a literature review, offering a 
consolidated view of current ML methodologies in Infrastructure Automated Defect Detection (IADD). This 
research employs a systematic literature review (SLR) approach to analyse 123 papers on ML methodolo-
gies applied to IADD. The analysis reveals the wide use of deep learning architectures like Convolutional 
Neural Network and its variants, which perform well in defect detection across various infrastructures, 
including roads, bridges, and sewers. However, standardised, comprehensive datasets are critical to train 
and test these models more effectively. The study also highlights the importance of developing ML 
approaches that can accurately assess the severity of defects, an area currently underexplored but with 
significant implications for risk management in infrastructure. This SLR provides a consolidated perspec-
tive on ML technologies’ advancements and practical applications in IADD, and it offers substantial value 
to researchers, engineers, and policymakers engaged in infrastructure asset management.
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Introduction

Critical infrastructures globally are frequently exposed to severe phys-
ical stress from acute and chronic catastrophes such as earthquakes, 
floods, and ageing deterioration (Munawar et al. 2021). Managing 
these infrastructures often falls under the purview of municipal 
bodies and governments, which deploy asset management plans to 
ensure stability and longevity. Condition monitoring is integral to 
asset management plans, significantly contributing to extending the 
service life of an asset (Le Gat et al. 2025). It offers insight into the 
current state of assets and facilitates predicting their future perform-
ance (Assaad and El-Adaway 2020). A crucial outcome of condition 
monitoring is defect detection. Substantial financial investments are 
directed annually towards procuring techniques and resources for 
defect detection in critical infrastructures such as roads, bridges, 
buildings, and water assets (Ni et al. 2019; Mukherjee et al. 2023).

Traditionally, experts conduct visual inspections, using special-
ised tools to detect defects manually. Despite its widespread use, 
this approach is labour-intensive, hazardous, time-consuming, and 
prone to human error (Ahmadi et al. 2022). Hence, there has been 
a discernible shift towards Infrastructure Automated Defect 
Detection (IADD) in recent years, fuelled by emerging technolo-
gies’ ability to expedite and improve defect detection and assess-
ment reliability (Cheng and Wang 2018; Hsieh and Tsai 2020; Zhu 
et al. 2020; Munawar et al. 2021).

Various approaches have been developed in automated defect 
detection to analyse and interpret the vast and complex image data 
collected. Methods range from thresholding and edge detection to 
machine learning (ML) algorithms (Munawar et al. 2021). Notably, 
ML techniques have been identified as robust solutions to the chal-
lenges in infrastructure defect detection, offering advantages such as 
accuracy, automation, speed, customisability, and scalability over 
conventional methods (Assaad and El-Adaway 2020). Consequently, 
research leveraging ML algorithms for automated defect detection, 
including image classification-based techniques, object detection, 
and semantic segmentation, has proliferated in recent years (Pan 
et al. 2020). For instance, Protopapadakis et al. (2019) demonstrated 
the application of Convolutional Neural Networks (CNNs) with 
heuristic post-processing techniques for crack detection in tunnels, 
achieving high accuracy. While their study focuses on tunnel-specific 
infrastructure, it highlights the broader potential of ML approaches 
across various infrastructure types.

Despite rapid advancements in ML techniques for IADD, com-
prehensive reviews synthesising these developments and assessing 
their practical applications across various infrastructures are lacking. 
Particularly, the integration of diverse ML algorithms, their efficacy 
in different settings, and the evaluation of performance metrics in 
the context of varying data characteristics have not been thoroughly 
explored. This paper seeks to fill this gap by presenting a compre-
hensive review of state-of-the-art research employing diverse ML 
techniques in IADD. This study would benefit researchers in this 
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field and enhance existing knowledge by gaining insights into the 
algorithms, datasets, characteristics, performance metrics, and sig-
nificant defects detected by ML algorithms. The subsequent sections 
elaborate on our research methodology, analyses, and findings, fol-
lowed by a discussion, conclusions, and recommendations for future 
research and development.

Research methodology

Review protocol

The study utilises a Systematic Literature Review (SLR) approach 
to explore the application of ML techniques in IADD. The 
protocol for this literature review encompassed three phases: 
data acquisition, screening, and in-depth analysis. Figure 1 illus-
trates this process, which is elaborated upon in the subsequent 
sections. The utilised protocol incorporates key elements of the 
PRISMA (Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses) framework, such as transparent reporting of 
search strategies, screening processes, and inclusion criteria, tail-
ored to the engineering and infrastructure domains.

Paper identification

The primary objective of this phase was to identify the most pertin-
ent academic articles for our analysis. Initially, we chose Scopus, 
Web of Science (WoS), and Google Scholar as our research engines. 
However, we excluded Google Scholar due to an overabundance of 
partially relevant articles. We formulated keywords using ‘AND’ and 
‘OR’ to retrieve relevant articles, limiting our study to papers pub-
lished post-2017. To delineate the scope related to infrastructure 
types, we conducted a preliminary search using a specific query, 
revealing that roads, bridges, and sewers account for 83% of research 
in ML-based automated defect detection (Figure 2). Consequently, 
we focused on these three types of infrastructure. The keywords for 
the main search were based on our research questions and scope, as 
shown in Table 1, to retrieve data on IADD research papers.

Screening

In the screening phase, we utilised formulated keywords in Scopus 
and Web of Science databases, aligning with our research questions 
on ML-based image processing techniques for IADD. Searches 
focused on titles, abstracts, and keywords from 2017 to 2024, yield-
ing 777 papers. This period was chosen due to significant techno-
logical advancements in ML and IADD. To ensure comprehensive 
coverage, backwards and forward searching methods added 37 
papers. A duplicate check reduced the total to 649 papers.

A three-stage filtering process further narrowed down the papers. 
The first stage, title filtration, excluded review papers, articles with 
vague titles, and those out of scope (e.g. thermal images, 3D images, 
radar images), reducing the papers to 383. The second stage, abstract 
filtration, used similar criteria. Papers focusing on very specific issues 
(e.g. camera angles) and those with non-standard abstracts (unclear 

Figure 1. Review protocol.

Figure 2. Infrastructure types with IADD research.

Table 1. Search query.

Search String

Initial (‘Road’ OR ‘Bridge’ OR ‘Sewer’ OR ‘Tunnel’ OR ‘Railway’ OR ‘Airport’ 
OR ‘Dam’) AND (‘Image processing’ OR ‘Machine learning’ OR 
‘Deep learning’) AND (‘Defect detection’ OR ‘Crack detection’ OR 
‘Damage detection’) AND (‘image’ OR ‘video’)

Final (‘Bridge‘ AND ‘Road’ AND ‘Pavement’ AND (‘Sewer’ OR ‘Sewer 
pipe’)) AND (‘Image processing’ OR ’Machine learning’ OR ’Deep 
learning’) AND (‘Defect detection’ OR ’Crack detection’ 
OR ’Damage detection’) AND (‘image’ OR ‘video’)
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purpose, vague methodology, undisclosed findings) were excluded. 
This left 356 papers, which were downloaded for full-text analysis. In 
the final stage, full-text analysis, papers focusing on specific defects 
(e.g. bolt failure) or with unclear methodologies (sparse information 
on algorithm, model, datasets) were excluded. After this filtration, 
123 papers remained for in-depth analysis. All protocol steps were 
independently verified by two researchers to ensure validity. The 
multi-phase screening approach (title, abstract, and full-text) follows 
systematic review principles akin to those outlined in PRISMA to 
ensure transparency and replicability Table 2.

In-depth analysis

In-depth analysis employed content analysis to address the research 
questions and evaluate the articles extracted from the screening 
phase. These methods align with a common objective of SLR, which 
involves examining the development of a specific research area 
(Saedi et al. 2022). Content analysis was used to synthesise the pro-
gression and intricacies of the IADD research domain, focusing on 
ML-based image processing techniques for IADD.

Analysis and results

Infrastructure defects classification

The type and severity of defects are essential criteria in risk assessment 
for deciding on infrastructure maintenance and repair activities 
(Ellingwood 2005). Consequently, many standards, such as the manual 
of sewer condition classification in the United Kingdom (Water 
Research Centre 2004), offer criteria and methods for infrastructure 
maintenance. Identifying defect types is the first step in risk assess-
ment. Using ML-based image processing, several researchers have 
attempted to discover infrastructure defects (Li et al. 2020a; Yang et al. 
2020a; Yin et al. 2021; Ahmadi et al. 2022). Figure 3 depicts the classifi-
cation of detected defects in three types of infrastructure: roads, 
bridges, and sewers. Cracks are identified as the most prevalent defect 
in roads and bridges, while roots and obstacles are the most typical 
defects in sewer pipes. It also reveals a higher variety of defects 
detected in sewer pipes. This diversity could be attributed to the pro-
nounced similarity among defects in this type of infrastructure. For 
instance, differentiating between various defects such as breakages, 
roots, cracks, fractures, and joint offsets through ML algorithms 
presents a significant challenge due to their visual similarity (Pan et al. 
2020). A comparable issue arises when attempting to identify different 
types of cracks in road and bridge infrastructures (Mraz et al. 2020).

Machine learning techniques analysis on infrastructure 
automated defect detection

In the past decade, ML techniques have achieved exceptional 
success across various computer vision domains. They have been 

utilised in many image processing challenges, such as defect 
detection, and other civil engineering realms like construction 
progress monitoring (Dimitrov and Golparvar-Fard 2014; 
Elghaish et al. 2022; Talebi et al. 2022). A typical pipeline for 
employing ML-based image processing methods consists of sev-
eral stages, including image capture, pre-processing, model train-
ing, and model testing (Munawar et al. 2021).

The subsequent sections will delve into critical specifics associ-
ated with deploying ML techniques for automated defect detection 
across three infrastructural settings: roads, bridges, and sewers. 
These specifics encompass training datasets, programming lan-
guages, tools and libraries, task analysis (such as segmentation, 
object detection, and classification), prevalent algorithms and spe-
cific models, as well as performance evaluation metrics.

Training datasets
In the realm of IADD using ML models, most published studies 
train and test their models on self-collected datasets (Li et al. 2020a; 
Yin et al. 2021; Ahmadi et al. 2022). These self-constructed datasets 
present a hurdle when comparing models (Sholevar et al. 2022). A 
standard dataset could address this issue (Eisenbach et al. 2017), 
allowing researchers to bypass the data collection stage. Numerous 
public image defect collections have been compiled for roads and 
bridges. However, due to the relatively recent adoption of ML for 
defect detection in sewer pipes, no public dataset is currently avail-
able. Figure 4 shows the proportion of public and self-collected 
datasets used in related literature for each infrastructure.

The resolution and distance of the captured images are critical 
factors in determining the quality of data used for ML-based 
defect detection. High-resolution images enable the detection of 
fine-grained details, such as micro-cracks or surface wear, while 
lower-resolution images may limit accuracy, particularly for sub-
tle or distant defects (Abdellatif et al. 2021). Similarly, the dis-
tance from which images are captured influences the level of 
detail and the field of view. Close-range images provide higher 
detail but are limited in coverage, whereas distant captures are 
suitable for large-scale assessments but may compromise the 
resolution of finer defects (Murao et al. 2019). For instance, 
studies like Zhu et al. (2020) have demonstrated that optimising 
resolution and distance can significantly enhance the accuracy 
and reliability of defect detection models.

Prominent public datasets for roads include IEEE Big Data 
Cup Challenge 2020 (Jeong 2020; Kortmann et al. 2020), Deep 
Crack (Chen and Jahanshahi 2020; Qu et al. 2020; Al-Huda et al. 
2023a), Crack Forest Dataset (CFD) (Chen and Jahanshahi 2020; 
Qu et al. 2020; Al-Huda et al. 2023a), Crack500 (Chen and 
Jahanshahi 2020; Qu et al. 2020; Al-Huda et al. 2023a), 
GAPs384 (Chen and Jahanshahi 2020; Yang et al. 2020b; 
Matarneh et al. 2024), AigleRN (Li et al. 2019a; Fang et al. 
2021), CrackTree200 (Yang et al. 2020b; Fang et al. 2021; 

Table 2. Inclusion and exclusion criteria.

Phases Criteria Justification

Title and abstract screening - Review papers are excluded. 
- Irrelevant titles are excluded. 
- Only articles on bridges, roads and sewer infrastructures are included. 
- Articles not aligning with research questions  

and scope are excluded.

- Focus on primary research. 
- Ensure clarity and relevance. 
- Broad coverage of key infrastructures 
- Relevance to the study’s aim and scope 
- Broad thematic relevance 
- Ensure clear and comprehensive abstracts

Full-text screening - Only articles on bridge, road and sewer infrastructure are included. 
- Articles considering very specific defects  

(e.g. bolt failing) are excluded. 
- Articles with insufficient information (e.g. algorithm, model, dataset)  

in methodologies are excluded.

- Relevance to core infrastructure 
- Alignment with the study’s aim and scope 
- Focus on broadly applicable issues. 
- Exclude narrowly focused studies. 
- Ensure methodological clarity and rigour.
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Nooralishahi et al. 2022; Matarneh et al. 2024), and Crack IT 
(Abdellatif et al. 2021). For bridges, commonly used public 
datasets are Bridge88 (Jiang et al. 2021), BridgeTL58 (Jiang 
et al. 2021), BridgeXQ48 (Jiang et al. 2021), LiuYang128 (Jiang 
et al. 2021), BridgeDB288 (Jiang et al. 2021), Crack500 (Zhu et al. 
2021a), SYD Crack (Zhu et al. 2021a), COCO-Bridge (Bianchi 
et al. 2021), SDNET (Yang et al. 2020a; Xiong et al. 2024), CCIC 
(Yang et al. 2020a), and BCD (Yang et al. 2020a). A significant 
limitation of public datasets for defect detection is the limited var-
iety of defect types. Most of these datasets document only cracks. 
This constraint has been highlighted as a research limitation in 
studies by Angulo et al. (2019), Gong and Wang (2021), and 
Kruachottikul et al. (2021).

Analysis of programming languages, tools, and libraries
Python, a freely available programming language, and 
TensorFlow, an open-source ML library developed by Google, 
are the most frequently used tools for implementing ML-based 
image processing algorithms in infrastructure defect detection. 
Figure 5(a) and (b) highlight the distribution of programming 
languages and frameworks used to develop ML-based algo-
rithms in three infrastructures: roads, bridges, and sewers. 
Factors contributing to the widespread use of Python and 
TensorFlow for implementing ML-based algorithms for IADD 

include simplicity and consistency, availability of high-level 
libraries and frameworks for Artificial Intelligence and ML, 
flexibility, platform independence, and expansive community 
support (Sholevar et al. 2022).

In addition to Python and TensorFlow, other platforms like 
MATLAB and the Caffe deep learning framework have facilitated 
the implementation of ML-based algorithms in fields beyond 
computer science, such as civil engineering. While these ready- 
to-use tools enhance accessibility and ease of use, it is important 
to note that they may also limit the flexibility and customisability 
that researchers have in developing their unique ML solutions.

Tasks analysis (segmentation/object detection/classification)
The strategies utilised for IADD leveraging ML-based image 
processing can be categorised into four main types: segmenta-
tion, classification, object detection, and hybrid methods. The 
choice of the most suitable approach for defect detection 
depends on factors such as the type of infrastructure, the nature 
of the defect, the dataset, and the standard guidelines and man-
uals for infrastructure asset management.

For instance, in the context of sewer pipe condition assess-
ment, guidelines like the WRC manual in the UK (Water 
Research Centre 2004) stipulate various tasks necessary for a 
comprehensive evaluation. These tasks include defect type iden-
tification (such as root intrusion, joint offset, and infiltration), 
determination of defect location and orientation in the image, 
distance from the starting manhole, severity rating of the 
defect, and the tally of defects in each category. Consequently, 
a multitude of deep learning tasks ensue for sewer inspection, 
including (1) defect detection/classification of an image (Hu 
et al. 2023), (2) defect detection accompanied by bounding 
boxes to signify defect type and location (Zhang et al. 2023), 
and (3) pixel-level defect segmentation for quantitative assess-
ment (Dang et al. 2023).

As depicted in Figure 6, in the context of road infrastructures, 
segmentation is the dominant detection approach, occupying 
69% (25 out of 36) of the proportion. In bridges, classification is 
the most dominant task type. Due to the homogeneous nature of 
defect types, predominantly cracks, detection at the pixel level is 

Figure 3. Infrastructure defects classification.

Figure 4. Dataset types for each infrastructure used in ML-based defect detec-
tion models.
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paramount (Zhang et al. 2017). Additionally, given the enhanced 
importance of defect location in sewer pipes and the more 
advanced stage of robotics employment for inspections compared 
to other infrastructures, object detection and classification consti-
tute the majority of tasks in sewer infrastructure analysis.

Performance metrics
The most frequently utilised evaluation metrics in the literature 
across infrastructures are accuracy, precision, recall, and F1 score 
for assessing ML models’ performance. Most studies report high 
values for these metrics, suggesting strong performance in these 
applications. Precision, with a mean of 76.26% and a median of 
83%, indicates models’ high ability to identify positive instances 
correctly. Recall averages 75.59%, indicating robust performance 
in capturing positive instances, while the F1 Score, balancing 
precision and recall, averages 73.99%. The Area Under the Curve 

(AUC), though reported in fewer studies, has a mean of 79.76%, 
showing good class distinction capabilities. Mean Intersection 
over Union (MIoU), crucial for segmentation tasks, averages 
68.98%, and accuracy, the most common metric, averages 
89.57%, reflecting overall model correctness. Although AUC and 
MIoU are less frequently reported, they also show robust per-
formance metrics when available. Some lower outliers indicate 
variability due to different datasets, models, or experimental con-
ditions. This comprehensive performance overview demonstrates 
the effectiveness of ML techniques in this domain while also 
highlighting areas where further improvements and standardisa-
tions could be beneficial.

Figure 7 shows the relationship between dataset size and these 
metrics, revealing weak negative correlations for most metrics. 
Precision (−0.03), recall (−0.17), F1 score (−0.13), MIoU 
(−0.07), and accuracy (−0.07) indicate minimal impact of dataset 
size on performance, suggesting that larger datasets slightly chal-
lenge models but do not significantly degrade performance. 
Notably, AUC shows a moderate negative correlation (−0.67), 
implying that larger datasets complicate the model’s ability to 
distinguish between classes effectively, likely due to increased 
data complexity and variability.

These insights highlight the robustness of ML models in 
infrastructure defect analysis, despite the increasing complexity 
of larger datasets. The minor negative trends suggest that as 
datasets grow, maintaining top performance becomes slightly 
more challenging, particularly for AUC. This underscores the 
importance of developing models that can adapt to and handle 
larger, more complex datasets. Future research should focus on 
enhancing model robustness and adaptability to ensure sustained 
high performance across varying dataset sizes. This comprehen-
sive analysis of performance metrics provides valuable guidance 

Figure 5. (a) Distribution of programming languages for implementing ML-algorithm in IADD, (b) distribution of libraries/frameworks/tools for developing ML- 
algorithm in IADD.

Figure 6. Categorisation of task types for each infrastructure.

INTERNATIONAL JOURNAL OF CONSTRUCTION MANAGEMENT 5



for the continued application and improvement of ML techni-
ques in infrastructure asset defect analysis.

In addition to performance metrics like accuracy and preci-
sion, computational cost is an important consideration when 
assessing the practicality of ML models for infrastructure defect 
detection. Classic CNNs, such as AlexNet and ResNet, provide 
high accuracy but often require significant computational resour-
ces, including high-end GPUs and extended training times, mak-
ing them less feasible for real-time or edge-based applications 
(Protopapadakis et al. 2019). Lightweight models, such as 
MobileNet and SqueezeNet, address this challenge by optimising 
network architectures to reduce complexity and resource 
demands while maintaining reasonable accuracy. Ranjbar et al. 
(2022) demonstrate the practical feasibility of such lightweight 
models by applying MobileNet for asphalt defect detection, 
achieving a balance between efficiency and accuracy suitable for 
resource-constrained settings. Furthermore, tasks like pixel-level 
segmentation (e.g. U-Net) and multi-class object detection (e.g. 
YOLO) are computationally intensive due to their fine-grained 
processing requirements, which impact deployment feasibility in 
resource-constrained environments (Augustauskas and Lipnickas 
2020). The trade-off between accuracy and computational effi-
ciency remains a key challenge (Zhou et al. 2022c).

Algorithm analysis according to infrastructure type
The analysis of algorithms utilised for IADD reveals a diverse 
array of ML techniques employed across different infrastructure 
types. This section categorises these algorithms into non-deep 
learning and various forms of CNNs, providing a comprehensive 
overview based on the reviewed literature (Table 3).

Non-deep learning algorithms. Traditional ML algorithms, such as 
Support Vector Machines (SVMs), Decision Trees, K-Nearest 

Neighbours (KNN), Logistic Regression, and the Hough 
Transform, have been adapted for classification tasks in IADD. 
These models are generally less complex and require less compu-
tational power compared to deep learning models. However, they 
often rely on manually engineered features, which can limit their 
performance in more complex scenarios. For bridges, Li et al. 
(2020b) utilised these algorithms, demonstrating their applicability 
in this domain. While the simplicity and low computational 
requirements of traditional ML algorithms make them suitable for 
basic classification tasks, their reliance on manual feature engin-
eering limits scalability to complex or large datasets (Hsieh and 
Tsai 2020). In the context of roads, studies by Majidifard et al. 
(2020), Ahmadi et al. (2022), and Cubero-Fernandez et al. (2017) 
showed effective use of traditional algorithms for defect detection. 
For sewer pipes, Moradi et al. (2020) and Myrans et al. (2018) 
applied SVM and Decision Trees, illustrating their utility in this 
infrastructure type. Despite these applications, these methods often 
fall short in handling intricate patterns or achieving high accuracy 
compared to deep learning models (Cheng and Wang 2018).

Classification – classic CNNs. Classic CNN architectures such as 
AlexNet, VGG, ResNet, Inception, and DenseNet have been 
extensively used for image classification tasks. These models 
leverage deep layers to automatically extract features from 
images, making them highly effective for defect detection. In 
bridge defect detection, Zhu et al. (2020) and Kruachottikul et al. 
(2021) employed ResNet, highlighting the superior performance 
of deep learning models. For road defect identification, Zhang 
et al. (2024) and Dung et al. (2019) used VGG and ResNet, 
showing significant accuracy improvements. For sewer pipe 
defect detection, Qu et al. (2020) and Gao et al. (2022) applied 
AlexNet and Inception, demonstrating the versatility of CNNs. 
While these models achieve high accuracy, they are computationally 

Figure 7. (a): Relationship between the number of data points and performance metrics (precision, recall and F1 score), (b): relationship between the number of data 
points and performance metrics (accuracy, AUC and MIoU).
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expensive, as noted by Eisenbach et al. (2017) and Chen et al. 
(2018), requiring high-end GPUs and extended training times. This 
makes them less suitable for real-time applications or deployments 
in resource-constrained environments.

Classification – customised CNNs. Customised CNNs tailored for 
unique applications or datasets have also been utilised. These 
models are often modified versions of classic CNN architectures, 
adjusted to better handle specific tasks or data characteristics. Xu 

Table 3. Analysing ML algorithms for automated defect detection in different structures.

Algorithm/Model Bridge Road Sewer pipe

Non-deep learning algorithms*:
� SVM 
� Decision Trees 
� KNN 
� Logistic Regression, 
� Hough transform

Li et al. (2020b) Majidifard et al. (2020) 
Ahmadi et al. (2022) 
Cubero-Fernandez et al. (2017) 
Hoang (2019) 
Matarneh et al. (2025)

Moradi et al. (2020) 
Myrans et al. (2018)

Classification –Classic CNNs*:
� AlexNet 
� VGG 
� ResNet 
� Inception 
� DenseNet

Zhu et al. (2020) 
Kruachottikul et al. (2021) 
Zhang et al. (2024) 
Deng et al. (2021) 
Dung et al. (2019) 
Zhang and Alavi (2021), 
Yang et al. (2020a)

Qu et al. (2020) 
Zhou et al. (2022a) 
Maniat et al. (2021) 
Gao et al. (2022) 
Zhang et al. (2020a) 
Ranjbar et al. (2022) 
Matarneh et al. (2024) 
Elghaish et al. (2025)

Chen et al. (2018) 
Situ et al. (2021) 
Li et al. (2019b)

Classification –Customised CNNs Xu et al. (2019) 
Kun et al. (2022) 
Vignesh et al. (2021) 
Zhang et al. (2021)

Nhat-Duc et al. (2018) 
Park et al. (2019)

Ma et al. (2023)

Classification –Lightweight CNNs*:
� SqueezeNet 
� MobileNet

Ranjbar et al. (2022) 
Hou et al. (2021) 
Yang et al. (2020b)

Zhou et al. (2021a) 
Chen et al. (2018) 
Situ et al. (2021)

Object Detection – CNNs*:
� R-CNN 
� YOLO 
� SSD 
� RetinaNet

Xiong et al. (2024) 
Jiang et al. (2023) 
Deng et al. (2021) 
Zhang et al. (2018) 
Yu et al. (2021) 
Teng et al. (2022) 
Bianchi et al. (2021) 
Murao et al. (2019) 
Reghukumar and Anbarasi (2021) 
Zhu et al. (2020)

Zhou et al. (2022b) 
Angulo et al. (2019) 
Gou et al. (2019) 
Kortmann et al. (2020) 
Ranjbar et al. (2022) 
Jeong (2020) 
Ukhwah et al. (2019) 
Hu et al. (2021) 
Zhang et al. (2020a) 
Hegde et al. (2020) 
Silva et al. (2020) 
Li et al. (2021a) 
Lin et al. (2021) 
Wang et al. (2023a) 
Cano-Ortiz et al. (2024) 
Xing et al. (2023)

Cheng and Wang (2018) 
Wang and Cheng (2018) 
Wang et al. (2021) 
Kumar et al. (2020) 
Wang et al. (2023b) 
Zhou et al. (2022a) 
Yin et al. (2020) 
Kumar et al. (2020) 
Yu et al. (2024) 
Kumar et al. (2020) 
Yin et al. (2021) 
Kumar and Abraham (2019) 
Li et al. (2021c)

Segmentation – CNNs*:
� U-Net 
� FCN 
� SegNet 
� DeepLab 
� PAN

Li et al. (2020a) 
Mohammed et al. (2022) 
Rubio et al. (2019) 
Jang et al. (2021) 
Lopez Droguett et al. (2022) 
Jiang et al. (2021) 
Sun et al. (2024) 
Zhu et al. (2021) 
Bae et al. (2021)

Li et al. (2019a) 
Fang et al. (2021) 
Augustauskas and Lipnickas (2020) 
Hsieh and Tsai (2020) 
Fan et al. (2020a) 
Chen et al. (2019) 
Chun and Ryu (2019) 
Liu et al. (2020) 
Al-Huda et al. (2023b) 
Wang and Su (2020) 
Peng et al. (2024) 
Li et al. (2022a) 
Li et al. (2022b) 
Joshi et al. (2022) 
Fan et al. (2020b) 
Alfarraj (2020) 
Jiang et al. (2021) 
Kaddah et al. (2020) 
Chen and Jahanshahi (2020) 
Yang et al. (2020b) 
Abdellatif et al. (2021) 
Qiao et al. (2021) 
Zhang et al. (2020b) 
Li et al. (2021b) 
Tong et al. (2020) 
Al-Huda et al. (2023a) 
Liu et al. (2020); 
Tsuchiya et al. (2019) 
Majidifard et al. (2020) 
Jung et al. (2019) 
Wang et al. (2023c)

Wang et al. (2023b) 
Guo et al. (2022) 
Zhou et al. (2022c) 
Khalid et al. (2021) 
Guo et al. (2022) 
Pan et al. (2020)

�Fine-tuned or variant versions of the ML model or algorithm.
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et al. (2019) and Kun et al. (2022) developed customised CNNs 
for bridge inspection, showing improved performance through 
architectural modifications. In the context of roads, Nhat-Duc 
et al. (2018) created specific CNN models, achieving higher 
precision. For sewer pipes, Ma et al. (2023) implemented cus-
tomised CNNs, enhancing detection accuracy through tailored 
network designs. Although customised CNNs offer significant 
advantages in addressing task-specific challenges, their perform-
ance heavily depends on the availability of high-quality, task- 
specific training datasets, which can limit their broader 
applicability Elghaish et al. (2022).

Classification – lightweight CNNs. Lightweight CNN architectures 
designed for resource-constrained environments, such as 
SqueezeNet and MobileNet, have been employed. These models 
are optimised for speed and efficiency, making them suitable for 
deployment on devices with limited computational resources. For 
bridge defect detection, Ranjbar et al. (2022) used MobileNet, 
demonstrating the feasibility of lightweight models. In road 
inspections, Zhou et al. (2021a) and Chen et al. (2018) utilised 
SqueezeNet, balancing performance with efficiency. For sewer 
pipes, Situ et al. (2021) applied MobileNet, proving its adaptability 
to different infrastructure types. However, lightweight CNNs may 
trade off some degree of accuracy compared to classic CNNs, 
making them more suitable for scenarios prioritising efficiency 
over precision, as discussed by Dang et al. (2023).

Object detection – CNNs. CNN-based models for object detec-
tion, such as R-CNN, YOLO, SSD, and RetinaNet, are widely 
used for detecting and localising defects within images. These 
models can identify multiple defect types and provide bounding 
boxes for their locations. In bridge defect detection, Xiong et al. 
(2024) and Jiang et al. (2023) used YOLO, showcasing its ability 
to handle complex detection tasks. For road inspections, Deng 
et al. (2021) and Bianchi et al. (2021) employed SSD and YOLO, 
achieving high accuracy in defect localisation. In sewer pipe 
defect detection, Kumar et al. (2020) and Yin et al. (2021) uti-
lised YOLO, highlighting its robustness in diverse environments. 
Although these models excel in defect localisation and multi- 
class detection, their performance can degrade when dealing with 
small or less distinct defects, as noted by Gao et al. (2022).

Segmentation – CNNs. CNN models for segmentation tasks, such 
as U-Net, FCN, SegNet, DeepLab, and PAN, have been adopted. 
These models partition images into meaningful segments, which 
is crucial for detailed defect analysis. For bridge defect segmenta-
tion, Li et al. (2020a) and Mohammed et al. (2022) used U-Net, 
enabling precise identification of defect areas. In road defect seg-
mentation, Rubio et al. (2019) and Jang et al. (2021) employed 
DeepLab and SegNet, demonstrating their capability in handling 
complex segmentation tasks. For sewer pipes, Hsieh and Tsai 
(2020) and Peng et al. (2024) applied U-Net, providing detailed 
analysis of defect extents. However, segmentation models are 
computationally intensive, making their deployment challenging 
in real-time or resource-constrained environments, as highlighted 
by Deng et al. (2021).

Common tasks and most used algorithms by infrastructure type. 
In the context of bridges, classification tasks using classic CNNs, 
particularly ResNet, and traditional algorithms such as SVM and 
Decision Trees, are most common. The primary focus in this 
area is on identifying and classifying defects such as cracks and 
structural damages. For roads, object detection tasks are 

predominant, with YOLO and SSD being the most frequently 
employed algorithms. These models are used extensively to 
detect and localise various types of road defects, including pot-
holes, cracks, and surface deformations. In sewer pipes, segmen-
tation tasks are the most common, with U-Net and customised 
CNNs being the primary algorithms. These models focus on seg-
menting and identifying specific defects within the pipes, such as 
blockages and fractures, to provide detailed insights into their 
condition.

The integration of ML-based algorithms into existing inspec-
tion systems poses several challenges (Ahmadi et al. 2022; 
Elghaish et al. 2022). Computationally intensive models like 
ResNet and U-Net may require significant hardware upgrades 
(Augustauskas and Lipnickas 2020), while lightweight models such 
as MobileNet, despite their efficiency, may compromise accuracy 
in critical applications (Gao et al. 2022). Interoperability with leg-
acy systems and data formats often necessitates middleware solu-
tions to interpret ML outputs within existing workflows (Elghaish 
et al. 2025). Additionally, the transition to ML-based inspections 
requires investment in operator training, workflow redesign, and 
infrastructure upgrades (Assaad and El-Adaway 2020). These inte-
grability challenges highlight the need for tailored solutions that 
balance computational requirements, performance, and cost to 
facilitate seamless adoption of ML algorithms in real-world inspec-
tion systems (Deng et al. 2021).

The integration of ML-based algorithms into inspection work-
flows increasingly involves robotic systems and drones. These 
technologies enhance defect detection by enabling remote, auto-
mated, and precise inspections, particularly in hazardous or 
hard-to-reach areas (Murao et al. 2019; Du et al. 2021). For 
example, drones equipped with high-resolution cameras and 
multi-modal sensors facilitate the collection of detailed data for 
defect analysis (Bianchi et al. 2021; Deng et al. 2021). Robotic 
platforms, such as autonomous ground vehicles, can be inte-
grated with ML models to conduct inspections and even perform 
maintenance tasks, reducing the need for manual interventions 
(Jang et al. 2021). The EU-funded HERON initiative is a notable 
example, combining drones and robotic technologies with 
advanced ML-based tools to execute tasks like crack sealing, pot-
hole repairs, and road marking in an automated workflow 
(Katsamenis et al. 2022). These innovations demonstrate the 
potential for ML-driven defect detection systems to evolve into 
comprehensive inspection and maintenance solutions (Bakalos 
et al. 2024). In summary, the most commonly used algorithms 
for each infrastructure type are:

� Bridges: Traditional algorithms (e.g. SVM, Decision 
Trees) and Classic CNNs (e.g. ResNet), primarily for 
classification tasks.

� Roads: Classic CNNs (e.g. VGG, ResNet) and Object 
Detection CNNs (e.g. YOLO, SSD), primarily for object 
detection tasks.

� Sewer Pipes: Customised CNNs, Lightweight CNNs 
(e.g. MobileNet), and Segmentation CNNs (e.g. U-Net), 
primarily for segmentation tasks.

This comprehensive analysis underscores the effectiveness and 
versatility of various ML models in IADD, providing a clear dir-
ection for future research and application development in this 
field. The algorithms and models listed in Table 3 are in their 
base forms, and most of the referenced studies include fine- 
tuned or variant versions, which are highlighted using an asterisk 
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(�) symbol. Ma et al. (2023) used the Transformer in addition to 
the CNN model listed in Table 3.

Conclusion, recommendations and limitations

This systematic review has critically analysed recent studies on 
IADD, covering 123 papers that address defect classification, 
datasets, programming languages, and performance metrics. The 
research domain was structured to analyse studies involving 
roads, bridges, and sewer systems. One major challenge identi-
fied is the difficulty in detecting similar defects, such as cracks, 
across different infrastructures due to the use of self-compiled 
datasets, which hinders the cross-comparison of model perform-
ances. Nevertheless, the review highlights a clear trend towards 
deep learning models, surpassing traditional ML approaches by 
eliminating the need for manual feature engineering, resulting in 
speed, accuracy, and applicability gains.

This review has highlighted several areas needing further 
investigation and underscored the dynamic nature of ML appli-
cations in infrastructure defect detection. Future efforts should 
focus on creating shared, well-annotated datasets representing 
various infrastructure defects to enhance model performance 
comparisons and support the development of models with 
broader applicability. Additionally, there is a significant need to 
investigate the severity of defects using ML to establish a hier-
archy of defect criticality, aiding in the prioritisation of mainten-
ance tasks and efficient resource allocation. Developing and 
validating models capable of functioning across different infra-
structure types will improve the breadth and effectiveness of 
defect detection. Conducting longitudinal studies to monitor the 
real-world performance of ML models will provide insights into 
their long-term effectiveness and maintenance needs. 
Furthermore, research into integrating ML models with auto-
mated repair and maintenance systems could lead to a more pro-
active and streamlined approach to infrastructure management.

Future research should also focus on developing hybrid mod-
els that combine the strengths of traditional ML and deep learn-
ing techniques to enhance detection accuracy and efficiency. 
Applying transfer learning to use models trained with data from 
one type of infrastructure for others can help address the dataset 
creation problem. Enhancing the robustness of ML models to 
varying environmental conditions, such as light and weather, 
which affect image quality and defect detection accuracy, is also 
crucial. Moreover, improving the interpretability and explainabil-
ity of ML models will help build trust among infrastructure 
managers, thereby facilitating better decision-making.

Recent developments in the field include large language mod-
els, which could be leveraged to automatically analyse vast num-
bers of inspection and maintenance reports, identifying patterns 
and predicting potential defects through natural language proc-
essing. Their ability to generate insightful reports and easily 
extract knowledge from text data can lead to user-friendly ML 
tools for non-experts, fostering the adoption of advanced defect 
detection technologies in infrastructure.

It is important to note that this review includes literature up 
to April 2024. Potential biases may exist in both the selection of 
databases and search terms, as relevant studies not indexed in 
the selected databases or not meeting the search criteria may 
have been overlooked. Similarly, papers not written in English 
may have been missed, omitting significant contributions. 
Despite these limitations, the review provides a thorough over-
view of the state of research up to the point of writing. The 
authors intend to pursue further work in developing a 

framework to identify the most suitable ML methods for effect-
ively detecting specific defects and infrastructures, enabling more 
targeted and effective ML applications in infrastructure defect 
detection.
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