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Abstract

Problem Statement: In the dynamic context of supply chain replenishment, selecting an
effective inventory policy is critical for better performance. However, a lack of
comprehensive comparative analysis of the legacy and emerging approaches leaves a
gap in this research paper, necessitating further research to guide policy selection.

Purpose: This research aims to compare the supply chain performance under various
inventory policies and identify influential factors for their selection. It explores the
mechanisms of these policies under multiple parameters, including re-order level, quantity,
buffer size, lead times, safety stock, lead time factor, and variability. 

Design/methodology/approach: This research uses a comparative simulation study
design in the AnyLogistix (ALX) dynamic simulator, to provide risk-free experiments before
implementation, for three inventory policies. The simulation analysis uses demand data
collected over prolonged demand periods from three variable industry cases for
comparison without human intervention. The simulator applies the statistical variation of
lead time/demand with comparison experiments for supply chain performance evaluation.

Findings: The simulation results show that the Re-order Point (ROP) inventory policy is
more effective than both Make-to-Availability (MTA) Dynamic Buffer Management (DBM)
and Demand-Driven Material Requirements Planning (DDMRP), during prolonged demand
intervals. Furthermore, DDMRP outshines MTA DBM when there is an anticipated spike in
demand. Regarding adjusting buffer parameters, MTA DBM proves easier to handle than
DDMRP. Another key observation is evidence of a reduction in Service Level by Revenue
(SL) with an increase in Supply Variation (SV) for Transportation Lead Time (TLT). 

Originality/value: This work grants a richer understanding of inventory policy selection,
especially in rapidly changing business environments. Furthermore, these data-driven
insights offer guidelines for choosing inventory policies in various contexts, which are
presented in the form of an innovative policy selection decision table. While practitioners
will find the table a valuable and pragmatic tool for decision-making, its design and
foundation also pave the way for further research.
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Limitation: While simulation can project performance outcomes based on quantitative
causality and statistical impact, it may not replicate the dynamic nature of human decision-
making in real business contexts. There is a need for further research to combine
qualitative case studies with quantitative simulation to broaden this analysis.

Keywords: Supply Chain Replenishment, Inventory Policy, AnyLogistix (ALX) Dynamic
Simulator, Re-order Point (ROP), Make-to-Availability (MTA) Dynamic Buffer Management
(DBM), Demand-Driven Material Requirements Planning (DDMRP), Simulation Study,
Data-Driven Insights, Policy Selection Decision Table, Service Level (SL), Supply Variation
(SV), Transportation Lead Time (TLT)

Paper type: A simulation study
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List of Acronyms
Acronym Full Form Description
ADU Average Daily Usage A metric in DDMRP to calculate buffer levels

based on average daily demand.
ALX AnyLogistix Simulation software used for supply chain

modelling and optimization.
BM Buffer Management A process for managing and adjusting

inventory buffers dynamically.
BOM Bill of Materials A comprehensive list of raw materials,

components, and assemblies required for
production.

BP Best Practice Established methods and procedures widely
recognized as the most effective.

BS Buffer Size The amount of stock maintained to absorb
variations in demand or supply.

BSF Base Safety Factor A parameter defining the minimum safety stock
level to ensure service continuity.

B2B Business-to-Business Transactions conducted directly between
businesses.

B2C Business-to-Consumer Transactions conducted directly between
businesses and individual consumers.

CCR Capacity-Constrained
Resource

A resource in a system that limits throughput,
requiring careful management.

CoV Coefficient of Variation A statistical measure representing demand
variability relative to the mean.

CODP Customer Order
Decoupling Point

The point in the supply chain where customer
orders trigger specific operations.

COGS Cost of Goods Sold The direct costs attributable to the production
of goods sold by a company.

CRP Capacity Requirement
Planning

A process for determining production capacity
needed to meet demand.
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DA Demand Absorption A parameter reflecting the ability to smooth
demand variations across the supply chain.

DBM Dynamic Buffer
Management

A method for actively adjusting inventory
buffers based on real-time data.

DBR Drum-Buffer-Rope A scheduling and workflow method in TOC
focusing on constraints management.

DDAM Demand-Driven Adaptive
Model

A model integrating adaptive mechanisms to
respond effectively to dynamic supply chain
demands.

DDIBP Demand-Driven Intelligent
Business Planning

A planning framework leveraging AI and real-
time data for advanced decision-making.

DDMRP Demand-Driven Material
Requirements Planning

A dynamic inventory management system
utilizing buffer zones for flexibility.

DDOM Demand-Driven
Operating Model

A framework for managing supply chains by
aligning operations with real-time demand.

DDS&OP Demand-Driven Sales
and Operations Planning

An advanced version of S&OP, aligning
operations with real-time demand.

DES Discrete-Event Simulation A simulation method used to model the
operation of systems as a sequence of
discrete events.

DLT Decoupled Lead Time The time buffer within a DDMRP system
separating supply lead time from demand.

DTA Distribute-to-Availability A TOC strategy where production and
inventory are synchronized with distribution
demand.

DV Demand Variation The variability in customer demand, often
measured using CoV.

EBQ Economic Batch Quantity The optimal batch size to minimize costs
associated with production and setup.

EOQ Economic Order Quantity The optimal order quantity that minimizes total
inventory costs.

ERP Enterprise Resource
Planning

Integrated management of core business
processes, often in real-time.
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ESG Environmental, Social,
and Governance

A framework for evaluating the sustainability
and ethical impact of a business.

IBS Initial Buffer Size The predetermined stock level for maintaining
buffer capacity in inventory.

IL Inventory Level The stock quantity held at a specific time within
the supply chain.

JIT Just-in-Time An inventory strategy minimizing waste by
receiving goods only as needed.

KPI Key Performance
Indicator

A measurable value demonstrating the
effectiveness of a process or policy.

LT Lead Time The time required to procure or produce an
item in the supply chain.

LTA Lead Time Absorption A parameter measuring the system's ability to
absorb variability in lead times.

LTF Lead Time Factor A parameter in DDMRP used to calculate
buffer levels based on lead times.

MI Multiple Imputation A statistical technique for handling missing
data by creating multiple datasets.

ML Maximum Likelihood A statistical method for estimating parameters
that maximize the likelihood of observed data.

MOQ Minimum Order Quantity The smallest amount of stock that can be
ordered at one time.

MPC Manufacturing Planning
and Control

A system for managing production and
materials planning processes.

MPS Master Production
Schedule

A plan for individual commodities to be
produced in each time period.

MRP Material Requirements
Planning

A system for calculating materials and
components needed to manufacture a product.

MRP II Manufacturing Resource
Planning

An extension of MRP that includes additional
data like labor and machine capacity.

MTA Make-to-Availability A strategy focusing on maintaining availability
of products to meet demand.
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MTA DBM Make-to-Availability
Dynamic Buffer
Management

A consumption-based inventory policy that
adapts to demand variations.

NFP Net Flow Position A key calculation in DDMRP determining net
stock flow based on supply and demand.

OE Operating Expense The ongoing cost of running a process or
business, used in TOC analysis.

OEM Original Equipment
Manufacturer

A company that produces components or
products used in another company's end
product.

OOF Overdue Order Frequency A measure of how often customer orders are
delayed beyond their due date.

OOS Out-of-Stock A situation where inventory is insufficient to
meet customer demand.

OPP Order Penetration Point The point in the supply chain where a customer
order is accepted and processed.

OSH Order Spike Horizon A parameter in MTA DBM for managing
sudden demand surges over a defined period.

OST Order Spike Threshold A parameter in MTA DBM defining the
threshold for demand spikes triggering action.

PAB Projected Available
Balance

A measure of stock available after planned
future consumption.

POQ Periodic Order Quantities A lot-sizing technique based on fixed periods
for order intervals.

PPB Part Period Balancing A lot-sizing method aiming to balance order
cost with carrying cost over time.

Q Order up-to Maximum
Level

The maximum stock level at which
replenishment orders are triggered.

R Reorder Point The inventory level that triggers replenishment
orders.

RL Revenue Level A measure of total revenue derived from
inventory and supply chain management.
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ROI Return on Inventory A measure of inventory performance focusing
on profitability.

S&OP Sales and Operations
Planning

A process that aligns production and demand,
integrating sales and operations.

S-DBR Simplified Drum-Buffer-
Rope

A simplified version of DBR, focused on
managing production constraints.

SA Stock Availability The measure of stock sufficiency to meet
customer demand.

SCM Supply Chain
Management

The management of the flow of goods and
services.

SCOR Supply Chain Operations
Reference

A model for supply chain performance and
process improvement.

SE Simulation Experiment Used in simulation studies to test inventory
policies under various conditions.

SKU Stock Keeping Unit A unique identifier for each distinct product
available for sale.

SL Service Level A key performance indicator reflecting the
ability to meet customer demands.

SS Safety Stock Additional stock maintained to account for
uncertainties in demand or supply.

STP Spike Threshold
Percentage

A parameter in DDMRP for identifying sudden
demand surges.

SV Supply Variation Variability in supply conditions, such as lead
time or availability.

TLT Transportation Lead Time The time required to transport goods from one
location to another.

TOC Theory of Constraints A management approach focusing on
identifying and addressing system bottlenecks.

TOC-
SCRS

Theory of Constraints
Supply Chain
Replenishment System

A TOC methodology focusing on supply chain
replenishment practices.

TMG Too Many Green A term in MTA DBM referring to excessive
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A term in MTA DBM referring to excessive

inventory in the green zone, indicating potential
overstock.

TMR Too Many Red A term in MTA DBM referring to excessive
inventory in the red zone, indicating potential
understock or risk of stockouts.

TOG Top of Green The maximum inventory level within the green
zone in DDMRP buffers.

TOY Top of Yellow The maximum inventory level within the yellow
zone in DDMRP buffers.

TOR Top of Red The maximum inventory level within the red
zone in DDMRP buffers.

VF Variability Factor A measure of demand or supply variability
impacting supply chain performance.

VMI Vendor-Managed
Inventory

An inventory management strategy where the
supplier manages stock levels for the
customer.
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1. Introduction

General Introduction

Supply chains' inherent dynamics and unpredictability are amplified by increasing variation
and uncertainty in supply and demand, with inventory performance becoming a critical
aspect of supply chain management. Disruptive events, such as the recent global
pandemic, have complicated supply chain management further, resulting insignificant
impacts like factory shutdowns and suspended transportation networks. These have led to
delivery lead time delays and temporary capacity constraints. Supply chain stakeholders
should adapt their inventory planning policies to these volatile environments.

Various inventory planning systems, including the Reorder Point (ROP), Material
Requirements Planning (MRP), Make-To-Availability (MTA) Dynamic Buffer Management
(DBM), and Demand-Driven Material Requirements Planning (DDMRP), have been
developed and evolved over time. However, drawing from the author’s consultancy
experience since 1997, three common challenges have consistently emerged in most of
the supply chain projects he has worked on. Firstly, it is crucial to determine the
appropriate stock levels to struggle between stock surplus and stock shortage. At the same
time, the promised service level is a critical business requirement. Secondly, identifying the
optimal timing for inventory replenishment remains a complex task. Lastly, the choice of
inventory policies must align with expected outcomes in terms of service level and return on
stock investment. The characteristics for three cases detailed in Table 1 influence the
parameters of inventory replenishment policies, which are critical in addressing this
challenge in distribution-side supply chains.

While there is extensive literature on ROP and MRP, few studies have thoroughly
investigated the planning systems of MTA DBM and DDMRP. A significant gap exists in
understanding how these policies interact with performance metrics within distribution-side
scenarios, particularly under varying demand levels and supply lead time stability. This
thesis seeks to address this gap by exploring the complexities of inventory policy selection
through supply chain simulation analysis and quantitative analysis based on the actual case
 Page 18



through supply chain simulation analysis and quantitative analysis based on the actual case

demand data.

The selection of case data for this research draws extensively from the author’s
professional experience in supply chain management across various industries, which are
facing the challenges from the unpredictable demand forecast and unreliable supply lead
time. With direct involvement in implementing ROP, MTA DBM and DDMRP policies, the
author brings a nuanced understanding of the practical challenges and opportunities
associated with these approaches.

As mentioned previously, Table 1 provides an overview of the core elements of supply
chain dynamics and critical variables influencing inventory performance. These factors are
directly encountered in the author’s professional practice and set the stage for
understanding the intricate relationships explored in this study.

This research, Document 5, uses the dynamic simulator software "AnyLogistix (ALX)" to
apply variable characteristics across a set of experiments designed to evaluate the
inventory policies, that will then be compared to each other and across each of the three
case studies. By generating and comparing performance outcomes under different
inventory policies with variable parameters, ALX facilitates the robust exploration of these
policies. The research draws upon the three cases as sources of actual demand data,
thereby enhancing the reliability and generalisability of the study. 
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Table 1 - Different cases’ supply chain characteristics (Data Collected: 2021 – 2022) 
Characteristics Case 1 Case 2 Case 3
Product Nature Finished goods for

healthcare sensor
devices

Raw materials yarn
for garment factory

Electronic
components for an

automotive assembly
line

Stock locations Distribution centres in
USA B2C and Europe

B2B

Central automated
warehouse in
Bangladesh

Main warehouse in
China

Frequency of
demand

Low Medium High

Supply lead time 180-365 days 65-90 days 60-150 days
Supply variability High Low Low

Demand variability Low Medium High
New product

introduction impact
Low Medium High

Product Items in
simulation

LITE, 
NODE, 

WB

20D, 
30NE1, 
40NE1

2816,
3542, 
9396

Period in simulation 2021.1.1 -
2021.12.31

2020.1.1 - 2021.9.30 2021.9.15 -
2022.7.22

MOQ requirement No MOQ in the
simulation

No MOQ in the
simulation

In real Case,
20D: 7000 kg

30NE1 / 40NE1:
21000-22000 kg

No MOQ in the
simulation

In real Case, 10K

Simulated days 365 639 311
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Research Questions

This research seeks to address the following questions using quantitative analysis and
simulation studies based on the actual demand data drawn from the above three cases: 

RQ1 - How do inventory policies, particularly forecast-based and consumption-based
methods, interact with performance metrics in distribution-side supply chain scenarios?

RQ2 - How do the performance outcomes of inventory policies (ROP, MTA DBM, DDMRP)
vary across different demand levels and supply lead time stability in the distribution-side
supply chain?

RQ3 - What are the key influential factors and assumptions that underpin the selection and
effectiveness of various inventory policies?
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Motivation for Research

A primary motivation behind this research is to identify key decision-making factors that will
guide the selection of inventory policies to achieve optimal inventory performance. The
research aims to provide supply chain practitioners with a general framework for making
informed, context-specific decisions in an increasingly complex and dynamic supply chain
environment. More personally, outcomes from this research will help me and my customers
in our decision-making in the early stage of the design of supply chain planning and
execution.

This document has been structured into five additional main chapters:

1. Literature Review (Chapter 2): This chapter reviews the relevant literature on
inventory policies and simulation studies.

2. Research methodology (Chapter 3): This chapter explains the justification for
using a simulation study design and details the methodological approach.

3. Simulation analysis (Chapter 4): This chapter presents and analyses the insights
derived from the simulation results.

4. Discussion (Chapter 5): This chapter discusses how the simulation analysis
addresses the research questions and compares findings with existing literature.

5. Conclusion and further research (Chapter 6): The final chapter summarises the
critical findings and suggests areas for further research.
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2. Literature review

2.1 Introduction

This chapter provides a comprehensive review of the theoretical foundations and practical
applications underpinning the inventory management strategies and policies examined in
this study. The chapter begins by exploring the core concepts of inventory management,
including its fundamental principles, performance metrics, and decision-making
frameworks. Subsequently, the focus shifts to three key inventory policies—Reorder Point
(ROP), Make-to-Availability Dynamic Buffer Management (MTA DBM), and Demand-
Driven Material Requirements Planning (DDMRP)—highlighting their theoretical
underpinnings, practical applications, and associated challenges. A synthesis of relevant
literature follows, critically examining how these policies interact with key performance
indicators, such as Return on Inventory (ROI) and Service Level (SL). Finally, the chapter
outlines the research gaps and contextualizes this study within the broader academic
discourse, providing a clear justification for the chosen methodologies and KPIs. Together,
these sections establish the conceptual framework that guides the subsequent analysis in
this thesis. 
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Figure 1 highlights the initial conceptual model and how it is designed to help answer this
study’s research questions. It is the foundation and cross-reference of the literature review.

     
Figure 1 – Initial conceptual model

ROP inventory planning models lean on demand forecast accuracy. They use this accuracy
to set when to replenish and determine how much to order economically. In contrast,
DDMRP focuses on actual consumption. They keep a buffer stock at specific points in the
supply chain. The goal of this chapter is to dig into their roots, pinpoint their fundamental
differences, and see how this leads to the research questions of this study.

Other concepts are also core to understanding ROP and DDMRP. The Toyota Production
System (TPS) and the Theory of Constraints (TOC) form the bedrock of these buffering
techniques such as time buffer, stock buffer and capacity buffer, which will be discussed
within this chapter.

To comprehend the interrelationship of various policies' strengths and limitations, the
development of stock planning models must be elucidated. The development of Material
Requirements Planning (MRP) served as a precursor to more advanced production
planning techniques. While the TOC and its derivative, Optimised Production Technology
(OPT), have since significantly influenced the evolution of replenishment planning systems,
MRP laid the foundation for these later advancements. Furthermore, a synthesis of TOC,
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MRP laid the foundation for these later advancements. Furthermore, a synthesis of TOC,

MRP, and TPS principles resulted in the development of DDMRP. DDMRP enhances MRP
by applying dynamic buffer sizing methodologies, alerts for sudden demand surges, and
predetermined minimum order quantities. The Demand-Driven Adaptive Model (DDAM)
utilises DDMRP logic as a two-way communication hub: Demand-Driven Sales and
Operations Planning (S&OP) and Adaptive S&OP.

This review, therefore, also examines the factors influencing how these inventory policies
and performance are related. However, despite theoretical and technical advancements,
inventory planning has its challenges. Bullwhip and ripple effects can cause disruptive
events and affect forecast accuracy. They induce adjustments to lead times, ordering
quantities, and the frequency of replenishment, which increases supply and demand
volatility. Stakeholders frequently keep safety stock at key locations, termed decoupling
points, to reduce this fluctuation. Additionally, they set up exchanges of information across
the supply chain.

A comprehensive conceptual framework outlining the parameters of various inventory
policies closes the chapter. This model provides the framework for defining dependent and
independent variables and their relationships.
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Forecasting is the process of predicting future outcomes based on historical data and
trends. It serves as a powerful tool in model creation because it enables informed
decision-making, allowing businesses to anticipate demand, manage resources efficiently,
and align strategies with projected market conditions (Blackburn et al., 2014). In inventory
planning, forecasting bridges the gap between independent demand-driven by external
customer requirements-and dependent demand derived from higher-level products using
Bill of Materials (BOM) and production schedules (Olhager, 2003). This transition from
managing independent to dependent demand further reinforces the importance of accurate
forecasting as a foundational mechanism for synchronising procurement production, and
distribution activities, ensuring supply chain resilience and operational agility (Jacobs et
al., 2011).

The study of inventory planning and forecasting research is over fifty years old, with the
development of system dynamics, control theory and statistical forecasting methods
(Syntetos, Boylan and Disney, 2009). Despite those forecasting methods, empty shelves in
shops, the result of out-of-stock situations, still occur (Aastrup & Kotzab,2010), as do over-
stock situations in the market. 

           The world is sitting on roughly $8 trillion worth of goods held for sale, and nearly $2
trillion in the U.S. alone, according to a report by Council of Supply Chain
Management Professionals.  (Winston, 2011)

This section investigates the development of different forecast-based inventory planning
systems in society’s attempts to cope with the above out-of-stock and over-stock situations
at the lowest estimated cost.
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2.2.1 Reorder Point (ROP) with Economic Order Quantity (EOQ)

When inventory management relies on forecasting annual demand to plan the optimal
economic lot size for the lowest total cost, inventory planners and purchasers will reduce
the unit cost by maximising the batch lot size. Harris (1913) addressed this issue with
Economic Batch Quantity (EBQ) and EOQ formulas, as shown in Figure 2, where
manufacturing quantities curves are drawn to identify the intercept point of carrying cost
and order cost as lowest total cost as economic lot size. 

Figure 2 - EBQ/EOQ (Harris, 1913)

Figure 3 - Concept from ROP (Wilson, 1934)
Permission to reproduce this figure has been granted by Harvard Business Publishing for the use of an
exhibit from Wilson, R.H. (1934). "A Scientific Routine for Stock Control," Harvard Business Review, 13,

116-128. 
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With a predictable demand rate by forecasting and stable lead time, Harris (1913)
suggested an equation that optimises the batch size to balance the trade-offs between
setup cost, interest and depreciation on stock costs. Wilson (1934) further  established the
reorder point (R) to help stock control clerks determine the reorder quantity (Q), as
illustrated in Figure 3, EBQ/EOQ and ROP models aim to minimise the total inventory
cost. The higher reorder point (R) will induce more inventory with less chance of stock-out,
and the replenishment quantity (Q) will influence the cycle stock. The reorder point (R) is
calculated as the average daily demand time and average lead time (Hopp and
Spearman, 1996). However, the high demand variation causes a cost penalty using EOQ
as (Q) (Vasconcelos and Marquest, 2000). Moreover, both models relied on  reliability of
demand forecasting. 

When planning more items and ordering independently with the ROP method, the
probability of simultaneously getting all stock in full-kit is much lower than the probability for
individual items (Orlicky, 1975). For example, if there is only one component item in the Bill
of Materials (BOM) with a 90% probability of getting it on time, it is a 90% service level.
Two-component items' stock availability in the BOM will be 0.9 times 0.9,   producing an
81% service level. If there are five component items, it is 0.9 x 0.9 x 0.9 x 0.9 x 0.9 to
become 59% service level only. 

Manufacturers will assemble parts into a final complex product structure, and they require
dependent demand in the Bill of Materials (BOM). Developers created the Material
Requirements Planning (MRP) software with the rise of computing technology.
Furthermore, MRP systems are essential for inventory management and production
planning in manufacturing environments. Although MRP systems provide vital information to
multiple departments inside an organisation, they frequently face criticism for their
inflexibility and inability to adjust to changing external factors (Sapry et al., 2018). The
integration of MRP with advanced technologies and methodologies, like stochastic
inventory control and fuzzy logic, has been suggested to mitigate these limitations,
facilitating improved management of uncertainty in manufacturing environments (Khayyam
& Herrou, 2018).
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2.2.2 Material Requirements Planning (MRP)

Orlicky (1975) developed the material requirements planning (MRP) logic to calculate
materials and capacity plans. Sales and Operation Planning (S&OP) confirms the monthly
production plan aggregated in Master Production Scheduling (MPS) as the critical input to
MRP (Jacobs et al., 2011). The master production scheduling process breaks down the
monthly volume into the item’s level with the due date of planned purchase orders or
production orders. This MPS confirms the planned orders that then become scheduled
receipts. Using computational speed to cascade calculations rapidly and repeatedly while
still embracing cost-based local optimisation enhances the efficiency and precision of
MRP. This enables dynamic adjustments to material and capacity plans in response to
changing demand and supply conditions.

Figure 4  - Manufacturing Planning and Control System (Jacobs et al., 2011) 
Permission to reproduce this figure has been granted by McGraw-Hill Higher Education through the

Copyright Clearance Center (Order License ID: 1583261-1) for use in this thesis/dissertation. Source:
Manufacturing Planning and Control Systems (ISBN: 978-0-256-13899-3). 
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Figure 4 shows that the MRP is part of the Manufacturing Planning and Control System.
MRP only calculates the dependent-demand quantities within multi-levels of the product
structure defined in the Bill of Material (BOM). MRP logic calculates all scheduled release
dates according to the upper level of demand due date as time-phased inventory
management. MRP also evaluates the current stock level and the net requirement for
suggesting replenishment supply quantity. This foundational logic cascades into broader
planning processes, including capacity requirement planning (CRP), master production
scheduling (MPS), and the resource-driven focus of Manufacturing Resources Planning
(MRP II), illustrating the progressive emergence of interconnected planning components
with the MPC system. MRP is based on the lot size policies such as EOQ, Periodic Order
Quantities (POQ), Part Period Balancing (PPB) to generate manufacturing order quantities
(Jacobs et al., 2011, p. 440-443).

Figure 5 - Lot sizing in the MPS (Jacobs et al., 2011)
Permission to reproduce this figure has been granted by McGraw-Hill Higher Education through the

Copyright Clearance Center (Order License ID: 1583261-1) for use in this thesis/dissertation. Source:
Manufacturing Planning and Control Systems (ISBN: 978-0-256-13899-3).

 
Figure 5 demonstrates the forecast demand for future periods in a MPS with lot size and
safety stock policy. This commonly increased the artificial batch size to maximise the
utilisation of resources. The MPS is the primary input to MRP, combining firm and
forecasted independent demand orders (Plossl, 1994). The BOM and Inventory status
calculate the shop floor production order and purchase order release schedules by due-
date offset logic. 

One of the key strengths of MRP is the optimisation of inventory levels and balance of
production schedules, particularly by minimising excess inventory and reducing carry costs.
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production schedules, particularly by minimising excess inventory and reducing carry costs.

This method is especially compatible with just-in-time (JIT) methods, allowing
manufacturers to become more responsive to market demands (Rossi et al., 2016). MRP’s
integration with Enterprise Resource Planning (ERP) further enhances its value by
improving overall operational efficiency (Er et al., 2018). Recent developments, such as
using digital twins, have additionally improved MRP’s accuracy in production planning by
providing real-time data for better decision-making (Luo et al., 2021).

However, MRP also has notable limitations. One significant weakness is its dependency
on accurate demand forecasting, which lacks the capacity to effectively address demand
uncertainty. Additionally, MRP focuses primarily on locally optimising intermediate stocks
rather than viewing and streaming the entire flow across the system, which limits its ability
to compress lead times and adapt dynamically to variability in supply chain conditions.
Inaccurate forecasts can cause stockouts or overproduction, which will cause inefficiencies
and higher costs (Rossi et al., 2016). Traditional MRP systems also need to account for
production capacity constraints, potentially resulting in infeasible schedules and fluctuating
workloads, which can hinder responsiveness to changes in demand (Rossi et al., 2016; Er
et al., 2018). The complexity of MRP systems adds to this challenge, increasing the
cognitive load on users and possibly affecting decision-making efficiency (Björnfot et al.,
2018).

MRP systems are also sensitive to dynamic changes in lead times and supplier reliability,
which is a significant drawback. Fixed lead times, commonly assumed in MRP, can be
problematic in dynamic environments where frequent delays make it difficult for
manufacturers to adjust to supply chain disruptions or shift customer demands (Rossi et al.,
2016; Er et al., 2018). Er et al. (2018) suggest additional studies to assess the feasibility of
utilising frozen periods and periodical re-planning in the case company, which evaluates its
impact on service level and the cost of flexibility to improve adaptability.
  
In summary, while MRP excels at optimising inventory and production processes, its
dependence on accurate forecasting, lack of consideration for capacity constraints, and
rigidity in handling lead time fluctuations present notable challenges. To fully leverage its
potential in today’s complex manufacturing environments. These challenges induce the
need for a more structured method of managing production plans in the medium to more
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need for a more structured method of managing production plans in the medium to more

extended time horizon. Master Production Scheduling (MPS) becomes critical, providing a
higher-level framework to align demand forecasts, production capacity, and inventory
planning. All of those issues will be explored in the next section.
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2.2.3 Master Production Scheduling (MPS)

Frequent changes in the forecast prompt businesses that re-plan the MPS, causes
instability to the cascade through the ordering systems. Fluctuations in the supply of
materials, unreliable sales forecasts, and variations in lot sizing often drive this instability.
Blackburn, Kropp & Millen (1985) highlighted how this instability affects priorities across
multiple Bill of Materials (BOM) layers. Moreover, Jacobs, Berry & Whybark (2011, Chapter
7) found that a stable MPS leads to consistent dependent demands at the materials level,
improving production plant efficiency. To counter this volatility in the MPS, businesses
commonly employ time fences, ensuring schedules remain unaffected by further changes.
While this approach addresses the need to distinguish between planning and execution. It
often lacks sufficient capacity focus, requiring most resources to operate with buffer
capacity. This limitation underscores the need then for greater integration of capacity
considerations to effectively mitigate the impact of MPS instability (Hopp and Spearman,
1996).

Figure 6 - Freezing and Time Fencing (Jacobs et al., 2011, p. 203)
Permission to reproduce this figure has been granted by McGraw-Hill Higher Education through the

Copyright Clearance Center (Order License ID: 1583261-1) for use in this thesis/dissertation. Source:
Manufacturing Planning and Control Systems (ISBN: 978-0-256-13899-3).

Figure 6 demonstrates frozen schedule to stabilize the capacity load in the MPS as a
frozen zone, protected by the demand time fence. The projected available balance inside
the demand time fence includes the forecast quantity and confirmed order quantity. In this
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the demand time fence includes the forecast quantity and confirmed order quantity. In this

instance, this demand time fencing policy will not change the MPS dynamically. After the
frozen zone, a planning time fence occurs, which requires management attention to make
trade-off decisions if there are any changes in MPS (Jacobs et al., 2011).

It therefore became clear that using computers to crunch numbers without considering the
broader variability issues mechanistically was naive. Through Sales and Operations
Planning (S&OP), Master Production Scheduling (MPS) has led to a more effective
interface between MRP and consensus production volumes (Ivert el al., 2015). The
literature consistently supports the assertion that relying solely on computational methods in
Sales and Operations Planning (S&OP) without considering broader variability factors,
including demand fluctuations and production constraints, may be insufficient for effective
decision-making (Fitzgerald & Howcroft, 1998; Voss et al., 2002). A flexible and
comprehensive approach to planning is essential as supply chains become more
complicated (Dubois, 2018). This emphasises the importance of including flexibility in the
S&OP process to improve decision-making skills; this will be discussed in more detail in
the following section.
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2.2.4 Sales and Operations Planning (S&OP)

Ling (1988) introduced Sales and Operation Planning (S&OP), a systematic
communication process that balances customer demand and supply capacity. This
structured process enables different divisions of manufacturing organisations to align their
sales and operations by agreeing on strategies such as Chase, Level, or Hybrid capacity
planning (a blend of Chase and Level). Here, S&OP serves as a platform for fine-tuning
production strategy priorities. Moreover, separating planning from execution enhances the
role of S&OP by practically linking sales and operations. This connection enables
organizations to better manage uncertainty by implementing strategic buffers to handle
variability. This includes implementing strategic buffers to manage variability. However,
traditional S&OP frameworks often lack the dynamic tools and focus required to adjust
these buffers in real time, limiting their responsiveness to fluctuating market conditions.

Participants in the S&OP process update the latest supply and demand forecasts, which
helps balance resource utilisation and adapt to unpredictable market demand over more
extended planning horizons. Participants share their perspectives and assumptions about
changes in sales markets and resource supplies. They present different scenarios for
executive decision-making, evaluate resource levels using Rough Cut Capacity Planning
(RCCP), and adjust forecasted customer demand patterns to agree on a MPS. S&OP
links a business plan with corporate strategies and the execution of sales and operations.

(Wang et al., 2012) highlight that S&OP is progressively acknowledged for its function in
delivering a systematic methodology for production planning, encompassing careful
evaluation of production capacities and cost structures. The dynamic nature of consumer
demand requires a flexible reaction mechanism inside the S&OP framework to
accommodate unforeseen changes. (Grimson & Pyke, 2007) assert that S&OP seeks to
establish a consensus-driven operating model while serving as a real-time mechanism to
adapt to market variances. This paradox underscores the difficulty of achieving a
compromise between systematic planning and the necessity for adaptability in response to
variations in demand.

The increasing complexity of an organisation increases the need for sold planning
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The increasing complexity of an organisation increases the need for sold planning

procedures like S&OP. According to Seeling et al. (2019), the implementation of S&OP
methods has a positive correlation with performance, especially in complex manufacturing
environments. This suggests that S&OP is most beneficial in these kinds of settings. Even
though the structured approach of S&OP provides certain benefits, it does not eliminate
these challenges. Instead, this complexity can also lead to difficulties in accurately
forecasting demand and aligning production capabilities; Thomé et al. (2014) found that
process complexity can moderate the effectiveness of S&OP on operational performance
dimensions such as quality and delivery. This indicates that while S&OP can enhance
performance, the inherent unpredictability of demand and the need for flexible resource
allocation complicate its implementation.

Customer demand volatility and uncertainty increase difficulties in maintaining the balance
between supply and demand. Goh and Eldridge (2019) emphasise that external integration
with customers and suppliers can enhance the effectiveness of S&OP. This also suggests
further study of the complexities inherent in these relationships. The study underscores the
importance of establishing adaptive strategies that respond to demand fluctuations and
effectively manage internal resources to sustain operational alignment. This highlights a
crucial point: successful S&OP requires dynamic integration beyond basic alignment and
actively responding to market shifts and supply chain constraints. Moreover, Goh and
Eldridge (2019) point out that a rigid, formalized approach to S&OP may limit its potential
benefits, suggesting that flexibility in governance and coordination could lead to better
outcomes.

Mokadem and Khalaf (2023), who argue that supply chain strategies must be dependent
upon the unique needs and risks of each environment, further reinforce this viewpoint. In
their study of 112 Egyptian manufacturing firms, they found that responsiveness and agility
are essential to mitigate variations and uncertainties in customer demand and that a lack
of flexibility in supply chain activities could result in inefficiencies. Thus, improving supply
chain performance requires keeping a balance between adaptability and a structured
S&OP approach, where demand volatility and complexity are common.

Manufacturing Resources Planning (MRP II) emerged to address those challenges as an
enhanced version, which integrates capacity planning, resource allocation, and other key
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enhanced version, which integrates capacity planning, resource allocation, and other key

manufacturing processes into a more comprehensive framework. It enlarges the scope of
traditional S&OP, allowing businesses to better synchronise internal production
capabilities with external fluctuating demand.
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MRPII improves upon MRP logic to address capacity issues. However, it still operates
assuming that capacity will always be available to meet demand within the established
lead time, which can lead to significant challenges in production scheduling. The
introduction of rough-cut capacity planning (RCCP) allows for adjustment of the order
release schedule to balance resource loading (Plossl, 1994). However, while RCCP
improves the comprehensive system plan. It lacks a clear connection to execution,
especially in the dynamic management of capacity and inventory buffer. This separation
highlights the necessity for more cohesive strategies that combine aggregate capacity
planning with execution mechanisms, ensuring that capacity and inventory buffers can
adequately adjust to real-time changes (Hopp and Spearman, 1996; Jonsson & Mattsson,
2013).

RCCP plays a crucial role in Manufacturing Requirements Planning (MRP II) systems by
providing a more accurate assessment of capacity needs, thereby addressing some of the
limitations inherent in traditional MRP systems (Rossi et al., 2016; Sun et al., 2012).
Traditional MRP often assumes infinite capacity, leading to unrealistic production
schedules that can cause inefficiencies and bottlenecks. RCCP facilitates a more realistic
approach to capacity management by evaluating whether sufficient resources are available
to meet production demands before finalizing the schedule. However, it also introduces
complexities, as adjustments are required to align production with available capacity, which
can lead to longer lead times (Koh et al., 2002; Poláček & Žákovská, 2018). By
incorporating RCCP, MRP systems can better balance production efficiency with resource
constraints, resulting in improved overall supply chain performance.

The above system's attempt to balance variable capacity and demand can result in longer
lead times and higher inventory levels due to the cyclical nature of the adjustment process.
According to Rossi et al. (2016) and Koh et al. (2002), this circumstance is made worse by
the inherent variability and uncertainty in manufacturing processes and consumer demand.
It is challenging to make accurate lead time estimations and manage effective capacity
utilisation in this situation. Studies show that these uncertainties are a common problem.
For example, aerospace, electronics, medical device, and automotive manufacturing
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For example, aerospace, electronics, medical device, and automotive manufacturing

enterprises face similar circumstances. Demand in these sectors is often highly variable
and involves intricate, multi-tiered supply systems. Because typical ERP frameworks lack
finite capacity planning, they frequently run into unrealistic production schedules and
unexpected lead times. (Koh et al., 2002; Sun et al., 2012). Consequently, the reliance on
fixed lead times can result in significant operational inefficiencies, as companies may find
themselves overcommitted or underutilised in their resource allocation (Rossi et al., 2016;
Poláček & Žákovská, 2018).

These challenges prompted the transition from forecast-based inventory planning, that
focused on minimising cost and meeting predicted demand, to consumption-based
approaches that emphasised improving the flow of supply chain. This shift is critical in
environments where variability and uncertainty dominate, as it helps mitigate the limitations
of forecast-based planning models.
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2.3 Consumption-based inventory planning

High demand variability and uncertainty can make sales forecasting less reliable. This
relationship aligns with the law of variability, which states that variability slows the flow
velocity of production system performance (Hopp & Spearman, 1996, p. 295). This law is
consistent with Little's Law:

WIP = TH x CT

At every WIP level, WIP is equal to the product of throughput and cycle time. 
(Hopp & Spearman, 1996, p. 223).

Variability in production processes coupled with supply and demand uncertainty increases
cycle time and WIP, extending the production lead time. As a solution, the buffering law and
the law of variability buffering recommend using a mix of inventory, capacity, and time
buffers to reduce WIP, late orders, under-utilised capacity, lost throughput, and lead time
(Hopp & Spearman, 1996). Methods such as Reorder Point (ROP) with Economic Order
Quantity (EOQ), Materials Requirements Planning (MRP), Master Production Schedule
(MPS), and Manufacturing Resource Planning II (MRPII) all heavily rely on the accuracy of
forecasting.

The upcoming sections will discuss how a similar buffer management (BM) signalling
system actively manages market or internal capacity constraints, effectively reducing
variability and boosting flow velocity. Toyota closely links to this development, though it
originated from the work of Ford (1926) and Goldratt (1987).
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To mitigate the effects of unreliable demand forecasting and supply variability, managing
flow by strategically placing the stock buffer becomes essential. Building on the idea of
Ford (1926) to cut non-value-added waste, Ohno updated these principles, with a radical
focus on flow rather than local cost-based optimisation, as mentioned in the publisher’s
foreword in Ohno (1988). This implicitly acknowledges the role of capacity buffering and
avoids MRP’s tendency to embrace intermediate buffers. 

Sugimirori (1977) defines just-in-time (JIT) production as a method that involves producing
only the necessary products at the necessary time, minimising stock on hand, and
eliminating waste by assuming that anything beyond the minimum essential for production
raises costs. This has been updated. Monden (1993) provided an updated perspective on
the first edition of "Toyota Production System (TPS)" originally published in 1983,
incorporating new insights and advancements that reflected the evolving understanding of
TPS principles and practices. To simplify understanding of the system, Spear & Bowen
(1999) have further identified four unwritten rules integral to TPS's success. One such rule
targets the improvement of product and service flow. The subsequent section will elaborate
on how Kanban can enhance flow through TPS pull planning and control methods.

Sugimori (1977), Ohno (1988) and Monden (1993) presented "Kanban" as a simple
system, embodying the “Just-in-Time (JIT)” concept. Ohno deployed the inventory buffering
method as a "pull" signalling tool. Monden provides a method to calculate the correct
number of Kanban card for reducing stock and enhancing performance. This method
mimics the replenishment process shown in a supermarket rack. The "pull" production
system calls for supply from the preceding operation, guided by the logic of Kanban.

Kanban is a way to achieve just-in-time; its purpose is just-in-time. Based on this,
production workers start work by themselves and make their own decisions
concerning overtime. The Kanban system also makes clear what must be done by
managers and supervisors. This unquestionably promotes improvement in both
work and equipment. (Ohno, 1988, p.29)
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In reality practicing these rules [the six rules of Kanban] means nothing less than
adopting the Toyota Production System as the management system of the whole
company. (Ohno, 1988, p.41)

Figure 7 - Kanban system
As illustrated in Figure 7, Kanban serves as a card that signals the preceding station to
initiate production. When the work-in-process inventory reaches a pre-set level, it triggers a
Kanban signal sent to the previous station via a card on a Kanban board. This signal
allows the last station to manufacture the required quantity for the next production step. The
pre-set limit in the Kanban system keeps a check on the work-in-process inventory level.
Kanban guarantees a smooth production flow, preventing material shortages from the
preceding location and avoiding the overproduction that can lead to high work-in-process
stock. The production line produces materials only when the next station requires them,
thereby minimising the inventory buffer and limiting resource loading. 

The Kanban system aligns the production pace with customer demand for a similar product
family, ensuring continuous demand in high volume. Kanban provides a mechanism to
systematically reduce inventory buffering and focus efforts on minimising the sources of
variability and uncertainty that drive it. Kanban, as a pull-based control system, is designed
to manage production by signalling when to produce or move materials, thereby minimising
excess inventory and aligning production with actual demand (Thun et al., 2010). Yet, the
implementation of Kanban systems in production environments is significantly influenced
by variability and uncertainty in product mix, which can disrupt the production flow. The
inherent variability in product demand can lead to challenges in maintaining a smooth
production flow. For instance, traditional Kanban systems often struggle with load
balancing, which can exacerbate issues related to variability and uncertainty in production
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balancing, which can exacerbate issues related to variability and uncertainty in production

environments (Thürer et al., 2015).

The upcoming section will delve deeper into the Theory of Constraints (TOC) buffering
mechanism and how to manage variability. It emphasises identifying and addressing
bottlenecks within the process, which can be particularly effective in environments
characterized by uncertainty (Yang, 2000).
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Whereas Kanban addressed the more stable demand environment, there was still a need
to discuss consumption-based planning, emphasising actual consumption rather than
forecasting in planning and execution. To manage this MTO environment where MRP II had
become the mainstay, Eliyahu M. Goldratt, a prominent figure in management science,
developed the Optimised Production Technology (OPT) scheduling software through his
company, Creative Output, Inc., which was established in 1979. (Verma, 1997). The OPT
software embraced a flow-based rather than a cost-based way of thinking, reflected in the
ten rules of OPT (Fox, 1982; Jacobs, 1983) featured in Table 2, below. Goldratt explicitly
acknowledged the importance of flow as a proxy for improved productivity, as evident in his
early works (Goldratt and Cox, 1984; Goldratt and Fox, 1986), where he outlined the
means of applying flow thinking to more complex MTO environments. In this way, OPT
integrated with MRP to handle finite scheduling, allowing organisations to optimise
production by focusing on throughput while minimising unnecessary costs and delays. 
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Table 2 - The Ten Commandments of OPT (Gelders & Van Wassenhove, 1985)
THE 10 COMMANDMENTS FORCORRECT SCHEDULING THE OPT SYSTEM

1. The utilisation of a non-bottleneckresource is not determined by its owncapacity, but by some other constraints inthe system.

Schedules all non-bottleneck resourcesbased on the constraints in the system.Brain of OPT feeds Serve.

2. Activating a resource is not synonymouswith utilising a resource. Generates schedules to maximisethroughput, minimise inventory and protectschedule from disruption - not to activateresources.
3. An hour lost at a bottleneck is an hour lostof the total system. Saves setups at bottleneck operations tomaximise throughput.
4. An hour saved at a non-bottleneck is amirage. Schedules additional setups at non-bottlenecks when there is sufficient idletime in order to minimise inventory.
5. The transfer batch may not and manytimes should not be equal to the processbatch.

Uses both transfer and process batches.

6. The process batch should be variableand not fixed. Utilises variable process batches.

7. Capacity and priority need to beconsidered simultaneously and notsequentially.
Mathematical algorithms simultaneouslyconsider capacity and priority.

8. Murphy is not an unknown and hisdamage can be isolated and minimized. Uses both safety capacity and safety stockstrategically to immunize the schedule.
9. Plant capacity should not be balanced. Balances flow not capacity.
10. The sum of the local optimums is notequal to the global optimum. Optimises throughput while minimizinginventory and operating expense.

The evolution from OPT to Drum-Buffer-Rope (DBR) and Simplified Drum-Buffer-Rope (S-
DBR) represents a significant advancement in production management methodologies
rooted in the TOC. Initially, OPT was developed as a scheduling software aimed at
optimising production schedules by focusing on the constraints within a manufacturing
system (Watson et al., 2006). This approach laid the groundwork for TOC, which
emphasises the identification and management of constraints to enhance overall system
performance (Wojakowski, 2016). 
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As TOC evolved, Goldratt introduced the DBR method, which further refined the scheduling
process by integrating the concepts of buffers and synchronization of material flow. DBR
operates on the principle that the "drum" (the constraint) sets the pace for production, while
"buffers" protect the system from variability, ensuring that the constraint is always fed with
work (Telles et al., 2022; Atwater & Chakravorty, 2002). This method not only improves
production flow but also enhances responsiveness to market demands by aligning
production schedules with customer requirements (Wang et al., 2009). 

S-DBR emerged as a simplified version of DBR, designed to streamline the scheduling
process further. In S-DBR, the drum is adjusted to reflect market demand more directly,
allowing for a more agile response to changes in customer orders (Telles et al., 2022;
Filho, 2023). The simplification of the DBR system helps organizations manage their
resources more effectively by reducing complexity while maintaining the essential
principles of buffer management and constraint protection (Wojakowski, 2016). 

Buffer management in both DBR and S-DBR is crucial for maintaining production flow,
especially for environments and organisations characterised by high levels of uncertainty
and variation. Buffers serve as protective measures against variability in production
processes, ensuring that constraints are not starved of work (Souza et al., 2013). Effective
buffer management involves careful consideration of stock levels, time, and capacity,
allowing organizations to optimise throughput while minimizing lead times (Souza et al.,
2013). In practice, this means that organizations must continuously monitor and adjust their
buffer sizes based on real-time production data to respond to fluctuations in demand and
operational performance (Wang et al., 2009). 

In summary, the transition from OPT to DBR and S-DBR reflects a comprehensive
evolution in production management that emphasises the importance of constraints, buffer
management, and responsiveness to market demands. This progression illustrates how
TOC principles can be effectively applied to enhance production efficiency and overall
organizational throughput (T) performance. To maximise the throughput (T) and mitigate the
disruption, TOC advocates using the buffer for protection mechanism as stated in the
following 2nd edition of the TOCICO dictionary:
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Buffer - Protection against uncertainty. The protection is aggregated and may take the
form of time, stock (inventory), capacity, space or money. Buffers are strategically
located to protect the system from disruption.

(TOCICO, 2012)

TOC classifies buffers into three types: time buffer, stock, and capacity buffer, discussed in
the following sections.

 Page 47



2.3.3 Make-To-Availability (MTA) and Distribute-To-Availability (DTA)
with Dynamic Buffer Management (DBM)

The concepts of Make-to-Availability, Distribute-to-Availability (DTA), and Dynamic Buffer
Management (DBM) are inter-related in supply chain management, particularly as they
relate to the Theory of Constraints (TOC) and its associated methodologies, including OPT,
DBR and S-DBR. Those frameworks emphasise the importance of managing constraints
and optimising flow within the supply chain to enhance overall performance and
responsiveness to customer demand. Goldratt extended his flow theory to provide practical
means of applying it to distribution, focusing on stock buffers. This approach actively
manages these buffers by dynamically monitoring buffer consumption using a variant of his
buffer management flow signalling mechanism originating in DBR (Goldratt, 1984; Goldratt,
1990). By leveraging these dynamic adjustments, TOC-based methodologies ensure
supply chains remain agile, responsive, and efficient (Cox & Schleier, 2010). This
approach prioritises flow over local optimisations, balancing capacity, inventory, and lead
times (Hopp & Spearman, 1996).

MTA, defined as "a combination of a marketing message of commitment to the availability
of particular items at a particular location with the required production policies for achieving
it" (TOCICO, 2012), is a strategy that focuses on producing goods based on a calculated
buffer size, which is dynamically adjusted by Dynamic Buffer Management (DBM)
according to the actual demand consumption pattern. This strategy is consistent with the
principles of supply chain management (SCM), which prioritises effective coordination
among supply chain partners to fulfil client demands (Xu & Beamon, 2006). The MTA
model is effective when demand is stable and foreseeable, enabling organisations to
maintain inventory levels that quickly fulfil client orders (Nel & Badenhorst-Weiss, 2011). A
grocery store sustains optimal inventory levels of essential commodities like bread and
milk using MTA. This method improves customer satisfaction and promotes supply chain
performance by decreasing lead times and reducing stockouts (Lei et al., 2017).

DTA is a distribution strategy that emphasises the role of a central warehouse in managing
inventory flows efficiently (TOCICO, 2012). In this approach, manufacturers or suppliers
ship products to the central warehouse based on consumption data gathered from both the
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ship products to the central warehouse based on consumption data gathered from both the

central and regional warehouses. Subsequently, distributors and retailers pull inventory
from the central warehouse to fulfil demand based on their consumption levels. This system
provides a consolidated control over inventory, allowing for efficient replenishment and
reducing the risk of stockouts across different distribution points. The centralization
inherent in DTA offers greater visibility and coordination throughout the supply chain,
facilitating better decision-making and ensuring that inventory is available at all levels to
meet customer needs.

Dynamic Buffer Management (DBM) is another critical concept in inventory control,
specifically within a make-to-availability system (TOCICO, 2012). DBM refers to the
procedure of adjusting target inventory levels dynamically based on the observed
behaviour of finished goods inventory. It aims to ensure that inventory levels are
appropriate for current market conditions by responding to fluctuations in demand and
supply. By adjusting buffer sizes according to actual consumption patterns, DBM enables
organizations to minimize excess inventory while maintaining a high service level, thereby
reducing overall costs and improving responsiveness to changes in demand. This adaptive
approach is particularly valuable in managing uncertainty and aligning inventory levels more
closely with actual customer needs.

In many ways, this approach has similarities to Vendor-Managed Inventory (VMI). However,
while VMI focuses on inventory replenishment based on predefined agreements between
suppliers and retailers, it often lacks execution management (Waller et al., 2001).
Goldratt’s DBM builds on this concept by introducing an active execution component,
enabling real-time buffer adjustments and enhancing the system’s ability to respond
dynamically to market fluctuations. This combination of dynamic adaptation and execution
focus makes DBM a more robust solution for aligning inventory with actual customer
demand (Schragenheim, 2009).

Conversely, DTA emphasises the distribution of products based on availability rather than
production schedules. This approach enhances organizational flexibility in responding to
customer preferences and market conditions (Fisher, 1997). This adaptability is crucial for
improving service levels while simultaneously reducing excess inventory, as discussed by
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improving service levels while simultaneously reducing excess inventory, as discussed by

Mentzer et al. (2001), who highlighted the importance of responsive inventory strategies in
mitigating supply chain inefficiencies. The DTA approach stresses aligning inventory levels
with actual market demand, which helps to minimize the risks associated with overstocking
and stockouts (Christopher & Towill, 2000).

Research indicates that implementing TOC DBM principles, particularly in distribution-side
supply chain management, significantly reduces inventory levels and enhances
responsiveness to market fluctuations. For instance, studies have demonstrated that
organizations employing TOC-Supply Chain Replenishment Systems (TOC-SCRS)
experience decreased stockout rates and improved customer satisfaction due to their
ability to adjust inventory levels based on real-time demand signals (Jiang & Wu, 2013;
Jiang et al., 2013). This adaptability is vital in today's fast-paced market environment,
where customer preferences can shift rapidly. 

Moreover, the relationship between inventory management and lead time is critical in
understanding how TOC can improve service levels. According to Little's Law, there is a
direct relationship between work-in-progress (WIP) inventory and lead time; thus, reducing
inventory not only shortens lead times but also enhances product quality and overall service
performance (Gupta & Boyd, 2011). This reduction in lead time allows organisations to
respond more swiftly to changes in customer demand, thereby improving service levels.
Additionally, TOC's focus on eliminating bottlenecks and optimising resource utilization
further contributes to enhanced flexibility. 

By systematically addressing constraints within the supply chain, organizations can
streamline operations, reduce operational costs, and improve throughput (Souza & Pires,
2010). This operational efficiency is essential for maintaining competitive advantage in
dynamic markets. The empirical evidence supporting these claims is robust. Companies
that have adopted TOC methodologies report significant improvements in inventory
turnover rates and service levels, as well as reductions in operational costs associated with
excess inventory (Gupta & Boyd, 2008; Wu & Tsai, 2008). For example, a study on the
application of TOC in the manufacturing sector demonstrated that organizations could
achieve better alignment between supply and demand, leading to increased forecast
accuracy and customer service levels (Wu et al., 2011). One of the critical success factors
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accuracy and customer service levels (Wu et al., 2011). One of the critical success factors

in MTA and DTA implementation is therefore consumption-driven pull planning policy
integrated with DBM.

Dynamic Buffer Management (DBM), as derived from TOC principles, involves the
strategic placement and adjustment of inventory buffers throughout the supply chain to
mitigate risks and uncertainties. This approach is essential for managing variability in
demand and supply, allowing organisations to maintain a balance between responsiveness
and efficiency (Olena et al., 2019). To optimise inventory levels, companies should
dynamically adjust buffer sizes by leveraging real-time data and forecasts, which helps to
effectively reduce carrying costs and improve service levels (Fri et al., 2019; Narita et al.,
2021). The dynamic buffer management (DBM) method allows companies to maintain
appropriate inventory levels while achieving high service rates even in the presence of
demand variability. The integration of dynamic buffer management into the supply chain
also supports continuous improvement initiatives, as organizations can analyse
performance metrics and adjust their strategies accordingly (Croxton et al., 2001).

The Theory of Constraints (TOC) and its application in dynamic buffer management (DBM)
within warehouse settings are critical for optimising inventory levels and production order
priorities. In a make-to-availability (MTA) environment, central or factory warehouses
maintain stock buffers of finished goods to consolidate orders from downstream
connections. This approach allows for a more responsive production system, where the
status of these buffers directly influences production order priorities, ensuring that
manufacturing aligns with actual demand rather than forecasts alone (Reyes et al., 2015).
Dynamic Buffer Management is particularly advantageous in managing raw material
supplies. By employing DBM, organizations can maintain target inventory levels rather than
striving for complete elimination of stock, which is often impractical in fluctuating market
conditions (Reyes et al., 2015). This method allows for careful observation and adjustment
of inventory buffers, thereby enhancing a company's competitive position by mitigating the
effects of supply chain variability (Reyes et al., 2015). Furthermore, storing raw materials at
the factory reduces supplier lead times, facilitating regular replenishment and ensuring that
production can proceed without delays (Reyes et al., 2015). In contrast, Material
Requirements Planning (MRP) systems are designed to manage inventory and production
scheduling based on the Bill of Materials (BOM) and lead-time considerations. However,
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scheduling based on the Bill of Materials (BOM) and lead-time considerations. However,

MRP operates under certain assumptions that can lead to inefficiencies, particularly in
environments characterized by demand variability. One of the primary assumptions of MRP
is the presumption of a stable balance between supply and demand. This assumption often
neglects the importance of buffers, which can mitigate the effects of variability in demand
and supply (Louly et al., 2008; Bagherpour et al., 2012; Relich et al., 2014).

This section shows how MTA operates as a consumption-driven pull planning system with
integrated buffer management. Reacting swiftly and dependably to the consumption
patterns of downstream components, the upstream supply chain supplies the necessary
materials or finished goods.

Under the TOC environment, we could use a time, stock and capacity buffer to protect
against variability and uncertainty.
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Time buffer

The 2nd edition of the TOCICO Dictionary defined a time buffer in the following statement:

Protection against uncertainty that takes the form of time. The Constraint, assembly and
shipping buffers used in drum-buffer-rope scheduling and the production buffer used in
simplified drum-buffer-rope are examples of time buffers.

(TOCICO, 2012)

Figure 8 - A time buffer for a work order (TOCICO, 2012)
Permission to reproduce this figure has been granted by the Theory of Constraints International Certification

Organization (TOCICO) to utilize the copyrighted material in this thesis/dissertation. The material is used
with authorization from TOCICO and remains the intellectual property of TOCICO. 

In Figure 8, the time buffer for a work order shows the priority on the shop floor and uses
the following formula to determine the stock status by percentage:

Buffer status (%) = (available time) / (standard production lead time) x 100%
(TOCICO, 2012)

Time buffer management is a scheduling method to set the pace of production flow or the
gate of releasing a work order. The time buffer in TOC provides protection time in critical
areas, and the rope is a mechanism to keep all elements working at the same rate (Ronen
& Starr, 1990). On the other hand, S-DBR focuses on market constraints, sets the
protection time and monitors the buffer status for priority based on the due date
(Schragenheim, 2000).
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Stock buffer

MTA applies stock buffer management to ensure stock availability. According to the 2nd
edition of the TOCICO Dictionary, a stock buffer is defined as the following statement:

Stock buffer - A quantity of material held at a point in the supply chain to decouple
demand from supply stock buffers can be held at the raw material stage, at
intermediate production stages (as work-in-process inventory) or at the finished gate.
Stock buffers reduce the lead time to market (quoted lead time) and protect the
system’s throughput and due date performance.

(TOCICO, 2012)

When the production as the internal supply chain extends to the external supply chain, the
integration of internal and external supply chains through Make-to-Availability (MTA) and
buffer management (BM) is a strategic approach that enhances operational efficiency and
market responsiveness. MTA focuses on maintaining sufficient inventory levels to meet
anticipated demand, aligning closely with buffer management techniques that help manage
uncertainties in supply chain operations. This integration is particularly crucial in
environments where market dynamics are volatile, necessitating a robust framework for
managing both internal resources and external supply chain relationships. 
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A well-coordinated supply chain can benefit marketing strategy by ensuring the availability
of products when needed, improving customer satisfaction and competitive advantage.
Sutia (2022) emphasises that attaining these objectives necessitates combining supply
chain management with marketing strategies since it enables companies to respond to
customer demands and market trends more quickly. This analysis demonstrates how a
well-coordinated supply chain boosts marketing efforts, resulting in better customer
service, differentiation in the market, and a solid commitment to sustainability through a
multinational retail chain case study. Jüttner et al. (2010), through an analysis of three
supply chains, spanned the volume-variety continuum, from high volume low variety
(FMCG) through medium volume and variety (automotive) to low volume, high variety
(electronics), it also supports the synergistic effects of coordinating supply chain and
marketing initiatives, implying that this integration can increase customer value and
enhance organisational performance. This alignment is particularly relevant in the context of
MTA, where the focus is on ensuring product availability through effective inventory
management.
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Capacity buffer

In an MTA environment, the extra capacity buffer of the Capacity-Constrained-Resource
(CCR) or other heavily loaded resources is available quickly and at a reasonable cost
(possibly through subcontracting) to react to sudden increases in total demand (TOCICO,
2012).

Figure 9 - MTA Mode of Supply (Cohen, 2010, p.395)
Permission to reproduce this figure has been granted by the original author, Oden Cohen. The material is

used with authorization and remains the intellectual property of the original author and publisher. 

To mitigate the variability and uncertainty across dispersed global supply chain links,
Cohen (2010) and Schragenheim & Dettmer (2009) extended Goldratt's theory of
constraint (TOC) buffering mechanism in distribution and supply chain networks as shown
in Figure 9. The solution is a pull-based method as a system approach by TOC way.
However, MTA focuses on the finished stock buffer in central and distribution warehouses
across a supply chain. The production orders are scheduled to meet the buffer stock level
in the main warehouse. The priority setting in MTA is based on stock availability instead of
a time buffer according to the due date. The subsequent downstream links from the central
warehouse to the point of sales follow the same replenishment method. Replenishment
operation is similar to Kanban in between different production processes. Still, MTA
dynamically adjusts the buffer stock size, also called inventory target, according to the
consumption rate from downstream locations. Figure 10 illustrates the buffer stock level as
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consumption rate from downstream locations. Figure 10 illustrates the buffer stock level as

divided into three colour zones: the red zone at the bottom, the yellow zone in the middle
and the green zone at the top. Keeping the current inventory buffer size without changes is
safe if the on-hand stock level falls into the yellow zone. If the buffer stock level falls into the
red zone over one replenishment cycle time as "Too Many Red" (TMR), the buffer size will
be increased by one-third of the buffer level to catch up with the increasing consumption
rate. If the buffer stock level is maintained in the green zone over one replenishment time
as "Too Many Green" (TMG), the buffer size will be reduced to one-third of the level to
chase the decreasing consumption rate. This buffer adjustment mechanism is termed
"Dynamic Buffer Management (DBM)" (Schragenheim & Dettmer, 2009, p. 157-8).

Figure 10 - Defining Buffer Status (Cox & Schleier, 2010, p. 247)
Permission to reproduce this figure has been granted by the original author, Eli Schragenheim. The material

is used with authorization and remains the intellectual property of the original authors and publishers. 

So, the re-ordering batch size by each replenishment cycle fills the gap between the on-
hand stock level and the target buffer level on the top of the green zone. Replenishment
cycle time and transfer batch size are minimal (Cox & Schleier, 2010). The MTA approach
reduces the supply chain's overall inventory level and costs due to reduced variability by
smaller batch sizing and a higher replenishment frequency. The aggregated demands
minimise the fluctuations from different consumption points in the central warehouse and
production schedule. The dynamically adjusted stock buffers in different decoupling
positions reduce the main warehouse's bullwhip effects (Lee, 1997). Schragenheim &
Dettmer (2009) also propose monitoring capacity in a mixed mode of the MTO and MTA
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Dettmer (2009) also propose monitoring capacity in a mixed mode of the MTO and MTA

environments with the S-DBR method with shared production resources. 

DBM mainly focuses on the execution side of supply chain management. This contrasts
with MRP, which is fundamentally oriented towards planning, calculating the necessary
materials and scheduling based on anticipated demand and lead times. MRP's
methodology involves determining planned releases based on due dates within a specified
planning horizon, rather than on immediate shop floor execution (Jodlbauer & Reitner,
2012; Rossi et al., 2016). 

The operational framework of DBM includes key planning factors such as monitoring and
adjusting buffer stock levels, which are essential for maintaining optimal inventory levels
and ensuring that production can meet demand without excessive delays. In contrast, the
Simplified Drum-Buffer-Rope (S-DBR) methodology modifies promised due dates based
on short-term load monitoring, allowing for more agile responses to fluctuations in
production capacity and demand (Benavides & Landeghem, 2015; Filho, 2023). This
adaptability is crucial in environments where demand can vary significantly, necessitating a
more dynamic approach to scheduling and resource allocation. 

One of the primary strengths of TOC's MTA strategy is its focus on customer demand
satisfaction through the strategic placement of inventory buffers, which ensures product
availability (Marco, 2016). This pull-based approach effectively reduces lead times and
enhances customer satisfaction by maintaining a ready supply of products without the
complexity of intricate dependencies, thus improving operational efficiency.

Moreover, the Make-To-Availability (MTA) strategy diverges from traditional MRP logic by
decoupling dependent demands. It has emerged from production planning systems such
as S-DBR. This decoupling provides greater flexibility in inventory management by
eliminating the complex dependencies that MRP establishes between components and
finished goods. However, MTA does not consider the logical sequence of dependent
setups during scheduling, which also causes the same difficulties in the S-DBR (Castro et
al., 2022). For instance, in the textile dyeing industry, the colour shade in the production
scheduling sequence may conflict with MTA's buffer priority system and the need to
accommodate such dependencies effectively.
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While MRP provides visibility into requirements, especially for items with long lead times,
MTA focuses on ensuring that products are available when needed, regardless of the
traditional MRP underlying capacity requirement and risk-based scheduling methods
(Sadeghi & Golbaghi, 2016; Sun et al., 2012). 

The following section will explore another way of the buffer priority system in planning and
execution.
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2.3.4 Demand-Driven MRP (DDMRP) to Demand-Driven Adaptive
Model (DDAM)

The key features of MTA provide a clear priority in the production schedule and stock
replenishment in a distribution network through the logic of DBM. The upstream suppliers
and downstream customers within the supply chain network could monitor the buffer signal
of each item to schedule the priority in different stock locations (Dalal, 2015). While a
relatively recent development, DDMRP has been widely accepted and adopted and, not
surprisingly, builds on prior methodologies, such as MRP, TOC, and Lean principles (Ptak
& Smith, 2011). A key evolution of DDMRP lies in its dynamic buffer management,
enabling real-time adjustments to stock levels in response to demand signals, which
enhances agility and responsiveness in managing supply chain variability (Krishnan,
2024). Compared to MTA DBM, DDMRP introduces a more robust mechanism for
safeguarding critical items and optimising material flow, yet it inherits complexities
associated with its implementation and the need for comprehensive data analytics to
ensure efficiency. As such, this chapter critically examines DDMRP’s features and their
implications for supply chain performance, especially in relation to MTA and its evolution
from earlier methodologies.

As mentioned in the previous section, MTA and Distribute-To-Availability (DTA) ignore the
MRP logic with the decoupling of dependent demands. The critical difference between
MRP and DDMRP is the replenishment signal according to daily sales consumption
instead of potential forecast orders (Pekarcíková et al., 2019). At the same time, MRP
provides clear visibility of the total requirements, especially on long lead time items (Ptak &
Smith, 2011).

DDMRP as adaptive supply chain environment: DDMRP is a pull-based system in an
end-to-end supply chain for a longer planning horizon and adaptive execution of the supply
chain. DDMRP is a multi-level planning and execution system. DDMRP strategically
positions the decoupling point stock buffers, protects the flow and pulls to ensure relevant
information and materials flow. 
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There are three phases in DDMRP implementation – Position, Protect and Pull (Ptak and
Smith, 2016). In phase one, "position", DDMRP selects the strategic positions for buffering
as decoupling points to minimise the manufacturing lead time according to BOM's
structure and reduce the purchasing and distribution lead time according to the design of
the distribution network. 

In phase two, "protect", buffer profiles and levels are a calculation of protection levels
grouped into a defined template by similar item type, lead time and variability as
parameters profiles mentioned in the book (Ptak and Smith, 2026). The buffer sizing of
traditional methods focuses on demand variability and uncertainty of replenishment lead
time. DDMRP is based on buffer profiles' parameters to determine the level of protection
at those decoupling points. The initial inventory target for a buffer size of DBM is based on
the maximum forecasted consumption within a reliable replenishment lead time (Cohen,
2010, p. 431). 

Figure 11 - The buffer equation summary: (Ptak & Smith, 2016, p. 115)
Permission to reproduce this figure has been granted by the original author, Chad Smith. The material is

used with authorization and remains the intellectual property of the original author and publisher. 

Figure 11 illustrates that the calculation of buffer size in DDMRP is divided into three
zones, but it is not equally allocated as MTA DBM (see Figure 10). In DDMRP, the green
zone is determined by three key factors:  the Average Daily Usage (ADU) over the defined
minimum order cycle, the Lead Time Factor (LTF), and the Minimum Order Quantity
(MOQ). The green zone is set based on the highest value among these three factors. The
yellow zone in DDMRP is based on average daily usage (ADU) multiplied by Decoupled
Lead Time (DLT). The red zone in DDMRP is the sum of the red base (DLT x lead time
factor) and red safety (DLT x lead time factor x variability factor). The lead time factor is
categorised into high, medium and low variability factors. The more extended lead time
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categorised into high, medium and low variability factors. The more extended lead time

item will use a lower factor value to trigger smaller, more frequent replenishment signals.
The red safety base is calculated by multiplying the lead-time factor by the ADU by the lead
time. The variability factor values are based on the percentage of safety base (Ptak &
Smith, 2016).

A buffer's position in DDMRP strategically focuses on reducing the longest cumulative
coupled lead time path in a manufactured item's product structure. It is similar to the  (Ptak
& Smith, 2016). Compared with Kanban and Order Penetration Point (OPP)/CODP, the
buffer locations depend on the design of sequential production flow and customer
tolerance time in expected manufacturing environments, respectively (Olhager, 2003). On
the other hand, the DBR/S-DBR buffer location is constraint focused. The DBR/S-DBR
buffers position is placed before capacity-constrained resources to reduce the production
lead time. Kanban buffers are set up between all production workstations to ensure
production flow. DDMRP strategically aims to compress the overall manufacturing and
distribution lead time. MTA and DTA focus on the central warehouse to build common stock
buffer, ensure stock availability and reduce order lead time.

MRP and Distribution Requirement Planning (DRP) provide the necessary linkage of
dependent demand, enabling a holistic view of the entire flow system (Jacobs et al., 2011).
Strategic positioning merged with MPS and S&OP acknowledging the need for strategic
immediate buffers to compress lead time (Lapide, 2004). TOC provides the concept of
dynamically managing these buffers through the different forms of buffer management
(Goldratt, 1990). Lean and TOC stress the importance of lead time and flow in controlling
the release of work into system as pull mechanism (Hopp, 2008) as opposed to the local
optimisation commonly associated with earlier push-based approaches. This embraces
TOC-based MTA DBM and visual signalling mechanisms from lean principles.

In summary, all buffering methods are standard tactics in the compression of lead time to
reduce variability and uncertainty across the end-to-end supply chain network.

When the minimum order quantity is relatively significant, as required in specific industries,
DDMRP will effectively regulate the buffer size. In conventional Dynamic Buffer
Management (DBM), overseeing substantial Minimum Order Quantities (MOQs) becomes
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Management (DBM), overseeing substantial Minimum Order Quantities (MOQs) becomes

notably difficult when the MOQ surpasses one-third of the buffer size, often resulting in
overstock (Cox & Schleier, 2010; Schragenheim & Dettmer, 2009). DDMRP resolves this
issue by considering the MOQ directly when calculating the logic of the green zone. When
the MOQ exceeds other factors for calculated size, the green zone is adjusted according to
the MOQ to ensure proper inventory management (Ptak & Smith, 2016).

The dynamic nature of demand patterns and long lead times will benefit from dynamic
buffer adjustments. DDMRP adjusts buffer levels dynamically using various parameters,
such as Average Daily Usage (ADU), Lead Time Factor (LTF), and Variability Factor (VF)
(Ptak & Smith, 2016). This method optimises replenishment decisions in real time,
ensuring that buffers are appropriately sized to satisfy MOQ requirements without
excessive inventory inflation (Azzamouri et al., 2021). DDMRP successfully sustains
balanced stock levels and mitigates excess inventory by addressing both present
consumption rates and historical variability, especially in the presence of substantial MOQs
(Ptak & Smith, 2016; Velasco et al., 2020). 

Contrastingly, DBM used in S-DBR/DBR/MTA/DTA methods only instigate buffer size
modifications under specific circumstances. For instance, a change might be initiated
when stock levels swell into the green zone extensively, termed as "Too Much Green"
(TMG), or when the red zone is prevalent for an extended period, termed "Too Much Red"
(TMR). However, despite their operational differences, all these buffering strategies
converge on a singular objective: ensuring the consistent availability of products to meet
customer demand.

DDMRP provides the alignment mechanism by a planned adjustment factor (PAF),
demand adjustment factor (DAF), and zone adjustment factor for planned and known
events such as seasonality, promotion, and product life cycle. Those factors adjust the
buffer size to adapt to the anticipated changes in future demand. It is similar to the
consensus plan in S&OP monthly communication on MPS changes. DAF and PAF are
human adjustments through internal communications.

In phase three, as "pull", demand-driven planning handles the anticipated changes in the
longer planning horizon, providing visible and collaborative execution. It defines the
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longer planning horizon, providing visible and collaborative execution. It defines the

fundamental operational aspects of a DDMRP system: planning and execution. The
traditional buffering methods focus on performance in the short term, and implementing all
buffering strategies is similar to recovering the consumed buffer penetration as soon as
possible. The key differences are the batch size and frequency of replenishment in
generating the supply replenishment orders.

The process of generating supply replenishment orders (such as purchase orders,
manufacture orders, and stock transfer orders) in DDMRP is based on demand-driven
planning. DDMRP provided the "available stock position" referred to in DDMRP literature
before 2016. In the latest definition, it is named - "Net Flow Equation": 

On-hand + On-order - Qualified sales order demand = Net Flow Position
(Ptak & Smith, 2016, p. 150)

The On-hand Inventory refers to the physical count of the items currently available in the
Stock. Incoming Stock is the total of items scheduled to be added to the inventory through
purchase orders, manufacturing orders, and transfer orders. Qualified Sales Order
Demand refers to confirmed customer orders that are yet to be fulfilled.

The Net Flow Position (NFP) is similar to the Project Available Balance (PAB) in MRP with
a different formula:  

Projected Available Balance (PAB) = previous PAB or on-hand + Master Production
Schedule (MPS) - The customer order or forecast, whichever is higher 

  (Jacob, 2011, p. 185)

DDMRP introduces the concept of qualified sales order demand, which includes the past
due sales orders, sales order due today, and qualified order spikes. These spikes occur
when the total daily demand exceeds a certain threshold within a specific time frame. This
time frame is called the “Order Spike Horizon” (OSH), and the threshold is referred to as
the “Order Spike Threshold (OST) The qualified order spike is the total accumulative daily
demand within a qualifying time window over the OST within OSH that significantly impacts
the buffer protection (Ptak & Smith, 2016).
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Figure 12 - different ways to set the order spike threshold (Ptak & Smith, 2016)
Permission to reproduce this figure has been granted by the original author, Chad Smith. The material is

used with authorization and remains the intellectual property of the original author and publisher. 

In Figure 12 shows the order spike threshold can be set to three options: the border of the
red base (OST-RS) and red safety portion of the buffer for the finished item, the red safety
portion of the red zone related to the variability of the part position (OST-50%) or an
intuitive estimation based on the ADU of a specific part (OST-ADU). In the early DDMRP
implementation, it was 50 per cent of the red zone. The primary purpose of qualified sales
order demand is the protection of a significant surge in the long-range accumulative daily
demand within OSH. DDMRP includes the qualified sales order demand in calculating the
Net Flow Position to ensure sufficient buffer protection. On the other hand, the PAB heavily
relies on the accuracy of the forecast. In MRP, PAB can also project the future stock
balance, provided that the forecast is accurate. The net flow position is also unreliable if
the qualified sales order demand is too uncertain or dynamically changing in the OSH
planning horizon. 

DDMRP planning monitors the net flow position for supply order creation. If the on-hand
stock position is below the Top Of Yellow (TOY), supply orders will be recommended to
recover the gap between the Top Of Green (TOG) and the current net flow position. For
MRP, the open planned order triggers the suggested supply orders according to a net
requirement of dependent demand within the BOM according to the due date. The Kanban
system triggers the supply orders upon reaching the pre-defined levels by the demand for
downstream processes. For DBM, suggested supply orders are based on the total
consumption before the next replenishment cycle. S-DBR/DBR/MTA/DTA provide only the
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consumption before the next replenishment cycle. S-DBR/DBR/MTA/DTA provide only the

current buffer status for short-term planning. Those replenishment methods are inherent in
the reorder point (ROP) concept with different formulas for calculating the inventory buffer
level. While DBM triggers the replenishment orders according to accumulated
consumption before the next replenishment cycle, DDMRP generates replenishment
orders upon NFP reaching the TOY level.

Figure 13 - DDMRP basic execution alerts (Ptak & Smith, 2016)
Permission to reproduce this figure has been granted by the original author, Chad Smith. The material is

used with authorization and remains the intellectual property of the original author and publisher. 

In Figure 13, DDMRP execution alerts refer to the process after supply order generation in
planning. The fundamental difference between planning and execution in DDMRP is the
two priority systems of buffer status. The priority planning process uses the net flow
equation for buffer status. The execution process focuses on the current and project on-
hand balance to evaluate the buffer status. There are two major types of alerts in DDMRP
execution: Buffer status alerts and Synchronisation Alerts. Buffer status alerts included
current on-hand alerts and projected on-hand alerts for independent points. The current on-
hand alert shows which parts may need to be immediately expedited from the on-hand
perspective. The projected on-hand alert provides the projected on-hand status with the
risk of stock-out for the coming day based on ADU and some known demand, whichever is
higher. The synchronisation alerts include material synchronisation alerts and lead time
alerts for dependent points. Material synchronisation alerts display supply shortages
against known demand allocations when the projected on-hand alert on child parts
potentially affects the reconciliation of parent parts. The lead time alert warns the non-
buffered items at dependent points when the expected item is not delivered after two-thirds
of the promised lead time has passed. The last one-third of lead time is termed "Lead time
alert horizon". This alert system is similar to the DBR/S-DBR time buffer to provide warning
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alert horizon". This alert system is similar to the DBR/S-DBR time buffer to provide warning

signals. In OPP/CODP and DTA/MTA methods, there are no early warning signals in a
longer planning horizon as buffer status alerts and synchronisation alerts in DDMRP. 

According to the DDMRP policy, planners need to make decisions for many parameters,
such as the strategic positioning of buffers, the percentages of lead time and variability
factors in buffer profiles and the review interval for the buffer re-adjustment (Velasco et al.,
2020). Azzamouri et al. (2021) pointed out the reliability and creditability issues in DTL,
LTF, VF and ADU and recommended further research to analyse the DDMRP and
performance to cope with the variability of demand and capacity. Ling et al., (2022)
repackaged the above DDMRP logic as a demand-driven operating model (DDOM) and
embraced it into a demand-driven adaptive model (DDAM):

Figure 14 - The adaptive loops of the DDAM model (Ling et al., 2022)
Permission to reproduce this figure has been granted by the original author, Chad Smith. The material is

used with authorization and remains the intellectual property of the original author and publisher. 

Figure 14 illustrates that DDAM applied the adaptive method according to the Complex
Adaptive Systems (Smith & Smith, 2013), which aligned with strategic fitness between
sub-systems and overall system objectives to promote and protect the flow for return on
investment (ROI). It also matched the first law of manufacturing —  “All benefits will be
directly related to the speed of flow of information and materials” (Plossl, 1994). The key
objective of DDAM is to create the visibility of relevant information in the operational,
tactical and strategic relevant range.

Demand-Driven Sales and Operations Planning (DDS&OP) created the bidirectional
reconciliation between DDOM and Adaptive S&OP with feedback and tactical selection
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reconciliation between DDOM and Adaptive S&OP with feedback and tactical selection

information (Ling et al., 2022). This communication protocol bridged strategic direction
and operational capability. On the other hand, Adaptive S&OP is the platform for the cross-
functional team to provide tactical inputs (demand, budgetary range, capability definition
and performance targets) for DDOM configuration. DDS&OP also provided strategic
recommendations, tactical model projects, and tactical exploration opportunities for
Adaptive S&OP to adjust the business planning information to the DDS&OP team. 

Demand-Driven Sales and Operations Planning (DDS&OP) created a reciprocal
reconciliation between DDOM and Adaptive S&OP by including feedback loops and
tactical decision information, so effectively connecting strategic objectives with operational
capacities (Ling et al., 2022). Empirical research demonstrates the superiority of
DDS&OP compared to standard S&OP in dynamic circumstances. Bozutti & Espôsto
(2019) illustrated how DDS&OP enhances responsiveness and agility in volatile
manufacturing sectors by deliberately decoupling inventory and utilising real-time
feedback, a characteristic absent in conventional S&OP, which adheres to a more
inflexible top-down structure. Furthermore, Kim and Shin (2024) focus on the adaptability of
DDS&OP within the manufacturing and retail companies in South Korea, as it enabled
superior alignment between strategic leadership and operational requirements, in contrast
to conventional approaches that frequently struggle to adjust quickly to changing market
demands. Vidal et al. (2018) demonstrate that DDS&OP's ongoing feedback facilitates
accelerated tactical decision-making, hence reducing response times to demand
variations, which is essential in dynamic manufacturing operations. These studies
demonstrate that DDS&OP not only improves the communication between strategy and
operations but also surpasses traditional S&OP by facilitating more agile adaptations to
market fluctuations.

The evolution of traditional S&OP to DDS&OP illustrates the shift towards more dynamic
and integrative planning processes, aligning strategic objectives with real-time operational
capabilities. This progression reflects broader trends in inventory management, where
different paradigms – forecast-based model emphasising cost efficiency and
consumption-driven models prioritising flow and responsiveness – are increasingly
intertwined. To understand how these varying approaches complement one another and
address the complexities of model supply chains, it is essential to compare the core
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address the complexities of model supply chains, it is essential to compare the core

differences between the primary inventory policies discussed throughout this review.
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Table 3 – Summary of key differences between reviewed inventory polices
Inventory Policy Focus Key Strengths Key

Weaknesses
Planning
Approach

Buffering Approach

Reorder Point
(ROP) with EOQ

Forecast-based,
economic order
quantity

Minimizes total
inventory cost,
stable demand

Dependent on
accurate
forecasts, fails
under high
variability

Forecast-driven,
independent
demand

No buffer except
safety stock (SS) at
reorder point (R),
reorder quantity (Q)

Material
Requirements
Planning (MRP)

Forecast-based,
time-phased
inventory
management

Optimises
inventory levels,
integrated with
ERP

Inaccurate
demand
forecasts lead to
inefficiencies,
doesn’t account
for capacity
constraints

Forecast-driven,
dependent
demand

Uses safety stock at
various BOM levels

Master
Production
Scheduling (MPS)

Forecast-based
production
volume
management

Provides
aggregate
production plan,
aligns with S&OP

Prone to
instability due to
forecast changes

Forecast-driven,
adjusts
production
plans

Time fences and
frozen schedules to
manage instability

Sales &
Operations
Planning (S&OP)

Balances
demand and
supply, cross-
functional

Enhances
communication
and resource
alignment

Complex and
prone to issues
with forecasting
accuracy

Aggregate
planning, aligns
cross-functional
teams

No specific
buffering method,
focuses on
coordination

Manufacturing
Resource
Planning II (MRPII)

Capacity-based,
extension of
MRP

Considers capacity
constraints,
balances resource
loading

Complex to
implement,
assumes
capacity
availability

Capacity-driven,
integrates
RCCP

Uses time buffers
and capacity buffers

Toyota Production
System (TPS)
with Kanban

Flow-based, pull
production
system

Minimizes waste,
enhances flow and
efficiency

Struggles with
variability and
load balancing in
complex
environments

Pull-based,
actual
consumption

Uses Kanban cards
for controlling WIP
and replenishment

Theory of
Constraints (TOC)
with DBR/S-DBR

Bottleneck-
based,
throughput
optimisation

Focuses on
constraints,
maximizes system
throughput

Complex to
implement,
dependent on
constraint
identification

Pull-based,
focuses on
constraints

Uses time, stock,
and capacity buffers

Make-to-
Availability (MTA)
and Distribute-to-
Availability (DTA)

Availability-
based, buffer-
driven

Improves
responsiveness,
reduces stockouts

Less effective in
environments
with high
variability

Pull-based,
consumption-
driven

Dynamic Buffer
Management (DBM)
starts from initial
buffer size (IBS)
adjusts buffer sizes
according to Too-
Many-Green (TMG)
and Too-Many-Red
(TMR)

Demand-Driven
MRP (DDMRP)

Consumption-
based, demand-
driven

Adapts to real-time
demand, reduces
lead times

Relatively new,
requires
significant data
and system
integration

Pull-based,
real-time
demand

Uses dynamic
buffers adjusted
based on Average
Daily Usage (ADU),
Decoupled Lead
Time (DLT), Lead
Time Factor (LTF)
and Variability
Factor (VF)
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The above Table 3 provides a comparison for clearer understanding of the unique
contributions and limitations of each inventory planning model, setting the foundation for
further exploration into their application in different simulation contexts stated in Figure 15,
presented later in the chapter. 

Distinct inventory management paradigms have taken shape over time.  ROP, MRP, MPS
and S&OP focus on forecasting methodologies emphasising cost reductions, while DBR,
S-DBR, DTA and DDMRP, rooted in consumption-based planning, values a smooth flow
velocity. Although these methods might appear divergent, they merge under the expansive
umbrella of inventory management. The bidirectional reconciliation exemplified by
DDS&OP attests to this harmonious blend, effectively combining strategic vision with
tactical execution. The emergence of the Adaptive S&OP paradigm marks a significant
evolution, promoting greater collaboration by inviting cross-functional teams to share their
expert perspectives, distinguishing it from the conventional S&OP approach. This adaptive
and integrative trend sets the stage for delving deeper into the influential factors affecting
performance within these paradigms.
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2.4 Performance and Influential Factors 

Having underscored the interplay and alignment between forecast-driven and consumption-
based inventory planning, it becomes imperative to understand the specific elements that
steer performance within these frameworks. Simulation models rise to prominence in this
context, offering stakeholders a lens to envision performance paths under different policy
applications, serving as a blueprint for tangible implementation. This discourse will
methodically assess the impact of policies like ROP, MTA DBM, and DDMRP on
performance. In addition, a keen examination of the key performance metrics such as
Return on Inventory (ROI) and Service Level by Revenue (SL) vital for simulation studies will
unfold, illuminating the factors that considerably influence inventory policies’ performance
outcomes.
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2.4.1 Key Performance Indicators (KPIs) in inventory management

This section defines the key performance indicators (KPIs) used to evaluate inventory
policies in the simulation analysis discussed in Chapter 4. The indicators comprise
Revenue Level (RL), Inventory Level (IL), Service Level by Revenue (SL), Out-of-Stock
(OOS), Overdue Order Frequency (OOF), and Return on Inventory (ROI) based on Cost of
Goods Sold (COGS).

The above KPIs can be used to evaluate the supply performance between different policies
and in the broader literature and are relevant for this research. Revenue Level (RL)
quantifies the income produced by a business through product sales to customers, while
Inventory Level (IL) indicates the number of product units in stock. Service Level by
Revenue (SL) indicates an organization's ability to satisfy customer demand, determined
by the revenue lost from unfulfilled orders (AnyLogistix, n.d.).

Out-of-Stock (OOS) indicates situations in which the inventory of a particular product has
been exhausted, limiting the prompt satisfaction of customer demands. Overdue Order
Frequency (OOF) quantifies the frequency with which an order misses its scheduled
delivery date, indicating difficulties in adhering to delivery schedules. Return on Inventory
(ROI), defined as the ratio of revenue to inventory levels or Cost of Goods Sold (COGS), is
an essential metric for assessing the effectiveness of an organisation in utilising its
inventory to produce profits (TOCICO, 2012). 

Another important indicator is Inventory Turns, which indicates the velocity at which
inventory moves the supply chain with minimum stock waste. The calculation of Inventory
Turns is based on the ratio of annual COGS to average inventory, reflecting the
performance of inventory strategies (Hopp & Spearman, 1996; Koumanakos, 2008;
Blackstone, 2010; Martin, 2010). The average inventory level strongly impacts ROI and
inventory turnover, but service level, assessed by OOS, is crucial for maintaining customer
satisfaction (Mekel et al., 2014).

Effective inventory management, including the elimination of non-value-added activities
and unnecessary inventories, immediately improves performance indicators such as
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and unnecessary inventories, immediately improves performance indicators such as

inventory turnover and return on investment (Rao & Rao, 2009). Furthermore, the proficient
management of KPIs, including Service Level by Revenue (SL) and ROI, is necessary for
assessing the effectiveness of inventory strategies (Ogbo & Ukpere, 2014; Eroglu & Hofer,
2011; Gołaś, 2020). A study on the 7up Bottling Company in Enugu, Nigeria, evaluated the
impact of flexible inventory practices on organizational performance (Ogbo & Ukpere,
2014). These practices included flexibility in inventory service, supply chain management,
and inventory management, which contributed to minimizing stock holding costs, reducing
waste, and enhancing inventory utilization.

Return on Inventory (ROI) is crucial for evaluating the effectiveness of inventory in
generating profits. Effective inventory management reduces holding costs and optimises
stock, hence increasing profitability and enabling businesses to respond swiftly to market
demands (Ogbo & Ukpere, 2014; Eroglu & Hofer, 2011; Gołaś, 2020; Galankashi & Rafiei,
2021). 

Service Level by Revenue (SL) similarly assesses the ability of an organization to satisfy
client orders, directly impacting customer satisfaction and loyalty. Liang and Atkins
emphasise the role of Service Level Agreements (SLAs) in inventory management, which
are designed to ensure that service levels are met consistently, thus aligning operational
performance with customer expectations (Liang & Atkins, 2013). Research has repeatedly
demonstrated a strong association between effective inventory management and improved
financial performance, rendering SL and ROI critical for assessing inventory management
strategies (Cranimar & John, 2021; Manikas, 2017; Ngugi, 2019). For instance, a study
examining private hospitals in Western Uganda found that robust inventory management
systems significantly predicted financial performance (Ngugi, 2019). The study, which
employed a positivist approach and a cross-sectional research design across 32
hospitals, recommended adopting effective inventory management to optimise stock levels
and minimize costs for substantial financial improvement (Cranimar & John, 2021).
However, the authors acknowledged that their positivist approach may have introduced
method bias, potentially affecting the validity of their findings. Similarly, research conducted
on manufacturing companies in Eldoret Town, Kenya, including firms like Rift Valley Bottlers
and Rai Plywoods (K) Ltd, found that inventory holding costs were influenced by long-run
price increases (Ngugi, 2019). The study recommended the implementation of Material
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price increases (Ngugi, 2019). The study recommended the implementation of Material

Requirement Planning (MRP) systems to reduce holding costs of finished goods, using
both quantitative and qualitative analyses, including descriptive and inferential statistics, to
derive its conclusions.

In conclusion, ROI and SL are essential measures for evaluating the performance of
inventory policies. They offer insights into financial performance and indicate operational
effectiveness in fulfilling client expectations. Literature regularly indicates that good
inventory management methods improve profitability and service levels, making these KPIs
important when assessing inventory management systems in distribution-side supply
chains.
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2.4.2 Impact of Inventory Policies on Performance

Inventory management has continually evolved, echoing the shifting market dynamics. The
traditional Reorder Point (ROP) method, established over the years, is a consistent
mechanism to stabilize inventory amidst unpredictable demand, a viewpoint further
endorsed by Silver et al. (1998). Scholars, including Zipkin (2004), have underscored the
indispensability of steadfast systems like ROP, particularly in navigating the turbulent
waters of volatile demand. The complexity of inventory systems, the interplay between
management and engineering perspectives, and the role of centralized and decentralized
control are crucial for effective inventory management, emphasising an engineering
approach to problem-solving and careful analysis in decision-making. Furthermore,
advancements in information technologies and the historical evolution of inventory research
highlight the continuous efforts to optimise inventory control, incorporating approaches like
just-in-time and incentive-based theories.

Waters (2003) provides an in-depth analysis of inventory management methodologies,
particularly emphasising the crucial role of the ROP. According to Waters, the ROP acts as
a buffer against unexpected demand fluctuations and ensures supply chain continuity.
Axsäter (2006) reinforces this perspective, suggesting that by defining a specific threshold
for reordering, the ROP manages to keep stock levels optimal, thereby averting potential
operational disruptions. These revelations align with the beliefs of Mattsson (2010) and
Tersine (1994), who argue that the fusion of traditional ROP with advanced ERP platforms
can effectively cater to the complex patterns of shifting demand.

Nevertheless, Mattsson (2010) highlights the limitations of the conventional Reorder Point
(ROP) model, particularly concerning seasonal demand variations. He proposes an
extended ROP model, suitable for ERP systems, that accounts for these seasonal
variations, offering potential performance improvements through simulation and providing
heuristic guidelines for practitioners. This model aims to address the challenges of
systematic medium-term demand fluctuations, such as seasonal variations, which
traditional ROP systems struggle to manage effectively. 

Tersine (1994) reflects this pursuit of refinement, advocating a proactive strategy that
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Tersine (1994) reflects this pursuit of refinement, advocating a proactive strategy that

synchronises inventory management with volatile markets. His focus on adaptive inventory
management is theoretically substantiated; nonetheless, Tersine reinforces his claims
through case studies (i.e. solid wood furniture, builder and contractor) and industrial
examples (i.e. job shops and voltage circuit breakers manufacturer) instead of novel
empirical research. These examples demonstrate that linking inventory policies with overall
supply chain objectives can enhance responsiveness to fluctuating demand situations,
supporting Mattsson's argument for an improved ROP model. Tersine’s work lacks direct
empirical research and provides a theoretical framework and real-world applications that
yield practical insights into mitigating risks and enhancing supply chain performance in
unanticipated circumstances through adaptive approaches.

In a contemporary context, Pathom (2023) highlights the potential benefits of combining
time-tested inventory models with sophisticated technological solutions. The resultant
synergy offers more profound insights, manifested in reduced daily inventory levels. The
study employing discrete-event simulation also supports this view, as it determined the
optimal reorder point for a retail store based on an acceptable service level under
uncertainties like demand, lead time, and product damage. This simulation-based
approach effectively optimised inventory policies, impacting total daily inventory,
profitability, and product damage, thereby demonstrating the practical benefits of advanced
modelling.

Miclo (2018) further expounds on the revolutionary shift brought about by DDMRP, placing
demand at its core. Miclo's research underscores DDMRP's prowess in resolving
predicaments intrinsic to older methodologies. The performance gap between DDMRP
and its predecessors, as Miclo suggests, is only sometimes significant, but DDMRP's
flexibility and dynamic buffer management prove beneficial for various settings. Similarly,
the use of Discrete-Event Simulation (DES) allows for predictive analysis and dynamic
modelling of constraints, demonstrating the utility of advanced simulation tools in assessing
inventory policy modifications under varied scenarios, supporting DDMRP’s adaptability.

The study by De Pacheco et al. (2015) examines the dynamic behaviours of a two-level
supply chain under stochastic demand, using discrete event simulation to model
information and material flows. It proposes Lead Time Absorption (LTA) and Demand
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information and material flows. It proposes Lead Time Absorption (LTA) and Demand

Absorption (DA) metrics to evaluate supply chain performance in terms of lead time and
inventory levels, emphasising the importance of variable reorder points to minimize
disruptions in meeting demand. De Pacheco et al. (2015) and Nahmias (2009) further
illuminate the intricate relationship between supply chain structures and the significance of
accurate demand forecasts. Nahmias's simulation-based approach in their research
explores the effectiveness of dynamic versus static reorder point policies by simulating
inventory systems under uncertain lead times and varying demand patterns. The simulation
demonstrates that dynamic policies can maintain service levels while significantly reducing
inventory costs, thereby enhancing supply chain efficiency. De Pacheco et al.'s work builds
on these insights by demonstrating how adapting variable reorder points can effectively
reduce inventory disruptions and ensure responsiveness to market uncertainties, further
validating the value of flexibility in inventory management.

Industry-specific practices, as explored by Reyes et al. (2015) within the footwear sector,
exemplify the unique challenges faced by various sectors. The footwear industry faces
intense competition due to globalization, especially from mass production in Asian
countries, leading to a need for improved inventory management. Their findings advocate
for adopting Dynamic Buffer Management (DBM), primarily due to cost-saving benefits and
better inventory control. The footwear sector also struggles with balancing inventory levels
to avoid both shortages and overstock, which can lead to substantial financial losses. By
implementing DBM, the study reports an 18.7% reduction in annual inventory costs,
showcasing how this approach can enhance competitiveness and responsiveness in a
challenging market environment.

Emerging inventory management paradigms like DBM and DDMRP garner significant
attention in contemporary research. Marco (2015) argued that DBM parameters are
relatively stable and proved that the performance of DBM is better than ROP under high
demand variability. While DBM's adaptability, promises a bright future (Ikeziri et al., 2023),
it is not without its challenges (Narita et al. 2021). As DDMRP garners more traction,
supported by scholars like Hung et al. (2004) and McCullen & Eagle (2015), precision and
attention to detail are paramount in realising the full potential of these methodologies.
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To holistically grasp the effectiveness of these varied inventory management strategies,
there is an undeniable need for precise metrics that meticulously quantify their impact on
business outcomes.
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2.4.3 Impact of influential factors on inventory performance

Several influential factors affect inventory performance in the supply chain. This section
explains the rationale for focusing on inventory management and reviews the literature
about the bullwhip effect, ripple effect, forecast accuracy, lead times, replenishment review
timing, lot size and disruptive events for the variability of demand or supply. On the other
hand, safety stock, strategic decoupling of stock locations and information sharing mitigate
those negative impacts.

The focus on inventory performance in supply chain management is critical due to its
significant impact on overall supply chain performance and financial outcomes. Effective
inventory management directly influences essential business objectives, including cost
efficiency, customer satisfaction, and operational responsiveness. In dynamic and
uncertain supply chain environments, where demand patterns and supply lead times
fluctuate, adaptive and efficient inventory policies are necessary to balance supply and
demand effectively. 

Cost efficiency is a primary reason for emphasising inventory performance. Improved
inventory management strategies can lead to reduced operational costs, as they minimize
excess stock and associated holding costs. For instance, Crowe et al. (2010) highlight that
without efficient supply chain and inventory management strategies, achieving competitive
advantage becomes increasingly difficult, emphasising that improved inventory
management contributes to lower costs and increased revenue. Furthermore, Almajali et al.
(2016) assert that effective electronic supply chain management enhances inventory
control, leading to significant cost reductions and improved customer service. This
relationship underscores the importance of inventory performance in achieving financial
efficiency. 

Customer satisfaction is another critical aspect influenced by inventory performance.
Effective inventory management ensures that products are available when customers need
them, thereby enhancing their overall experience. Tarurhor and Osazevbaru (2021)
demonstrate that inventory management directly correlates with customer satisfaction in
the public health sector, indicating that timely availability of products is crucial for meeting
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the public health sector, indicating that timely availability of products is crucial for meeting

customer expectations (Tarurhor & Osazevbaru, 2021). Additionally, Muhammad
emphasises that customer satisfaction directly influences client loyalty, which is essential
for long-term success (Muhammad, 2023). This connection between inventory performance
and customer satisfaction highlights the necessity of maintaining optimal inventory levels to
meet consumer demand promptly. 

Adaptability to variability in supply and demand is essential in today's fast-paced market.
The ability to adjust inventory policies in response to changing conditions is vital for
maintaining service levels and minimizing stockouts. Xu and Cao (2019) discuss the
importance of optimal inventory policies for omnichannel retailers, which must adapt to
varying customer demands across multiple sales channels. Similarly, the concept of
leagility, which combines lean and agile supply chain principles, allows firms to respond
quickly to market changes while maintaining cost efficiency (Vinodh & Aravindraj, 2013).
This adaptability is crucial for sustaining competitive advantage in fluctuating market
environments. 

Eventually, supply chain agility is widely acknowledged as a critical indicator of success in
inventory management. Daryanto and Krämer (2016) claim that agility in logistics and
supply chain management is essential for quickly and effectively addressing market
demands. This agility is enabled by effective inventory management procedures that permit
rapid modifications in stock levels and replenishment tactics. The incorporation of
sophisticated technologies, including electronic inventory control systems, significantly
improves agility by delivering real-time data and insights for enhanced decision-making
(Mondo et al., 2022).

However, despite the latest technologies, challenges such as the bullwhip effect still pose
significant risks to inventory performance. Lee et al. (1997) argued that the bullwhip effect
exaggerated orders across the supply chain to degrade the inventory performance. Kaipia
et al. (2006) reported that the variation in planning accuracy caused the planning
nervousness to amplify the impact, which increased the ratio of the maximum order
changes between supply chain nodes. Paik (2003) identified this ratio as a demand
amplification factor, which reflected the rate of order fluctuations (Paik & Bagchi, 2007).
This amplification of order variability formed the bullwhip effect (Erraoui et al., 2019), which
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This amplification of order variability formed the bullwhip effect (Erraoui et al., 2019), which

measured the bullwhip ratio between input and output flows (Chen et al., 2000).

The forecast inaccuracy, lead times, seasonality and desired service level will affect the
bullwhip effect, directly relating to the total inventory cost and fill rate performance.
Bayraktar et al. (2019) emphasised that forecast inaccuracy is the most critical factor in
mitigating the bullwhip effect. Chen et al. (2000) further substantiates this by highlighting
how variable lead time can magnify the bullwhip effect, underscoring companies' need to
optimise and streamline their lead time processes. The Ripple effect is also the driver for
bullwhip impact from the other direction of ordering oscillations (Dolgui et al., 2020). 

The procurement and sales order lead time might increase cycle and safety stock (Yang &
Geunes, 2007). The shorter suppliers’ replenishment lead time reduced the impact of
bullwhip and improved the recovery speed (Chang & Lin, 2019). The lead time is a
strategic factor for the financial performance in return on investment (ROI) (Tidemann et al.,
2020). 

Chen et al. (2000) further touch upon the intricacies of replenishment policies and how they,
when not optimised, can inadvertently intensify the bullwhip effect. The replenishment
review interval determined the lead time and created a batching bullwhip effect with a
different depletion rate of inventory (Boute et al., 2007; Waller et al., 2008). When the
batching lot size by EOQ induces the effects of lost sales without backorder, the inventory
order policy should be adaptive to reduce the backlogging cost (Sharma & Sadiwala,
1997). The upstream supplier imposed MOQ for large lot size to justify their production
cost (Chow, 1999). Therefore, an efficient inventory policy should consider the current
inventory level demand forecast with MOQ requirements to reduce the total cost (Park, Kim
& Shin, 2018). On the other hand, Brandenburg et al. (2014) suggested broadening the
decision criteria for supply chain performance improvement from cost efficiency to value
creation. However, external disruptive events may challenge the ability to maintain the
expected performance.

Disruptions are random events that cause a supplier or other element of the supply
chain to stop functioning, either completely or partially, for a (typically random)
amount of time.
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(Snyder et al., 2016)

The disruptive events created uncertainty in yield, capacity, lead time and input cost for
variable pricing, which increased the stochastic variability in supplier lead time and order
quantity. Chen et al. (2000) emphasises the need to account for these disruptions, as they
can introduce variances, particularly in lead time, exacerbating the bullwhip effect. 

According to the above influential factors, the supply chain organisation faces the
challenges of variability from supply and demand. Neale & Willems (2009) presented a
model to handle stochastic and nonstationary demand by determining the inventory
locations and safety stock levels. The model showed a case with high demand uncertainty
measured by the Coefficient of Variation (CoV), how to reduce lead time by 30 per cent
and total inventory by almost 50 per cent. The standard deviation (SD) divided by the mean
calculates the CoV (Hopp & Spearman, 1996). George et al. (2019) reviewed 54 articles
to identify the factors affecting supply chain performance, including supply chain structure,
inventory control policy, information sharing, customer demand, forecasting method, lead
times, and review period length.

Due to the dynamic of the above internal and external factors, several articles studied
safety stock, strategic decoupling of stock locations, and information sharing across the
supply chain to mitigate those negative impacts. However, Cannon (2008) argued that the
inventory performance improvements could not link with overall company performance.

The management of safety stocks remains a paramount consideration in inventory control
and optimisation. Nahmias (2009) elucidates the intricacies of the safety stock formula,
noting its derivation by multiplying the safety factor by the expected service level and the
standard deviation of demand during the lead time. This concept traces its origins to the
works of Silver et al. (1998). While the bullwhip effect, a manifestation of increased
demand variability in supply chains, has garnered attention in scholarly circles, Fransoo &
Wouters (2000) unearthed several overlooked challenges concerning its practical
measurement. Specifically, the duo highlighted issues stemming from data aggregation,
the incompleteness of data, and the isolation of demand data for distinct supply chains
within a more extensive supply web. Drawing from hands-on experiences in an industrial
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within a more extensive supply web. Drawing from hands-on experiences in an industrial

setting, they dissected these conceptual measurement predicaments and shared empirical
insights from two supply chains.

A deep dive into this area by Waller et al. (2008) underscores incorporating these safety
stock calculations within the period review inventory model. Their approach targets the
bullwhip effect, seeking to alleviate its impact, primarily from the variability of both the
review interval and lead time, all in a bid to counteract potential stockout risks.

Transitioning to the realm of DDMRP, Lee & Rim (2019) shed light on a pivotal limitation
within the DDMRP replenishment model. This inherent flaw pertains to selecting safety and
variability factors within prescribed bounds. Their solution, a meticulously crafted
mathematical safety stock model, offers a more objective lens to discern safety factors for
DDMRP parameters. Compared to the traditional DDMRP guidelines, their model's
efficacy is evident; it engenders significantly reduced excess inventory while nearly
nullifying inventory shortages.

Further embedding the importance of strategic stock placement, Miclo et al. (2019) vouch
for the demand-driven approach. This methodology anchors buffer stock at strategic
decoupling junctures, wielding dual benefits: a conspicuous reduction in lead time and a
palpable absorption of variability, both acting to mitigate the bullwhip effect. Building on this
narrative, Tiedemann (2020) holistically explores demand-driven supply chain strategies,
encapsulating segmentation, agility, customisation, transparency, and postponement. Their
findings accentuate the intricate dance between decoupling points and lead time,
emphasising how these elements shape ROI, particularly when determining the oscillations
and length of lead time.

The influence of information sharing between entities, the standard deviation of lead time,
the mean of lead time, and cooperation among involved parties on the bullwhip effect in the
supply chain is substantiated by various studies. Li (2010) underscored these aspects as
pivotal in understanding the bullwhip effect. This perspective aligns with subsequent
simulation studies conducted by Hall & Saygin (2012), Jonsson & Mattsson (2013), and
Dev et al. (2013). These combined insights set the stage for a deeper exploration and
synthesis of the existing literature's findings. 
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In conclusion, focusing on inventory performance is essential for achieving cost efficiency,
enhancing customer satisfaction, adapting to variability, and fostering supply chain agility.
These factors collectively contribute to improved overall supply chain performance and
better financial outcomes for organizations.
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2.5 Conclusion

By the above literature review, we can establish an initial understanding regarding research
question (RQ1), which is also the foundation for RQ2 and RQ3:

RQ1. How do inventory policies, particularly forecast-based and consumption-
based methods, interact with performance metrics in distribution-side supply chain
scenarios?

It is important to make it clear that the selection of three inventory policies – ROP, MTA
DBM, and DDMRP – is a deliberate attempt to justify why they have been chosen for
review in this research. Each of these policies represents a distinct approach to managing
inventory and responds to different challenges in supply chain environments of selected
cases listed in Table 1, making them relevant for comparative analysis.

ROP is a traditional, forecast-based method that is widely used but struggles with
variability. MTA DBM focuses on dynamic buffer management, aligning inventory
availability with real-time consumption to ensure product availability. DDMRP, on the other
hand, combines elements of both approaches, using adaptive buffer sizing and real-time
demand signals to optimise inventory flow and responsiveness. By comparing these three
methods, the research seeks to understand their effectiveness under different conditions
and explore how each policy impacts key performance indicators such as service levels
(SL) and return on inventory (ROI). This comparative review forms the foundation for
addressing RQ1 and examining how these inventory methods interact with performance
metrics in distribution-side supply chains.

Chapter 2.4 explicitly emphasises how those inventory policies are linked to key
performance outcomes, particularly SL and ROI. The interplay between these performance
metrics and the inventory policies forms the foundation of the analysis, offering insights into
their operational effectiveness and ability to meet performance objectives under varying
supply chain conditions.

From the literature reviewed, it is anticipated that ROP will excel in ensuring higher ROI
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From the literature reviewed, it is anticipated that ROP will excel in ensuring higher ROI

during stable demand conditions due to its reliance on fixed safety stock and reorder
points, which minimise holding costs. However, this approach may underperform in terms
of SL when faced with significant demand variability or unpredictable lead times, as its
static parameters lack adaptability (Wilson, 1934; Mattsson, 2010).

Conversely, DDMRP is expected to outperform in achieving high SL under volatile demand
conditions due to its dynamic buffer adjustments and responsiveness to real-time demand
signals (Ptak & Smith, 2016). However, this flexibility often comes at the cost of a reduced
ROI, driven by higher inventory levels and the resource-intensive nature of its
implementation (Miclo, 2018; Lee & Rim, 2019).

MTA DBM, positioned between these two approaches, is anticipated to deliver a balance
by maintaining consistent SL in moderate variability scenarios through its straightforward
buffer size adjustments (lkeziri et al., 2023). While it may lack the advanced adaptability of
DDMRP in high-demand volatility, its simplicity ensures more efficient ROI compared to
DDMRP, particularly in environments with stable or predictable demand patterns.

In addressing RQ1, the research explores how and why these planning and control
approaches have developed to influence distribution systems. These performance metrics
drive the evolution of these methods, ensuring that inventory policies align with the dynamic
needs of modern supply chains. This foundation is crucial for subsequent research
questions (RQ2 and RQ3), which delve deeper into the comparative performance and
influential factors underpinning policy choices.

As a summary of the journey from MRP to MTA DBM, it starts with simple inventory
management for a single item by EBQ/EOQ and ROP. EBQ/EOQ and ROP optimise the
cost performance by calculating the economic lot size (Q) and reordering point (R) time.
When the product gets multiple levels of components in the structure, it contains the
dependent demands instead of single-item inventory planning. Then, BOM calculates the
net requirement by MRP logic according to the dependent demand from parent items in
BOM. It is assumed to generate time-phased production and purchase orders, offsetting
lead time. To utilise resources efficiently, MRP is based on the MPS to schedule planned
items in batches to reduce the unit cost of production according to the sales forecast in
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items in batches to reduce the unit cost of production according to the sales forecast in

MPS. Because different factors dynamically influence the variable demand from sales
forecast and uncertain supply from suppliers, S&OP is deployed to build up the
communication protocol to bridge the sales and operation to balance external demand and
internal resources. To balance the demand and resources, S&OP tries to make a
consensus about the supply of the available resources and sales plan in the medium to
long term before converting the monthly production plan into MPS. Then, the master
scheduling process adjusts MPS according to RCCP, which enhances MRP's logic as
MRP II. Under an MRP system, MPS scheduling is a critical mechanism for planning and
control according to push-based forecasts.

On the other hand, the MTA DBM planning, and control system focuses on the flow velocity
of the production system. Starting from the origin of TPS, it schedules the production
according to the actual demand rate. It places the Kanban between different workstations
to maintain the production flow with a limited WIP level according to actual downstream
consumption as a JIT operation. TPS with Kanban can effectively support the continuous
sales demand and constant consumption. When production is based on the MTO
environment, TOC for MTO applies the OPT method. OPT schedules the production
according to the internal constraint resources for balancing the flow instead of resources.
When customers do not tolerate order lead time by MTO, the MTS environment can meet
the customer's lead-time expectation. MTA planning and control system uses dynamic
buffer management to manage the inventory level according to the actual consumption from
the internal and external downstream supply chain. According to pull-based consumption,
dynamic buffer management in MTA is crucial for planning and control. 

DDMRP inherits from TOC’s Dynamic Buffer Management (DBM) with modified buffer
sizing logic to apply ADU for daily dynamic buffer size. DDMRP applies for the standard
inventory position minus qualified spike order quantity to form the Net Flow Position (NFP)
as dynamic ROP for replenishment. The reorder quantity DDMRP generates is similar to
the MTA DBM buffer's top of the green.

MRP relies on reliable forecasts and static safety stock to optimise cost-efficiency with
infinite resources. However, MTA DBM and DDMRP are assumed to be based on the
actual consumption and DBM to increase the flow velocity holistically. Most DDMRP
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actual consumption and DBM to increase the flow velocity holistically. Most DDMRP

literature compared the performance with the MRP model, but few comparisons study
exists with ROP and MTA DBM. The bullwhip and ripple effect influences forecast accuracy,
replenishment review timing, lead time, and lot size. In addition to external disruptive
events, the variability of demand or supply is amplified to affect inventory performance.
ROP uses safety stock to absorb the variability. MTA DBM and DDMRP strategically place
the decoupling stock buffer to replenish by sharing demand signal information from the
downstream supply chain.

In conclusion, the evolution from MRP to MTA DBM and DDMRP signifies the adaptation of
inventory policies over time. While MRP relies on reliable forecasts, MTA DBM and
DDMRP pivot towards real-time consumption and dynamic buffer management,
emphasising flow velocity. This evolution indicates a pressing need to understand which
policies are more effective in today's volatile supply chain environment, thus underscoring
the importance of our research. 

After reviewing the above literature shows two conflicting directions of inventory planning:
forecast-based and consumption-based. ROP, MTA DBM and DDMRP share a similar
mechanism in their use of buffer management to ensure product availability and manage
inventory levels. All three methods rely on predefined thresholds to trigger replenishment
orders, ensuring that stock is available when needed.

• ROP triggers orders based on a set reorder point calculated from forecasted
demand and lead time.

• MTA uses dynamic buffer adjustments based on real-time consumption to maintain
availability at key points in the supply chain.

• DDMRP similarly manages stock through buffer zones, dynamically adjusting
replenishment based on actual demand signals rather than forecasts.

It explores the two research gaps. Firstly, most of the literature for performance comparison
is on MRP and DDMRP. Further research should help supply chain practitioners identify
which policies perform better under the same supply chain network and demand as fair
judgement. Secondly, inventory policies require subjective decisions for initial parameters
and various adjustment factors for lead time, demand variability of promotional events,

 Page 89



and various adjustment factors for lead time, demand variability of promotional events,

seasonal fluctuation and promotional events and minimum order quantity (MOQ). Another
research question should study the decision-making insight according to the influential
factors and parameters for improving performance.  

To enhance clarity, the conceptual framework (Figure 15) aims to pinpoint and examine the
key constructs used in simulation analysis, including three inventory policies (ROP, MTA,
DDMRP), supply variation from transportation lead time and demand variation based on
three real-world cases. Additionally, it incorporates key performance indicators (KPIs) on
ROI and SL.

Each element in framework serves different purpose, defined as follows:

1. Supply Variation (SV) refers to the fluctuations and uncertainties within the supply
chain, particularly with regard to transportation lead times, material availability, and
consistency in deliveries. In this simulation context, supply variation will be impacted
by transportation delays, which are factored into the model to reflect read-world
disruptions.

2. Demand Variation (DV) refers to the unpredictability and changes in customer
demand patterns, which can arise due to factors such as seasonal trends, market
shifts or consumer behaviour from the three cases’ characteristics (see Table 1). DV
influences inventory levels, order fulfilment, and production or replenishment
strategies, often creating challenges in maintaining desired service levels and
optimising supply chain performance.

3. Inventory Policy Parameters (highlighted in  YELLOW ) affect inventory buffer sizing.
These polices – Reorder Point (ROP), Make-to-Availability (MTA) with Dynamic
Buffer Management (DBM), and Demand-Driven MRP (DDMRP) – each utilise
distinct parameters that influence Service Level by Revenue (SL) and Return on
Inventory (ROI), either positively or negatively.

The conceptual framework also highlights the relationship between independent variables
(supply and demand variations) and dependent variables (Key Performance Indicators). It
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(supply and demand variations) and dependent variables (Key Performance Indicators). It

serves as a guide to compare how different inventory policies – ROP, MTA with DBM, and
DDMRP – performance in terms of service levels and return on inventory under varying
supply and demand conditions

The next chapter elaborates on the research methods, addressing the following research
questions (RQs) and filling the research gaps identified:
RQ1. How do inventory policies, particularly forecast-based and consumption-based
methods, interact with performance metrics in distribution-side supply chain scenarios?
RQ2 – How do the performance outcomes of inventory policies (ROP, MTA DBM, DDMRP)
vary across different demand levels and supply lead time stability in the distribution-side
supply chain?

RQ3 - What are the key influential factors and assumptions that underpin the selection and
effectiveness of various inventory policies?
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Figure 15 shows the conceptual framework, illustrating the interconnectedness of these
variables and their impact on the simulation outcomes.

Figure 15 - Conceptual framework in Document 5
The literature reviewed that related to RQ1 offers a comprehensive analysis of how
forecast-based and consumption-based inventory policies interact with performance
metrics in supply chain scenarios. However, empirical assessments of these policies
across different demand levels and supply conditions remain underexplored, leading to
RQ2, which investigates the performance variations of ROP, MTA DBM and DDMRP under
several different conditions, using case studies to guide the parameters of these
conditions.

In addressing these research questions, the selection of Return on Inventory (ROI) and
Service Level by Revenue (SL) as key performance indicators (KPIs) is critical. ROI
measures the profitability and efficiency of inventory management, aligning with the
Throughput (T) and Inventory (I) components of the Theory of Constraints (TOC). It reflects
the financial outcomes relative to inventory levels, highlighting the balance between
maintaining sufficient stock and avoiding excessive holding costs. Similarly, SL captures
the system’s ability to meet customer demand while contributing to revenue, tying it to the
Throughput (T) component.
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Chapter 3 (specifically in Section 3.4.4: A Note on the Main KPIs) will further highlight the
relevance of these specific KPIs based on theoretical insights and practical considerations
form the literature review, connecting those measures to supply chain performance metrics
within the distribution-side supply chain context.

Both KPIs implicitly assume fixed Operating Expenses (OE), consistent with TOC
principles, which focus on maximising throughput while minimising inventory and
maintaining OE. This unified view gives strong basis for comparing how well ROP, MTA
DBM, and DDMRP work in different demand and supply situations. It also lays the
groundwork for RQ2 and places this study in a bigger theoretical and practical context.

Moreover, the literature reveals various assumptions and influential factors related to the
selection and effectiveness of inventory policies, but a deeper understanding, and detailed
comparison, is needed. This gap leads to RQ3, which aims to uncover the key factors
driving the effectiveness of these inventory policies.

The following chapter outlines the research methodology that will be used to explore these
questions in detail, providing a robust framework for empirical assessment.
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3. Research methodology

3.1 Introduction

This chapter comprehensively reviews the research methodologies leading to the research
design. It begins by addressing the ontological, epistemological, and methodological
levels, offering insights into why the simulation study was chosen as the primary research
method. The discussion then shifts to explaining how the selected research design
maintains rigour and relevance, the key to ensuring that the findings are credible and
applicable to real-world industry scenarios.

This chapter describes and justifies of simulation to look at how well three important
inventory policies—reorder point (ROP), make-to-availability with dynamic buffer
management (MTA DBM), and demand-driven material requirements planning (DDMRP)—
work in the three different supply chain settings based on existing case studies. The
simulation method was chosen because it can simulate the dynamics of a real-world supply
chain in a controlled environment. This lets variables like supply variation (SV) and demand
variation (DV) be tested in a planned way. Key performance indicators (KPIs) like Return
on Inventory (ROI) and Service Level by Revenue (SL) are central to evaluating the
effectiveness of these policies under varying conditions.

The Table 1 in previous chapter has stated that the simulation will use collected data from
actual industry scenarios in three different sectors, namely healthcare devices, garment
factories, and automotive assembly. These cases provide different contexts suitable for
testing the selected inventory policies under varying characteristics in demand frequency,
supply lead times, and market volatility. The software tool AnyLogistix (ALX) is also
introduced, with an explanation of experimental scenarios and how to use data analysis
and visualisation for reporting.

The simulation research processes section outlines the phases of best practices used to
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The simulation research processes section outlines the phases of best practices used to

design and execute the simulations, from defining objectives and setting optimised
baseline parameters based on real-world case data to running the simulation experiments
and analysing the outcomes. 

Moreover, research processes will be discussed, including how to align with best practices
to handle practical challenges. By adhering to established best practices, the research
ensures that the findings are robust and trustworthy and can provide actionable insights
into the selection of inventory policies. 

Finally, reflecting on the obstacles during the simulation study induces mitigation strategies
for the research and provides opportunities for continuous improvement of limitations.
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3.2 Different Paradigms in Research Methodologies

Morgan and Smircich (1980) argue that the difference between quantitative and qualitative
methods is too simple. They say that subjectivists and objectivists are based on connected
core beliefs, such as ontological, human nature, epistemological, metaphors, and research
methods. They propose that researchers look from an external perspective and within the
subject of study.

Fitzgerald and Howcroft (1998) classified research methods into hard and soft categories.
This classification spans the ontological, epistemological, methodological, and axiological
levels. These levels deal with various aspects of research: reality and its existence, the
relationship between the inquirer and known reality, procedures and steps to acquire
knowledge, and the evaluation of what is valued.

Table 4 - Summary of hard and soft research methods (Fitzgerald & Howcroft,1998)
Soft Hard

Ontological level (metaphysics)
Relativist Realist

Epistemological level
Interpretivist/phenomenological

Subjectivist
Positivist

Objectivist
Methodological level

Qualitative
Exploratory
Induction

Field

Quantitative
Confirmatory

Deduction
Laboratory

Axiological level
Relevance Rigour
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The research methods classified into hard and soft by Fitzgerald & Howcroft (1998)
summarised are presented in the above Table 4:

Ontological assumptions ask questions about the nature of reality and its existence in two
extreme positions between realism and relativism. Philips (1987, p. 205) defined
philosophic realism as "the view that entities exist independently of being perceived, or
independently of our theories about them." On the other hand, relativism believes that
knowledge is a social reality, so it is value-laden in representing multiple realities through
individual interpretation. The ontological position of the researcher will influence the
direction of the epistemological paradigm. 

Epistemological assumptions ask questions about the relationship between the inquirer
and the known reality and knowledge of the world. It studies the nature and character of
knowing how humans learn, acquire and confirm it. Collier (1994) advocated critical
realism with three levels of context experience, events and mechanisms to study the known
reality and knowledge of the world at an epistemological level. Positivists advocated
working with observable social reality and emphasised structured methodologies
produced by physical and natural scientists. Interpretivists focused on understanding the
difference between humans in the role of the social actor instead of objects such as
machines and vehicles. Conflict and tension exist between the positivist and interpretivist
paradigms (Bryman, 2015). The epistemological position will influence the direction of the
methodological paradigm. 

Methodological assumptions refer to the procedures and steps for learning and acquiring
knowledge of the world and phenomena of nature. The methodological position will affect
the decisions regarding data collection methods that are aligned with a predetermined
methodology (Lincoln & Guba, 1994, p. 108). 
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Table 5: Matching resource purpose with methodology (Source: Voss et al., 2002)
Purpose Research question Research structure

Exploration

Uncover areas for research
and theory development

Is there something
interesting enough to justify

research?

In-depth case studies, 
Unfocused longitudinal field

study

Theory Building

Identify/describe key
variables,

Identify linkage between
variables, 

Identify ‘why’ these
relationships exist

What are the key variables?
What are the patterns or

linkages between
variables?

Why should these
relationships exist?

Few focused case studies 
In-depth field studies

Multi-site case studies
Best-in-class case studies

Theory Testing

Test the theories developed
in the previous stages

Predict future outcomes

Are the theories we have
generated able to survive
the test of empirical data?

Did we get the behaviour
predicted by the theory, or
did we observe another
unexpected behaviour?

Experiment
Quasi-experiment

Multiple case studies
Large-scale sample of

population

Theory extension/
refinement

To better structure the
theories in light of the

observed results

How generalisable is the
theory?

Where does the theory
apply?

Experiment
Quasi-experiment

Case studies
Large-scale sample of the

population

For matching resource’s purpose with methodology, Voss et al. (2002) discussed the
relationship between research purpose, questions and structure in the above Table 5:
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The choice of a simulation study as the primary research methodology in this research can
be justified in terms of Voss et al. (2002) framework, as presented in Table 5. This
research aligns with the purpose of theory testing, where it tests previously developed
inventory policy theories and predicts future outcomes. A simulation study serves as a
potent tool to answer the research questions.

Bertrand & Fransoo (2002, p. 242) distinguish between quantitative models and other
types of research in operations management with the following definition:

Quantitative models are based on a set of variables that vary over a specific
domain, while quantitative and causal relationships have been defined between
these variables.

A simulation study shares structural similarities with experiments and quasi-experiments,
facilitating the controlled manipulation of the variables to investigate their impact on
outcomes. This approach enables the generation of large-scale data through numerous
iterations, thereby enhancing the generalisability of the findings. 

For theory testing, experiments and quasi-experiments with a large-scale population
sample dominated the research structure as quantitative methods (Voss et al., 2002). 
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3.3 Justification of Choice of Paradigm

The former sections discussed the different research methodologies associated with
primary research questions. This section discusses why simulation modelling is
appropriate for answering these research questions. Firstly, the nature of this study should
be reviewed before examining the specific data and using actual cases to set the
modelling criteria.

Computer simulation is a favourable tool for businesses with performance issues; it
provides automated experiments under different sets of parameters to minimise operating
costs (Adegoke et al., 2012). This analytical situation fits the nature of quantitative
research methods discussed by Buglear (2005, Chapter 12), Copper & Schindler (2014),
and Dubios (2018). Copper and Schindler (2014) have also pointed out that simulation can
replicate the business context under various situations with a represented mathematical
model. Because this research environment requires simulated variation, simulation fits this
study's purpose. Experimental simulations can establish cause-and-effect relationships
under a researcher's control to become good problem-solving and decision-making tools
(Sekaran & Bougie, 2016, p. 184). Dubois (2018) explained why simulation helps show
unbiased or controlled analysis for rational decision-making processes. Buglear (2005,
Chapter 12) suggests employing probability distributions to depict random processes,
aiming to simulate the repercussions of variations. This approach aligns with the criteria of
RQ2 and RQ3, which delve into the outcomes generated by diverse models under
fluctuating supply and demand levels. 

Simulations for this research are tested using the data from three cases, chosen because
they have different types of supply chains, and their characteristics match the research
questions that look into what happens when supply and demand conditions change and
how inventory policies (ROP, MTA DBM, and DDMRP) affect those changes. Each case
represents different industry sectors—healthcare sensor devices, garments, and
automotive components—allowing for a comprehensive analysis across diverse product
types and operational environments. The variation in demand frequency, supply lead times,
and the impact of new product introductions provide an ideal basis for examining how
these inventory policies perform in stable and volatile market conditions. The study
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these inventory policies perform in stable and volatile market conditions. The study

therefore uses real-life data from different industries to examine how inventory strategies
change when demand and supply change. This approach directly answers RQ2 about
performance outcomes and RQ3 about the factors that affect how well these policies work.
These cases, with their contrasting supply chain dynamics, offer a robust and broad
framework to respond to the research questions.

As a result of the above discussion, this research project is a comparative study of an
operational nature. It aligns with realism at the ontological level, objectivism at the
epistemological level, and quantitative at the methodological level. Quantitative modelling
is also the basis of initial research for operations (Bertrand & Fransoo, 2002). Simulation
is a predictive tool to forecast the system's behaviour, and there are two intrinsic benefits,
as listed:

Intrinsic benefit 1: testing cheaper with more possibilities.
Intrinsic benefit 2: accumulate and improve knowledge.

(Dubios, 2018)  

Based on the above-stated benefits, the simulation study provides several benefits:

1. Cheaper testing costs in different models without deploying the changes in the
planning system.

2. Ability to test variable performance measurements among other models.
3. Attempt the variation without taking real risks.
4. Ability to perform multiple tests to give participants a deeper understanding of the

system.
5. The simulation results could be accumulated and share knowledge effectively. 
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In summary, “the model is the crystallisation of the know-how of a team” (Manuel Tancrez,
as cited in Dubios, 2018). Modelling with a simulation method is very effective in testing
the performance outcomes between ROP, MTA DBM and DDMRP and therefore
answering the research questions. 

While the simulation method aligns well with our research questions, providing the required
framework for comparative analysis, it is imperative to adhere to best practices for
simulation to ensure the validity and reliability of the results. Therefore, the ensuing section
will comprehensively explore various best-practice tactics for simulation research
processes.
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3.4 Simulation research processes with best practice

As mentioned above, this simulation study used actual Case data with different supply
chain characteristics (Table 1) and simulated ROP, MTA DBM and DDMRP performance
outcomes. The scope is that only materials and finished parts in the distribution-side supply
chain are evaluated. Defining the objective function that comprehensively encapsulates our
research ambitions’ pivotal tenets in our exploration of supply chain simulations is
imperative. Predominantly, our analytical focus hinges on two quintessential key
performance indicators (KPIs): Return on Inventory (ROI) and Service Level by Revenue
(SL). This section will describe the case study data used to model and test the simulations,
followed by details about the simulated experimental scenarios simulated and the software
used in this research.

It is worth noting that Law (2015) and Dubios (2018) provide insightful recommendations
for enhancing the verification and validity of a research design, which proved valuable for
the current simulation study.
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3.4.1 Case Study Data

In this study, we simulated different supply chain scenarios using data derived from three
distinct case studies. These cases, though anonymised for confidentiality, represent
various industries with diverse supply chain complexities. Each case has unique demand
patterns, supply lead times, and operational characteristics, making them suitable for
testing and comparing different inventory policies: Reorder Point (ROP), Make-To-
Availability with Dynamic Buffer Management (MTA DBM), and Demand-Driven Material
Requirements Planning (DDMRP).
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Case Selection and Data Sources

The data for these case studies is drawn from proprietary company datasets, which are
agreed and provided by the case companies’ top management. The data covers different
periods and sectors, and each case reflects the operational realities of companies dealing
with significant supply chain challenges. These cases have been selected due to their
diversity in operational environments and ability to highlight the variability needed to
examine the performance of the different inventory policies.

• Case 1: This case focuses on a company that manufactures healthcare sensor
devices, distributing to both B2C and B2B networks in the USA and Europe. The
data spans 2021 to 2023 and includes detailed information on sales orders, supply
lead times, and stock movement. The company operates in an environment with low
demand frequency and long, variable lead times (180 to 365 days). This case was
chosen because its high supply variability offers a challenging scenario to test the
resilience of inventory policies in managing long and unpredictable supply chains.

• Case 2: The second case comes from a garment factory that sources raw
materials, specifically yarn, and operates a central automated warehouse in
Bangladesh. The data covers operations from 2020 to 2022 and captures medium
demand frequency with relatively stable supply lead times ranging from 65 to 90
days. The case was selected due to its moderate demand and low supply
variability, allowing us to evaluate how inventory policies respond to fluctuating yet
moderately predictable demand.

• Case 3: This involves an automotive assembly line that handles electronic
components. The data spans from 2019 to 2022 and focuses on operations from a
main warehouse in China. This case deals with high-frequency demand and lead
times ranging from 60 to 150 days, coupled with both high demand and supply
variability. This fast-paced environment presents an ideal setting to test how
inventory policies can balance service levels with inventory costs when variability is
at its peak.
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The selection of these cases ensures that the study covers a broad spectrum of supply
chain challenges. They provide variability across key dimensions such as:

• Demand Patterns: Low, medium, and high demand frequencies allow us to test
how different policies perform regarding responsiveness and stock availability.

• Supply Lead Time Stability: With cases experiencing both stable and highly
variable supply lead times, we can examine how inventory policies adjust to
disruptions and supply chain uncertainties.

• Industry Sectors: The diversity in sectors—healthcare devices, garment
manufacturing, and automotive electronics—enables us to generalize the findings to
a broader range of industries.

These cases offer a rich dataset, allowing robust testing of the three inventory policies.
Each case presents unique challenges that are relevant to our research questions:

• RQ2: The cases provide scenarios with varying demand levels and supply lead time
stability, allowing us to assess how the performance outcomes of different inventory
policies (ROP, MTA DBM, and DDMRP) compare in distribution-side supply chains.

• RQ3: The diverse nature of these cases also helps us identify the key influential
factors and assumptions that underpin the selection and effectiveness of the
inventory policies, such as demand predictability, supply variability, and operational
constraints.
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Data Collection for Simulation 

The data used for this study was collected through historical inventory records and
inventory management logs kept in one standardized data collection template from each
case company. Researcher worked with those case companies directly in their supply
chain projects to get the approval from their top management for using the data with signed
agreement. For upcoming Simulation Experiments (SE) discussed in the next section, SE1
and SE2, actual company data—spanning demand patterns, order cycles, lead times, and
inventory movement—was used to build the foundational simulation models. The data was
extracted from case companies’ systems and validated by cross-referencing with
operational reports by case companies’ management to ensure accuracy and relevance to
the study’s objectives.

For two of the simulations (SE3 and SE4), which will be further described in the section
below), synthetic data sets were created to simulate more extreme variations in demand
and supply scenarios. These data sets were generated based on ALX’s built-in random
generator parameters for demand variation with specific probability distribution and supply
variation in transportation lead time. For example, SE3 represents an increased demand
variation in different normal distributions to stress-test the policies. SE4, on the other hand,
models scenarios with increased supply disruptions, mimicking potential challenges like
transportation delays. This setup allows for the evaluation of how inventory policies adapt to
more volatile and less predictable conditions.

By using real-life case data in two of the simulations (SE1 and SE2) and combining it with
synthetic data in SE3 and SE4, this study provides a complete framework for checking the
stability of various inventory policies in a wide range of supply chain scenarios. These data
sets offer a nuanced approach to understanding how ROI and Service Level by Revenue
(SL) vary depending on supply and demand conditions, ensuring that the research findings
are generalisable and applicable to various industry contexts.
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In conclusion, combining these cases enables a comprehensive analysis of how inventory
policies operate under different real-world scenarios, ensuring the results are applicable to
a wide range of industries and supply chain variables for simulation.
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3.4.2 Simulation Software and Case Variables 

This research project used a simulation tool called AnyLogistix (ALX) to generate
simulated outcomes with different demand data sets for comparative study. ALX is a
dynamic simulation tool that provides "what-if" scenarios, such as disruptive events in the
supply chain, that can be modelled into the simulation. It also provides additional
experimentation by applying planned steps to various parameters in simulation with
comparison experiments. ALX offers end-to-end supply chain visualization to observe
performance outcomes, validate models, and verify assumptions. In analytical optimisation,
ALX does better than Excel-based simulation because it uses formula-based
programming logic and flexibility with dynamic, non-linear equations (AnyLogistix, n.d.).

However, the predefined models in ALX do not include specific inventory policies like
Make-To-Availability with Dynamic Buffer Management (MTA DBM) and Demand-Driven
Material Requirements Planning (DDMRP). To integrate these inventory policies into the
simulation, the author leveraged the AnyLogistix Java Extension, which allows custom
models to be developed using Java code. By creating new MTA DBM and DDMRP
models using Java Extension, the simulation tool was changed to work with these more
advanced inventory strategies. This flexibility ensured they could be adequately tested in
the simulation study. This capability allowed for greater flexibility and precision in analysing
the supply chain performance under varying conditions, as predefined models alone would
not have been sufficient for this research (AnyLogistix, n.d.).

In ALX with the Java Extension, the logical rules of Reorder Point (ROP), MTA DBM, and
DDMRP are based on the conceptual framework presented in the previous chapter (Figure
15) and the independent variables listed as simulation parameters in Table 6.
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Table 6 – Logical rules and examples of ROP, MTA DBM and DDMRP

Inventory
Policy

Logical Rules/
Variables Description Example

Reorder
Point (ROP)

1. Reorder Point
(R)
2. Economic Order
Quantity (EOQ)
3. Lead Time (LT)
4. Demand
Forecast (D)

ROP triggers a
replenishment order when
inventory drops to a
predetermined level (R).
EOQ calculates optimal
order quantity, and demand
forecast determines
replenishment frequency.

If the reorder point is set
at 200 units, and the
demand forecast is for 50
units per day with a lead
time of 5 days, a new
order is placed when
inventory falls to 200 units.

Make-To-
Availability
(MTA DBM)

1. Buffer Size (BS)
2. Dynamic Buffer
Adjustment (TMR
and TMG)
3. Stock
Availability (SA)
4. Order Spike
Horizon (OSH)
5. Order Spike
Threshold (OST)

MTA DBM relies on
dynamically adjusted
buffers based on
consumption patterns.
Buffer size is regularly
updated based on Too
Many Red (TMR) or Too
Many Green (TMG) logic.
When stock levels fall into
the red zone (TMR), the
buffer is increased. When
stock levels remain in the
green zone (TMG), the
buffer is reduced.

If the stock falls into the
red zone for an entire
replenishment cycle, the
buffer is increased by
one-third to respond to
the higher consumption
rate. Conversely, if the
stock remains in the
green zone for too long
(TMG), the buffer is
reduced by one-third to
avoid overstocking.

Demand-
Driven MRP
(DDMRP)

1. Net Flow
Position (NFP)
2. Decoupling
Points
3. Average Daily
Usage (ADU)
4. Decoupled

DDMRP calculates
replenishment orders
based on actual
consumption using the net
flow equation. Decoupling
points and buffer zones
(red, yellow, green) are

If the net flow position (on-
hand + on-order –
qualified demand) drops
below the top of the yellow
zone, the system triggers
replenishment to bring the
buffer level back to the top
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4. Decoupled

Lead Time (DLT)
5. Buffer Zones
(Red, Yellow,
Green)

(red, yellow, green) are

established to protect
inventory from variability in
lead times and demand.

buffer level back to the top

of the green zone,
ensuring optimal stock
availability.

This computer simulation eliminates human intervention and adheres strictly to standard
inventory policies' replenishment logic, ensuring consistency and reliability in different
experiential scenarios for analysis.
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3.4.3 Experimental Scenarios

Five experimental scenarios are compared within this research using the simulation
software ALX. Each scenario (SE0-SE4), presented in the following Table 7 represents a
distinct simulation experiment designed to test different supply and demand variability
combinations, along with inventory policies such as ROP, MTA with DBM, and DDMRP.
These simulations aim to assess the performance of each policy under varied conditions,
focusing on the key performance indicators (KPIs) like Return on Inventory (ROI) and
Service Level (SL).

The development of the simulation scenarios SE0 to SE4 is based on insights from the
literature review in Chapter 2, which discusses inventory policies and their influence on
supply chain performance. Each scenario is designed to test specific aspects of inventory
policies. This section provides a clear explanation and justification for each scenario,
informed by relevant theoretical findings.

Scenario SE0 focuses on optimising the planning parameters for each inventory policy
using the variation experiments in AnyLogistix (ALX) simulation tool. By varying
parameters such as buffer sizes, replenishment quantities and safety stock levels, the goal
is to identify the planning parameters that maximise Service Level by Revenue (SL) and
Return on Inventory (ROI). According to Law (2015) and Dubois (2018), parameter
optimisation is critical in balancing cost efficiency and service quality. This scenario aligns
with the best practices outlined by Voss et al. (2002), who suggest that simulation is an
effective tool for identifying optimal inventory settings. SE0 provides a baseline for
evaluating the performance of ROP, MTA DBM, and DDMRP by ensuring that variation
experiments test each policy to select optimised parameters before comparison
experiments in SE1 to SE4.

Scenario SE1 compares the performance of ROP, MTA DBM, and DDMRP using
identical demand data in each case. The purpose is to determine which policy performs
best under the same demand patterns, particularly regarding SL and ROI. Findings from
Fitzgerald and Howcroft (1998) emphasise the importance of comparative analysis in
understanding the trade-offs inherent in different inventory policies. This scenario reflects
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understanding the trade-offs inherent in different inventory policies. This scenario reflects

the literature's argument that each policy has unique strengths, with ROP offering stability in
predictable environments and DDMRP excelling in more dynamic conditions. SE1 seeks
to empirically validate these theoretical positions by examining how each policy maintains
performance under the same demand patterns.

Scenario SE2 evaluates the same inventory policies across different case industries and
supply chain environments to assess their performance outcomes. As discussed in
Chapter 2.4, Influential Factors with Performance, industry-specific factors, such as
demand patterns and supply lead times, play a significant role in determining the success
of an inventory policy (Buglear, 2005). Including cases from healthcare devices, garments,
and automotive components in SE2 allows one to explore how each policy performs in
diverse operational contexts. Philips (1987) notes that generalisability across industries is
essential for assessing an inventory policy's broader applicability, and SE2 directly
addresses this by testing the policies in varying supply chain conditions.

Scenario SE3 explores the effect of demand variation (DV) on the performance of ROP,
MTA DBM, and DDMRP. Dubois (2028) identifies demand variability as a critical
challenge for inventory management, with policies like DDMRP being designed to handle
high levels of demand fluctuation. In contrast, ROP may be less effective in managing
unpredictable demand, as it relies heavily on stable conditions (Fitzgerald & Howcroft,
1998). SE3 simulates different levels of demand variation to test these theoretical
expectations, providing insight into how resilient each policy is when demand becomes
erratic.

Scenario SE4 tests how each inventory policy handles supply variation (SV), particularly
with transportation lead time changes as supply disruptions. Supply chain resilience is
crucial in maintaining service levels during periods of uncertainty (Adegoke et al.,2012),
Sekaran and Bougie, 2016). Due to their dynamic buffer management mechanisms, MTA
DBM and DDMRP are expected to perform strongly under these conditions. This scenario
examines how these policies can maintain optimal inventory levels when faced with supply
chain disruptions. SE4, therefore, addresses a critical aspect of supply chain management
—adaptability to supply variability—and provides empirical evidence to support or
challenge the theoretical claims regarding each policy's robustness.
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In summary, the development of SE0 through SE4 is informed by critical findings from the
literature on inventory management, particularly concerning how different policies perform
under varying demand and supply conditions. Each scenario tests specific aspects of
ROP, MTA DBM, and DDMRP, ensuring a comprehensive analysis of their performance
across different supply chain environments. These scenarios serve as a foundation for
answering the research questions by providing a structured approach to evaluating each
policy's effectiveness.
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The following outlines how the specific objectives of each simulation experiment group
(SE0 to SE4) align with the simulation scenarios and their performance results, ensuring
consistency in addressing the research questions. Using the selected parameters and key
performance indicators (ROI and SL) is integral to achieving these objectives.

The primary objective of SE0 is to establish a foundational understanding of how different
planning parameters impact the performance of the three inventory policies. This scenario
involves varying key parameters such as buffer sizes, reorder points, and lead times using
multivariate analysis to identify the combinations that maximise ROI and SL. The goal is to
optimise the planning parameters for each policy, creating a baseline from which all
subsequent simulations will derive.

The objective function designed specifically for the SE0 scenario in our simulation
experiment is: 

Objective:
Maximise F(x) 
Where F(x) = {f1(x), f2(x)}

Subject to:

Let x ∈ X: X belongs to the feasible set X 

• f1(x) = Return on Inventory (ROI)
• f2(x) = Service Level by Revenue (SL)

The f1 represents the ROI, denoted as the revenue ratio to the ending inventory balance,
and f2 symbolises the Service Level by Revenue. Seamlessly deploying this consistent
and robust function across the various scenarios for SE0 will ensure that our investigation
remains inherently focused on evaluating these paramount KPIs, irrespective of the
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remains inherently focused on evaluating these paramount KPIs, irrespective of the

distinctive characteristics of each scenario, for fair comparison in SE1 to SE4. By
systematically testing different configurations, SE0 ensures that future comparisons across
cases and policies will be based on each inventory model's most effective parameter
settings. This initial experiment is critical for providing the groundwork for further
exploration in SE1 to SE4.

By conducting multivariate analysis to be discussed in next Chapter, SE0 aims to establish
a baseline that defines the best-performing parameters across various simulations,
ensuring that future experiments (SE1 to SE4) have a consistent basis for comparison.

SE1 uses the same demand patterns and supply data to evaluate each inventory policy's
performance under the same case scenario. The primary goal is to compare the simulated
performance of ROP, MTA DBM, and DDMRP within a single operational environment.
This approach allows direct comparisons of the policies' effectiveness in achieving high
ROI and SL under identical conditions. The objective is to determine which policy provides
the most efficient and responsive solution for managing the supply chain, helping to
address RQ2 by highlighting how different policies impact performance within a specific
case. This experiment establishes a clear understanding of the strengths and weaknesses
of each policy in a controlled, real-world context.

In SE2, the focus shifts to testing the performance of a single inventory policy across
multiple case studies. The objective is to assess how consistently ROP, MTA DBM, or
DDMRP performs across different operational environments, each with unique supply
chain characteristics. By using the same policy across various cases, SE2 provides
insights into the generalisability and adaptability of the policy to diverse conditions, such as
different industries, demand profiles, and lead times. This experiment is crucial for
addressing RQ2 by exploring whether the policy's effectiveness varies depending on the
context or whether it maintains consistent performance across different scenarios.

SE3 introduces demand variability into the simulation to evaluate how demand fluctuations
impact each inventory policy's performance. The objective is to determine how resilient
ROP, MTA DBM, and DDMRP are to changes in demand levels and how these changes
influence ROI and SL. By simulating different degrees of demand variation, SE3 explores
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influence ROI and SL. By simulating different degrees of demand variation, SE3 explores

each policy's ability to maintain optimal performance under dynamic and unpredictable
market conditions. This experiment contributes to answering RQ3, which focuses on
understanding the external factors—such as demand variation—that influence the
effectiveness of inventory management strategies.

The objective of SE4 is to examine how variations in supply lead times, specifically in
transportation, affect the performance of the inventory policies. Supply-side variability can
significantly impact inventory management, and SE4 seeks to evaluate how well ROP, MTA
DBM, and DDMRP handle such uncertainties. The simulation tests how each policy adapts
to unpredictable lead times and supply disruptions, assessing their ability to mitigate risks
while maintaining high ROI and SL. This scenario is critical for addressing RQ3, as it
highlights how supply variation influences the robustness of inventory strategies in real-
world supply chains.
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Table 7 below illustrates the five simulation experiment scenario groups and their
respective performance result sets for comparison and analysis.
Table 7 - Simulation experiments scenarios vs. performance result set for RQ2

Simulation
Experiment Groups

(SE)

Scenarios Performance Result Sets

SE0 Varied planning parameters
in ALX to identify maximum
service level by revenue and
return on inventory ending
balance ratio

Case1.ROP.VarExp,
Case1.MTA.VarExp,
Case1.DDMRP.VarExp,
Case2.ROP.VarExp,
Case2.MTA.VarExp,
Case2.DDMRP.VarExp,
Case3.ROP.VarExp,
Case3.MTA.VarExp,
Case3.DDMRP.VarExp

SE1 Compared performance
outcomes of different
inventory policies with each
cases' demands

Case1.actual,
Case1.ROP.Best,
Case1.MTA.Best,
Case1.DDMRP.Best,
Case2.actual,
Case2.ROP.Best,
Case2.MTA.Best,
Case2.DDMRP.Best,
Case3.actual,
Case3.ROP.Best,
Case3.MTA.Best,
Case3.DDMRP.Best

SE2 Compared performance
outcomes of the same policy
across different cases'
demands

Case1.actual,
Case1.ROP.Best,
Case1.MTA.Best,
Case1.DDMRP.Best,
Case2.actual,
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Case2.actual,

Case2.ROP.Best,
Case2.MTA.Best,
Case2.DDMRP.Best,
Case3.actual,
Case3.ROP.Best,
Case3.MTA.Best,
Case3.DDMRP.Best

SE3 Compared inventory policies
with different demand
variation levels

Case1.ROP.DV,
Case1.MTA.DV,
Case1.DDMRP.DV,
Case2.ROP.DV,
Case2.MTA.DV,
Case2.DDMRP.DV
Case3.ROP.DV,
Case3.MTA.DV,
Case3.DDMRP.DV

SE4 Compared inventory policies
with different supply variation
levels

Case1.ROP.SV,
Case1.MTA.SV,
Case1.DDMRP.SV,
Case2.ROP.SV,
Case2.MTA.SV,
Case2.DDMRP.SV,
Case3.ROP.SV,
Case3.MTA.SV,
Case3.DDMRP.SV
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Summary of Objectives:

• SE0: Identifies optimal planning parameters through variation experiments by ALX,
presented in scatter plot by Zoho Analytics and generated in multivariate analysis by
JMP, setting the baseline for comparison in future scenarios.

• SE1: Compares the performance of different inventory policies within the same
case, evaluating how each policy manages supply chain replenishment under
demand patterns.

• SE2: This test, which assesses the performance of a single inventory policy in
different supply chain environments, tests its consistency across multiple cases.

• SE3: This section focuses on the impact of demand variation on policy
performance, examining how each policy responds to fluctuating demand
conditions.

• SE4: Evaluate how supply variation, particularly in transportation lead times, affects
the effectiveness of each inventory policy.

This analysis utilises a systematic methodology that integrates cross-case and within-case
evaluations to examine the effects of various inventory practices across simulated
scenarios. By executing within-case analysis in SE1 and SE2, we may assess the
effectiveness of each inventory policy in different circumstances and scenarios, enabling
us to examine policy performance under specific demand and supply conditions. The
cross-case analysis in SE3 and SE4 facilitates the comparison of results across many
situations to identify how policies adjust to fluctuating factors, such as changes in demand
and supply. This dual method thoroughly comprehends each inventory policy's advantages,
drawbacks, and flexibility in dynamic supply chain contexts.
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3.4.4 A note on the main KPIs

The justification for selecting Return on Inventory (ROI) and Service Level by Revenue
(SL) as the key performance indicators (KPIs) for this simulation study is drawn directly
from the theoretical insights and practical considerations highlighted in the literature review,
particularly within the scope of inventory management and supply chain performance
metrics.

Return on Inventory (ROI) is a fundamental financial metric widely used in supply chain
management to evaluate the efficiency and profitability of inventory investments. As the
literature references (Dubois, 2018; Buglear, 2005), ROI is crucial for businesses
aiming to optimise their inventory levels while maintaining operational efficiency. The
literature underscores the importance of inventory management strategies that can
maximise inventory profitability without overstocking or understocking, negatively impacting
ROI.

ROI reflects the balance between inventory holding costs and revenue generation, making
it a vital metric in assessing the effectiveness of different inventory policies. The selection
of ROI aligns with the broader literature that emphasises cost-efficiency and
profitability in supply chain management. The study is based on ROI to capture the
financial implications of each inventory policy (ROP, MTA DBM, DDMRP) and their
capacity to balance inventory levels and profitability, which is central to the research
objective.

Service Level by Revenue (SL) measures a supply chain's ability to meet customer
demand without stockouts, which is directly tied to customer satisfaction and revenue
generation. The literature, particularly studies like those of Voss et al. (2002) and Bertrand
& Fransoo (2002), highlights the growing importance of service levels as a non-
financial KPI that directly affects supply chain competitiveness.

SL reflects how well inventory policies can respond to fluctuations in demand, ensuring that
products are available when customers need them. In the context of this study, where
demand and supply variation are critical factors (as outlined in the literature review,
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demand and supply variation are critical factors (as outlined in the literature review,

sections 2.2 and 2.3), SL clearly measures how resilient and responsive the different
policies are to changes in supply chain conditions. SL complements ROI by focusing
on the operational effectiveness of inventory strategies, ensuring that financial gains
do not come at the expense of service quality.

The literature review discusses forecast-based inventory planning (section 2.2) and
consumption-based inventory planning (section 2.3) as two approaches that aim to
balance cost-efficiency with customer satisfaction. ROI and SL are the natural extensions of
these approaches. ROI measures financial efficiency, while SL measures operational
effectiveness and customer responsiveness—both central themes in inventory
management theory.

Furthermore, the dynamics between inventory policies and performance measurement
(section 2.4) emphasise assessing financial and non-financial KPIs to gain a holistic view
of supply chain performance. As per the relevant literature, ROI and SL provide this dual
perspective, ensuring the study captures both profitability and customer service.

Thus, the selection of ROI and SL as the primary KPIs is strongly justified based on their
alignment with established research in supply chain management and their ability to
address both the financial and operational aspects of the research questions (RQ2 and
RQ3). 

By systematically structuring these simulation experiments, the research ensures that the
key performance indicators (ROI and SL) are consistently evaluated across a range of
conditions. This allows for a comprehensive analysis of the inventory policies’ strengths
and weaknesses by the following software tools.
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3.4.5 Data Analysis, Visualisation, and Reporting Tools

This research employs JMP statistical software and Zoho Analytics for comprehensive
data analysis, visualisation, and reporting. These tools are utilised to investigate how
supply variation (SV), demand variation (DV), and inventory policies such as ROP, MTA
DBM, and DDMRP impact key performance indicators (KPIs) such as Return on Inventory
(ROI) and Service Level by Revenue (SL).

JMP Statistical Software

JMP statistical software effectively conducts multivariate analyses, making it particularly
appropriate for this study. Multivariate analysis facilitates the examination of correlations
among several independent factors (e.g., reorder level (Q), replenishment amount (R), and
other buffer parameters) and their combined effect on dependent variables such as ROI
and SL. This study utilises multivariate analysis to analyse the inter-relationship between
independent variables and dependent variables related to the performance outcomes
(JMP Help, n.d.).

The assessed multivariate model's independent variables encompass supply and demand
fluctuations (SV and DV), policy-specific characteristics like reorder points, buffer sizes,
lead time factors, and variability factors such as market conditions or transportation delays.
The dependent variables are the performance metrics: ROI, which assesses financial
efficiency, and SL, which gauges customer service levels concerning inventory availability.
These models vary by scenario based on the inventory policy under examination (ROP,
MTA DBM, or DDMRP) and the specific data pertinent to each case.

The purpose of using JMP in this study is to evaluate the statistical significance of each
independent variable. The analysis will help us identify the factors that have the most
significant impact on supply chain performance under different combinations of
independent variables and various planning policies.

Furthermore, the prediction profiler function of JMP is essential for enhancing the research
findings for further research. By modifying crucial parameters in the prediction models, the
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findings for further research. By modifying crucial parameters in the prediction models, the

analysis can ascertain how minor alterations in independent factors influence overall
performance, thereby comprehensively comparing dependent variables among many
scenarios. JMP's extensive reporting capabilities, including full regression models,
correlation matrices, and interactive visualisations, guarantee that the results are
statistically validated and prepared for thorough academic and practical examination. The
output generated by JMP, encompassing specific regression and correlation data, is
shown in Appendix C.
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Zoho Analytics

Zoho Analytics enhances JMP by offering sophisticated visualisation and business-centric
reporting capabilities crucial for presenting intricate statistics more understandably and
engagingly. JMP specialises in statistical analysis and model-fitting, whereas Zoho
Analytics provides dynamic charting outputs that enable a more precise comparison of
performance measures across various scenarios and policies. The document primarily
imports ALX's experimental variation data for scatter plots to identify optimum planning
factors that yield the maximum ROI and SL, as detailed in Appendix B.

This study utilises Zoho Analytics to combine extensive datasets produced by the
simulations and visually contrast the outcomes. JMP specialises in clarifying complex
statistical outcomes, including regression coefficients and correlations. Conversely, Zoho
Analytics provides interactive dashboards that facilitate tracking performance across
several variables and cases throughout the period. For instance, Zoho's real-time charting
capabilities may clearly illustrate the fluctuations in ROI and SL across various inventory
policies (ROP, MTA DBM, DDMRP) with differing demand and supply variability levels.

The key benefit of Zoho Analytics is providing online collaborative data analysis. This
functionality facilitates online sharing of dashboards and visual reports to stakeholders.
This function is beneficial in an academic context to allow multiple participants for sharing
information and validating outcomes. Zoho's role in the analysis is to condense complex
data into visual summaries, enhancing the presentation of results in this study. Therefore,
the case companies’ stakeholders can easily review and validate the simulated
performance outcomes in online dashboard.

JMP is strong in the development and validation of regression models, while Zoho
Analytics enables the lucid and persuasive display of data, rendering the study's
conclusions comprehensible to both academic and business audiences. By applying both
software tools, it provides a robust foundation for accurately communicating the results of
the simulation results, ensuring that the insights generated are both rigorous and practical.

The research method employs a cross-case analysis of data from three actual businesses
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The research method employs a cross-case analysis of data from three actual businesses

to comprehensively evaluate different inventory techniques across different case contexts.
To generate relevant, robust, and valuable data, it is essential to align the utilisation of
contemporary analytical tools like JMP and Zoho Analytics with recognised best practices
in simulation research. The following section will look at the critical elements of reliability,
validity, and reproducibility that are needed for a high-quality simulation study. By adhering
to established standards and methodologies, the research guarantees that the simulation
models provide accurate results and endure thorough scrutiny, thereby validating the
findings' trustworthiness and importance in both scholarly and practical contexts.

 Page 126



3.5 Best practice for a simulation study

To evaluate the quality of social research, Bryman (2015) identified three critical criteria:
reliability, validity, and replication. Reliability requires a consistent measure of the
conceptual model (CM) with stability, internal reliability, and inter-observer consistency.
Validity refers to using the correct measurement for the conceptual model, established
through face, concurrent, predictive, construct, and convergent validity. Lastly, replication
ensures the reliability of research to achieve the quality of quantitative analysis (Bryman,
2015, chapter 7).

In the realm of simulation modelling, robustness and credibility remain paramount. Pace
(2004) identified seven pivotal challenges related to verification and validation,
emphasising the need to establish modelling and simulation as trustworthy designs.

Verification is a tool to confirm that the simulation model meets the research's design and
implementation parameters. Supplementing this perspective, Law (2015) offered four
essential techniques for model verification from a software engineering standpoint:

1. Develop Incrementally: Begin with basic structures and progressively advance to
more complex configurations.

2. Invite Multiple Reviews: Multiple experts should scrutinise the model to ensure
comprehensive evaluation and reduce biases.

3. Test Broadly: Subject the model to diverse input parameters, assessing the output's
reliability across different conditions.

4. Trace Actively: Model developers must interactively monitor the system, immediately
detecting inconsistencies or issues.
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On the other hand, validation assesses if the simulation model fulfils the anticipated
conceptual and result-based requirements. Table 8 provides a summary of the verification
and validation challenges highlighted by Pace (2004).

Table 8 - Seven challenges reviewed by Pace (2004)
No. Challenges 
1 Qualitative Assessment
2 Use of Formal Assessment Processes
3 Modelling and Simulation/Verification &Validation

Costs/Resources (Accounting, Estimation, Benefit)
4 Inference
5 Coping with Adaptation
6 Aggregation
7 Human Involvement/Representation

In addition to the above seven challenges, Osborne (2008) suggested best practices for
handling data cleaning of outliers and missing data. There are different data errors: outliers
from humans, misreported sampling, standardisation failure, faulty distributional, and
legitimate cases sampled from the correct population. Osborne argued that removing
outliers enhanced the accuracy of estimates and reduced the inference, as stated in the
above challenges 4. On the other hand, Osborne proposed Maximum Likelihood (ML) and
Multiple Imputation (MI) methods with sensitivity analyses to handle missing data (Osborne,
2008, Chapter 15). With a quality level of standardisation, simulation should begin with
clearly written participant objectives before the experiment (Lioce, Reed, Lemon et al.,
2013). Dubois (2018, Chapter 4.3) extended the standard with eight technical best
practices in connection with the simulation steps in the following Table 9, that is presented
and expanded upon in the following section.

The following section explains how the simulation study research procedures followed
different ways of verification and validation for improving research reliability according to
those best practices.
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3.5.1 Ensuring reliability and validity in the simulation study

The following section delves into the meticulous steps involved in ensuring the research
credibility of the simulation study, focusing on reliability and various aspects of validity, such
as the face, predictive, and structural validity.

Reliability speaks to the consistency and reproducibility of the simulation results. Using the
ALX simulator's variation analysis with a replication option, the simulator can generate the
results by several runs with different parameters for comparative analysis, which affirms the
reliability of our model. Moreover, this replication technique in the independent runs (Law,
2015) enhanced the stability of our model's outcomes across different experiments.

Validity refers to how well the simulation model represents the real-world situation. The
simulation study deployed several measures for this purpose. Firstly, the simulation data
providers from the three companies (refer to Table 1) reviewed our model to examine the
reasonable and accurate representation of their existing stock replenishment context
according to the supply chain network diagram (refer to Figures 19, 20 and 21 in Section
4.4.3). Secondly, the simulation experiments compared companies' stock performance in
the same simulation period to assess how well our model predicted real-world outcomes.
Lastly, the intensive testing plan with debugging logs (refer to Appendix D) shows our
model's cross-checked logical, mathematical, and causal relationship under our inventory
policies in the simulation study. This exercise validated our model's structure and mirrored
real-world dynamics but did not reflect subjective human intervention.

In summary, ensuring the reliability and validity of the simulation study requires meticulous
adherence to best practices, as Law (2015) and Dubois (2018) proposed. These rigorous
steps, encompassing aspects of verification and validity, lay the groundwork for a robust
research design. With the foundation of reliability and validity established, the following
section (3.5) will expand on the simulation research processes themselves, delving into the
specific tactics and best practices that further support the credibility and integrity of the
study.
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Table 9 - Connection between the phases of simulation, the technical best practices
(Dubios, 2018) and related data interactions

Simulation phases Technical best practices Data Interactions
A/ Defining the aim of the
simulation study

BP1. Defining the objective Revising the RQs to
ensure they align with
research objectives

B/ Building the mathematical/
physical problem

BP2. Including sufficient and
necessary physical
phenomena
BP3. Converting into equation

Building the conceptual
model to define
simulation data structure
and relationships for
validation (Figure 15)

C/ Converting the model into a
numerical model

BP4. Picking the software
BP5. Managing the numerical
and IT issues

Exporting AnyLogistix
(ALX) simulated data
into JMP and Zoho
Analytics for further
analysis

D/ Producing and delivering
results

BP6. Managing the validity
level of the results
BP7. Producing useful results

Running the ALX
simulation with Java
extension, debugging
the code, and
generating the expected
output 

E/ Storing the model and its resultsBP8. Maintaining and storing
the models

Generating scatter
plots, charts in Zoho
Analytics and
conducting multivariate
analysis in JMP using
ALX simulated data
output
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The alignment between the simulation phases and the best practices proposed by Dubois
(2018) is illustrated in the above table, which demonstrates the connection between each
phase of the simulation and the corresponding best practice that was implemented to
enhance robustness and validity.
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3.5.2 Design Flow and Research Phases

The following Figure 16 shows a logical sequence of overall simulation research
processes with feedback validation and verification to respond to the research questions
according to the five phases and eight best practices:

Figure 16 - Logical sequence with tasks and phases for simulation study (Law, 2015,
page 67)
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The research design consists of five phases. Phase (A) clearly defined the simulation
objectives in RQs. Phase (B) built the conceptual model. Phase (C) translated the
conceptual model into a numerical one-Phase (D) generated and delivered the results.
Phase (E) stored the model for comparison in subsequent analysis and discussion under
chapters 4 and 5.

Adopting the eight best practices proposed by Dubois (2018) enhanced the simulation
study's robustness and validity. Each BP was aligned with a specific phase.

Phase A involved defining the aim of the simulation study. This phase focused on
formulating the problem and planning the study by clearly articulating the research
questions (RQs) and objectives. In alignment with BP1 (Defining the Objective), the goals
of investigating inventory policies—Reorder Point (ROP), Make-To-Availability with
Dynamic Buffer Management (MTA DBM), and Demand-Driven Material Requirements
Planning (DDMRP)—and their impact on supply chain performance were established. This
phase also gathered a comprehensive understanding of the actual cases' supply chain
scenarios and the key variables, including supply variation (SV) and demand variation
(DV), to ensure that the study objectives were well-suited to real-world challenges. This
approach directly addressed Challenge 1 (Qualitative Assessment), as Pace (2004)
identified, ensuring that the study's goals were clearly defined, and that subsequent model
development and experimentation efforts were well-guided.

Phase B focused on building the conceptual model, which was underpinned by the data
collected and the critical assumptions associated with the supply chain dynamics. This
phase adhered to BP2 (Including Sufficient and Necessary Physical Phenomena), ensuring
that the model incorporated all relevant components, such as Order level (Q), Fixed
replenishment point (R), Safety Stock (SS), Initial Buffer Size (IBS), Too Many Green
(TMG), Too Many Red (TMR), Lead Time Factor (LTF), Variability Factor (VF), Spike
Threshold Horizon (STH) and Spike Threshold % (STP), while avoiding unnecessary
complexity. Following this, BP3 (Converting into Equations) was applied to translate the
conceptual framework (Figure 15) into relationships and data flow diagrams in Figure 17,
providing a solid foundation for comparative simulation study. This phase was instrumental
in addressing Challenge 5 (Coping with Adaptation) by iteratively validating the model's
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in addressing Challenge 5 (Coping with Adaptation) by iteratively validating the model's

assumptions. This process ensured that the numerical model could adapt effectively to
various supply chain scenarios while accurately representing the intended reality.

Phase C involved converting the conceptual model into a numerical model, which was
facilitated using AnyLogistix (ALX) simulation software. By BP4 (Picking the Software),
ALX was selected for its capacity to simulate complex inventory dynamics and to meet the
study's requirements for comparative analysis of inventory policies. Subsequently, BP5
(Managing the Numerical and IT Issues) was employed to configure the model accurately,
involving the development of a customised Java extension for ALX to implement advanced
inventory policies, specifically MTA DBM and DDMRP, which were not natively supported
by the software. This phase effectively addressed Challenge 3 (Modelling and Simulation
Costs/Resources) by ensuring that available resources were optimally managed and that
the selected software and custom extensions were used effectively to handle model
complexities, ultimately enabling successful implementation.

Phase D concentrated on producing and delivering the results of the simulation. In this
phase, BP6 (Managing the Validity Level of the Results) was crucial in verifying the model's
validity. This method involved conducting pilot simulations, debugging the model, and
ensuring that it accurately adhered to the defined inventory policies' logic. The iterative
process continued until all outcomes were validated, demonstrating adherence to best
practices. Additionally, BP7 (Producing Useful Results) guided the subsequent process of
designing production runs and analysing the output data, ensuring that the results
generated were meaningful and directly aligned with the research objectives. This phase
addressed Challenge 4 (Inference) and Challenge 7 (Human Involvement / Representation)
by ensuring that the simulation outcomes represented actual decision-making processes in
inventory management, enhancing the quality and reliability of the inferences drawn.

Phase E focused on storing the model and its results, ensuring the documentation and
presentation of findings for further analysis and discussion in subsequent chapters. This
phase adhered to BP8 (Maintaining and Storing the Models) by systematically storing all
simulated results within JMP and Zoho Analytics, which allowed for comprehensive data
visualisation and analysis. The models' documentation and outputs provided a robust
repository for subsequent comparative analysis across different scenarios, thereby
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repository for subsequent comparative analysis across different scenarios, thereby

addressing Challenge 6 (Aggregation) by ensuring that results were systematically
archived for future reference and synthesis.

The connection between the simulation workflow and best practice is therefore ensured.
For instance, BP1 defined the RQs as study objectives for simulation, while BP2 validated
assumptions and confirmed the conceptual model in Figure 15. BP3 converted the
conceptual model into equations, formulae, or data flow interrelationships. BP4 selected
the AnyLogistix (ALX) as a simulation tool. BP5 configured the model correctly by
developing a customised Java extension for ALX's MTA DBM and DDMRP inventory
policies.

This process used different input parameters to verify the models for various experiments.
It was an iterative process to debug the Java programming with the ALX extension module
until all formula logic was validated. The BP6 managed to ensure the validity level of the
results in the following simulation structural context diagram in Figure 17:

Figure 17 – Conceptual Model for simulation data structure and relationship for validation
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Key participants, including the case data providers and the researcher, reviewed all logic in
the data structure and simulated results according to the red connections numbered in
Figure 17. This review involved the following validation steps:

1. Verifying the Coefficient of Variation (CoV) from the three actual cases' demand data.
2. Confirming the accurate output of the ROP, MTA DBM, and DDMRP model by the

policy parameters with simulated performance results.
3. Checking the various performance results set with different variations of policy

parameters for comparison.

The BP7 organized the numerical results systemically presented by the statistical tools
JMP and Zoho Analytics with insightful analysis. The independent variables (yellow) are
stated in Figure 17 to show their relationship and impact on the performance result sets.
The Chapter 4 simulation analysis will focus on the actual and simulated key performance
measures stated in Table 10 in each of the experiments - SE1, SE2, SE3, and SE4.

Table 10 - Performance result sets for comparison under different experiments
Figures 

cross-reference in 
Appendix A

Key Performance
Index Short codes

Performance 
measures in charts 

A1 RL Revenue Level
A2 IL Inventory Level
A3 SL Services Level by

Revenue
A4 ROI Return On Stock Balance

or Cost of Goods Sold
(COGS)
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Building on performance outcomes from the real-life cases listed in section 3.4.1 with the
ALX simulator, the subsequent chapters provide a thorough analysis and discussion of
these findings. A fundamental underlying assumption in this study is the complete delivery
of any back-ordered items. The results are systematically arranged, setting the stage for a
detailed examination in Chapters 4 and 5. However, first, addressing a crucial caveat
becomes necessary. Modifying the ALX simulator to align with specific policies, particularly
MTA DBM and DDMRP, presented challenges. These challenges will be detailed in the
following sections.
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3.6 Obstacles and Limitations of a simulation study

3.6.1 Introduction to the obstacles and limitations

Before utilising the simulator ALX to generate the expected outcomes, it required
enhancement to incorporate the logic of the MTA DBM and DDMRP policies, which are
vital to exploring and comparing more updated policies. However, the standard ALX
package only supports the traditional ROP policy. Subcontracting a programmer to
develop the Java programming logic in ALX additionally introduces several challenges.
During this software development process, for instance, technical limitations emerged,
leading to data-related obstacles and methodological challenges that have significant
implications for the reliability and validity of the simulation study. These challenges are
explored in detail in the following sections in connection with the specific research context
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3.6.2 Specific Obstacles in the Study

In developing new plug-in policy components for ALX, specific obstacles emerged that
challenged the study's execution. The first obstacle was the complexity of understanding
and implementing the buffer management logic of MTA DBM and DDMRP. This
understanding was crucial for the subcontracted programmer, and achieving it took lengthy
iterative processes in BP1 to BP5 (refer to Figure 16), fraught with miscommunication and
bugs.

A sudden personnel change further complicated matters. The original programmer caught
Covid-19 and left the software company, leaving behind partially completed Java source
code. This incomplete coding posed significant challenges in completing the project.

In addition to these issues, the internal ALX database structure had to be adjusted to
produce the expected analytical outputs. Customised logic was developed to make
reporting data in an external database, introducing inconsistency between the ALX and
external databases. Synchronising data across both databases proved difficult.

These specific obstacles had potential implications for the validity and reliability of the
simulation study, as they introduced uncertainties in the data integrity and software
implementation. Strategies for overcoming these challenges are discussed in subsequent
sections.

 Page 139



3.6.3 Mitigation Strategies

Implementing focused mitigation strategies was necessary to address the challenges in
developing the ALX extension. A pressing concern emerged from a subcontracted
programmer's unexpected departure, leaving the software development incomplete and
Java coding abandoned. Consequently, the researcher assumed responsibility for all
programming tasks. Despite being unfamiliar with Java, the researcher dedicated five
months to learning the language and correcting the existing code. Remarkably, this
strategy yielded significant benefits, not only completing the required coding but also
eliminating potential miscommunication and notably reducing debugging cycle time.
However, this approach necessitated an extension of the research project's timeline.

Another considerable challenge was synchronising the ALX database with an external one.
The researcher implemented corrective measures to modify the anticipated outcomes to
align with ALX's outputs, negating the need for an external database. Maintaining the
external database was essential for supplying secondary data for cross-verification and
specific reporting requirements.

These mitigation strategies were pivotal in safeguarding the validity and reliability of the
simulation study and underscored the importance of adaptability and problem-solving
throughout the research process.
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3.6.4 Limitations of a simulation study

Dubois (2018) identified two prominent limitations to simulation that must be
acknowledged in the context of this research. The first limitation pertains to the
preciseness of simulations. Simulations can only represent a partial reality, often
necessitating simplification. This inherent constraint means that simulations may only
partially capture the complexity and nuances of real-world phenomena. Aware of this
limitation, this study compared three actual case data in parallel with simulated results, as
Law (2015) has recommended enhancing the trust level for comparison.

The second limitation is concerned with the technical workability of simulations. Various
constraints may arise, such as limitations in storage size and the speed of calculation,
depending on the computer's capabilities. Moreover, the effectiveness of the simulation is
inherently tied to the model designer's technical knowledge and ability to construct an
appropriate simulation context. This study utilised the simulation tool "AnyLogistix",
following pre-defined programming logic based on known factors and parameters. It is
important to note that this simulation study did not account for unexpected events, such as
a pandemic disruption, but it is possible for future research.

The highlighted limitations reveal the inherent challenges and restrictions when solely on
simulations. This underlines the importance of meticulous design, validation, and analysis
of simulation outcomes. Adopting an action research method to authenticate the simulated
findings within a real-world project experiment helped counteract these limitations in future
studies. By juxtaposing simulated results with actual data and evaluating human
interactions across various policies, the study bolstered the credibility of its conclusions,
even in light of the noted constraints. 
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3.7 Conclusion

As detailed in this chapter, this research used ALX software to conduct five simulation
experiments. These experiments include the data from three case studies, with relevant
parameters adjusted to explore the performance outcomes of different policies. The
simulation study design process followed the best practices to overcome different
challenges, organised into five logical phases. With the specific obstacles, or limitations
experienced during the simulation processes, mitigation strategies were discussed, which
are vital to ensuring the quality and reliability of the simulation research.

These findings show the opportunities and difficulties of simulation studies while
highlighting their rewarding and complicated context. The previous section lays the
groundwork for the next chapter, which will examine the performance outcomes from the
simulation study and provide the foundation for analysis discussion with forthcoming
findings.
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4. Simulation analysis

4.1 Introduction

This chapter analyses performance outcomes from various simulation scenarios,
emphasising selected parameters from SE0 within the ROP, MTA DBM, and DDMRP
supply chain replenishment models. It starts with a simulation overview, which sets the
foundation for subsequent discussions. It outlines the different process groups and
explains the methods of processing source data. 
     
Following the overview of simulation preparation, setup and supply chain network, software
and tools deployed during simulation are introduced. A list of charts provides the
representation of performance outcomes, such as for ROI and SL. These graphical
representations pave the path for an in-depth exploration of experimental outcomes SE1
and SE2 in Group B, anchoring them to the second research question. 
     
Another process of group C focuses on the performance outcomes generated in SE3 and
SE4, highlighting their implications in the context of the third research question. By
comparative analysis, it pinpoints trends, subtle differences, and distinctive strengths within
the results. 

Consequently, twelve preliminary findings will logically culminate in four key findings
presented in this chapter. This method guarantees the flow of information, aligning with the
primary research objective. The chapter aims to clarify the simulation processes for
highlighting the aspects that have significantly influenced the performance outcomes.
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4.2 Simulation Overview

This chapter bases its simulation on actual demand data from three unique business
natures within the distribution-side supply chain. The three cases cover different types of
industries and geographical areas in the supply chain distribution-side network:

Case 1: This focuses on the distribution of finished healthcare sensor devices. Specifically,
it operates B2C in the USA and B2B in Europe.
Case 2: This is a garment manufacturing unit in Bangladesh.
Case 3: This spotlights an automotive assembly facility in China.

The companies representing the above cases provided the required data exported from
their computer systems and saved in standardised Excel files. The collected data are from
the years 2021-2022 (see Table 1) and includes stock master data and actual demand
from the stock movement such as quantities of stock received and issued, together with
purchase orders as supply. These were converted into AnyLogistix (ALX) readable Excel
file format for import as summarised below in Table 11.

Table 11 – Data Summary of data collection
Data

Category Specific Input Variables Description

Stock Master
Data

ID, Scenario Name, Timestamp,
Period Name, Date, Location
Name, Policy Type

Static details defining the inventory
framework, including policy type and
location.

Actual
Demand

Data

Product, Stock In, Stock Out,
Daily Stock On-Hand, Actual
Demand

Dynamic data tracking stock
movements and demand, essential for
real-time analysis.

Purchase
Order Data

Overdue Backorder History,
Generated Supply Order

Data on order fulfilment and
replenishment activities, highlighting
system responsiveness.
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Table 11 lists the structured dataset, which integrates static policy data with dynamic
inventory transactions, forming a comprehensive foundation for evaluating inventory
performance through simulation.

For a deeper dive into the nature of these businesses, Table 1 in chapter 1 details each
case's intricate supply chain characteristics.

To understand the orchestration of these simulations from SE0 to SE4, refer to Figure 18
below:

Figure 18 - Logical flow of the simulation experiments for RQ2 and RQ3 

To clarify the logical flow of the simulation experiments for RQ2 and RQ3, three groups of
simulation experiments are classified to highlight the corresponding objectives and their
inter-relationships between groups of experiment processes. Each group produces
planned result sets output as stated in last chapter – Table 7.

Group A aims to identify planning parameters with optimised performance as a baseline
for comparison to be used in Group B and Group C. Group A includes only SE0, and the
data simulated by ALX is exported and then imported into JMP for regression and
multivariate analyses.
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Group B focuses on the comparison of performance outcomes generated by ALX
software under the same demand pattern of each case for each of the inventory policies.
SE1 and SE2 generates the clear comparison of performance outcomes in each case and
across different policies.

Group C uses ALX simulated variation in demand and variation in supply transportation
lead time under the same planning parameters used in Group B. SE3 and SE4 explore the
impact of performance outcomes under the impact of those simulated variations.

By comparing and analysing the output from all groups, the generated reports and charts
by JMP and ALX provide the results necessary to answer the RQ2 and RQ3.

The performance outcomes provide insightful information to address RQ2 and RQ3 for
comparative analysis. According to the above foundation, section 4.3 examines the details
of data preparation, explaining the rigorous processes utilised to guarantee the validity and
robustness of the simulation study.
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4.3 Data Preparation

In Phase (B) of the research method chapter, data collection is critical in a simulation
study. To address this significance, a standard data template was created. This design
ensures that data complies with ALX requirements and remains consistent, echoing the
data structure of the conceptual framework presented in Figure 15.

Within SE0, the study conducted a sensitivity analysis. By adjusting different inventory
planning parameters, the simulator identified optimal configurations. This detailed exercise
yielded a multivariate analysis in Appendix C, generated by SAS JMP statistical software.

SE1 and SE2 are then based on the simulated results by different inventory policies in the
same case and cross-cases simulated results by the same policy, as summarised in Table
7.

As mentioned above, data providers from three case companies participated in this study,
with rigorous review sessions, where each dataset underwent close examination. The
stakeholders of those data providers reviewed our provided summary of demand patterns
in average, total of stock in and out quantities and opening and closing balances. This
process underwent 2-4 rounds for each of the cases, with validation meetings during the
data cleansing process. These reviews had a clear goal: to identify discrepancies or gaps
within the data and then correct them, ensuring the data's reliability. 
Having established the foundation of data preparation, the following section delves into
how the simulation study used these datasets and assumptions in specific simulation
configurations.
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4.4 Simulation Setup

4.4.1 Introduction

After finalising the data preparation, the research transitions into importing  this data into
the ALX simulation platform. The study then initiates risk-averse experiments, simulating
real-world situations drawn from genuine case data. This section delves into the intricacies
of the simulation configuration, spanning from incorporating unique supply chain networks
to examining variables like transportation lead time and demand fluctuations. The primary
objective is to furnish a comprehensive comparison of diverse inventory policies in action.
Subsequent sections shed light on the details of this simulation framework.
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4.4.2 Data Sources and Cases in the simulation study

The strength of the simulation study largely hinges on integrating real-world data. To ensure
the applicability of the findings, demand data was sourced from three distinct supply chain
contexts.

Case 1: Distribution of Finished Goods for Healthcare Sensor Devices

Originating from production units in the China Original Equipment Manufacturer (OEM)
factory (see yellow icon), the first case shows the distribution network from China to the
USA for B2C business and from China to Europe for B2B business with three unique items
and two distribution centres (see red icon) for healthcare sensor devices. The case 1
supply chain network manages the movement of these devices to two distribution centres
in the USA and Europe destinations. Figure 19 offers a visual presentation of the supply
chain network.

Case 2: Procurement of Raw Materials for a Garment Factory

Sourcing raw materials for three primary yarns for the garment factory in Bangladesh, the
second case utilises dual sources of supply from India (see blue icons) and Vietnam (see
yellow icons). Figure 20 provides a detailed layout of the distribution network.

Case 3: Distribution of Electronic Components for Automotive Assembly

The third case maps the distribution of electronic components essential for an automotive
assembly line in China. The procurement of those components focuses on local China and
Singapore (see yellow icons). Efficient movement of these components is crucial to
maintain the assembly line's momentum. The distribution network is detailed in Figure 21.

Having dissected the data sources and the specific cases that form the backbone of the
simulation study, a deeper dive into the granular details of each supply chain network
becomes essential. These descriptions will offer insights into the operational intricacies,
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becomes essential. These descriptions will offer insights into the operational intricacies,

logistical challenges, and unique nuances of each supply chain – pivotal factors when
analysing and comparing the performance of various inventory policies.
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4.4.3 Supply Chain Network Descriptions

The simulation integrates demand data from three authentic cases, each presenting a
unique supply chain network, as illustrated in Figures 19, 20, and 21. Each case consists
of three distinctive product items characterised by varied demand patterns, operating
within a single supply chain level but with multiple distribution points. Cumulatively, the
simulation covers 36 stocking points for the product items. Table 11 compiles the specific
demand traits for these product items across the cases.

Case 1 - Distribution of Finished Goods for Healthcare Sensor Devices in both the USA
and Europe: 

Figure 19 - Supply Chain Network Diagram for Case 1
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Case 2 - Procurement of Raw Materials, specifically Yarn, for a Garment Factory in
Bangladesh:

Figure 20 - Supply Chain Network Diagram for Case 2

Case 3 - Distribution of Electronic Components for an Automotive Assembly Line in China:

Figure 21 - Supply Chain Network Diagram for Case 3
While the supply chain network diagrams offer a bird's-eye view of the distribution network,
the individual products and their demand patterns play a crucial role in the dynamics of
supply chain operations. Delving deeper into product specifics provides a clearer
understanding of nature in different supply chain cases.
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4.4.4 Product Details and Demand Patterns

To understand the cases better, it is essential to consider the demand patterns associated
with the products in these supply chains. Each product exhibits unique demand
characteristics, whether in terms of lead time, daily usage, or variability. Table 12
showcases a comprehensive breakdown of these demand patterns across all products for
each case.

Table 12 - Product items demand characteristics
Case.Policy.Item
stocking points

Lead Time
(LT)

Total
Demand

Average Daily
Usage (ADU)

Coefficient of
Variation

(CoV)
Case1.ROP.Lite US B2C 180 652 1.786 8.01

Case1.ROP.Node US B2C 180 273 0.747 8.27
Case1.ROP.WB US B2C 180 434 1.189 7.95
Case1.ROP.Lite EU B2B 180 1074 2.942 13.55

Case1.ROP.Node EU B2B 180 1471 4.03 7.37
Case1.ROP.WB EU B2B 180 778 2.131 7.36
Case1.MTA.Lite US B2C 180 652 1.786 8.01

Case1.MTA.Node US B2C 180 273 0.747 8.27
Case1.MTA.WB US B2C 180 434 1.189 7.95
Case1.MTA.Lite EU B2B 180 1074 2.942 13.55

Case1.MTA.Node EU B2B 180 1471 4.03 7.37
Case1.MTA.WB EU B2B 180 778 2.131 7.36

Case1.DDMRP.Lite US B2C 180 652 1.786 8.01
Case1.DDMRP. Node US B2C 180 273 0.747 8.27

Case1.DDMRP.WB US B2C 180 434 1.189 7.95
Case1.DDMRP.Lite EU B2B 180 1074 2.942 13.55

Case1.DDMRP.Node EU B2B 180 1471 4.03 7.37
Case1.DDMRP.WB EU B2B 180 778 2.131 7.36

Case2.ROP.20D 65 2169345.51 3394.9 1.45
Case2.ROP.30NE1 65 3281775.38 5135.79 1.56
Case2.ROP.40NE1 65 3016409.55 4720.51 1.90
Case2.MTA.20D 65 2169345.51 3394.9 1.45

Case2.MTA.30NE1 65 3281775.38 5135.79 1.56
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Case2.MTA.40NE1 65 3016409.55 4720.51 1.90
Case2.DDMRP.20D 65 2169345.51 3394.9 1.45

Case2.DDMRP.30NE1 65 3281775.38 5135.79 1.56
Case2.DDMRP.40NE1 65 3016409.55 4720.51 1.90

Case3.ROP.3542 133 2437120 7836.39 1.22
Case3.ROP.2816 144 1141566 3670.63 6.17
Case3.ROP.9396 46 2577849 8288.9 7.17
Case3.MTA.3542 133 2437120 7836.39 1.22
Case3.MTA.2816 144 1141566 3670.63 6.17
Case3.MTA.9396 46 2577849 8288.9 7.17

Case3.DDMRP.3542 133 2437120 7836.39 1.22
Case3.DDMRP.2816 144 1141566 3670.63 6.17
Case3.DDMRP.9396 46 2577849 8288.9 7.17

Upon analysing the specifics from Table 12, we derive the following insights:

Case 1: The Healthcare Sensor Devices distributed in the USA and Europe manifest a
notably elongated sourcing lead time, extending up to 180 days. Coupled with a low
Average Daily Usage (ADU) between 0.747 to 4.03, this indicates a protracted demand
interval, emphasising potential storage and inventory planning challenges. The
unpredictable demand for these devices becomes evident with a Coefficient of Variation
(CoV) oscillating between 7.36 and 13.55. Within this case, three stock-keeping units
(SKU) items form distribution across two key locations: the US, catering predominantly to
B2C, and the EU, catering to B2B. This distribution results in two unique stock locations
designated for replenishment across hubs, all sourced from the OEM factory in China.

Case 2: Situated in Bangladesh, the Garment Factory, which primarily sources yarn as its
raw material, presents a more moderate procurement lead time of 65 days. A remarkable
aspect of this case is the demand stability, with a CoV consistently remaining below 2. This
stability suggests a somewhat predictable demand pattern, albeit presenting its distinct
planning challenges. Structurally akin to Case 1, this case encompasses three SKU items,
forming six stocking locations across the network.
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Case 3: The Automotive Assembly Line in China showcases a spectrum of lead time,
ranging from a relatively short 46 days to a more extended duration of 144 days. Such
variations indicate the inherent complexities associated with synchronising supply chain
processes. Furthermore, a CoV that spans from 1.22 to a more challenging 7.17
accentuates the dynamic demand nature in this scenario. This setup more closely mirrors
that of Case 2, with three SKU items distributed across supply chain, cumulatively resulting
in four stocking locations.

Drawing from the insights acquired from Table 12, the subsequent sections intend to
explore the strategies and methodologies utilised to discern the inherent nature of each
supply chain. However, before embarking on this comparative analysis, it is paramount to
delineate this study's foundational assumptions and guiding simplifications. This ensures
that the findings remain anchored in practical contexts and preserve their real-world
applicability.
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4.4.5 Assumptions and Simplifications

In rigorous analytical investigations, especially within supply chain simulations, foundational
principles such as assumptions and simplifications often become paramount. Such
principles not only guide the research to ensure manageability and focus but also prevent
the introduction of undue complexities. Moreover, they provide a transparent lens to view
and comprehend the results.

For instance, the present simulation assumes that the lead time required for replenishing
purchase orders demonstrates high reliability, indicating a near-perfect consistency rate.
Such reliability features prominently in SE0, SE1, and SE2—conversely, SE3 and SE4
present variable scenarios, introducing unpredictable variations in transportation lead time.
The simulation follows a stringent protocol in emerging back-order situations: completing
any outstanding order before initiating its dispatch. Adhering to this approach aligns with
current industry norms and favours complete order dispatches over partial ones for
practical and economic reasons. Actual demand data, reflecting the operational dynamics
collected from Case companies, underpins the study and receives confirmation from the
data custodians.

Besides these assumptions, specific simplifications have been incorporated to sharpen
the analytical focus. One notable simplification pertains to streamlining the objective
function in SE0. Focusing on ROI and Service Level by Revenue helps to analyse and
compare outcomes effectively while temporarily disregarding low-impact variables. For
another simplification in the SE0, variation experiments use the default planning
parameters within ALX, ranging from theoretical baselines of parameters to a 50%
increase.

In conclusion, the outlined assumptions and simplifications play a dual role: directing the
research towards insightful findings and demarcating the boundaries of the investigation.
Thus, readers should acquaint themselves with these foundational premises for a
contextually anchored and informed engagement with the results.
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4.4.6 Simulation Software and Tools

In the academic literature regarding supply chain simulation, selecting suitable software
and analytical tools is paramount, enabling accurate modelling, analysis, and presentation
of data. The tools utilised should reflect the current state of technological advancement and
cater to the specific nuances of the research in question. In the context of this investigation,
an ensemble of specialised tools was judiciously chosen, reflecting their pertinence to the
study's objectives and methodological framework. These were mentioned in the previous
chapter and are expanded upon here.

Figure 22 – Simulation system context diagram

The above simulation system context diagram (Figure 22) shows the data flow and setup
between different software tools. Firstly, the stock master data - item code, description,
opening balance, and planning parameters - standard lead time and actual demand history
are imported into AnyLogistix. After running the various simulation experiments, the result
sets of performance outcomes are exported into Excel. Finally, the result sets of different
performance are fed into JMP for the multivariate analysis and Zoho Analytics for scatter
plot generation and the comparison experiment. Highlighted below are the primary
software and tools employed, coupled with a brief exposition of their attributes and
contributions to the research:
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ALX Software: Recognised for its prowess in dynamic supply chain design and analysis,
ALX presents a multidimensional simulation approach encompassing discrete event,
agent-based, and system dynamics modalities. Given the study's need to delineate
complex supply chain structures across varied scenarios, this software's scalability and
flexibility were deemed indispensable. Figure 23 shows an example of an ALX simulation
screenshot, including the supply chain network and performance dashboard that will be
used to provide the information necessary comparison and analysis. 

Figure 23 – ALX simulation and dashboard screenshot (AnyLogistix Features, n.d.)

In Figure 23, there are three reports generated by ALX during the simulation process. First
one in the left shows the available inventory balance on a daily basis, generated in SE0 for
Case1 by ROP policy. The middle table lists out the service level by revenue (SL). The right
table states the total revenues accumulated by the end of simulation period. Then, these
performance outcomes are exported and imported into JMP and Zoho Analytics for further
analyses.

 Page 158



JMP Statistical Software: Originating from the SAS Institute, JMP is renowned for its
dynamic data visualisation and exploratory data analysis capabilities. Within this research,
its suite of statistical tools facilitated rigorous hypothesis testing, data mining, and
predictive modelling, thereby cementing the empirical validity of the findings. Figure 22
illustrates the JMP statistical software with visual, power and interactive interface to
accelerate the identification of insight information.

Figure 24 – JMP statistical software screenshot example

Figure 24 illustrates a snapshot from JMP statistical software, demonstrating its features
for data analysis and visualisation. The interface presents multiple components, such as a
correlation matrix and scatterplots, which illustrate the relationships among variables. The
correlation matrix visually represents the strength and direction of correlations, whereas
scatterplots allow for a thorough examination of the interactions among individual data
points across variables. This flexible option allows users to examine trends, rendering it
highly effective for statistical analysis and research findings.
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Zoho Analytics: It is a leading self-service BI and data analytics software that transforms
raw data into clear, interactive dashboards. This tool was chosen for its ability to create
visual narratives and provide real-time insights, aligning with the study's focus on data
transparency and accessibility.

Figure 25 – Zoho Analytics collaborative dashboard (Zoho Analytics Features)

Figure 25 provides a comparative view of inventory levels across multiple scenarios. It
highlights the average stock-on-hand level between actual and simulated outcomes of
different inventory policies (ROP, MTA DBM, DDMRP). Each bar represents a specific
case with a breakdown of stock levels, enabling a clear comparison between actual and
simulated results.

The imperative to adopt these distinct tools stems from their confluence of capabilities
tailored to address the multifaceted requirements of the research. ALX, with its specialised
focus on supply chain intricacies, laid the foundational groundwork for simulating diverse
supply chain frameworks. However, as mentioned in the previous chapter, ALX only
provides the standard polices in simulation such as Reorder Point, Min-Max and MRP. For
MTA DBM and DDMRP, therefore, ALX Java extension for customised Java coding (see
Appendix F for sample Java source code) is required according to the logic presented in
the previous section 3.4.2. Table 6. JMP Statistical Software buttressed the analytical
rigour in parallel, ensuring data integrity and robustness. With its visualisations, Zoho
Analytics enhanced the interpretative dimension of the study.
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The curated ensemble of software and tools was more than merely a matter of
convenience. Instead, their integration was meticulously orchestrated to bolster the study's
comprehensiveness and precision, facilitating an exploration that resonates with academic
rigour and relevance.
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4.4.7 Conclusion for Data Sources, Product Details and Simulation

The section has illuminated the critical data sources, product details, and simulation tools
that underpin the research. A diverse range of real-world supply chain contexts enriches the
depth of the simulation study. Including case studies from healthcare sensor devices,
garment factories, and automotive assembly lines provides various B2B and B2C
scenarios, each showcasing distinct challenges and dynamics.

Table 12 offers valuable insights into the subtleties of demand patterns across these
supply chains. It highlights the intricacies linked with extended lead time observed in the
healthcare sensor devices distribution network and its unpredictable demand. By contrast,
Bangladesh's garment factory operates within a predictable framework despite its
significant demand. The automotive assembly line in China introduces layers of complexity,
presenting a range of challenges from fluctuating lead time to assorted demand attributes.

The outlined assumptions and simplifications hold significant importance. They guide the
simulation study towards its objectives while ensuring readers are anchored in the correct
context. Readers must consider these principles when interpreting results, ensuring
conclusions align with real-world applications.

The choice of simulation tools and software – AnyLogistix, JMP Statistical Software, and
Zoho Analytics – underscores the research's commitment to accuracy, adaptability, and
empirical thoroughness. With its unique capability, each software supports the research's
goals, ensuring a comprehensive and cutting-edge approach to data modelling, analysis,
and presentation.

In conclusion, this section serves as the cornerstone for forthcoming analyses. Detailing
data sources, explaining the variations in demand across supply chains, and spotlighting
robust simulation tools set the stage for a thorough analysis and interpretation of findings.
Insights await that promise to enhance supply chain dynamics across various real-world
settings.
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4.5 Results Presentation

4.5.1 Introduction to Results and Key Performance Indicators (KPIs)

The forthcoming sections will present the findings from our simulation study. We primarily
compare inventory policies in various industries, such as healthcare devices, garment
factories, and automotive assembly lines. As described previously, we have organised the
results into three distinct scenario groups: Group A represents SE0, Group B includes
SE1 and SE2, and Group C covers SE3 and SE4, as shown in Figure 18. The three
groups each have different objectives, and the logical flow for comparison from real cases
with simulated variations in supply and demand is used to address RQ2 and RQ3.

This structure improves the clarity of our discussions and provides a clear framework to
explore the key performance indicators (KPIs). It highlights the findings relevant to each
specific supply chain simulation scenario.
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Key Performance Indicators (KPIs) Used in Experimental Comparisons 

A series of KPIs emerge from the experiments, instrumental for comprehensive
comparative analysis. Below, Table 13 outlines each KPI, encapsulating its definition and
formulaic rationale. 

Table 13 - Key Performance Indicators Utilised in Experiments
Short-
code

Key Performance
Indicators

Definition and Formula Logic Explanation

RL Revenue Level Defined as the product of the number of items in all
shipped orders and the item price.

IL Inventory Level Represents the daily average volume of stocked
items, either by quantity or cost of goods sold

(COGS).
SL Services Level by

Revenue
Calculated based on the revenue lost from unfulfilled

orders. 
SL = 1 - (items in unfulfilled orders x item price) / 

(total items in all orders for the facility x item price)
ROI Return On Inventory by

Stock Balance 
Or 

Cost of Goods Sold
(COGS)

ROI = RL / IL (end-of-period stock balance)
OR

ROI = RL / (IL x unit cost)

These KPIs serve as foundational metrics, facilitating an understanding of the intricate
supply chain dynamics and providing a yardstick for evaluation. As the exploration
advances to the next section, a detailed breakdown of each simulation experiment group
will interpret the findings through these KPI lenses.
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4.5.2 Preliminary Findings by Simulation Experiment Group

The stratification of simulation experiments into three distinct cohorts - Group A (SE0),
Group B (SE1 and SE2), and Group C (SE3 and SE4) - unearths pivotal insights into
supply chain dynamics, as delineated in section 4.2 - Figure 18. Such results provide an
intellectual bridge to the overarching research questions, fortifying the academic
exploration.

The results from Groups A, B and C provide critical insights into the performance of
forecast-based and consumption-based inventory policies in distribution-side supply
chains. These findings will be demonstrated in the subsequent sections.
Group A (SE0) provides three clear insights. Safety Stock (SS) significantly affects the
Available Inventory in Product Units (IL). Its strong influence on the Services Level by
Revenue (SL), particularly within the Reorder Point (ROP) policy, stands out (Finding-1).
The close relationship between the Initial Buffer Size (IBS) and the Available Inventory (IL)
is also evident within the MTA DBM policy (Finding-2). Furthermore, the comparison
between the mostly negative relationship of the Spike Threshold Percentage (STP) and the
positive one of the Lead Time Factor (LTF) regarding Available Inventory Level (IL)
highlights the complexity of supply chain dynamics within the DDMRP policy (Finding-3).

For the second research question exploring how inventory policies perform under varying
demand and lead time, Group B (SE1 and SE2) provides essential details. In specific
situations for Case 1 within SE1, the ROP policy has a clear advantage regarding Return
on Inventory (ROI) (Finding-4). ROP also achieved higher ROI than MTA DBM and
DDMRP in Case 2 (Finding-5). However, the MTA DBM policy also shows strength,
reaching the highest ROI in SE1's Case 3 (Finding-6). At the same time, DDMRP
achieves a 100% Service Level by Revenue (SL) in Case 3 with the lowest ROI within SE1
(Finding-7). ROP and MTA DBM could achieve 100% Service Level by Revenue (SL) in
Case 3 for product items with Demand Variation (DV), where CoV is below seven
(Finding-8). In Case 3, DDMRP secured the highest Service Level (SL), while ROP
demonstrated superior Return on Inventory (ROI) performance in Cases 1 and 2
(Finding-9).

 Page 165



Finally, considering the third research question, which focuses on factors influencing the
choice and effectiveness of inventory policies, Group C (SE3 and SE4) gives valuable
information. The MTA DBM policy effectively handles changing demands without harming
the Service Level by Revenue (SL) in Case 3 (Finding-10). Meanwhile, when looking at
the Coefficient of Variation (CoV) by Demand Variation (DV), the ROP policy often
outperforms MTA DBM and DDMRP regarding ROI in Case 1 and Case 3. (Finding-11).
The Supply Variation (SV) of Transportation Lead Time (TLT) is also crucial, as it can
decrease Service Level by Revenue (SL) (Finding-12).

After reviewing the preliminary findings, multiple aspects appear to influence the
performance of inventory policies and supply chain processes. While the conclusions
written help explain things, graphs can offer a clearer view. The following section, 4.5.3
Graphical Representations, presents these findings visually. This section uses Graphs to
make it easier to see patterns and understand the results from the simulation experiments.
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4.5.3 Graphical Representations and Correlations

After elucidating the principal findings from the simulation groups, the research now
focuses on the study's visual facets. Incorporating graphical illustrations stems from their
innate ability to bolster and complement textual revelations. Such representations afford a
more precise grasp of the intricate dynamics between diverse elements and the resulting
implications.

Parameters setting for variation experiments in SE0

Figure 26 – ALX variation experiment parameters (AnyLogistix variation experiment, n.d.)

The above Figure 26 illustrates the different options of running variation experiments.
During the simulation process for Group A (SE0), ALX variation experiment provides
selectable variables parameters to identify the optimised performance of each policy. We
can then test different parameters of various policies to obtain the optimised performance
outcomes before Group B (SE1, SE2) and Group C (SE3, SE4). The performance
outcomes of each case generated by variation experiments are imported into ALX for the
generation of a scatter plot and JMP for regression with multivariate analysis.
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Figure 27 – Zoho Analytics used for scatter plot analysis

The above Figure 27 provides the scatter plot for selecting the planning parameters with
highest ROI and highest SL, which will be used in Group B and C simulation experiments
as baseline.

Figure 28 – JMP – regression analysis with multivariate analysis

Figure 28 illustrates a multivariate analysis of the data exported from ALX to JMP. On the
left, the imported data encompasses several inventory scenarios’ outcomes, while on the
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left, the imported data encompasses several inventory scenarios’ outcomes, while on the

top-right, the table illustrates the correlation matrix between key planning factors and
performance outcomes, providing insights about the strength of correlations among
variables (i.e. Q, R, SS, IL and SL). Scatter plots below the matrix demonstrate the
manifestation of those connections, facilitating as in-depth additional visual analysis of how
specific policy factor such as Safety Stock (SS) influences major KPIs, thereby generating
essential insights for addressing RQ2 and RQ3.
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This section presents an array of Graphs and visual aids delineating the outcomes of the
simulation experiments. These graphical representations offer a more concrete grasp of
the data, spotlighting patterns, trajectories, and irregularities potentially elusive in purely
textual descriptions. For each finding in the previous section:

Correlation related to Finding-1 from SE0: Correlation analyses demonstrate the
statistically significant relationship between Safety Stock (SS) and both Available Inventory
in Product Units (IL) and Service Level by Revenue (SL) under the ROP policy. The data
demonstrates a strong positive association between SS and IL, with correlation values
exceeding 0.6, indicating that changes in SS are strongly associated with variations in IL
levels. The link between IL and SL is considerable (p < 0.05), underscoring the essential
significance of inventory availability in achieving optimal service performance, which in turn
improves revenue outcomes.
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Table 14 – Correlation Matrices for SE0 (14-A to 14-F)
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A series of correlation matrices illustrate how Safety Stock (SS) impacts Available
Inventory (IL) and Service Level by Revenue (SL) within the ROP policy across diverse
scenarios. The correlation matrices in Table 14 show these strong correlations,
highlighting on relationships with a correlation value of 0.7 or higher. Upon further scrutiny of
these matrices, one observation emerges: the correlation coefficient often surpasses 0.7.
This robust correlation signifies a strong and impactful relationship between the variables
under scrutiny.

In Case 1 (refer to Table 14-A), the matrix correlation reveals several strong positive
associations: the correlation coefficient between Safety Stock (SS) and Available Inventory
(IL) is roughly 0.71, indicating a strong association between a boost in safety stock and a
rise in available inventory. Furthermore, a strong positive relationship exists between Order
Quantity (Q) and Available Inventory (IL) (0.63), signifying that increased order quantities
result in increased inventory levels. The previously mentioned correlation matrices provide
a quantitative illustration of these relationships, illustrating how variations in SS and Q
result in IL. Case 1 demonstrates that effective management of Safety Stock and Order
Quantities is critical for maintaining optimal inventory levels, affecting customer service
levels.

In Case 2 (refer to Table 14-E), the correlation analysis indicates a strong correlation of
0.70 (p < 0.01) between safety stock (SS) and inventory levels (IL), demonstrating a strong
positive relationship between the management of safety stock and available inventory
levels. This conclusion underscores the significance of Safety Stock as a vital factor in
maintaining inventory levels. However, results show a lack of statistically significant
connections between IL and SL indicating that additional factors may affect service levels
in Case 2. The findings suggest that although Safety Stock is essential for inventory
management, its direct influence on Service Level by Revenue may be affected by other
variables or operational processes in this specific instance.

In Case 3 (refer to Tables 14-D and 14-F), the correlation analyses indicate many strong
connections. Table 14-D reveals a strong correlation of 0.71 (p < 0.01) between SS and IL,
signifying a substantial positive association, as in Cases 1 and 2. Increases in safety stock
(SS) are generally correlated with increases in available inventory levels (IL). The
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(SS) are generally correlated with increases in available inventory levels (IL). The

association between IL and SL is 0.62 (p < 0.01), indicating that sufficient inventory levels
are essential for attaining improved service levels. Table 14-F demonstrates a strong
correlation of 0.71 (p < 0.01) between SS and IL. In contrast, an extremely high correlation
of 0.89 (p < 0.01) is noted between Service Level by Revenue and Revenue, suggesting
that enhancements in service levels are intricately linked to revenue growth. These results
highlight the pivotal function of Safety Stock in sustaining inventory levels and the
subsequent impact of inventory availability on service performance and financial success.

The findings from several scenarios (refer to Table 14) highlight the statistically significant
effect of Safety Stock on Available Inventory and its significant impact on Service Level by
Revenue. The significant correlation values in the matrices suggest that effectively
managing key inventory characteristics, including safety stock and order quantities, is vital
for reaching adequate inventory levels, improving service performance, and encouraging
revenue growth. This study underscores the significance of strategic inventory
management strategies in enhancing operational performance.
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Correlation related to Finding-2 from SE0: The strong correlation between Initial Buffer
Size (IBS) and Available Inventory (IL) within the MTA DBM policy. 

Table 15 – Correlation Matrices for SE0 (15-A to 15-K)

In the correlation matrices presented in Table 15, a significant finding is the strong
correlation between Initial Buffer Size (IBS) and Available Inventory (IL) within the MTA DBM
policy. Each scatterplot matrix reveals the relationships between different operational
variables, with a particular focus on how the initial buffer impacts available inventory levels. 

For Case 1, as shown in Tables 15-A to 15-E, there is a consistently strong positive
relationship between IBS and IL across various regions and contexts, including US B2C,
EU B2B, and WB. Specifically, the correlation coefficients between IBS and IL are all equal
to 1 or very close to 1, indicating a near-perfect correlation (refer to Tables 15-A to 15-E).
This suggests that under the MTA DBM policy, increasing the initial buffer size directly
results in an increase in available inventory, thereby reflecting an efficient alignment
between inventory planning and availability requirements. The consistency of this
relationship across the different cases and regions highlights the robustness of the policy in
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relationship across the different cases and regions highlights the robustness of the policy in

ensuring adequate inventory levels.

For Case 2, Tables 15-E to 15-G shows different scenarios, yet a similar pattern emerges.
In Table 15-F, the correlation between IBS and IL is again equal to 1, indicating a perfect
relationship. In Tables 15-G to 15-H, the correlations are slightly lower but remain very high,
at 0.872 and 0.838, respectively. These figures demonstrate that even under varied
operational settings, the MTA DBM policy maintains a strong and positive correlation
between IBS and IL. The slight decrease in correlation in these figures may suggest minor
external factors affecting inventory levels, but the relationship remains fundamentally strong.

In Case 3 (refer to Tables 15-I to 15-K), a perfect correlation (R = 1.00, p < 0.01) is noted
between Initial Buffer Size (IBS) and Available Inventory in Product Units (IL) in Table 15-K
for product stocking location Case3.MTA.9396. The exact relationship indicates that
variations in buffer size immediately led to corresponding variations in available inventory,
indicating that effective management of IBS is critical for properly regulating inventory
levels in this scenario.

Besides a perfect relationship in Table 15-K, Tables 15-I and 15-J show strong correlations
nearing 1 in Table 15-I for product stocking location Case3.MTA.2816, the correlation
between IBS and IL is 0.98 (p < 0.01), indicating a strong relationship. Increases in buffer
size are directly correlated with increases in inventory levels, highlighting the crucial
function of IBS to ensure stock availability. 

Table 15-J for product stocking location Case3.MTA.3542 illustrates a strong and
significant correlation between IBS and IL, shown by a coefficient of 0.85 (p < 0.01).
Despite being slightly smaller than observed in other scenarios, this still demonstrates a
strong correlation, indicating that variations in IBS significantly influence inventory levels.
Table 15-J shows a significant correlation between revenue and Service Level by Revenue
(SL), indicated by a coefficient of 0.99 (p < 0.01), indicating that improvements in service
levels are largely related to higher revenue.
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The correlation matrices in Tables 15-A to 15-K illustrate a consistent and strong
correlation between Initial Buffer Size and Available Inventory under the MTA DBM policy.
This finding points out the necessity of determining an optimal initial buffer to ensure
inventory availability, which is vital to keeping adequate service levels and avoiding
stockouts. The variations in correlations among different cases indicate specific
operational variations; however, the overall pattern highlights the effectiveness of the MTA
DBM policy in synchronising inventory planning with demand.
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Correlation related to Finding-3 from SE0: There are contrasting behaviours when it
comes to Spike Threshold Percentage (STP) and Lead Time Factor (LTF) vis-à-vis
Available Inventory Level (IL) within the DDMRP policy.

Table 16 – Correlation Matrices for SE0 (16-A to 16-I)

The data in Table 16 show the different behaviours of the Lead Time Factor (LTF) and
Spike Threshold Percentage (STP) for Available Inventory Levels (IL) under the Demand-
Driven Material Requirements Planning (DDMRP) policy. Each table presents an analysis
of the correlation matrices for different cases, highlighting the interactions of these
variables under various situations.

Tables 16-A to 16-I, related to Case 1, show a consistent pattern within the DDMRP policy
across various scenarios. As illustrated in Table 16-A, there is a strong negative correlation
between STP and IL (R = -0.90, p < 0.01). This signifies that an increase in the DDMRP
parameter on STP corresponds with a reduction in IL, indicating that proper setting of the
STP leads to more effective inventory control. In contrast, the relationship between LTF and
IL in Case 1 is almost insignificant (R = 0, R = 0.03, R = 0.01) for the three different
scenarios, as highlighted by the green colour in Tables 16-A, 16-B, and 16-C, and those
correlations lack statistical significance (p > 0.05). This indicates that STP variations affect
inventory levels whereas LTF does not.
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Tables 16-D to 16-I, related to Cases 2 and 3, provide a pattern of strong positive
correlations between LTF and IL, with R values between 0.85 (see Table 16-G) and 0.95
(see Table 16-H) (p < 0.01). These results indicate that LTF strongly correlates with
increased IL, suggesting a strategy of holding higher inventory levels to mitigate problems
associated with long lead times. In Case 2 (refer to Tables 16-D to 16-F), the correlations
between LTF and IL are 0.91 (see Table 16-D), 0.93 (see Table 16-E), and 0.89 (see
Table 16-F) (p < 0.01), underscoring the significance of LTF as a critical factor of inventory
levels. This indicates that organisations should prioritise maintaining increased inventory
levels whilst lead times are extended to provide supply chain resilience. Table 16-H for
Case 3 similarly exhibits a strong positive correlation between LTF and IL (R = 0.95, p <
0.01), emphasising the importance of lead time management in keeping acceptable
inventory levels.

The findings indicate that while both LTF and STP influence inventory levels, their impacts
differ significantly. The strong positive correlations between LTF and IL, indicated by R =
0.91, p < 0.01 in Table 9-D, and R = 0.85 (p < 0.01) in Table 16-G, indicate that prolonged
lead times lead to increased inventory levels as a protection against disruptions. The
negative correlation between STP and IL is, R = -0.90 (p < 0.01) in Table 16-A, shows the
importance of adjusting spike thresholds to manage inventory levels. This data highlights
the distinctive characteristics of LTF and STP within the DDMRP framework, further
confirmed by the consistent patterns in Tables 16-D to 16-I.

After the identification of findings from SE0 by JMP multivariate correlations, the following
section turns to the key findings of Group B simulation experiments (SE1 and SE2) using
ALX to compare performance outcomes in each case.
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Graphs related to Finding-4 from SE1: ROP shows superior performance in terms of
ROI in specific contexts for Case 1 within SE1

Figure 29-A depicts the simulated ROI results for Case 1. There is a striking differentiation
among inventory policies. The ROP strategy stands out, boasting an ROI of 76.69. The
ROP is notably higher than MTA DBM, which has an ROI of 39.19 and greatly surpasses
DDMRP at 28.86. This variance underscores ROP's superior efficiency in balancing
revenue generation against inventory costs in this simulation.

Figure 29-A - Case 1 ROI (Revenue / Average Inventory COGS)

Figure 29-B - Case1.Demand.Distribution

Case 1 company is a Series B startup with erratic sales demand pattern, marked by
extended order intervals. This distinctive demand pattern, with its low monthly orders and
lengthy gaps between three product items (Lite in blue, Node in green and WB and red), is
graphically represented in Figure 29-B.
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One significant observation emerges from the data presented in Figure 29-B. ROP's
unwavering initial buffer size (IBS) provides it a distinct advantage in these scenarios.
Throughout the simulation, the consistency of ROP ensures a foundational inventory level
for this policy. Nevertheless, this approach assumes that annual demand is predictable,
resonating with the accurate setup of the IBS for Reorder Quantity (Q) and Reorder Point
(R). Consequently, ROP outperforms both MTA DBM and DDMRP in terms of ROI.
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Graphs related to Finding-5 from SE1: ROP shows dominance over MTA DBM and
DDMRP in ROI for Case 2 within SE1

Figure 30 showcases the simulated ROI outcomes for Case 2, illustrating a compelling
performance hierarchy among the inventory strategies. ROP takes the lead with an ROI of
44.38, markedly ahead of both MTA DBM, which registers at 35.92, and DDMRP, trailing
slightly behind at 34.08. This pattern emphasises ROP's effectiveness in maximising
revenue against inventory costs, outpacing its counterparts in the Case 2 scenario.

Figure 30- Case 2 ROI (Revenue / Average Inventory COGS)
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Table 17 - Case2.Demand.CoV.Product
Product Standard Deviation of

Demand Quantity
Average Demand

Quantity
Case 2-

CoV of Demand
20D 491.91 338.96 1.45

30NE1 8019.79 5127.77 1.56
40NE1 8951.63 4713.14 1.9

When observing Case 2, we find a stable demand variation with a CoV of less than 2. The
specifics for this variation are tabulated in above Table 17.

As evident in Case 2, a lower demand variation underscores the advantages of employing
ROP with a consistent initial buffer size. If the demand over a year remains predictable and
stable, using ROP as the primary inventory policy appears validated. ROP achieves a
higher ROI than MTA DBM and DDMRP in Case 2, as shown in Figure 30.
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Graphs related to Finding-6 from SE1: MTA DBM's produces the highest ROI in SE1's
Case 3

Figure 31 - Case3.ROI (Revenue / Average Inventory COGS)

Table 18 - Case3.Demand.CoV.Product
Product Standard Deviation of

Demand Quantity
Average Demand

Quantity
Case3 -

CoV of Demand
2816 22582.2 3658.87 6.17
3542 9549.64 7811.28 1.22
9396 59265.72 8262.34 7.17

In Figure 31, which visualises the simulated ROI results for Case 3, MTA DBM emerges as
the most efficient inventory strategy, boasting an ROI COGS of 22.43. This outperformance
is set against ROP and DDMRP, which secure ROI COGS figures of 17.56 and 15.09,
respectively. It is worth noting that the distinctiveness of this case is underscored by the
considerably high demand variation for two products, as they exceed a coefficient of
variation (CoV) of 6, as shown in Table 18.

MTA DBM policy will adjust the buffer size according to the penetration percentage of Too-
Many-Green (TMG) and Too-Many-Red (TMR) as Dynamic Buffer Management (DBM)
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Many-Green (TMG) and Too-Many-Red (TMR) as Dynamic Buffer Management (DBM)

logic. Therefore, it is automatically adjusted according to the actual consumption rate of
demand and adapts to the changes of dynamic demand variation.
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Graphs related to Finding-7 from SE1: DDMRP 100% Service Level by Revenue (SL)
in Case 3 despite having the lowest ROI within SE1

Figure 32 - Case3.Service Level by Revenue

Figure 32 presents a nuanced view of inventory strategies in Case 3. While DDMRP
reaches the zenith with a 100% Service Level by Revenue, this success only translates
proportionally to financial efficiency. Specifically, DDMRP registers the lowest ROI of 15.09
(see Figure 31), shedding light on the trade-offs businesses might face between service
levels and return on investment.

Based on Figure 32, DDMRP achieved a 100% “Service Level by Revenue” for all three
product items in Case 3. In comparison, MTA DBM and ROP accomplished the “Service
Level by Revenue” of 65% and 72% on product item 9396 (red segment of the stacked bar
graph), with the highest CoV of demand of 7.17. According to the Table 18, the 3rd product
item (9396) is getting a CoV higher than 7. In this scenario, the ROP and MTA DBM could
not achieve a 100% service level as DDMRP. However, DDMRP can adjust the buffer size
according to the moving Average Daily Usage (ADU). At the same time, it will also trigger
one indirect MTO order by net flow equation to cover the spiking demand within the Order
Spike Horizon (OSH) if the Spike is qualified with the demand over “Order Spike Threshold
(OST)”. However, to keep the highest service level in Case 3 within SE1, the DDMRP
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(OST)”. However, to keep the highest service level in Case 3 within SE1, the DDMRP

maintained the highest buffer stock. It is a trade-off decision between inventory level and
service level.
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Graphs related to Finding-8 from SE1: Both ROP and MTA DBM consistently attain
100% Service Level by Revenue (SL) for items with Demand Variation (DV), where CoV is
below seven.  

In Case 3, as illustrated by above Figure 32, both ROP and MTA DBM demonstrated
remarkable efficiency, achieving a 100% Service Level by Revenue for product items with
a CoV under 7, signifying lower demand variation. This data is additionally shown in
section 4.6.3 - Table 22 for Finding-8. However, DDMRP's approach was more
conservative, opting for a larger stock buffer to ensure the same 100% service level (SL).
This decision potentially incurs higher opportunity costs, highlighting the balance between
inventory levels and service reliability.

On the other hand, ROP and MTA DBM could also achieve a 100% Service Level by
Revenue for the lower CoV of demand between 1.22 and 6.17. There is no order spike
management in ROP and MTA DBM.  Without getting very large demand spikes, ROP
safety stock and MTA dynamic buffer management could effectively handle the range of
CoV below 6.17 in Case 3 within SE1.
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Graphs related to Finding-9 from SE2: DDMRP attained peak Service Level (SL)
performance during Case 3. In contrast, ROP consistently secured the highest Return on
Inventory (ROI) in Case 1 and 2 across varied scenarios.

Figures 33 compare ROI and Service Level by Revenue (SL) across the three cases,
revealing distinct policy effectiveness. DDMRP emerges as having the highest value in
Service Level (100%) achievement during Case 3 (see Figure 33-A). On the other hand,
ROP has the largest ROI (76.96 and 44.38), topping the charts (see Figure 33-B) in both
Case 1 and 2. These variations underscore the inherent trade-offs and unique advantages
of each policy.

Figure 33-A - Service Level by Revenue (SL) ranking

Figure 33-A shows the descending ranking of SL across three cases with different
policies.

Return on Inventory (ROI) ranking

Figure 33-B shows the descending ranking of ROI across three cases with different
policies.
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Figures 33 illustrate the varied ROI and Service Level by Revenue rankings across the
cases and policies. Within identical demand profiles and contexts, DDMRP excels in
service level but maintains the most extensive inventory buffer, resulting in the lowest ROI. In
contrast, ROP boasts the highest ROI, closely followed by MTA DBM.
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Graphs related to Finding-10 from SE3: MTA DBM's resilience in accommodating
fluctuating demands without big impacting the Service Level by Revenue (SL) in Case 3
The SE3 and SE4 simulation studies under experiment Group C aim to assess the
comparative analysis performance of ROP, MTA DBM and DDMRP inventory policies
using different Demand Variation (DV) and Supply Variation (SV) ranges in the same case
context. Before analysing the detailed outcomes, Table 19 lists the Coefficient of Variation
(CoV) and Transportation Lead Time (TLT) per product item across three cases before
simulated variation experiments.

Table 19 - Demand CoV vs Transportation Lead Time (TLT) across 3 Cases
Product Items Actual Demand CoV Transportation Lead Time (TLT)

in days
Case1.Lite.EU B2B 13.55 180
Case1.Lite.US B2C 8.01 180

Case1.Node.EU B2B 7.37 180
Case1.Node US B2C 8.27 180
Case1.WB EU B2B 7.36 180
Case1.WB US B2C 7.95 180

Case2.20D 1.45 65
Case2.30NE1 1.56 65
Case2.40NE1 1.9 65
Case3.2816 6.17 144
Case3.3542 1.22 133
Case3.9396 7.17 46

Table 19 indicates that there is one exceptionally high CoV in each Case highlighted in
red colour.
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Figures 34-A to 34-C illustrate the resilience of MTA DBM against escalating Demand
Variation in CoV during the simulation experiment SE3. While the Service Level by
Revenue (SL) for ROP and DDMRP exhibited a downward trend (1.0 to 0.94 for ROP and
1.0 to 0.8-0.95 for DDMRP) in response to increased demand fluctuations, MTA DBM's SL
remained relatively steady (1.0) without decline (see Figure 34-C). This behaviour is
particularly pronounced in Case 3, emphasising the unique stability of MTA DBM
compared to the other policies. In essence, ROP and DDMRP present a clear inverse
relationship between Demand Variation in CoV and SL, a characteristic not shared by
MTA DBM.

Figure 34-A - DV Impact on Service Level by Revenue in Case1

Figure 34-B - DV Impact on Service Level by Revenue in Case2
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Figure 34-C - DV Impact on Service Level by Revenue in Case3

The inverse relationship between the Demand Variation in Coefficient of Variation (CoV)
and “Service Level by Revenue” is found in ROP and DDMRP, except for MTA DBM in
Case 3 (see Figure 34-C).
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Graphs related to Finding-11 from SE3: ROP consistently outperforms MTA DBM and
DDMRP in terms of ROI, significantly when increasing the CoV by Demand Variation (DV)
in Case 1 and 3

Figures 35-A to C underscore the resilience of ROP in terms of Return On Inventory (ROI)
in response to rising CoV due to Demand Variation (DV) in simulation experiment SE3. As
the CoV increases, the ROI by Stock Balance for ROP showcases a consistent and linear
ascent, particularly in Case 1 (ROI from 44 to 160.37)  and 3 (ROI from 32.98 to 182.28).
While increased DV amplifies the demand variability coefficients (1, 5, 10, 15, 20) during
the simulation, ROP stands distinct, maintaining its initial buffer size at an appropriate
level, unlike the adaptive measures of MTA DBM and DDMRP.

Figure 35-A - DV impact on ROI by Stock Balance in Case1

Figure 35-B - DV impact on ROI by Stock Balance in Case2
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Figure 35-C - DV impact on ROI by Stock Balance in Case3

The increased Demand Variation by the variation coefficients in CoV will accelerate the
demand variation in the simulation period., but ROP will not adjust the initial buffer size as
MTA DBM and DDMRP. Based on Figures 35-A to 35-C, the static reorder point in ROP
policy keeps a minimum safety stock level and will not over-react the demand variation by
increasing buffer size as MTA DBM and DDMRP. In return, it could make a higher ROI.
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Graphs related to Finding-12 from SE4: The impact of Supply Variation (SV) of
Transportation Lead Time (TLT) and its role in diminishing Service Level by Revenue (SL).

Figure 36 illustrates the impact of increasing Supply Variation in Transportation Lead Time
(SV.TLT) across three cases. As this variation grows, there is a discernible decline in the
Service Level by Revenue (SL), albeit at differing rates for each Case. This situation
underscores a consistent inverse relationship between SV.TLT and SL.

Figure 36-A - SV.TLT Impact on Service Level by Revenue in Case1

Figure 36-B - SV.TLT Impact on Service Level by Revenue in Case2
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Figure 36-C - SV.TLT Impact on Service Level by Revenue in Case3
As depicted in Figures 36-A to 36-C, there is a pronounced influence of Transportation
Lead Time (TLT) on the Service Level by Revenue (SL). Delays in delivering replenished
items due to simulated variations in TLT compromise supply reliability. Such disruptions
prevent timely buffer stock recovery, rendering the system ill-equipped to cope with
fluctuations in demand.
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Summary

While the Graphs offer crucial snapshots of the overarching scenario, one must recognise
them as a visual gateway to delve deeper into the intricate dynamics of inventory policies
and their varied performances. By aligning these graphical illustrations with the in-depth
statistical findings, the intention is to provide a holistic exploration of the research
questions. This ensures that the insights are both profound and easily graspable. The
forthcoming other results will further examination of the outcomes.
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4.5.4 Other Results broken down by Experiment Group

This section offers a breakdown of other results generated through these experiments, and
categorised by each simulation experiment group (i.e., A, B, and C) as illustrated in section
4.2 - Figure 18. By delving into the specifics of each group's outcomes, the analysis
strives to elucidate the nuances of inventory policy performance, facilitating a thorough
examination of the posed research questions.
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Group A: Simulation Experiment SE0 - Planning Parameter
Variation Experiments in ALX and Multivariate Analysis in JMP

There are two analytical steps related to SE0 in Group A. First, ALX imported stock master
data, planning parameters and actual demand from three cases to generate simulated
performance outcomes, which were imported into Zoho Analytics shown in Appendix B
through various scatter plots. Then, the selected parameters are listed in Appendix E – a
summary of parameters after the simulation experiments (SE0). Second, JMP imported
the simulated outcomes of those cases for multivariate analysis to generate those
scatterplot matrices in Appendix C.

The objective of the SE0 simulation experiment endeavours to establish scenarios, each
highlighting unique performance outcomes for selecting the optimised planning
parameters. The principle guiding this selection is firmly rooted in the maximisation of the
objective function defined as: 

Maximise F(x) = {f1(x), f2(x)}
Subject to: x ∈ X

Here, f1 signifies Return on Inventory (ROI), and f2 represents Service Level by Revenue
(SL). The variable X and the functions f1 and f2 exhibit different representations based on
the policy type being evaluated, as delineated below: 

1. ROP Policy: F_rop(Q, R, SS) = {f1_rop(Q, R, SS), f2_rop(Q, R, SS)} 
2. MTA DBM Policy: F_mta(IBS, TMG, TMR) = {f1_mta(IBS, TMG, TMR), f2_mta(IBS,

TMG, TMR)} 
3. DDMRP Policy: F_ddmrp(LTF, VF, STH, STP) = {f1_ddmrp(LTF, VF, STH, STP),

f2_ddmrp(LTF, VF, STH, STP)}
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Table 20 - Summary of planning parameters selected in the simulation experiment (SE0)
Case.Policy.Item
Demand Points

PolicyParameters Variables Theoretical Default UpperRange  
 +50%

Selected
Parameters

EndingAvailable 
Inventory

ServiceLevel 
byRevenue

Revenue ROI by
Stock

Balance
Case1.ROP.Lite USB2C Order up tomax. level Q 320 480 450 41 70.86% 65200 1590.24

Fixedreplenishmentpoint
R 320 480 320

Safety stock SS 0 160 0
Case1.ROP.Node USB2C Order up-tomax. level Q 140 210 190 8 79.49% 27300 3412.50

Fixedreplenishmentpoint
R 140 210 140

Safety stock SS 0 70 0
Case1.ROP.WB USB2C Order up-tomax. level Q 220 330 280 2 74.88% 43400 21700.00

Fixedreplenishmentpoint
R 220 330 220

Safety stock SS 0 110 40
Case1.ROP.Lite EUB2B Order up tomax. level Q 540 810 540 396 87.52% 107400 271.21

Fixedreplenishmentpoint
R 540 810 540

Safety stock SS 0 270 0
Case1.ROP.Node EUB2B Order up-tomax. level Q 740 1110 940 292 51.12% 147100 503.77

Fixedreplenishmentpoint
R 740 1110 740

Safety stock SS 0 370 0
Case1.ROP.WB EUB2B Order up-tomax. level Q 400 600 540 166 78.92% 77800 468.67

Fixedreplenishmentpoint
R 400 600 400

Safety stock SS 0 200 40
Case1.MTA.Lite.USB2C Initial BufferSize IBS 320 480 320 337 70.86% 65200 193.47

Too ManyGreen TMG 50 80 80

Too Many Red TMR 50 80 80
Buffer Up+Adjust % BUA 30 N/A

Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case1.MTA.Node.USB2C Initial BufferSize IBS 130 210 130 119.5 79.49% 27300 228.45
Too ManyGreen TMG 50 80 80

Too Many Red TMR 50 80 80
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Buffer Up+Adjust % BUA 30 N/A
Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case1.MTA.WB.USB2C Initial BufferSize IBS 210 330 210 150.5 74.88% 43400 288.37
Too ManyGreen TMG 50 80 80

Too Many Red TMR 50 80 80
Buffer Up+Adjust % BUA 30 N/A

Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case1.MTA.Lite.EUB2B Initial BufferSize IBS 520 800 600 734.5 87.52% 107400 146.22
Too ManyGreen TMG 50 80 80

Too Many Red TMR 50 80 80
Buffer Up+Adjust % BUA 30 N/A

Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case1.MTA.Node.EUB2B Initial BufferSize IBS 720 1080 720 939 51.12% 147100 156.66
Too ManyGreen TMG 50 80 80

Too Many Red TMR 50 80 80
Buffer Up+Adjust % BUA 30 N/A

Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case1.MTA.WB.EUB2B Initial BufferSize IBS 380 580 380 431 78.92% 77800 180.51
Too ManyGreen TMG 50 80 80

Too Many Red TMR 50 80 80
Buffer Up+Adjust % BUA 30 N/A

Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case1.DDMRP.LiteUS B2C Lead TimeFactor LTF 0.2 1 0.2 681 70.86% 65200 95.74
VariabilityFactor VF 0 1 0

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 180 200 180

Spike STP 50 100 100
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Spike

Threshold %
Net FlowPosition NFP N/A N/A

Case1.DDMRP. NodeUS B2C Lead TimeFactor LTF 0.2 1 0.3 743.88 79.49% 27300 36.70
VariabilityFactor VF 0 1 0.9

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 180 200 190

SpikeThreshold % STP 50 100 80

Net FlowPosition NFP N/A N/A
Case1.DDMRP.WBUS B2C Lead TimeFactor LTF 0.2 1 0.5 670.8 74.88% 43400 64.70

VariabilityFactor VF 0 1 0.9

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 180 200 180

SpikeThreshold % STP 50 100 100

Net FlowPosition NFP N/A N/A
Case1.DDMRP.Lite EUB2B Lead TimeFactor LTF 0.2 1 0.5 382 87.52% 107400 281.15

VariabilityFactor VF 0 1 0.9

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 180 200 180

SpikeThreshold % STP 50 100 100

Net FlowPosition NFP N/A N/A
Case1.DDMRP.NodeEU B2B Lead TimeFactor LTF 0.2 1 0.2 809 51.12% 147100 181.83

VariabilityFactor VF 0 1 0

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 180 200 180

SpikeThreshold % STP 50 100 100

Net FlowPosition NFP N/A N/A
Case1.DDMRP.WBEU B2B Lead TimeFactor LTF 0.2 1 0.2 523 78.92% 77800 148.76
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VariabilityFactor VF 0 1 0

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 180 200 180

SpikeThreshold % STP 50 100 100

Net FlowPosition NFP N/A N/A
Case2.ROP.20D Order up tomax. level Q 441337 660000 441337 224402 88.98% 21693451 96.67

Fixedreplenishmentpoint
R 220669 330000 220669

Safety stock SS 0 220000 0
Case2.ROP.30NE1 Order up tomax. level Q 667653 990000 667653 328928 88.27% 328177538 997.72

Fixedreplenishmentpoint
R 333826 480000 333826

Safety stock SS 0 330000 200000
Case2.ROP.40NE1 Order up tomax. level Q 613666 900000 713666 231130 83.02% 301640955 1305.07

Fixedreplenishmentpoint
R 306833 450000 406833

Safety stock SS 0 300000 0
Case2.MTA.20D Initial BufferSize IBS 220000 340000 220000 416849 88.98% 21693451 52.04

Too ManyGreen TMG 50 80 80

Too Many Red TMR 50 80 80
Buffer Up+Adjust % BUA 30 N/A

Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case2.MTA.30NE1 Initial BufferSize IBS 330000 510000 410000 317150 88.27% 328177538 1034.77
Too ManyGreen TMG 50 80 80

Too Many Red TMR 50 80 80
Buffer Up+Adjust % BUA 30 N/A

Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case2.MTA.40NE1 Initial BufferSize IBS 300000 460000 360000 353406 83.02% 301640955 853.53
Too ManyGreen TMG 50 80 80

Too Many Red TMR 50 80 80
Buffer Up+Adjust % BUA 30 N/A
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Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case2.DDMRP.20D Lead TimeFactor LTF 0.2 1 0.2 14751 88.98% 21693451 1470.64
VariabilityFactor VF 0 1 1

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 65 75 75

SpikeThreshold % STP 50 100 50

Net FlowPosition NFP N/A N/A
Case2.DDMRP.30NE1 Lead TimeFactor LTF 0.2 1 1 1259602 88.27% 328177538 260.54

VariabilityFactor VF 0 1 0.1

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 65 75 75

SpikeThreshold % STP 50 100 50

Net FlowPosition NFP N/A N/A
Case2.DDMRP.40NE1 Lead TimeFactor LTF 0.2 1 0.2 345245 83.02% 301640955 873.70

VariabilityFactor VF 0 1 0.1

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 65 75 65

SpikeThreshold % STP 50 100 60

Net FlowPosition NFP N/A N/A
Case3.ROP.3542 Order up-tomax. level Q 2084479 3150000 2184479 47359 100.% 243712000 5146.05

Fixedreplenishmentpoint
R 1042239 1560000 1042239

Safety stock SS 0 1050000 300000
Case3.ROP.2816 Order up-tomax. level Q 1057141 1560000 1157141 15575 100.% 114156600 7329.48

Fixedreplenishmentpoint
R 528570 780000 528570

Safety stock SS 0 520000 0
Case3.ROP.9396 Order up-tomax. level Q 762578 1140000 862578 975562 71.67% 257784900 264.24

Fixed R 381289 570000 481289
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Fixed

replenishmentpoint
Safety stock SS 0 380000 300000

Case3.MTA.3542 Initial BufferSize IBS 1040000 1560000 1040000 214797 100.% 243712000 1134.62
Too ManyGreen TMG 50 100 90

Too Many Red TMR 50 100 90
Buffer Up+Adjust % BUA 30 N/A

Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case3.MTA.2816 Initial BufferSize IBS 520000 780000 580000 291846 100.% 114156600 391.15
Too ManyGreen TMG 50 100 90

Too Many Red TMR 50 100 90
Buffer Up+Adjust % BUA 30 N/A

Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case3.MTA.9396 Initial BufferSize IBS 380000 580000 580000 732984 64.79% 257784900 351.69
Too ManyGreen TMG 50 80 80

Too Many Red TMR 50 80 80
Buffer Up+Adjust % BUA 30 N/A

Buffer Dow n-Adjust % BDA 25 N/A
Safety factor BSF 1 1.5 1.5

Case3.DDMRP.3542 Lead TimeFactor LTF 0.2 1 0.2 465718 100.% 243712000 523.30
VariabilityFactor VF 0 1 0

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 133 143 133

SpikeThreshold % STP 50 100 90

Net FlowPosition NFP N/A N/A
Case3.DDMRP.2816 Lead TimeFactor LTF 0.2 1 0.2 719431 100.% 114156600 158.68

VariabilityFactor VF 0 1 0.1

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 144 154 144

Spike STP 50 100 100

 Page 205



Spike

Threshold %
Net FlowPosition NFP N/A N/A

Case3.DDMRP.9396 Lead TimeFactor LTF 0.2 1 0.2 3205565 100.% 257784900 80.42
VariabilityFactor VF 0 1 0

Average DailyUsage ADU N/A N/A
SpikeThresholdHorizon

STH 46 56 56

SpikeThreshold % STP 50 100 100

Net FlowPosition NFP N/A N/A

As listed in above Table 20, these scenarios are derived from variation experiments for
the planning parameters within the ALX, ranging from theoretical baselines to a 50%
increase. Following data aggregation, the focus is on identifying the selected planning
parameters for a fair comparison in SE1 to SE4, as indicated in the "Selected
Parameters" column of Table 20. These parameters are chosen due to their efficacy in
attaining an optimal Return on Inventory (ROI) as f1 and the peak Service Level by
Revenue (SL) as f2. For a detailed depiction of the selection method, refer to Figure 37,
which presents one of thirty-six scatter plots extracted from Appendix B and parameters
selected from Appendix E illustrating the outcomes from the ALX simulator for selecting
parameters. 
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The selected points in the following Scatter plot matched with the above Table 20 –”Selected Parameters” column: 

Case.Policy.Ite
m

Demand Points
Policy

Parameters
Variable

s
Theoretica
l Default

Upper
Range
 +50%

Selected
Parameter

s
Ending

Available
Inventory

Service
Level 

by
Revenue

Revenue ROI by
RL/Stock
Balance

Case1.ROP.WB
US B2C

Order up to
max. level

Q 220 330 280 2 74.88% 43400 21700

Fixed
replenishme

nt point
R 220 330 220

Safety stock SS 0 110 40

Figure 37 - SE0 variation experiments planning parameters selection example
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Figure 37 in Appendix B presents an illustrative example (i.e. Case1.ROP.WB US B2C)
of planning parameter selected (i.e. Q=280, R=220 and SS=40) from SE0 variation
experiments, demonstrating the utilisation of objective functions for optimising the
“Selected Parameters”. ALX based on the actual demand data from Case1 by ROP policy
for item WB at stock point US B2C for simulation. The simulated outcomes were
generated according to the policy parameters ranging from the theoretical default to 50%
increase in ALX variation experiments. Then, the highest value of SL (i.e. 74.88%) and the
ROI (i.e. 21700) were spotted in the scatter plot in the top right-hand corner as well as in
the other scatter plots shown in Appendix B.

Appendix B includes diverse scatter plots representing the “Selected Parameters”. These
plots visually represent the interrelation and trade-offs between Return on Inventory (ROI)
and Service Level by Revenue (SL) under varying policies and parameter settings. A
thorough analysis of these plots yields valuable insights into the influence of parameter
variations on the objectives f1 and f2, thereby aiding in identifying optimal settings for
different inventory management policies. In summary, Appendix E shows thirty-six sets of
the “Selected Parameters” in the table.

Appendix C shows the correlational aspects of the study, the results of the multivariate
analysis of the SE0 variation experiment variables. This analysis ascertains the absence of
overlapping among independent variables and highlights dependent variables, which
maintain a regression association with other determinants.
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Group B: Simulation Study SE1 - Analysing Identical Demand
Profiles across Different Inventory Policies 

Table 21 - Contextual variables for simulation experiments
Inventory
policies

Independent variables
(planning parameters)

Dependent variables
(see Appendix A - KPIs)

ROP Order up=to maximum level (Q)
Fixed replenishment point (R)

Safety Stock (SS)

A1. Revenue Level (RL)
A2. Inventory Level (IL)

A3. Service Level (SL) by
Revenue

A4. Return On Inventory (ROI)
MTA DBM Initial Buffer Size (IBS)

Too Many Green (TMG)
Too Many Red (TMR) 

DDMRP Lead Time Factor (LTF)
Variability Factor (VF)

Spike Threshold Horizon (STH)
Spike Threshold % (STP)

As highlighted in the "Simulation Overview" section 4.2 and depicted in Figure 18, the
anticipated outcomes are the simulated performance metrics across various inventory
policies, all subjected to the same case's demand pattern. 
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Group B: Simulation Study SE2 - Comparative Simulated Outcomes
Across Cases for Various Policies 

SE2's primary objective is to juxtapose the performance of ROP, MTA DBM, and DDMRP
replenishment strategies across various case scenarios. Preliminary to this comparison,
Figures 38-A to C depicts the demand patterns for the three cases.

Figure 38-A Demand.Distribution pattern on Case1

Figure 38-B Demand.Distribution pattern on Case2

Figure 38-C Demand.Distribution pattern  on Case3

Figures 38-A to C reveals that Case 1 encounters infrequent, irregular demand, whereas
Cases 2 and 3 experience more frequent spikes in order demands.
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Group C: Simulation Experiment SE3 - Simulated results by
different Demand Variation (DV) in the same case

The main objective of SE3 is to evaluate the performance impact under multiple steps of
variation coefficients in the demand variation in CoV. The CoV ranges from 1.22 to 13.55
for the actual demand, as stated in Table 12. For SE3, we will deploy the five steps of
random demand as variation coefficients in CoV as 1, 5, 10, 15 and 20. Also, we will keep
all demand intervals as five days across all policies and items. All other parameters and
key performance indexes (KPIs) are kept unchanged and inherited from SE1 and SE2. So
we could see the impact and the performance trends.
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Group C: Simulation Experiment SE4 - Simulated results by
different Supply Variation (SV) in the same case

The key objective of SE4 is to evaluate the performance impact under multiple steps of
variation coefficients in the supply variation in transportation lead time (TLT). The
experiment applied the variation coefficients - 0.2, 0.5, 1, 1.5 and 2 for the existing
transportation lead time to simulate the impact of supply variation in transportation lead
time (TLT). So, we can compare the same performance measures with those supply
variation (SV) transportation lead time impacts.

Group C's results reveal the importance of inventory policy selection as more than just an
operational choice; it significantly impacts business outcomes. With ever-changing
demand and supply dynamics, the right inventory policies become essential. Group C
demonstrates the need to strategically deploy different policies depending on specific
Demand and Supply Variation scenarios.

With these insights in mind, the study delves deeper into further observations across all
simulation experiments.
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4.5.5 Additional Observations Across Simulation Experiments

This section dives deeper, extending beyond the preliminary observations of Groups A, B,
and C. It captures overarching patterns that surfaced during the simulation experiments,
providing a richer, more comprehensive understanding of inventory policy dynamics in
varying situations.

Zero Out-Of-Stock for all cases by different policies

One standout observation is evident from Figure 39 in SE2: all inventory policies
maintained a zero Out-Of-Stock (OOS) status across the three Case simulation studies.

Figure 39 - Out-of-stock comparison across 3 Cases

Interpreting Figure 39, a Zero Stock-Out denotes a consistent positive stock balance
throughout. A critical contributor to this result is the full backorder policy in ALX, which
prevents partial deliveries for backorders. Instead, it ensures that all outstanding
backorders receive complete deliveries once stock becomes available during the
simulation. However, this absence of Out-Of-Stock (OOS) does not necessarily translate to
a lack of Overdue Order Frequency (OOF), as explored further below.
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OOF in Case 3

DDMRP stood out in Case 3 by registering zero Overdue Order Frequency (OOF) across
all product items. This remarkable achievement is visualised in Figure 40. ROP and MTA
DBM policies recorded varying OOF levels, primarily influenced by their Service Level on
Revenue (SL).

DDMRP's unique capability to integrate spike management into its inventory policies
becomes instrumental here. Such a mechanism equips DDMRP to effectively manage
abrupt and significant demand variations, significantly when the CoV exceeds 7.

Figure 40 - Overdue Order Frequency (OOF) comparison across 3 cases

In sum, when pieced together, these additional observations broaden the spectrum of
understanding concerning inventory policy performances. They highlight the intricate
nuances that can significantly impact outcomes and provide direction for future strategies
in inventory management.
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4.5.6 Summary of Results broken down by Experiment Group and
Overall

In synthesising the research outcomes, this section combines the exhaustive examinations
of Groups A, B, and C, illuminating the salient patterns derived from the simulation
experiments.

Group A: Impact of Inventory policies’ Parameters on performance

There is one situation stemming from Group A, which focuses on the impact of inventory
policy parameters on performance. Safety Stock (SS), an important part of the ROP policy,
maintains significant influence over inventory levels, hence maintaining stable service
levels. Extending the analysis, parameters inside the MTA DBM and DDMRP policies
surface act as strong factors. The MTA DBM policy primarily relies on the Initial Buffer Size
(IBS). Conversely, the DDMRP policy is dynamically derived from the Spike Threshold
Percentage (STP) and the Lead Time Factor (LTF). These characteristics jointly support
the keeping of optimal inventory levels. Tables 14 to 16 in section 4.5.3 should be
referenced to provide a more concrete understanding of these interactions. These
graphics convert the theoretical foundations of Finding-1, Finding-2, and Finding-3 into
graphical illustrations.
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Group B: Performance comparison by different policies in the same case and
cross-cases

Venturing into Group B, the focal point shifts to a comparative lens, evaluating the
performance benchmarks of varying inventory policies. A juxtaposition of ROI results
reveals that ROP and MTA DBM policies carve out a niche, displaying pronounced ROI
strengths. Conversely, DDMRP performs the best in terms of service levels, particularly
when confronted with high spike demand patterns. This juxtaposition finds further
reinforcement in Figures 29 to 33 from section 4.5.3, visually mapping the landscapes of
Finding-4 to Finding-9.
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Group C: Performance comparison by different policies under demand variation
and supply variation

Pivoting to Group C, the analysis probes the nuances of policy performance under the dual
umbrellas of demand and supply variations. Here, the MTA DBM policy stands out,
countering the variability, and is distinctly evident in Case 3. In stark contrast, the ROP
policy produces the excellent ROI figures, especially pronounced in the environs of Cases
1 and 3. However, the narrative could be more straightforward; supply variations pose
challenges, casting a shadow on service levels, with transportation lead time emerging as
a particularly sensitive touchpoint. Figures 34-36 within section 4.5.3 clarifies these
dynamics, framing the intricate dances of Finding-10, Finding-11, and Finding-12.

In culmination, this section serves as an analytical tapestry, weaving together multifaceted
insights from the triad of groups, crafting a harmonised and enriched narrative. As we pivot
from these detailed findings, Section 4.6 - Comparative Analysis promises a more holistic
examination of the results in juxtaposition. This strategic progression positions us to delve
deeper into the nuances of inventory policy dynamics.
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4.6 Comparative Analysis

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������4.6.1 Introduction

The Comparative Analysis aims to synthesise insights derived from our simulation
experiments, ensuring a holistic understanding of inventory policies' impact on distribution-
side supply chain performance metrics. Within this scope, we will juxtapose findings from
Groups A, B, and C, highlighting the intrinsic roles of parameters like Safety Stock (SS),
Initial Buffer Size (IBS), and more. This section will also provide a consolidated view of the
effectiveness of ROP, MTA DBM, and DDMRP policies under varying demand and lead-
time conditions and the underlying factors influencing these results. In our pursuit of a
comprehensive analysis, we have delineated several criteria pivotal to evaluating the
inventory policies in question.

First and foremost, we emphasise the importance of Performance Consistency.
Evaluating each policy's ability to yield desired outcomes across various scenarios is
paramount. For this, we refer to the key performance indicators outlined in Chapter 4.5,
Results Presentation, explicitly highlighting the insights from Table 10.

Secondly, the Trade-off between ROI and SL emerges as a crucial criterion. It is
essential to balance two primary objectives: the economic benefits of Return On Inventory
(ROI) and the efficiency of meeting demand, reflected by the Service Level by Revenue
(SL). These dual objectives, encapsulating the essence of inventory decision-making, offer
a clear lens through which we can assess the relative strengths of the policies at hand.

Lastly, the Adaptability to Demand and Supply Variations criterion holds significant
weight. Here, we gauge the resilience and adaptability of each inventory policy amidst
fluctuating market conditions. The variation experiments, marked by their diverse stages
and coefficient factors, serve as our foundational criteria for this evaluation, effectively
simulating real-world market dynamics.
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Collectively, these criteria anchor our analysis in the core tenets of inventory management
and provide a systematic approach to unravel the intricacies of the ROP, MTA DBM, and
DDMRP policies.
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To fathom the depths of each inventory policy, distilling them through a group-wise lens is
pivotal. As presented here, such an approach permits an explicit understanding of each
policy's operational nuances across diverse scenarios. Table 22, featured below, shows a
clear snapshot of crucial parameters extracted from the simulation experiments. These will
play a pivotal role in ensuing discussions.

Table 22 - Comparative Overview by Group and Policy with all critical parameters

This tabular overview will serve as a compass, guiding us through the maze of findings and
insights as we dissect each policy's merits and limitations. 

Group A: Interaction of Inventory Policies with Performance Metrics

Within Group A, the Reorder Point (ROP) policy with Safety Stock (SS) forms the
influencing factor in Inventory Level (IL)-the Graphs for Finding-1 Scatterplot Matrix. The
MTA DBM and DDMRP policies have similar relationships in that the Initial Buffer Size
(IBS) and Lead Time Factor (LTF) significantly affect the Inventory Level (IL), as shown in
Graphs for Finding-2 and Finding-3. On the other hand, the Spike Threshold Percentage
(STP) in DDMRP policy shows the opposite pattern:  when STP goes up, IL goes down.
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Group B: Performance Across Different Demand Patterns in three cases

Group B examines how policies perform under different demand patterns. The ROP policy
does particularly well regarding Return On Investment (ROI) in Case 1, better than MTA
DBM and DDMRP, as seen in Graphs for Finding-4 and Finding-5. For MTA DBM, it
achieved the highest ROI in Case 3, as shown in Graphs for Finding-6. When the demand
variation is lower, with CoV below 7, ROP and MTA DBM Policies could achieve 100%
Service Level (SL) in Case 3, as shown in Graphs for Finding-8. However, DDMRP is
good at keeping a steady service level, even when surged demand is high in Case 3, as
seen in Graphs for Finding-9.

Group C: Influential Factors and Assumptions under simulated Demand Variation
(DV) and simulated Supply Variation (SV) in Transportation Lead Time (TLT) 

This Group helps us understand what influences our choice of inventory policies. MTA DBM
is vital; even when demand variation increases, it keeps a steady Service Level by
Revenue (SL) in Case 3, as shown in Graphs for Finding-10. ROP shows highest ROI,
especially in Cases 1 and 3, as stated in Graphs for Finding-11. Nevertheless, there is a
challenge with increasing Supply Variation (SV) in transportation lead time. The Service
Level by Revenue (SL) tends to drop, showing that our performance of policies will
decrease due to factors in supply chain supply variation, as shown in Graphs for
Finding-12.

To sum up, each Group gives us a clear picture of how inventory policies work. As we move
forward, we will dive deeper to understand these findings and see how they fit in today's
supply chain world.
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Delving into our group-wise examination, several patterns and insights emerge. It is
unmistakably evident from the Group A study that the Safety Stock (SS), under the Reorder
Point (ROP) policy, significantly influences inventory levels. This observation is imperative
for businesses as it underscores the essence of judiciously adjusting their safety stocks. By
doing so, they could effectively balance the juxtaposition of inventory holding costs against
the desired service level.

Moreover, Group B's findings shed light on the ability of the ROP policy in attaining a
superior Return On Investment (ROI), particularly amidst fluctuating demand patterns. This
emphasises the economic leverage this policy could proffer under specific circumstances.
Simultaneously, DDMRP’s capability in maintaining service levels, even amidst heightened
demand oscillations, must be noted. This trait indicates the policy's suitability for business
environments characterised by volatile demand.

Shifting our gaze to Group C, it becomes abundantly clear that the MTA DBM policy offers
stability amidst escalating demand variations. Its consistent performance, even when
confronted with tumultuous demand changes, positions it as an indispensable tool for
situations ridden with demand unpredictability.

However, universal challenge, cutting across all policies, was their vulnerability to supply
variations, especially regarding transportation lead times. This observation spotlights a
pivotal area for further exploration and potential improvement.

 Page 222



��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������4.6.4 Implications of Comparative Findings

The insights from this comparison have profound implications for supply chain
management. Notably, there is an inextricable linkage between the efficacy of an inventory
policy and its contextual business landscape. For instance, the resilience of DDMRP in
ensuring consistent service levels makes it an attractive proposition for businesses
grappling with unpredictable demand surges.

Nevertheless, while the ROP policy's prowess in specific ROI scenarios is commendable,
it becomes incumbent upon businesses to embrace a more holistic perspective. They
must weigh the tangible economic benefits against pitfalls like stockouts or excessive
inventory. 

A pressing concern that emerges from our findings is the urgent need to fortify supply
chains for the future. Given the challenges unearthed in the face of supply variations, it
becomes paramount for businesses to mull over strategies that transcend inventory
policies. Diversifying supplier bases or making strategic forays into predictive analytics
might be worth considering.
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Our detailed comparison showed how different inventory methods work in various
situations. Simply put, there is no one-size-fits-all answer. Companies should consider
many things when picking an inventory method, like changing demand and their broader
financial aims. As supply chains keep changing, businesses should regularly check their
approach and make necessary changes.
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Upon doing an in-depth examination of the many aspects of our analysis, it becomes
evident that the dynamics of inventory management are complex and have multiple
dimensions. Selecting an acceptable inventory strategy is not solely a theoretical exercise
but a process that strongly relies on practical, real-world events and the unique intricacies
of each corporate environment.

Further expanding on these findings, the comparative results from our simulation present
vital insights. The Re-order Point (ROP) inventory policy is the most effective in ROI,
particularly in contexts with extended demand intervals. However, when a known surge in
demand is on the horizon, Demand-Driven Material Requirements Planning (DDMRP)
assumes prominence, outclassing both ROP and Make-to-Availability (MTA) Dynamic
Buffer Management (DBM). It is also imperative to consider the practicality of these
policies: the MTA DBM policy allows for more straightforward adjustments in buffer
parameters compared to the nuanced calibrations required in DDMRP. Additionally, a
pivotal observation from the study was the discernible decline in Service Level by Revenue
(SL), as there was an uptick in Supply Variation (SV) in Transportation Lead Time (TLT).
These discernments deepen our comprehension and may provide invaluable guidance for
enterprises seeking to refine their inventory approaches in varied scenarios.
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Chapter 4 shows the outcomes of the simulation with respect to the three case studies and
in light of differing inventory dynamics, yielding valuable insights.

The foundational structures are presented in sections 4.1 to 4.4.7, and the simulation
results are then described in 4.5, and undergo a comparative analyses in 4.6. Section 4.7
provides the 'Summary of Key Findings' to present discernible patterns.

While inventory management's foundations are rooted in well-established theories, these
theories are stress-tested against unpredictable and diverse real-world scenarios. The
findings emphasise the situational supremacy of inventory policies:

A. Re-order Point (ROP) Efficiency: The ROP inventory policy delivers the highest
ROI in scenarios with longer demand intervals (Finding-11).

B. DDMRP's Edge During Demand Surges: When faced with a foreseeable increase
in demand, DDMRP demonstrates superior performance, outshining both ROP and
MTA DBM policies (Finding-7 and Finding-9).

C. The practicality of MTA DBM: MTA DBM provides a simple and user-friendly
method for automatic buffer level adjustments compared to the meticulous tuning
demanded by DDMRP. (Finding-2) For turning parameters of MTA DBM, only IBS is
influencing factor for the performance outcomes. The single factor streamlines
decision-making and reduces complexity. On the other hand, DDMRP requires
multiple parameters (LTF and STP), which can induce the conflicting decisions
between the trade-off of IL (Finding-3).

D. Service Level Variation: A marked reduction in Service Level by Revenue (SL) was
observed, corresponding to increased Supply Variation (SV) in Transportation Lead
Time (TLT) (Finding-12).

These findings illuminate the strengths and limitations of each inventory policy and highlight
their contextual implications. While ROP is more conventional and uncomplicated, DDMRP
possesses much potential, and MTA DBM seems more adaptable. Inventory management
involves selecting an appropriate policy according to a certain scenario rather than merely
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involves selecting an appropriate policy according to a certain scenario rather than merely

selecting a superior policy in isolation.

In conclusion, these findings underscore the criticality of adaptability and contextual
decision-making in inventory management. Beyond their empirical richness, it serves as a
reminder that supply chain practitioners should adapt to select and change inventory
policies according to the variability of demand and supply in the constantly evolving world
of supply chains.
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5. Discussion

5.1 Recap of Research Questions

This chapter explores the findings from the simulation analysis, compares them with related
literature, and explains how the conclusions were derived through the supporting evidence
in previous chapters. The structure of this chapter encompasses a recap of research
questions along with the conceptual framework, an interpretation of critical findings, a
comparison with prior studies, theoretical and practical implications, and a reflection of the
limitations of this research.

Research Questions:

RQ1 - How do inventory policies, particularly forecast-based and consumption-based
methods, interact with performance metrics in distribution-side supply chain scenarios?

RQ2 - How do the performance outcomes of inventory policies (ROP, MTA DBM, DDMRP)
vary across different demand levels and supply lead time stability in the distribution-side
supply chain?

RQ3 - What are the key influential factors and assumptions that underpin the selection and
effectiveness of various inventory policies?

This study employs a simulation-based approach to evaluate the performance of inventory
policies according to the research questions. It employs AnyLogistix (ALX) to model
inventory policy scenarios under variable demand patterns and supply lead times.
Simulation methods focus on three major inventory policies—Reorder Point (ROP), Make-
to-Availability Dynamic Buffer Management (MTA DBM), and Demand-Driven Material
Requirements Planning (DDMRP)—for comparative analysis across various experimental
groups.
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Conceptual framework

Figure 41 shows the comprehensive inter-relationship between simulated performance
results as dependent variables and planning parameters as dependent variables in
simulation experiments. The sources of variation in demand are generated by probability
distribution in the variation coefficient ratio in CoV as 1, 5, 10, 15 and 20. The sources of
supply variation are generated by multiplying Transportation Lead Time (TLT) with the
variation coefficients ratio as 0.2, 0.5, 1, 1.5 and 2.

Figure 41 - Conceptual framework in Document 5

Buffer Up+ Adjust % (BUA), Buffer Down- Adjust % (BDA), and Base Safety Factor (BSF)
are static factors within the simulation context. Conversely, Average Daily Usage (ADU)
and Net Flow Position (NFP) are calculated dynamically. When considering Order up-to
maximum level (Q), Fixed replenishment point (R), and Safety Stock (SS) within ROP,
Service Level by Revenue (SL), Revenue Level (RL), and Inventory Level (IL) are
dependent variables. For MTA DBM, they are determined by Initial Buffer Size (IBS), Too
Many Green (TMG), and Too Many Red (TMR). Meanwhile, Lead Time Factor (LTF),
Variability Factor (VF), Spike Threshold Horizon (STH), and Spike Threshold Percentage
(STP) are independent variables in DDMRP. Lastly, Supply Variation (SV) and Demand
Variation (DV) serve as modifiers, specifically adjusting the transportation lead time and
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Variation (DV) serve as modifiers, specifically adjusting the transportation lead time and

demand distribution. The above conceptual framework sets the foundation for the
simulation context in Chapter 4, which adequately answers RQ1, RQ2 and RQ3.
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5.2 Interpretation of Key Findings and Literature Comparison

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������5.2.1 Introduction

In this section, we delve into the results of our simulation experiments, highlighting the
complex interplay between different inventory policies and their effects on supply chain
performance metrics. Drawing upon past research provides context and depth to our
current findings. This section will compare our simulation results with those from earlier
literature reviewed in Chapter 2. We aim to spotlight both similarities and differences. This
comparison helps root our research in the broader narrative of supply chain planning and
execution.

The supply chain planning and execution environment is ever evolving, demanding the
alignment of current findings with historical research. This section commences with our key
findings from the literature review, utilising the key factors in section 2.4 to present a
structure and context. These factors – forecast accuracy, lead time variability, buffer
management, demand variability, the bullwhip effect, safety stock, service level (SL), lead
time (LT), replenishment review timing and information sharing are central to understanding
the performance of different inventory policies in supply chain management. Through this
comparison, we strive to root our research within the broader supply chain management
context.
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5.2.2 Interaction of Inventory Policies with Performance Metrics
(Addressing RQ1)

In addressing RQ1, our findings revealed that given the fundamental mechanism of the
Reorder Point (ROP) inventory policy, Safety Stock (SS) exhibits a strong correlation with
both Service Level by Revenue (SL) and Return on Inventory (ROI) (Finding-1 from SE0).
As the Safety Stock (SS) parameter increases, SL invariably amplifies, while there is a
potential decline in ROI. This interrelationship highlights the classic trade-off often seen in
inventory management. For Simulation Experiment SE0, we employed the ALX simulator
to use the variation experiments, aiming to select the parameters boasting the highest SL
and maximum ROI for subsequent simulation experiments (SE1-SE4). Essentially, ROP's
performance hinges on the forecast demand accuracy to set the order up to the top level
(Q) and the fixed replenishment point (R). When forecasting errors occur, the Safety Stock
(SS) is a buffer, absorbing demand and supply variations. Hence, forecasting accuracy is
the critical factor influencing the initial parameter setting for ROP performance.

In contrast, MTA DBM employs the Initial Buffer Size (IBS) as its primary parameter. An
enlarged IBS boosts the system's Service Level (SL), though it may come at the expense
of ROI. This observation reinforces the notion that buffer sizes are crucial in determining
the agility and responsiveness of MTA DBM policies. In MTA DBM, IBS remains the
solitary critical planning parameter, overshadowing adjustments like TMG and TMR, which
do not yield significant performance outcomes. Therefore, the accurate estimation of the
initial IBS setting is paramount for optimal MTA DBM performance (Finding-2 from SE0).

Similarly, DDMRP consistently achieves stellar service levels, primarily due to its capability
to manage confirmed demand spikes within the Spike Threshold Horizon (STH). This
performance is further influenced by the Spike Threshold Percentage (STP), which has an
inverse relationship with Inventory Level (IL). Concurrently, the Lead Time Factor (LTF)
positively correlates with IL. The underlying implication is that a heightened service level
invariably leads to a bolstered IL, which often diminishes ROI (Finding-3 from SE0).

Key Finding A relevant to RQ1: Based on the three actual cases' demand profiles and
scenarios, the simulation results suggest that the ROP method provides superior ROI
 Page 232



scenarios, the simulation results suggest that the ROP method provides superior ROI

performance, particularly during prolonged demand intervals.

Historically, the Reorder Point (ROP) has been fundamental to inventory management
systems (Wilson, 1934; Tersine 1994). Earlier research highlighted ROP's effectiveness in
managing inventory holding costs while minimising stockouts, an essential assumption in
modern supply chain management.

Silver et al. (1998) broadened this viewpoint, highlighting ROP's ability to regulate inventory
levels in response to unforeseen market variations. Our results match these essential
viewpoints of ROP's effectiveness in inventory management. ROP consistently yielded a
high return on investment in the simulated experiments for Finding-4, Finding-5, and
Finding-9, while demand remained somewhat stable. The stability arises from the
requirement of the ROP method for accurate forecasts of demand and safety stock to
reduce unpredictability, as Nahmias (2009) highlighted in his evaluation of safety stock as
a vital buffer against unpredictable demand within the replenishment cycle.

A vital factor of ROP's performance is the accuracy of demand forecasts. Bayraktar et al.
(2019) indicated that forecast inaccuracy is a primary factor contributing to inventory
management challenges, such as the bullwhip effect, resulting in increased inventory
holding costs and deteriorated service levels. Our findings indicate that the static
characteristics of ROP's planning parameters assume the accuracy of anticipated
demand, facilitating appropriate reorder point setup and inventory level management.
Nonetheless, when demand substantially differs from forecasts, the system's adaptability
declines, exposing the limitations of static safety stock levels. Mattsson (2010) proposed
the agile ROP framework that it is necessary to build adaptive tactics to respond to
variable market situations. This corresponds with the challenge identified in our study,
where the static safety stock model intermittently struggled to manage unpredictable
demand fluctuations.

A significant factor affecting ROP's performance is the variability in lead time. Chen et al.
(2000) recognised lead time variability as a substantial factor in increasing inventory costs
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(2000) recognised lead time variability as a substantial factor in increasing inventory costs

and the degradation of service levels, especially when coupled with demand shifts. In our
study, the ROP approach demonstrated a stable ROI with consistent supply lead times, as
the fixed safety stock levels effectively accommodated minor fluctuations in demand. When
there is significant variability in Transportation Lead Time (TLT), as seen by Yang &
Geunes (2007), the ROP method's need for static reorder positions makes it more
susceptible to stockouts and delayed replenishment.
To address these challenges, De Pacheco et al. (2015) introduced a dynamic reorder point
system that adapts according to lead time and demand fluctuations. This method provides
adaptability by using adjustable ordering thresholds and performance indicators such as
Lead Time Absorption (LTA) and Demand Absorption (DA). Our study concentrated on a
conventional ROP model; however, the findings from De Pacheco et al. indicate that
integrating variable lead time and demand parameters into the ROP framework may
improve its adaptability, especially under fluctuating market situations.

Buffer inventory, or safety stock, is essential for maintaining a high return on investment in
ROP systems, especially when demand patterns fluctuate. Miclo et al. (2019) highlighted
the significance of strategic decoupling points and safety stock to mitigate variability and
reduce the bullwhip impact. Our simulation experiments similarly revealed that the
effectiveness of ROP with prolonged demand patterns in reducing stockouts and
maintaining ROI was closely related to safety stock levels, which served as a buffer against
supply and demand variations. The alignment with Nahmias (2009) is evident, as the safety
stock in our ROP simulations was computed to ensure service levels were achieved
despite unpredictable demand fluctuations.

The bullwhip effect is another factor influencing ROP performance. Lee et al. (1997)
describe that the bullwhip effect occurs when minor fluctuations in demand at the consumer
level are amplified upstream in the supply chain. It will induce poor stock performance with
overstock and out-of-stock situations regularly. Our simulations revealed that ROP’s static
parameters made it vulnerable to the bullwhip effect in scenarios where demand variability
was high. This is particularly relevant in cases where demand amplification occurs, as Paik
& Bagchi (2007) additionally identified, which can cause substantial deviations in order
quantities and lead to overstocking or stockouts. The findings suggest that ROP is suitable
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for stable demand patterns. However, it is vulnerable to the bullwhip effect that induces the
need for adaptive mechanisms, such as those proposed by De Pacheco et al. (2015),
designed for variable reorder points and dynamic adjustments to safety stock levels.

Our study reinforces the traditional view of ROP as an exceptionally efficient inventory
management method, particularly in contexts characterised by extended, stable demand
intervals; nevertheless, new research promotes more dynamic methodologies. Pathom
(2023) emphasised the application of discrete-event simulation to enhance ROP
parameters and reduce product damage, a technique that facilitates real-time adjustments
in response to changing demand and supply dynamics. This contemporary methodology
for ROP, which relies significantly on sophisticated simulation approaches, corresponds
with our findings, especially in instances when static ROP methods could gain from
enhanced flexibility in parameter adjustment. Mattsson (2010) argued that the static
characteristics found in traditional ROP models may be inadequate for contemporary
dynamic market conditions, characterised by frequent demand and supply variations.

In conclusion, our simulation findings demonstrate that ROP provides enhanced ROI
performance with extended demand patterns, as its built safety stock and reorder points
effectively regulate inventory under predictable situations. Nevertheless, as forecast errors,
lead time variability, and the bullwhip effect increase, the weaknesses of static ROP
systems become noticeable. Integrating more dynamic elements, such as variable reorder
points and adaptive buffer inventory, as suggested by De Pacheco et al. (2015) and
Mattsson (2010), may further enhance ROP’s performance in fluctuating markets. While
ROP remains a valuable tool in inventory management, evolving market conditions
necessitate adopting more agile strategies to maintain high service levels and ROI.

 Page 235



5.2.3 Variations in Inventory Policy Performance (Addressing RQ2)

In addressing RQ2, interactions between demand levels, lead times stability, and the
resultant performance trajectories of distinct inventory policies highlight some depth and
nuance.

Our investigative lens focused on the performance dynamics of inventory policies - ROP,
MTA DBM, and DDMRP - against the backdrop of diverse demand settings and the
stability of lead times in the supply chain's distribution segment. The simulated experiments
from SE1 and SE2 illuminated these aspects.

ROP emerged as a stalwart performer in SE1's Case 1, showcasing the best ROI
performance (Finding-4 from SE1). The unique demand pattern in Case 1, captured in
Figure 29-B, highlights the sporadic nature of monthly demands and elongated order
intervals, accentuating ROP's adeptness in such scenarios. Moreover, ROP's superiority
was further underscored in Case 2, consistently outpacing MTA DBM and DDMRP
regarding ROI (Finding-5 from SE1). It's pertinent to note that for Case 2, as deduced
from section 4.5.3 Table 17, the Coefficient of Variation (CoV) of Demand Variation DV
remained steadfastly below 2, marking it as stable.

While overshadowed by ROP in Cases 1 and 2, MTA DBM outperformed the other
inventory policies SE1's Case 3. Here, it overshadowed its peers to command the highest
ROI (Finding-6 from SE1), a testament to MTA DBM's adaptability and context-driven
efficiency.

On the other hand, DDMRP, despite its comparatively subdued ROI, also showed some
potential. In SE1's Case 3, its commitment to ensuring service levels was evident as it
achieved a 100% Service Level by Revenue (SL) despite sever challenges in high
demand variability (Finding-7 from SE1). Intriguingly, ROP and MTA DBM matched this
SL performance in Case 3 for products whose DV of CoV remained under 7 (Finding-8
from SE1). However, the highest level of DDMRP's SL in Case 3 presented a contrast to
ROP's consistent ROI superior performance in Cases 1 and 2 (Finding-9 from SE2).
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Key Finding B relevant to RQ2 and RQ3: DDMRP becomes more relevant during
anticipated demand surges, outperforming ROP and Make-to-Availability (MTA) Dynamic
Buffer Management (DBM).

The Demand-Driven Material Requirements Planning (DDMRP) approach is more
effective in handling expected demand surges, outperforming the Reorder Point (ROP)
method and Make-to-Availability (MTA) Dynamic Buffer Management (DBM) in simulated
experiments. DDMRP indicated greater flexibility and adaptability, making it more suitable
for handling demand surges, a conclusion that supports the findings of Miclo (2018).
Historically, DDMRP has been characterised as an agile and flexible approach, capable of
real-time responsiveness, in contrast to the conventional but less dynamic ROP. This
fundamental distinction highlights the increasing significance of DDMRP in contexts
marked by sharp demand variations.

DDMRP's flexibility in addressing demand variability was highlighted by McCullen and
Eagle (2015), who compared DDMRP with conventional planning methods. Their research
emphasized DDMRP’s ability to reduce lead times and improve order fulfilment rates,
which explains its superior performance during demand surges. In this research, namely
Finding-7 in SE1 and Finding-9 in SE2, this flexibility was particularly obvious when
DDMRP maintained a 100% Service Level by Revenue (SL) even during periods of highly
volatile demand. This further corroborates Narita et al. (2021), who argued that DDMRP's
structure allows for a proactive response to market fluctuations, a feature critical in handling
demand surges.

The main factors influencing the previously mentioned flexibility are Spike Threshold
Horizon (STH) and Spike Threshold Percentage (STP), which are significant DDMRP
parameters for managing projected demand surges. These properties enable DDMRP to
dynamically modify buffer sizes and initiate advanced make-to-order (MTO) placements in
response to demand surges, as described by Ptak and Smith (2016). The ability to react
immediately by generating additional buffer stock to cope with demand spikes makes
DDMRP a more agile system than ROP and MTA DBM.
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DDMRP's ability to handle demand variability is a crucial differentiator from traditional
inventory strategies like ROP and MTA DBM. According to the simulation experiment
(SE1) in Finding-7 and Finding-9 with Case 3, DDMRP achieved a 100% service level
for items with a Coefficient of Variation (CoV) over 7. On the other hand, MTA DBM did not
perform better in terms of service level than DDMRP in this, scenario (SE1). DDMRP
effectively manages increased demand fluctuation through its DDMRP Buffer Management
logic, which continuously adapts to real-time demand signals. This supports Ikeziri et al.
(2023), who showed that DDMRP is better suited to handling extreme demand variability
compared to traditional methods like ROP and MTA DBM. Although DBM is helpful under
specific circumstances, it is insufficient to address extreme demand surges, for which
DDMRP is more suitable.

Lee et al. (1997) and Paik & Bagchi (2007) highlight that the bullwhip and ripple effects are
crucial in addressing demand variability. In the context of elevated order fluctuation,
DDMRP's adaptive buffer adjustment mitigates the negative impacts of the bullwhip effect,
a phenomenon that frequently affects less flexible systems such as ROP. By employing a
more adaptable buffer sizing strategy, DDMRP reduces unnecessary order fluctuations
upstream in the supply chain, facilitating a more consistent flow of goods despite
increased demand volatility.

Despite its benefits, DDMRP presents challenges, especially regarding resource intensity
and implementation difficulty. Hung et al. (2004) emphasised that although DDMRP
delivers enhanced service levels during demand spikes, its deployment requires more
resources than traditional systems. This underscores the trade-off between service level
(SL) and Return on Inventory (ROI), especially when resources are constrained. Our
Finding-7 in SE1 supports this view, indicating that while DDMRP attained a 100%
service level, its total return on inventory was worse than that of MTA DBM, mainly due to
the extra buffer stock required to accommodate demand fluctuations. This supports Lee &
Rim's (2019) claim that the complex nature of DDMRP necessitates a comprehensive
system for ongoing monitoring and prompt parameter adjustments.

The trade-off between service level and inventory investment is a central theme in
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evaluating DDMRP’s performance. Pathom's (2023) research on discrete-event simulation
for DDMRP also revealed that while DDMRP can minimize product shortage and enhance
profitability, its overall efficiency is contingent upon the quality of execution. In the simulation
study, DDMRP’s advanced replenishment model, driven by factors like Lead Time Factor
(LTF) and Variability Factor (VF), allowed it to outperform traditional methods in Service
Level (SL), but this came at the cost of increased inventory levels. The challenge here, as
noted by Azzamouri et al. (2021), lies in the reliability and interrelated nature of these
planning parameters, making DDMRP more complex to implement than simpler systems
like MTA DBM or ROP.

DDMRP’s handling of anticipated demand surges through its Order Spike Horizon (OSH)
and Order Spike Threshold (OST), as detailed by Ptak and Smith (2016), allowed it to
maintain high service levels by pre-emptively adding buffer stock during periods of
anticipated demand. This flexibility in buffer management is a distinct advantage over ROP,
which relies on static reorder points that may not adequately account for sudden demand
spikes. Similarly, MTA DBM, though more adaptive than ROP, struggled with maintaining
high service levels for products with higher demand variability (CoV > 7), indicated in
Finding-8 SE1, while DDMRP could easily manage these fluctuations. This shows that
DDMRP's advanced buffer management logic is indispensable in scenarios with higher
demand variability.

In conclusion, DDMRP is an agile and adaptable inventory policy that is exceptionally
proficient in managing projected demand spikes. Although conventional systems such as
ROP and MTA DBM retain their importance in stable settings, DDMRP's adaptability,
immediate reactivity, and advanced buffer management make it the preferred approach in
volatile markets characterised by significant demand variability. Nonetheless, the
complexity and inventory resources demanded indicate that it may only sometimes be the
most appropriate choice for all businesses. The Key Finding B indicates that MTA DBM
provides a more straightforward, less inventory-demanding approach capable of
maintaining high service levels under specific conditions. At the same time, it lacks the
flexibility of DDMRP. The choice between these inventory policies should ultimately be
guided by the organisation's specific demand patterns, resources, and strategic
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objectives.

To synthesise, the complex interplay between demand fluctuations and lead time
consistencies differs for to each inventory policy. Every policy showcases strengths and
vulnerabilities for different cases and experimental conditions. Consequently, supply chain
architects must exercise discernment in adopting and operationalising these policies,
calibrated to the fluidity of supply chain dynamics.
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5.2.4 Influential Factors and Assumptions Underpinning Policy
Choice (Addressing RQ3)

In response to RQ3, many influential factors and assumptions affect the policy selection for
different scenarios. The choice of an inventory policy is seldom arbitrary; it is rooted in
many intrinsic and extrinsic factors. While the inherent mechanics of each policy play a role,
external factors such as demand predictability, lead times stability, and even broader
market dynamics can heavily influence policy selection.

MTA DBM's tenacity emerged in Case 3, adeptly navigating the stormy seas of fluctuating
demands without compromising the Service Level by Revenue (SL) (Finding-10 from
SE3). This resilience underscored the strength of its foundational mechanisms,
emphasising the role of estimation in the Initial Buffer Size (IBS). Then, the MTA DBM
policy will use the TMG and Too Many Red (TMR) as autopilot to adjust the buffer size for
adapting the variation in Demand Variation (DV) and Supply Variation (SV).

ROP's consistent outperforming of MTA DBM and DDMRP in ROI, especially evident when
amplifying the Coefficient of Variation (CoV) by Demand Variation (DV) in Cases 1 and 3,
attested to its robust design and adaptability (Finding-11 from SE3).

After including the impact of DV and SV into the simulation experiments, all planning
parameters were kept unchanged according to selected parameters used in SE0 variation
experiments to ensure a stable and fair comparison. Therefore, the experiments did not
adjust the parameters in DDMRP, such as Lead Time Factor (LTF), Variability Factor (VF),
Spike Threshold Horizon (STH) and Spike Threshold Percentage (STP). The dynamic
adjustment on all parameters of DDMRP is a critical success factor in handling different
supply chain scenarios.

Moreover, a pivotal revelation stemmed from evaluating SV with respect to Transportation
Lead Time (TLT). Results suggest that SV plays a decisive role in dwindling the Service
Level by Revenue (SL) in all three cases in SE4 (Finding-12 from SE4). 
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Key Finding C relevant to RQ3: The MTA DBM policy, in practice, allows for easier
adjustments to buffer parameters, contrasting with the intricate adjustments essential for
DDMRP.

This observation has practical implications, especially for businesses striving for agility
without taxing their operational processes with undue complexity.

Buffer management, as detailed in section 2.3, plays a central role in determining the
performance outcomes of inventory policies. The literature emphasises the requirement to
adjust buffer sizes to address variations in demand and supply (Ikeziri et al., 2023; Marco,
2015). Our Key Finding C indicates that in the scenario of MTA DBM, the Initial Buffer Size
(IBS) is the main factor affecting inventory levels (IL). MTA DBM employs IBS as its primary
buffer parameter, in contrast with DDMRP, which depends on various interrelated
parameters. This simplification corresponds with the Theory of Constraints (TOC)
paradigm stated by Ikeziri et al. (2023), whereby Dynamic Buffer Management (DBM)
systems are recognised for their simple methodology in inventory management that
simplifies operational operations.

In contrast, DDMRP relies on more complex variables such as the Lead Time Factor (LTF)
and Spike Threshold Horizon (STH), which require constant monitoring and fine-tuning.
Research by Narita et al. (2021) emphasizes that DDMRP’s complexity, though effective in
highly dynamic environments, poses challenges in environments with moderate variability,
where simpler systems like MTA DBM can perform equally well with less effort. The Graphs
for Finding-8 show that ROP and MTA DBM could achieve 100% SL when the demand
variation (CoV) is lower than 7 with less noise by surge demand.

Demand variability and the bullwhip effect are critical factors affecting inventory
performance, as discussed by Lee et al. (1997) and Dolgui et al. (2020). The bullwhip
effect refers to the amplification of demand fluctuations propagating through the supply
chain. In environments with low to moderate demand variability, as seen in our study (with a
Coefficient of Variation (CoV) below 7), MTA DBM was able to achieve 100% Service
Level (SL) without requiring intricate adjustments. This confirms the insights from Narita et
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Level (SL) without requiring intricate adjustments. This confirms the insights from Narita et

al. (2021), which highlighted DBM’s ability to maintain stability in less volatile conditions.

Conversely, DDMRP effectively reduces the bullwhip impact during significant demand
spikes but with increased complexity in regulating many parameters. Miclo (2018) notes
that although DDMRP is very adaptive, its dependence on parameters such as Average
Daily Usage (ADU) and Spike Threshold Percentage (STP) renders it more resource
intensive. Consequently, although DDMRP is efficient in contexts with significant volatility,
MTA DBM's ability to manage moderate demand changes with little adjustments provides
a practical benefit in more stable markets.

Safety stock management is another influential factor in inventory performance, particularly
in mitigating demand uncertainties (Nahmias, 2009; Waller et al., 2008). Our finding C
shows that MTA DBM adjusts safety stock levels primarily through IBS, simplifying stock
management compared to DDMRP’s use of multiple buffer zones. This simplicity enables
MTA DBM to maintain high service levels without requiring complex parameter
adjustments, as demonstrated in the simulation experiment SE1 in Finding-8.

The literature consistently highlights that maintaining optimal safety stock levels is crucial
for avoiding stockouts while minimizing excess inventory (Nahmias, 2009). In this regard,
MTA DBM’s straightforward approach to buffer sizing is well-suited for businesses that
need to balance inventory levels with minimal operational disruption. In contrast, DDMRP’s
more intricate safety stock mechanisms, which involve continuous adjustment of buffer
zones based on real-time demand signals, offer greater flexibility but require more robust
systems for monitoring and adjustment (Lee & Rim, 2019).

Lead time variability (LT) and replenishment review timing are critical in determining
inventory performance, as discussed in Chen et al. (2000) and Yang & Geunes (2007). The
ability of an inventory policy to respond to changes in lead time and replenish stock
efficiently determines its overall effectiveness in maintaining service levels. MTA DBM, with
its more straightforward buffer management system, maintained high service levels even
when Transportation Lead Time (TLT) variability increased. This aligns with Chang & Lin
(2019), who noted that reduced complexity in lead time management can improve
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(2019), who noted that reduced complexity in lead time management can improve

inventory recovery times without burdening the system with unnecessary adjustments. 

DDMRP, on the other hand, requires more sophisticated lead time management involving
adjusting parameters like LTF and STH. As Azzamouri et al. (2021) noted, unpredictable
supply chain disruptions can challenge the reliability and accuracy of DDMRP’s lead time
management, necessitating constant parameter adjustment. For businesses operating in
environments with moderate lead time variability, MTA DBM’s more straightforward
approach to managing lead times through basic buffer adjustments is a clear advantage,
offering efficiency without extensive operational oversight.

In conclusion, MTA DBM’s simplicity in adjusting buffer parameters, particularly the Initial
Buffer Size (IBS), provides businesses with an effective and flexible solution for managing
inventory in moderately variable environments. The factors of buffer management, demand
variability, bullwhip effect mitigation, safety stock, and lead time management, which were
anticipated from the literature, all support the finding that MTA DBM offers a streamlined,
less resource-intensive alternative to the more complex DDMRP.

Key Finding D relevant to RQ3: A noticeable trend was the decline in SL as Supply
Variation (SV) in Transportation Lead Time (TLT) increased. 

This finding is crucial for global supply chains or industries with volatile and unpredictable
transportation logistics to trigger demand and supply variability by the following influential
factors:

The bullwhip effect is a well-documented phenomenon in supply chain management that
exacerbates supply chain disturbances by amplifying order variability across multiple
stages (Lee et al., 1997). Our findings align with this understanding, showing that as supply
variation increases—specifically through extended or unpredictable transportation lead
times—this amplified demand distortion leads to stock shortages and delayed
replenishment, causing a decline in service levels. Dolgui et al. (2020) introduced the ripple
effect concept, which can arise from disruptions at different supply chain nodes. Our study
supports this, as the ripple effect amplifies the negative consequences of supply variability
on service levels, mainly when transportation delays propagate throughout the network. 
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The bullwhip and ripple effects highlight how small lead time or demand fluctuations can
snowball, significantly affecting service levels. Our findings show that the ROP policy, which
relies heavily on forecast accuracy and fixed reorder points, becomes vulnerable when
lead times fluctuate unpredictably. As supply variation grows, the reliance on a fixed safety
stock becomes insufficient to absorb the variability, leading to more frequent stockouts and
lower service levels.

Demand forecasting inaccuracy and lead time variability are interrelated issues that
reduce service levels. Bayraktar et al. (2019) emphasised the need for precise forecasting
in mitigating the bullwhip effect. In instances when forecasting accuracy is compromised,
as evidenced by our simulations, minor variations in transportation lead times can
markedly reduce service levels. Moreover, Chen et al. (2000) demonstrated that variable
lead times could exacerbate the bullwhip effect, impacting inventory costs and fill rates. 

Our research validates these results, particularly when MTA DBM and DDMRP attempt to
cope with demand surges and transportation variations. DDMRP, with its adaptive buffer
sizing, can more effectively control demand surges. However, under significant lead time
volatility, this policy still faces challenges sustaining constant service levels. The
replenishment system's failure to quickly adjust to fluctuating lead times highlights the
necessity for more dynamic, real-time adjustments.

Lead time variability is critical to service levels and overall supply chain performance. Yang
& Geunes (2007) pointed out that procurement and order lead times significantly affect the
cycle stock and safety stock levels, directly influencing service performance. As our results
indicate, as TLT variability increases, safety stock becomes inadequate to buffer against
uncertainties, leading to missed orders and declining service levels.

Shorter lead times can mitigate the bullwhip effect, as suggested by Chang & Lin (2019),
but when lead times are unpredictable or extend beyond their expected range, inventory
policies like ROP and MTA DBM suffer performance declines. Tidemann et al. (2020)
further emphasized the importance of lead time management in improving financial
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further emphasized the importance of lead time management in improving financial

performance metrics such as ROI. In Finding-12, the SE2 observed that longer or more
variable transportation lead times led to service level drops and negatively impacted
Return on Inventory (ROI), as stockouts increased while excess inventory was kept
elsewhere in the supply chain.

Replenishment plans are crucial for reacting to supply chain disruptions and maintaining
constant service levels. Snyder et al. (2016) emphasised that disruptive events, such as
transportation delays, create volatility in lead time, yield, and input prices, hence increasing
stochastic variability in order amounts and further reducing service levels. Chen et al.
(2000) highlighted that suboptimal replenishment policies enhance the bullwhip effect,
resulting in inadequate inventory performance. Our simulations indicate that increased
variability in transportation lead time hampers programs such as ROP, which rely on
established reorder points and safety stock that are inadequate for managing
unpredictable supply disruptions.

MTA DBM and DDMRP, utilising dynamic buffer management systems, exhibited superior
performance under variable lead time scenarios. Nonetheless, even DDMRP, despite its
more adaptive replenishment mechanism, encountered difficulties during transit
disruptions. This conclusion indicates that although DDMRP is more adaptable than ROP,
it still necessitates enhancements in handling significant fluctuations in transportation lead
times.

Safety stock is crucial for mitigating variations in demand and supply. Nahmias (2009)
claims that safety stock is affected by expected service levels and the standard variance of
demand during the lead time. Our research revealed that ROP strategies maintaining fixed
safety stock levels saw increased stockouts as supply variability increased. The fluctuation
in Transportation Lead Time (TLT) caused the safety stock in ROP systems to be
inadequately flexible, resulting in a significant decrease in service levels.

Conversely, DDMRP improved its effectiveness in regulating variation through decoupling
points and dynamic buffer adjustments. Miclo et al. (2019) and Waller et al. (2008)
underscored the purposeful positioning of buffer stock at critical decoupling points to
reduce variability, a concept corroborated by our findings. Nonetheless, despite these
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reduce variability, a concept corroborated by our findings. Nonetheless, despite these

tactics, the increasing variability of TLT increased pressure on the system, resulting in
periodic service level shortcomings, especially during demand surges and transportation
delays.

The importance of information exchange in mitigating the bullwhip effect is fundamental. Li
(2010), alongside research by Hall & Saygin (2012) and Jonsson & Mattsson (2013),
highlighted the importance of timely and accurate data communication in mitigating supply
chain variability. Our literature review demonstrates that inadequate information sharing
causes the negative consequences of supply volatility on service levels. In global supply
chains, where transportation lead times are frequently unreliable, enhanced information
exchange among supply chain nodes can substantially reduce service level drops by
facilitating quicker response times and enhancing demand forecasting accuracy.

The decline in service levels observed in our simulations, particularly as Supply Variation
(SV) in Transportation Lead Time (TLT) increased, is a multifaceted problem linked to
several key factors identified in the literature. Forecast inaccuracy, bullwhip and ripple
effects, variable lead times, safety stock management, and information sharing all interact
to affect inventory performance.

ROP policies faced challenges in managing increasing volatility because of their static
safety stock levels, whereas MTA DBM and DDMRP demonstrated superior resilience
through their adaptive buffer management systems. Nevertheless, even these more
dynamic rules necessitate additional optimisation to manage extreme supply fluctuations
proficiently, such as those caused by worldwide transportation disturbances. Cannon
(2008) observed that deliberate decisions concerning safety supplies, decoupling points,
and information exchange can alleviate these impacts. Their direct association with overall
performance enhancements can occasionally be complex.

Our findings highlight the necessity for cohesive solutions that integrate ROP, DBM, and
DDMRP components to respond to the increasingly volatile patterns within the supply
chain. These techniques must include adaptable safety stock management, instantaneous
information exchange, and refined replenishment policies to sustain improved service
levels despite huge supply fluctuations.
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While each inventory policy has unique strengths, its effectiveness invariably is impacted
by intrinsic policy mechanisms and external demand-supply dynamics. The choice of an
inventory policy thus hinges on a comprehensive understanding of these determinants,
guiding supply chain stakeholders towards informed and strategic decisions.
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5.3 Contributions

Within the dynamic field of supply chain management, it is very uncommon for previous
research and approaches, regardless of their innovative nature, to require a certain period
to develop so they can effectively tackle current difficulties. The rapidly changing global
market, shaped by technological advancements, unpredictable demand and supply
fluctuations, and various external socio-economic factors, underscores the critical need to
identify gaps in established practices and foster innovations. This section outlines the key
contributions that may be interpreted from this research, and how it has addressed these
gaps, improving our knowledge of supply chain planning and execution approaches and
their practicality. By filling in these gaps, our research offers insightful analysis and creative
solutions that contribute to existing knowledge and offer practical enhancements for
industry processes. 

One crucial gap is in addressing supply chain practitioners' challenges in selecting and
adjusting policies effectively in dynamic environments. Supply chain practitioners struggle
to choose between different policies, yet it is not always clear as to how they can make
intelligent choices. Furthermore, after deploying established policies, there was a need to
understand how to adjust the planning parameters to appropriately adapt to the changing
environments impacted by demand and supply variation. In this way, this research
identified two crucial gaps, and the key contributions stemming from these are as follows:

Contribution 1 - Selection of Policies: 

Delving into the intricacies of supply chain management reveals the monumental challenge
practitioners face when confronted with many policies. Even after implementing these
conventional policies, a pressing question emerges: How can one aptly fine-tune planning
parameters in volatile demand and supply dynamics? At the core of this difficulty is the
critical task of policy selection. While seminal research has traversed the vast landscapes
of inventory policies, the journey to uncover the quintessential policy, fine-tuned to
situations, remains ongoing. With its unique merits and drawbacks, every policy becomes
even more intricate when juxtaposed with unpredictable external changes. For instance, the
indispensability of static ROP policies is evident, yet they frequently underscore the need
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indispensability of static ROP policies is evident, yet they frequently underscore the need

for more adaptive inventory strategies considering seasonality (Mattson, 2010).

In contrast, DBM's steadfastness against the onslaught of DDMRP during sudden demand
surges does not negate its inherent limitations (Ikeziri et al., 2004). Echoing this sentiment,
Hung et al. (2004) advocate for inventory strategies that align seamlessly with projected
customer service standards and the resources at one's disposal. Complicating this
scenario further is the unpredictable element of "system noise," as Narita et al. (2021)
detailed, which can have profound implications in specific instances.

Innovation 1 - Hybrid Deployment of Policies:

A rigorous analysis of various inventory policies, set against the backdrop of their
performance indicators and foundational premises, heralds the dawn of an innovative
approach. This approach champions the synthesis of disparate policies, culminating in the
creation a hybrid model. By seamlessly merging DDMRP's spike order management with
MTA DBM and integrating MOQ requirements within the DBM's green zone as a core
component of DDMRP, a more cohesive and productive DDMRP is developed. Notably,
integrating the straightforward DBM method allows for the simultaneous utilisation of the
benefits associated with DDMRP logic.

By forging this streamlined DDMRP iteration or a hybrid model that marries MTA with
DDMRP, the principal benefit reaped is the marriage of DBM's operational simplicity with
DDMRP's adeptness in managing known spike orders. Furthermore, it offers a significant
solution to align the DBM green zone when the adjusted buffer level surpasses the top of
green due to a substantial minimum order quantity (MOQ)

Contribution 2 - Dynamic adjustment of planning policies or parameters for
desired performance with trade-off decisions

Even if the correctly selected policy can maintain the expected performance initially, how
can one ensure that the planning policies or parameters sustain the performance
according to the changing supply chain environments?
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In our key findings, the identified factors could provide some signals for triggering the
adjustment. However, there needs to be a systematic way to sense and respond to those
factors in one centralised dashboard according to the supply chain context. De Pacheco et
al. (2015) and Lee & Rim (2019) mention that the research suggests a need for adaptable
planning parameters in response to changing market demands. Fransoo & Wouters
(2000) discuss the similar problems associated with data aggregation, highlighting the
importance of having a sophisticated system to handle those issues effectively. The
complexity of interrelationships between DDMRP parameters increases the difficulty of
parameter adjustments (Azzamouri et al., 2021). The overall adjustment goal is mainly a
trade-off between service and inventory levels (Ptak & Smith, 2016).

Innovation 2 - Data-Driven Intelligent Business Planning (DDIBP) dashboard with
alerts and signals for modelling prediction profiler

A database engine should capture and store the data for exceptional events or demand
patterns in a dashboard for balanced trade-off decisions, which refer to the influential
factors and assumptions for data modelling. The ALX will use those real-time data feeds
for simulation and then interface them into SAS JMP for prediction profiler. Then, the
dashboard can monitor buffer adjustments in real-time with alert signals for necessary
adjustments based on demand patterns or other factors such as “system noise” (Narita et
al., 2021), bullwhip effects and ripple effects in supply chains (Lee et al., 1997 & Doulgui et
al., 2020) and external disruptions (Snyder et al., 2016 & Chen et al., 2000).

The beauty of using a dashboard with a prediction profiler is keeping transparent
information for an effective decision-making process on policies or parameter
adjustments. Any stakeholders could make the judgement and discussion before making
any changes and might leverage the ALX simulator to generate the projected results
according to the proposed changes. Moreover, according to the latest SCOR Digital
Standard model, the dashboard could include any sustainability indexes to enhance
disclosures in environmental, social and governance (ESG) measurement (Peter, 2007;
SCOR Digital Standard, 2022).

Moreover, the author enhanced the ALX by developing customised Java code (Appendix
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Moreover, the author enhanced the ALX by developing customised Java code (Appendix

F) that allows for the evaluation of new emerging inventory policies (MTA DBM and
DDMRP), which were not available in standard ALX. This provides more policy options for
practitioner wishing to design or simulate analyses in future research.

With these innovations in place, we pave the way for an enhanced and transparent
decision-making process in supply chain management.
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5.4 Theoretical and Practical Implications

Having delineated the critical gaps and our innovative approaches, we now turn to the
broader repercussions these insights hold for both academic discourse and real-world
applications in supply chain management. 

The primary outcomes highlight the importance of choosing policies based on specific
assumptions and indicate that a blended approach using various models is the most
effective, as no one-size-fits-all solution exists. A combined approach using both MTA DBM
and DDMRP could offer advantages, allowing for a flexible strategy in supply chain
planning and execution. Rather than determining which model is superior, this study
suggests that policy choices should be adaptable, varying with trends and events. This
perspective paves the way for more in-depth research in the future. 

Understanding the impacts of different planning parameters on the expected performance
of various scenarios for organisational management led to better planning decision-
making. The proposed gaps and innovations indicate that the dashboard and prediction
profiler provide different projected performance outcomes by adjusting various planning
parameters. Supply chain practitioners could benefit from the proposed innovations to
identify the way of selection and adjustment rather than a trial-and-error approach.
Recognising the strengths and weaknesses of different policies can maximise the
expected performance. 

However, integrated with simulation, the suggested Data-Driven Intelligent Business
Planning (DDIBP) dashboard could not capture all events and signals from all angles. It
could only be based on available data according to identified factors and assumptions.
The latest artificial intelligence (AI) technology could enhance the relevant data model with
Big Data analytics and suggested actions in the dashboard. 

While our findings offer valuable insights into supply chain management, it is crucial to
recognise the context in which this research was conducted. Various challenges, both
anticipated and unforeseen, shaped the methods and results of our study.
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5.5 Limitations and Constraints of this Research

Amid the backdrop of a global pandemic and the intricate intricacies of supply chain
simulations, our investigation encountered specific obstacles. These challenges, which
inherently affected our research's scope and depth, are detailed in this section. 

Time and People Constraints during the Pandemic Period

The pandemic-imposed time restrictions, hindering access to crucial stakeholders. This
situation limited our data breadth, compelling us to focus primarily on quantitative data for
comparisons and bypass in-person interviews for qualitative data.

Sampling Constraints: Pre-set Demand Data: 

Our dataset was rooted in pre-determined demand data from three real cases, restricting
flexibility in sample selection. The collected data led us to select only three product items
per case, most of which shared different demand patterns. Consequently, there is a
possibility of average-out effects skewing the underlying distribution.

Experimental Parameters' Limited Range: 

Time pressures meant that our demand and supply variation experiments in transportation
lead time were constrained to a five-step range. Because the complete factorial
experiments in the simulator will take a very long computing time, a more extensive
parameter scope might have given richer insights, especially in gauging performance
impacts across broader demand and supply variations. 

Technical Hurdles: Custom Java Development for MTA DBM and DDMRP in ALX: 

Since MTA DBM and DDMRP were not part of the standard ALX software, we took on the
challenge of adding custom Java coding to include these policies. This allowed us to
compare them with the default ROP policy supported by ALX. The original ALX software
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compare them with the default ROP policy supported by ALX. The original ALX software

and the custom coding were used, as explained earlier in Section 3.6. Though initially
backed by a subcontracted Java programmer, his untimely exit added a five-month
debugging stint to our schedule after an extra modification fee. A wide range of
workarounds were developed to tackle technical problems. For instance, alternative ROI
formulas (by inventory balance or COGS) are unavoidable because multiple data sources
exist. Particularly, synchronization problems with ALX's internal database forced us to
abandon the external database for reporting in favour of a post-processing method using
ALX export data.

Acknowledging these limitations improves our comprehension of the parameters of our
investigation and analysis of the outcomes. These revelations guarantee that our
conclusions stay rooted in the difficulties encountered.
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5.6 Summary of discussion

Building on the preceding discussions, Tables 23, 24, 25 and 26 provide a structured
summary addressing Key Findings A to D for RQ1, RQ2, and RQ3, respectively. 

Table 23 - Discussion summary related to Key Finding A for RQ1: 
Aspects Interaction between KPIs

and Related Policies 
Related Literature

ROI (Emphasis on optimal
inventory levels and
profitability) 

Superior performance of
the ROP method during
prolonged demand
intervals, ensuring optimal
inventory levels and
improved ROI. 

Wilson (1934),
Tersine (1994)

Adaptive Inventory
Strategies (Addressing
uncertainties in demand) 

The Agile ROP framework's
introduction emphasises
the possible
inconsistencies in the
traditional ROP approach
and the need for more
adaptive inventory
strategies.  

Mattsson (2010)

Use of Simulation in ROP
(Enhancing the ROP
method) 

Emphasis on the
transformative role of
discrete-event simulation in
refining the ROP policies,
especially regarding
profitability and minimising
product damages. 

Pathom (2023)

Absorption Inventory Strategic increase in De Pacheco et al. (2015) 
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Absorption Inventory

(Strategic response to
market demand variations) 

Strategic increase in

absorption inventory
(similar to safety stock in
ROP) in response to more
considerable demand
variations and reduced lead
time, helping to counteract
potential disruptions. 
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Table 24 - Discussion summary related to Key Finding B for RQ2 and RQ3: 
Aspects Interaction between KPIs

and Related Policies 
Related Literature

DDMRP's Historical Context DDMRP exhibits flexibility,
adaptability, and real-time
responsiveness, making it
adept at handling demand
peaks. 

Miclo (2018) 

Comparison between
Planning Methods 

DDMRP reduces lead time
and boosts order fulfilment
rates, outperforming
dynamic demand contexts. 

McCullen and Eagle (2015)

DBM vs. DDMRP DBM has benefits, but
when faced with significant
demand shifts, DDMRP
appears more responsive
and proactive. 

Ikeziri et al. (2023), 
Narita et al. (2021) 

Implementation of DDMRP DDMRP excels in service
levels during demand
surges, but its efficiency
depends on resources and
implementation quality. 

Hung et al. (2004) 

Service Level Performance In specific cases, DDMRP
achieves 100% service
level by revenue due to its
"Order Spike Horizon
(OSH)" and "Order Spike
Threshold (OST)" features,
ensuring it doesn't deplete
its standard stock buffer

Ptak and Smith (2016) 
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its standard stock buffer

rapidly. 
Trade-offs in DDMRP While DDMRP excels in

service levels, ROI COGS
might be affected due to
additional buffer stock for
managing order spikes. 

Ptak & Smith (2016), 
Lee & Rim (2019) 

Complexity in DDMRP Implementing DDMRP can
be intricate, requiring a
robust system to monitor
demand signals and timely
parameter adjustments. 

Lee & Rim (2019) 
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Table 25 - Discussion summary related to Key Finding C for RQ3: 
Aspects Impact on Selection and

Effectiveness of Policies
Related Literature

Ease of Management MTA DBM provides a
straightforward approach to
buffer management with its
simplicity in adjusting Initial
Buffer Size (IBS).
Such simplicity allows a
more agile response to
changing business
conditions without undue
complexities. 

Ikeziri et al. (2023),
Marco (2015) 

Contrasts with DDMRP ROP and MTA DBM, which
can effectively handle low-
demand variation scenarios
with higher service levels. In
contrast, DDMRP requires
intricate adjustments in
several parameters,
making it more complex to
set up and manage.
Despite its strengths, DBM
has vulnerabilities like
susceptibility to system
noise. 

Narita et al. (2021),
Azzamouri et al. (2021) 

Operational Implications  MTA DBM is ideal for
businesses seeking agility
without the complexities of
intricate systems. It suits
organisations with limited

Narita et al. (2021)
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organisations with limited

resources. Conversely, well-
resourced companies can
harness the potential of
DDMRP, especially in
fluctuating demand
situations. 

Relative Dominance of MTA
DBM 

The agility and ease of use
of the MTA DBM policy
potentially make it more
suitable in specific industry
contexts over DDMRP,
especially when simplicity
and adaptability are of
prime concern. 

Narita et al. (2021) 
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Table 26 - Discussion summary related to Key Finding D for RQ3: 
Aspects Impact on Selection and

Effectiveness of Policies
Related Literature

Bullwhip and Ripple Effects The bullwhip effect results
in amplified order
oscillations across the
supply chain, which might
require changes in
inventory policies to
mitigate.
The ripple effect further
complicates supply chain
disruptions, emphasising
the need for policies that
address both phenomena. 

Lee et al. (1997),
Dolgui et al. (2020) 

Forecast Inaccuracy and
Variable Lead Time 

Poor forecasting and
unpredictable lead time can
result in policy
misalignment. Correct
policy selection becomes
essential to combat these
issues and maintain
service levels. 

Bayraktar et al. (2019),
Chen et al. (2000) 

Strategic Role of Lead Time Varying lead time can lead
to inflated stock levels.
Policy adaptation that
emphasises shorter
replenishment cycles might
be essential to lessen the
impact of the bullwhip
effect. 

Yang & Geunes (2007),
Chang & Lin (2019),
Tidemann et al. (2020) 
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Replenishment Policies and
Disruptions 

Disruptions introduce
uncertainties, stressing the
need for resilient
replenishment policies.
Non-optimized policies can
further exacerbate the
bullwhip effect.  

Snyder et al. (2016),
Chen et al. (2000) 

Safety Stock, Strategic
Decoupling, and DDMRP
Relevance 

Positive correlation
between Safety Stock with
Inventory Level and
Revenue Level implies a
need for policies
strategically placing buffer
stock. The DDMRP
replenishment model offers
a potential solution. 

Nahmias (2009),
Miclo et al. (2019),
Waller et al. (2008),
Lee & Rim (2019) 

Information Sharing's Role Effective policies should
promote and facilitate
information sharing and
cooperation to manage and
reduce the bullwhip effect. 

Li (2010),
Hall & Saygin (2012),
Jonsson & Mattsson
(2013), 
Dev et al. (2013) 

Conclusion A Decline in service levels
with increasing supply
variation requires
multifaceted solutions.
Policy adjustments focusing
on safety stocks,
decoupling points, and
enhanced information
sharing can be potential
remedies. 

Cannon (2008) 
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Drawing upon the summarised discussions from Tables 23 to 26, a few paramount
observations emerge. The ROP method's longstanding efficacy with predictable demand,
especially in extended demand intervals, the adaptive prowess of DDMRP, and MTA
DBM's streamlined approach spotlight the diversity and evolution of inventory policies.
Concurrently, the complexities of the supply chain, marked by phenomena like the bullwhip
effect and demand fluctuations, underline the urgency for innovative, resilient, and
adaptable strategies. With these critical takeaways, and before we delve into
comprehensive conclusions and charting paths for future research, it is imperative to briefly
reflect upon the foundational aims and objectives that catalysed this research journey.
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6. Conclusion and Further Research

6.1 Reflection on Research Aims and Objectives

This research compares the supply chain replenishment planning inventory policies by
simulation study. At the inception of this research, three research questions were
postulated: (RQ1) How do inventory policies, particularly forecast-based and consumption-
based methods, interact with performance metrics in distribution-side supply chain
scenarios? (RQ2) How do the performance outcomes of inventory policies (ROP, MTA
DBM, DDMRP) vary across different demand levels and supply lead time stability in the
distribution-side supply chain? (RQ3) What are the key influential factors and assumptions
that underpin the selection and effectiveness of various inventory policies?

These inquiries were rooted in the observed conflicts between forecast-based and
consumption-based planning paradigms, where recent technological advancements and
unpredictable pandemic period market dynamics necessitated a deeper exploration of
adaptive inventory strategies. The imperative to answer these inquiries was of utmost
importance for ensuring scholarly integrity and for supply chain practitioners seeking to
enhance the performance of supply chain planning systems within a swiftly evolving supply
chain environment.  The research methodology utilised in this study involved a simulation
approach, including a quantitative examination of data collected from three actual cases.
This research sought a comprehensive view of comparing inventory policies and their
performance outcomes under the same demand patterns. It also simulated disruptions in
demand patterns and transportation lead times in supply through the variation and
comparison experiments in AnyLogistix (ALX) simulations.

After detailing the research aims and methods, the next step in this chapter is to synthesise
the main findings and their impact on supply chain performance.
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6.2 Synthesis of Key Insights

The total effectiveness of the supply chain is contingent on comprehensive collaboration
and coordination across the whole supply chain network. The dependability of forecasting
plays a vital part in planning forecast-based reorder point (ROP) stock policies, mainly
when dealing with high-demand predictability (Wilson, 1934).

Alternatively, MTA DBM and DDMRP replenishment for consumption-based planning, the
size of the initial buffer, the planning factors and the strategic location of the buffer stock are
vital in determining how to cope with various sources of variation and uncertainty in a
supply chain network. MTA DBM and DDMRP rely on different influential factors to adjust
the buffer sizing parameters according to the uncertainty in external situations, such as
promotional effects, seasonal trends, and internal constraints, such as holiday periods and
resource contention. These policies, replete with the influences presented in emerging
literature like Mattsson's, are sculpted to adjust to both external and internal fluctuations,
ranging from marketing-driven variabilities like promotional tempests to internal scheduling
disruptions such as festive hiatuses and resource gridlocks (Mattsson, 2010).
The alignment of both forecast-based and consumption-based planning methods with their
respective influential factors underscores the difficulties of managing variability of supply
chain contexts. To better understand how these strategic elements interact with real-world
scenarios, Table 27 outlines the relationship between the theoretical concepts and
practical outcomes to elucidate the interactions of those strategic aspects with real-world
scenarios.
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Table 27 – Alignment of Preliminary Findings with Key Findings
Finding Number

from SE
Preliminary Findings Aligned Key Finding

Finding-1 from
SE0

Correlation analysis demonstrates the
statistically significant impact of SS
on IL and its significant effect on SL
under the ROP policy.

A. Based on the three actual
cases' demand profiles and
scenarios, the simulation results
suggest that the ROP method
provides superior ROI
performance, during prolonged
demand intervals.

Finding-4 from
SE1

ROP shows superior performance in
terms of ROI in specific contexts for
Case 1 within SE1.

Finding-5 from
SE1

ROP shows dominance over MTA
DBM and DDMRP in ROI for Case 2
within SE1.

Finding-11 from
SE3

ROP consistently outperforms MTA
DBM and DDMRP in terms of ROI,
significantly when increasing CoV by
DV in Case 1 and 3.

Finding-7 from
SE1

DDMRP achieves 100% SL in Case
3 despite lower ROI. B. DDMRP becomes more

relevant during anticipated
demand surges, outperforming
ROP and Make-to-Availability
(MTA) Dynamic Buffer
Management (DBM).

Finding-9 from
SE2

DDMRP attained peak SL
performance during Case 3, while
ROP consistently secured the highest
ROI in Cases 1 and 2 across varied
scenarios.

Finding-2 from
SE0

The strong correlation between IBS
and IL within the MTA DBM policy.

C. The MTA DBM policy, in
practice, allows for easier
adjustments to buffer
parameters, contrasting with the
intricate adjustments essential

Finding-3 from
SE0

Contrasting behaviours of STP and
LTF vis-à-vis IL within the DDMRP
policy.
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intricate adjustments essential

for DDMRPFinding-6 from
SE1

MTA DBM produces the highest ROI
in SE1's Case 3.

Finding-10 from
SE3

MTA DBM's resilience in
accommodating fluctuating demands
without significantly impacting SL in
Case 3.

Finding-12 from
SE4

The impact of Supply Variation (SV)
of TLT and its role in diminishing SL.

D. A noticeable trend was the
decline in SL as Supply
Variation (SV) in Transportation
Lead Time (TLT) increased.

While Table 27 provides a comprehensive alignment between most preliminary findings
and key insights, it does not explicitly include Findings 6, 8 and 10. These findings did not
directly align with the broader trends discussed in the key findings, but will be briefly
discussed in the next section.

Gleaning insights from synthesising twelve preliminary and four key findings across the
actual case demand profiles, as shown in Table 19, the strategic finesse of ROP emerges
most potently in environments punctuated by extended demand intervals. Simultaneously,
MTA DBM emerges as the adaptive buffering strategy for low-demand variability scenarios
but seeks a superior ROI. In contrast, the dynamism and adaptability of DDMRP, as
corroborated by recent scholastic contributions, shine in the management of pronounced
order fluctuations and environments characterised by high demand variability yet
necessitating stellar service levels (Ptak & Smith, 2016; Lee & Rim, 2019).
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Table 28 - Generalisation for stock policies selection decision table
Demand Variation

- Low
Demand Variation

- High
Demand Interval

- Long
ROP
*(A)

ROP
*(8)

Demand Forecast
Accuracy

- High
Demand Interval

- Short
MTA DBM

*(6,10)
DDMRP

*(B)
Demand Forecast

Accuracy
- Low

ROI
- High

Service Level
- High

* Preliminary and Key findings cross-reference inside the parentheses (). 
Table 28 serves as a strategic decision-making mechanism to select inventory strategies
based on critical factors: demand variability (low versus high), demand interval (short
versus long), and demand forecasting accuracy (high versus low). It also emphasises the
expected outcomes of Return on Inventory (ROI) and Service Level (SL). The table
consolidates insights from the twelve preliminary findings and four key findings, referenced
in brackets to ensure that the recommendations are generalised with evidence.
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Top-Left Quadrant: Low Demand Variation, Long Demand Interval, High Demand
Forecast Accuracy, High ROI

In this scenario, ROP is the ideal policy, and is particularly effective when demand is stable
over long intervals and the forecast accuracy is high. The twelve preliminary findings such
as Findings 4 and 5 show that ROP maximizes ROI by keeping inventory costs low while
efficiently meeting demand. Finding 11 emphasizes that the longer demand interval allows
for stable inventory replenishment, reducing the need for frequent adjustments.

Together, Key Finding A supports ROP’s suitability for environments with high demand
forecast accuracy, where predictable demand and longer intervals provide the necessary
stability for ROP to maintain effective stock levels. However, Service Level (SL) is high,
focusing on cost efficiency rather than maximizing service.

Top-Right Quadrant: High Demand Variation, Long Demand Interval, Low Demand
Forecast Accuracy, High SL

Although there are significant demand fluctuations and low forecasting accuracy, ROP can
still operate well by integrating safety stock. Finding 8 emphasises that ROP can mitigate
high variability (CoV < 7) through increased inventory, resulting in moderate ROI as holding
costs build. The long demand interval allows ROP to respond and restock, while demand
volatility escalates overall costs and diminishes performance.

The Service Level (SL) remains moderate in this quadrant, as ROP’s primary strength lies
in managing costs over extended cycles rather than responding rapidly to variability in
shorter time frames. However, its ability to handle stock fluctuations helps prevent
stockouts despite unpredictable demand.
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Bottom-Left Quadrant: Low Demand Variation, Short Demand Interval, High
Demand Forecast Accuracy, High ROI

In this scenario, where demand variation is low and demand intervals are short, MTA DBM
shines. Finding 6 shows that MTA DBM delivers a high Service Level (SL) by dynamically
adjusting buffers, ensuring customer demand is consistently met. With short demand
intervals, MTA DBM can respond quickly, reducing the risk of stockouts while maintaining
an optimal inventory level.
Finding 10 further emphasizes that MTA DBM also provides a high ROI in predictable
environments. The policy allows companies to maintain efficient stock levels with minimal
intervention, optimizing both service and costs. The focus on Initial Buffer Size (IBS) as the
key influencing factor simplifies the management of buffer sizes with minor impacts by TMR
and TMG parameters, making it an efficient policy choice when demand is frequent but
predictable.

Bottom-Right Quadrant: High Demand Variation, Short Demand Interval, Low
Demand Forecast Accuracy, High SL

In volatile environments with high demand variation, short intervals, and low forecast
accuracy, DDMRP offers the most responsive solution. Finding 7 highlights that DDMRP’s
dynamic buffer adjustments ensure high SL, even in highly fluctuating demand
environments. The policy’s ability to handle spikes in demand and short-term variability
makes it under these conditions as the best choice for maintaining customer satisfaction.

However, Finding 9 indicates that while SL remain high, ROI may be high due to the higher
costs associated with maintaining buffer stock and adapting to frequent demand changes.
DDMRP’s complexity, involving multiple parameters such as the Lead Time Factor (LTF)
and Spike Threshold Percentage (STP), requires significant resources to manage
effectively but ensures that service levels are maintained in unpredictable markets.
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Together, Key Finding B supports that DDMRP becomes more relevant during
anticipated demand surges, outperforming ROP and Make-to-Availability (MTA) Dynamic
Buffer Management (DBM).

Considering the limitations and constraints highlighted in Section 5.5, the generalised
decision table for stock policy selection requires further scrutiny. This is primarily due to the
Group C simulation experiments (SE3 and SE4), where the relevant step in the variation
experiments only encompassed a partial scale range. Subsequent research should
consider a complete factorial analysis of supply and demand variation coupled with
stochastic demand experiments. This approach will yield wider generalised results,
offering refined insights to build the broader applications' decision table. 

In synthesising these findings, it becomes evident that the intricacies of inventory policies
are not merely mathematical constructs but pivotal tools in navigating the multifaceted
landscapes of modern supply chains. The choices between forecast-based and
consumption-based planning, between ROP, MTA DBM and DDMRP, represent more than
mere strategic decisions; they reflect an evolving understanding of supply chain dynamics
in the face of rapid technological and market shifts. As the discussion transitions into
recommendations, it is crucial to recognise that these insights are not just observations but
the foundation upon which actionable steps for the future can be built.
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6.3 Recommendations

Based on the in-depth analysis of inventory policies, several clear action points have
emerged for supply chain experts. Using the insights from earlier sections, the subsequent
recommendations offer practical steps towards a more resilient supply chain future.

With the increasing unpredictability of market dynamics, especially post-pandemic, relying
solely on traditional forecasting methods can expose businesses to significant risk. On the
other hand, consumption-based methods, while adaptive, may sometimes lead to
overstocking or missed opportunities in specific scenarios.

Companies should initiate simulation projects according to the proposed hybrid inventory
policies in Section 5.3 Contributions. The simulation compares policies' different scenarios
and planning parameters with performance outcomes. Based on the expected
performance, management can identify which methods to deploy for the target customer
segment and align the supply chain strategy. It will reduce the implementation risk with
proof of concept provided by the simulation process. However, the next challenge is
adjusting the parameters after actual deployment.

To address this companies should build a dashboard using their analytical findings
concerning about influential factors and assumptions. Dashboard applying the latest
artificial intelligence (AI) technology can provide additional benefits, such as through alerts
or signals as a decision-support system to improve all planning parameters.

In summary, today's supply chains need flexible strategies. Merging old and new inventory
methods and using advanced technology like AI is essential for a robust supply chain. The
advice comes from real-world data and offers practical steps for supply chain experts.
These strategies also present new opportunities for research, which we will explore next.
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6.4 Opportunities for Further Research

In the constantly changing world of supply chain management, each solution presents
opportunities for further investigation. The recommendations provided herein give a
roadmap and highlight untapped areas in inventory management, inviting deeper
exploration.

This research was confined to simulations based on the demand data from three cases.
This limited the ability of this research to comprehensively explore various demand
patterns, thus restricting a complete factorial performance analysis. Further research
should consider exploring additional or varied cases to enable a more extensive
examination of demand variations and enhance the robustness of the findings.

With the prediction profiler feature of JMP shown in Figure 42, there is potential to probe
varied demand data patterns in Demand Variation (DV) and Supply Variation (SV). Such
an approach would address and transcend the historical case demand profile limitations.
Additionally, predicting profiles could facilitate comparisons across diverse planning
parameters, considering objectives like inventory returns, service levels, and expected
desirability. Such tools would empower supply chain decisions, offering more nuanced
trade-offs between anticipated results and policy choices.

Therefore, a pertinent research question for future explorations could be:

How are the selected planning parameters of the inventory policies projecting the
desirability of performance?

This question could broaden our understanding of supply chain networks and their planning
systems. For robust findings, it is imperative to devise methods that objectively set
parameters for anticipated performance results, factoring in variations within a multi-
echelon supply chain framework. The intricate balance between different performance
desirability, including aspects like buffer sizing, can be visualised in Figure 42,
showcasing the prediction profile model.
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Collaborating with experts across varied domains might yield more influential, diversified
insights. Further, keeping abreast with recent advancements in supply chain
methodologies would be beneficial, ensuring the research remains at the forefront of the
discipline.

Figure 42 - Prediction Profile for the Desirability of Performance Outcomes

With these new paths for research laid out, the focus shifts to this study's contributed value
and a summary of the final insights.
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6.5 Concluding Remarks

In the intricate realm of supply chain management, envision a meticulously constructed
tapestry—each decision, methodology, and insight interwoven to represent organisational
prosperity. This research decoded the intricate layers of inventory policies and their
interrelationships. Furthermore, it crafted a compelling narrative that underscores the
paramount adaptability amidst the volatile currents of the contemporary market.

These findings, upon deeper introspection, do not merely exist in isolation. Collectively,
they shed light on a broader schema with profound implications for the academic and
industrial sectors.

Key insights drawn from this study for supply chain practitioners include:

Universality and Inventory Policies: No single policy fits every scenario. Optimal
performance arises from a harmonious integration of diverse models tailored to specific
situations.

Dynamics of Policy Adaptation: A rigid adherence to static policies risks redundancy.
Continuous policy updates are paramount and aligned with evolving internal and external
factors. In this context, data-driven dashboards emerge as indispensable, guiding
enlightened business decisions.

The Role of Simulation and Analytics: These tools are essential for achieving supply
chain excellence. Their integration forms the bedrock of strategic supply chain planning.

Visionary Flexibility in Management: Moving from a narrow, cost-centric viewpoint to a
broader, holistic perspective is crucial. The flexible mindset entails a shift from
departmental silos to an all-encompassing view of the supply chain, underscored by real-
time analyses and adaptable strategies. While this research has only used three cases to
demonstrate these insights, further research can more fully explore these using additional
cases and deeper interrogation of the planning parameters.
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Appendix A - KPIs performance charts

A1 - Revenue Level (RL)

Case1.Revenue Level (RL) - simulated vs actual case

Case2.Revenue Level (RL) - simulated vs actual case

Case3.Revenue Level (RL) - simulated vs actual case
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A2 - Inventory Level (IL)
Case1.Inventory Level (IL) - simulated vs actual case

Case2.Inventory Level (IL) - simulated vs actual case
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Case3.Inventory Level (IL) - simulated vs actual case
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A3 - Service Level (SL)
Case1.Service Level (SL) by Revenue - simulated 

Case2.Service Level (SL) by Revenue - simulated
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Case3.Service Level (SL) by Revenue - simulated
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A4 - Return On Inventory (ROI)
Case1.Return On Inventory (ROI) COGS - simulated vs actual case

Case2.Return On Inventory (ROI) COGS - simulated vs actual case
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Case3.Return On Inventory (ROI) COGS - simulated vs actual case
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Appendix B - Scatter plot in SE0
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Case 1 Variation Experiment Scatter plot output for ROI and SL
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Case 2 Variation Experiment Scatter plot output for ROI and SL
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Case 3 Variation Experiment Scatter plot output for ROI and SL
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Appendix C - Multivariate analysis in simulation
experiment (SE0)
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<- Case2.MTA.VE > VarExp-Case2.MTA.40NE1_Sheet1 - Multivariate

 Page 327
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<- Case3.MTA.VE > VarExp-Case3.MTA.2816 - Multivariate
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<- Case3.MTA.VE > VarExp-Case3.MTA.3542_Sheet1 - Multivariate
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<- Case3.MTA.VE > VarExp-Case3.MTA.9396_Sheet1 - Multivariate
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The End of Appendix C

 Page 339



Appendix D - Testing and Debugging Logs
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Appendix E - Parameters selected in SE0

Summary of Parameters Chosen for Inventory Policies in the Simulation
Experiment (SE0)

The following table consolidates the planning parameters drawn from the SE0 simulation
experiments. Notably, the SE0 Variation Experiment designated these parameters as
independent variables in the comparative studies of SE1 and SE2.

Summary of planning parameters selected in the simulation experiment (SE0)
Case.Policy.Ite

m
Demand
Points

Policy
Parameters

Variables Theoreti
cal

Default
Upper
Range
 +50%

Selected
Paramete

rs
Ending

Available 
Inventory

Service
Level 

by
Revenue

Revenue ROI by
Stock
Balanc

e
Case1.ROP.Lit

e US B2C
Order up to
max. level

Q 320 480 450 41 70.86% 65200 1590.2
4

Fixed
replenishme

nt point
R 320 480 320

Safety
stock

SS 0 160 0

Case1.ROP.No
de US B2C

Order up-to
max. level

Q 140 210 190 8 79.49% 27300 3412.5
0

Fixed
replenishme

nt point
R 140 210 140

Safety
stock

SS 0 70 0

Case1.ROP.W
B US B2C

Order up-to
max. level

Q 220 330 280 2 74.88% 43400 21700.
00

Fixed
replenishme

nt point
R 220 330 220

Safety
stock

SS 0 110 40

Case1.ROP.Lit
e EU B2B

Order up to
max. level

Q 540 810 540 396 87.52% 107400 271.21
Fixed

replenishme
nt point

R 540 810 540

Safety SS 0 270 0
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Safety

stock
Case1.ROP.No

de EU B2B
Order up-to
max. level

Q 740 1110 940 292 51.12% 147100 503.77
Fixed

replenishme
nt point

R 740 1110 740

Safety
stock

SS 0 370 0

Case1.ROP.W
B EU B2B

Order up-to
max. level

Q 400 600 540 166 78.92% 77800 468.67
Fixed

replenishme
nt point

R 400 600 400

Safety
stock

SS 0 200 40

Case1.MTA.Lit
e.US B2C

Initial Buffer
Size

IBS 320 480 320 337 70.86% 65200 193.47
Too Many

Green
TMG 50 80 80

Too Many
Red

TMR 50 80 80

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case1.MTA.No
de.US B2C

Initial Buffer
Size

IBS 130 210 130 119.5 79.49% 27300 228.45
Too Many

Green
TMG 50 80 80

Too Many
Red

TMR 50 80 80

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case1.MTA.W
B.US B2C

Initial Buffer
Size

IBS 210 330 210 150.5 74.88% 43400 288.37
Too Many

Green
TMG 50 80 80

Too Many
Red

TMR 50 80 80

Buffer Up+ BUA 30 N/A
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Buffer Up+

Adjust %
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case1.MTA.Lit
e.EU B2B

Initial Buffer
Size

IBS 520 800 600 734.5 87.52% 107400 146.22
Too Many

Green
TMG 50 80 80

Too Many
Red

TMR 50 80 80

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case1.MTA.No
de.EU B2B

Initial Buffer
Size

IBS 720 1080 720 939 51.12% 147100 156.66
Too Many

Green
TMG 50 80 80

Too Many
Red

TMR 50 80 80

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case1.MTA.W
B.EU B2B

Initial Buffer
Size

IBS 380 580 380 431 78.92% 77800 180.51
Too Many

Green
TMG 50 80 80

Too Many
Red

TMR 50 80 80

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case1.DDMRP
.Lite  US B2C

Lead Time
Factor

LTF 0.2 1 0.2 681 70.86% 65200 95.74
Variability VF 0 1 0
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Variability

Factor
Average

Daily Usage
ADU N/A N/A

Spike
Threshold
Horizon

STH 180 200 180

Spike
Threshold

%
STP 50 100 100

Net Flow
Position

NFP N/A N/A
Case1.DDMRP

. Node  US
B2C

Lead Time
Factor

LTF 0.2 1 0.3 743.88 79.49% 27300 36.70

Variability
Factor

VF 0 1 0.9

Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 180 200 190

Spike
Threshold

%
STP 50 100 80

Net Flow
Position

NFP N/A N/A
Case1.DDMRP
.WB  US B2C

Lead Time
Factor

LTF 0.2 1 0.5 670.8 74.88% 43400 64.70
Variability

Factor
VF 0 1 0.9

Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 180 200 180

Spike
Threshold

%
STP 50 100 100

Net Flow
Position

NFP N/A N/A
Case1.DDMRP
.Lite EU B2B

Lead Time
Factor

LTF 0.2 1 0.5 382 87.52% 107400 281.15
Variability

Factor
VF 0 1 0.9

Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 180 200 180
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Spike
Threshold

%
STP 50 100 100

Net Flow
Position

NFP N/A N/A
Case1.DDMRP
.Node EU B2B

Lead Time
Factor

LTF 0.2 1 0.2 809 51.12% 147100 181.83
Variability

Factor
VF 0 1 0

Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 180 200 180

Spike
Threshold

%
STP 50 100 100

Net Flow
Position

NFP N/A N/A
Case1.DDMRP
.WB  EU B2B

Lead Time
Factor

LTF 0.2 1 0.2 523 78.92% 77800 148.76
Variability

Factor
VF 0 1 0

Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 180 200 180

Spike
Threshold

%
STP 50 100 100

Net Flow
Position

NFP N/A N/A
Case2.ROP.

20D
Order up to
max. level

Q 441337 660000 441337 224402 88.98% 21693451 96.67
Fixed

replenishme
nt point

R 220669 330000 220669

Safety
stock

SS 0 220000 0

Case2.ROP.
30NE1

Order up to
max. level

Q 667653 990000 667653 328928 88.27% 32817753
8

997.72
Fixed

replenishme
nt point

R 333826 480000 333826

Safety
stock

SS 0 330000 200000

Case2.ROP.
40NE1

Order up to
max. level

Q 613666 900000 713666 231130 83.02% 30164095
5

1305.0
7
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Fixed
replenishme

nt point
R 306833 450000 406833

Safety
stock

SS 0 300000 0

Case2.MTA.
20D

Initial Buffer
Size

IBS 220000 340000 220000 416849 88.98% 21693451 52.04
Too Many

Green
TMG 50 80 80

Too Many
Red

TMR 50 80 80

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case2.MTA.
30NE1

Initial Buffer
Size

IBS 330000 510000 410000 317150 88.27% 32817753
8

1034.7
7

Too Many
Green

TMG 50 80 80

Too Many
Red

TMR 50 80 80

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case2.MTA.
40NE1

Initial Buffer
Size

IBS 300000 460000 360000 353406 83.02% 30164095
5

853.53
Too Many

Green
TMG 50 80 80

Too Many
Red

TMR 50 80 80

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case2.DDMRP
.20D

Lead Time
Factor

LTF 0.2 1 0.2 14751 88.98% 21693451 1470.6
4

Variability
Factor

VF 0 1 1
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Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 65 75 75

Spike
Threshold

%
STP 50 100 50

Net Flow
Position

NFP N/A N/A
Case2.DDMRP

.30NE1
Lead Time

Factor
LTF 0.2 1 1 1259602 88.27% 32817753

8
260.54

Variability
Factor

VF 0 1 0.1

Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 65 75 75

Spike
Threshold

%
STP 50 100 50

Net Flow
Position

NFP N/A N/A
Case2.DDMRP

.40NE1
Lead Time

Factor
LTF 0.2 1 0.2 345245 83.02% 30164095

5
873.70

Variability
Factor

VF 0 1 0.1

Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 65 75 65

Spike
Threshold

%
STP 50 100 60

Net Flow
Position

NFP N/A N/A
Case3.ROP.

3542
Order up-to
max. level

Q 208447
9

315000
0

2184479 47359 100.% 24371200
0

5146.0
5

Fixed
replenishme

nt point
R 104223

9
156000

0
1042239

Safety
stock

SS 0 105000
0

300000

Case3.ROP.
2816

Order up-to
max. level

Q 105714
1

156000
0

1157141 15575 100.% 11415660
0

7329.4
8

Fixed
replenishme

R 528570 780000 528570
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replenishme

nt point
Safety
stock

SS 0 520000 0

Case3.ROP.
9396

Order up-to
max. level

Q 762578 114000
0

862578 975562 71.67% 25778490
0

264.24
Fixed

replenishme
nt point

R 381289 570000 481289

Safety
stock

SS 0 380000 300000

Case3.MTA.
3542

Initial Buffer
Size

IBS 104000
0

156000
0

1040000 214797 100.% 24371200
0

1134.6
2

Too Many
Green

TMG 50 100 90

Too Many
Red

TMR 50 100 90

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case3.MTA.
2816

Initial Buffer
Size

IBS 520000 780000 580000 291846 100.% 11415660
0

391.15
Too Many

Green
TMG 50 100 90

Too Many
Red

TMR 50 100 90

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety
factor

BSF 1 1.5 1.5

Case3.MTA.
9396

Initial Buffer
Size

IBS 380000 580000 580000 732984 64.79% 25778490
0

351.69
Too Many

Green
TMG 50 80 80

Too Many
Red

TMR 50 80 80

Buffer Up+
Adjust %

BUA 30 N/A
Buffer
Down-

Adjust %
BDA 25 N/A

Safety BSF 1 1.5 1.5
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Safety

factor
Case3.DDMRP

.3542
Lead Time

Factor
LTF 0.2 1 0.2 465718 100.% 24371200

0
523.30

Variability
Factor

VF 0 1 0

Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 133 143 133

Spike
Threshold

%
STP 50 100 90

Net Flow
Position

NFP N/A N/A
Case3.DDMRP

.2816
Lead Time

Factor
LTF 0.2 1 0.2 719431 100.% 11415660

0
158.68

Variability
Factor

VF 0 1 0.1

Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 144 154 144

Spike
Threshold

%
STP 50 100 100

Net Flow
Position

NFP N/A N/A
Case3.DDMRP

.9396
Lead Time

Factor
LTF 0.2 1 0.2 3205565 100.% 25778490

0
80.42

Variability
Factor

VF 0 1 0

Average
Daily Usage

ADU N/A N/A
Spike

Threshold
Horizon

STH 46 56 56

Spike
Threshold

%
STP 50 100 100

Net Flow
Position

NFP N/A N/A
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Appendix F - Code in ALX Java extension

ROP policy source code  in ALX Java Extension

The following source code has been reproduced with permission from AnyLogic North America, LLC. The
original implementation was developed by AnyLogic and is used here with authorization. 

<?xml version="1.0" encoding="UTF-8"?>
<!--
*************************************************
             AnyLogic Project File 
*************************************************            
-->
<AnyLogicWorkspace WorkspaceVersion="1.9"AnyLogicVersion="7.3.7.202203220945" AlpVersion="7.3.3">
<Model>
    <Id>1652857996811</Id>
    <Name><![CDATA[MinMaxSafetyStockCustom]]></Name>
    <Description><![CDATA[Simple Customer]]></Description>
    <EngineVersion>6</EngineVersion>
    <JavaPackageName><![CDATA[minmaxsafetystockcustom]]></JavaPackageName>
    <ModelTimeUnit><![CDATA[Day]]></ModelTimeUnit>
    <ActiveObjectClasses>
    </ActiveObjectClasses>  
    <DifferentialEquationsMethod>EULER</DifferentialEquationsMethod>
    <MixedEquationsMethod>RK45_NEWTON</MixedEquationsMethod>
    <AlgebraicEquationsMethod>MODIFIED_NEWTON</AlgebraicEquationsMethod>
    <AbsoluteAccuracy>1.0E-5</AbsoluteAccuracy>
    <FixedTimeStep>0.001</FixedTimeStep>
    <RelativeAccuracy>1.0E-5</RelativeAccuracy>
    <TimeAccuracy>1.0E-5</TimeAccuracy>
    <Database>
        <Logging>false</Logging>
        <AutoExport>false</AutoExport>
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        <ImportSettings>
        </ImportSettings>
        <ExportSettings>
            <ExportExcelFilePath><![CDATA[]]></ExportExcelFilePath>
        </ExportSettings>
    </Database> 
    <JavaClasses>
        <!--   =========   Java Class   ========  -->
        <JavaClass>
            <Id>1652858358219</Id>
            <Name><![CDATA[InventoryPolicyMinMaxSafetyStockCustom]]></Name>
            <Text><![CDATA[importcom.alx.data.custom_type.CustomTypeClass;
import com.alx.data.custom_type.EditorType;
import com.alx.data.custom_type.Parameter;
import com.alx.data.simulation.inventory.AbstractInventoryType;
import com.alx.data.simulation.inventory.InventoryPolicyWithSafetyStock;
import com.alx.data.util.DataModelUtils;
import com.alx.data.util.Formatters;
import com.alx.data.validation.ValidationField;
import com.alx.data.validation.ValidationFieldRuleEnum;

import com.alx.data.basic.demand.DemandData;
import com.alx.data.basic.facility.*;
import com.alx.data.basic.product.*;
import com.alx.data.basic.demand.DemandForecast;
import com.alx.data.basic.demand.DemandData;
import com.alx.data.basic.demand.IDemandType;
import com.alx.data.basic.facility.CustomerData;
import com.alx.data.basic.facility.AFacilityData;
import com.alx.data.basic.facility.FacilityGroup;
import com.alx.data.basic.facility.FacilityData;
import com.alx.data.basic.facility.IDestinationData;
import com.alx.data.basic.facility.IFacilityData;
import com.alx.data.basic.product.Product;
import com.alx.data.scenario.*;
import com.alx.data.simulation.inventory.AbstractInventoryType;
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import com.alx.data.simulation.model.*;
import com.alx.data.simulation.sourcing.SourcingData;
import com.alx.data.DateUtils;
import com.alx.data.no.period.TimePeriod;
import com.alx.data.PersistableUtilities;
import com.alx.data.custom_type.CustomTypeClass;
import com.alx.data.custom_type.EditorType;
import com.alx.data.custom_type.Parameter;
import com.alx.data.experiment.simulation.ALX;
import com.alx.data.external_table.ExternalTableData;
import com.alx.data.resource.Messages;
import com.alx.data.simulation.model.IFacility;
import com.alx.data.simulation.sourcing.SourcingData;
import com.alx.data.validation.ValidationField;
import com.alx.data.validation.ValidationFieldRuleEnum;
import com.alx.data.DateUtils;
import com.alx.data.custom_type.*;
import com.alx.data.validation.ValidationField;
import com.alx.data.validation.ValidationFieldRuleEnum;

import java.util.stream.*;
import java.lang.Math.*;
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.util.TimeZone;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Date;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.text.DateFormat;  
import java.text.SimpleDateFormat;  
import java.sql.Connection;
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import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.io.*;
import java.util.Calendar;
import java.math.BigDecimal;
import java.math.RoundingMode;

@CustomTypeClass(name = "Min-max policy with safety stock CUSTOM")
//@ValidationClass(rule=ValidationClassRuleEnum.INVENTORY_POLICY_MIN_MAX_SS_BOUNDS_ERROR)
public class InventoryPolicyMinMaxSafetyStockCustom extendsAbstractInventoryType implements InventoryPolicyWithSafetyStock {

    public static final String TYPE_VALUE = "MinMax"; //$NON-NLS-1$
    
    private Map<Date, String> timePeriodByDate = new HashMap<>();
    
    // List of customers sourcing their demand from this facility
    private List<IDestinationData> customerCollection = new ArrayList<>();
            
    // Hashmap returning the demand by date
    private Map<Date, Double> demandByDate = new HashMap<>();
    
    private String productName;
    
    private String facilityName;
    
    private String scenarioName;
    
    private double stockIn;
    
    private double stockOut;
    
    private double stockOnHand;
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    private double generatedSupplyOrder = 0;

    private double lastOverdueBackOrder = 0;                        // Debug2: Tokeep the last overdueBackOrder before receipt 

    private double actualDemand = 0;                                // Debug2: To addactualDemand variable for calculation
    
    private boolean firstDay = true;                                // Debug1: To usefirstDay boolean for skipping the first actual demand
    
    @Parameter(name = "SQLite File", type = EditorType.StringEditor)
    public String sqliteFileName;

    @Parameter(name = "Min", type = EditorType.DoubleEditor)
    private double min;

    @Parameter(name = "Max", type = EditorType.DoubleEditor)
    @ValidationField(rule =ValidationFieldRuleEnum.INVENTORY_POLICY_MIN_MAX_SS_BOUNDS_ERROR)
    private double max;

    @Parameter(name = "Safety stock", type = EditorType.DoubleEditor)
    private double safetyStock;

    public InventoryPolicyMinMaxSafetyStockCustom() {
        min = 0;
        max = 0;
        safetyStock = 0;
    }
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    public InventoryPolicyMinMaxSafetyStockCustom(double min, doublemax, double safetyStock) {
        this.min = min;
        this.max = max;
        this.safetyStock = safetyStock;
    }

    publicInventoryPolicyMinMaxSafetyStockCustom(InventoryPolicyMinMaxSafetyStockCustom inventoryPolicy) {
        this(inventoryPolicy.getMin(), inventoryPolicy.getMax(),inventoryPolicy.getSafetyStock());
    }
******** Partially listed ********
Due to copyright restrictions by the original software developer, reader wishing to access
the full source code utilized in this thesis are encouraged to contact the author directly.
Please include a detailed request specifying the purpose and intended use of the code.
The author can be reached via the contact information provided on the title page of this
document or through the institution's official communication channels. 

The End.
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