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The Schrödinger equation describes how quantum states evolve according to the Hamiltonian of the 
system. For physical systems, we have it that the Hamiltonian must be a Hermitian operator to ensure 
unitary dynamics. For anti-Hermitian Hamiltonians, the Schrödinger equation instead models the 
evolution of quantum states in imaginary time. This process of imaginary time evolution has been used 
successfully to calculate the ground state of a quantum system. Although imaginary time evolution 
is non-unitary, the normalised dynamics of this evolution can be simulated on a quantum computer 
using the quantum imaginary time evolution (QITE) algorithm. In this paper, we broaden the scope of 
QITE by removing its restriction to anti-Hermitian Hamiltonians, which allows us to solve any partial 
differential equation (PDE) that is equivalent to the Schrödinger equation with an arbitrary, non-
Hermitian Hamiltonian. An example of such a PDE is the famous Black-Scholes equation that models 
the price of financial derivatives. We will demonstrate how our generalised QITE methodology offers 
a feasible approach for real-world applications by using it to price various European option contracts 
modelled according to the Black-Scholes equation.

A financial derivative is an options contract whose value derives from an underlying financial asset1. An options 
contract defines an agreement between two parties that entails a right to trade an asset at some specified future 
date for a fixed price. This right to trade agreement thus creates inherent value, which may in turn be traded 
in the same manner as the underlying financial asset. Consequently, a financial derivative may be viewed as 
an instrument, which can be used to either exploit arbitrage opportunities or mitigate risk exposure in the 
market. For this reason, a fundamental task in quantitative finance is how exactly do we determine the fair 
price of a financial derivative. Determining the fair price of an option is a highly non-trivial task, which is 
due in part to the stochastic nature of the parameters that define a derivative. While classical approaches are 
computationally-intensive and possess inherent limitations, quantum computing is an emerging technology 
that has the potential to transform industry, including financial technology. Quantum computing could prove 
crucial for simulating computationally-complex financial derivatives, and help reduce complexities associated 
with trading environments.

The famous Black-Scholes model1,2 is an effective method for determining the fair price of a derivative, and 
has become the standard for pricing European style financial options. Given the payoff price for an option at 
the maturity time, we can determine the present price of the option by solving the linear differential equation

 
∂u

∂t
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2(σx)2 ∂2u
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∂u
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for (x, t) ∈ [x0, xN ] × [0, T ], where the condition u(x, T ) = p(x) denotes the payoff of the option. The price 
of the option is denoted by u(x, t), while x denotes the value of the underlying asset, t represents time, and T is 
the maturity time. For simplicity, it is assumed that the volatility of the asset, σ, and the risk-free interest rate, r, 
are constant with respect to time. For convenience, adopting τ = T − t transforms the Black-Scholes equation 
Eq. (1) to the initial value problem
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for (x, τ) ∈ [x0, xN ] × [0, T ] with the initial condition u(x, τ = 0) = p(x). To numerically solve the Black-
Scholes equation, we must discretise the domain [x0, xN ] to a finite domain and assign appropriate boundary 
conditions.

The Schrödinger equation models the evolution of the wave function of a quantum mechanical system, and 
takes the form

 
i
∂ψ(x⃗, t)

∂t
= Ĥψ(x⃗, t), (3)

where the Hamiltonian, Ĥ , is a linear differential operator in x⃗ acting on the wave function ψ. Solutions to the 
Schrödinger equation are expressed in terms of the time evolution operator,

 ψ(x⃗, t) = e−iĤtψ(x⃗, 0). (4)

The Black-Scholes equation, Eq. (2), can also be expressed in the form of the Schrödinger equation, where its 
Hamiltonian is given by

 
ĤBS = i

[
1
2(σx)2 ∂2

∂x2 + rx
∂

∂x
− r

]
. (5)

Note that while the Hamiltonian of the Schrödinger equation is a Hermitian operator, which gives rise to unitary 
time evolution, the Black-Scholes Hamiltonian, Eq.  (5), is non-Hermitian, and induces non-unitary time 
evolution. However, since quantum computers evolve under unitary time evolution, it is the case that simulating 
non-Hermitian dynamics is not directly feasible on a quantum computer. It is for this reason that quantum 
computing approaches for solving the Black-Scholes equation have thus far relied on approximating non-unitary 
time evolution with unitary operators3–6.

Non-Hermitian Hamiltonians found use in modelling open quantum systems7 and pseudo-Hermitian, in 
particular PT-symmetric, Hamiltonians have been explored as candidates to generalise the theory of quantum 
mechanics8,9. Another example of non-Hermitian dynamics can be seen in the imaginary time evolution of 
a quantum system. Following a Wick rotation, which replaces time with an imaginary number β = it, the 
Schrödinger equation drives wave functions to become parallel to the ground state of the system. The Wick-
rotated form of the Schrödinger equation also takes the form of Eq. (3), but with an anti-Hermitian Hamiltonian. 
Although the imaginary time Schrödinger equation induces non-unitary dynamics, the normalised evolution 
can be simulated with quantum algorithms, including quantum imaginary time evolution (QITE)10 and 
variational QITE11.

Variational QITE (varQITE) is a hybrid quantum-classical algorithm that is well suited for noisy intermediate-
scale quantum (NISQ) devices. As a variational quantum algorithm, varQITE considers a system of differential 
equations linking to the gradients of ansatz parameters in imaginary time, and coefficients that depend on 
measurements of the ansatz. Variational QITE employs a fixed ansatz, where the time complexity is linear in the 
number of Hamiltonian terms. However, the choice of ansatz is crucial, as it is possible that the states produced by 
the true imaginary time evolution may not be generated by the particular parameterised ansatz circuit. VarQITE 
has been used to indirectly simulate Black-Scholes through a change of variables, x = es, which transforms 
ĤBS  into an anti-Hermitian Hamiltonian3–5. Solutions to the original Black-Scholes equation are obtained by 
undoing the variable change on the solutions obtained from QITE.

On the other hand, the simulated QITE approach is an alternative technique for simulating imaginary time 
evolution. The technique makes use of the Trotter product approximation, which approximates the normalised 
imaginary time evolution with a product of unitary operators acting on local neighbourhoods of qubits. 
Simulated QITE with sufficiently large unitary domains is not plagued by barren plateaus, as is the case with its 
variational counterpart. Simulated QITE on a k-local Hamiltonian requires a number of measurements that is 
exponential in k, with the depth of the associated quantum circuits scaling accordingly. Interestingly, however, 
recent work has focused on optimising the circuit depth and the number of measurements required in simulated 
QITE. For instance, Fast QITE provides for an exponential reduction in the circuit depth of each unitary and 
also reduces the number of measurements required per time step, leading to a quadratic speedup over QITE12. A 
time dependent drifted QITE introduces the concept of randomised compiling, which reduces the unitary circuit 
depth to be a constant and also reduces the number of measurements needed13. We also have an implementation 
of QITE using nonlocal approximation, which reduces circuit depth and is NISQ-friendly14.

Although imaginary time evolution was originally envisioned as a technique for determining the ground 
state of a Hamiltonian10,11, the methodology has been recently used as an approach for solving partial differential 
equations (PDEs), primarily based on varQITE 3,5,15–17. A simulated QITE approach for solving linear PDEs has 
also been considered18, however the approach is restricted to anti-Hermitian Hamiltonians involving only even-
ordered derivatives. In particular, the technique tracks how the non-unitary time evolution scales the quantum 
state over time, and the approach was used to generate solutions to the isotropic heat equation by combining the 
scale information with the normalised states obtained from QITE.

In this paper, we further widen the scope of simulated QITE by broadening the methodology to simulations 
involving arbitrary non-Hermitian dynamics. By removing simulated QITE’s restriction to anti-Hermitian 
Hamiltonians, we enhance the capabilities of the methodology with an ability to simulate arbitrary linear 
PDEs involving non-unitary time evolution. We have called this generalisation of simulated QITE to arbitrary 
Hamiltonians quantum non-unitary time evolution (QNUTE).
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Results
Quantum non-unitary time evolution
QNUTE is a quantum algorithm that simulates the dynamics of the Schrödinger equation with an arbitrary non-
Hermitian Hamiltonian Ĥ =

∑M

m=1 iĥm, where each ĥm is a local operator which may be non-Hermitian. The 
non-unitary time evolution operator generated by Ĥ  is approximated by its first order Trotter product, and takes 
the form

 
e−iĤT ≈

(
M∏

m=1

eĥm∆t

)NT

, (6)

where NT = T/∆t19,20. The normalised actions of each Trotter step eĥm∆t acting on a state |ψ⟩ are approximated 
with unitaries of the form e−iÂ∆t, and implemented with Trotter products of the form

 
e−iÂ∆t ≈

I∏
I=1

e−iaI σ̂I ∆t. (7)

In Eq. (7), Â =
∑I

I=1 aI σ̂I  is a Hermitian operator with σ̂I  denoting Hermitian operators chosen such that 
each unitary e−iθσ̂I  is efficiently implemented with a quantum circuit parameterised by θ. The real-valued 
coefficients aI  are determined by minimising the expression

 

∥∥∥∥∥∥
eĥm∆t|ψ⟩√

⟨ψ|eĥ
†
m∆teĥm∆t|ψ⟩

− e−iÂ∆t|ψ⟩

∥∥∥∥∥∥
, (8)

up to O(∆t), which involves solving a system of linear equations, (S + S⊤) a⃗ = b⃗, constructed using various 
measurements on |ψ⟩. In particular, we have

 
SI,J = ⟨ψ|σ̂†

I σ̂J |ψ⟩, c =
√

1 + 2∆t Re⟨ψ|ĥm|ψ⟩, bI = −2
c

Im⟨ψ|σ̂†
I ĥm|ψ⟩, (9)

see Supplementary Information for further details on the construction. Simulating each Trotter step involves 
taking O(I2) measurements to construct the I × I  matrix equation and generates a quantum circuit of depth 
O(I). The full simulation therefore requires O(NT MI2) measurements.

The states generated by QNUTE are determined by the choice of σ̂I . For example, choosing σ̂I  to encompass 
all Pauli strings allows us to capture arbitrary state vector rotations in the state space, whereas restricting σ̂I  to 
Pauli strings involving an odd number of Ŷ  gates significantly reduces the operator decomposition count and 
allows us to capture those rotations that do not introduce complex phases to the quantum state. Given a choice 
of σ̂I , the accuracy of the QNUTE implementation is dependent on the support of Â. Ideally, the support of Â 
should cover D = O(C) adjacent qubits surrounding the support of ĥm, where the correlation length C denotes 
the maximum distance between interacting qubits in the Hamiltonian. However, our choice to express Â has 
been in terms of Pauli strings, which gives rise to an exponential dependence on D, I = O(2D). For this reason, 
we have considered an inexact implementation of QNUTE that uses a constant domain size D < C .

We will demonstrate that QNUTE can be used to approximate solutions to arbitrary linear PDEs with solutions 
stored in the qubit state vector. Information relevant to the solution is extracted by taking measurements on the 
final quantum state. It is expected that the number of distinct measurements required to extract the relevant 
information should scale polynomially with the number of qubits. Further, if it is known that the solution to a 
PDE will be real-valued and non-negative, then the normalised solution calculated by QNUTE can be extracted 
obtained by taking the square root of the probability distribution of computational basis states. We will use 
QNUTE to simulate the Black-Scholes equation, as it has a non-Hermitian Hamiltonian and has non-negative 
real-valued solutions.

Simulating black-scholes with QNUTE
To model the dynamics of the Black-Scholes equation, we discretise the domain [x0, xN ] into 2n points equally 
spaced by a distance of h = xN −x0

2n−1 . The normalised samples of the option price are stored in an n-qubit 
quantum state given by

 

|ū(τ)⟩ =
∑2n−1

k=0 u(xk, τ)|k⟩√∑2n−1
k=0 u2(xk, τ)

, (10)

where xk = x0 + kh. Following Eq. (5), the discretised Black-Scholes Hamiltonian can be represented in terms 
of a central finite difference matrix of the form
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−iĤBS =




γ0 β0
α1 γ1 β1

. . .
. . .

. . .
α2n−2 γ2n−2 β2n−2

α2n−1 γ2n−1


 , (11)

where

 
αk = σ2x2

k

2h2 − rxk

2h
, βk = σ2x2

k

2h2 + rxk

2h
and γk = −r − αk − βk. (12)

Refer to Supplementary Information for the representation of the discretised Hamiltonian of Eq.  (11) in the 
Pauli operator basis.

Norm correction
The scale factor c given in Eq. (9) approximates how the Trotter step scales |ψ⟩ up to O(∆t). These approximations 
can be stored and multiplied to provide an approximation of how the state vector scales over the course of the 
evolution. Excluding the scenario of the ideal implementation of QNUTE that records a perfect fidelity, errors 
associated to each scale factor will compound over multiple Trotter steps, which must be corrected periodically. 
For an anti-Hermitian Hamiltonian Ĥ = iL̂, it was shown that the correction factor can be calculated using 
knowledge of the non-degenerate ground state |ψ0⟩ of L̂ and its corresponding eigenvalue λ018. This correction 
strategy necessarily exploits the mutual orthogonality of the eigenstates of the associated Hamiltonian.

However, since the discretised Black-Scholes Hamiltonian as given in Eq. (11) is not a normal operator, its 
eigenvectors are not guaranteed to be mutually orthogonal. This, therefore, rules out the norm correction strategy 
pursued in Ref.18. Interestingly, variational QITE has been employed as a technique for solving the Black-Scholes 
equation. Under this setting, the normalisation factor was considered either as a variational parameter5 or was 
determined with prior knowledge of how, specifically, call option prices evolve at the boundary xN

3. Since the 
former is not compatible with QNUTE, we generalise the latter approach to cater to various European option 
types.

Consider the Black-Scholes equation, as given in Eq. (5), with option price u(x, τ) assumed to be linear in x 
in the neighbourhood of the boundaries x0 and xN . We will consider linear boundary conditions, since they are 
widely used in classical option pricing simulations and are known to be numerically stable21. Thus, under linear 
boundary conditions, the option price takes the form u(x, τ) = a(τ)x + b(τ) near the boundaries. Substituting 
this form into Eq.  (5) reduces the Black-Scholes equation to an ordinary differential equation (ODE) at the 
boundaries

 
x

da

dτ
+ db

dτ
= −rb(τ). (13)

Solving Eq. (13) yields a(τ) = a(0) and b(τ) = b(0)e−rτ , where a(0), and b(0) can be derived from the initial 
conditions p(x) at each boundary. If a(0) or b(0) are non-zero on at least one of the boundaries, we can rescale a 
normalised solution to ensure that the value at that boundary is equal to a(τ)x + b(τ).

To guarantee that the linear boundary conditions apply during the QNUTE simulation, they must be 
encoded into the Black-Scholes Hamiltonian. The first and last rows of the matrix in Eq. (11) are updated with 
the corresponding forward and backward first-order finite difference coefficients, respectively, with the second-
derivative terms vanishing as the function is linear. The Black-Scholes Hamiltonian inclusive of linear boundary 
conditions takes the form

 

−iĤLBS =




γ′
0 β′

0
α1 γ1 β1

. . .
. . .

. . .
α2n−2 γ2n−2 β2n−2

α′
2n−1 γ′

2n−1


 , (14)

where

 
γ′

0 = −r − rx0

h
, β′

0 = rx0

h
, α′

2n−1 = −rxN

h
, and γ′

2n−1 = −r + rxN

h
. (15)

See Supplementary Information for the Pauli decomposition of this Hamiltonian.

Discussion
In this work, we have generalised the quantum imaginary time evolution algorithm to enable the simulation 
of arbitrary non-Hermitian dynamics on quantum computers. We demonstrated our QNUTE algorithm’s 
application via a numerical implementation that simulates the pricing dynamics of European options, as dictated 
by the Black-Scholes equation. Our approach differs from other quantum simulations targetting Black-Scholes 
as it directly solves the original equation, unlike the methods based on varQITE3–5, and it does not rely on post-
selection as in Ref.6.
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In undertaking these simulations, we assumed that the underlying financial asset had constant volatility, σ, 
and risk-free interest rate, r. The time dependence of these variables can be encoded in the Hamiltonian with no 
extra cost to its construction. Further, the inclusion of these variables does not affect the unitary approximations 
produced by QNUTE, however, modelling volatility and interest rates as stochastic processes may require smaller 
time steps for more accurate simulations. Indeed, the time dependence of r gives rise to a different boundary 
ODE, which necessitates modifications to our rescaling protocol outlined in Supplementary Information.

As depicted in Fig. 1, our implementations of QNUTE were able to match the analytical solutions of the 
Black-Scholes equation. For convergence, it is important to choose an asset price domain with boundaries such 
that linear boundary conditions hold for the option’s payoff u(x, τ = T ). A good level of convergence also 

Fig. 1. Black-Scholes option pricing simulations using QNUTE. The figure compares the Black-Scholes option 
prices calculated using QNUTE with varying number of qubits to the corresponding analytical solutions for 
the following European option types: (a) Call (b) Put (c) Bull Spread (d) Bear Spread (e) Straddle (f) Strangle. 
The vertical dashed lines at x = 50, 75, and 100 correspond to the strike prices of the option contracts. We 
simulated the solutions for the asset prices x ∈ [0, 150], with the maturity time T = 3 years, simulated over 
NT = 500 time steps. Our simulations used a risk-free interest rate of r = 0.04, and the volatility σ = 0.2. 
The unitaries used to approximate the evolution act on all of the qubits used in the simulation.
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depends on having access to enough sample points around the strike prices of the option, a lack of which can be 
seen in the 2-qubit curves in Fig. 1c, d and f.

In our implementations of QNUTE, each term, ĥm, in the decomposition of the Black-Scholes Hamiltonian 
was a linear combination of Pauli strings. Since the number of distinct Pauli strings in our decomposition scales 
exponentially with the number of qubits, an alternative decomposition is required for the scalability of QNUTE 
for Black-Scholes. Approaches taken to solve PDEs using varQITE have also required the expectation values of 
finite difference operators. In particular, Liu et al. proposed a scheme to measure such expectation values with a 
linear overhead17. We conjecture that this scheme may be adopted within our approach, leading to exponentially 
fewer terms in the Hamiltonian decomposition.

The discretised Black-Scholes Hamiltonian has a high degree of correlation between all the qubits used in 
the simulation. This was demonstrated by implementing inexact QNUTE, wherein the unitary approximations 
only act on at most D adjacent qubits. Figure 2 depicts the fidelities of inexact QNUTE simulations, averaged 
over each time step for the various option payoffs, see Table 1 for the exact values. For an increasing number of 
qubits and fixed domain size D, we have it that inexact QNUTE does not capture the correlations between the 
qubits, rendering it unable to emulate the true time evolution. For future work, we intend to incorporate recent 
improvements to the simulated QITE methodology, including Fast QITE12, time-dependent drifted QITE 13 and 
QITE with nonlocal approximation14, within our QNUTE framework to understand their effect on the accuracy 
and efficiency for simulated PDE dynamics.

Fig. 2. Average fidelities of inexact QNUTE implementations. The figure shows the fidelities of different 
implementations of inexact QNUTE used to simulate Black-Scholes dynamics averaged over each time step, 
with the error bars depicting the standard deviation. These simulations share the same parameters values 
for r, σ, T  and NT  as with the simulations shown in Fig. 1. n denotes the number of qubits used to store the 
function samples, and D denotes the maximum number of adjacent qubits targeted by the unitaries. The 
overall low fidelities shown the by inexact QNUTE, where D < n, indicate that the Black-Scholes Hamiltonian 
with linear boundary conditions has a high correlation length, making it difficult to accurately reproduce its 
evolution with small unitaries.
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information files.
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