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 A B S T R A C T

Nowadays, the collection and distribution of food products with high nutritional value and freshness for 
people in poverty has become a global problem due to financial, drought, or other crises. Food banks (FBs) 
are important entities that mitigate food waste by reusing surplus food at critical points in the food supply 
chain. This article investigates an FB network design problem for the collection and distribution of food items. 
An FB network comprises donors mapped from the food supply chain, FB itself, and beneficiaries mapped 
from charities. The problem addresses synchronous strategic, tactical, and operational decisions, including 
the location of FBs, the assignment of donors to main streams, the control of inventory, and the routing 
of vehicles in collection and distribution levels to optimize the amount of food reused. As the demand and 
supply of food items from charities and donors are uncertain, a robust fuzzy stochastic model is developed to 
model the problem with three objectives including cost, nutritional value, and freshness of food. An extensive 
numerical study compares these algorithms with respect to several criteria. The proposed novel MOGGWA 
heuristic showed superior performance and was ranked first by applying the TOPSIS multi-criteria decision-
making method. The value of stochastic programming and the impact of the model on a real-size case study 
problem are shown, as well.
1. Introduction

In 2016, approximately 23.4% of the European Union’s population 
(about 117.5 million people) faced poverty or social exclusion risks [1]. 
At the same time, an estimated 20%–30% of all food produced annually 
in the EU (valued at €143 billion) was wasted across the supply chain, 
from farms to households. Over the past few years, the European 
Union has taken various measures to reduce food waste throughout 
the food supply chain. One of these measures is the commitment of 
member states in order to reduce food waste by 30%. Despite food 
waste reduction initiatives, the challenge lies not in food scarcity but 
in the equitable distribution of existing resources. Food banks have 
emerged as critical intermediaries, connecting surplus food sources 
with communities in need [2,3]. FBs, established in the 1980s, operate 
globally under varying models. While some directly serve individuals, 
others act as warehouses, distributing food to secondary organizations 
such as pantries. Historically, canned and packaged foods have domi-
nated FB supplies, but increasing nutrition awareness has shifted focus 
toward fresh, perishable items. However, incorporating fresh products 
into FB operations poses unique logistical and operational challenges 
due to perishability, nutritional value degradation, and limited stor-
age capacity [4]. In other words, FBs are responsible for leading a 
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commodity chain and building a bridge between surplus food and 
human needs. The operation of FBs depends on their suppliers (food 
companies and other donors) and in effect, they act as wholesalers. 
Management of FBs is also complicated due to the distribution of 
perishable products, which in many cases may decrease in quality and 
quantity. In addition to the common goal of providing food to people 
in poverty, FBs are also compatible with the environment [5]. They can 
have a positive impact on the environment and society by reducing 
food waste and distributing surplus food to the beneficiaries. In fact, 
the purpose of FB is to preserve the value of food. That is, meeting 
the demand of charities by maintaining and maximizing the freshness 
and value of food in line with the health of consumers. In case of not 
paying attention to this issue, food is considered as waste and thrown 
away. Unlike other profit-making organizations, FBs aims at equitable, 
effective, and efficient distribution of donated foods [6]. A national 
survey of FB clients conducted in 2013 found that many FB clients 
preferred nutritious foods and fresh fruits, whilst vegetables are among 
the ingredients that customers did not receive in food packages. The 
limited facilities for storage and distribution of fresh food on one hand, 
and the desire of the beneficiaries for fresh and nutritious food on the 
other hand, have led to the improvement of quality and emergence 
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of research initiatives [7]. In order to solve this issue, managers are 
trying to increase human resources and create physical capacity in 
FBs. They have considered refrigerated warehouses in FBs to store 
fresh products and other perishable items such as dairy products. To 
improve and accelerate access to perishable foods, including fresh fruits 
and vegetables, FBs use several strategies, including notifying agencies 
or attempting to contact food donors directly. This strategy offers an 
additional advantage to maximizing the shelf life of perishable food 
products by shortening the distribution time. This makes it possible to 
store food with a long shelf life for a limited period of time so that it can 
be distributed at the right time. This is quite important as it facilitates 
meeting the demand of charities.

At the operational level, food freshness has an inverse relationship 
with vehicle travel time in logistics. That is, the longer the trans-
portation time of the food is, the less fresh it will be at the time of 
delivery. Therefore, vehicles should deliver food to charities or collect 
it from donors as soon as possible. Also, each food product has a 
certain nutritional value; therefore, FBs while ensuring fulfillment of 
the minimum required nutritional value of charities, also strive to 
maximize their total nutritional value.

The critical challenges FBs face include minimizing food waste, 
ensuring nutritional adequacy, and maintaining food freshness while 
addressing the complex logistics of supply chain operations. Notably, 
these challenges are compounded by uncertainties in supply and de-
mand, such as varying food donation volumes and the fluctuating needs 
of recipient charities. Addressing these challenges requires advanced 
decision-making across all strategic, tactical and operational levels, 
including facility location, inventory management, vehicle routing, and 
distribution scheduling.

Based on the different decisions in the FB network, there are three 
main performance indices addressed in this paper. Minimization of total 
costs, maximization of minimum food freshness, and maximization 
of foods’ nutritional value. In order to simultaneously achieve these 
three goals, choosing the appropriate FB location, determining vehicle 
routing for food basket distribution, determining the inventory of cold 
food in FBs, and also the dispatching time of food baskets by vehicles 
should be specified.

As a result, different strategic, tactical and operational decisions 
must be made simultaneously in the FB network, which increases the 
complexity of decision-making. In addition, the supply of food in FB 
networks is a major issue in the network design. Usually, the amount of 
food supplied by donors or the amount of demand for food by charities 
are different in each time period indicating uncertain parameters. As 
it is not possible to determine the exact value of these parameters in 
advance to make the most appropriate executive decision, an appro-
priate uncertainty control method should be applied to deal with the 
uncertainty. Therefore, this article proposes a robust fuzzy stochastic 
approach for the defined FB network design problem.

To tackle the multi-objective model in this study, in addition to 
the augmented epsilon constraint (AEC) method, three meta-heuristic 
algorithms, namely, NSGA II, MOGWO and MOGGWA also developed 
since the exact solution method is computationally expensive for real 
size instances. The multiplicity of objectives in the mathematical model 
leads to the creation of multiple efficient solutions, which are com-
pared based on various indexes such as the Number of Pareto Front 
(NPF), Maximum Spread index (MS), Space Metric (SM), Mean of 
Ideal Deviations (MID), and Solution Time (CPT). The efficacy of the 
problem parameters on the objectives and choosing the appropriate 
solution method is also examined for the FB network problem. This 
study investigates the following research questions:

1. How can FBs optimize their network design to achieve equitable 
and efficient food distribution?

2. How can food freshness and nutritional value be preserved while 
minimizing supply chain costs?

3. How can uncertainties in supply and demand be effectively 
managed in FB network operations?
2 
Despite significant advances in the field, important gaps remain 
unaddressed. First, few studies incorporate food freshness as a primary 
objective in the network design. This paper proposes a novel integration 
of food freshness alongside cost minimization and nutritional value 
maximization, ensuring equitable and effective distribution. Second, 
uncertainties in food supply and demand have often been simplified or 
ignored in prior models. This study addresses these challenges by devel-
oping a robust fuzzy stochastic model that accommodates supply and 
demand variations. Finally, advanced multi-objective solution methods, 
including the augmented epsilon constraint method and metaheuristic 
algorithms are employed to solve the proposed model efficiently. The 
detailed research gaps and contributions are discussed in Section 2.3. 
In addition, a case study conducted in Tehran validates the practicality 
of the proposed model and solution methods. The rest of this article 
is compiled into six sections. Section 2 reviews the research literature 
under related themes. Section 3 proposes a robust fuzzy stochastic 
mathematical model for our FB network problem to tackle uncertain 
parameters and probable scenarios. In Section 4, solution methods, con-
struction of the initial solution, and comparison indexes are discussed, 
while in Section 5, the numerical results are presented, and a real 
case study is provided together with some managerial insights. Finally, 
Section 6 concludes the article and provides future research directions.

2. Literature review

Food insecurity continues to pose worldwide health-threatening 
concerns, while according to the FAO, approximately 30% of food 
produced for human consumption is lost or wasted annually due to 
inappropriate management of food supply chains, including improper 
storage and transportation practices [8]. In addition, food donation 
and distribution face uncertainty as the amount of food and demand 
can differ over time. Other parameters such as distribution time can 
be uncertain affecting food safety and demand satisfaction. Moreover, 
food production consumes natural resources such as water and energy, 
so reducing food waste can save these natural resources for future 
generations [9]. Dubey and Tanksale [10] identify challenges in the 
growth of FBs and cluster them into seven categories among which 
are uncertainty, characteristics of the donated food, financial, and 
planning & coordination. Thus, the design of the food supply chain 
network can play a vital role in preventing a significant amount of 
food wastage, thereby reducing greenhouse gas emissions and increas-
ing food security. Using FBs and volunteer work, surplus or expiring 
food can be collected and managed to meet food demand before it 
becomes waste. FBs operate with limited resources that depend mainly 
on donations and volunteer work. Therefore, they must design and 
manage their supply chain network efficiently and effectively to ensure 
the highest possible amount of food aid [11]. The current configuration 
of most FB networks is not the result of a strategic planning process but 
has emerged through operational decisions and donation opportunities 
identified over the past 20 years [1]. The supply chain network of 
FBs includes different entities from suppliers to end users such as 
warehouses, food donors, and people in need, which makes it difficult 
to manage. In particular, coordination between different sectors are 
challenging when food or financial aid must be collected from donors 
in different locations and then repackaged and distributed to those in 
need [2,7].

In the rest of this section, studies related to the above-mentioned 
challenges in the context of FBs are briefly summarized in two main 
themes. For a more comprehensive literature review the readers may 
refer to Rivera et al. [12], Esmaeilidouki et al. [13].

2.1. Food bank network

Orgut et al. [14] develop a mathematical model for a North Carolina 
FB to maximize its effectiveness by minimizing the amount of undis-
tributed food. Their model identifies optimal policies for allocating 
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additional receiving capacity to cities in the service area. Reihaneh and 
Ghoniem [15] propose a heuristic for pallet distribution in intermediary 
deliveries of FBs. Wetherill et al. [7] conduct a study to describe the 
best strategies for promoting nutrition-focused food banking in the 
United States. They used qualitative interviews to obtain information 
about food banking practices and processes. Chen et al. [16] study a 
vehicle routing problem to minimize the traveled distance considering 
constraints such as capacity and transit time. The results of their model 
showed that by modifying the vehicles’ route, 94.4% of customers can 
benefit from food bank services. In a different study, Mandal et al. 
[17] presented a decision support model for collectors to reduce food 
waste by allocating donated food items from retailers to FBs and max-
imizing the profitability of collectors while minimizing environmental 
impacts. Kaviyani-Charati et al. [8] present a mathematical model 
considering sustainability factors in the multi-objective model. They 
conduct a real case study in the city of Tehran, taking into account 
many uncertain parameters and time constraints. Firouz et al. [18] pro-
pose a model to invoke equity and efficiency in a food bank donation 
allocation problem using a penalty factor in the objective function. 
Ghahremani-Nahr et al. [19] present an FB network to minimize the 
total costs, maximize the value of the food basket, and maximize the 
freshness of the food. They proposed a robust fuzzy method to control 
their uncertain parameters and proposed a meta-heuristic algorithm 
and 𝜖-constraint method to solve it. Martins and Pato [20] also investi-
gate a three-tier FB network design with a focus on the allocation and 
capacity of the facilities. Their optimization problem considers three 
objectives including cost, waste and carbon footprint, and number of 
served charities.

2.2. Uncertainty in the food supply chain

According to the systematic review of Luo et al. [21], uncertainty
forms 5% of the keywords contained in studies of food loss and waste 
within supply chain operations. They report that stochastic and robust 
optimization approaches are the most used methods in capturing uncer-
tainty in the objective od constraints. Here, for the sake of brevity, we 
review some most recent and related studies considering uncertainty 
in the context of FB and food supply chain. For a more comprehensive 
review the reader may refer to Chen et al. [22].

Hassanpour et al. [23] develop a mathematical model to integrate 
food supply and distribution decisions under uncertain conditions (ve-
hicle travel time) to minimize purchase and transportation costs and 
maximize customer satisfaction. Gholami-Zanjani et al. [24] present a 
comprehensive two-stage scenario-based mathematical model to design 
a food supply chain network under demand uncertainty. They develop 
acceptable scenarios using the Monte Carlo method and applied Ben-
der’s decomposition technique to solve the problem. Krishnan et al. 
[25] develop a multi-objective robust model for an agri-food supply 
chain network considering the uncertainty in the supply to optimize 
the sustainability factors. Similarly, Fathollahzadeh et al. [26] propose 
a bi-objective stochastic model to address the uncertainty. Both studies 
use 𝜖-constraint and heuristic methods in their solution approaches.

Li and Song [27] present a model to investigate the effects of 
uncertainties on the food supply chain and found that the combina-
tion of effects intensifies or reduces food supply chain risks. Gholian-
Jouybari et al. [28] investigate the design of meta-heuristic algorithms 
for a sustainable supply chain of agricultural products by consid-
ering marketing practices under conditions of uncertainty. For this 
purpose, they develop a stochastic multi-objective planning model, 
whose effectiveness is confirmed by a case study on saffron trade 
using the LP-metric method, and developed a meta-heuristic method 
to solve it. Partovi et al. [29] present a two-level programming formu-
lation for the location-inventory-routing problem in a two-stage supply 
chain that minimizes the total operating costs at both levels subject 
to capacity constraints. Considering the uncertainty of the problem, 
they use scenario-based programming, and designed a multi-criteria 
goal programming model for the problem. Table  1, summarizes the 
characteristics of various articles related discussed above.
3 
Fig. 1. Freshness of food to their shelf-life over time: 𝛤 (𝑡) = 100𝑒−𝜃𝑡.

2.3. Research gap and contributions

Based on the literature review and the analysis in Table  1, the 
following research gaps have been identified and addressed in this 
study:

1. Objective function: Most studies in the field of food supply 
chains and food banks focus on minimizing total costs, maximiz-
ing profit, improving customer satisfaction, or reducing green-
house gas emissions. Although some address minimizing unmet 
demand, none explicitly considers the goal of maximizing food 
freshness for end-users. This gap highlights the need to incorpo-
rate food freshness as a critical objective in the design of food 
bank networks.

2. Constraint: While existing research incorporates various strate-
gic and tactical decisions, such as facility location, produc-
tion capacity, and transfer flow allocation, few integrate con-
straints related to product shelf life and freshness. Incorporating 
these constraints can make models more realistic and enhance 
decision-making. Additionally, considering constraints tied to 
financial donors’ daily budgets and integrating these into the 
network design presents another research opportunity.

3. Assumptions: Existing studies primarily focus on individual 
segments of the food supply chain, often neglecting the inter-
connectedness of upstream and downstream operations. This 
paper addresses this gap by simultaneously optimizing routing 
decisions for both upstream (donor-to-FB) and downstream (FB-
to-charity) flows, thereby ensuring food freshness is preserved 
across the entire supply chain.
In addition, most reviewed studies focus primarily on the flow of 
items between facilities without considering the freshness or nu-
tritional value of food baskets. Incorporating assumptions about 
preserving food freshness and maximizing nutritional value adds 
significant richness to the problem formulation. Furthermore, 
supply and demand uncertainties are often overlooked in de-
terministic models. This study addresses these uncertainties by 
modeling supply and demand parameters as stochastic variables.

4. Solution methods: Based on Table  1, over 70% of the reviewed 
studies employ exact methods for deterministic problems. How-
ever uncertain models often rely on meta-heuristic algorithms 
like MOPSO and NSGA II. This study contributes by implement-
ing advanced hybrid methods, including robust fuzzy stochastic 
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Table 1
Characteristics of selected articles in the context of food supply network and FBs.
 Paper Assumptions Objectives Decisions Uncertainty Solution method
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 [30] S S S ✓ ✓ ✓ ✓ ✓ ✓  
 [31] S M S ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 [32] M S M ✓ ✓ ✓ ✓ ✓ ✓  
 [33] M S M ✓ ✓ ✓ ✓ ✓  
 [34] M S M ✓ ✓ ✓ ✓ ✓ ✓  
 [35] S S S ✓ ✓ ✓ ✓  
 [36] S M S ✓ ✓ ✓ ✓  
 [37] M M S ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 [38] M M S ✓ ✓ ✓ ✓ ✓  
 [39] M M S ✓ ✓ ✓ ✓  
 [40] M M M ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 [41] S M M ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 [25] M M S ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 [27] M M S ✓ ✓ ✓ ✓ ✓  
 [42] M M S ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 [43] S M S ✓ ✓ ✓ ✓ ✓ ✓  
 [44] S M S ✓ ✓ ✓ ✓ ✓  
 [29] M M M ✓ ✓ ✓ ✓ ✓ ✓  
 [28] S M M ✓ ✓ ✓ ✓ ✓ ✓  
 [19] M M M ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 [45] S M S ✓ ✓ ✓ ✓ ✓ ✓  
 [20] M M M ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 [26] M M M ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Current article M M M ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
Fig. 2. A three-echelon food bank network.
 

 

 
 
 

modeling combined with meta-heuristic algorithms, to solve
complex uncertain problems effectively.

5. Uncertainty control method: Various uncertainty control tech-
niques, such as fuzzy programming, robust optimization, and
probabilistic methods, have been utilized in prior research. How-
ever, hybrid methods that combine these approaches remain
underexplored. This study proposes a robust fuzzy stochastic
method to address uncertainty in supply and demand, offering a
more adaptable and comprehensive solution.
4 
In summary, this research contributes to the field of food bank net-
work design by addressing these gaps and proposing novel objectives, 
constraints, and solution methodologies.

3. Food bank network problem

The FB network considered here includes a set of donors either 
food or financial, FBs, and charities. The donors are composed of either 
restaurants, hypermarkets, and similar businesses that provide FBs with 
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food for free; or benefactors who buy and donate food to the FBs. 
Food items donated by donors encompass two types: warm (with a 
short shelf-life), and cold/canned (with a long shelf-life), which can 
form diverse food baskets. Charities announce their daily demand for 
food items or food baskets to the FBs whereas FBs dispatch them after 
procurement. Among the challenges of this process is the durability of 
food items. Although cold foods can be held in a FB due to their long 
shelf-life, according to [46] the freshness of hot meals exponentially 
deteriorates over time as shown in Fig.  1.

As food baskets are comprised of cold and hot foods with different 
nutritional values, the other factor in the FB network to be considered is 
fulfilling the maximum nutritional value of the donated food. Addition-
ally, the supply and demand are non-deterministic which complicates 
the planning and network design, whereas financial donors buy and 
provide food to the FBs upon their request.

FBs are responsible for the distribution of food to charities and 
also for collecting them from donors. Thus, they deal with a routing 
problem both for the collection and distribution of foods in the network 
as illustrated in Fig.  2.

The aim of our model is to make strategic, tactical and operational 
decisions such as the location of the FBs, routing of the food collection 
and distribution, allocation of food to financial donors, and determining 
the inventory level of cold food in FBs. In the proposed model the 
transportation cost, food supply amount (from the donors), and food 
demand (from the charities) are considered non-deterministic in differ-
ent scenarios. The objectives of these decisions are to minimize the total 
cost of the network, maximize the minimum freshness of the distributed 
food, and maximize the total nutritional value of the distributed food. 
Thus, the assumptions of the model are summarized as follows:

• Multiple types of food with long and short shelf-life are consid-
ered;

• Only foods with long shelf-life can be stored in FBs.
• The number and location of charities are known.
• The total budget of financial donors is limited and time-dependent.
• The freshness of food items is measured from the dispatching 
moment in FBs.

• The supply, demand, and transportation costs are uncertain, and 
are evaluated in different scenarios.

• The capacity of the vehicles and FBs are known.
• Both the collection and distribution of the food are based on 
supply and demand, which leads to different vehicle routing 
problems.

• Each food donor donates food to only one FB, but each FB can 
collect donations from multiple donors. Financial donors can 
donate to multiple FBs.

• Each charity receives food only from one FB, but each FB can 
deliver food to multiple charities.

Based on the assumptions above, the notations used for the mathemat-
ical model are listed below. Sets:

  Set of food donors 𝑖 ∈ 1,… , 𝐼
  Set of financial donors 𝑗 ∈ 1,… , 𝐽
  Set of candidate locations for FBs 𝑙 ∈ 1,… , 𝐿
  Set of charities 𝑐 ∈ 1,… , 𝐶
  Set of vehicles as a fleet 𝑣 ∈ 1,… , 𝑉
  Set of time period 𝑡 ∈ 1,… , 𝑇
  Set of food items 𝑝 ∈ 1,… , 𝑃
 ′  Set of hot food items with short shelf-life 𝑝 ∈ 1,… , 𝑃 ′

 ′′  Set of cold food items with long shelf-life 𝑝 ∈ 1,… , 𝑃 ′′

  Set of scenarios 𝑠 ∈ 1,… , 𝑆

Parameters:

𝑓  Fixed setup cost of establishing a FB in location 𝑙 ∈ 
𝑙

5 
𝜓𝑙𝑝  Maximum distribution capacity of FB 𝑙 ∈  for food item 𝑝 ∈ 
𝑑𝑐𝑝𝑡𝑠  Demand of charity 𝑐 ∈  for food item 𝑝 ∈  in period 𝑡 ∈ 

under scenario 𝑠 ∈ 
�̃�𝑖𝑝𝑡𝑠  Supply amount of donor 𝑖 ∈  for item 𝑝 ∈  in period 𝑡 ∈ 

under scenario 𝑠 ∈ 
𝑜𝑙𝑝  Operational cost of packaging and procuring food item 𝑝 ∈ 

in FB 𝑙 ∈ 
ℎ𝑝′′  Holding cost of food item 𝑝′′ ∈  ′′

𝜙𝐿𝑙  Loading time of food items in FB 𝑙 ∈ 
𝜙𝑈𝑐  Unloading time of food baskets in delivery to charity 𝑐 ∈ 
𝛿𝑛𝑛′  Distance between locations 𝑛, 𝑛′ ∈  ∪  ∪  ∪ 
𝑔𝑣  Fixed cost of employing a vehicle 𝑣 ∈ 
𝜌  Per kilometer transportation cost
𝜆  Average speed of vehicles
𝛾𝑣  Capacity of vehicle 𝑣 ∈ 

𝜔𝑗𝑝𝑡  Procuring cost of food item 𝑝 ∈  by financial donor 𝑗 ∈   in 
period 𝑡 ∈ 

𝑏𝑗𝑡  Budget for donation by financial donor 𝑗 ∈   in period 𝑡 ∈ 
𝓁𝑝  Shelf-life of food item 𝑝 ∈ 
𝜅𝑝  Nutritional value of the food item 𝑝 ∈ 
𝜁𝑝  Volume of the unit pack of food item 𝑝 ∈ 
𝑝𝑠  probability of scenario 𝑠 ∈ 
𝐌  a big number

Decision Variables:

𝑊𝑙𝑝𝑡𝑠  Amount of food item 𝑝 distributed by FB 𝑙 in period 𝑡
under scenario 𝑠

𝐷𝑙𝑝𝑡𝑠  Amount of food item 𝑝 collected by FB 𝑙 in period 𝑡
under scenario 𝑠

𝐹𝑗𝑙𝑝𝑡𝑠  Amount of food item 𝑝 provided by financial donor 𝑗
to FB 𝑙 in period 𝑡 under scenario 𝑠

𝐺𝑐𝑝𝑡𝑠  Proportion of met demand for food item 𝑝 in charity 𝑐
at period 𝑡 under scenario 𝑠

𝛤𝑙𝑐𝑣𝑝𝑡𝑠  Freshness of food item 𝑝 supplied by FB 𝑙 and delivered 
by vehicle 𝑣 at the moment of visiting charity 𝑐 at period 
𝑡 under scenario 𝑠

𝑄𝑙𝑝′′𝑡𝑠  Inventory of food item 𝑝′′ in FB 𝑙 at period 𝑡 under 
scenario 𝑠

𝑈𝑐𝑣𝑡𝑠  Auxiliary variable for sub-tour elimination
𝐸𝑖𝑣𝑡𝑠  Auxiliary variable for sub-tour elimination
𝑋𝑛𝑛′𝑣𝑡𝑠  Binary variable which equals 1 if vehicle 𝑣 travels from 

location 𝑛 to 𝑛′ (both ∈  ∪ ) at period 𝑡 under scenario 
𝑠; 0, otherwise

𝑌𝑚𝑚′𝑣𝑡𝑠  Binary variable which equals 1 if vehicle 𝑣 travels from 
location 𝑚 to 𝑚′ (both ∈ ∪) at period 𝑡 under scenario 
𝑠; 0, otherwise

𝑅𝑙𝑐𝑣𝑡𝑠  Binary variable which equals 1 if charity 𝑐 is assigned 
to FB 𝑙 and visited by vehicle 𝑣 in at period 𝑡 under 
scenario 𝑠; 0, otherwise

𝑆𝑙𝑖𝑣𝑡𝑠  Binary variable which equals 1 if donor 𝑖 is assigned to 
FB 𝑙 and visited by vehicle 𝑣 in at period 𝑡 under scenario 
𝑠; 0, otherwise

𝐶𝑗𝑙𝑣𝑡𝑠  Binary variable which equals 1 if vehicle 𝑣 is employed 
to collect food from financial donor 𝑗 at period 𝑡 under 
scenario 𝑠; 0, otherwise

𝑍𝑙  Binary variable which equals 1 if a FB is set in location 
𝑙; 0, otherwise

𝐴𝑣𝑡𝑠  Binary variable which equals 1 if vehicle 𝑣 is employed 
to collect food from donors at period 𝑡 under scenario 𝑠; 
0, otherwise

𝐵𝑣𝑡𝑠  Binary variable which equals 1 if vehicle 𝑣 is employed 
to distribute food to charities at period 𝑡 under scenario 
𝑠; 0, otherwise
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As deciding on the location is a strategic and long-term decision, 
while routing-assignment-inventory decisions are day-to-day opera-
tional, summing these two may not be precise due to their scale. Thus, 
to facilitate their aggregation the rate of investment conversion factor 
shown in Eq.  (1) is used to obtain the equivalent annual cost of the 
investment cost (FB location cost). 

𝐴 = 𝑃
[

𝑟(1 + 𝑟)n

(1 + 𝑟)n − 1

]

(1)

It is assumed that the nominal interest rate 𝑟 is fixed over each year and 
considered as 20%. In the equation above, n is the planning horizon 
which is usually 20 years in such networks. To aggregate the equivalent 
annual cost of location with the operational costs, it should be projected 
on a daily scale. Thus, after plugging the investment return factor to 𝑃
in (1), its annual equivalent, 𝐴, can be mapped to daily basis, 𝐴′ by,

𝐴′ = 𝐴
365

or,

𝐴′ = 𝑃𝜏,  where 𝜏 =
[

𝑟(1 + 𝑟)n

(1 + 𝑟)n − 1

]

1
365

. (2)

The stochastic fuzzy mixed integer mathematical programming 
model developed for the problem is given in the following.
Objective Functions: 

(3)

max𝑂𝑏𝑗2 = min
𝑣,𝑝,𝑡,𝑐

∑

𝑙

∑

𝑠
𝑝𝑠𝛤𝑙𝑐𝑣𝑝𝑡𝑠 (4)

max𝑂𝑏𝑗3 =
∑

𝑙

∑

𝑝

∑

𝑡

∑

𝑠
𝑝𝑠𝜅𝑝𝑊𝑙𝑝𝑡𝑠 (5)

The objective function (3) minimizes the total cost of the network 
including vehicle costs, transportation, packaging and storing, and 
establishment of FBs. The second objective function in (4) maximizes 
the minimum freshness of the distributed food among all charities, and 
(5) maximizes the total nutritional value of all distributed foods as the 
third objective function.

Vehicle Routing constraints between FBs and Charities:
∑

𝑣∈

∑

𝑛∈∪
𝑋𝑛𝑐𝑣𝑡𝑠 = 1, ∀𝑐 ∈ , 𝑡 ∈  , 𝑠 ∈  , (6)

∑

𝑛∈∪
𝑛≠𝑐

𝑋𝑛𝑐𝑣𝑡𝑠 =
∑

𝑛∈∪
𝑛≠𝑐

𝑋𝑐𝑛𝑣𝑡𝑠, ∀𝑣 ∈  , 𝑐 ∈ , 𝑡 ∈  , 𝑠 ∈  , (7)

∑

𝑙∈

∑

𝑐∈
𝑋𝑙𝑐𝑣𝑡𝑠 ≤ 1, ∀𝑣 ∈  , 𝑡 ∈  , 𝑠 ∈  , (8)

∑

𝑛∈∪

(

𝑋𝑙𝑛𝑣𝑡𝑠 +𝑋𝑛𝑐𝑣𝑡𝑠
)

≤ 1 + 𝑅𝑙𝑐𝑣𝑡𝑠, ∀𝑙 ∈ , 𝑐 ∈ , 𝑣 ∈∈  , 𝑡 ∈  , 𝑠 ∈  , (9)

𝑈𝑐𝑣𝑡𝑠 − 𝑈𝑐′𝑣𝑡𝑠 + |𝐶|𝑋𝑐𝑐′𝑣𝑡𝑠 ≤ |𝐶| − 1, ∀𝑐, 𝑐′ ∈ , 𝑣 ∈  , 𝑡 ∈  , 𝑠 ∈  ,
(10)

Constraint (6) ensures that each charity is served by a vehicle, and 
(7) indicates that each vehicle should leave the charity after delivering 
the food. Constraint (8) indicates that there is at most one route 
for each vehicle and (9) forces the vehicle to return to the FB after 
visiting the charities. Constraint (10) avoids the creation of sub-tours 
in solutions based on Miller-Tucker-Zemlin formulation wherein the 
6 
dummy variables 𝑈.... keeps track of the order in which charities are 
visited [47].
Vehicle Routing constraints between donors and FBs:
∑

𝑣∈

∑

𝑚∈∪
𝑌𝑚𝑖𝑣𝑡𝑠 = 1, ∀𝑖 ∈ , 𝑡 ∈  , 𝑠 ∈  ,

(11)
∑

𝑚∈∪
𝑚≠𝑖

𝑌𝑚𝑖𝑣𝑡𝑠 =
∑

𝑚∈∪
𝑚≠𝑖

𝑌𝑖𝑚𝑣𝑡𝑠, ∀𝑣 ∈  , 𝑖 ∈ , 𝑡 ∈  , 𝑠 ∈  ,

(12)
∑

𝑙∈

∑

𝑖∈
𝑌𝑙𝑖𝑣𝑡𝑠 ≤ 1, ∀𝑣 ∈  , 𝑡 ∈  , 𝑠 ∈  ,

(13)
∑

𝑚∈∪

(

𝑌𝑙𝑚𝑣𝑡𝑠 + 𝑌𝑚𝑖𝑣𝑡𝑠
)

≤ 1 + 𝑆𝑙𝑖𝑣𝑡𝑠, ∀𝑙 ∈ , 𝑖 ∈ , 𝑣 ∈∈  , 𝑡 ∈  , 𝑠 ∈  ,

(14)
𝐸𝑖𝑣𝑡𝑠 − 𝐸𝑖′𝑣𝑡𝑠 + |𝐼|𝑌𝑖𝑖′𝑣𝑡𝑠 ≤ |𝐼| − 1, ∀𝑖, 𝑖′ ∈ , 𝑣 ∈  , 𝑡 ∈  , 𝑠 ∈  ,

(15)

Constraint (11) ensures that each donor is visited by a vehicle, and (12) 
indicates that each vehicle should leave the donor after collecting the 
food. Constraint (13) indicates that there is at most one route for each 
vehicle and (14) forces the vehicle to return to the FB after visiting 
the donors. Constraint (15) avoids the creation of sub-tours in solutions 
for the upstream of the network. Similar to (10), MTZ formulation is 
used wherein the auxiliary variables 𝐸.... control the sequence of visits 
between donors.
Flow balance equation between tiers:

𝑊𝑙𝑝𝑡𝑠 =
∑

𝑐∈

∑

𝑣∈
𝑑𝑐𝑝𝑡𝑠𝐺𝑐𝑝𝑡𝑠𝑅𝑙𝑐𝑣𝑡𝑠, ∀𝑙 ∈ , 𝑝 ∈  ,

𝑡 ∈  , 𝑠 ∈  , (16)
𝐷𝑙𝑝𝑡𝑠 =

∑

𝑖∈

∑

𝑣∈
�̃�𝑖𝑝𝑡𝑠𝑆𝑙𝑖𝑣𝑡𝑠, ∀𝑙 ∈ , 𝑝 ∈  ,

𝑡 ∈  , 𝑠 ∈  , (17)
𝐷𝑙𝑝′𝑡𝑠 +

∑

𝑗∈
𝐹𝑗𝑙𝑝′𝑡𝑠 = 𝑊𝑙𝑝′𝑡𝑠, ∀𝑙 ∈ , 𝑝′ ∈  ′,

𝑡 ∈  , 𝑠 ∈  , (18)
𝐷𝑙𝑝′′𝑡𝑠 +

∑

𝑗∈
𝐹𝑗𝑙𝑝′′𝑡𝑠 +𝑄𝑙𝑝′′ ,𝑡−1,𝑠 −𝑄𝑙𝑝′′𝑡𝑠 = 𝑊𝑙𝑝′′𝑡𝑠, ∀𝑙 ∈ , 𝑝′′ ∈  ′′,

𝑡 ∈  , 𝑠 ∈  , (19)

Constraint (16) calculates the total distributed food, while (17) sums 
the total collected food. Eqs. (18) and (19) determines the amount of 
food with high and low shelf-life, respectively.
Vehicle capacity:
∑

𝑐∈

∑

𝑙∈

∑

𝑝∈
𝜁𝑝𝑑𝑐𝑝𝑡𝑠𝐺𝑐𝑝𝑡𝑠𝑅𝑙𝑐𝑣𝑡𝑠 ≤ 𝛾𝑣𝐵𝑣𝑡𝑠, 𝑣 ∈  , 𝑡 ∈  , 𝑠 ∈  , (20)

∑

𝑖∈

∑

𝑙∈

∑

𝑝∈
𝜁𝑝�̃�𝑖𝑝𝑡𝑠𝑆𝑙𝑖𝑣𝑡𝑠 ≤ 𝛾𝑣𝐴𝑣𝑡𝑠, 𝑣 ∈  , 𝑡 ∈  , 𝑠 ∈  , (21)

∑

𝑝∈
𝜁𝑝𝐹𝑗𝑙𝑝𝑡𝑠 ≤

∑

𝑣∈
𝛾𝑣𝐶𝑗𝑙𝑣𝑡𝑠, 𝑗 ∈  , 𝑙 ∈ , 𝑡 ∈  , 𝑠 ∈  , (22)

Constraints (20), (21) and (22) impose the vehicle capacity in distribut-
ing food among charities, collecting food from donors, and financial 
donors, respectively.
Food bank capacity:

𝑊𝑙𝑝𝑡𝑠 ≤ 𝜓𝑙𝑝𝑍𝑙 , 𝑙 ∈ , 𝑝 ∈  , 𝑡 ∈  , 𝑠 ∈  , (23)

𝐷𝑙𝑝𝑡𝑠 ≤ 𝜓𝑙𝑝𝑍𝑙 , 𝑙 ∈ , 𝑝 ∈  , 𝑡 ∈  , 𝑠 ∈  , (24)
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Constraints (23) and (24) impose the capacity limitations of FBs in the 
distribution and collection of food items, respectively.
Budget balance of financial donors:
∑

𝑙∈

∑

𝑝∈
𝜔𝑗𝑝𝑡𝐹𝑗𝑙𝑝𝑡𝑠 ≤ 𝑏𝑗𝑡 +

∑

𝑡′<𝑡

(

𝑏𝑗𝑡′ −
∑

𝑙∈

∑

𝑝∈
𝜔𝑗𝑝𝑡′𝐹𝑗𝑙𝑝𝑡′𝑠

)

,

𝑗 ∈  , 𝑡 ∈  , 𝑠 ∈  , (25)

Constraint (25) ensures that the total purchased food by financial 
donors does not exceed their budget. The LHS of the constraint cor-
responds to the total spending on food items at each period, while the 
RHS sums the available budgets of that period with the total surplus of 
budgets from previous periods.
Food freshness:

𝛤𝑙𝑐𝑣𝑝𝑡𝑠 ≤ 100 exp
(

−
𝛿𝑙𝑐
𝜆 + 𝜙𝐿𝑙 + 𝜙𝑈𝑐

𝓁𝑝

)

+ 𝐌(2 −𝑋𝑙𝑐𝑣𝑡𝑠 − 𝑅𝑙𝑐𝑣𝑡𝑠),
𝑙 ∈ , 𝑐 ∈ , 𝑣 ∈  ,
𝑝 ∈  , 𝑡 ∈  , 𝑠 ∈  ,

(26)

𝛤𝑙𝑐′𝑣𝑝𝑡𝑠 ≤ 𝛤𝑙𝑐𝑣𝑝𝑡𝑠 exp
(

−
𝛿𝑐𝑐′
𝜆 + 𝜙𝑈𝑐′
𝓁𝑝

)

+ 𝐌(2 −𝑋𝑐𝑐′𝑣𝑡𝑠 − 𝑅𝑙𝑐′𝑣𝑡𝑠),
𝑙 ∈ , 𝑐, 𝑐′ ∈ , 𝑣 ∈  ,
𝑝 ∈  , 𝑡 ∈  , 𝑠 ∈  ,

(27)

As shown in Fig.  1, the freshness of food items follows an exponen-
tial function of time, which is calibrated by 100 as the coefficient 
and inverse of the shelf-life in the exponent (i.e., 100𝑒−𝑡∕𝓁𝑝 ). Thus, 
Constraint (26) determines the freshness of foods in the first visited 
charity in the route of the assigned vehicle, whereas (27) helps to 
calculate the freshness in all subsequently visited charities. Note that 
these constraints are linear as the arguments of the exponential function 
are all parameters. To clarify the logic behind this formulation, consider 
the nonlinear counterpart of the freshness equation in two nodes. Let 𝑡𝑖
and 𝑡𝑗 be the delivery time of the food in locations 𝑖 and 𝑗 and 𝛤 𝑖 and 
𝛤 𝑗 be their corresponding freshness. Thus,
𝛤 𝑖 = 100 exp(−𝑡𝑖∕𝓁𝑝), (28)

𝛤 𝑗 = 100 exp(−𝑡𝑗∕𝓁𝑝). (29)

If node 𝑗 is visited immediately after 𝑖, then 𝑡𝑗 = 𝑡𝑖 +
𝛿𝑖𝑗
𝜆 +𝜙𝑈𝑗 . Plugging 

this into (29) with simple algebra will provide the relation between 
freshness values at node 𝑗 and node 𝑖 as, 

𝛤 𝑗 = 𝛤 𝑖 ∗ exp(
𝛿𝑖𝑗
𝜆

+ 𝜙𝑈𝑗 ). (30)

This key relation helps to avoid nonlinear constraints once the first visit 
is considered as in (26) and then (27) rests on the relation unfolded in 
(30).

Variables type and domain:
𝑅𝑙𝑐𝑣𝑡, 𝑆𝑙𝑖𝑐𝑣𝑡𝑠, 𝑋𝑛𝑛′𝑣𝑡𝑠, 𝑌𝑚𝑚′𝑣𝑡𝑠,

𝑍𝑙 , 𝐴𝑣𝑡𝑠, 𝐶𝑗𝑙𝑣𝑡𝑠 ∈ {0, 1}, 𝑙 ∈ , 𝑐 ∈ , 𝑣 ∈  , 𝑖 ∈ , 𝑛, 𝑛′ ∈  ∪ ,
𝑚, 𝑚′ ∈  ∪ , 𝑗 ∈  , 𝑡 ∈  , 𝑠 ∈  ,

(31)

𝑊𝑙𝑝𝑡𝑠, 𝐷𝑙𝑝𝑡𝑠, 𝐹𝑗𝑙𝑝′𝑡𝑠, 𝑄𝑙𝑝′′𝑡𝑠 ∈ Z+, 𝑙 ∈ , 𝑝′ ∈  ′, 𝑝′′ ∈  ′′,
𝑝 ∈  , 𝑡 ∈  , 𝑠 ∈  ,

(32)

𝛤𝑙𝑐𝑣𝑝𝑡𝑠, 𝑈𝑐𝑣𝑡𝑠, 𝐸𝑖𝑣𝑡𝑠, 𝐺𝑐𝑝𝑡𝑠 ∈ R+, 𝑙 ∈ , 𝑐 ∈ , 𝑖 ∈ , 𝑣 ∈  ,
𝑝 ∈  , 𝑡 ∈  , 𝑠 ∈  .

(33)

3.1. Linearization of the model

The mathematical model above is nonlinear due to the constraints 
(4), (16), and (20). The first one is straightforward to linearize as given 
7 
below for the generic form: 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max𝑍 = min𝑋
s.t.
𝑎𝑋 ≤ 𝑏,
𝑋 ≥ 0,

⟺

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max𝑍 = 𝑤
s.t.
𝑎𝑋 ≤ 𝑏,
𝑤 ≤ 𝑋, 𝑋 ≥ 0.

(34)

The other two have a multiplication of a binary variable by a 
continuous one, which in a generic form can be linearized as follows. 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max𝑍 = min𝑋𝑌
s.t.
𝑌 ∈ {0, 1},
𝑋 ≥ 0,

⟺

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

max𝑍 = 𝑤
s.t.
𝑤 ≤ 𝑋,
𝑤 ≤ 𝐌𝑌 ,
𝑤 ≥ 𝑋 −𝐌(1 − 𝑌 ),
𝑌 ∈ {0, 1},
𝑤,𝑋 ≥ 0.

(35)

3.2. Robust Fuzzy stochastic model for uncertainty

The supply and demand parameters are uncertain and considered 
as trapezoidal fuzzy numbers in different scenarios. To deal with these 
uncertainties a robust fuzzy stochastic programming model is used 
based on the following generic model [48]. The robust fuzzy stochastic 
model is a powerful tool for addressing uncertainty in supply network 
design. By combining the strengths of fuzzy, stochastic, and robust 
methodologies, it provides a flexible and resilient framework capable 
of handling diverse sources of uncertainty. This integration ensures 
that the model not only captures parameter imprecision and scenario 
variability but also safeguards against extreme risks, making it an in-
dispensable approach for modern supply chain challenges. The generic 
formulation is shown as,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Base model
max𝑍 = 𝑓𝑌 + 𝑝𝑠𝑐𝑋𝑠
s.t.
𝑎𝑋𝑠 ≥ 𝑑𝑠,
𝑒𝑋𝑠 ≤ �̃�𝑠𝑌 ,
𝑌 ∈ {0, 1}, 𝑋𝑠 ≥ 0,

⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Pessimistic fuzzy basic model
max𝑍 = 𝑓𝑌 + 𝑝𝑠𝑐𝑋𝑠
s.t.
𝑁𝐸𝐶{𝑎𝑋𝑠 ≥ 𝑑𝑠} ≥ 𝛼𝑠,
𝑁𝐸𝐶{𝑒𝑋𝑠 ≤ �̃�𝑠𝑌 } ≥ 𝛽𝑠,
𝑌 ∈ {0, 1}, 𝑋𝑠 ≥ 0,

⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Pessimistic fuzzy model script
max𝑍 = 𝑓𝑌 + 𝑝𝑠𝑐𝑋𝑠
s.t.
𝑎𝑋𝑠 ≥ (1 − 𝛼𝑠)𝑑3𝑠 + 𝛼𝑠𝑑

4
𝑠 ,

𝑒𝑋𝑠 ≤ ((1 − 𝛽𝑠)𝑠2𝑠 + 𝛽𝑠𝑠
1
𝑠 )𝑌 ,

𝑌 ∈ {0, 1}, 𝑋𝑠 ≥ 0,

(36)

where vectors 𝑓 , 𝑐, 𝑑𝑠, and �̃�𝑠 are corresponding to the fixed setup 
costs, variable costs, demand, and supply, respectively. Denoted by 𝑎
and 𝑒 are the coefficient matrices, while 𝑋𝑠 and 𝑌  are associated with 
the continuous and binary variables under scenario 𝑠. The uncertainty 
rate of the model is determined by 𝛼𝑠 and 𝛽𝑠 as in chance-constrained 
models a minimum confidence level should be defined for them to hold.

In the presented models, the objective function is not sensitive to its 
deviation from its desired level. Therefore, attaining robust solutions 
is not guaranteed via the base model in (36). In such situations, a 
high level of risk is imposed on the decision-makers, particularly in 
strategic decisions. Thus, to overcome this high-risk situation, the ro-
bust counterpart of this fuzzy stochastic model can be employed which 
differentiates it from other programming approaches for uncertainty. 
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That is,

min𝑍 =𝑓𝑌 + 𝑝𝑠𝑐𝑋𝑠 + 𝜂1
∑

𝑠
𝑝𝑠

[

𝑑4𝑠 −
(𝛼𝑠 − 𝜃)𝑑4𝑠 + (1 − 𝛼𝑠)𝑑3𝑠

1 − 𝜃

]

+ 𝜂2
∑

𝑠
𝑝𝑠

[

(𝛽𝑠𝑌 − 𝜃)𝑠1𝑠 + (𝑌 − 𝛽𝑠𝑌 )𝑠2𝑠
1 − 𝜃

− 𝑠1𝑠𝑌

]

(37)

s.t.

𝑎𝑋𝑠 ≥ (1 − 𝛼𝑠)𝑑3𝑠 + 𝛼𝑠𝑑
4
𝑠 , (38)

𝑒𝑋𝑠 ≤
(

(1 − 𝛽𝑠)𝑠2𝑠 + 𝛽𝑠𝑠
1
𝑠
)

𝑌 , (39)

𝑌 ∈ {0, 1}, 𝑋𝑠 ≥ 0. (40)

In the objective (37), the first two terms refer to the expected value of 
the first objective under the stochastic assumption. The third and fourth 
expressions correspond to the penalty for deviations from the demand 
and supply. Thus, 𝜂1 is the penalty factor for unmet demand, while 𝜂2 is 
the penalty factor for supply surplus. The robust-possiblistic adjustment 
factor is denoted by 𝜃. Applying the above-stated generic models to our 
FB network model will result in the following.

min𝑂𝑏𝑗1 =
∑

𝑡

∑

𝑣

∑

𝑠
𝑝𝑠𝑔𝑣(𝐴𝑣𝑡𝑠 + 𝐵𝑣𝑡𝑠) +

∑

𝑛

∑

𝑛′

∑

𝑣

∑

𝑡

∑

𝑠
𝑝𝑠𝜌𝛿𝑛𝑛′𝑋𝑛𝑛′𝑣𝑡𝑠

+
∑

𝑗

∑

𝑙

∑

𝑣

∑

𝑡

∑

𝑠
𝑝𝑠𝜌𝛿𝑗𝑙𝐶𝑗𝑙𝑣𝑡𝑠 +

∑

𝑚

∑

𝑚′

∑

𝑣

∑

𝑡

∑

𝑠
𝑝𝑠𝜌𝛿𝑚𝑚′𝑌𝑚𝑚′𝑣𝑡𝑠

+
∑

𝑙

∑

𝑝

∑

𝑡

∑

𝑠
𝑝𝑠𝑜𝑙𝑝𝑊𝑙𝑝𝑡𝑠 +

∑

𝑙

∑

𝑝′′

∑

𝑡

∑

𝑠
𝑝𝑠ℎ𝑝′′𝑄𝑙𝑝′′ 𝑡𝑠 +

∑

𝑙
𝑓𝑙𝜏𝑍𝑙

+ 𝜂1
∑

𝑐

∑

𝑝

∑

𝑡

∑

𝑠
𝑝𝑠

[

𝑑4𝑐𝑝𝑡𝑠 −
(𝛼𝑠 − 𝜃)𝑑4𝑐𝑝𝑡𝑠 + (1 − 𝛼𝑠)𝑑3𝑐𝑝𝑡𝑠

1 − 𝜃

]

+ 𝜂2
∑

𝑖

∑

𝑝

∑

𝑡

∑

𝑠
𝑝𝑠

[

(𝛽𝑠 − 𝜃)𝜎1𝑖𝑝𝑡𝑠 + (1 − 𝛽𝑠)𝜎2𝑖𝑝𝑡𝑠
1 − 𝜃

− 𝜎1𝑖𝑝𝑡𝑠

]

(41)

max𝑂𝑏𝑗2 = (42)
max𝑂𝑏𝑗3 =

∑

𝑙

∑

𝑝

∑

𝑡

∑

𝑠
𝑝𝑠𝜅𝑝𝑊𝑙𝑝𝑡𝑠 [the same as (5)]

s.t.

 ≤
∑

𝑙

∑

𝑠
𝑝𝑠𝛤𝑙𝑐𝑣𝑝𝑡𝑠, 𝑐 ∈ , 𝑣 ∈  ,

𝑝 ∈  , 𝑡 ∈  , (43)
𝐺𝑅𝑙𝑐𝑣𝑝𝑡𝑠 ≤ 𝐺𝑐𝑝𝑡𝑠, 𝑙 ∈ , 𝑐 ∈ , 𝑣 ∈  ,

𝑝 ∈  , 𝑡 ∈  , 𝑠 ∈  ,
(44)

𝐺𝑅𝑙𝑐𝑣𝑝𝑡𝑠 ≤ 𝑅𝑙𝑐𝑣𝑡𝑠, 𝑙 ∈ , 𝑐 ∈ , 𝑣 ∈  ,

𝑝 ∈  , 𝑡 ∈  , 𝑠 ∈  ,
(45)

𝐺𝑅𝑙𝑐𝑣𝑝𝑡𝑠 ≥ 𝐺𝑐𝑝𝑡𝑠 − (1 − 𝑅𝑙𝑐𝑣𝑡𝑠), 𝑙 ∈ , 𝑐 ∈ , 𝑣 ∈  ,

𝑝 ∈  , 𝑡 ∈  , 𝑠 ∈  ,
(46)

𝑊𝑙𝑝𝑡𝑠 =
∑

𝑐

∑

𝑣

[

(1 − 𝛼𝑠)𝑑3𝑐𝑝𝑡𝑠 + 𝛼𝑠𝑑
4
𝑐𝑝𝑡𝑠

]

𝐺𝑅𝑙𝑠𝑣𝑝𝑡𝑠, 𝑐 ∈ , 𝑝 ∈  ,

𝑡 ∈  , 𝑠 ∈  , (47)

𝐷𝑙𝑝𝑡𝑠 =
∑

𝑖

∑

𝑣

[

(1 − 𝛽𝑠)𝜎2𝑖𝑝𝑡𝑠 + 𝛽𝑠𝜎
1
𝑖𝑝𝑡𝑠

]

𝑆𝑙𝑖𝑣𝑡𝑠 𝑙 ∈ , 𝑝 ∈  ,

𝑡 ∈  , 𝑠 ∈  , (48)
∑

𝑖

∑

𝑙

∑

𝑝
𝜁𝑝

[

(1 − 𝛽𝑠)𝜎2𝑖𝑝𝑡𝑠 + 𝛽𝑠𝜎
1
𝑖𝑝𝑡𝑠

]

𝑆𝑙𝑖𝑣𝑡𝑠 ≤ 𝛾𝑣𝐴𝑣𝑡𝑠, 𝑣 ∈  , 𝑡 ∈  , 𝑠 ∈  ,

(49)
∑

𝑐

∑

𝑙

∑

𝑝
𝜁𝑝

[

(1 − 𝛼𝑠)𝑑3𝑐𝑝𝑡𝑠 + 𝛼𝑠𝑑
4
𝑐𝑝𝑡𝑠

]

𝐺𝑅𝑙𝑐𝑝𝑣𝑡𝑠 ≤ 𝛾𝑣𝐵𝑣𝑡𝑠, 𝑣 ∈  , 𝑡 ∈  , 𝑠 ∈  ,

(50)
(11)–(15), (18), (19), (22)–(33).
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Constraint (43) is the application of (34) to linearize the max–min 
function, while (44)–(46) translates (35) to the model’s variables. Con-
straints (47)–(50) are the robust possiblistic counterparts of (16)–(17) 
and (20)–(21).

4. Solution methods and evaluation metrics

This section presents several algorithms to solve the problem at 
hand. Among them are augmented 𝜖-constraint, NSGA II, MOGWO, 
and a novel hybrid one. Due to a combination of location, assignment, 
and routing decisions the problem is as difficult as each of them. 
The literature review shows that NSGA II and MOGWO algorithms 
are widely used in location-routing [49,50], machine scheduling [51], 
flight scheduling [52] and other problems. Each of these algorithms 
has strengths in searching the feasible solution region. Zhao et al. [53] 
state that it is the most popular multi-objective evolutionary algorithm. 
According to Rahimi et al. [54] advantages of NSGA II are:

• It has a lower computational cost due to non-dominated sorting.
• It is less sensitive to parameters and therefore, it is more used in 
real-life problems.

• It holds a good balance between elitism and diversity, and this 
avoids premature convergence.

Similarly, Makhadmeh et al. [55] have stated the following advantages 
for MOGWO:

• It reduces the computational cost by its dynamic behavior in 
searching the solution space.

• It searches optimal solutions fast thanks to its dynamic design.
• It has a high capability is storing non-dominant solutions.

Here, in addition to NSGA II and MOGWO algorithms, a novel hy-
brid algorithm is developed. We call this algorithm MOGGWA (Multi-
Objective Genetic Gray Wolf Algorithm). In the rest of this section first, 
the construction of an initial solution and its encoding is explained, and 
then the pseudo-code of all solution methods is presented.

4.1. Initial solution

As illustrated in Fig.  3, an initial solution for the problem comprises 
a 2×(|𝑆|.|𝑇 |.|𝑃 |.(|𝐼|+ |𝐽 |+ |𝑉 |+ |𝐶|+ |𝐿|)) matrix corresponding to the 
decision variable. The first row represents labels of charities, FBs, food 
donors, financial donors, and vehicles while the second row includes 
random numbers from [0, 1] indicating their associated priorities to be 
selected. This figure shows an example with 4 charities, 3 FBs, 5 donors 
(3 food and 2 financial), and a fleet size of 4 with 1 period and 1 food 
item under a single scenario. The illustrated pattern repeats as many 
times as the time horizon and number of food items for each scenario. 
Algorithm 1 depicts how such an encoded solution can be decoded. 

4.2. Augmented 𝜖-constraint

This method uses a lexicographic approach to obtain each objective 
value and converts all the constraints related to the other objectives 
to equality constraints using auxiliary variables. In the lexicographic 
method, the objective functions are sorted based on their importance 
stated by the decision-maker. First, the objective function with the 
highest priority, 𝑓1(𝑥), is optimized to obtain its objective value 𝑓 ∗. 
Then, by adding a constraint 𝑓1(𝑥) = 𝑓 ∗, the objective value of the first 
objective is preserved, and the second objective function is optimized. 
These steps are summarized for our problem in Algorithm 2.
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Algorithm 1 Decoding a heuristic encoded solution 
Input: Sets, parameters.
Output: Assignments, routes, and objective values.
1: for 𝑠 = 1 to 𝑆 do
2:  for 𝑡 = 1 to 𝑇  do
3:  for 𝑝 = 1 to 𝑃  do
4:

 //Decoding First Stage (Food Banks-Charities):
5:  Step 1- Select the highest value among FBs as a located FB
6:  Step 2- Select the highest value among vehicles as a selected 
vehicle

7:  Step 3- Select the highest value among charities as thefirst visited 
charity

8:  Step 4- Form a tour with the following conditions:
9:  if capacity of selected FB less than total selected charities 
demand then

10:  if capacity of selected vehicle less than total selected 
charities demand then

11:  Visit next highest value among charities
12:  Decrease the highest value among charities to zero.
13:  Decrease the highest value among vehicles to zero.
14:  Decrease the highest value among FBs to zero.
15:  else
16:  repeat steps 2 to 4
17:  end if
18:  else
19:  repeat steps 1 to 4
20:  end if
21:

 //Decoding second Stage (Food Donors-Food Banks):
22:  Step 1- Select the highest value among FBs as a located FB
23:  Step 2- Select the highest value among vehicles as a selected 

vehicle
24:  Step 3- Select the highest value among food donors as the first 

visited donor
25:  Step 4- Form a tour with the following conditions:
26:  if capacity of selected FB less than total selected donors then
27:  if capacity of selected vehicle less than total selected donors 

supply then
28:  Visit the next highest value among food donors
29:  Decrease the highest value among food donors to zero.
30:  Decrease the highest value among vehicles to zero.
31:  Decrease the highest value among FBs to zero.
32:  else
33:  repeat steps 2 to 4
34:  end if
35:  else
36:  repeat steps 1 to 4
37:  end if
38:

 //Decoding third Stage (Financial Donors-Inventory)
39:  if Total demand less than total supply then
40:  Select the highest value among FBs as a located FB
41:  Calculate the difference between total supply and demand at 

the selected FB
42:  Assign the value of Step 2 as a food inventory
43:  else
44:  Select the highest value among financial donors as a located 

donor
45:  Calculate the amount of donated food according to the 

budget of each period
46:  end if
47:

 //Decoding forth Stage (Constraints)
48:  Check the all constraints
49:  if a constraint is not satisfied then
50:  Add a violation to objective 𝐹1
51:  end if
9 
52:  end for
53:  end for
54: end for
55:

 //Decoding fifth Stage (Objectives)
56: Calculate the objective functions

4.3. NSGA II

This evolutionary algorithm was first developed by Deb et al. [56] 
to rectify the weaknesses of other algorithms which are weak in elitism 
and use shared parameters to keep the diverse Pareto sets. NSGA II 
uses crossover and mutation operators to generate a new generation as 
shown in Figs.  4 and 5. Its pseudo-code is given in Algorithm 3. 
Algorithm 2 Pseudo-code of augmented 𝜖-constraint 
Input: formulae of 𝐹1, 𝐹2, 𝐹3, 𝑔.
Output: A set of solutions
1: Select 𝐹1 with the highest priority and determining its optimal value
2: Form a lexicographic payoff table (best and worst objective values).
3: Define 𝑠2,𝑠3 as auxiliary variables.
4: calculate 𝑟2,𝑟3 as the range of variations 𝐹2 and 𝐹3
5: Define 𝛿 as an adequately small number
6: for 𝑖 = 1 to 𝑔 − 1 do
7:  𝜖2 =

𝑟2
𝑔
, 𝜖3 =

𝑟2
𝑔

8:  solve 𝐹1+𝛿(
𝑠2
𝑟2
+ 𝑠3

𝑟3
) s.t. 𝐹2−𝑠2 = 𝜖2, 𝐹3−𝑠3 = 𝜖3 and constraints (6)–(33).

9: end for

4.4. MOGWO

MOGWO is a heuristic algorithm inspired by nature imitating the 
hierarchical leading behavior of gray wolves [57]. In this algorithm, 
solutions are classified into group Alpha, Beta, and Delta according to 
the group hunting method of gray wolves. Alpha is the leader wolf, 
Beta is probably the best alternative for Alpha playing the deputy role, 
and Delta wolves follow them both. With this proxy, the best solutions 
are the leading Alphas. It is depicted in Algorithm 4. 
Algorithm 3 Pseudo-code of NSGA II
Input: Parameters,𝑁𝑝𝑜𝑝,𝑝𝑐 ,𝑝𝑚,𝑀𝑎𝑥𝐼𝑡
Output: solution
1: Generate initial population based on Algorithm 1
2: Evaluate objective values for each initial solution
3: Rank based on Pareto dominance
4: for 𝑖 = 1 to MaxIt do
5:  for 𝑗 = 1 to 𝑁𝑝𝑜𝑝 do
6:  Select two individuals as selected children
7:  Perform 2-point crossover operation [shown in Fig.  4]
8:  end for
9:  for 𝑗 = 1 to 𝑁𝑝𝑜𝑝 do
10:  Select an individual as the selected child
11:  Perform 1-point mutation operation [shown in Fig.  5]
12:  end for
13:  Repair new population based on combining offspring and parents
14:  Reassign Rank based on Pareto dominance
15:  Calculate the crowded distance
16:  Select the best individual-based Rank and crowded distance
17: end for

4.5. MOGGWA

In this new novel hybrid algorithm proposed here, to benefit from 
the strength of both NSGA II and MOGWO in addition to determining 
the position of the solutions corresponding to gray wolves the two 2-
point crossover and 1-point mutation operators are also employed. The 
pseudo-code is given in Algorithm 5. 
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Fig. 3. Encoding the initial solution.
Fig. 4. Illustration of the 2-point crossover operator.
Fig. 5. Illustration of the 1-point mutation operator.
Algorithm 4 Pseudo-code of MOGWO
Input: Parameters,𝑁𝑝𝑜𝑝,𝐴,𝐶,𝑀𝑎𝑥𝐼𝑡
Output: solution
1: Generate initial population based on Algorithm 1
2: Evaluate objective values for each initial solution
3: Define 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿 as the best, second best and third best solutions
4: Assign Rank based on Pareto dominance sort
5: for 𝑖 = 1 to MaxIt do
6:  for 𝑗 = 1 to 𝑁𝑝𝑜𝑝 do
7:  Update the position of the current solution:
8:  �⃗� = |𝐶.𝑋𝑝(𝑖) − �⃗�(𝑖)|;|�⃗�(𝑖 + 1) = �⃗�(𝑖) − 𝐴.�⃗�|

9:  𝐴 = 2𝑎.𝑟1 − 𝑎; 𝐶 = 2𝑟2
10:  �⃗�𝛼 = |𝐶1.𝑋𝛼 − �⃗�|, �⃗�𝛽 = |𝐶2.�⃗�𝛽 − �⃗�|, �⃗�𝛿 = |𝐶3.�⃗�𝛿 − �⃗�|

11:  �⃗�1 = �⃗�𝛼 − 𝐴1.�⃗�𝛼 , �⃗�2 = �⃗�𝛽 − 𝐴2.�⃗�𝛽 , �⃗�3 = �⃗�𝛽 − 𝐴3.�⃗�𝛿

12:  �⃗�(𝑡 + 1) = �⃗�1+�⃗�2+�⃗�3

3
13:  end for
14:  Update 𝐴, 𝐶
15:  Calculate the objective values for each new solution
16:  Do fast Non-dominated sorting
17:  Update 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿
18: end for

4.6. Evaluation criteria of solutions

The efficient solutions obtained by different algorithms for a multi-
objective problem are likely to differ. Therefore, they can be compared 
from multiple aspects. Table  2 summarizes some of the well-known 
metrics to evaluate those solutions that we have used in the next 
section.
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5. Numerical study and evaluation

For validation and preliminary assessment of the model, first, a 
small instance of the problem is used. Then, real-life problem sizes are 
used to evaluate the performance of our algorithms.

5.1. Small instances

The small instance of the problem is constructed with (4 donors, 
3 financial donors, 5 charities, 3 FB, 6 vehicles, 2 hot meals, 1 cold 
meal, and 2 periods under 2 scenarios) and all the parameters are set 
according to Table  3. By evaluating the solutions of small problem in-
stances with the AEC method, 9 efficient ones are identified as listed in 
Table  4. As shown in this table, as the second objective value (minimum 
freshness of the distributed food) increases (worsens), the first objective 
function (total cost of the network) also increases (improves) which 
indicates their conflicting nature. Inspection of the solutions shows that 
this increase in cost is due to the rising fleet size for the distribution of 
food to charities. It is also observed that the total network cost increases 
as the third objective (nutritional value of the food) increases, implying 
another trade-off between the first and third objectives as they are 
desired to be minimized and maximized, respectively. This is due to 
the rising value of the distributed foods. This happens when financial 
donors procure more food items and therefore, the shortage of food in 
charities decreases. The second and third objective functions change in 
the same direction without necessarily showing a conflicting pattern.

To depict the decisions suggested by the model the efficient Solution 
#9 is decoded in Tables  5 and 6 while the freshness of its distributed 
foods is depicted in Fig.  6. 



J. Ghahremani-Nahr et al. Socio-Economic Planning Sciences 101 (2025) 102247 
Table 2
Comparison metrics for efficient solutions.
 Metric Formula Interpretation  
 Number of Pareto Front 
[58]

NPF A higher value is better 

 Maximum Spread Index
[59]

𝑀𝑆 =

√

𝐾
∑

𝑘=1

(

𝑓𝑚𝑎𝑥𝑘 − 𝑓𝑚𝑖𝑛𝑘

)2 A higher value is better 

 Space Metric
[60]

𝑆𝑀 =
∑𝐾−1
𝑖=1 |𝑑−𝑑𝑖 |
(𝐾−1)𝑑

 where 
𝑑𝑖 = min

𝑗=1,…,𝑛
𝑗≠𝑖

{

∑𝐾
𝑘=1 |𝑓

𝑖
𝑘 − 𝑓

𝑗
𝑘 |
}

,∀𝑖 A lower value is better  

 Mean ideal Deviations
[61]

𝑀𝐼𝐷 =

𝐾
∑

𝑘=1

√

𝑛
∑

𝑖=1
(𝑓 𝑖𝑘−𝑓

∗
𝑘 )2

𝐾
A lower value is better  

 CPU time CPT A lower value is better  
Table 3
Parameters for the small instance.
 Parameter Value Parameter Value Parameter Value  
 𝑓1 ∼ 𝑈 (100000, 200000) 𝜙𝐿𝑙 , 𝜙

𝑈
𝑐 ∼ 𝑈 (0.01, 0.03) 𝑔𝑣 ∼ 𝑈 (500, 1000)  

 𝛿𝑘𝑙 ∼ 𝑈 (10, 30) 𝜅𝑝 ∼ 𝑈 (5, 8) ℎ𝑝′′ ∼ 𝑈 (0.2, 0.5)  
 𝜔𝑗𝑝𝑡 ∼ 𝑈 (1, 5) 𝛾𝑣 ∼ 𝑈 (80, 120) 𝜓𝑙𝑝 ∼ 𝑈 (100, 150)  
 𝓁𝑝 ∼ 𝑈 (1, 10) 𝑜𝑙𝑝 ∼ 𝑈 (2, 3) 𝜌 ∼ 𝑈 (2, 5)  
 𝛼𝑠 , 𝛽𝑠 0.5 𝜁𝑝 ∼ 𝑈 (1, 2) 𝜂1 , 𝜂2 2  
 𝑏𝑗𝑡 5000 𝜆 ∼ 𝑈 (40, 60) 𝑝𝑠 0.5  
 𝑟 0.2 𝜃 0.1  
 𝑑𝑐𝑝𝑡𝑠 ∼ 𝑈 ([10, 15], [15, 20], [20, 25], [25, 30]). 1.2𝑠

|𝑆|
�̃�𝑐𝑝𝑡𝑠 ∼ ([15, 18], [18, 20], [20, 22], [22, 25]). 1.2𝑠

|𝑆|
Fig. 6. Freshness of distributed food corresponding to efficient Solution #9.
Table 4
The efficient solutions obtained from the numerical example with AEC.
 Soln.# 𝐹1 𝐹2 𝐹3  
 1 172094.28 36.12 2527.48 
 2 179801.75 37.58 2551.46 
 3 183028.25 37.58 2566.15 
 4 188647.89 39.23 2618.56 
 5 190119.89 39.23 2622.21 
 6 191783.15 40.84 2643.85 
 7 193004.37 41.21 2659.22 
 8 207432.77 43.33 2696.81 
 9 211814.89 45.94 2724.54 

In this numerical example, the uncertainty parameter was set as 
𝛼𝑠 = 𝛽𝑠 = 0.5. However, it can be changed within the interval from 
0 (optimistic) to 1 (pessimistic). The next subsection provides such a 
sensitivity analysis.
11 
5.1.1. Sensitivity to uncertainty level
Table  7 shows the changes in objective functions for different 

uncertainty levels. As shown, with the increase of supply and demand 
uncertainty the total demand in the network rises which is met by 
financial donors. Thus, more vehicles for collection and distribution are 
needed which justifies the upturn of transportation cost and freshness of 
distributed foods. The increase in nutritional value of distributed foods 
in this case might be surprising but it occurs due to the more purposeful 
donations from the financial donors. 

5.1.2. Sensitivity to robustness parameter
The other influencing factors in the network management are 

penalty coefficients corresponding to the robustness: 𝜂1 for unmet 
demand, and 𝜂2 for excess supply. Fig.  7 illustrates the changes in 
objective functions against three levels of robustness parameters. It 
can be observed that with an increase in penalty coefficients, the total 
network cost increases as the model tries to avoid shortage. This in 
turn leads to a change in freshness due to a change of routes for 
collection and distribution, and a minor increase in demand results 
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Table 5
Decisions based on allocation- routing in the efficient Solution #9.
 Vehicle routing for the food collection Vehicle routing for the food distribution
 Period 1 Period 2 Period 1 Period 2
 Scenario 1 Scenario 1
 𝑙1 → 𝑖1 → 𝑖3 → 𝑙1 by 𝑣3 𝑙1 → 𝑖1 → 𝑖3 → 𝑙1 by 𝑣2 𝑙1 → 𝑐2 → 𝑐4 → 𝑙1 by 𝑣3 𝑙1 → 𝑐2 → 𝑐4 → 𝑙1 by 𝑣3 
 𝑙3 → 𝑖4 → 𝑖2 → 𝑙3 by 𝑣4 𝑙3 → 𝑖4 → 𝑖2 → 𝑙3 by 𝑣4 𝑙1 → 𝑐5 → 𝑙1 by 𝑣2 𝑙1 → 𝑐5 → 𝑙1 by 𝑣2  
 𝑗1 → 𝑙1 by 𝑣2 𝑗1 → 𝑙1  by 𝑣3 𝑙3 → 𝑐1 → 𝑐3 → 𝑙3 by 𝑣1 𝑙3 → 𝑐1 → 𝑐3 → 𝑙3 by 𝑣4 
 Scenario 2 Scenario 2
 𝑙1 → 𝑖1 → 𝑖4 → 𝑙1 by 𝑣1 𝑙1 → 𝑖1 → 𝑖4 → 𝑙1 by 𝑣1 𝑙1 → 𝑐2 → 𝑙1 by 𝑣2 𝑙1 → 𝑐2 → 𝑙1 by 𝑣2  
 𝑙3 → 𝑖3 → 𝑖2 → 𝑙3 by 𝑣4 𝑙3 → 𝑖3 → 𝑖2 → 𝑙3 by 𝑣4 𝑙1 → 𝑐5 → 𝑐4 → 𝑙1 by 𝑣3 𝑙1 → 𝑐5 → 𝑐4 → 𝑙1 by 𝑣3 
 𝑗3 → 𝑙1 by 𝑣2 𝑗3 → 𝑙3 by 𝑣2 𝑙3 → 𝑐1 → 𝑐3 → 𝑙3 by 𝑣1 𝑙3 → 𝑐1 → 𝑐3 → 𝑙3 by 𝑣4 
Table 6
Amount of food distribution and collection by each FB in the efficient Solution # 9.
 Food bank

Period Total distributed Total collected Total distributed Total collected 
 Scenario 1 Scenario 1
 (𝑝1 − 𝑝2 − 𝑝3) (𝑝1 − 𝑝2 − 𝑝3) (𝑝1 − 𝑝2 − 𝑝3) (𝑝1 − 𝑝2 − 𝑝3)  
 
𝑙1

1 35–50–28 37–42–30 30–30–15 38–40–25  
 2 19–20–30 21–26–25 42–37–19 17–18–45  
 
𝑙3

1 30–38–36 35–35–39 29–38–40 35–38–37  
 2 29–51–43 46–51–43 53–59–48 55–59–48  
Table 7
Comparison of the objective values under different uncertainty rates.
 𝛼𝑠 = 𝛽𝑠 𝐹1 𝐹2 𝐹3  
 0.1 198563.47 43.24 2659.34 
 0.2 200498.66 43.24 2686.57 
 0.3 205487.39 43.24 2700.67 
 0.4 209478.21 45.94 2712.25 
 0.5 211814.89 45.94 2724.54 
 0.6 216437.43 45.94 2733.28 
 0.7 220745.92 45.95 2751.64 
 0.8 225487.69 48.34 2779.16 
 0.9 231478.24 48.34 2817.64 

Fig. 7. Effect of penalty coefficients on the objective values.

in total nutritional value. In summary with the increase of penalty 
coefficient from 2 (default value) to 15, the first, second, and third 
objective functions have increased by 26.72%, 2.63%, and 5.16%, 
respectively.
12 
Fig. 8. Changes in the value of the objective functions in different scenarios.

5.1.3. Sensitivity to supply–demand probabilities

As demand and supply are the main driving factors in decisions, it 
is worthwhile conducting a sensitivity analysis regarding the decline or 
rise of supply or demand in different scenarios. According to the last 
row of Table  3, the scenario with a smaller index has lower demand and 
supply while their probabilities were equal (both 0.50) in the numerical 
example above. The sensitivity of objective values to the probability of 
Scenario 1, 𝑝1, (or equivalently Scenario 2, 𝑝2 = 1 − 𝑝1) is presented 
in Fig.  8. As shown, when the probability of Scenario 2 is higher 
i.e., when it is more likely to have higher supply and demand, based 
on our parameter, the total cost increases. Freshness and nutritional 
values improve, which could be due to a lower capacity of the vehicles 
with respect to demand. This necessitates more frequent trips with 
additional vehicles (less transit time), and more planned food choices 
from financial donors.
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Algorithm 5 Pseudo-code of MOGGWA
Input: Parameters,𝑁𝑝𝑜𝑝,𝑝𝑐 ,𝑝𝑚,𝐴,𝐶,𝑀𝑎𝑥𝐼𝑡
Output: solution
1: Generate initial population based on Algorithm 1
2: Evaluate objective values for each initial solution
3: Define 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿 as the best, second best, and third best solutions
4: Assign Rank based on Pareto dominance sort
5: for 𝑖 = 1 to MaxIt do
6:  for 𝑗 = 1 to 𝑁𝑝𝑜𝑝 do
7:  Update the position of the current solution:
8:  �⃗� = |𝐶.𝑋𝑝(𝑖) − �⃗�(𝑖)|;|�⃗�(𝑖 + 1) = �⃗�(𝑖) − 𝐴.�⃗�|

9:  𝐴 = 2𝑎.𝑟1 − 𝑎; 𝐶 = 2𝑟2
10:  �⃗�𝛼 = |𝐶1.𝑋𝛼 − �⃗�|, �⃗�𝛽 = |𝐶2.�⃗�𝛽 − �⃗�|, �⃗�𝛿 = |𝐶3.�⃗�𝛿 − �⃗�|

11:  �⃗�1 = �⃗�𝛼 − 𝐴1.�⃗�𝛼 , �⃗�2 = �⃗�𝛽 − 𝐴2.�⃗�𝛽 , �⃗�3 = �⃗�𝛽 − 𝐴3.�⃗�𝛿

12:  �⃗�(𝑡 + 1) = �⃗�1+�⃗�2+�⃗�3

3
13:  Select two individuals based on selected wolves and perform a 

2-point crossover
14:  Select an individual as a selected child and perform 1-pint mutation 

operator
15:  end for
16:  Update 𝐴, 𝐶
17:  Repair new population based on combining offspring and parents
18:  Reassign Rank based on Pareto dominance sort
19:  Calculate the crowded distance
20:  Select the 𝑋𝛼 based on rank and crowded distance
21:  Update 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿
22: end for

Table 8
EVPI for supply and demand uncertainties.
 Parameter Index 𝐹1 𝐹2 𝐹3  
 
Supply

SP 190826.6 42.12 2633.18 
 WS 192367.3 43.18 2652.81 
 EVPI 1540.64 1.06 19.63  
 
Demand

SP 190248.7 42.84 2637.26 
 WS 192284.6 44.12 2663.86 
 EVPI 2035.93 1.28 26.6  

5.1.4. The value of stochastic programming

The two measures mainly used for assessing the benefit of stochastic 
modeling are Expected value of perfect information (EVPI) and Value of 
the Stochastic Solution (VSS). EVPI is calculated as a difference between 
stochastic and wait-and-see (WS) solutions, and it shows how valuable 
it is to know the future. Considering probability distributions of sup-
ply and demand in the network, EVPI is obtained by calculating the 
difference between expected value solutions and stochastic solutions 
(𝐸𝑉 𝑃𝐼 = 𝑊𝑆 −𝑆𝑃 ). That is, the stochastic problem is solved for each 
scenario separately. Then using the probability of each scenario, their 
weighted average is computed, which represents WS.

Table  8 summarizes SP, WS, and EVPI for all three objectives 
separately. As depicted, the uncertainty in demand has a greater impact 
on the food network. Numerically speaking, the demand information 
is about 30% more valuable to know in advance than the supply 
information.

The difference between the solution obtained from the deterministic 
equivalent of the problem (EV) and the stochastic solution determines 
the VSS measures. Considering supply and demand as the first and 
second-stage uncertainties, the expected value of using the EV solution 
(EEV) can be calculated. The higher level of this measure indicates that 
stochastic modeling is a capable approach against uncertainty.

Table  9 summarizes this measure for all objective functions tested 
with small problem instances. The VSS measures are all positive which 
justifies the modeling approach. 
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Table 9
Value of Stochastic Solution.
 Index 𝐹1 𝐹2 𝐹3  
 SP 190858.58 40.12 2623.36 
 EEV 188568.14 39.48 2517.66 
 VSS 2290.44 0.64 105.70  

Table 10
Dimensions of the large problem instances.
 Sample# || | | || || || | | || || 
 1 4 3 3 5 6 2 2 3  
 2 6 4 5 8 6 2 2 3  
 3 8 4 67 10 8 2 2 4  
 4 10 6 87 12 8 3 3 4  
 5 12 6 10 15 12 3 3 4  
 6 15 8 10 18 12 3 3 4  
 7 18 8 12 22 12 4 3 4  
 8 22 10 12 25 15 4 4 5  
 9 28 12 15 28 15 4 4 5  
 10 35 15 15 32 15 4 4 5  
 11 42 15 18 36 18 6 4 5  
 12 48 18 21 42 18 6 6 6  
 13 52 18 24 48 18 6 6 6  
 14 55 20 28 52 20 8 6 6  
 15 60 22 30 60 20 8 6 6  

Table 11
ANOVA results for algorithm comparisons.
 Criterion F-Value P-Value 
 NPF 0.13 0.881  
 MS 0.96 0.390  
 SM 3.14 0.054  
 MID 0.14 0.087  
 CPT 0.49 0.614  

5.2. Large instances

The NP-hard nature of the problem encourages the deployment 
of heuristic algorithms NSGA II, MOGWO, and MOGGWA for larger 
problem sizes. Here, 15 instances with the dimensions given in Table 
10 are used to examine the scalability of our heuristics. All other 
parameters are kept as Table  3. 

Fig.  9 compares our algorithms with different problem sizes ac-
cording to the metrics defined in Table  2. As shown, apart from CPU 
time, the values of other metrics fluctuate over instance sizes with 
no definite deterioration or improvement pattern. But they remain in 
a reasonable range with no sudden change or outlier value, which 
testifies the reliability of algorithms for higher scales of the problem. 
Not surprisingly, the heuristics are much faster than AEC, while NSGA 
II is the fastest. NSGA II is the winner for SM and CPU time; MOGWO 
is the winner for MID; Since MOGGWA uses the operators of both other 
algorithms, it is the winner for three criteria with the highest NPF, 
MS, and MID among all algorithms. To decide on the significance of 
difference between algorithms an ANOVA analysis with a confidence 
level of 95% is used. Any 𝑃 -value less than 0.05 will indicate a mean-
ingful difference between algorithms for the criterion of interest. Table 
11 illustrates the ANOVA analysis wherein no statistically significant 
difference was detected. As no significant difference in the mean of 
comparison criteria is observed, the TOPSIS method is used here to rank 
the algorithms with respect to these 5 metrics as shown in Table  12. 

With equal weights for criteria, the scores obtained for NSGA II, 
MOGWO, and MOGGWA are respectively 0.305, 0.453, and 0.812 
which shows rank MOGWWA as the superior one.
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Fig. 9. Comparison of solution methods using different criteria.
Table 12
TOPSIS decision matrix.
 Index NSGA II MOGWO MOGGWA 
 NPF 27.33 27.20 28.53  
 MS 62831.07 62808.87 66392.60  
 SM 0.52 0.58 0.52  
 MID 23823.27 23109.60 23763.00  
 CPT 1022.84 1202.88 1399.93  

5.3. Case study analysis

In this section, we examine a real-scale problem, which is adopted 
from Kaviyani-Charati et al. [8]. The case explores the capital city 
of Iran, Tehran, with 22 regions and an area of nearly 730 square 
meters (see Fig.  10). Three food items are considered including cooked 
meat with 243 kcal and a shelf-life of 2 h, fruits and vegetables with 
229 kcal and 5 h of shelf-life, and canned foods with an average 
of 456 kcal and 5–7 days of shelf-life. Donors of these items com-
prise big restaurants, catering of universities, groceries, and residential 
houses. Based on the demographic information regions 2, 6, 7, 8, 
12, 14, 15, 16, 18, 19, 20, and 21 were identified as demand points 
(charities) while all regions were considered as potential locations 
for FBs. Food demands in charities were determined based on the 
opinions of experts including 10 people from national aid organiza-
tions and the Food and Drug Administration, and 4 academics as ∼
𝑈 (960, 1400).[0.90, 0.95, 1.05, 1.10]. The food supply by donors was also 
14 
estimated as ∼ 𝑈 (600, 820).[0.90, 0.95, 1.05, 1.10]. Two scenarios each 
with 50% chance were considered wherein the uncertain parameter 
was set at 0.9 for the first, and 1.1 for the second scenario. The service 
time at each node was estimated as 10 min while the transit times 
were calculated based on an average speed of 45 km/h. Each vehicle 
had a capacity equivalent to 3,000 items. Standardizing all cost units 
to cents (¢), the per kilometer transportation cost was ∼ 𝑈 (10, 15)
while the fixed cost was 1000. The holding cost and operational costs 
per item were set as 2 and 1, respectively. Finally, the location and 
facility investment costs are estimated at 100000.  All the parameters 
by which our numerical results obtained, are available at https://doi.
org/10.17632/mr9kbjkjk8.1.

All the corresponding numerical analyses have been done via MOG-
WWA as it was shown that it has superior performance to others in 
the previous section. It found 11 efficient solutions one of which is 
illustrated in Fig.  10. In this solution 7 vehicles are used for collection 
and 6 for distribution while 93.2% of demand is met in charities.

5.4. Managerial insights

5.4.1. Navigating trade-offs in food bank operations
The conflicting objectives of cost, freshness, and nutritional value 

require food bank managers to make strategic trade-offs. For instance, 
while minimizing costs is critical for sustainability, investing in re-
frigerated vehicles or faster delivery routes may be justified for per-
ishable items to preserve freshness. Conversely, non-perishable items 

https://doi.org/10.17632/mr9kbjkjk8.1
https://doi.org/10.17632/mr9kbjkjk8.1
https://doi.org/10.17632/mr9kbjkjk8.1
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Fig. 10. The geographical distribution of the food bank network.
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(e.g., canned goods) allow for cost-efficient bulk transportation. Simi-
larly, partnering with financial donors to procure high-nutrient foods 
can elevate nutritional value but may strain budgets. To navigate these 
trade-offs, managers should: Assess Priorities: Align decisions with 
organizational goals (e.g., hunger relief vs. nutrition-focused missions). 
Optimize Routing: Use the model’s Pareto solutions to identify routes 
that balance freshness and cost. Leverage Stakeholders: Collaborate 
with donors to secure funding for high-impact investments (e.g., cold 
storage). Such strategies ensure efficient resource use while meeting 
diverse objectives under constraints.

5.4.2. Remarks
The findings of this study provide actionable recommendations for 

food bank managers striving to optimize their operations while address-
ing uncertainties in supply and demand. From the managerial perspec-
tive, numerical analyses demonstrated that changes in uncertainty rates 
significantly affect key objectives, such as total cost, freshness, and 
nutritional value of distributed food. By understanding these dynamics, 
food bank managers can gain deeper insights into how uncertainty 
impacts their operations and adapt strategies accordingly to execute 
the most efficient solutions based on ongoing nationwide conditions.

One key takeaway is the importance of sensitivity analysis on 
parameters like vehicle capacity. For example, our analysis reveals 
that increasing vehicle capacity not only reduces total costs but also 
enhances overall operational efficiency. When optimized routing is 
implemented for food collection rather than simple assignments, the 
network cost decreases while accommodating a larger fleet size. This 
underscores the significance of strategic investments in fleet expansion 
and routing technologies to achieve cost-effective and efficient food 
distribution.

Additionally, trade-offs between objectives such as cost minimiza-
tion, freshness, and nutritional value provide essential insights for 
decision-making. Managers can expect increased costs when prioritiz-
ing higher nutritional value or freshness due to the need for more 
purposeful donations and increased fleet usage. Sensitivity analyses 
further reveal that higher supply and demand probabilities often lead to 
improved freshness and nutritional value, attributed to more frequent 
and targeted food distribution trips.

Finally, leveraging stochastic programming methods equips man-
agers with the ability to navigate uncertainty effectively. These tools 
help quantify the value of predictive decision-making, enabling man-
agers to implement resilient operational strategies that align with or-
ganizational priorities. By combining these insights with scenario-based 
planning, food bank managers can ensure more sustainable, efficient, 
and beneficiary-focused operations.

6. Conclusion

The importance of food distribution for people in need was the mo-
tive behind this study which addressed a food network design model. 
The network encompasses three tiers corresponding to donors, FBs, 
and charities which are critical spots and proxies to supply, packaging, 
and demand points in a classic supply chain setting, respectively. Our 
approach not only prevents the waste of leftover food in restaurants 
and similar establishments but also supports the social mission and 
promotes sustainable development within the food industry. Addition-
ally, the network optimization minimizing the traveled distance will 
indirectly reduce the carbon footprint. The freshness of food items from 
the collection to the delivery moments was taken into account from 
the operational perspective together with the nutritional value of the 
food supplied for the beneficiaries. Thus, combining with the cost a 
multi-objective MINLP was proposed for the problem considering the 
uncertain nature of supply and demand. The uncertainty is translated 
both by scenarios to address the possible trends of parameters, and 
by fuzzy Parameterization to undertake their value and range. To 
overcome worst-case outcomes under uncertainty a robust approach 
16 
was also employed in our modeling process resulting in a robust fuzzy 
stochastic model.

For solution approaches, in addition to the augmented 𝜖-constraint 
(AEC) two existing meta-heuristics MOGWO and NSGA II were tailored 
to encode solutions for the model. Then, a novel algorithm was de-
veloped by combining them. The hybrid MOGGWA proved a superior 
performance based on our numerical tests, while the AEC method 
showed a limited capability as it can only handle small instances of the 
problem. The expected rise in total cost by an increase in nutritional 
value or freshness of the food was observed in the results of all 
algorithms.

This study has some limitations that can be addressed in future stud-
ies. First, a fleet of normal vehicles is used while employing refrigerated 
ones may significantly change the freshness function during the transit 
and, in turn, will bring about new trade-offs with regard to their invest-
ment and running cost. Second, the supply and demand parameters may 
have seasonal changes, or the required nutritional value as well as the 
food freshness might be subject to seasonal changes that can make the 
problem time-dependent which would be interesting to inspect. Finally, 
the transit times for collection and distribution may vary depending 
on the road congestion or vehicle breakdowns during the day and that 
might be of interest for researchers to develop scenario-based transit 
times for the collection and delivery operations.  While our model 
assumes fixed budgets and single-FB donations, real-world networks 
may require stochastic funding cycles and decentralized donor flows. 
Future research will explore these dynamics via chance-constrained 
programming and multi-tier assignment heuristics, building on the 
routing foundation established here. In addition, the proposed design 
model can be extended to a redesign problem by including decisions 
on the location of the newly emerging charities or the closure of the 
existing ones.
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