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ABSTRACT

The global effort to reduce carbon emission and mitigate the
environmental carbon footprint of the construction industry, along with
its impact on climate change, has prompted construction organisations to
integrate life cycle carbon assessment into their practices.

One of the key areas for enhancing sustainability is the immediate
evaluation of carbon footprint in the design stage of construction projects.
This includes carbon emissions associated with the intrinsic properties of
materials, as well as those related to transportation and installation.
Additionally, there are carbon emissions linked to the maintenance and
operation of the built asset throughout a project life cycle.

This paper aims to accelerate whole-life carbon assessment by integrating
artificial intelligence with CarboniCa software, an in-house carbon
assessment tool utilised by a major UK construction organisation.

To speed up the evaluation process, a new development is suggested using
Al deep-learning neural networks to learn from experience and to
estimate carbon footprint, thus reducing time, energy and cost. By
leveraging historical construction project data within the CarboniCa
software, the experimental results provided a reasonable estimation (R? =
0.87) of the whole-life carbon for different building types.

With the integration of deep learning neural networks, the proposed
process is expected to improve efficiency by saving time and resources. It
will provide designers with rapid guidance during the early design stage,
enabling them to reduce the life-cycle carbon impact more effectively.

The paper begins with a literature review on the significance oflife cycle carbon
assessment in the construction industry, followed by an overview of CarboniCa,
a carbon assessment tool. It then explores the integration of artificial
intelligence to enhance the software’s ability to rapidly evaluate whole-life
carbon, thereby promoting sustainability within the built environment.

© 2025 Energy Catalyst
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1. INTRODUCTION

The built environment sector produces between
30 and 40% of worldwide carbon Click or tap
here to enter text.. In addition to emitting a large
amount of carbon dioxide (CO2) and consuming
significant resources, the built environment
industry also contributes significantly to social
and economic growth [1]. Operational and
embodied carbon emissions are the two main
types of carbon emissions that are factored into
life cycle carbon assessments of buildings.
Embodied carbon which sometimes referred to
as capital or embedded carbon is carbon
emission from the extraction, processing,
manufacture, transportation, building,
demolition, and disposal of building materials. A
cradle-to-cradle assessment of embodied carbon
of buildings factors in the material production,
off-site transportation, on-site construction,
maintenance, and end-of-life phases. The first
three phases constitute the cradle-to-site system
boundary, with studies showing they are the
primary contributors to building embodied
carbon. Material production processes are the
most influential factor, contributing 80 to 95% to
the cradle-to-site embodied carbon. Hence, the
reduction of embodied carbon in buildings is
essential for NetZero future [2] Operational
carbon refers to greenhouse gas emissions
associated with the energy used for operating the
building or the infrastructure during its use over
the life cycle [3]. This includes heating, hot water,
cooling, ventilation, lighting systems, equipment,
and lifts. Although there is a growing focus on
minimising emissions in buildings by optimising
building structures to reduce material usage or
specifying materials with lower embodied
emissions, [4], [5]. In [5], the authors indicated
that building performance evaluation should be
based on both, embodied and operational
emissions. Buildings' operational and embodied
carbon is included in whole-life carbon (WLC)
computations [6]. The evaluation of whole life
carbon of buildings has become an essential
practice in the construction industry for making
sure that design options with the lowest carbon
footprint are contemplated. However, this
practice can be time-consuming in most cases
and would require significant input data on
carbon factors and quantities of materials in the
design, construction, operation and at end-of-life
stages, in addition to the energy and water use
during operation and their associated carbon.

Artificial intelligence (AI) techniques can
accelerate the assessment of a building’s whole-
life carbon, hence minimising resource
requirements and improving accuracy. For
example, [1] have used Al techniques to develop
a predictive software for measuring carbon
emissions during the design phase of buildings so
that design solutions can be optimised. The
authors in [2] have also applied Al in predicting
the embodied carbon of buildings using different
parameters. However, despite these studies,
questions still exist on how construction firms
can adopt and implement Al solutions to rapidly
assess the whole-life carbon emissions of
buildings from the design stage. In many cases,
construction firms that have embraced the
practice of providing whole-life carbon advice to
their clients during the design phase conduct
these assessments with spreadsheets, bespoke or
commercially available software without the use
of Al-enabled tools and techniques to accelerate
the evaluation process.

Therefore, the aim of this study is to present and
evaluate a novel approach of integrating Al into
the conventional assessment approach adopted
by a major construction firm in the UK using deep
learning neural networks.

2. LIFE CYCLE ASSESSMENT AND WHOLE-
LIFE CARBON

The life cycle assessment (LCA) approach is
commonly used to evaluate the overall impact of
a building, including its carbon impact. The goal
of a building's whole life carbon assessment is to
minimise greenhouse gas emissions throughout
the building's life cycle via meticulous planning in
advance. The European Committee for
Standardisation is one organisation whose
standards work to guide the EC assessment
procedures. However, EC assessment methods
vary greatly because of different goals and study
scopes. This causes notable differences in study
outcomes. Variables that can affect EC have been
discovered by previous studies, including
building attributes, emission factors, LCA system
boundaries, and functional units. However, a
systematic understanding of these variables is
still lacking [7].

Various factors such as resource extraction,

acidification and global warming potential can be
used in impact assessment approaches within life
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cycle assessment (LCA) for buildings. Among
these, global warming potential (GWP) is
particularly  valuable for  understanding
embodied carbon in the built environment [8]. In
[9], the authors examined significant research
work on greenhouse gas (GHG) emissions from
the building sector, with a focus on how Life Cycle
Assessment (LCA) was used to assess these
emissions. It methodically looks at research
contributions from all over the world,
emphasising certain aspects of the construction
business, specific countries, locations, and
building materials such as steel and cement.
Reference [8] introduced a novel approach by
utilising the Life Cycle Assessment (LCA)
framework to assess embodied carbon in the
built environment at the neighbourhood level.
The results have shown that the average
neighbourhood-scale embodied carbon is circa
409.2 kgC02-eq/m2, of which 66.6% is
contributed by residential structures, 9.1% by
structural  landscapes, and 243% by
transportation infrastructure. Reference [10]
used life cycle assessment (LCA) to evaluate how
using sustainable building materials, such as
compressed earth blocks and rammed earth, will
affect the environment. The findings highlight
how sustainable methods have the potential to
cut greenhouse gas emissions and boost local
economies, as evidenced by the much smaller
carbon footprints of sustainable models as
compared to those made using traditional
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materials [10]. However, these studies do not
comprehensively articulate factors such as
operational carbon and the recyclability and
post-demolition waste of materials which will
provide more accurate results while assessing
Whole life carbon.

2.1. Whole-life carbon assessment

The fact that emissions happen at various phases
of the life cycle presents substantial obstacles to
whole-life carbon reduction. To reduce WLC
emissions and optimise building design, it is
imperative to investigate the operational and
embodied emissions of all feasible alternative
design options. These possibilities would
encompass the building's inputs, processes, and
outputs at every step of development. For
example, reference [11] indicated that achieving
designs with near-zero heating and cooling
energy demands in many climatic conditions is
challenging but possible; this can be achieved
through measures such as mechanical ventilation
with heat recovery, compact building forms,
limiting the window-to-wall ratio, having low
solar heat coefficients, and designs that meet or
come close to Passivhaus standards. Figure 1
shows the whole life of carbon in the life cycle of
a building starting from the Product Stage (A1 to
A3), followed by the Construction Stage (A4 and
A5), In Use Stage ((B1 to B5 = EC) (B6 and B7 =
0C)) and End-of-Life Stage (C1 to C4)
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Fig. 1. Whole life carbon in the life cycle of a building (Based on [3]).
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2.2. Calculation of embodied carbon of
buildings

The total cradle-to-gate embodied carbon of a
building can be calculated by multiplying the
amount of each material utilised in the
construction by its respective cradle-to-gate
embodied carbon factor, as emphasised in the
paper conducted by [12]. However, due to
uncertainties in the production locations and
processes of construction materials and
products, the Inventory of Carbon and Energy
(ICE) is often used as the primary source for
carbon coefficients [13]. However, [14] has
indicated that there is a higher level of inaccuracy
when utilising carbon factors from generic
databases because the data is derived from
various global sources and may not accurately
represent the specifications of a particular
project. Moreover, to avoid significant
discrepancies between estimated and actual
values of carbon, [15] investigated more
transparent understanding of embodied carbon
calculations behind buildings. The results have
shown that data scarcity is only a problem in
some life cycle stages. However, even where data
exists, there can be significant variability, which
may be related to geographical locations or
technological levels. As a result, uncertainties in
LCA might raise incorrect information for
decision-making [16, 17]. Due to these
uncertainty factors, calculating the cradle-to-gate
carbon for each material is challenging. In
practice, a process-based inventory method,
input-output (10) analysis and hybrid approach
are commonly used to help manage and
understand the carbon emissions of buildings
[18].

Process-based inventory method

The process-based approach involves a detailed
analysis and calculation of carbon emissions at
various stages of the life cycle of a product or
activity based on LCA. This approach requires
carbon emission factors for each single type of
material in the building and the corresponding
quantities of these materials. This bottom-up
analysis  provides detailed insights by
progressively calculating carbon emissions and
assessing the contributions of each material and
energy source [14] but its applicability may be
limited by truncation errors and data scarcity.
Therefore, this method is generally suitable when

carbon inventory data is available for specific
products and materials that are used in the
building [19].

Input-Output (I0) method

The input-output approach integrates regional
input-output tables with the environmental
impacts of economic sectors, enabling the
comprehensive assessment of carbon emissions
across the entire supply chain [20]. Therefore,
the method is more suitable for rapidly
estimating carbon emissions in the building
industry, but needs to link the monetary values
with physical carbon emissions units [21]; while
as reference [12] has indicated that there are
some difficulties in the application of the method
to an open economy with substantial non-
comparable imports. As a result, existing process-
based and input-output (I0) methods exhibited
significant limitations in terms of completeness,
reliability, and specificity when it comes to
embodied carbon emissions [16].

Hybrid Approach

Alternatively, a hybrid approach technique has
been proposed, which combines the strengths of
both process-based and input-output methods.
This approach involves utilising process data,
where available and supplementing it with input-
output data to comprehensively assess the entire
supply chain of a product [22]. While various
types of hybrid methods have been proposed,
they often require additional inputs and
assumptions, which can result in unexpected
uncertainties [23]. Also, the calculation using the
hybrid method can be complicated and time-
consuming [18]. The use of digital technologies
that can simplify the time taken to undertake life
cycle assessments of buildings therefore
continues to attract significant interest.

2.3. Building information modelling and LCA

The use of Building Information Modelling (BIM)
in LCA has attracted research interest. A building
information model (BIM), which is a digital data
store that describes the geometry, material
inventories, spatial linkages, and other pertinent
details of buildings has also been applied to LCA.
Several studies have stressed the potential of BIM
to create a life cycle inventory (LCI) for LCA, and
the significance of integrating BIM into LCA has
grown [24]. To analyse the embodied carbon in
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prefabricated buildings, [24] presented a BIM-
integrated LCA solution that achieved a 1%
discrepancy with standard manual LCA methods
and reduced modelling time, resulting in a 91.5%
efficiency gain. To lower building carbon
emissions, [10] investigated the integration of
LCA and BIM, concentrating on sustainable
materials such as rammed earth, which was
found to have substantially fewer carbon
footprints than standard materials. Research on
the integration of BIM and LCA identifies
adoption barriers and assesses different
integration methodologies, but due to project-
specific requirements, agreement on the best
methodology is still elusive and BIM models will
not be available at the early phase of the design
or may not exist for a building. Furthermore, as
the dynamics between operational and embodied
energy in buildings change, so does the
significance of thorough Life Cycle Assessments
(LCA) that consider the full life cycle of the
building. This emphasises the potential for Al-
driven solutions to provide increased flexibility
and efficiency in handling these complexities. To
achieve this, a better understanding of the
building parameters that have the most impact
on carbon emissions is required.

3. FACTORS INFLUENCING CARBON
EMISSIONS FROM BUILDINGS

The authors in [11] employed global sensitivity
analysis to understand the relative importance of
architectural design variables at the early design
stages on embodied and operational carbon. They
found that building compactness, frame material,
lowering window-to-wall ratio (WWR), glazed
windows, and mechanically ventilated systems
with heat recovery were the most important
measures for reducing embodied emissions and
operational energy. However, [5] has indicated that
increasing the window-to-wall ratio (WWR) has an
advantage in reducing energy consumption and
carbon emissions as the embodied energy and
embodied carbon of window materials are lower
than those of wall components. Sensitivity analysis
was also performed by reference [25] which has
indicated that parameters related to building shape
and size have a greater impact on embodied energy
and embodied carbon per square meter of building
area compared to parameters associated with
elements such as wall thickness, while glazing ratio
is a non-influential factor in terms of embodied
carbon in residential building in France.
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Moreover, [26] conducted a feature importance
analysis on their optimal predictive model for
embodied carbon, uncovering that the primary
influencing factors during the preliminary
design phase were material cost, steel use and
concrete consumption. In addition, Elastic Net
can perform variable selection, encouraging the
model to choose a set of correlated features and
reducing overfitting. Reference [27] used this
method, and out of 17 design factors, 12
variables were selected, including number of
floors, building height, floor area, building
volume, shape coefficient, body coefficient,
building height, north-facing window-to-wall
ratio, west and east-facing window-to-wall ratio,
heat transfer coefficient of roof, heat transfer
coefficient of external wall and heat transfer
coefficient of glass.

Table 1. Summary of key influencing factors in literature.

Author Influencing Factors

Gauch et al.
(2023) [11]

Building compactness, Frame type,
Window glazing

Lotteau et al.

(2017) [25] Building shape, Building size

Zhang et al.
(2024) [26]

Material cost, Steel consumption,
Concrete consumption

Number of storeys, Building Height,
Floor area, Building volume, Shape
coefficient, Body coefficient, Window-to-
Wall Ratio, Heat transfer coefficient of
roof, External wall and Glass

Xikai et al.
(2019) [27]

Building construction area, Indirect
emissions intensity, Carbon emissions
per unit energy consumed, Energy
intensity, and Total factor productivity

Zhu et al.
(2022) [28]

Victoria &
Perera
(2018) [29]

Wall-to-floor ratio and the Number of
basements

Moreover, [28] also explored the factors
influencing embodied carbon emissions in
China and discovered that the building
construction area, value of unit building area,
indirect emissions intensity, carbon emissions
per unit energy consumed, energy intensity, and
total factor productivity in the building
construction sector have significantly positive
impacts. Reference [29] wused multiple
estimating methodologies and historical data
from four sources to identify that the wall-to-
floor ratio and the number of basements were
the identified factors when it comes to
embodied carbon emission. Table 1 shows the
influencing factors.
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4. AI ACCELERATED CARBON ASSESSMENT

The use of Artificial Intelligence (Al) techniques in
buildings can help to reduce energy consumption
by improving control, automation, and reliability.
They can generate predictive data by analysing
past data without considering the underlying
process. The utilisation of deep learning
techniques has led to the incorporation of a
greater number of hidden layers in neural
networks as [30] have indicated that this
enhancement in architecture has resulted in
improved computational efficiency, stability, and
overall performance compared to traditional
methods. Moreover, due to its considerable
potential at every stage of the building lifecycle,
artificial intelligence is gaining prominence in the
construction sector. This development is
consistent with more general patterns of
technology progress and real-world application in
the context of the construction sector [31].
Besides, there are some researchers already
performed carbon emission by using machine
learning algorithms. For example, [19] developed
a linear fitting regression with a process-based
inventory analysis for embodied carbon emissions
during the scheme design stage to facilitate the
reduction of emissions and enable low-carbon
design using various building materials and
structural forms. In addition to that the carbon
emission figures of 207 residential buildings in
Tianjin, China were calculated using the process
analysis method, followed by correlation analysis
and elastic net techniques to identify 12 key design
factors for a predictive regression model
incorporating PCR, RF, MLP, and SVR techniques.
SVR has demonstrated the highest predictive
accuracy among the four models, effectively
estimating carbon emission for early stage of the
decision-making process [27].

In other cases, [32] developed the RF-based
model showcased a more precise prediction of
construction-stage carbon emissions, boasting a
lower mean square error (0.7649) and an R2
value of 0.6403. This model utilised data from 38
buildings and considered six influential design
parameters: foundation area, above-ground
area, underground area, building height,
number of above-ground floors, and basement
depth. The optimal RF model further revealed
the significant impact of the foundation area,
underground area, and building height on
construction-stage carbon emissions.

It is intriguing that the choice of input features
impacts the suitability of machine learning methods
and the resulting outcomes. For instance, in the
research done by [26], models relying solely on a
single building height feature yielded inadequate
estimates with R2 values below 0.4 for embodied
carbon prediction. However, a combination of
features including building height, structural form,
seismic fortification intensity, delivery type,
geographical region, and material cost proved more
effective when employing extremely randomized
trees with R2 and MAPE values of 0.821 and 0.054,
respectively. However, if considering more features,
prefabrication technique, consumption of steel,
concrete, and brick and block, the optimal algorithm
is the XGB algorithm instead, achieving R2 and
MAPE values of 0.917 and 0.038, respectively, on the
testing dataset.

[33] developed a machine learning model to predict
operational carbon emissions. The model evaluated
five primary energy sources: space cooling, space
heating, hot water, cooking, and home appliances. It
considered the temporal fluctuations in occupant
profiles, behaviours, and the carbon intensity of
energy. In another study conducted by [30] used
artificial intelligence, more precisely a long short-
term memory (LSTM) model, to forecast energy
consumption and operational CO, emissions. Both
studies focus exclusively on operational CO,
emissions, addressing the carbon footprint resulting
from the day-to-day functioning of buildings, rather
than the embodied carbon associated with
construction materials and processes. Nevertheless,
[34] has indicated that to successfully fulfil the
objective of “low-carbon buildings” through energy
conservation and emission reduction, it is crucial to
managing building carbon emissions throughout
the design phase because the design process is
responsible for eighty percent of the decisions about
building carbon emissions. Consequently, once a
building enters the construction stage, it becomes
challenging to meet additional energy conservation
and emission reduction targets. As a result, to
address issues in early-stage design, [29] used
regression analysis to establish a parametric
embodied carbon prediction model for office
buildings in the UK and found that the wall-to-floor
ratio and the number of basements were identified
as predictors. [1] has employed advanced machine
learning methods, such as Artificial Neural
Networks (ANN), Support Vector Regression (SVR),
and XGBoost to create a predictive tool that can be
used throughout the design phase.
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Table 2. Summary of Al methods from literature.

Multi-
Embodied | Operational Objective
Author Al l\:[l:gé()ds Variables Materials P Opti1]11isation
EC ocC MOO
Number of floors, basements, Concrete,
Suetal. ANN SVR Building area, type of Gravel, Brick,
(2024) XGBéOST foundation, thickness of floor, Water, Steel, X X
[1] wall, type of formwork, Wood,
prefabrication rate Electricity
Su et al. DT, RF,
(2023) Polynomial Space cooling, heating N/A X
[33] Regression
Pomponi Reinforced
ot El ANN. RF Concrete, Steel
(202 1') SV’M ! Building structure. frames, and X
[35] Engineered
timber.
Victoria
etal . .
(2018) Regression Wall to floor ratio, basement. N/A X
[29]
Chen et al . .
(2021) LSTM Occupant denslty, size of the N/A <
office.
[30]
Number of storeys, Building Concrete
I Height, Floor area, Building ’
Xikai, M. - steel. Mortar,
volume, Shape coefficient,
etal. PCR, RF, . . Block,
Body coefficient, Window-to- - X
(2019) MLP, SVR . Insulation,
[27] Wall Ratio, Heat transfer Glass
coefficient of roof, External Electrici
wall and Glass. -
Cang et . o . Steel, Yvall
al. (2020) Linear fitting Number of storeys, building materials, <
' [19] analysis structures. mortar, and
concrete.
Foundation area, above-ground
Fang et RRF, NSGA-II, area, underground area,
al. (2021) | NSGA-III, C- building height, number of N/A X X
[32] TAEA above-ground floors, and
basement depth.
Building height, structural
form, seismic fortification Prefabrication
Zhang et intensity, delivery type, ’
XGB, Random . . . steel,
al (2024) geographical region, material ) X
Forest L . concrete, brick
[26] cost, prefabrication technique, and block
consumption of steel, concrete, )
and brick and block,
Non-
Kamazani domln.ated Building orientation, window-
. sorting . .
and Dixit enetic to-wall ratio, window N/A .
(2023) gene construction, and wall
[5] algorithm construction
with Al Fuzzy ’
logic
Ascione .
. Building geometry, envelope,
etal Genetic systems, and cost N/A X
(2019) Algorithm ystems, anc
[36] considerations.
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Their tool is specifically developed to streamline
the process of measuring carbon emissions, assist
in optimising design choices, and assist in making
informed decisions within the building industry.
Although the prediction tool performs well, the
dataset used in the study is restricted to only 70
project samples from the Yangtze River Delta
region, which could potentially impact the
accuracy and generalisability of the model.

To predict embodied carbon emissions in
building structures during the design process, the
study conducted by [35] offered a real-time
decision-support tool that makes use of machine
learning algorithms, such as Artificial Neural
Networks (ANN).

The tool's ability to produce precise estimates is
demonstrated by validating it against commerecial
finite element analysis (FEA) software.

In summary, there is a growing trend in the field
of Al-driven building management to consider a
building's whole-life carbon footprint, even if
most of the research in this area concentrates on
operational or embodied carbon emissions. To
address the entire environmental impact of
building development and operation, a
comprehensive approach is necessary.

4.1. Multi-objective optimisation

In traditional optimisation problems, there is
usually only one objective function that needs to
be maximised or minimised. However, in the real
world, there are often multiple goals to consider,
which may conflict with each other. Multi-
objective optimisation (MOO) is a process that
can simultaneously optimise multiple conflicting
objectives. The goal of MOO is to find a set of
solutions that represent a compromise between
these conflicting goals, called Pareto optimal
solutions. The reason these solutions are
considered optimal is that it is impossible to
improve one goal without worsening at least
another goal. Another advantage of the MOO
algorithm is that it provides decision-makers
with a series of optimal solutions in the decision-
making process.

For example, [5] used the MOO method to reduce
carbon emissions. It involved a three-step
iteration process: inputting design variables
through the NSGA-II (Non-dominated sorting

genetic algorithm), conducting simulations with
Energy Plus, and analysing data to compute
overall material quantity. Following iteration
across these components, a fuzzy decision-
making method was employed to select the best
solution from the Pareto front solutions. The
variables considered primarily encompass
building orientation, window-to-wall ratio,
window construction, and wall construction. On
the other hand, the [32] used NSGA-II, NSGA-III
and C-TAEA MOO algorithms for optimising the
building performance optimisation and the
convergence degree of C-TAEA was better than
NSGA-II and NSGA-III in the study. In addition to
that, the research conducted by [36] introduced
to optimise design variables covering building
geometry, envelope, systems, and cost
considerations, aiming for optimal solutions. This
involved utilising a genetic algorithm (GA) to
achieve Pareto optimisation of the building
envelope, geometry, and HVAC operation.
Subsequently, a smart exhaustive sampling of
design scenarios was conducted, with a
particular focus on identifying optimal energy
systems. Ultimately, the study provided
recommended design solutions tailored to the
specific needs of designers.

Through the aforementioned related work, it is
evident that there is a lack of generic, systematic
and comprehensive framework to use Al to
evaluate WLC of projects. Consequently, our
objective is to develop a deep learning Al model as
comprehensive framework that leverages
historical data from completed projects. By
integrating deep learning Al technology and its
applications, this work aims to create a robust
decision-support tool that fosters sustainability in
the construction process from the initial design
stage. By rapidly providing valuable insights, this
approach not only streamlines user input time and
enhances the user experience but also advances
the construction industry and facilitates the
development of low-carbon buildings

5. INTEGRATING AI INTO AN EXISTING
WHOLE LIFE CARBON ASSESSMENT
SOFTWARE

Morgan Sindall, a top-3 UK construction
organisation, has developed CarboniCa software
as a carbon reduction tool for use across their
projects. The web-based CarboniCa software,
which is compliant with the RICS professional
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standard for whole-life carbon assessment for the
built environment and EN15978 has now been
used for assessments of over 50 building projects,
annually contributing to over 14,500 tonnes of
carbon savings. This tool calculates embodied
carbon using the preprocess-based inventory
method whereby material quantities from a bill
of quantities (BOQ) or cost plan are manually
entered into the software. These quantities are
entered for the various elements in the design,
and the elemental breakdown in the CarboniCa
software follows the 4th Edition of the BCIS
Elemental Standard Form of Cost Analysis. The
software has a verified and validated carbon
factor database covering all the various materials
in buildings they construct. Carbonica also has a
carbon factor database that is manually verified
and updated periodically, which is used to
calculate the embodied carbon. To calculate
operational carbon, benchmarked outputs based
on building type for both regulated and
unregulated loads are used in the calculation
where the energy model has not been performed
for the design. Where there is an energy model
exists for the building, the energy outputs are
manually entered into the CarboniCa software to
calculate the operational carbon. The output
report from CarboniCa comprises a breakdown of
the embodied carbon at practical completion (PC-
COZ2e), embodied carbon over the life cycle of the
building (LC-COZ2e) and the whole life carbon
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(WL-CO2e), with accompanying graphs showing
the breakdown per building element. These
outputs are compared to the client's lifecycle
embodied carbon target. The carbon and energy
budgets are also compared against industry
baselines e.g., London Energy Transformation
Initiative (LETI) and Royal Institute of British
Architects (RIBA) targets, which are industry-
recognised benchmarks. As a carbon reduction
tool, the CarboniCa software also has a database
of design recommendations that generate
specific recommendations for improving carbon
savings based on the initial analysis.

To reduce the time that it takes to enter building
quantities data into the CarboniCa software, a
novel conceptual approach has been proposed to
develop a predictive benchmark model for
CarboniCa using Al-fuzzy logic and deep learning.
The Al model will be trained using previous
project data and the experience gathered from
experts so that it can predict and input material
quantities for a new building under design into
the CarboniCa software using building general
features and parameters. Building features and
parameters for a new design can then be rapidly
entered into the predictive benchmark model to
generate and input estimated material quantities
that will be fed directly into CarboniCa to produce
an embodied carbon output for the building as
illustrated in Figure 2.
©)

Quantity Estimation
Estimation &

|ﬂ Optimisation

Material (I)
guantities and
operational
energy
estimated
Cost
Carbon &
(f) Time
o i Cost &
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Input
Carbon analvsi @
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Data Analysis related time
and cost

Fig. 2. Conceptual diagram of integrating Al into Carbonica.

Fuzzy-logic techniques will also be used to
develop a multi-objective optimisation model
using embodied carbon, cost, order time and
installation time as criteria to enhance the design
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recommendations that are provided to CarboniCa
software users (Figure 2-gh,i). The proposed
conceptual model is currently being
operationalised for testing and validation using
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available industry benchmark data as part of a
research project. This Al integration into the
CarboniCa software will potentially generate
productivity savings by reducing the time taken
to enter and check user inputs when performing
carbon assessments of buildings under design.
The Al capability will also enhance the carbon
reduction potential of the software as part of the
multi-objective optimisation model that is being
developed.

6. METHODOLOGY

As previously mentioned, the data was collected
from previous construction projects. Data pre-
processing involved several steps, including data
cleaning, outlier removal, formatting of categorical
and numerical variables, handling missing values,
feature encoding, and data augmentation (Figure 2-
a,b and c). Given that there are just over 50 large
new-build projects, a systematic data augmentation
technique was employed to enhance the robustness
and size of the training datasets. In addition to the
original training samples, new data points were
generated by introducing small incremental
random variations to the actual values, thereby
expanding the dataset to help generalisation and
reduce Al overfitting. In terms of feature encoding,
it was essential to transform categorical variables
into a format suitable for deep learning. For feature
selection, the Elastic Net method was utilised, as it

is well-suited for continuous target variables and
can effectively handle feature sets comprising both
numerical and categorical variables.

The results of feature selection using Elastic Net,
see Figure 3, reveal the relative importance of
different building attributes. The size and value of
the building emerge as the most critical
predictive factors. Notably, gross internal area
(GIA) and net internal area (NIA) exhibit the
strongest positive influence, suggesting that
building size is a primary determinant in
predicting the target variable. Following closely,
asset value and the number of floors also
demonstrate significant positive impacts. These
findings align with previous research that has
identified these factors as key indicators in
carbon prediction ([1], [18], [25], [27], [32])-

Finally, an expert knowledge approach was
incorporated into the feature selection process,
allowing domain expertise to guide the
identification of relevant features based on both
theoretical understanding and practical experience.
This comprehensive strategy ensured a well-
rounded selection of features that enhance model
performance. Consequently, the features selected
for this regression task are gross internal area
(GIA), net internal area (NIA), number of storeys,
building cost (asset value), building type, and
cooling, heating, and ventilation systems.

Result of Elastic Net for Feature Selection
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Fig. 3. Building's feature selection for the Al model.
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6.1. Architecture of the neural network

MATLAB software is utilised in this paper to
develop and train the Al model. Model training
is a crucial step in constructing any predictive
model, particularly when employing neural
networks, given their capacity to capture
complex patterns and relationships within the
data. Neural networks were selected for this
task due to their flexibility and effectiveness in
modelling non-linear relationships, particularly
in cases where input-output mappings are
intricate and multi-dimensional.

Hidden
Layers

MATLAB provides various types of neural
networks, among which Fitnet, Feedforwardnet,
and Cascadeforwardnet are particularly well-suited
for regression tasks. In terms of training algorithms,
MATLARB offers trainlm, trainscg, trainbr, traingdx,
and trainrp, among others. The transfer functions
will alternate between logsig, tansig, and purelin,
while the output layer will alternate between tansig
and purelin. Furthermore, a three-layer hidden
structure will be implemented, with each layer
initially containing 3 to 9 neurons to evaluate the
most suitable neural network configuration for the
task. Figure 4 illustrates the architecture of the
neural network.

Qutput
Layer

Hidden layer 1 Hidden layer 2

Hidden layer 3

()| oo H
Features E El

Input t t
NEURONS: [3,6,9]
TRANSFERFUNCTION: logsig/ tansig/purelin

= | —>

TRAINING FUNCTION: trainlm, trainbr, trainscg, traingdx, trainrp

w

@,__»/_,

t t
Activation
Function

purelin or tansig

Neural Network: Fitnet, Feedforwardnet, and Cascadeforwardnet

Fig. 4. The architecture of the tested neural networks.
7. IMPLEMENTATION AND RESULTS

To determine the optimal configuration for
achieving the best results, a for-loop was
implemented to iterate through all transfer
functions, training algorithms, and neural networks
with 3 to 9 neurons. The results are presented in
Table 3. This table summarises the performance of
various training algorithms and neural networks
using different transfer functions, evaluated based
on MAPE and R? values. The five training
algorithms considered are trainlm, trainscg,
trainbr, traingdx, and trainrp. Each algorithm was
tested across three types of neural networks: Fitnet,
Cascadenet, and Feedforwardnet. In all cases, 70%
ofthe data was randomly used for training and 30%
was used for testing the neural networks.

Under the trainlm algorithm, the neural networks
demonstrate relatively low MAPE differences
(ranging from 0.27% to 0.37%) alongside high R?
values (0.83 to 0.87), indicating strong
performance. In contrast, trainscg exhibits higher
MAPE differences (0.47% to 0.83%) and lower R?
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values (0.72 to 0.79), making it slightly less
effective than trainlm.

Table 3. The performance of different Neural Networks.

Algorithm Neural Network NE&)P)E R?

Fitnet 0.27 0.86

trainlm Cascadeforwardnet 0.36 0.83
Feedforwardnet 0.27 0.87

Fitnet 0.47 0.76

trainscg Cascadeforwardnet 0.83 0.72
Feedforwardnet 0.52 0.79

Fitnet 0.31 0.86

trainbr Cascadeforwardnet 0.39 0.81
Feedforwardnet 0.32 0.82

Fitnet 0.85 0.74

traingdx Cascadeforwardnet 111.2 0.69
Feedforwardnet 102.99 0.76

Fitnet 0.58 0.79

trainrp Cascadeforwardnet 0.74 0.71
Feedforwardnet 0.6 0.81
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The results for trainbr are also favourable, with
a MAPE difference of approximately 0.3% and
R? values between 0.80 and 0.86. The traingdx
algorithm, however, performed poorly,
particularly with Cascadenet and
Feedforwardnet networks, showing MAPE
differences of 111.2% and 102.99%,
respectively, and lower R? values (0.69 to 0.76),
indicating significant performance issues.
Lastly, trainrp falls in the mid-range, with
MAPE differences between 0.58% and 0.74%
and R? values from 0.71 to 0.81, offering
acceptable performance but not reaching the
standards of trainlm and trainbr.

performance issues. Lastly, trainrp falls in the
mid-range, with MAPE differences between
0.58% and 0.74% and R? values from 0.71 to
0.81, offering acceptable performance but not
reaching the standards of trainlm and trainbr.

In summary, while trainlm and trainbr emerged
as the best-performing algorithms, achieving
lower MAPE and higher R? values, trainlm
stands out for its speed advantage due to its
ability to dynamically adjust parameters,
modify weights, and accelerate convergence,
thereby enhancing the efficiency of each

iteration. Conversely, traingdx performed
notably  poorly, particularly in the
cascadeforwardnet and  Feedforwardnet
models.

As a result, the optimal neural network
architecture is presented in Figure 5. A
feedforward neural network model has been
identified as the most suitable for this study in
predicting the desired outcomes. The model
consists of an input layer corresponding to the
input features and an output layer that

generates predictions. The architecture
includes three hidden layers, with neuron
configurations optimised through
experimentation.

The hidden layers are implemented using the
hyperbolic tangent sigmoid activation function,
‘tansig’, while the output layer employs the
linear activation function, ‘purelin’. This
configuration enables the hidden layers to
capture complex non-linear relationships
within the data while ensuring that the output
layer can effectively model continuous values,
which is also essential for regression tasks.

ARCHITECTURE

3 Hidden Layers

FEED Neuron sizes [3,6,9].
FORWARD e gl TRANSFER FUNCTION

NETWORK

Hidden Layers: ‘tansig’
Activation Layer: ‘purelin’

e &l  TRAINING ALGORITHM
Levenberg-Marquardt (trainlm)

Fig. 3. The selected neural network for Whole Life
Carbon (WLC) prediction.

8. CONCLUSION

This study has reviewed the literature on LCA and
WLCA in the built environment, identifying
challenges related to data variability, sufficiency,
completeness, reliability, and the time-
consuming nature of assessments at the building
scale. Despite the use of digital tools such as BIM
in LCA, the integration of Al into carbon
assessments throughout a building’s lifecycle has
been discussed, including the building factors
that influence these emissions. The insights from
this review have informed the development of a
novel conceptual approach for integrating Al into
an existing in-house carbon reduction software
used by a major UK contractor. The proposed Al
integration approach is under development at the
time of writing this paper, with the next phase
being industrial testing and validation of the
model's efficacy using circa 100 projects. It is
anticipated that the Al engine will offer an option
within the CarboniCa software environment to
rapidly assess whole life carbon emission,
leveraging learning from past projects. While the
dataset includes over 50 recent projects,
generalisability issues may arise in the future and
hence the plan is to expand the number of
projects to enhance the generalisation with any
future project variations.

Looking ahead, the integration of multi-objective
optimisation using fuzzy logic for alternative
material recommendation will enhance the
carbon reduction potential of the software by
providing  dynamic, responsive design
recommendations that consider carbon, time,
and cost. This will enable data-driven decision-
making that maximises quality and speed by
harnessing past project data. A broader
implication of this study is that further research
to develop, test, and integrate the proposed Al
model into the CarboniCa software will provide
practical use cases for Al adoption in the
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construction sector. This could serve as a solution
for improving the sustainability performance of
construction projects, contributing to net-zero
ambitions. However, there is still room for
experimentation, as certain factors such as soil
type, region, WWR or local economic conditions
are still to be explored in future studies
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