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A B S T R A C T 

The global effort to reduce carbon emission and mitigate the 
environmental carbon footprint of the construction industry, along with 
its impact on climate change, has prompted construction organisations to 
integrate life cycle carbon assessment into their practices. 

One of the key areas for enhancing sustainability is the immediate 
evaluation of carbon footprint in the design stage of construction projects. 
This includes carbon emissions associated with the intrinsic properties of 
materials, as well as those related to transportation and installation. 
Additionally, there are carbon emissions linked to the maintenance and 
operation of the built asset throughout a project life cycle. 

This paper aims to accelerate whole-life carbon assessment by integrating 
artificial intelligence with CarboniCa software, an in-house carbon 
assessment tool utilised by a major UK construction organisation. 

To speed up the evaluation process, a new development is suggested using 
AI deep-learning neural networks to learn from experience and to 
estimate carbon footprint, thus reducing time, energy and cost. By 
leveraging historical construction project data within the CarboniCa 
software, the experimental results provided a reasonable estimation (R² = 
0.87) of the whole-life carbon for different building types. 

With the integration of deep learning neural networks, the proposed 
process is expected to improve efficiency by saving time and resources. It 
will provide designers with rapid guidance during the early design stage, 
enabling them to reduce the life-cycle carbon impact more effectively. 

The paper begins with a literature review on the significance of life cycle carbon 
assessment in the construction industry, followed by an overview of CarboniCa, 
a carbon assessment tool. It then explores the integration of artificial 
intelligence to enhance the software’s ability to rapidly evaluate whole-life 
carbon, thereby promoting sustainability within the built environment. 
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1. INTRODUCTION 
 
The built environment sector produces between 
30 and 40% of worldwide carbon Click or tap 

here to enter text.. In addition to emitting a large 
amount of carbon dioxide (CO2) and consuming 
significant resources, the built environment 
industry also contributes significantly to social 
and economic growth [1]. Operational and 
embodied carbon emissions are the two main 
types of carbon emissions that are factored into 
life cycle carbon assessments of buildings. 
Embodied carbon which sometimes referred to 
as capital or embedded carbon is carbon 
emission from the extraction, processing, 
manufacture, transportation, building, 
demolition, and disposal of building materials. A 
cradle-to-cradle assessment of embodied carbon 
of buildings factors in the material production, 
off-site transportation, on-site construction, 
maintenance, and end-of-life phases. The first 
three phases constitute the cradle-to-site system 
boundary, with studies showing they are the 
primary contributors to building embodied 
carbon. Material production processes are the 
most influential factor, contributing 80 to 95% to 
the cradle-to-site embodied carbon. Hence, the 
reduction of embodied carbon in buildings is 
essential for NetZero future [2] Operational 
carbon refers to greenhouse gas emissions 
associated with the energy used for operating the 
building or the infrastructure during its use over 
the life cycle [3]. This includes heating, hot water, 
cooling, ventilation, lighting systems, equipment, 
and lifts. Although there is a growing focus on 
minimising emissions in buildings by optimising 
building structures to reduce material usage or 
specifying materials with lower embodied 
emissions, [4], [5]. In [5], the authors indicated 
that building performance evaluation should be 
based on both, embodied and operational 
emissions. Buildings' operational and embodied 
carbon is included in whole-life carbon (WLC) 
computations [6]. The evaluation of whole life 
carbon of buildings has become an essential 
practice in the construction industry for making 
sure that design options with the lowest carbon 
footprint are contemplated. However, this 
practice can be time-consuming in most cases 
and would require significant input data on 
carbon factors and quantities of materials in the 
design, construction, operation and at end-of-life 
stages, in addition to the energy and water use 
during operation and their associated carbon. 

Artificial intelligence (AI) techniques can 
accelerate the assessment of a building’s whole-
life carbon, hence minimising resource 
requirements and improving accuracy. For 
example, [1] have used AI techniques to develop 
a predictive software for measuring carbon 
emissions during the design phase of buildings so 
that design solutions can be optimised. The 
authors in [2] have also applied AI in predicting 
the embodied carbon of buildings using different 
parameters. However, despite these studies, 
questions still exist on how construction firms 
can adopt and implement AI solutions to rapidly 
assess the whole-life carbon emissions of 
buildings from the design stage. In many cases, 
construction firms that have embraced the 
practice of providing whole-life carbon advice to 
their clients during the design phase conduct 
these assessments with spreadsheets, bespoke or 
commercially available software without the use 
of AI-enabled tools and techniques to accelerate 
the evaluation process.  
 
Therefore, the aim of this study is to present and 
evaluate a novel approach of integrating AI into 
the conventional assessment approach adopted 
by a major construction firm in the UK using deep 
learning neural networks. 
 
2. LIFE CYCLE ASSESSMENT AND WHOLE-

LIFE CARBON 
 
The life cycle assessment (LCA) approach is 
commonly used to evaluate the overall impact of 
a building, including its carbon impact. The goal 
of a building's whole life carbon assessment is to 
minimise greenhouse gas emissions throughout 
the building's life cycle via meticulous planning in 
advance. The European Committee for 
Standardisation is one organisation whose 
standards work to guide the EC assessment 
procedures. However, EC assessment methods 
vary greatly because of different goals and study 
scopes. This causes notable differences in study 
outcomes. Variables that can affect EC have been 
discovered by previous studies, including 
building attributes, emission factors, LCA system 
boundaries, and functional units. However, a 
systematic understanding of these variables is 
still lacking [7]. 
 
Various factors such as resource extraction, 
acidification and global warming potential can be 
used in impact assessment approaches within life 



Amin Al-Habaibeh et al., Energy Catalyst Vol. 01 (2025) 54-67 

 

 56 

cycle assessment (LCA) for buildings. Among 
these, global warming potential (GWP) is 
particularly valuable for understanding 
embodied carbon in the built environment [8]. In 
[9], the authors examined significant research 
work on greenhouse gas (GHG) emissions from 
the building sector, with a focus on how Life Cycle 
Assessment (LCA) was used to assess these 
emissions. It methodically looks at research 
contributions from all over the world, 
emphasising certain aspects of the construction 
business, specific countries, locations, and 
building materials such as steel and cement. 
Reference [8] introduced a novel approach by 
utilising the Life Cycle Assessment (LCA) 
framework to assess embodied carbon in the 
built environment at the neighbourhood level. 
The results have shown that the average 
neighbourhood-scale embodied carbon is circa 
409.2 kgCO2-eq/m2, of which 66.6% is 
contributed by residential structures, 9.1% by 
structural landscapes, and 24.3% by 
transportation infrastructure. Reference [10] 
used life cycle assessment (LCA) to evaluate how 
using sustainable building materials, such as 
compressed earth blocks and rammed earth, will 
affect the environment. The findings highlight 
how sustainable methods have the potential to 
cut greenhouse gas emissions and boost local 
economies, as evidenced by the much smaller 
carbon footprints of sustainable models as 
compared to those made using traditional 

materials [10]. However, these studies do not 
comprehensively articulate factors such as 
operational carbon and the recyclability and 
post-demolition waste of materials which will 
provide more accurate results while assessing 
Whole life carbon. 
 
2.1. Whole-life carbon assessment 
 
The fact that emissions happen at various phases 
of the life cycle presents substantial obstacles to 
whole-life carbon reduction. To reduce WLC 
emissions and optimise building design, it is 
imperative to investigate the operational and 
embodied emissions of all feasible alternative 
design options. These possibilities would 
encompass the building's inputs, processes, and 
outputs at every step of development. For 
example, reference [11] indicated that achieving 
designs with near-zero heating and cooling 
energy demands in many climatic conditions is 
challenging but possible; this can be achieved 
through measures such as mechanical ventilation 
with heat recovery, compact building forms, 
limiting the window-to-wall ratio, having low 
solar heat coefficients, and designs that meet or 
come close to Passivhaus standards. Figure 1 
shows the whole life of carbon in the life cycle of 
a building starting from the Product Stage (A1 to 
A3), followed by the Construction Stage (A4 and 
A5), In Use Stage ((B1 to B5 = EC) (B6 and B7 = 
OC)) and End-of-Life Stage (C1 to C4) 

 

 

Fig. 1. Whole life carbon in the life cycle of a building (Based on [3]). 

 

PRODUCT STAGE CONSTRUCTION STAGE IN USE STAGE END OF LIFE STAGE
IN USE 

STAGE
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2.2. Calculation of embodied carbon of 
buildings 

 
The total cradle-to-gate embodied carbon of a 
building can be calculated by multiplying the 
amount of each material utilised in the 
construction by its respective cradle-to-gate 
embodied carbon factor, as emphasised in the 
paper conducted by [12]. However, due to 
uncertainties in the production locations and 
processes of construction materials and 
products, the Inventory of Carbon and Energy 
(ICE) is often used as the primary source for 
carbon coefficients [13]. However, [14] has 
indicated that there is a higher level of inaccuracy 
when utilising carbon factors from generic 
databases because the data is derived from 
various global sources and may not accurately 
represent the specifications of a particular 
project. Moreover, to avoid significant 
discrepancies between estimated and actual 
values of carbon, [15] investigated more 
transparent understanding of embodied carbon 
calculations behind buildings. The results have 
shown that data scarcity is only a problem in 
some life cycle stages. However, even where data 
exists, there can be significant variability, which 
may be related to geographical locations or 
technological levels. As a result, uncertainties in 
LCA might raise incorrect information for 
decision-making [16, 17]. Due to these 
uncertainty factors, calculating the cradle-to-gate 
carbon for each material is challenging. In 
practice, a process-based inventory method, 
input-output (IO) analysis and hybrid approach 
are commonly used to help manage and 
understand the carbon emissions of buildings 
[18]. 
 
Process-based inventory method 
 
The process-based approach involves a detailed 
analysis and calculation of carbon emissions at 
various stages of the life cycle of a product or 
activity based on LCA. This approach requires 
carbon emission factors for each single type of 
material in the building and the corresponding 
quantities of these materials. This bottom-up 
analysis provides detailed insights by 
progressively calculating carbon emissions and 
assessing the contributions of each material and 
energy source [14] but its applicability may be 
limited by truncation errors and data scarcity. 
Therefore, this method is generally suitable when 

carbon inventory data is available for specific 
products and materials that are used in the 
building [19].  
Input-Output (IO) method 
 
The input-output approach integrates regional 
input-output tables with the environmental 
impacts of economic sectors, enabling the 
comprehensive assessment of carbon emissions 
across the entire supply chain [20]. Therefore, 
the method is more suitable for rapidly 
estimating carbon emissions in the building 
industry, but needs to link the monetary values 
with physical carbon emissions units [21]; while 
as reference [12] has indicated that there are 
some difficulties in the application of the method 
to an open economy with substantial non-
comparable imports. As a result, existing process-
based and input-output (IO) methods exhibited 
significant limitations in terms of completeness, 
reliability, and specificity when it comes to 
embodied carbon emissions [16].  
 
Hybrid Approach 
 
Alternatively, a hybrid approach technique has 
been proposed, which combines the strengths of 
both process-based and input-output methods. 
This approach involves utilising process data, 
where available and supplementing it with input-
output data to comprehensively assess the entire 
supply chain of a product [22]. While various 
types of hybrid methods have been proposed, 
they often require additional inputs and 
assumptions, which can result in unexpected 
uncertainties [23]. Also, the calculation using the 
hybrid method can be complicated and time-
consuming [18]. The use of digital technologies 
that can simplify the time taken to undertake life 
cycle assessments of buildings therefore 
continues to attract significant interest.  
 
2.3. Building information modelling and LCA 
 
The use of Building Information Modelling (BIM) 
in LCA has attracted research interest. A building 
information model (BIM), which is a digital data 
store that describes the geometry, material 
inventories, spatial linkages, and other pertinent 
details of buildings has also been applied to LCA. 
Several studies have stressed the potential of BIM 
to create a life cycle inventory (LCI) for LCA, and 
the significance of integrating BIM into LCA has 
grown [24]. To analyse the embodied carbon in 
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prefabricated buildings, [24] presented a BIM-
integrated LCA solution that achieved a 1% 
discrepancy with standard manual LCA methods 
and reduced modelling time, resulting in a 91.5% 
efficiency gain. To lower building carbon 
emissions, [10] investigated the integration of 
LCA and BIM, concentrating on sustainable 
materials such as rammed earth, which was 
found to have substantially fewer carbon 
footprints than standard materials. Research on 
the integration of BIM and LCA identifies 
adoption barriers and assesses different 
integration methodologies, but due to project-
specific requirements, agreement on the best 
methodology is still elusive and BIM models will 
not be available at the early phase of the design 
or may not exist for a building. Furthermore, as 
the dynamics between operational and embodied 
energy in buildings change, so does the 
significance of thorough Life Cycle Assessments 
(LCA) that consider the full life cycle of the 
building. This emphasises the potential for AI-
driven solutions to provide increased flexibility 
and efficiency in handling these complexities. To 
achieve this, a better understanding of the 
building parameters that have the most impact 
on carbon emissions is required.  
 
3. FACTORS INFLUENCING CARBON 

EMISSIONS FROM BUILDINGS 
 
The authors in [11] employed global sensitivity 
analysis to understand the relative importance of 
architectural design variables at the early design 
stages on embodied and operational carbon. They 
found that building compactness, frame material, 
lowering window-to-wall ratio (WWR), glazed 
windows, and mechanically ventilated systems 
with heat recovery were the most important 
measures for reducing embodied emissions and 
operational energy. However, [5] has indicated that 
increasing the window-to-wall ratio (WWR) has an 
advantage in reducing energy consumption and 
carbon emissions as the embodied energy and 
embodied carbon of window materials are lower 
than those of wall components. Sensitivity analysis 
was also performed by reference [25] which has 
indicated that parameters related to building shape 
and size have a greater impact on embodied energy 
and embodied carbon per square meter of building 
area compared to parameters associated with 
elements such as wall thickness, while glazing ratio 
is a non-influential factor in terms of embodied 
carbon in residential building in France. 

Moreover, [26] conducted a feature importance 
analysis on their optimal predictive model for 
embodied carbon, uncovering that the primary 
influencing factors during the preliminary 
design phase were material cost, steel use and 
concrete consumption. In addition, Elastic Net 
can perform variable selection, encouraging the 
model to choose a set of correlated features and 
reducing overfitting. Reference [27] used this 
method, and out of 17 design factors, 12 
variables were selected, including number of 
floors, building height, floor area, building 
volume, shape coefficient, body coefficient, 
building height, north-facing window-to-wall 
ratio, west and east-facing window-to-wall ratio, 
heat transfer coefficient of roof, heat transfer 
coefficient of external wall and heat transfer 
coefficient of glass.  
 
Table 1. Summary of key influencing factors in literature. 

Author Influencing Factors 

Gauch et al. 
(2023) [11]  

Building compactness, Frame type, 
Window glazing 

Lotteau et al. 
(2017) [25] 

Building shape, Building size 

Zhang et al. 
(2024) [26] 

Material cost, Steel consumption, 
Concrete consumption 

Xikai et al. 
(2019) [27] 

Number of storeys, Building Height, 
Floor area, Building volume, Shape 
coefficient, Body coefficient, Window-to-
Wall Ratio, Heat transfer coefficient of 
roof, External wall and Glass 

Zhu et al. 
(2022) [28] 

Building construction area, Indirect 
emissions intensity, Carbon emissions 
per unit energy consumed, Energy 
intensity, and Total factor productivity 

Victoria & 
Perera 

(2018) [29] 

Wall-to-floor ratio and the Number of 
basements 

 
Moreover, [28] also explored the factors 
influencing embodied carbon emissions in 
China and discovered that the building 
construction area, value of unit building area, 
indirect emissions intensity, carbon emissions 
per unit energy consumed, energy intensity, and 
total factor productivity in the building 
construction sector have significantly positive 
impacts. Reference [29] used multiple 
estimating methodologies and historical data 
from four sources to identify that the wall-to-
floor ratio and the number of basements were 
the identified factors when it comes to 
embodied carbon emission. Table 1 shows the 
influencing factors. 
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4. AI ACCELERATED CARBON ASSESSMENT 
 
The use of Artificial Intelligence (AI) techniques in 
buildings can help to reduce energy consumption 
by improving control, automation, and reliability. 
They can generate predictive data by analysing 
past data without considering the underlying 
process. The utilisation of deep learning 
techniques has led to the incorporation of a 
greater number of hidden layers in neural 
networks as [30] have indicated that this 
enhancement in architecture has resulted in 
improved computational efficiency, stability, and 
overall performance compared to traditional 
methods. Moreover, due to its considerable 
potential at every stage of the building lifecycle, 
artificial intelligence is gaining prominence in the 
construction sector. This development is 
consistent with more general patterns of 
technology progress and real-world application in 
the context of the construction sector [31]. 
Besides, there are some researchers already 
performed carbon emission by using machine 
learning algorithms. For example, [19] developed 
a linear fitting regression with a process-based 
inventory analysis for embodied carbon emissions 
during the scheme design stage to facilitate the 
reduction of emissions and enable low-carbon 
design using various building materials and 
structural forms. In addition to that the carbon 
emission figures of 207 residential buildings in 
Tianjin, China were calculated using the process 
analysis method, followed by correlation analysis 
and elastic net techniques to identify 12 key design 
factors for a predictive regression model 
incorporating PCR, RF, MLP, and SVR techniques. 
SVR has demonstrated the highest predictive 
accuracy among the four models, effectively 
estimating carbon emission for early stage of the 
decision-making process [27].  
 
In other cases, [32] developed the RF-based 
model showcased a more precise prediction of 
construction-stage carbon emissions, boasting a 
lower mean square error (0.7649) and an R2 
value of 0.6403. This model utilised data from 38 
buildings and considered six influential design 
parameters: foundation area, above-ground 
area, underground area, building height, 
number of above-ground floors, and basement 
depth. The optimal RF model further revealed 
the significant impact of the foundation area, 
underground area, and building height on 
construction-stage carbon emissions. 

It is intriguing that the choice of input features 
impacts the suitability of machine learning methods 
and the resulting outcomes. For instance, in the 
research done by [26], models relying solely on a 
single building height feature yielded inadequate 
estimates with R2 values below 0.4 for embodied 
carbon prediction. However, a combination of 
features including building height, structural form, 
seismic fortification intensity, delivery type, 
geographical region, and material cost proved more 
effective when employing extremely randomized 
trees with R2 and MAPE values of 0.821 and 0.054, 
respectively. However, if considering more features, 
prefabrication technique, consumption of steel, 
concrete, and brick and block, the optimal algorithm 
is the XGB algorithm instead, achieving R2 and 
MAPE values of 0.917 and 0.038, respectively, on the 
testing dataset. 
 
[33] developed a machine learning model to predict 
operational carbon emissions. The model evaluated 
five primary energy sources: space cooling, space 
heating, hot water, cooking, and home appliances. It 
considered the temporal fluctuations in occupant 
profiles, behaviours, and the carbon intensity of 
energy. In another study conducted by [30] used 
artificial intelligence, more precisely a long short-
term memory (LSTM) model, to forecast energy 
consumption and operational CO₂ emissions. Both 
studies focus exclusively on operational CO₂ 
emissions, addressing the carbon footprint resulting 
from the day-to-day functioning of buildings, rather 
than the embodied carbon associated with 
construction materials and processes. Nevertheless, 
[34] has indicated that to successfully fulfil the 
objective of “low-carbon buildings” through energy 
conservation and emission reduction, it is crucial to 
managing building carbon emissions throughout 
the design phase because the design process is 
responsible for eighty percent of the decisions about 
building carbon emissions. Consequently, once a 
building enters the construction stage, it becomes 
challenging to meet additional energy conservation 
and emission reduction targets. As a result, to 
address issues in early-stage design, [29] used 
regression analysis to establish a parametric 
embodied carbon prediction model for office 
buildings in the UK and found that the wall-to-floor 
ratio and the number of basements were identified 
as predictors. [1] has employed advanced machine 
learning methods, such as Artificial Neural 
Networks (ANN), Support Vector Regression (SVR), 
and XGBoost to create a predictive tool that can be 
used throughout the design phase.  
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Table 2. Summary of AI methods from literature. 

Author 
AI Methods 

used 
Variables Materials 

Embodied Operational 
Multi-

Objective 
Optimisation 

EC OC MOO 

Su et al. 
(2024) 

[1] 

ANN, SVR 
XGBOOST 

Number of floors, basements, 
Building area, type of 

foundation, thickness of floor, 
wall, type of formwork, 

prefabrication rate 

Concrete, 
Gravel, Brick, 
Water, Steel, 

Wood, 
Electricity 

x x 

  

Su et al. 
(2023) 

[33] 

DT, RF, 
Polynomial 
Regression 

Space cooling, heating N/A 
  

x 
  

Pomponi 
et al. 

(2021) 
[35] 

ANN, RF, 
SVM 

Building structure. 

Reinforced 
Concrete, Steel 

frames, and 
Engineered 

timber. 

x 

    

Victoria 
et al 

(2018) 
[29] 

Regression Wall to floor ratio, basement. N/A x 

    

Chen et al 
(2021) 

[30] 
LSTM 

Occupant density, size of the 
office. 

N/A 
  

x 
  

Xikai, M. 
et al. 

(2019) 
[27] 

PCR, RF, 
MLP, SVR 

Number of storeys, Building 
Height, Floor area, Building 
volume, Shape coefficient, 

Body coefficient, Window-to-
Wall Ratio, Heat transfer 

coefficient of roof, External 
wall and Glass. 

Concrete, 
steel. Mortar, 

Block, 
Insulation, 

Glass, 
Electricity. 

 

x 

 

Cang et 
al. (2020) 

[19]  

Linear fitting 
analysis 

Number of storeys, building 
structures. 

Steel, wall 
materials, 

mortar, and 
concrete. 

x 

  

Fang et 
al. (2021) 

[32]  

RRF, NSGA-II, 
NSGA-III, C-

TAEA 

Foundation area, above-ground 
area, underground area, 

building height, number of 
above-ground floors, and 

basement depth. 

N/A x 

 

x 

Zhang et 
al (2024) 

[26] 

XGB, Random 
Forest 

Building height, structural 
form, seismic fortification 

intensity, delivery type, 
geographical region, material 

cost, prefabrication technique, 
consumption of steel, concrete, 

and brick and block, 

Prefabrication, 
steel, 

concrete, brick 
and block. 

x 

  

Kamazani 
and Dixit 
(2023) 

[5] 

Non-
dominated 

sorting 
genetic 

algorithm 
with AI Fuzzy 

logic 

Building orientation, window-
to-wall ratio, window 
construction, and wall 

construction. 

N/A 

    

x 

Ascione 
et al. 

(2019) 
[36] 

Genetic 
Algorithm 

Building geometry, envelope, 
systems, and cost 

considerations. 
N/A 

    

x 
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Their tool is specifically developed to streamline 
the process of measuring carbon emissions, assist 
in optimising design choices, and assist in making 
informed decisions within the building industry. 
Although the prediction tool performs well, the 
dataset used in the study is restricted to only 70 
project samples from the Yangtze River Delta 
region, which could potentially impact the 
accuracy and generalisability of the model.  
 
To predict embodied carbon emissions in 
building structures during the design process, the 
study conducted by [35] offered a real-time 
decision-support tool that makes use of machine 
learning algorithms, such as Artificial Neural 
Networks (ANN).  
 
The tool's ability to produce precise estimates is 
demonstrated by validating it against commercial 
finite element analysis (FEA) software.  
 
In summary, there is a growing trend in the field 
of AI-driven building management to consider a 
building's whole-life carbon footprint, even if 
most of the research in this area concentrates on 
operational or embodied carbon emissions. To 
address the entire environmental impact of 
building development and operation, a 
comprehensive approach is necessary. 
 
4.1. Multi-objective optimisation 
 
In traditional optimisation problems, there is 
usually only one objective function that needs to 
be maximised or minimised. However, in the real 
world, there are often multiple goals to consider, 
which may conflict with each other. Multi-
objective optimisation (MOO) is a process that 
can simultaneously optimise multiple conflicting 
objectives. The goal of MOO is to find a set of 
solutions that represent a compromise between 
these conflicting goals, called Pareto optimal 
solutions. The reason these solutions are 
considered optimal is that it is impossible to 
improve one goal without worsening at least 
another goal. Another advantage of the MOO 
algorithm is that it provides decision-makers 
with a series of optimal solutions in the decision-
making process.  
 
For example, [5] used the MOO method to reduce 
carbon emissions. It involved a three-step 
iteration process: inputting design variables 
through the NSGA-II (Non-dominated sorting 

genetic algorithm), conducting simulations with 
Energy Plus, and analysing data to compute 
overall material quantity. Following iteration 
across these components, a fuzzy decision-
making method was employed to select the best 
solution from the Pareto front solutions. The 
variables considered primarily encompass 
building orientation, window-to-wall ratio, 
window construction, and wall construction. On 
the other hand, the [32] used NSGA-II, NSGA-III 
and C-TAEA MOO algorithms for optimising the 
building performance optimisation and the 
convergence degree of C-TAEA was better than 
NSGA-II and NSGA-III in the study. In addition to 
that, the research conducted by [36] introduced 
to optimise design variables covering building 
geometry, envelope, systems, and cost 
considerations, aiming for optimal solutions. This 
involved utilising a genetic algorithm (GA) to 
achieve Pareto optimisation of the building 
envelope, geometry, and HVAC operation. 
Subsequently, a smart exhaustive sampling of 
design scenarios was conducted, with a 
particular focus on identifying optimal energy 
systems. Ultimately, the study provided 
recommended design solutions tailored to the 
specific needs of designers. 
 
Through the aforementioned related work, it is 
evident that there is a lack of generic, systematic 
and comprehensive framework to use AI to 
evaluate WLC of projects. Consequently, our 
objective is to develop a deep learning AI model as 
comprehensive framework that leverages 
historical data from completed projects. By 
integrating deep learning AI technology and its 
applications, this work aims to create a robust 
decision-support tool that fosters sustainability in 
the construction process from the initial design 
stage. By rapidly providing valuable insights, this 
approach not only streamlines user input time and 
enhances the user experience but also advances 
the construction industry and facilitates the 
development of low-carbon buildings 
 
5. INTEGRATING AI INTO AN EXISTING 

WHOLE LIFE CARBON ASSESSMENT 
SOFTWARE  

 
Morgan Sindall, a top-3 UK construction 
organisation, has developed CarboniCa software 
as a carbon reduction tool for use across their 
projects. The web-based CarboniCa software, 
which is compliant with the RICS professional 
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standard for whole-life carbon assessment for the 
built environment and EN15978 has now been 
used for assessments of over 50 building projects, 
annually contributing to over 14,500 tonnes of 
carbon savings. This tool calculates embodied 
carbon using the preprocess-based inventory 
method whereby material quantities from a bill 
of quantities (BOQ) or cost plan are manually 
entered into the software. These quantities are 
entered for the various elements in the design, 
and the elemental breakdown in the CarboniCa 
software follows the 4th Edition of the BCIS 
Elemental Standard Form of Cost Analysis. The 
software has a verified and validated carbon 
factor database covering all the various materials 
in buildings they construct. Carbonica also has a 
carbon factor database that is manually verified 
and updated periodically, which is used to 
calculate the embodied carbon. To calculate 
operational carbon, benchmarked outputs based 
on building type for both regulated and 
unregulated loads are used in the calculation 
where the energy model has not been performed 
for the design. Where there is an energy model 
exists for the building, the energy outputs are 
manually entered into the CarboniCa software to 
calculate the operational carbon. The output 
report from CarboniCa comprises a breakdown of 
the embodied carbon at practical completion (PC-
CO2e), embodied carbon over the life cycle of the 
building (LC-CO2e) and the whole life carbon 

(WL-CO2e), with accompanying graphs showing 
the breakdown per building element. These 
outputs are compared to the client's lifecycle 
embodied carbon target. The carbon and energy 
budgets are also compared against industry 
baselines e.g., London Energy Transformation 
Initiative (LETI) and Royal Institute of British 
Architects (RIBA) targets, which are industry-
recognised benchmarks. As a carbon reduction 
tool, the CarboniCa software also has a database 
of design recommendations that generate 
specific recommendations for improving carbon 
savings based on the initial analysis.  
 
To reduce the time that it takes to enter building 
quantities data into the CarboniCa software, a 
novel conceptual approach has been proposed to 
develop a predictive benchmark model for 
CarboniCa using AI-fuzzy logic and deep learning. 
The AI model will be trained using previous 
project data and the experience gathered from 
experts so that it can predict and input material 
quantities for a new building under design into 
the CarboniCa software using building general 
features and parameters. Building features and 
parameters for a new design can then be rapidly 
entered into the predictive benchmark model to 
generate and input estimated material quantities 
that will be fed directly into CarboniCa to produce 
an embodied carbon output for the building as 
illustrated in Figure 2. 

 
Fig. 2. Conceptual diagram of integrating AI into Carbonica. 

 

Fuzzy-logic techniques will also be used to 
develop a multi-objective optimisation model 
using embodied carbon, cost, order time and 
installation time as criteria to enhance the design 

recommendations that are provided to CarboniCa 
software users (Figure 2-g,h,i). The proposed 
conceptual model is currently being 
operationalised for testing and validation using 
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available industry benchmark data as part of a 
research project. This AI integration into the 
CarboniCa software will potentially generate 
productivity savings by reducing the time taken 
to enter and check user inputs when performing 
carbon assessments of buildings under design. 
The AI capability will also enhance the carbon 
reduction potential of the software as part of the 
multi-objective optimisation model that is being 
developed.  
 
6. METHODOLOGY 
 
As previously mentioned, the data was collected 
from previous construction projects. Data pre-
processing involved several steps, including data 
cleaning, outlier removal, formatting of categorical 
and numerical variables, handling missing values, 
feature encoding, and data augmentation (Figure 2-
a,b and c). Given that there are just over 50 large 
new-build projects, a systematic data augmentation 
technique was employed to enhance the robustness 
and size of the training datasets. In addition to the 
original training samples, new data points were 
generated by introducing small incremental 
random variations to the actual values, thereby 
expanding the dataset to help generalisation and 
reduce AI overfitting. In terms of feature encoding, 
it was essential to transform categorical variables 
into a format suitable for deep learning. For feature 
selection, the Elastic Net method was utilised, as it 

is well-suited for continuous target variables and 
can effectively handle feature sets comprising both 
numerical and categorical variables. 
 
The results of feature selection using Elastic Net, 
see Figure 3, reveal the relative importance of 
different building attributes. The size and value of 
the building emerge as the most critical 
predictive factors. Notably, gross internal area 
(GIA) and net internal area (NIA) exhibit the 
strongest positive influence, suggesting that 
building size is a primary determinant in 
predicting the target variable. Following closely, 
asset value and the number of floors also 
demonstrate significant positive impacts. These 
findings align with previous research that has 
identified these factors as key indicators in 
carbon prediction ([1], [18], [25], [27], [32]). 
 
Finally, an expert knowledge approach was 
incorporated into the feature selection process, 
allowing domain expertise to guide the 
identification of relevant features based on both 
theoretical understanding and practical experience. 
This comprehensive strategy ensured a well-
rounded selection of features that enhance model 
performance. Consequently, the features selected 
for this regression task are gross internal area 
(GIA), net internal area (NIA), number of storeys, 
building cost (asset value), building type, and 
cooling, heating, and ventilation systems. 

 
Fig. 3. Building’s feature selection for the AI model. 

 

0.8669

2.2073
2.1286

0.4651

1.0667

1.8039

0.3197

-0.1451

0.3611

0.1193

-0.1384

-0.1489

-0.272

0.2146
0.3643

-0.0647

-0.0018

-0.5881-0.531

0.51
0.4245

0.847

0.5014
0.6

0.42

-1

-0.5

0

0.5

1

1.5

2

2.5

Result of Elastic Net for Feature Selection 

Building type GIA NIA

Asset Type Storeys Asset Value(£million)

Foundation Type - Primary Foundation Type - Secondary Ground floor type - Primary

Ground floor type - Secondary Vertical structural element - Primary Vertical structural element - Secondary

Horizontal structural element - Primary Horizontal structural element - Secondary Floor slab type - Primary

Floor slab type - Secondary Cladding type - Primary Cladding type - Secondary

Finishes type - Primary Heating Type - Primary Heating Type - Secondary

Cooling Type - Primary Cooling Type - Secondary Ventilation Type - Primary

Ventilation Type - Secondary

F
e
a
tu

re
 R

e
la

ti
ve

 S
e
n

s
it

iv
it

y



Amin Al-Habaibeh et al., Energy Catalyst Vol. 01 (2025) 54-67 

 

 64 

6.1. Architecture of the neural network 
 
MATLAB software is utilised in this paper to 
develop and train the AI model. Model training 
is a crucial step in constructing any predictive 
model, particularly when employing neural 
networks, given their capacity to capture 
complex patterns and relationships within the 
data. Neural networks were selected for this 
task due to their flexibility and effectiveness in 
modelling non-linear relationships, particularly 
in cases where input-output mappings are 
intricate and multi-dimensional. 
 

MATLAB provides various types of neural 
networks, among which Fitnet, Feedforwardnet, 
and Cascadeforwardnet are particularly well-suited 
for regression tasks. In terms of training algorithms, 
MATLAB offers trainlm, trainscg, trainbr, traingdx, 
and trainrp, among others. The transfer functions 
will alternate between logsig, tansig, and purelin, 
while the output layer will alternate between tansig 
and purelin. Furthermore, a three-layer hidden 
structure will be implemented, with each layer 
initially containing 3 to 9 neurons to evaluate the 
most suitable neural network configuration for the 
task. Figure 4 illustrates the architecture of the 
neural network. 

 

 
Fig. 4. The architecture of the tested neural networks. 

 
7. IMPLEMENTATION AND RESULTS 
 
To determine the optimal configuration for 
achieving the best results, a for-loop was 
implemented to iterate through all transfer 
functions, training algorithms, and neural networks 
with 3 to 9 neurons. The results are presented in 
Table 3. This table summarises the performance of 
various training algorithms and neural networks 
using different transfer functions, evaluated based 
on MAPE and R² values. The five training 
algorithms considered are trainlm, trainscg, 
trainbr, traingdx, and trainrp. Each algorithm was 
tested across three types of neural networks: Fitnet, 
Cascadenet, and Feedforwardnet. In all cases, 70% 
of the data was randomly used for training and 30% 
was used for testing the neural networks. 
 
Under the trainlm algorithm, the neural networks 
demonstrate relatively low MAPE differences 
(ranging from 0.27% to 0.37%) alongside high R² 
values (0.83 to 0.87), indicating strong 
performance. In contrast, trainscg exhibits higher 
MAPE differences (0.47% to 0.83%) and lower R² 

values (0.72 to 0.79), making it slightly less 
effective than trainlm. 
 
Table 3. The performance of different Neural Networks. 

Algorithm Neural Network 
MAPE 
(%) 

R² 

trainlm 

Fitnet 0.27 0.86 

Cascadeforwardnet 0.36 0.83 

Feedforwardnet 0.27 0.87 

trainscg 

Fitnet 0.47 0.76 

Cascadeforwardnet 0.83 0.72 

Feedforwardnet 0.52 0.79 

trainbr 

Fitnet 0.31 0.86 

Cascadeforwardnet 0.39 0.81 

Feedforwardnet 0.32 0.82 

traingdx 

Fitnet 0.85 0.74 

Cascadeforwardnet 111.2 0.69 

Feedforwardnet 102.99 0.76 

trainrp 

Fitnet 0.58 0.79 

Cascadeforwardnet 0.74 0.71 

Feedforwardnet 0.6 0.81 
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The results for trainbr are also favourable, with 
a MAPE difference of approximately 0.3% and 
R² values between 0.80 and 0.86. The traingdx 
algorithm, however, performed poorly, 
particularly with Cascadenet and 
Feedforwardnet networks, showing MAPE 
differences of 111.2% and 102.99%, 
respectively, and lower R² values (0.69 to 0.76), 
indicating significant performance issues. 
Lastly, trainrp falls in the mid-range, with 
MAPE differences between 0.58% and 0.74% 
and R² values from 0.71 to 0.81, offering 
acceptable performance but not reaching the 
standards of trainlm and trainbr.  
 
performance issues. Lastly, trainrp falls in the 
mid-range, with MAPE differences between 
0.58% and 0.74% and R² values from 0.71 to 
0.81, offering acceptable performance but not 
reaching the standards of trainlm and trainbr. 
 
In summary, while trainlm and trainbr emerged 
as the best-performing algorithms, achieving 
lower MAPE and higher R² values, trainlm 
stands out for its speed advantage due to its 
ability to dynamically adjust parameters, 
modify weights, and accelerate convergence, 
thereby enhancing the efficiency of each 
iteration. Conversely, traingdx performed 
notably poorly, particularly in the 
cascadeforwardnet and Feedforwardnet 
models. 
 
As a result, the optimal neural network 
architecture is presented in Figure 5. A 
feedforward neural network model has been 
identified as the most suitable for this study in 
predicting the desired outcomes. The model 
consists of an input layer corresponding to the 
input features and an output layer that 
generates predictions. The architecture 
includes three hidden layers, with neuron 
configurations optimised through 
experimentation. 
 
The hidden layers are implemented using the 
hyperbolic tangent sigmoid activation function, 
‘tansig’, while the output layer employs the 
linear activation function, ‘purelin’. This 
configuration enables the hidden layers to 
capture complex non-linear relationships 
within the data while ensuring that the output 
layer can effectively model continuous values, 
which is also essential for regression tasks. 

 
Fig. 3. The selected neural network for Whole Life 
Carbon (WLC) prediction. 

 
8. CONCLUSION  
 
This study has reviewed the literature on LCA and 
WLCA in the built environment, identifying 
challenges related to data variability, sufficiency, 
completeness, reliability, and the time-
consuming nature of assessments at the building 
scale. Despite the use of digital tools such as BIM 
in LCA, the integration of AI into carbon 
assessments throughout a building’s lifecycle has 
been discussed, including the building factors 
that influence these emissions. The insights from 
this review have informed the development of a 
novel conceptual approach for integrating AI into 
an existing in-house carbon reduction software 
used by a major UK contractor. The proposed AI 
integration approach is under development at the 
time of writing this paper, with the next phase 
being industrial testing and validation of the 
model's efficacy using circa 100 projects. It is 
anticipated that the AI engine will offer an option 
within the CarboniCa software environment to 
rapidly assess whole life carbon emission, 
leveraging learning from past projects. While the 
dataset includes over 50 recent projects, 
generalisability issues may arise in the future and 
hence the plan is to expand the number of 
projects to enhance the generalisation with any 
future project variations.  
 
Looking ahead, the integration of multi-objective 
optimisation using fuzzy logic for alternative 
material recommendation will enhance the 
carbon reduction potential of the software by 
providing dynamic, responsive design 
recommendations that consider carbon, time, 
and cost. This will enable data-driven decision-
making that maximises quality and speed by 
harnessing past project data. A broader 
implication of this study is that further research 
to develop, test, and integrate the proposed AI 
model into the CarboniCa software will provide 
practical use cases for AI adoption in the 
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construction sector. This could serve as a solution 
for improving the sustainability performance of 
construction projects, contributing to net-zero 
ambitions. However, there is still room for 
experimentation, as certain factors such as soil 
type, region, WWR or local economic conditions 
are still to be explored in future studies 
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