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Abstract 

The dynamic fluctuations in the amplitude of sound, known as sound envelopes, are 

ubiquitous in natural sounds and convey information critical for the recognition of 

speech, and of sounds generally. We are perceptually most sensitive to slow mod-

ulations which are most common. However, previous studies of envelope coding in 

the brainstem found an under-representation of these slow, low-frequency, modula-

tions. Specifically, the synchronization of spike times to the envelope was enhanced 

in some neuron types, forming channels specialized for envelope processing but 

tuned to a restricted range of fast, high-frequency, envelopes (200–500 Hz). Here, we 

show using a historical dataset from cats that previous analyses, which made strong 

assumptions about the neural code, underestimated the encoding of low-frequency 

envelopes. While some neurons encode envelope better than others, most encode 

a wide range of envelope frequencies, and represent slower envelope fluctuations 

most accurately in their precise patterns of spike times. Identification of envelope 

frequency from spike-timing was linked to reliability, and to the way that dynamics of 

spiking interacted with the time-varying envelope. In some of the best- 

performing neurons, temporally complex “mode-locked” spike patterns served to 

enhance envelope coding. A second long-standing contradiction was that neural 

envelope coding is degraded at high sound levels, whilst the perception of envelope 

is robust at a wide range of sound levels. We find that spike-time encoding of enve-

lope shape becomes level-robust for small populations of neurons. These findings 

argue against feature-specific coding of envelopes in the brainstem, and for a dis-

tributed population spike-time code for which synchrony to the envelope is an incom-

plete description. This code is accurate for slow fluctuations and robust across sound 
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level. Thus, precise spike-timing information in the brainstem is after-all aligned with 

the needs of communication and the perception of environmental sounds.

Introduction

Our senses are confronted with dynamic physical signals that fluctuate over time. For 
sound, envelope fluctuations in different frequency bands carry most of the informa-
tion required to recognize speech [1,2] and natural sounds [3]. In the early stages 
of the auditory system, envelopes of up to hundreds of cycles per second are rep-
resented in the precise timing of spikes [4–6]. As the auditory pathway is ascended, 
spike timing becomes restricted to encoding slower (a few 10 s of cycles per second) 
fluctuations [7–10], and firing rate codes [11] emerge, a transformation mirrored in 
other sensory systems [12]. Understanding how this chain of processing serves our 
perception of sound envelopes is key to understanding how we recognize speech 
and other complex sounds.

Here, we address two long-standing problems with our understanding of the low-
level processing of envelopes in the brainstem. Neurons in the cochlear nucleus (CN) 
are the sole targets of the cochlear nerve fibers, and are the only neurons directly 
affected by cochlear hearing loss. Understanding how CN neurons represent and 
process the features in speech and environmental sounds may be critical in under-
standing the communication problems associated with poor hearing.

The temporal coding of sound envelope undergoes considerable transformation 
in the CN neurons which receive direct input from the cochlea. Cochlear nucleus 
neurons fire in synchrony with the envelope peaks, but different neuron types vary in 
their precision [5,13]. One sub-population of neurons appears specialized for envelope 
coding: regular-spiking “chopper” neurons [6,14] synchronize preferentially to specific 
modulation frequencies, and with a precision that exceeds their input nerve fibers 
[5,6]. Different chopper neurons most accurately synchronize to different envelope fre-
quencies, ostensibly establishing channels which are specialized to encode different 
features of the envelope. This coding is transmitted directly to the midbrain (the inferior 
colliculus; IC), where among other transformations, a firing-rate tuning to modulation 
frequency emerges [15], though it remains a substantial challenge to understand how 
these transformations ultimately support robust coding of envelopes [16].

However, numerous discrepancies cast doubt on this account of envelope  
processing in the brainstem. Speech and natural sounds are dominated by low- 
frequency modulations down to a few cycles per second [3,17], whereas synchro-
nized firing in chopper neurons is tuned to higher envelope modulation frequencies of 
200–500 cycles per second. Such high-frequency tuning suggests chopper neurons 
are mainly suited to processing high-frequency modulations, which contribute weakly 
to our perception of pitch, but not the low-frequency modulations essential for com-
munication. In addition, CN modulation tuning does not match the tuning observed in 
the IC [18], implying that modulation tuning at the next level is not inherited from the 
CN in any simple way. Other CN neuron types do show low-pass modulation tuning, 
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but are overall less sensitive to envelope modulations [5,14], or are too broadly tuned to carrier frequency [19] to repre-
sent envelopes in the narrow frequency bands required to recognize speech [1,2]. In addition, in all CN neuron types, the 
precision of neural synchronization to the envelope decreases with increasing sound level, whereas human psychophys-
ical performance is largely unaffected [20] or improves [21–23] with increases in level. Thus, although the importance 
of spike-timing is clear, exactly how this spike-timing supports the perception of ecologically important signals remains 
substantially unexplained. Inevitably, this gap in knowledge also limits our understanding of how cochlear hearing loss 
impacts on neural coding in the circuits which receive input directly from the cochlea.

We hypothesized that our understanding of the neural code for envelope in the CN may be incorrect, because key 
properties of the spike-timing have been overlooked. Neurophysiological studies of envelope coding often quantify the 
synchrony of spike timing to the modulation frequency: phase-locking [24]. This focus on phase-locking ignores any infor-
mation that is not encoded as a preference to fire around a single phase of the envelope. Non-linear dynamics inherent 
in neurons [25,26] can interact with the dynamics of the input [27] resulting in neurons showing diverse, but precise and 
repeatable, spike-timing patterns to a given dynamic stimulus: “mode-locking”. In particular, chopper neurons are known 
to mode-lock to periodic envelope modulations [28], potentially conveying information not captured by phase-locking 
analysis. More generally, a great diversity of spike timing is observed in CN neurons [19,28–30]. Yet, the functional value 
of different modes of spike-timing is not known.

Here, we investigated what these spiking patterns mean for the coding of sound envelope. Using a spike-timing met-
ric, which is sensitive to any reliable differences in spike timing, we find that the representation of modulations in a large 
dataset of CN neurons [6,31] remains precise at low modulation frequencies, and small ensembles of neurons provide 
robustness to sound level. Our results argue against the existence of channels which encode different envelope frequen-
cies and in favor of a level-robust distributed temporal code. Such coding is more consistent with our perception and the 
preponderance of low-frequency envelopes in natural sounds.

Results

We analyzed the responses of 336 neurons from previously published data [6,31], located throughout the CN, but mainly 
in the anteroventral and posteroventral parts of the CN of the cat (see Materials and methods), and with Characteristic 
Frequencies above 3 kHz where spike timing is determined by the envelope and not by temporal fine structure. Using 
standard classification based on the responses to unmodulated (pure) tones [32–35] the dataset was divided into 6 neu-
ron response types (see Materials and methods): sustained chopper (ChS), transient chopper (ChT), primary-like (PL), 
primary-like notch (PLN), and a smaller sample of pause/build-up (PBU) from the dorsal region of CN, and onset (On) 
units.

The responses to tones that were sinusoidally amplitude-modulated (AM) at different modulation frequencies (fmod) were 
analyzed. Except where stated we present data where the amplitude of the tone is reduced to zero in between the peaks 
(100% modulation). The temporal aspects of the discharge patterns were originally summarized using the vector strength 
(VS) metric [24] (see Materials and methods) and fully reported elsewhere [6]. Here, we use an alternative method to 
quantify the fidelity with which the frequency of the AM stimulus envelope was encoded in spike times. Our approach 
makes fewer assumptions about the way that information is encoded in spike timing than Vector Strength. Vector Strength 
assumes that all the information about envelope frequency is encoded by a neuron’s preference to fire around a single 
phase of the envelope period. For example, if a neuron fires precisely at two different phases during the period of an 
envelope modulation, VS will be lower than if the neuron only fired at one of those phases [see Laudanski and colleagues 
(2010a)]. In principle both modes are equally valid ways to encode the signal. A spike train classification algorithm (Fig 
1) was used to classify each spike train according to envelope frequency, by measuring its similarity to every other spike 
train in the dataset [36] (see Materials and methods). The timing of spikes from responses to the same stimulus (Fig 1, 
top left) tends to be more similar than those from different stimuli (Fig 1, lower left). This classification process compares 
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differences in absolute spike time, was naïve to the stimulus modulation frequency, and was sensitive to any differences in 
the timing of spikes across individual spike trains.

Fig 2 shows an example of a ChS neuron, a sub-type associated with enhanced envelope coding, with spike timing 
that is selective for specific modulation frequencies. The ChS neuron displays a regular ‘chopping’ response to a 
pure tone, as shown in Fig 2a. Fig 2b shows the confusion matrix (with errors represented by non-zero off-diagonal 
elements) for the output from the spike train classifier applied to this ChS neuron. The confusion matrix is derived 
from the similarity matrix in Fig 1, which quantifies the differences between all pairs of spike trains. The degree to 
which each modulation frequency could be identified was summarized using a logistic softmax model [37] which 
yielded a metric, c′, for each modulation frequency in a given dataset, yielding a modulation transfer function (MTF-
c′) summarizing classification performance across modulation frequency. The classification metric, c′, quantifies how 
well modulation frequency can be identified from a set of spike trains where modulation frequency is varying, in a 
manner which is robust to biases in classifier choice (see Materials and methods and Fig A in S1 Text). The c′ metric 
is also less affected by the number of modulation frequencies tested than raw measures of choice probability. The 
responses of this ChS neuron were sufficient to identify the modulation frequencies below 400 Hz with almost perfect 
accuracy (the blue line in Fig 2c). A peak c′ value of 8 is the maximum possible in the analysis (corresponding to 
~98% correct for a set of 35 different modulation frequencies). This descends to close to zero above 600 Hz, which 
corresponds to chance performance.

Fig 1. Quantifying differences between spike trains for a single neuron.  Spike trains (times indicated by gray dots) are filtered by an alpha function 
(gray lines), and all pairs of spike trains across all stimulus conditions are compared by computing the squared difference between pairs (red lines) 
and summing across time. Spike trains from the same stimulus conditions (top-left) are typically more similar, leading to smaller distances than pairs 
from different stimulus conditions (bottom-left). Computed across all spike trains, this yields a matrix of all distances (right). For a given modulation 
frequency = ω, classification performance is measured by selecting a spike train at random and comparing it with a random spike train for all stimulus 
conditions (omitting the selected spike train). The pair with the minimum distance is then chosen by the classifier. The example distance matrix is for the 
neuron in Fig 2. Warmer colors indicate larger differences between spike-train pairs.

https://doi.org/10.1371/journal.pbio.3003213.g001

https://doi.org/10.1371/journal.pbio.3003213.g001
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Fig 3 shows an example of an irregularly-firing PL neuron, a sub-type which is not considered to be specialized for 
modulation coding. The PL neuron did not demonstrate the regular chopping observed in the pure-tone response of the 
ChS; its pure-tone response (Fig 3a) resembled that of auditory nerve fibers. This neuron showed some capacity to clas-
sify the lowest modulation frequencies (Fig 3b, 3c), and was therefore technically low-pass in its modulation tuning. How-
ever, in contrast to the ChS neuron, the PL neuron exhibited poor overall identification of modulation frequency (the peak 
c′ of ~2 corresponds to ~25% correct, and drops to close to zero for most modulation frequencies; Fig 3b, 3c), reflecting 
the trial-to-trial variability of spike timing (Fig 3d). This example neuron also shows a clear tendency to choose certain 
modulation frequencies irrespective of which one was presented. The softmax analysis factors this “bias” out, whereas the 
raw probability of choosing a given stimulus when it is presented (hit-rate or recall) would have led to the impression that 
identification was above chance for all modulation frequencies tested (Fig Ab in S1 Text).

The classifier performance was quite different to the Vector Strength metric (VS:24), which has been previously used to 
quantify the preference of a neuron to fire at a particular phase of a modulation envelope (phase-locking). VS-based mod-
ulation transfer functions (MTF-VS) were a poor predictor of classification performance in either of the example neurons 

Fig 2. Regular spiking neuron (sustained chopper) that exhibits accurate identification of envelope frequency from its spike trains.  a. PSTH 
of the response to a pure tone at the characteristic frequency of the neuron. b. Spike train classifier decisions represented as a confusion matrix. Warm 
colors along the diagonal indicate a large proportion of individual spike trains were assigned to the correct modulation frequency. c. Classification perfor-
mance, expressed as c′ (c-prime; blue), has a low-pass shape across modulation frequency. Vector strength (black) displays a band-pass shape across 
modulation frequency, characteristic of this neuron type. Red line indicates the c′ for a simulated “control” neuron which has the same VS as the neuron, 
but which behaves like a modulated Poisson process (see text). d. Raster plots of the responses to amplitude-modulated tones, for several modulation 
frequencies (stimulus waveforms displayed above each panel). The number of spikes in each stimulus period decreases as the modulation frequency 
is increased. e. Period histograms, folded across stimulus periods, indicate reliable firing at certain phases of the stimulus cycle. Red lines indicate the 
period histogram for the simulated control neuron.

https://doi.org/10.1371/journal.pbio.3003213.g002

https://doi.org/10.1371/journal.pbio.3003213.g002
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(black lines in Figs 2c, 3c show VS). In the PL neuron, spikes occurred at a broad range of phases at a given modulation 
frequency (VS ~0.5, Fig 3c, 3e) resembling the envelope shape. Yet this neuron performed close to chance (c′ = 0) at 
modulation frequency identification. For the ChS neuron, VS was a band-pass function of modulation frequency with a 
peak near 400 Hz (Fig 2c)—consistent with previous reports. This VS peak corresponds to around 1 spike per stimulus 
period. However, the modulation frequency with peak VS did not correspond to the frequency of the maximum classifier 
performance (Fig 2c), which was flat below 400 Hz, and still maximal for the lowest frequency tested (25 Hz). The rea-
son for the difference between measurements for this neuron is that the classifier is sensitive to any reliable difference 
in the spike trains across modulation frequency. At low modulation frequencies the ChS neuron fired reliably at multiple 
spikes per envelope period (Fig 2d, 2e): mode-locking. This reliable timing results in very similar spike trains in response 
to a given stimulus, even though the overall spread of these spikes across the modulation period limits the values of VS. 
Vector strength has a theoretical maximal value of 1 when a neuron fires at a single preferred phase. If the neuron fires at 
multiple phases in the modulation cycle, then VS < 1 even if the timing is extremely reliable (in Fig 2, VS ~ 0.64 below 200 
Hz).

The classifier reveals that there is useful information about low modulation frequencies in the spike timing of the ChS 
neuron, to which VS is less sensitive. To quantify the value of this spike-timing information relative to phase-locking, we 

Fig 3. Phasic spiking neuron (primary-like) that displays a preferred phase but little or no additional temporal structure and exhibits poor 
identification of envelope frequency from its spike trains.  a. PSTH of response to a characteristic frequency pure tone. b. Spike train classifier 
performance is poor compared to the regular spiking neuron in Fig 2. c. Vector strength is a low-pass function of modulation frequency, characteristic of 
phasic spiking neurons. c′ is close to chance for most modulation frequencies, indicating poor classification performance. d. Raster plots show that the 
spike timing is markedly less reliable than the sustained chopper neuron example (Fig 2). e. Period histograms show a single broad peak at each fre-
quency and the vector strength remains relatively constant. Red lines indicate the behavior of a simulated “control” neuron matched to this primary-like 
neuron for vector strength but which behaves like a modulated Poisson process (see text).

https://doi.org/10.1371/journal.pbio.3003213.g003

https://doi.org/10.1371/journal.pbio.3003213.g003
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simulated the neuronal responses that would be expected if VS represented a good description of spiking behavior. This 
“control” simulation generated spikes from an inhomogeneous Poisson process, which was phase-locked to the envelope 
and had identical VS values to the data (see Materials and methods). For the control simulation of the example ChS neu-
ron, envelope classification (red line in Fig 2c) was considerably poorer than for the real neuron. The period histograms 
(PHs) of the simulation (red lines in Fig 2e) reveal a similar general phase of firing but lack the regular structure of the real 
neuron. In contrast, the classification of the control simulation of the PL example was very similar to the data (red lines in 
Fig 3c, 3e). It is clear that in some neurons, there is information about modulation frequency in the timing of spikes which 
is not attributable to phase-locking to the envelope frequency.

Classification-based modulation transfer functions are low-pass but differ in overall performance

Individual CN neurons of different response types exhibited a range of modulation classification performance. Fig 4 shows 
example neurons from those types which make up the majority of the data (ChS, ChT, PL, PLN), selected to display a 
range of c′ and VS functions (rather than being representative of the population). The classification transfer functions 
(MTF-c′; Fig 4b) were generally low-pass in all four neuron types, and classification was often best at or close to the 
lowest modulation frequency tested (usually 50 Hz). Yet differences are evident between neuron types, for example, ChS 

Fig 4. Examples of modulation transfer functions in individual units.  Each column shows a different response type and each line style represents 
an example neuron. a. PSTH from a single neuron in response to a characteristic frequency pure tone. b. Modulation transfer functions of example neu-
rons of the type shown in (a), expressed in terms of c′ (MTF-c′), and c. Phase-locking to the modulation frequency (MTF-VS) from the same data shown 
in (b). ChS, Sustained chopper; ChT, Transient chopper; PL, Primary-like; PLN, Primary-like notch.

https://doi.org/10.1371/journal.pbio.3003213.g004

https://doi.org/10.1371/journal.pbio.3003213.g004
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neurons yield much better classification than PL neurons. MTF-VS, in contrast, varied in function shape more than peak 
VS values (Fig 4c). Notably, these individual ChS neurons phase-locked (VS; Fig 4c left panel) preferentially to different 
modulation frequencies, as reported previously, yet their classifier functions (c′) were low-pass, indicating that classifica-
tion was best for the lowest modulation frequencies tested. Other quantifications of classifier performance, based on the 
proportion of correct responses (hit rate/recall accuracy, the harmonic mean of hit rate and correct rejection rate), which 
did not account as well for factors such as biases in classifier choice and the influence of the number of modulation fre-
quencies tested (see Materials and methods), nevertheless yielded similar results (see Figs I and J in S1 Text).

Across the population of neurons, the mean population MTF-c′ was a largely low-pass function of modulation frequency 
for every neuron type (Fig 5a). There were, nevertheless, systematic differences in overall peak classification accuracy 
(c′max for each MTF-c′) across neuron types (Fig 5b; ChS > ChT> On~PLN > PL ~ PBU), although there was also consider-
able variation within each type.

To visualize the differences in MTF-c′ shape, functions from individual neurons were normalized to their peak, maxi-
mum c′ value (Fig 5c). This confirmed that modulation identification in the different neuron types had, on average, a sim-
ilarly shaped dependence on modulation frequency. This peak normalization analysis included the responses at different 
overall sound levels (30–70 dB SPL; which are analyzed in more depth below), and additional data where the modulation 
depth was manipulated (usually 50% or 200%, 31), and so a similar shape of modulation transfer function was observed 
across stimulus conditions.

The similarity of the mean modulation transfer function shapes for each neuron type could indicate that the main dif-
ference between the MTF-c′ functions across all neurons individually might be a scaling of a single low-pass function of 
modulation frequency. Alternatively, averaging out within each neuron type might obscure differences between individual 
neurons. To distinguish between these possibilities, we sought to quantitatively test how well a single low-pass function 
could account for the shape of the MTF-c′ in individual neurons, in all stimulus conditions. First, we calculated a normal-
ized function of the variation of c′ with the absolute value of modulation frequency, Φ(fmod), which best described the aver-
age shape of the modulation transfer functions across the entire dataset (black dashed line in Fig 5c; also see Materials 
and methods). This function is related to each individual MTF-c′, at each level and modulation depth in each neuron, by 
a best-fitting scaling factor which is applied uniformly to all modulation frequencies in that MTF. Multiplying Φ(fmod) by a 
scaling factor yields predicted c′ values for an individual MTF (Equation 7). Across the entire dataset, this model predicted 
individual c′ values with an R2 of 0.79 (Fig 5d shows the predicted c′ values against the data).

Fig 5. Homogeneity of modulation classification function shapes.  a. Mean MTF-c′ for all functions collected for each neuron type. Shading 
indicates 95% confidence intervals. b. Box plots of c′ at the peak of each modulation transfer function (i.e., BMF-c′) for each neuron type, at the lowest 
sound level tested in each neuron. c. The mean MTF-c′s, normalized to the maximum mean c′ for each of the functions in a. The dashed black line 
shows overall mean, which is used for predicting individual c′s. d. Scatter plot of every c′ value in the data, compared to the predicted c′ when modeled 
as a scaled function of the mean line in c. The underlying data for Fig 5b is contained in S1 Data.

https://doi.org/10.1371/journal.pbio.3003213.g005

https://doi.org/10.1371/journal.pbio.3003213.g005
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The (21%) variance unaccounted for by the model was presumably additional variation in the shape of the MTF-c′, 
evidence of which can be seen in the single neuron examples presented (Figs 2–4). To quantify further the variation in 
modulation transfer function shape, we measured the modulation frequency where classification performance was best 
in each neuron (Best Modulation Frequency; BMF-c′). To minimize the variability due to sound level, we focused here on 
the lowest sound level available for each neuron (37 dB ± 12 dB, 90% were at 50 dB SPL or lower). The BMF-c′ reliably 
occurred at low modulation frequencies (Fig 6a; BMF-c′ was < 200 Hz in 84% of modulation transfer functions; mean: 148 
Hz). BMF-c′ was often 50 Hz (64%), which was the lowest modulation frequency tested in most neurons. Fig 6b shows 
the mean MTF-c′ functions for each type after frequency normalizing each unit to their BMF-c′, effectively shifting the 
functions of individual neurons so that their maxima coincide. Here, small peaks are evident in the functions. However, the 
frequency normalization process means that the sample of neurons is different at each point on the plot. The low- 
frequency tails reflect only the neurons where the numerical maximum is other than the lowest frequency tested. These 
tails were rare in most neuron types (c.f. BMF-c′ in Fig 6a), with the exception of PLN and onset neurons.

Fig 6. Population Modulation Transfer Functions for each neuron type, derived from a spike timing classifier (MTF-c′) or Phase-locking 
(MTF-VS).  a. Box plots of the BMF-c′ for each neuron type. b. Mean population modulation transfer function for c′, for each neuron type separately, after 
aligning the BMF for each neuron. One modulation transfer function was selected in each neuron, at the lowest sound level tested. Shaded areas show 
standard error of the mean. c, d. Corresponding population mean modulation transfer function and statistics derived from phase locking (MTF-VS). The 
underlying data for Fig 6a and 6c is contained in S1 Data.

https://doi.org/10.1371/journal.pbio.3003213.g006

https://doi.org/10.1371/journal.pbio.3003213.g006
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In comparison, our analysis of VS was consistent with previous observations [5,6,14]. Best modulation frequencies 
based on VS (Fig 6c; BMF-VS) varied over a wider range than those based on classification accuracy (Fig 6a; BMF-c′). 
BMF-VS was concentrated (61% of MTFs) in the range 200–800 Hz (mean BMF-VS: 289 Hz), but this range depended 
somewhat on neuron type, where the shallow modulation tuning of PL and PLN types was reflected in a larger range of 
BMF-VS values than other unit types (Fig 6c). Normalized to their BMF-VS, chopper neurons (sustained and transient) 
showed pronounced peaks and bandpass tuning for MTF-VS, whilst PL neurons were more bandpass in shape. Notably, 
onset neurons (n = 21) had the highest overall VS (consistent with previous studies, 19, 29, 34), yet their classification per-
formance (c′) was relatively poor (Figs 5a, 6b), indicating that although onset neurons fire precisely, they do not fire reli-
ably on every modulation cycle (they did not “entrain”). In this respect, rank order of peak VS values and c′ performance 
were fairly similar (Fig 6d; On > ChS > ChT > PLN > PL ~ PBU), although classification performance was better for chopper 
neurons than for onset neurons.

Overall, these results suggest that the main difference in modulation frequency identification between neuron types and 
individual neurons of each type lies in the overall (and maximum) performance, and not in the relative shapes of the MTF-
c′, which are predominantly low-pass.

Modulation frequency classification in individual neurons depends on sound-level

The effects of level on neural modulation classification are of interest because perceptual sensitivity to modulation is either 
relatively unaffected by sound level (except near to the threshold of audibility), or improves with increasing sound level 
[22], whilst physiological studies report that VS drops with increasing sound level [4,6,38]. However, as we have seen, VS 
does not capture all aspects of spike timing. For simplicity, the previous analysis did not describe the influence of stimu-
lus conditions other than modulation frequency. However, data from a range of signal levels and modulation depths were 
included in the predictive model described above, which implies that the dependence on these conditions can also be 
characterized as scaling changes. Therefore, we next consider in more detail the effects of signal level.

Peak c′ decreased systematically with sound level (Fig 7a shows all neuron types for a modulation depth of 100%; Kruskal- 
Wallis non-parametric ANOVAs for peak MTF-c′, χ2 (2,488) = 77.3 p < .0001), as previously reported for VS (and shown in 
Fig 7e). For both c′ and VS, there was also a decrease in the proportion of lowpass functions with increasing level (Fig 7b, 
7f; χ2 (2,488) = 27.6, p < 0.0001 for c′ and χ2(2,505) = 80.88, p < 0.0001 for VS). However, there were more low-pass MTF-c′ 
functions than low-pass MTF-VS functions across all neuron types (χ2(1, N = 117,150,134) = 11.8, 31.7, and 65.6 at 30, 50, 
and 70 dB SPL with p < 0.0001 at all signal levels) and for each neuron type individually (χ2 (1,120) = 14.0,  
p = 0.0002 for PLN; χ2 (1,106) = 89.7, p < 0.0001 for ChS; χ2 (1,39) = 5.4, p = 0.0202 for ChT; χ2 (1,34) = 20.1, p < 0.0001 
for PBU), except for onset (χ2 (1,13) = 0.04, p = 0.84) and PL neurons (χ2 (1,87) = 3.0, p = 0.08), consistent with previ-
ous observations that MTF-VS is lowpass in these neurons [5,6]. The proportions of different shaped MTF-VS functions 
depended on the neuron type, and there was a strong shift towards bandpass functions with increasing signal level. The 
differences between c′ and VS were also evident in mean population modulation transfer functions at different sound lev-
els, which are again shown relative to best modulation frequency for comparison between c′ and VS: consistent with the 
predictive model, MTF-c′s for ChS and PL neurons were predominantly low-pass (Fig 7c and 7d; the low-frequency tails 
are attributable to a minority of neurons, see Fig 6), whereas mean MTF-VS was robustly bandpass in shape for ChS (Fig 
7g), but low-pass for PL neurons (Fig 7h).

These findings also held for other modulation depths, and when there are smaller differences between modulation 
frequency. At 200% modulation (shown in Fig B in S1 Text), there are again more lowpass MTF-c′ functions than MTF-VS 
functions. 200% modulation stimuli are characterized spectrally by having three frequency components of equal ampli-
tude, whereas 100% modulation stimuli are characterized by a stronger peak at the carrier frequency. The transfer func-
tions of 200% modulations derived from VS (MTF-VS) were bandpass even in PL neurons which have predominantly 
lowpass MTF-VS functions at 100% modulation (Rhode 1994). Yet, modulation classification functions (MTF-c′s) were 
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robustly lowpass across all neuron types, and both classification performance and VS were reduced with increasing signal 
level. There were fewer data at modulation depths of less than 100%. Classifier performance generally dropped as mod-
ulation depth decreased (Fig C in S1 Text), but MTF-c′ functions were nevertheless predominantly low-pass. Modulation 
classification in ChS neurons was also low-pass, and generally reduced with sound level, when the difference between 
modulation frequencies was smaller (25 Hz; Fig Da in S1 Text), though our sample of neurons was small (7 ChSs). 
Modulation classification was even stronger and reduced with sound level, in a single ChT neuron which was tested for 
5 Hz steps at modulation frequencies below 50 Hz (Fig Db in S1 Text). Thus, in so far as we are able to determine, these 
results were robust across a wide range of envelope characteristics.

Based on the consistent effects of sound level and modulation depth, we asked what proportion of the observed 
modulation classification might be explained by stimulus conditions alone. To do this we used a regression model where, 
instead of fitting each modulation transfer function individually, stimulus conditions alone determined the scaling factor for 
Φ(fmod) (Equation 8; see Materials and methods). Thus, the model predicts identical performance for all modulation transfer 
functions with the same sound level and modulation depth. A model with four free parameters was able to predict 45% of 

Fig 7. Modulation Transfer Functions as a function of sound level, derived from a spike timing classifier (MTF-c′) or Phase-locking (MTF-VS).  
a. Maximum c′ at the peak of the corresponding modulation transfer function, split by neuron type, and sound level. b. Proportion of MTF-c′ shapes clas-
sified as lowpass (criteria described in methods), split by neuron type and sound level. c. Mean population MTF-c′ for sustained chopper (ChS) neurons 
as a function of sound level. d. Mean population MTF-c′ for primary-like (PL) neurons as a function of sound level. e. Peak vector strength values and f. 
proportion of lowpass MTF-VS as a function of neuron type and level. g. Mean population MTF-VS for sustained chopper neurons as a function of sound 
level. h. Mean population MTF-VS for primary-like neurons as a function of sound level.

https://doi.org/10.1371/journal.pbio.3003213.g007

https://doi.org/10.1371/journal.pbio.3003213.g007
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the variance of individual c′ values across the entire dataset. We also tried adding further free parameters (5; see Equa-
tion 9 in Materials and methods) to enable the model to account for differences between neuron types. Only a further 2% 
of the variance (i.e., R2 = 0.47) was accounted for, implying that a sizable amount of the variance in identifying modulation 
frequency is common to all CN neurons (perhaps inherited from the cochlea) and depends on stimulus conditions more 
than on neuron type.

Modulation frequency classification at high sound levels is robust in small populations of high-performing 
neurons

Whilst the low-pass characteristics of modulation classification functions more closely align neural coding with perception, 
the systematic decreases of neural modulation classification with increasing sound level appear at odds with perception 
[23]. We investigated the identification of modulation frequency in small populations of neurons by extending our existing 
classifier, so that it functioned with multiple neurons. The method is one commonly used to study population coding with 
spike-distance metrics, which maintains the identity (i.e., “a labeled line code”) and the timing information of each neuron 
[39].

Fig 8a shows MTF-c′s of small (n = 10 or 30) populations of neurons of a given type, selected as the highest perform-
ing (mean c′) neurons in the available sample. Populations of ChS neurons supported modulation classification that was 
markedly more stable across sound level than individual neurons. Small populations of PLN neurons were even more 
robust to level changes, with c′s for clusters of 5–15 neurons differing by a value of 1 or less across the 40 dB range 
tested. In contrast to ChS and PLN populations, classifier performance in both ChT and PL populations dropped markedly 
with increasing sound level. As in individual neurons, population modulation transfer functions were predominantly low-
pass in shape. The level-robustness is also observed if instead we consider classifier hit-rate to quantify performance, or 
F1-score (see Figs I and J in S1 Text).

In order to determine whether performance reflected coding in high-performing individual neurons or an even distribu-
tion of information across the populations, we systematically varied the sizes of the populations used for classification. Fig 
8b shows the mean performance (for fmod ≤ 600 Hz) as a function of population size, adding neurons in order of decreasing 
individual performance. This mean performance revealed further differences across neuron type and sound level. Sus-
tained chopper population performance at low and medium (50 dB SPL) levels was only slightly higher than that of the 
best-performing neurons, while at 70 dB SPL, performance effectively doubled as the population size increased from 1 to 
10 neurons. In other neuron types, performance increased more gradually with increasing populations at all sound levels, 
indicating that information was distributed across a number of neurons. In PLN neurons, population choice was critical: a 
small population (~5 to 15] of the highest performing neurons provided for reliable identification at 70 dB SPL, but perfor-
mance dropped in larger populations. This is in contrast to populations of ChS neurons, where the inclusion of neurons 
with poor individual performance (dashed line shows performance of the last added and worst neuron) did not harm the 
ensemble performance.

Thus, small ensembles of neurons in the ventral CN can support the identification of modulation frequency at 
a wide range of sound levels. The level robustness, and the dependence on the selection of the sub-population 
depends somewhat on neuron type, with a small minority of PLN neurons providing the best performance. Sus-
tained chopper neurons are almost as good as PLN neurons, but adding poorer performing neurons to the cluster 
does not harm performance. Interestingly, this implies that level-robust performance can be achieved downstream 
by integrating inputs from ChSs indiscriminately, whereas it would require selecting inputs only high-performing 
PLN neurons.

Overall, spike timing in the auditory brainstem supports the coding of modulation frequency, with a low-pass transfer 
characteristic. Whilst classification is accurate in individual neurons at low sound levels, classification at high sound levels 
remains robust in small populations of high-performing ChS and PLN neurons.



    

PLOS Biology | https://doi.org/10.1371/journal.pbio.3003213 June 16, 2025 13 / 33

Reliable spiking and mode-locking are hallmarks of good envelope coding

The best classifier performance was observed in ChS neurons, the most regular spiking type of CN neurons. But neuron 
type was generally a poor predictor of classification performance, and there was great variation in performance within 
neurons of a given type. So, what aspects of spiking are important for supporting good identification of envelope shape? 
To investigate this, we extended the non-linear statistical regressions of c′ by adding various quantifications of spiking 
behavior as additional predictors, with each quantifying a conceptually distinct aspect of spiking behavior (Fig 9a).

One hypothesis is that mode-locking spiking patterns, seen in our example ChS neuron (Fig 2), might contribute pos-
itively to neural coding. Mode-locking is a term originating from non-linear oscillator theory, reflecting varied “modes” of 
oscillation displayed when driven by a periodic input [26]. Different modes arise from an interaction between the dynamics 
of the input, here the varying sound envelope, and the intrinsic dynamics of the oscillator, which here would be neuron 
properties such as the time constant of integration associated with membrane capacitance, ionic currents, and the abrupt 
hyperpolarization following an action potential [40]. The outcome of this interaction is that spike times depend strongly 
on both the envelope and the time of the previous spike. This spiking behavior stands in contrast to a simpler model of 

Fig 8. Modulation classification and the variation in sound level, from small populations of neurons.  A. Modulation transfer functions for 
ensembles of each neuron type at different sound levels. Solid lines show classifier performance for 10 neurons with the best individual performance 
for each neuron type and sound level (unit is dB SPL). Dashed lines show the performance at 70 dB for the 30 best-performing neurons (not available 
for transient choppers). N.B. Onset and pause-buildup neuron populations not shown due to the small number of neurons. In the right-hand panel, the 
equivalent hit rate is also shown, for comparison. This scaling holds for all panels. B. Mean classifier performance (modulation frequency <600 Hz) as a 
function of the population size used for classification, in order of decreasing performance for the individual neurons (so best performing first). Solid lines 
show population classifier performance, whilst the dotted lines show the mean performance of the worst neuron in each set of neurons.

https://doi.org/10.1371/journal.pbio.3003213.g008

https://doi.org/10.1371/journal.pbio.3003213.g008
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spiking behavior, where consecutive spikes occur independently as a simple probabilistic function of the envelope, i.e., a 
Poisson process.

Motivated by the theoretical models, we sought to quantify the spiking dynamics which are likely to give rise to 
mode-locking. A hallmark of a neuron behaving as a modulated Poisson process is that the spike-interval statistics follow 
directly from the modulations in firing rate: randomly redistributing spike times across modulation periods whilst main-
taining their phase (position within the period) should not affect the interval structure. However, if spike timing depends 

Fig 9. a. How various statistical models account for modulation classification performance across the entire dataset.  Each model has stimulus 
conditions plus one or more additional parameters as predictors of c′. Parameters are Type: neuron classification (primary-like, sustained chopper, etc.); 
CV: Coefficient of variation of the interspike intervals in response to a pure tone at CF. VS: Vector Strength; SAC peak 1: The height of the peak in the 
shuffled autocorrelogram (SAC) at the modulation period (1/modulation frequency); SAC peaks 2-5: The heights of the next 4 largest peaks in the SAC, 
between the zero-lag peak and the modulation period; ZISI: A Z-scored measure of the degree to which interval statistics differ from that predicted from 
the phase statistics alone; SAC peaks 1-5: The five largest peaks in the SAC, where peak 1 is the modulation period; Neural reliability: A measure of the 
reliability of the PSTH in response to the amplitude-modulated tone. A single predictor (the statistic specified in the panel title for f

mod
 ~150 Hz) is used at 

all modulation frequencies for each dataset. Purple bars show fits to the data with sustained chopper neurons excluded. b. How the ZISI statistic is related 
to c′ for a modulation frequency of ~150 Hz; Horizontal sidebars show the median, 50% and 95% ranges for ZISI and vertical side bars show this for c′; c. 
As b for Vector Strength; d. Examples of the shuffled autocorrelation functions for the sustained chopper neuron in Fig 2 (modulation frequency = 125 Hz) 
and primary-like neuron in Fig 3 (modulation frequency = 150 Hz). Numbered peaks indicate the significant peaks up to the lag which equals the modu-
lation period, according to the peak picking algorithm (at p < .0001). Vertical lines show the peak-to-trough heights extracted for each significant peak, in 
order of decreasing value; e. As b for the sum of peaks 1–5 in the shuffled autocorrelation. f. As b for the reliability of the PSTH. In f R2 is calculated by 
taking the log of c′. The underlying data for Fig 9a is contained in S2 Data and the underlying data for Fig 9b, 9c, 9e, and 9f is contained in S3 Data.

https://doi.org/10.1371/journal.pbio.3003213.g009

https://doi.org/10.1371/journal.pbio.3003213.g009
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both on envelope phase and the time interval since the previous spike, then such a shuffling of the spike times will affect 
the interval structure. A metric, Z

ISI
 [28], was used to quantify the changes in interspike intervals (ISIs) caused by this 

‘phase-shuffling’, with increasing values indicating a greater dependence of each spike on the timing of the previous spike 
(see Materials and methods).

Applied to the current dataset the Z
ISI

 revealed a hierarchy across neuron types (Fig 9b; horizontal bars; 
ChS > ChT > PLN > PBU ~ PL>On; also see Fig E in S1 Text). Regular firing neuron types (e.g., ChS, ChT), which dis-
played good modulation classification, also scored highest on Z

ISI.
 Also, Z

ISI
 and c′ were strongly correlated at low 

modulation frequencies in individual neurons (shown for a modulation frequency of 150 Hz in Fig 9b). To quantify this 
relationship further, we extended the non-linear statistical regressions of c′ by adding Z

ISI
 as a predictor to the previous 

regression model, which otherwise included only sound level and modulation depth as predictors. The addition of the 
Z

ISI
 statistic markedly improved the predictive power across all modulation frequencies (62% versus 45% for stimuli 

alone; Fig 9a). This improvement largely held even when the most regular neuron type, ChS neurons, were removed 
from the data (60% of variance). The regression model employed a single Z

ISI
 measure at a modulation frequency of 

~150 Hz as the predictor for each dataset and applied to all modulation frequences. This choice has several advan-
tages and does not influence the overall conclusions (see S1 Text for an in-depth analysis of this choice). The analysis 
supports the hypothesis that the dynamic behavior of neurons, which underlies mode-locking in theoretical models, 
contributes to good envelope coding in CN neurons of all types. In contrast to Z

ISI
, VS was poorly correlated with classi-

fier performance, whether at individual frequencies (Fig 9c) or as a predictor in a regression model (50% versus 45% for 
stimulus conditions alone; Fig 9a).

To unpack further the role of mode-locking, we sought to determine whether the mode of firing itself contributed to 
classifier performance. The Z

ISI
 statistic quantified a property of neurons which is likely to lead to mode-locking, but it did 

not explicitly test whether a neuron fires in modes other than those which are approximated by phase-locking (1-q; 1 spike 
every q periods with q being any integer). However, identifying modes precisely in real neurons is challenging due their 
stochastic behavior (unlike in models where noise can easily be removed). To quantify spiking modes in the face of this 
stochasticity, we computed the shuffled autocorrelogram (SAC) of each response, which counts ISIs between spike trains 
using autocorrelation (see Materials and methods). Because this analysis operates across trials, and between non- 
adjacent spikes as well as adjacent spikes, it is statistically powerful and is therefore very sensitive to temporal structure. 
Fig 9d shows SACs from the example neurons in Figs 2 and 3. Modes of spiking other than 1-q (which is how phase- 
locking appears in the SAC) show up as peaks in the SAC at delays other than integer multiples of the envelope period, 
and are clear from the response of the ChS neuron (red), but absent from the response of the PL neuron (blue). We found 
that additional peaks were common in the SAC at low modulation frequencies in ChS neurons (~45% of the population for 
modulation frequencies < 400 Hz) and PBU neurons (~30%), but rare in other neuron types (Fig G in S1 Text). We quanti-
fied the peaks in the SAC using a peak-picking algorithm, which yielded the amplitudes of significant peaks (at p < .0001) 
relative to the nearest local minima (Fig 9d shows peak-to-trough sizes as vertical bars; see Materials and methods). A 
simple unweighted sum of the significant peaks correlated well with envelope classification of low modulation frequencies 
(Fig 9e).

We quantified the predictive power of different peaks in the SAC across the entire dataset by adding the amplitude of 
each peak at a modulation frequency ~150 Hz as parameters to the stimulus-only regression model. Adding in only the 
peak at the modulation period, which is expected from phase-locking to the envelope, resulted in an increase in predictive 
power (54% of variance versus 45% for stimulus alone). Adding in the additional peaks (2–5; and a value of zero where 
there were no peaks) as well as the peak at the modulation period resulted in a further increase in variance explained 
(59%). The difference in variance accounted for between these two models (5%) quantifies the value of reliable inter-
spike intervals at less than the modulation period. Thus, the difference in variance offers an explicit test of the value of 
mode-locking (modes of p-q where p ≠ 1) over phase-locking (1-q).
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Adding in only the additional peaks (2–5) and omitting the period peak resulted in a similar predictive power to the 
period peak alone. Furthermore, omitting the ChSs (in which these additional peaks were observed) entirely nullified the 
predictive power of the additional SAC peaks (Fig 9a, purple bar for SAC peaks 1–5), consistent with the observation that 
these peaks primarily occurred in ChS neurons. Yet, this additional temporal structure was not necessary for good iden-
tification of modulation frequency: some ChT neurons (Fig 9b, 9c, 9e, 9f; yellow pyramids) and a few PLN neurons (blue 
diamonds) performed almost as well as the best ChS neurons despite a lack of additional SAC peaks. Thus, additional 
temporal structure observed during mode-locking contributes positively to envelope coding in ChS neurons, but other 
coding strategies in other neuron types can result in similar performance.

To test the idea that reliability of spiking, regardless of the specific patterns of spikes, is important for coding of enve-
lope we used a direct measure of the reliability of spike times. This calculation is simply the Pearson correlation of the 
peri-stimulus time histogram (PSTH) of the responses to odd and even stimulus presentations at modulation frequency 
~150 Hz [41]. Consistent with the fundamental importance of reliable spiking, this measure correlates well with c′ at low 
envelope frequencies (Fig 9f) and, over the entire dataset, the reliability statistic slightly greater predictive power than Z

ISI
 

(66% versus 62%). Another conventional characterization of regularity in CN neurons, the coefficient of variation (CV) of 
the inter-spike intervals in response to a pure tone, performed poorly (46%) in comparison. A more in-depth exploration of 
predictors of envelope classification performance is found in S1 Text.

Our results suggest that three properties of spike trains are all associated with good envelope coding. Indeed, we 
found that SAC peaks 1–5, Z

ISI
 and PSTH reliability were all strongly correlated with each other (Fig K in S1 Text). Adding 

any two (Fig 9a, green bars), or all three of these statistics (Fig 9a, blue bar) into a single regression model improved the 
predictions of the models further, but did not indicate superiority of any one statistic. The relative predictive power of all 
these different models was very similar for other quantifications of classifier performance (see Figs I and J in S1 Text). In 
summary, reliability and non-Poisson behavior were closely linked characteristics which were important for representing 
envelope in all neurons. In the most regular spiking neuron type in the CN (ChS neurons) mode-locked patterns of spike 
timing, distinct from phase-locked behavior, contributed positively to envelope coding. In contrast, statistics which quanti-
fied synchronization to the envelope frequency were poor predictors of classification in all neuron types.

Discussion

The relationship between neural coding and perception

Spike-timing-based analysis revealed that the best identification of envelope frequency occurred at low modulation fre-
quencies and that regularly-firing chopper neurons showed the best envelope coding overall. Superior classification of 
low modulation frequencies is consistent with perceptual modulation detection [22] and identification of AM frequencies 
[42], both of which are excellent below around 300 Hz, and also the ecological predominance of low modulation frequen-
cies [3,17]. In contrast, synchrony-based measures (MTF-VS) in chopper neurons were bandpass tuned and selective for 
200–500 Hz modulations, with lower modulation frequencies (<200 Hz) less well represented.

A further property of modulation perception is its robustness to variation in sound level [22]. Our results suggest that 
single CN neurons are not robust to variations in sound level, either using VS or a spike-timing-based classifier. However, 
selective pooling of information across neurons was sufficient for accurate identification of envelope up to at least 70 dB 
SPL. Additional factors are only likely to improve the level-robustness of modulation coding further. Efferent connections 
to the cochlea and CN, which will be more active in the absence of anesthesia, will act to increase dynamic range in CN 
neurons [43,44]. Recent evidence has revealed that CN neuron activity is markedly different under isoflurane and ket-
amine anesthesia (though not pentobarbital as used here), as compared to an awake animal, but that effects at the pop-
ulation level are subtle [45]. In humans, listening strategies may well further augment perception: at high sound levels the 
recruitment of neurons tuned to characteristic frequencies other than the carrier tone would provide additional modulation 
information. Recruitment cannot explain the level robustness of modulation perception generally, which remains robust 
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with level for wideband sounds where recruitment of off-CF neurons does not occur, but it is known to contribute to modu-
lation detection in narrowband sounds [20]. Taken together with our observations, there is no reason to think a qualitative 
discrepancy with perception or sound statistics remains.

Some work remains to reconcile physiology and perception quantitatively, for which differences in experimental meth-
odology and species become more critical. Perception at shallow modulation depths, of which our data contained a small 
sample, is an example of this. Sayles and colleagues [14] found neural thresholds for the detection of shallow modulations 
were commensurate with perceptual detection thresholds. Their method was based on VS and therefore yielded band-
pass functions in these most sensitive neuron types. Using our method, we would predict similar sensitivity but with a low-
pass function. Similarly, although our results hold for small changes in envelope frequency in the data that were available 
to us, it would be desirable to confirm this in a large population where the minimal discriminable difference in frequency 
can be determined. A further challenge for quantitative comparisons could result from species differences in cochlear 
tuning and phase locking, which can influence the shape of modulation tuning functions [46,47]. These nuances could 
prove difficult to resolve experimentally, but we are optimistic that a carefully constructed simulation could predict human 
envelope perception with reasonable quantitative accuracy. Such a simulation would use biophysically constrained spiking 
models of CN neurons [48] driven by cochlear models which can account for species differences in peripheral processing 
[49] and efferent modulation [50,51], and analyzed using the methods described here.

Spike-timing codes: Mode-locking and reliability versus faithful synchrony to the envelope

We find that it is not faithful synchrony to modulation frequency which determines how well an envelope is encoded. It 
is important that neurons fire reliably across trials in response to a given stimulus, but not how envelope information is 
encoded. “Spike distance metric” methods like those employed here [52–54] can find this information because they make 
no assumptions about the relationship between the stimulus and the pattern of spikes; only that the timing of spikes 
depends reliably on the stimulus. In contrast, VS measures how tightly spikes are timed in a unimodal distribution about a 
particular phase of the modulation frequency.

The CN appears to employ (at least) two different strategies for representing envelope shape. Across all neuron types, 
envelopes are more discriminable when spike timing is not just dependent on the phase within a modulation period. 
Indeed, the less spiking behavior conforms to the expectations of a time-varying firing rate, and the more spike timing 
depends on when the previous spike occurred, the better modulation frequency can be identified. This suggests that the 
dynamics of the spiking process are having a positive influence on the encoding of envelope.

In ChS neurons, which are the most regular spiking of CN neurons, we find “mode-locking” to low-frequency modu-
lations [28]. Mode-locked spiking patterns have complex phase distributions (see Figs 1and 2), which can yield low VS 
values. However, these patterns are reliably timed, and we show here that modes of locking other than a 1-q relationship 
with the modulation frequency are correlated with modulation classification performance in these neurons. This provides 
clear evidence that the degree of synchrony to the envelope frequency does not always accurately estimate the informa-
tion carried.

A reasonable interpretation of these results might be that the intrinsic non-linear dynamics of neuronal processing [26] 
in the CN improve the reliability of spiking generally. In neurons where the influence of these dynamics is strong, this can 
create spike timing patterns which are a complex function of the stimulus envelope, but which nevertheless encodes the 
envelope accurately. However, we also found that some ChT neurons and PLN neurons support similar levels of classifi-
cation despite firing less regularly and showing little evidence of mode-locking at ratios other than 1-q. Thus, mode-locking 
is not apparently necessary for good coding of envelope, suggesting that this simple interpretation is incomplete.

The known differences in local circuitry and intrinsic cell properties may go some way to accounting for the multiple 
effective coding strategies. Sustained chopper and ChT responses are associated with stellate cell (T-stellate) morphol-
ogy, whilst PLN responses are associated with globular bushy cells [55]. Both cell types receive convergent inputs from 
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auditory nerve fibers [13]. Sustained and ChTs share similar ionic currents and synaptic dynamics [56]. However, ChTs 
receive fast, timed inhibitory input from D-stellate cells [57]. We speculate that this inhibition may influence the dynamics 
of the envelope responses in transient-choppers, perhaps preventing mode-locked spike-timing at ratios other than 1-q. 
Globular bushy cell neurons possess a low-threshold Potassium current which produces a strong hyperpolarization fol-
lowing each spike, and a much shorter integration time constant than stellate cells [56]. This short integration time should 
restrict the influence of one spike on the next to shorter intervals, presumably leading to spiking dynamics which are quite 
different to ChS (T-stellate) neurons.

Robust encoding of binaural envelope cues in small ensembles of primary-like-notch neurons

Our results may also clarify the processing of interaural timing delays (ITDs); cues for sound localization in the enve-
lopes of high-frequency sounds [58]. This interaural comparison is believed to be performed by neurons in the lateral 
superior olivary nucleus (LSO) [59], which receive ipsilateral excitatory inputs directly from PL neurons, and contra-
lateral inhibition via the medial nucleus of the trapezoid body (MNTB) [60]. Primarylike-notch neurons synapse on to 
MNTB neurons with large single ‘Calyx of Held’ synapses, which provide precisely timed inhibition to LSO neurons 
[61,62]. Psychophysical and physiological data both demonstrate good sensitivity to envelope ITDs (~100 µs) [63,64] 
at high modulation frequencies (up to 800 Hz) [65,66], above the limit of CN chopper neurons, or monaural responses 
of LSO neurons.

Some low-frequency PLN neurons show exceptional phase locking to the carrier [67], presumably to encode low- 
carrier-frequency ITDs. Our analyses reveal a concomitant result for envelope processing at high-carrier-frequencies in 
PLN neurons, and that selective ensembles of neurons support envelope coding just as well as ensembles of chopper 
neurons. This is consistent with the properties of LSO neurons and envelope ITD perception. Simulations also suggest 
integration of multiple inputs are required for envelope processing in LSO neurons [68]. Thus, a convergence of MNTB 
neurons, which are driven by these select PLN neurons in CN, could provide precise inhibition to LSO neurons, and sup-
port the envelope ITD sensitivity seen perceptually and in the superior olive.

Modulation processing in the auditory pathway

Our results imply that channels processing different modulation frequencies do not first emerge in CN chopper neurons, 
as has been proposed [11,69,70]. However, far from bringing our understanding of other data into question, a distributed 
low-pass temporal code in CN arguably fits better with downstream processing. Envelope encoding is progressively trans-
formed from a temporal to rate code as the auditory pathway is ascended [15,71–74]. In the IC, the firing rates of neurons 
are often bandpass tuned, but to a range of lower frequencies than the VS-BMFs of CN choppers [11]. Inferior colliculus 
neurons can also display multimodal, high-pass, and band-reject modulation tuning functions [18,75,76], for which the 
previously proposed bandpass VS-MTFs of CN choppers were not in any case a logical pre-cursor.

It is also likely that perception does not rely solely on distinct firing rate-tuned modulation channels: rate tuning typically 
is not robust enough to other stimulus parameters such as envelope shape and sound level [73,77,78]. Temporal coding 
of low-frequency envelope persists, even at the level of primary auditory cortex [79] and high-rate temporal coding of mod-
ulation (~500 Hz) is found at the input to cortical neurons [80]. Clearly, temporal coding of envelope is precise to a few mil-
liseconds several synapses beyond the projections from the CN. In the IC, temporal coding accounts for the perception of 
envelope better than rate coding, at least in birds and humans [18,81,82], though rabbit’s perception appears to be better 
explain by rate coding [83]. In addition, in some cortical neurons, firing rates are proportional to modulation frequency [73], 
rather than forming tuned channels. Thus, the balance of evidence points to a diverse mix of codes across the auditory 
pathway [11,73,74,84], as in other modalities [85], for which the low-pass distributed temporal code we report in CN is a 
suitable pre-cursor.
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It remains an open question how the information from CN is transformed in the IC. Several computational models have 
been proposed for transforming synchrony-based spike timing coding of envelope in the CN into rate-place representa-
tions of envelope in the IC. Diverse tuning functions could arise in the IC from delayed inhibition [41,86–88]. Alternatively, 
if chopper neurons (T-stellate cells) with appropriate synchrony tuning converge onto IC neurons, a rate-tuning to modu-
lation frequency can emerge [89]. Modulation tuning can even emerge in artificial neural networks where there is no initial 
frequency analysis [90]. Unfortunately, although these models demonstrate that the problem is computationally tractable, 
there is no strong evidence to support any of them in particular.

No computational models have addressed how mode-locked spike patterns could give rise to the modulation tuning 
seen in the IC. Two of the aforementioned models [87,89] employed integrate-and-fire models of neurons which are likely 
to mode-lock and it is possible that mode-locking contributed to their function, but this was not considered in those stud-
ies. There is, however, good evidence that other mechanisms do exist which could process the envelope information in 
mode-locked spike patterns. Spike timing-dependent plasticity can rapidly detect arbitrary repeating patterns of spikes, 
even finding repeated patterns in the presence of additional unrelated spikes [91]. This demonstrates that: (i) Simple neu-
ral mechanisms which are known to exist can be configured to be sensitive to spike timing patterns like those seen during 
mode-locking; (ii) Sensitivity to mode-locked spike patterns can be acquired via an unsupervised learning process.

A question exists as to whether a loss of temporal precision at the next synapse could mean that the detailed timing 
information of spike trains, whether mode-locked or phase-locked, will be lost. This is not possible to answer given the 
lack of knowledge about the dynamics of T-stellate synapses. To investigate the theoretical impact of reduced temporal 
resolution on the spike-time coding in our neurons, we interrogated our classifier results in greater depth. The classifier 
was run at a range of temporal resolutions, imposed by the smoothing function used to compute differences between 
spike trains (Fig 1). In our analyses thus far we had chosen the best classifier for each dataset, as a simple way to opti-
mize the classifier across the diversity of neural responses. The temporal resolution which led to the best overall classifi-
cation performance was most often at one of the two highest resolutions we tested (τ = 1–2 ms; Fig L in S1 Text). Instead, 
fixing the classifier at a much lower resolution (τ = 10 ms), we found that classifier performance dropped more rapidly with 
modulation frequency, but individual functions were still low-pass (Fig M in S1 Text), still depended on sound level in much 
the same way (Fig N in S1 Text) and the hierarchy of performance across neuron type was maintained. Thus, although 
a loss of temporal resolution at the next synapse will reduce the information about high-frequency envelopes, it may not 
impact much on the coding of low-frequency envelopes.

Wider implications for the processing of complex sounds

Our results lead to a revised view of the role of the brainstem in processing envelopes. This view has wide ramifications 
for the processing of speech and other environmental sounds, and should enable a more coherent understanding of how 
information about complex sounds is transformed at the critical point where it enters the central nervous system. A distrib-
uted code which represents slow modulations well and is reasonably robust across sound level appears to be fit for the 
purpose of speech recognition. This remains to be tested, as there are remarkably few studies of the CN responses of 
modulation-rich stimuli such as natural speech or other vocalizations [16,92].

As the only target of cochlear nerve fibers, the CN is directly impacted by the changes wrought by cochlear hearing 
loss. One kind of hearing loss, synaptopathy [93], reduces the convergence of auditory nerve fibers onto CN neurons, 
impairing responses to tones-in-noise [94]. It should also reduce the reliability of envelope coding in chopper neurons [95], 
leading to less mode-locked spike trains and fewer sustained-chopper responses. Fewer sustained-chopper responses 
would logically degrade envelope population-coding at high sound levels (c.f. Fig 8) —an effect which is usually attributed 
to the loss of high-threshold, low spontaneous rate nerve fibers [96].

Elsewhere in the auditory system, mode-locking has been hypothesized to contribute to the processing of pitch and 
harmony [97]. Our observations might also have implications for processing of low-frequency temporal fine structure, 
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critical for the perception of pitch [98]. Recent data suggest that spherical bushy cells which predominate in the low- 
frequency rostral pole of the CN [99,100], can show complex modes of firing for temporal fine structure [30]. It is possi-
ble that low-frequency neurons (which are problematic to classify) encode temporal fine structure in patterns of spikes 
[101,102] that phase-locking analysis has obscured.

It is even possible that mode-locking may have an impact on non-invasive measurements of envelope. The  
frequency-following-response is an evoked potential that can be measured from the scalp, which shows synchronization 
to the envelopes of sound up to several hundred Hertz. A component of this signal originates from the CN [103], and 
therefore could be impacted by mode-locking. For example, mode-locking could lead to a reduction in synchrony to the 
envelope, as it does in ChSs, yielding an underestimation of the envelope information available at a neuronal level.

In summary, our results reveal a code for sound envelope which is more consistent with what is required for perception 
and the statistics of natural sound than previous accounts, demonstrates the importance of mode-locked spike patterns, 
and is likely to have wider implications.

Materials and methods

Experimental preparation and acoustic stimulation

The animal preparation has been described in detail previously [6,31] along with the original analysis of these data. The 
protocol for these experiments was reviewed and approved by the Animal Care committee of the University of Wisconsin, 
which is a PHS Assured, USDA registered, and AAALAC International Accredited Institution (PHS Assurance Number 
D16-00239 (A3368-01), USDA Research Registration Number A3368). Data were collected from 42 adult cats, weighing 
between 2 and 5 kg [6,31]. Briefly, animals were anaesthetized with pentobarbital sodium (50 mg/kg) and were maintained 
in an areflexive state during the course of the experiment. The animal was artificially respired and its body tempera-
ture was maintained at 37 °C. The left pinna was removed and the skull cleared of muscle. The bulla was ventilated to 
equalize middle ear pressure. The head was held fixed, a left posterior craniotomy made and the cerebellum retracted 
to expose the CN. A microelectrode assembly was attached to the top of a chamber cemented over the craniotomy and 
filled with warm mineral oil. Electrodes were advanced into the dorsal surface of the CN, and electrode tracks progressed 
caudal-rostral through the dorsal, posteroventral, and anteroventral regions. The majority of the responses were recorded 
from neurons posteroventral and anteroventral portion of the CN. Single-neuron extracellular recordings were made using 
glass micropipettes filled with 3 M KCl. Action potentials were amplified and discriminated, and the timing was recorded 
with 1 µs precision. Sound was delivered via a Stax electrostatic phone, calibrated using a ½ inch (B & K 4134) micro-
phone via a probe tube. Signals were generated with 16-bit digital resolution, linearly ramped with a rise-fall time of 3 ms. 
Signal level was controlled by a 127-dB attenuator with 1-dB steps.

AM signals all had a carrier frequency equal to the characteristic frequency (CF: most sensitive frequency) of the 
neuron. The modulation frequency (f

mod
) was typically varied between 50 and 2,550 Hz in 100-Hz steps, though the 

maximum varied. The responses of a given neuron where only modulation frequency changes are considered to consti-
tute a single ‘dataset’. Stimuli were 100 ms in duration with a 400 ms interstimulus interval except for certain neurons with 
pause-buildup response PSTHs (PBU, see 6). Amplitude-modulated tones were presented at 30, 50, or 70 dB SPL for the 
carrier frequency and at modulation depths of 50%, 100%, and 200%. Recordings at 200% modulation depth were mainly 
restricted to the anteroventral CN (Rhode 1994). Most neurons were associated with more than one dataset, varying in 
sound level or modulation depth. To avoid phase-locking to the carrier, we did not include any neurons with CFs < 3 kHz.

The dataset consisted of 336 units in total, predominantly from the ventral division of the CN. Of these, 191 had been 
recorded in response to signals with a modulation depth of 100%. Most units were recorded at several sound levels. For 
some of the analyses, in order to focus on the differences between neurons, we selected out data with 100% modulation 
depths at the lowest sound level presented (i.e., varying only in modulation frequency), to yield a single modulation trans-
fer function for each neuron.
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Data analysis

Pure-tone neuron classification. Neurons were classified into six physiological types using standard objective 
methods for the CN [35] in response to 250 repeats of 50 ms pure tones at the CF, 20 and 50 dB above CF threshold. 
Regular spiking neurons included ChS, ChT and PBU sub-types and irregular spiking neurons were PL and PLN. Onset 
responses (On) are also associated with diverse responses to tones, cell morphologies, responses to injected current 
and intrinsic currents [104–106]. However, since our dataset does not contain a sufficient number of onset units (n = 21) to 
draw meaningful conclusions about subclasses, we will also refer to all onset units as belonging to one class (see [28] for 
a related and more detailed treatment of mode-locking in onset units).

Phase-locking. The temporal response to amplitude-modulated tones was analyzed from 20 to 100 ms following 
stimulus onset. Synchronization to modulation frequency was assessed from the PH by calculating the VS [6,24,107,108]:

 

VS =
1

N

∣∣∣∣∣
N∑

n=1

eiφn

∣∣∣∣∣
 (1)

where φn is the phase of the nth spike in the data and N the number of spikes in response to the stimulus. Vector strength 
analysis of a single dataset (i.e., varying in modulation frequency with all other stimulus conditions remaining constant) 
yielded a modulation transfer function (MTF-VS).

Spike train classification of modulation frequency. Discrimination between modulation frequencies on the basis of 
spike timing from individual units was performed using a spike train classifier [36] which has previously been used to study 
modulation coding in insects. This process is summarized in Fig 1. For a single classifier trial ‘template’ spike trains were 
drawn randomly from the responses, one for each modulation frequency (fmod). A spike train for classification was then 
drawn randomly from the remaining set. Spike trains were represented at a binary sequence of 1s and 0s (sample rate: 
10 kHz) and convolved with an alpha function,

 f(t) = t ∗ e –2.45t
τ for t > 0, otherwise f(t) = 0 (2)

This yielded a time-series function for each spike train, effectively smoothed by the alpha-function, where τ is a time 
constant determining the temporal resolution (smooth gray lines in Fig 1). For a given τ, the differences between the 
convolved template spike trains and the spike train to be classified was computed (red lines in Fig 1), and the resulting 
time-series functions were squared and summed across time to yield a ‘spike train distance’. Fig 1 shows the distances 
between every pair of spike trains in a single dataset (for the example neuron in Fig 2). The smallest spike train distance 
in this set determined the classifier’s decision on that trial. This was repeated until there were 500 trials for every stimu-
lus modulation frequency (with many template combinations). From this, a confusion matrix was generated, where each 
column describes a probability distribution of classifier decisions for each stimulus modulation frequency.

An unbiased metric of modulation frequency classification, c′, was computed from each confusion matrix by fitting a 
multi-class logistic model [37]. Alternative quantifications of modulation frequency classification can be found in S1 Text. 
The metric c′ is related to the probability of a choice via the softmax function:

 
p (chosen fmod , i

∣∣presented fmod ) = exp(ci+Bi)
exp(ci+Bi)+

∑
j̸=i exp(Bj)  (3)

where ci quantifies classification performance for the ith modulation frequency, and Bj is a bias towards choice 
j irrespective of which modulation frequency is actually presented. In this way, a confusion matrix can be sum-
marized with two vectors: c, quantifying the classification of each modulation frequency, and B quantifying the 
biases.
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Several characteristics of this model (reviewed in [37] make it well-suited to comparing across neurons in our dataset. 
First, it accounts for classification biases toward certain choices, which represent characteristics of the spiking patterns 
which are not sensitive to changes in modulation frequency and are therefore of little interest here. They can be seen in 
Figs 2b and 3b as horizontal patterning (see also Fig A in S1 Text). Second, the analysis accounts for the influence of the 
number of modulation frequencies presented on choice probabilities close to chance, and ceiling effects at high probabil-
ities. The model is conceptually similar to d’ in an m-alternative forced choice signal-detection model [109,110], hence we 
refer to this alternative classification metric as c′, but critically for the model fitting the softmax function does not require 
integration to evaluate.

For each confusion matrix, the vectors c and B were found by minimizing the sum of squares error of p (chosen fmod, 
i|presented fmod) in [3] for all i and f

mod
. Since c′ increases exponentially with high values of p (c′ ∝ – ln(1 – p)), the confu-

sion matrix probability values were capped at 0.99 before fitting (which in our data cannot be reliably distinguished from 
p = 1), and c was limited to 8, which corresponds to p = 0.9933 for a set of 20 different frequencies (if B = 0; note that c′ 
of 8 corresponds to slightly lower values of p for larger sets of stimuli). In addition, a weak smoothing regularization was 
imposed, by adding to the computed error a value of 0.0001 times the sum of the squared differences between adjacent 
values of c and B. Initial values of c were calculated by setting B = 0 (for all j), and for B by setting c = 0. B was con-
strained to be positive with the smallest value being fixed at zero, which reduces the number of parameters without loss of 
any power to fit the model to data.

Each fit was run 10 times with independent uniform noise added to all initial values (±0.0001), generated separately for 
each fit. Final values of c and B were averaged across fits. This led to very good fits to the majority of confusion matrices 
(75% of confusion matrices are fitted with an R2 of >0.93 and RMS error of <0.02). Representative examples of confusion 
matrices predicted from fitted parameters are shown in Fig A in S1 Text. Fig A in S1 Text also shows fitted values of B, 
demonstrating how it factors those characteristics of the confusion matrix which are not dependent on which modulation 
frequency is presented.

Performance was optimized by varying the time constant, t, of the alpha function (1, 2, 5, 10, 20, 50 ms). For each data-
set (varying only in modulation frequency) in each neuron, the results from the alpha function with the maximum overall c′ 
across modulation frequency was taken as the modulation transfer function for c′ (MTF-c′), and used for further analysis.

Classification by ensembles of neurons was tested by an extension of the spike-timing metric to include distance 
measures from multiple neurons, which has been previously used to estimate decoding accuracy in neural populations 
[39,112,113]. This metric considers the multiunit spike train distance between two stimulus conditions to be the Pythago-
rean sum of the individual distances:

 
Si,j =

√∑
n∈N s(n)i,j

2

 (4)

where s(n)i,j is the distance between two spike trains i and j, for neuron n. N denotes the set of neurons in this particular 
ensemble.

As with the single neuron calculations, template and test spike trains were drawn at random, but this time for all neu-
rons in the ensemble, and spike overall distances calculated. The classifier chose the template which was closest to the 
test-spike train ensemble according to equation 4. For each modulation frequency, this process was repeated 500 times to 
generate a confusion matrix. From the single resulting confusion matrix generated from each ensemble of neurons, c′ was 
computed in the same way as for single neurons.

This method preserves the identity of each individual neuron, since spike trains are compared within each neuron 
for any given pair of stimuli, and this result is then combined across neurons. Hence this can be termed a “labeled-line” 
model. It is distinct from a “summed population” model which combines the responses from different neurons before com-
paring across stimuli [39], see [114] for an auditory example).



    

PLOS Biology | https://doi.org/10.1371/journal.pbio.3003213 June 16, 2025 23 / 33

Equation 4 results in a metric which weights all neurons in the ensemble equally. It is possible to choose these weights 
to optimize ensemble performance [112]. However, our goal was not to calculate absolute maximum performance (which 
is any case likely to be biased by the sample population), but to compare across different neuron types and stimulus 
conditions. Therefore we opted for the simple scheme of equal weights for all neurons, but varying the number of neu-
rons in an ensemble and in every case choosing those neurons which had the best average individual performance (for 
f
mod

 ≤ 600 Hz) given the ensemble size (e.g., for an ensemble size of 5, we chose the 5 best-performing neurons out of 
available data). Any given ensemble contained only neurons of one type, with stimuli at a given sound level. Modulation 
depth was always 100%, and neuron characteristic frequency and the carrier frequency were always greater than 3kHz 
(mean:12.1 kHz; s.d.:6.3 kHz; 88% above 5 kHz). Characteristic and carrier frequencies could vary in an ensemble, under 
the assumption this would have little impact on coding since there is little phase-locking to the carrier or component fre-
quencies above 2 kHz in these data [6]. We did not find any systematic differences in classification with characteristic fre-
quency, which pooling would tend to average the effects of. The results of this analysis proved straightforward to interpret.

Simulating “control” neurons which are well characterized using Vector Strength. This spike train classification 
method described is sensitive to any differences in absolute spike timing across different stimulus conditions, and it is 
sensitive to the reliability of spike timing from trial-to-trial (illustrated in Fig 1). This contrasts with the VS measure which 
summarizes the tendency for spikes to be close to the mean phase of firing as a single value. To quantify the added value 
of additional information in the spike train over this mean phase preference, we also simulated a “control” neuron which 
was well characterized by the VS value alone.

Simulated spike trains were generated using the von-Mises (“circular normal”) distribution which is a reasonable sum-
mary of PHs of cat auditory nerve fibers [115]. For a modulation period T

mod
 = 1/f

mod
, the density function is:

 
pκ,fmod (t)= 1

T Io(κ)
exp(κ cos(2πfmod t– µ )) (5)

where m is the mean phase and k is the concentration parameter, which is large for high values of VS where spikes are 

concentrated close to the mean phase, and Io(κ) =
1

2π

∫ π

–π
exp (κ cos (x)) dx.

Individual spike trains were simulated as an inhomogeneous Poisson process with a periodic time-varying firing rate 
which followed the von-Mises distribution across the modulation cycle such that the VS and mean spike rates matched the 
responses of individual neurons in response to individual stimuli [116]:

 λ(t) = T λ pκ,fmod(t) (6)

where λ  is the mean firing rate of the neuron, and k and m (in Equation 5) are set to match the VS and mean phase of 
that neuron in that stimulus condition.

The simulated conditions mimicked the conditions run for the neuron, and the simulated spike trains were subjected to the 
same classification process. The resulting c′ (Figs 2c and 3c) represents the classifier performance that would be expected if 
the measured VS provided a complete characterization of the neuron’s behavior in response to amplitude modulation.

Statistical models of modulation classification across the entire data set. To explore how modulation 
classification was related to the responses of individual neurons, different neuron types, and stimulus conditions, we 
developed several simple statistical models that related c′ to a combination of stimulus conditions and the statistics of the 
neuron’s responses. The same method was also applied to classifier hit-rate and F-1 score (see S1 Text).

First, we derived a best-fitting population modulation transfer function shape, Φ(fmod), optimized across the entire data-
set. This function is related to each individual MTF-c′ function by only a single scale factor:

 c′(predicted) = Φ (fmod)Si (7)
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where Si is the individual scaling factor which best predicts the ith MTF-c′ in the data. Values of Φ(fmod) are chosen for 
each modulation frequency to minimize sum of square error with all values of c′ across the entire dataset, with values of 
Si being treated as random effects. This empirically derived function was normalized after fitting to be 1 at 50 Hz, and the 
resulting function values dropped to ~0.1 by 1 kHz (shown in Fig 5c). This yields a model which is the theoretical best fit of 
a single transfer function shape to the data.

A different form of this model, which sought to determine the underlying factors which determine the differences 
between different neurons, and datasets within each neuron, replaced Si with a function of sound level and modulation 
depth. Considering first how the stimulus conditions alone predict neural envelope classification:

 c′(predicted) = Φ (fmod) [l1λ30 + l2λ50 + d1δ1 + d2δ2 ] (8)

Sound level and modulation depth were represented as 3-level categorical variables. Sound levels were 30, 50, and 
70 dB SPL, with other levels (which constituted 30% of the entire dataset) rounded to these values in order to reduce the 
number of model parameters. Modulation depths were 50%, 100%, and 200%, respectively (other shallower modulation 
depths constituted only 2% of the entire dataset and are omitted from analysis). Thus, l

1
, l

2
, d

1
, and d

2
 are free parameters 

in the model, and λ and δ code levels and depths (i.e., λ30 = 1 when the sound level is 30 dB SPL and is zero otherwise, 
enabling l

1,2
 and d

1,2
 to behave as would category levels in an ANOVA, with n − 1 = 2 degrees of freedom. Thus, parame-

ters in Equation 8 measure the departure from the mean values for 70 dB SPL and 100% modulation depth). The result 
was a 4-parameter model fitted to 916 MTF-c′ functions.

In order to explore how neuron type contributed to classification, above that of the stimulus condition, a third form of 
this model included an additional term, σi representing the neuron type.

 
c′(predicted) = Φ (fmod)

[
l1λ30 + l2λ50 + d1δ1 + d2δ2 +

∑i wiσi

]
 (9)

and wi was a scaling factor for neuron type, chosen to maximize the fit to all of the data.
To explore how specific aspects of spike timing contributed to classification, above that of the stimulus condition, a final 

form of this model included one or more additional terms, each of which were based on a spike train statistic (e.g., VS):

 c′(predicted) = Φ (fmod) [l1λ30 + l2λ50 + d1δ1 + d2δ2 + wσi + . . . ] (10)

where σI could be some characteristic of the neuron or individual modulation transfer function (e.g., VS, Z
ISI

 (described 
below), CV) and w was a single weighting factor chosen to maximize the fit to all the data.

Spike-timing dependence: ZISI metric. We derived several statistics to describe the way that information was 
encoded in spike trains, which were included in the non-linear regression models as predictors. These statistics indexed 
conceptually (if not mathematically) distinct aspects of the spike code.

A simple model of spiking behavior in a neuron is that consecutive spikes occur independently as a simple probabilistic 
function of the stimulus. The precise timing of spikes can carry information about the stimulus, encoded as a rapidly vary-
ing firing rate. In the case here, where the stimulus is varying periodically, the PH provides a complete description of the 
spiking behavior as the varying rate across one period.

To test whether the phase of the stimulus at which the spike occurred could account for ISI statistics [for full details 
see: [28], see also: [117], a surrogate spike train was created for each original spike train by randomly shuffling the period 
within which each spike occurred, whilst maintaining the phase of each spike. “Shuffled” ISI distributions should be the 
same as the originals if the phase alone completely described the spike timing behavior. For each pair of spike trains i,j 
(i ≠ j) the difference between the original and shuffled ISI distributions (xij) was calculated as the root mean square error 
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(RMSE) between the ISI probability density functions of the original spike train i and shuffled spike train j. The RMSE was 
also computed between both original spike trains i and j (yij). A z-score statistic was then computed as (E{x} − E{y})/(E{y2} 
− E{y}2)1/2. This calculation was repeated for 100 sets of surrogate spike trains and averaged to give a final Z

ISI
 statistic. In 

effect, the Z
ISI

 metric characterizes the degree to which the timing of the next spike depends on the previous spike, and 
not on the phase of the modulation as expected for pure Poisson or firing rate behavior.

Inclusion of the statistics in the regression models was performed in one of two ways. In most instances, we took a single 
value of Z

ISI
 from each modulation transfer function, computed for the modulation frequency closest to 150 Hz. This 

choice was not critical, since within a single modulation transfer function, Z
ISI

 was correlated across modulation fre-
quency, and dropped with increasing modulation frequency. In the second approach (explored in S1 Text) Z

ISI
, as well 

as other statistics, were taken from each individual modulation frequency and used within the regression models.
Inter-spike interval statistics to characterize temporal structure: Shuffled autocorrelation. Inter-spike 

interval statistics were computed from normalized shuffled auto-correlograms [SACs: 118]. To characterize the peaks 
in the SACs we employed a peak-picking algorithm to pick out the locations of the statistically significant peaks in 
the SAC in the range  ±1.1 × the modulation period. The algorithm iteratively sub-divided the SAC into progressively 
more local minima and maxima. Specifically, starting with the whole function, the maximum and minimum in the 
function were found. The maximum determined a peak in the SAC. The SAC function was then subdivided at the 
point of the found maximum, and the maxima and minima in each subdivision found, to potentially identify two more 
peaks. Peaks were identified, and sub-division continued, as long as the distance from peaks to adjacent troughs 
exceeded the peak-to-trough distance measured in the SACs of random spike trains of the same duration and spike 
count, with p < 0.001 (the bootstrapped probability of observing a given peak-to-trough distance). Visual inspection of 
the output revealed that this was successful in identifying and quantifying peaks at low modulation frequencies.

The peak-to-trough distances of peaks within the SAC were used as statistics within the regression models. Each 
of the peaks became a separate predictor variable in the model. SAC functions are near symmetrical around an 
autocorrelation lag of zero, and form repetitive decaying patterns which repeat at multiples of the lag correspond-
ing to the period of the modulation. Therefore, we only included the zero-lag peak, the peak at a positive lag of one 
period, and (up to) the four largest peaks between these. Non-significant peaks were coded as having an ampli-
tude of zero. Similar to Z

ISI
, these values were taken either from a single modulation frequency for each modulation 

transfer function, or individually from each modulation frequency. Following inspection of the pair-wise correla-
tions between the heights of different peaks within SAC, and a systematic exploration of the inclusion of different 
peaks within the regression models, the zero-lag peak was omitted from most presented models as it was highly 
correlated (R2 = 0.81) with the peak at the lag corresponding to the modulation period and including both did not 
improve the predictive power of models.

PSTH derived statistics: Reliability and neural fluctuation. From the peristimulus time histograms (PSTHs), 
we derived two statistics. Reliability [41] is a way of measuring the variability in response across trials. This was 
computed as the Pearson correlation of two separate PSTHs derived from the responses to the odd and even 
presentations of a given stimulus. Prior to computing the Pearson correlation, each PSTH was convolved with 
a Gaussian smoothing window with a standard deviation of 0.24 ms. Neural fluctuation [41] measures the total 
amount of change in the firing rate throughout the response, as an index of the magnitude of the temporal features, 
which does not require them to be related to the stimulus or any particular coding strategy. Neural fluctuation was 
computed from the PSTH made from all presentations of a given stimulus. The PSTH was first convolved with a 
Gaussian window having a standard deviation of 0.48 ms before the neural fluctuation was computed as the sum of the 
absolute value of the first differential, normalized by dividing by the length of the PSTH. Similar to Z

ISI
, these statistics 

were taken either from a single modulation frequency of 150 Hz for each modulation transfer function, or individually from 
each modulation frequency.
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Supporting information

S1 Text.   Fig A. Examples of fitted confusion matrices using the softmax model. A. The example sustained chopper 
neuron from Fig 2 in the paper. b. The example primary-like neuron from Fig 3 in the paper. c. A primary-like notch neuron 
which demonstrates a clear where the classifier is systematically bias toward choosing high modulation frequencies. d. An 
onset-chopper neuron which is less well modeled than 88% of the data. The leftmost panels reproduce the directly 
calculated confusion matrix. The middle panel shows the predicted confusion matrix from the best fitting values of c′ and 
B. The rightmost panel shows c′ and B. Dotted lines show the maximum and minimum values derived from 10 separate 
fits run with different starting parameters, and give some indication of the reliability of the fitting process. The orange line 
shows the hit rate for comparison. Fig B. Modulation Transfer Functions as a function of sound level when modula-
tion depth is 200%, derived from a spike timing classifier (MTF-c′) or phase-locking (MTF-VS). a. Maximum c′ at the 
peak of the corresponding modulation transfer function, split by neuron type, and sound level. b. Proportion of MTF-c′ 
shapes classified as lowpass, split by neuron type and sound level. c. Mean population MTF-c′ for sustained chopper 
neurons as a function of sound level, frequency-normalized to BMD-c′. d. Mean population MTF-c′ for primary-like neu-
rons as a function of sound level. e. Peak vector strength values and f. proportion of lowpass MTF-VS as a function of 
neuron type and level. g. Mean population MTF-VS for sustained chopper neurons as a function of sound level, frequency 
normalized to BMF-VS. h. Mean population MTF-VS for primary-like neurons as a function of sound level. Fig C. Classi-
fier Modulation Transfer Functions (MTF-c′) at shallow modulation depths is 200%. a. Modulation transfer functions 
in sustained chopper neurons for a modulation depth of 50%. Individual functions where c′ >1 for at least one modulation 
frequency are shown as colored lines (n = 12). Functions which do not exceed c′ = 1 are shown in gray (n = 7). b. Modula-
tion transfer functions in sustained chopper neurons for a modulation depth of 20%. c. Modulation transfer functions in all 
other neuron types for a modulation depth of 50%. d. Modulation transfer functions in all other neuron types for a modula-
tion depth of 20%. Fig D. Classifier Modulation Transfer Functions (MTF-c′) for small differences in modulation 
frequency. a. Modulation transfer functions in seven sustained chopper neurons and one pause/build-up neuron for a 
modulation frequency steps of 25 Hz. Line style represents sound level. Different lines with the same style are different 
example neurons. b. Modulation transfer functions in a single transient chopper-neuron at very low modulation frequen-
cies (<50 Hz) and very small frequency steps (5 Hz) at several sound levels. Fig E. Details of the behavior of the ZISI 
statistic. a. The frequency dependence of Z

ISI
 for each neuron type. Shaded areas show standard error of the mean. b. 

Mean values of Z
ISI

 from each dataset, calculated as the average of all values for f
mod

 < 1kHz. Dashed line indicates a value 
of 2 (units are standard deviation) which was proposed by Laudanski and colleagues (2010) as one of the criteria for 
mode-locking. c. Mean values of Vector Strength for each dataset (mean for f

mod
 <1 kHz), following the interval shuffling 

proposed as the second criteria for mode-locking. d. Rayleigh criterion values following interval shuffling. Laudanski and 
colleagues proposed phase locking should be nonsignificant following interval shuffling if responses were mode-locked. 
Dashed line indicates a Rayleigh value of 13.8 (below this corresponding to p > 0.001). Fig F. Further comparisons of 
how different statistics predict classification performance. In most cases, the statistics are drawn from f

mod
 ~ 150 Hz 

and applied across all modulation frequencies within a dataset, and the stated number of parameters is added to a model 
with stimulus-only parameters. Purple bars show the predictive power when the statistics are instead drawn from the 
specific modulation frequencies. Note that the theoretical maximum does not apply to the purple bars, since the predic-
tions can vary in frequency dependence (transfer function shape) between datasets. The underlying data for this figure is 
contained in S4 Data. Fig G. Frequency dependence of the number of significant SAC peaks for each neuron type. 
The underlying data for this figure is contained in S5 Data. Fig H. How different SAC peaks contribute to  
predictions of classification performance. In all cases, the statistic is drawn from f

mod
 ~ 150 Hz and applied across all 

modulation frequencies within a dataset, and the stated number of parameters is added to a model with stimulus-only 
parameters. The underlying data for this figure is contained in S6 Data. Fig I. Reproducing the main findings using 
classifier hit-rate. a. Examples of classifier performance as hit rate, for the exact same sets of neurons as in Fig 4. b. 

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3003213.s001
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The range best modulation frequencies when classification is expressed as hit rate, for each neuron type at low-level 
sound levels. This reproduces Fig 6a. c. Mean of modulation transfer functions relative to hit rate BMF, at low sound 
levels. This reproduces Fig 6b. d. Mean of modulation transfer functions for each neuron type as a function of absolute 
modulation frequency, reproducing Fig 5a. e. The best possible prediction of hit rate when the transfer function is modeled 
as a single function which can only differ by a scale factor between neurons, sound levels and modulation depth. f. 
Reproduction of the statistical regression models from Fig 9a, when classifier performance is expressed as hit rate. g. 
Modulation transfer functions for small populations of neurons when hit rate is the measure of classifier performance. The 
underlying data for this figure is contained in S7 Data. Fig J. Reproducing the main findings using classifier 
F1-score. a. Examples of classifier performance as F1-score, for the exact same sets of neurons as in Fig 4. b. The 
range best modulation frequencies when classification is expressed as F1 score, for each neuron type at low-level 
sound levels. This reproduces Fig 6a. c. Mean of modulation transfer functions relative to F1-score BMF, at low sound 
levels. This reproduces Fig 6b. d. Mean of F1 modulation transfer functions for each neuron type as a function of 
absolute modulation frequency, reproducing Fig 5a. e. The best possible prediction of F1-score when the transfer 
function is modeled as a single function which can only differ by a scale factor between neurons, sound levels, and 
modulation depth. f. Reproduction of the statistical regression models from Fig 9a, when classifier performance is 
expressed as F1-score. g. Modulation transfer functions for small populations of neurons when F1-score is the mea-
sure of classifier performance. The underlying data for this figure is contained in S8 Data. Fig K. Pairwise correlations 
between the various predictors in the statistical regression. The statistics apply to responses for f

mod
 ~ 150 Hz. To 

reduce the total number of plots, the SAC peaks are shown as a simple unweighted sum. Fig L. The classifier resolu-
tions which yield the best performance, split by neuron type. The underlying data for this figure is contained in 
S9 Data. Fig M. Partial reproduction of Fig 6 in the main paper showing the impact of a reduced temporal 
resolution in the classifier. Upper panels (a) and (b) show results reproduce these panels as they appear in the main 
paper, where the classifier resolution was chosen to maximize the performance of each MTF. Lower panels (c) and (d) 
show the equivalent analysis for a fixed classifier resolution of τ = 10 ms. The underlying data for this figure is contained 
in S10 Data. Fig N. Reproduction of Fig 7 in the main paper showing the impact of a reduced temporal resolu-
tion in the classifier. Upper panels (a)–(d) reproduce these panels as they appear in the submitted manuscript, where 
the classifier resolution was chosen to maximize the performance of each MTF. Lower panels (e)–(h) show the same 
analysis for a fixed classifier resolution of τ = 10 ms.
(PDF)

S1 Data.  The individual numerical values that underlie the summary data displayed in Fig 5b, 6a, and 6c. 
(XLSX)

S2 Data.  The individual numerical values that underlie the summary data displayed in Fig 9a. 
(XLSX)

S3 Data.  The individual numerical values that underlie the summary data displayed in Fig 9b, 9c, 9e, and 9f. 
(XLSX)

S4 Data.  The individual numerical values that underlie the summary data displayed in Fig F in S1 Text. 
(XLSX)

S5 Data.  The individual numerical values that underlie the summary data displayed in Fig G in S1 Text. 
(XLSX)

S6 Data.  The individual numerical values that underlie the summary data displayed in Fig H in S1 Text. 
(XLSX)
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