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Abstract 

Brain-Computer Interfaces (BCI) have opened up opportunities by advancing the technology, 

offering new possibilities in both practical applications and theoretical research. Individuals 

with Completely Locked-in Syndrome, which can result from conditions such as Motor 

Neurone Disease and Amyotrophic Lateral Sclerosis, stand to gain significantly from BCIs 

developments aimed at enhancing communication and overall well-being. This PhD research 

focuses on developing a system to recognise imagined thoughts through 

Electroencephalography (EEG) brain signals and Artificial Intelligence (AI), with the goal 

of implementing a novel methodology to establish a direct communication link between 

brain functionality and computer interfaces. 

Developing effective systems for transforming EEG signals into practical communication 

outputs for various mental tasks presents significant challenges in the field of signal 

processing. A novel approach, termed Automated Sensory and Signal Processing System 

(ASPS), is introduced for feature extraction and selection in EEG signal data. This method 

enhances the reliability of EEG-based communication by identifying and selecting the most 

relevant features for classification. The ASPS approach is initially implemented with an 

elementary model and tested through bespoke analysis. The study is subsequently scaled up 

by increasing the number of subjects, forming groups, and incorporating various domains 

analysis in signal processing and statistical functions. Artificial Neural Networks (ANNs) 

are employed for classification, simultaneously verifying the performance of the ASPS 

approach. The extracted features, generated as outputs of the ASPS approach, serve as inputs 

to the ANN. High-quality features that are consistent and distinguishable for each mental 

task facilitate high accuracy in brain signal classification, demonstrating the effectiveness of 

the feature extraction technique. 

In this study, feature extraction is significantly enhanced by the ASPS approach, leading to 

more accurate mental imagery recognition. These extracted features are classified using 

ANN algorithms, specifically Feed Forward Neural Networks (FFNN) and Learning Vector 

Quantisation, demonstrating high accuracy across bespoke, group-based, and combined 

analyses. Six different ANN architectures with various combination of neurons and hidden 

layers are employed. Additionally, Convolutional Neural Network, a widely used image 

processing technique, is utilised in another experiment to classify signals, demonstrating the 

capability to recognise imagined thoughts. Based on these architectures, different ANN and 
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CNN models are trained and tested to identify the most optimised classifier for imagination 

recognition. The performance of these classifiers is summarised and compared to evaluate 

the robustness of the classification algorithms. Overall, the single-layered FFNN ensures 

very consistent and high accuracy in imagination recognition. 

Furthermore, EEG sensor optimisation is explored through extensive analysis, followed by 

a thorough validation of the optimised sensors. These optimised sensors simplify signal 

processing and enhance the accuracy of imagination recognition. Finally, an experiment with 

a novel product, the EEG-BCI prototype, introduces an optimised sensor-based interface that 

enables EEG recording from the scalp and the identification of two distinct thoughts 

according to the proposed methodology. The system's upward-trending performance 

indicates potential for future enhancements, paving the way for an affordable and accessible 

solution that empowers individuals with disabilities to interact with their surroundings and 

improve their overall well-being. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



v 

 

Acknowledgement 

With deep humility, I acknowledge the infinite mercy and guidance of Almighty God. I 

would like to extend my heartfelt gratitude to Nottingham Trent University for offering the 

PhD Vice-Chancellor Scholarship, which enabled me to undertake this research. My deepest 

thanks go to my Director of Study, Professor Amin Al-Habaibeh, for his exceptional support, 

constant encouragement, insightful guidance, and continuous motivation throughout my 

PhD journey. His dedicated supports to my academic and personal growth have been truly 

inspiring and invaluable. I am also profoundly grateful to my second supervisor, Dr Ahmet 

Omurtag, for providing the commercial EEG system and accessories, valuable guidance, 

arranging technical training, and offering technical support in EEG data collection and 

analysis. I also extend my thanks to Dr Luke Siena for his insightful guidance as my 

independent assessor. Additionally, my sincere thanks go to Dr Ana Souto for providing 

excellent academic support throughout my PhD journey. 

I sincerely appreciate the academic, administrative, and library staff, as well as my 

colleagues at Nottingham Trent University, for their support and encouragement throughout 

my studies. I am also grateful to the volunteers who dedicated their time to the experiments. 

Special thanks to the ADBE technical team, particularly James, for facilitating lab 

arrangements, and to Susan Allcock for providing essential electronic support. Additionally, 

I thank Mr. Yusef Al-Habaibeh for recording the instructional voiceovers and Mr. Ahmed 

Al-Habaibeh for managing the audio editing process. 

My deepest gratitude goes to my parents, Entomologist Sanjoy Majumdar and Sumitra 

Majumdar, for their blessings, love, and unwavering support. I am also immensely thankful 

to my elder brother, Mr Soumitra Majumdar, and sister-in-law, Tuly Majumdar, whose 

continuous support allowed me to focus on my PhD by managing my family commitments. 

My sincere appreciation extends to my parents-in-law, Advocate Devashis Sen and Khushi 

Sen, for their blessings and good wishes, and to my brother-in-law, Advocate Avijit Sen, 

and sister-in-law, Antara Sen, for their constant support in handling family responsibilities, 

enabling me to complete my PhD. Finally, I am profoundly grateful to my husband, Dr Arijit 

Sen, whose steadfast support and countless sacrifices have been instrumental in this 

achievement. To my children, Anandi Sen and Aniruddha Sen, I deeply appreciate your 

patience and understanding, especially when I could not always be present. Your love and 

support have been invaluable throughout this journey. 



vi 

 

Publication List  

 

Published papers: 

Majumdar, S., Al-Habaibeh, A., Omurtag, A., Shakmak, B. and Asrar, M. (2023) ‘A novel 

approach for communicating with patients suffering from completely locked-in-syndrome 

(CLIS) via thoughts: Brain computer interface system using EEG signals and artificial 

intelligence’, Neuroscience Informatics, 3(2), p. 100126. Available at: 

https://doi.org/10.1016/j.neuri.2023.100126. 

 

Paper presentation: 

Majumdar, S., Al-Habaibeh, A. and Omurtag, A. (2024) ‘AI-enhanced low-cost EEG 

system: bridging accessibility gaps for physically disabled individuals’, ADBE Research 

Conference, Nottingham Trent University.  Presentation date: 24 June 2024 

 

Paper presentation:  

Majumdar, S., Al-Habaibeh, A. and Omurtag, A. (2024) ‘Empowering the physically 

disabled through AI-enhanced, low-cost EEG technology’, East Midlands Doctoral 

Network (EMDoc) PGR Conference (online). Hosted by: Universities for Nottingham 

(UfN).  Presentation date: 25 September 2024 

 

Poster presentation: 

Majumdar, S., Al-Habaibeh, A. and Omurtag, A. (2021) ‘Advanced Artificial Intelligence 

system to identify communication messages via Brain signals’, ADBE Research 

Conference, Nottingham Trent University.  Presentation date: 9 July 2021  



vii 

 

List of Figures 

Figure 1.1: The concept of identifying thoughts for computer interface using the ASPS 

approach. ................................................................................................................................ 4 

Figure 1.2: The structure of the thesis. ................................................................................... 9 

Figure 2.1: Brain components and functions including limbic system. ............................... 12 

Figure 2.2: Diagrammatic delineation of neurons (Carter et al., 2019). .............................. 13 

Figure 2.3: Schematic diagram of (A) EEG measurement process (Li et al., 2022), (B) a 

typical EEG system. ............................................................................................................. 19 

Figure 2.4: International 10-20 EEG system (A) 19 electrodes placement, (B) side view of 

10%-20% electrode distances, (C) top view of 10%-20% electrode distances (Shriram et 

al., 2012). ............................................................................................................................. 21 

Figure 2.5: Schematic representation of different brain imaging techniques. ..................... 27 

Figure 2.6: Sub-band decomposition in DWT (Cvetkovic, Übeyli and Cosic, 2008). ........ 34 

Figure 2.7: FFNN architecture (Montesinos López Osval Antonioand Montesinos López, 

2022). ................................................................................................................................... 42 

Figure 2.8: LVQ architecture (Bhardwaj, 2012). ................................................................. 42 

Figure 2.9: CNN architecture (Tsinalis et al., 2016). ........................................................... 43 

Figure 3.1: The methodology of the research. ..................................................................... 49 

Figure 3.2: Block diagram of the ASPS approach developed by Al-Habaibeh and Gindy 

(2000). .................................................................................................................................. 50 

Figure 3.3: Volunteers wearing EEG cap and participating in prior signal acquisition. ..... 52 

Figure 3.4: Signal pre-processing. ....................................................................................... 53 

Figure 3.5: The block diagram of the ASPS approach applied to brain signal processing in 

this research. ......................................................................................................................... 55 

Figure 3.6: Volunteers participating in EEG signal acquisition (second phase).................. 61 

Figure 3.7: The cross-tabulation analysis template designed for subject vs sensors. .......... 64 

Figure 4.1: Selected sensors and their scalp locations for bespoke analysis. ...................... 66 

Figure 4.2: Flowchart of ASPS approach for bespoke analysis. .......................................... 67 

Figure 4.3: (A) Raw signals for relax and mental task and (B) copper scale map............... 68 

Figure 4.4: Heatmap of imaginations with selected features for bespoke analysis. ............ 70 

Figure 4.5: ASM of bespoke experiment for (A) subject 1 and (B) subject 2. .................... 72 

Figure 4.6: The design of verification steps for bespoke analysis. ...................................... 73 

Figure 4.7: Best classification accuracy of four models for all ANN architecture. ............. 75 



viii 

 

Figure 4.8: Average performance of three datasets for all models. ..................................... 76 

Figure 4.9: Average performance comparison for subject-wise training and imaginations 

for all models........................................................................................................................ 77 

Figure 5.1: Wavelet decomposition (Cvetkovic, Übeyli and Cosic, 2008). ........................ 81 

Figure 5.2: Flowchart of ASPS approach for group-based analysis. ................................... 82 

Figure 5.3: Illustration of uniqueness of imaginations and mapping between subjects. ...... 84 

Figure 5.4: The design of verification steps for group-based analysis. ............................... 88 

Figure 5.5: Best classification accuracy of group-based analysis for all ANN architecture 

(A) two imaginations, and (B) three imaginations. .............................................................. 89 

Figure 5.6: Highest accuracy summary. ............................................................................... 90 

Figure 5.7: Best Average performance summary for group-based analysis. ....................... 92 

Figure 6.1: Schematic diagram of combined analysis. ........................................................ 98 

Figure 6.2: Uniqueness of imaginations in image processing technique (A) imagination 1, 

(B) imagination 2, (C) imagination 3, (D) imagination 4, (E) imagination 5. ................... 100 

Figure 6.3: The design of verification steps for combined analysis. ................................. 102 

Figure 6.4: Maximum classification accuracy of group-based analysis using ASPS and 

image processing technique. .............................................................................................. 103 

Figure 6.5: Average performance of group-based analysis using ASPS and image 

processing technique. ......................................................................................................... 104 

Figure 7.1: Validation process of imagination recognition using optimised sensors. ....... 111 

Figure 7.2: Performance comparison of bespoke analysis between two phases data. ....... 115 

Figure 7.3: The performance trend of bespoke analysis between two phases data and 

methods. ............................................................................................................................. 116 

Figure 7.4: Performance comparison of combined analysis between two phases data. .... 118 

Figure 8.1: The schematic diagram of EEG-BCI for signal acquisition. ........................... 125 

Figure 8.2: Hardware setup using EEG click board and NI 6009 DAQ for signal 

acquisition. ......................................................................................................................... 126 

Figure 8.3: Single sensor-based EEG-BCI prototype. ....................................................... 127 

Figure 8.4: Signal acquisition using prototype. ................................................................. 128 

Figure 8.5: The accuracy of single sensor-based EEG-BCI prototype (A) Maximum 

performance and (B) average performance. ....................................................................... 129 

Figure 8.6: The application view (A) before recording and (B) after recording................ 130 

Figure 8.7: New design of the hardware setup using three sensors-based EEG-BCI 

prototype for signal acquisition. ......................................................................................... 130 



ix 

 

Figure 8.8: The connectivity of three EEG Click boards and NI 6009 DAQ. ................... 131 

Figure 8.9: Sensor cables (A) unshielded cables (B) shielded cables. ............................... 132 

Figure 8.10: Newly developed EEG-BCI prototype (A) top view and (B) side view. ...... 132 

Figure 8.11: Signal acquisition with newly developed EEG-BCI prototype. .................... 133 

Figure 8.12: Signal visualisation (A) raw signal recording using EEG-BCI prototype and 

(B) corresponding FFT plot. .............................................................................................. 133 

Figure 8.13: Average classification accuracies of EEG-BCI prototype between various 

partitions. ............................................................................................................................ 134 

Figure 8.14: Classification performance of EEG-BCI prototype using ASPS using four-part 

frequency domain generated SCFs..................................................................................... 135 

Figure 8.15: Classification performance of EEG-BCI prototype using ASPS using five-part 

frequency domain generated SCFs..................................................................................... 135 

 

 

 

  



x 

 

List of Tables 

Table 2.1: Brainwaves information (Bharti et al., 2021). .................................................... 14 

Table 2.2: Comparison of brain imaging techniques. .......................................................... 26 

Table 2.3: Commercial EEG devices (Ledwidge, Foust and Ramsey, 2018; Dadebayev, 

Goh and Tan, 2022).............................................................................................................. 28 

Table 2.4: Overview of EEG signal pre-processing, feature extraction, and feature selection 

techniques and their key attributes. ...................................................................................... 30 

Table 2.5: Classification algorithms. ................................................................................... 38 

Table 2.6: Utilisation of classifiers and their accuracies in EEG classification studies. ..... 40 

Table 3.1: Selected imagination list. .................................................................................... 52 

Table 3.2: Hyperparameters of developed FFNN model. .................................................... 58 

Table 3.3: Hyperparameters of developed LVQ model. ...................................................... 59 

Table 3.4: CNN configuration and hyperparameters of developed CNN model. ................ 59 

Table 3.5: CNN configuration and hyperparameters of developed CNN model (continued 

from previous page). ............................................................................................................ 60 

Table 3.6: The summary of participant demographics......................................................... 62 

Table 4.1: Definitions and equations of four statistical functions. ...................................... 68 

Table 4.2: SCFs calculation for bespoke analysis. ............................................................... 69 

Table 4.3: ANN model architectures for imaginations classification for bespoke analysis.74 

Table 5.1: Features calculation for group-based analysis. ................................................... 83 

Table 5.2: Group formation for group-based analysis. ........................................................ 87 

Table 5.3: ANN model architectures for imaginations classification in group-based 

analysis. ................................................................................................................................ 88 

Table 5.4: Best average performances for two-imagination and three-imagination 

classification. ........................................................................................................................ 91 

Table 6.1: Definitions and equations of fifteen statistical functions for combined 

experiment. ........................................................................................................................... 97 

Table 6.2: Features calculation for all subjects combined experiment. ............................... 99 

Table 7.1: Summarised rating point table. ......................................................................... 107 

Table 7.2: Cross-tabulation between subjects and sensors. ............................................... 109 

Table 7.3: Group formation based on sensor optimisation. ............................................... 110 

Table 7.4: Performance summary of bespoke result using ASPS through FFT. ............... 113 

Table 7.5: Performance summary of group-wise result using ASPS through FFT. .......... 114 



xi 

 

Table 7.6: Performance summary of bespoke result using ASPS through FFT and DWT.

 ............................................................................................................................................ 115 

Table 7.7: Performance summary of group-wise result using ASPS through FFT and DWT.

 ............................................................................................................................................ 117 

Table 7.8: Comparative table of similar studies and this study. ........................................ 120 

 

 

 

 

 

 

 

 

 

 

  



xii 

 

Nomenclature 

 

ALS   Amyotrophic Lateral Sclerosis 

AI   Artificial Intelligence 

ANN  Artificial Neural Networks 

ASM  Association Matrix 

ASPS  Automated Sensory and Signal Processing Selection System 

BCI  Brain-Computer Interfaces 

CNN  Convolutional Neural Network 

cA  Approximation Component 

cD  Details Component 

DBN  Deep Belief Networks 

DNN  Deep Neural Networks 

Δ   Delta 

DWT  Discrete Wavelet Transform 

EEG   Electroencephalography 

FFNN  Feed Forward Neural Network 

FFT  Fast Fourier Transform 

KNN  K-Nearest Neighbours 

LDA  Linear Discriminant Analysis 

LVQ  Learning Vector Quantisation 

MLP  Multi-Layer Perceptron 

MND   Motor Neurone Disease 

NN  Neural Network 

RF  Random Forest 



xiii 

 

SAE  Sparse Autoencoder 

SCF  Sensory Characteristics Features 

SVM  Support Vector Machine 

WT  Wavelet Transform 

  



xiv 

 

Table of Contents 

 
Copyright Statement ............................................................................................................. ii 

Abstract ................................................................................................................................ iii 

Acknowledgement.................................................................................................................. v 

Publication List .................................................................................................................... vi 

List of Figures ..................................................................................................................... vii 

List of Tables.......................................................................................................................... x 

Nomenclature ...................................................................................................................... xii 

Table of Contents ............................................................................................................... xiv 

Chapter 1: Introduction .......................................................................................................... 1 

1.1 Background .................................................................................................................. 1 

1.2 Research Scope ............................................................................................................ 4 

1.3 Research Questions ...................................................................................................... 5 

1.4 Aim ............................................................................................................................... 6 

1.5 Objectives ..................................................................................................................... 6 

1.6 Deliverables and Contributions .................................................................................... 7 

1.7 Thesis Structure ............................................................................................................ 7 

1.8 Summary ...................................................................................................................... 9 

Chapter 2: Literature Review ............................................................................................... 11 

2.1 Introduction ................................................................................................................ 11 

2.2 Brain Functions and MND ......................................................................................... 11 

2.3 Brain Imaging Techniques ......................................................................................... 15 

2.3.1 Magnetic Resonance Imaging (MRI) and Functional Magnetic Resonance 

Imaging (fMRI) ............................................................................................................ 16 

2.3.2 Computed Tomography ...................................................................................... 17 

2.3.3 Positron Emission Tomography .......................................................................... 18 



xv 

 

2.3.4 Electroencephalography ...................................................................................... 18 

2.3.5 Magnetoencephalography ................................................................................... 22 

2.3.6 Near Infrared Spectroscopy and Functional Near Infrared Spectroscopy .......... 23 

2.3.7 Hybrid EEG-fNIRS ............................................................................................. 25 

2.4 Signal Processing Methods ........................................................................................ 28 

2.4.1 Signal Pre-processing .......................................................................................... 29 

2.4.2 Feature Extraction and Selection ........................................................................ 32 

2.4.3 ASPS Approach .................................................................................................. 37 

2.5 Signal Classification .................................................................................................. 37 

2.5.1 Artificial Neural Networks .................................................................................. 41 

2.5.2 Image Processing and CNN ................................................................................ 43 

2.6 BCI Devices for Communication Systems ................................................................ 44 

2.7 Summary .................................................................................................................... 46 

Chapter 3: Research Methodology ....................................................................................... 49 

3.1 Introduction ................................................................................................................ 49 

3.2 First Phase: Algorithm Development and Analysis ................................................... 51 

3.2.1 Overview of Dataset ............................................................................................ 51 

3.2.2 Signal Pre-processing .......................................................................................... 52 

3.2.3 Signal Processing and Analysis .......................................................................... 54 

3.2.4 Imagination Recognition Using Classification Algorithm .................................. 57 

3.3 Second Phase: Sensor Optimisation and Algorithm Testing ..................................... 61 

3.3.1 Brain Signal Acquisition: .................................................................................... 61 

3.3.2 Signal Processing for Sensor Optimisation: ........................................................ 62 

3.4 Summary .................................................................................................................... 65 

Chapter 4: Bespoke Design for an Individual ...................................................................... 66 

4.1 Introduction ................................................................................................................ 66 

4.2 Workflow for Bespoke Analysis ................................................................................ 66 



xvi 

 

4.3 Feature Extraction and Selection for Bespoke Analysis ............................................ 68 

4.4 Performance of Classifiers for Bespoke Analysis ...................................................... 72 

4.5 Summary .................................................................................................................... 78 

Chapter 5: Imaginations Recognition Through Group-Based Analysis .............................. 80 

5.1 Introduction ................................................................................................................ 80 

5.2 Workflow for Group-based Analysis ......................................................................... 80 

5.3 Feature Extraction and Selection for Group-based Analysis ..................................... 82 

5.4 Performance of Classifiers for Group-based Experiment .......................................... 87 

5.5 Summary: ................................................................................................................... 94 

Chapter 6: Imaginations Recognition Through Image Processing ...................................... 96 

6.1 Introduction ................................................................................................................ 96 

6.2 Workflow for Combined Analysis ............................................................................. 96 

6.3 Feature Extraction and Selection with a Combined Method ..................................... 99 

6.4 Performance of Classifier for Combined Analysis .................................................. 102 

6.5 Summary: ................................................................................................................. 105 

Chapter 7: Sensor Optimisation and Validation................................................................. 107 

7.1 Introduction .............................................................................................................. 107 

7.2 Analysis of Sensor Optimisation .............................................................................. 107 

7.3 Cross-tabulation Analysis ........................................................................................ 108 

7.4 Group Creation ......................................................................................................... 110 

7.5 Validation ................................................................................................................. 111 

7.6 Result and Discussion .............................................................................................. 112 

7.6.1 ASPS through FFT ............................................................................................ 113 

7.6.2 ASPS through FFT and DWT ........................................................................... 114 

7.7 Assessment of Achieved Accuracy and Comparison with Existing Studies ........... 119 

7.8 Summary .................................................................................................................. 122 

Chapter 8: Design and Development of EEG-BCI Prototype ............................................ 124 



xvii 

 

8.1 Introduction .............................................................................................................. 124 

8.2 Design and Development ......................................................................................... 125 

8.3 Product Implementation ........................................................................................... 127 

8.4 Signal Acquisition .................................................................................................... 128 

8.5 Signal Processing ..................................................................................................... 128 

8.6 Classification ............................................................................................................ 129 

8.7 GUI-based Application Development ...................................................................... 129 

8.8 Summary .................................................................................................................. 136 

Chapter 9: Discussion and Conclusion .............................................................................. 138 

9.1 Introduction .............................................................................................................. 138 

9.2 Addressing Research Questions and Accomplishing Objectives............................. 138 

9.3 Contribution to The Knowledge............................................................................... 140 

9.4 Key Findings ............................................................................................................ 141 

9.5 Limitations and Future Work ................................................................................... 145 

9.6 Summary .................................................................................................................. 146 

References .......................................................................................................................... 148 

Appendix ............................................................................................................................ 170 

 



1 

 

Chapter 1: Introduction 

 

1.1 Background 

The transmission of information directly from the brain, achieved through the use of brain 

signals, is made possible by Brain Computer Interaction. People with physical disability and 

Motor Neuron Disease (MND) frequently experience impairments in body movement due 

to the disrupted communication between lower and upper motor neurons. Despite these 

physical limitations, cognitive abilities such as imagining and memorising usually remain 

intact. For those affected by Completely Locked-in Syndrome, often resulting from MND 

conditions such as Amyotrophic Lateral Sclerosis (ALS), Brain-Computer Interfaces (BCIs) 

offer significant potential to improve communication and overall quality of life (Lazarou et 

al., 2018). Much like individuals without disabilities, those experiencing physical 

impairments or MND are mostly capable of producing spontaneous electrical signals with 

their thought process. The psychological theories suggest that emotions can be more 

effectively detected through internal physiological signals, for instance, brain electrical 

activity since there is a strong connection between human’s emotional states and cognitive 

processes. Various applications have emerged by processing brain signals to recognise 

emotions (Wijeratne and Perera, 2012; Jirayucharoensak, Pan-Ngum and Israsena, 2014; 

Wan Ismail et al., 2016; Li, Chao and Zhang, 2019; Dadebayev, Goh and Tan, 2022; Dar et 

al., 2022), mental tasks (Lin and Hsieh, 2009; Agarwal, Shah and Kumar, 2015; Gupta et 

al., 2020), biometric pattern (Maiorana, 2020), imagined character (Ullah and Halim, 2021), 

shapes (Llorella et al., 2021), imagined words (Datta and Boulgouris, 2021), imagined 

colour (Yu and Sim, 2016) and more. 

Heraz and Frasson (2011) reveal that individuals with physical disabilities experience 

emotions and feelings that can be detected through brain signals.  Tan and Nijholt (2010)   

listed some potential techniques used as brain imaging technologies, for example, 

Electroencephalography (EEG), Magnetoencephalography (MEG), Functional Magnetic 

Resonance Imaging (fMRI), Functional Near Infrared Spectroscopy (fNIRS) and so on. 

Among these, EEG is noted for its continuous recording of brain wave patterns and is 

considered superior due to its high temporal resolution, non-invasiveness, portability, and 

cost-effectiveness. EEG significantly contributes to both medical diagnosis and biomedical 

engineering research field (Blinowska and Durka, 2006)  and therefore, greatly advancing 
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BCI technology. For individuals with ALS, communication options are limited, with eye 

activity-based systems (such as eye gaze) and cognitive activity-based systems (like P300 

BCI) being commonly used. A comparative study by García et al. (2017) found that BCIs 

offer greater control and comfort compared to eye-tracking systems. Some patients 

experience stress with eye-tracking systems because of the constant eye movements, 

prolonged focus on a single direction, and the requirement of wearing a head-mounted 

device. Moreover, eye-tracking systems are not suitable for use in a lying position. In 

comparison, BCIs involve fewer limitations and require less time commitment. 

Following the acquisition of brain signals, they are processed and analysed using various 

methods to advance BCI applications (Naseer and Hong, 2015; Niha and Banu, 2016; 

Aggarwal and Chugh, 2019). Signal processing in BCI is broad, involving the processing, 

classification, and conversion of brain signals into control commands through numerous 

techniques (Huang and Wang, 2021). Raw signals can be analysed using mathematical 

and/or statistical functions. To achieve higher performance brain signals are typically 

analysed across multiple domains, including time, frequency, and time-frequency. Time 

domain analysis reflects temporal characteristics of the signal (Bashashati et al., 2007). 

Among the various signal processing techniques, the Fast Fourier Transform (FFT), which 

extracts the characteristics features from the frequency domain, is widely utilised (Ishino 

and Hagiwara, 2003; Akrami et al., 2005; Murugappan and Murugappan, 2013; Sałabun, 

2014). Wavelet Transform (WT), another effective technique operates in time-frequency 

domain and employs variable window size with certain wavelet function. WT has been 

exemplified in many research work (Ishino and Hagiwara, 2003; Cvetkovic, Übeyli and 

Cosic, 2008; Kousarrizi et al., 2009; Nguyen et al., 2015; al-Qerem et al., 2020). Overall, 

feature extraction and selection are very challenging tasks for signal processing, which is 

being addressed by many researchers considering factors such as stationary and 

nonstationary signals, data size, reduction of feature dimension, artefacts or noise sensitivity, 

computation time, and method complexity (Lakshmi, Prasad and Chandra Prakash, 2014; 

Vaid, Singh and Kaur, 2015; Niha and Banu, 2016; Aggarwal and Chugh, 2019). Effective 

extraction and selection of relevant features enable improved classification performance. 

Significant research has successfully employed either FFT or Discrete Wavelet Transform 

(DWT) techniques to extract valuable features. In some cases, studies use both methods to 

determine the most effective approach; however, selecting the most appropriate signal 
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processing method based on the sensory signals and objectives remains a complex task in 

BCI development. 

Researchers often face the challenge of selecting distinct techniques for feature extraction 

and optimisation, which can be both time-consuming and resource intensive. To address this 

issue, Al-Habaibeh and Gindy (2000) introduced a novel concept known as Automated 

Sensory and Signal Processing System (ASPS), designed to automate the process of feature 

extraction and selection based on sensory signals. This approach, grounded in Taguchi’s 

orthogonal arrays, was initially applied to condition monitoring in milling processes. This 

research aims to investigate the application and effectiveness of the ASPS approach within 

the field of EEG-based sensor signals. While the ASPS method has been previously applied 

across various machinery domains, this research seeks to extend its application to brain 

signal processing, with the objective of extracting pertinent features for the recognition of 

imagined activities. 

The subsequent stage in brain signal analysis involves classification based on the extracted 

features, which enables brain signals to be interpreted as control commands for various 

applications (Bashashati et al., 2007; Aggarwal and Chugh, 2019). Artificial Intelligence 

(AI) based classification models can be used for this purpose; however, selecting an 

appropriate classifier from a wide array of classification and regression algorithms presents 

a significant challenge, as it depends on the characteristics of the sensory signals and the 

classifiers themselves. Machine learning (ML), a branch of AI, comprises various 

classification algorithms and statistical models that enable computers to learn and execute 

tasks independently. Commonly used classifiers include Support Vector Machines (SVM), 

Linear Discriminant Analysis (LDA), Naïve Bayes, K-Nearest Neighbours (KNN), and 

Artificial Neural Networks (ANNs), all of which have demonstrated adequate performance 

in brain signal classification (Niha and Banu, 2016). Among these, ANNs such as Feed 

Forward Neural Network (FFNN) (Sarić et al., 2020; Majoros, Oniga and Xie, 2021) as well 

as Learning Vector Quantisation (LVQ) (Pfurtscheller and Pregenzer, 1999; Mizuno et al., 

2010), have proven effective for specific tasks. Additionally, numerous researchers have 

applied other deep learning techniques to brain signal classification. Convolutional Neural 

Network (CNN), which are widely used for image processing and classification, feature 

multiple convolutional layers combined with activation functions to facilitate feature 

learning (Tsinalis et al., 2016; Wang et al., 2016; Acharya et al., 2018; Llorella et al., 2021). 
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Therefore, integrating the ASPS approach with AI would present a novel method for 

classifying EEG signals and advancing BCI applications. The concept of identifying 

thoughts to produce communication outputs (for example, cursor movement) using ASPS 

approach is demonstrated in Figure 1.1. This innovative approach aims to resolve the 

challenges associated with signal processing techniques in brain signal analysis by 

automatically extracting relevant features with less complex mathematical and 

computational methods.  

 

Figure 1.1: The concept of identifying thoughts for computer interface using the ASPS 

approach.  

Additionally, combining hardware with the developed signal processing and classification 

model could introduce a groundbreaking communication method within the BCI domain. 

This integration promises to enhance the efficiency and effectiveness of BCIs, making them 

more accessible and practical for users with severe physical impairments. 

1.2 Research Scope 

The scope of research in brain signal processing begins with the crucial phase of signal 

acquisition. This involves the deployment of EEG technology to capture brain signals. The 

quality and fidelity of EEG data are paramount; thus, research must focus on optimising 

electrode placement to ensure comprehensive coverage of the scalp and specific brain 

regions of interest. Moreover, the development and refinement of advanced techniques for 

minimising noise and artifacts, such as those caused by muscle movements and eye blinks, 

are essential. Investigating both real-time and offline acquisition methods allows for a 

thorough understanding of the advantages and limitations inherent in each approach, 

ensuring the most effective data collection strategy for subsequent analysis. 
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Once signals are acquired, the next important step is signal processing and analysis. This 

phase involves transforming raw EEG data into a format suitable for further examination. 

Preprocessing steps, such as noise reduction, filtering, and normalisation, are vital to 

enhance the quality of the data. Feature extraction techniques, which identifies essential 

characteristics from the EEG signals, are a focal point of research, with frequency and/or 

time-frequency analysis methods like FFT, WT being particularly promising. There are 

many other signal processing techniques being applied towards specific BCI applications. 

The integration of machine learning, ANNs, and Deep Neural Networks (DNNs) represents 

a frontier in brain signal processing research. Machine learning algorithms, encompassing 

both supervised and unsupervised learning paradigms, are employed to classify and interpret 

EEG signals. The adaptability and learning capabilities of ANNs and DNNs make them 

particularly suited for this task. These models can uncover intricate patterns and relationships 

within the data, facilitating more accurate predictions and interpretations of brain activities. 

Research in this area focuses on enhancing the architecture of neural networks by adjusting 

parameters such as the number of hidden layers and neurons, as well as refining train-test 

methodologies to improve their performance and reliability. 

Exploring network models, architecture, and performance is another pivotal aspect of brain 

signal processing research. Developing robust and efficient network models that can handle 

the complexity and variability of EEG data is essential. This involves experimenting with 

different network architectures to identify those that offer optimal performance in terms of 

accuracy, speed, and computational efficiency. 

In summary, the research scope in brain signal processing is vast and multifaceted, 

encompassing signal acquisition, signal processing and analysis, ANNs and optimal network 

model development. Each of these areas offers significant opportunities for innovation and 

advancement, driving forward our understanding and utilisation of brain signals in various 

applications. 

1.3 Research Questions 

This study investigates the development of a communication system that utilises EEG and 

AI to interpret thought messages through non-invasive brain signals. To explore this 

possibility, the primary question to be addressed is: Can a communication system be 

developed using non-invasive EEG and AI to interpret thought messages through brain 
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signals? This primary question leads to several specific research questions that must be 

answered: 

1. How do existing neuroscience principles, brain imaging technologies, and signal 

processing methodologies contribute to the development of an effective EEG-based 

BCI system? 

2. What and how can a brain signal processing algorithm be optimised to accurately 

extract and validate robust brain features using ANNs? 

3. How can EEG signals be systematically collected using a commercial EEG device, 

considering the number of subjects, trials, and mental tasks, to ensure the 

development and evaluation of the brain communication system? 

4. What optimisation strategies can be employed to enhance ANN performance in brain 

signal classification, and which architecture is best suited for this research? 

5. How can an EEG-BCI prototype be designed and developed to facilitate effective 

signal acquisition, processing, and communication, and how can its performance be 

systematically evaluated? 

1.4 Aim 

The project aims to develop an advanced artificial intelligence system capable of identifying 

and interpreting thought messages from EEG brain signals, thereby enabling a novel 

communication approach. 

1.5 Objectives 

1. To conduct a comprehensive literature review on fundamental neuroscience concepts, 

brain imaging systems, signal processing methods, classification algorithms, and 

relevant commercial products. 

2. To develop an EEG-based brain signal processing algorithm and analyse the captured 

signals using the algorithm, validating the results with appropriate ANNs. 

3. To conduct experiments to collect brain signals using a commercial EEG device.  

4. To optimise the parameters of neural network model and identify the most suitable 

ANN for this research. 

5. To design, develop an EEG based BCI prototype for recording EEG signals and a 

software interface and evaluate its effectiveness in creating a communication system.  
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1.6 Deliverables and Contributions 

Guided by the research questions, aim, and objectives, this study outlines key 

deliverables and contributions. These represent significant advancements in the field of 

BCIs, realised through innovative methodologies and meticulous analysis. 

1. Novel Implementation of ASPS Approach: A novel implementation of the ASPS 

approach for brain signal processing, contributing towards the advancement of BCI 

development. 

2. Distinguishable features for imagination: A unique combination of Sensory 

Characteristics Features SCFs that effectively capture the distinctiveness of recognising 

specific imaginations and highlight similarities across subjects. 

3. Optimised Sensor configuration: Identification of the optimal number and placement 

of sensors on the scalp to facilitate the recognition of thought messages from brain 

signals. 

4. Imagination Recognition Method: A robust methodology for recognising specific 

imaginations through the ASPS-based feature extraction approach, integrated with ANN 

for effective signal classification. 

5. Identification of Suitable ANN Model: Determination of the most suitable ANN model 

and layer architecture for different sets of imagination recognition. 

7. EEG based BCI Prototype: The novel communication product prototype capable of 

identifying thought messages through brain signals. 

1.7 Thesis Structure 

The thesis is organised into nine chapters, each addressing a specific aspect of the research. 

These chapters include the introduction, literature review, methodology, imagination 

recognition through bespoke analysis, imagination recognition through group-based analysis, 

imagination recognition through image processing, sensor optimization and validation, the 

development of a novel EEG-BCI prototype, and the conclusion. 

The structure of each chapter is outlined below: 

Chapter One: This chapter provides the background of the current research on the 

development of BCIs. It discusses the research scope, aligning it with the research questions, 

aim, objectives, deliverables and contributions. 
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Chapter Two: A comprehensive literature review covers fundamental neuroscience concepts, 

brain imaging systems, signal processing methods, classification algorithms, and relevant 

BCI products. The chapter concludes by identifying the research gap after evaluating other 

relevant studies. 

Chapter Three: The research methodology employed in this PhD study is presented in this 

chapter. It includes an explanation of the various stages of methodology, supported by 

graphical representations and flow charts. 

Chapter Four: This chapter presents a bespoke design for an individual analysis and 

development, employing an elementary signal processing model to identify and verify 

different sets of imagined tasks. It utilises data from three EEG sensors, along with time-

domain and frequency-domain analyses and employs FFNN and LVQ classification 

algorithms to measure the performance of various imagination recognition tasks. 

Chapter Five: This chapter addresses the design, development, and assessment of group-

wise analysis for recognising various sets of imagined tasks, utilising an advanced brain 

signal processing model. The study utilises data from three EEG sensors, incorporating time-

domain, frequency-domain, and time-frequency domain analyses, as well as group-wise 

analyses. It employs FFNN and LVQ classifiers to evaluate the performance in recognising 

various imagination tasks. 

Chapter Six: The chapter investigates the performance of imagination recognition by 

integrating the ASPS approach with image processing techniques. This study uses data from 

19 EEG sensors, applying frequency-domain and group-based analyses. The chapter 

examines the performance of imaginations recognition across different groups using CNN 

as the classifier. 

Chapter Seven: This chapter focuses on sensor optimisation and evaluates the proposed 

model using a new EEG dataset. It also compares the performance of the models discussed 

in Chapters Three through Six with the newly obtained results. The factors contributing to 

achieving high accuracy are discussed, along with a comparison between other relevant work 

and this study. 

Chapter Eight: This chapter outlines the design and development of a novel EEG-BCI 

prototype using the proposed methodology, including real-time data testing. This chapter 

outlines the steps involved in the development and integration of hardware and software for 

identifying communication messages. 
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Chapter Nine: The conclusion summarises the thesis, emphasising the achievement of 

objectives, key findings, and the research's contributions to knowledge. It concludes with 

recommendations for future research. 

The names of all the aforementioned chapters and their key features are illustrated in Figure 

1.2. This figure highlights the main aspects and structure of the chapters discussed. 

 

Figure 1.2: The structure of the thesis. 

1.8 Summary 

This chapter starts by outlining the necessity and potential of BCI technologies. In the 

context of various signal processing methods and classification algorithms applicable to BCI 

systems, this research seeks to develop an innovative communication approach capable of 

interpreting thought messages through brain signals. To address the challenge of selecting 

appropriate methodologies, a novel strategy that integrates ASPS in brain signals and ANN 

model is proposed. Subsequent sections presented the research scope, aim, objectives of the 

thesis, and the research questions to be addressed. The chapter concludes with an overview 

of the thesis structure. 

The next chapter provides an in-depth review of brain signal analysis and the scope of BCI 

development. It explores fundamental neuroscience concepts and their relevance to MND, 
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brain imaging systems, signal processing methods, signal classification algorithms, and 

commercial BCI products. 
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Chapter 2: Literature Review 

 

2.1 Introduction 

This chapter includes a comprehensive review of the brain signal analysis and BCI 

development extents. To ensure thorough coverage that all relevant areas are divided into 

the following sections: Section 2.2 covers Brain functions and MND which briefly reflects 

fundamental neuroscience concepts and their role in MND; Section 2.3 discusses Brain 

imaging systems, Section 2.4 focuses on brain signal processing methods, Section 2.5 

explores Classification algorithms and Section 2.6 reviews relevant commercial BCI 

products. 

2.2 Brain Functions and MND 

The human brain is an indispensable organ composed of billions of neurons with a highly 

complex structure. It comprises three main parts: the cerebrum, cerebellum, and brainstem. 

The cerebrum, the largest section, accounts for two-thirds of the brain's volume and is 

divided into left and right hemispheres, connected by over 200 million nerve fibres forming 

the corpus callosum. It governs higher cognitive functions, including sensory processing and 

emotions. The outer layer, the cerebral cortex, features numerous folds and ridges, consisting 

of grey matter, while the inner structure comprises white matter. Each hemisphere of the 

cerebrum is divided into four lobes: frontal, temporal, parietal, and occipital, each associated 

with specific functions (DeSesso, 2009).  

The frontal lobe, the largest brain region, comprises one-third of the hemisphere and governs 

abstract thinking, creativity, problem-solving, reasoning, movement, and speech. Adjacent 

to it, the parietal lobe handles object recognition, spatial orientation, and sensory 

discrimination. The temporal lobe, located behind the ears, processes auditory information, 

language comprehension, and long-term memory. The occipital lobe, at the back of the head, 

manages visual processing. Beneath the cerebrum, the cerebellum, the second-largest brain 

region, coordinates motor and cognitive functions, including posture and balance. The 

brainstem links the cerebrum, cerebellum, and spinal cord, regulating vital functions such as 

breathing, digestion, heart rate, and body temperature (Carter et al., 2019).  

The limbic system comprises several adjacent components, divided into cortical and 

subcortical types, each with specific tasks. Phylogenetically, the subcortical parts are older 
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than the cerebral cortex (Tan and Nijholt, 2010). For instance, the hippocampus is crucial 

for forming permanent memories, while the amygdala regulates emotions, fear, and anxiety. 

The thalamus acts as a relay between sense organs and the brain, and the hypothalamus 

connects the nervous system to the endocrine system via the pituitary gland, controlling body 

temperature and behaviours. Another interconnecting part, the mammillary bodies, links the 

amygdala, thalamus, and hippocampus.  

 

Figure 2.1: Brain components and functions including limbic system. 

Figure 2.1 illustrates a medial view of the brain, highlighting the components of the limbic 

system. Information transmission from different organs to the brain, and from the brain to 

other organs, is facilitated by a series of activated nerve cells, or neurons. During excitation, 

a neuron transmits an electrical impulse that propagates through a network of neurons to 

reach various body organs. These processes are co-ordinated by the nervous system, one of 

the most complex systems in the human body, with the neuron or nerve cell being its 

fundamental building block.  

Figure 2.2 is a diagrammatic representation of neurons, showing the main internal parts of a 

middle neuron. This neuron receives and sends information from the previous neuron and 

the next neuron, known as the presynaptic and postsynaptic neurons, respectively. The 

neuronal junction, or synapse, is the common point between two neurons. The synaptic cleft, 

a nanometric gap, is where the axon terminal of the presynaptic neuron communicates with 

the dendrite of the postsynaptic neuron. Communication occurs via synaptic transmission, a 
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mechanism for forwarding electrochemical signals facilitated by a rapid voltage change 

known as the action potential. 

 

Figure 2.2: Diagrammatic delineation of neurons (Carter et al., 2019). 

This action potential, generated by each neuron, travels down the axon to the axon terminal 

of the previously excited neuron and reaches the receptor of the next neuron. The action 

potential is a key component of the brain's electrical signalling, formed by the charge 

differences inside and outside the neuron, known as the electrochemical gradient. Neuron 

codes, both electrical and chemical, are generated from the activities of dendrites, neuron 

cells, axons, and axon terminals (Smythies, 1995). Consequently, the excitation of 

consecutive brain neurons produces electrical potential or voltage, referred to as brain waves. 

Human brain waves, based on frequency levels, are broadly divided into five categories: 

delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ). Each category of brain waves has a 

distinct frequency range and is associated with various brain states depending on the subject's 

posture, organ movements, thoughts, emotions, and other factors. Table 2.1 lists the general 

characteristics of brain waves, classifying individual frequency ranges, brain states, and 

visual representations in ascending order according to their band names. These brain waves 

can be measured using brain imaging technologies, which are discussed in Section 2.2.3. 
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Table 2.1: Brainwaves information (Bharti et al., 2021). 

Frequency 

band 

Frequency 

ranges 

Brain states Visual representation 

Delta (δ) 0.5 – 4 Hz Sleep, 

unconscious 

 
Theta (θ) 4 – 8 Hz Drowsiness, 

deeply relaxed 

 
Alpha (α) 8 – 12 Hz Restful, 

meditative 

 
Beta (β) 12 – 35 Hz Active, busy 

 
Gamma (γ) > 35 Hz Heightened 

activity, anger, 

anxious etc. 

 
 

Psychological theories suggest that various emotions can be more accurately detected 

through internal physiological signals, such as brain electrical activity, due to the strong 

connection between human feelings and cognitive processes (Wijeratne and Perera, 2012). 

Emotions, being intrinsic to every individual, form the basic foundation of human interaction. 

Typically, people express their emotions through facial expressions, speech, and body 

language, influenced by their environment, mental state, relationships, and inherent nature. 

Research indicates that individuals with physical disabilities also experience emotions that 

can be detected through brain signals (Yuen et al., 2009; Heraz and Frasson, 2011; 

Jirayucharoensak, Pan-Ngum and Israsena, 2014). This capability offers significant potential 

for assisting individuals with physical disabilities and speech disorders by providing a more 

accurate means of recognising and interpreting their emotions. 

Dysfunction or degeneration of motor neurons can impair body movements and 

progressively lead to partial or complete disability. This condition is collectively referred to 

as MND. This encompasses a range of disorders that can be classified based on genetic or 

sporadic causes. Disabilities arising from MND can be further classified according to 

whether they affect upper motor neurons, lower motor neurons, or both. Some conditions 

may result from the degeneration of both upper and lower motor neurons. Several terms are 

0.05

-0.05

0

0.1

-0.1

0

-0.1

0.1

0

0.5

0

-0.5

-0.5

0.5

0



15 

 

used internationally to describe MND, including neurodegenerative neuromuscular disease 

(in the UK and Australia), ALS, and Lou Gehrig’s disease (in Canada and the US) (Talbot, 

2002). Although these terms may vary slightly based on specific syndromes and the areas of 

the brain or other organs affected, they generally refer to similar conditions. Among MND 

cases, a small percentage of patients may have disorders affecting only lower motor neurons 

or only upper motor neurons, depending on the aetiology. Progressive muscular atrophy 

(PMA) specifically refers to cases involving only lower motor neuron disease, whereas 

Primary lateral sclerosis (PLS) is used to describe cases involving only upper motor neuron 

disease. 

Although motor neurons are impaired, the brain continues to generate signals associated with 

positive thoughts and emotions. These brain signals, which reflect effective thoughts and 

emotions, can be processed and analysed for emotion detection, and emerging technologies 

are increasingly capable of decoding these signals into speech and written text (Herff et al., 

2015; Akbari et al., 2019). 

In the context of individuals with MND, the establishment of an effective communication 

system is vital for preserving autonomy. The research rationale emphasises the necessity of 

developing such communication systems, as they are integral to enabling patients to 

articulate their needs and preferences, thereby significantly enhancing their quality of life. 

Additionally, these systems play a crucial role in reducing the emotional and physical strain 

on carers, facilitating a more supportive and collaborative caregiving environment. This dual 

benefit highlights the importance of communication systems in promoting the well-being of 

both MND patients and their carers. 

2.3 Brain Imaging Techniques 

Brain waves are inevitably and consistently generated by each part of the brain in all states 

of mind. The five primary categories of brain waves mentioned in Section 2.1 are broadly 

classified based on various brain states. With advancements in technology, internal brain 

images can now be acquired using sophisticated devices, allowing for the visual 

representation of brain waves. These technologies are collectively referred to as brain 

imaging or neuroimaging (Cvetkovic, Übeyli and Cosic, 2008; Al-Fahoum and Al-Fraihat, 

2014). Neuroimaging encompasses a range of techniques used to obtain detailed images of 

the structure and function of the nervous system and brain. These technologies enable the 

precise capture, storage, and analysis of cognitive activities, facilitating comprehensive 
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diagnosis and monitoring of neurological issues such as brain injury, brain tumour, 

Alzheimer’s disease, epilepsy, multiple sclerosis, and more (Pandarinathan et al., 2018). 

Consequently, the treatment process has become more effective. 

Brain imaging techniques vary in their degree of specialisation and invasiveness. They are 

recognised globally and are robust methods employed across various fields, including 

biomedical research, neuroscience, neurology, and neurocognition. There are two main types 

of imaging characteristics: structural imaging and functional imaging. Structural imaging 

allows for the visualisation of the brain’s anatomical arrangement, assisting in the diagnosis 

of brain injuries, tumours, and congenital abnormalities (Wahlund, 2020). Functional 

imaging, on the other hand, captures the brain’s functional activities through metabolic 

changes and neural activity, and is applied in the research and diagnosis of 

neurodegenerative diseases, cognitive psychology, and mental disorders (Lewine, 1995). 

Several brain imaging methods have been developed and commercialised, including 

Magnetic Resonance Imaging (MRI), Computed Tomography (CT) scan, Positron Emission 

Tomography (PET) scan, EEG, and Magnetoencephalography (MEG). A discussion of these 

technologies follows. 

2.3.1 Magnetic Resonance Imaging (MRI) and Functional Magnetic Resonance Imaging 

(fMRI) 

MRI technology employs a combination of magnets, radio waves, gradient coils, and a 

computer system. Superconducting magnets generate a powerful external magnetic field that 

influences the spinning nuclei of atoms in the body, such as Hydrogen (H) and Phosphorus 

(P). When exposed to short pulses of radiofrequency waves within this magnetic field, the 

nuclei become excited. Gradient coils, typically arranged in three sets for three-dimensional 

imaging, create variations in the magnetic field intensity, allowing for the localisation of 

different body parts (Agnihotri, Fazel-Rezai and Kaabouch, 2010). 

The external magnetic field aligns all water molecules in the body to oscillate at the same 

frequency due to the natural attraction between the magnetic field and the molecules. 

However, low-energy molecules, which do not move in sync with high-energy molecules, 

absorb the energy required for excitation. The radiofrequency waves help identify resonant 

and non-resonant molecules. The computer system then constructs images based on these 

energy signals, enabling detailed examination of soft tissues within specific organs. 

Diffusion-Weighted Imaging (DWI) is an MRI technique that utilises the principles of 
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Brownian motion to assess water molecule diffusion and is particularly useful for studying 

brain connectivity issues (Grover et al., 2015). Another prominent variant of MRI is 

Functional MRI (fMRI), which detects regional brain activity triggered by sensory stimuli. 

While MRI provides detailed anatomical structure, fMRI offers insights into metabolic 

functional activities in addition to anatomical information. The human brain, muscles, and 

organs require glucose, fat, and oxygen. The brain, in particular, consumes a high volume of 

oxygen and blood, relying on a nearby and adaptable blood supply. During neuronal 

activation, there is an increase in oxygenated blood flow to specific areas. 

Oxyhaemoglobin, which is a combination of ferro haemoglobin and oxygen, lacks unpaired 

electrons and is called diamagnetic (non-magnetic). Conversely, deoxyhaemoglobin, which 

lacks oxygen and contains unpaired electrons, is paramagnetic (magnetic). fMRI measures 

changes in oxyhaemoglobin and deoxyhaemoglobin levels through Blood Oxygenation 

Level-Dependent imaging (BOLD), a technique widely used in fMRI studies (XUE et al., 

2010). This process maps activated brain networks in response to external stimuli, revealing 

corresponding activities in body parts. 

Despite its advantages, fMRI has limitations, including low temporal resolution due to the 

slow metabolic changes associated with hemodynamic activity and potential signal 

attenuation. Additionally, there may be spatial distortions in the frontal and parietal lobes 

due to magnetic susceptibility differences between brain tissue and air. Nonetheless, fMRI 

offers high spatial resolution, high-quality outputs, and is widely available in both medical 

and research settings (Glover, 2011). Both MRI and fMRI, although susceptible to noise 

from the magnetic field, are non-invasive methods that do not involve radiation exposure to 

the subject. 

2.3.2 Computed Tomography 

CT scan, is a structural brain imaging technique that involves a series of X-ray images taken 

from multiple angles. These images are then processed to generate detailed cross-sectional, 

and often Three-Dimensional (3D), images of internal structures. The CT technique utilises 

an X-ray tube, a radiation detector, and a computer. The X-ray tube, housed within a gantry, 

rotates around the patient, emitting a powerful X-ray beam. Detectors measure the amount 

of X-ray absorption by the body and send these measurements to a computer, which compiles 

them into detailed images. 
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CT scans are particularly effective at visualising bones and soft tissues, and can diagnose 

conditions such as blood clots, fractures, tumours, and internal bleeding or injuries (Mishra 

et al., 2022). Although CT scans are generally faster than MRI and fMRI, they involve higher 

doses of ionising radiation, which increases the risk of cancer (Power et al., 2016). 

According to authors’ study, the use of large doses of radiation can elevate the risk of 

developing cancer in certain organs. Efforts are being made by physicians to optimise 

radiation exposure to mitigate these potential risks. 

2.3.3 Positron Emission Tomography 

PET is a functional imaging modality that constructs precise 3D images using radiotracers 

and radio detectors. This technique is particularly valuable in diagnosing cardiovascular and 

neurological conditions and in detecting various stages of cancer. Radiotracers are 

radioactive compounds, often referred to as radioisotopes, that are injected into the 

bloodstream. Fluorodeoxyglucose (FDG), a type of sugar tagged with fluorine-18 (F-18), is 

commonly used to measure glucose absorption by active neurons (Hartshorne, 1995). 

The injected radioactive isotope emits positrons, which interact with electrons in the body. 

This interaction results in the annihilation of both particles, producing two photons that 

travel in opposite directions. Detectors measure these photons, and images are reconstructed 

based on the density of positron-electron annihilation, indicating areas of metabolic activity 

where glucose is absorbed. Advanced analytical and iterative algorithms are employed to 

enhance image quality. 

PET scans can be combined with CT or MRI scans to create multimodal imaging techniques, 

such as PET-CT and PET-MRI, which provide more comprehensive physiological and 

morphological views (Vaquero and Kinahan, 2015). Although these multimodal imaging 

setups are expensive to maintain and operate, they offer lower radiation doses compared to 

CT scans and are effective in diagnosing neurological diseases, such as Alzheimer’s disease 

and epilepsy (Hartshorne, 1995). 

2.3.4 Electroencephalography  

EEG is a specialised brain imaging technique used to record the electrical activity of the 

brain, capturing brain waves associated with various mental states and cognitive functions. 

In contrast to the previously discussed imaging techniques, EEG measures electrical activity 

directly from the cerebral cortex through a series of electrodes placed on the subject's scalp. 

The core principle of EEG involves detecting the electrical activity generated by neural 
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circuits. When neurons in the brain become active, they produce minute voltage fluctuations 

as a result of synaptic transmission. These voltage fluctuations, typically in the microvolt 

range, are recorded by the EEG system. The precise arrangement of electrodes can vary 

depending on the specific research requirements, with common setups including 64 to 256 

electrodes (XUE et al., 2010) . The internationally recognised 10-20 system (Klem et al., 

1999) is frequently employed to standardise the placement of these electrodes, ensuring 

consistent and reproducible data collection. 

Pyramidal neurons, which are abundant in the brain cortex and limbic system, create 

electrical potential differences due to the summation of postsynaptic graded potentials, as 

discussed in Section 2.2. The EEG device captures these potential differences by placing 

electrodes on the scalp. During brain activation, thousands of pyramid-shaped neurons fire 

synchronously. These neurons are aligned in a specific orientation, running parallel to each 

other and perpendicular to the cortical surface. This alignment allows the electrical signals 

generated by the neurons to sum up effectively and propagate to the scalp surface, where 

they are detected by the EEG  (Niedermeyer, Schomer and Lopes da Silva, 2017). Figure 2.3 

(A) provides the schematic diagram how the EEG measurement takes place and Figure 2.3 

(B) shows a visual representation of EEG system. 

 

Figure 2.3: Schematic diagram of (A) EEG measurement process (Li et al., 2022), (B) a 

typical EEG system. 

EEG signal acquisition is typically performed with a sampling rate ranging from 250 to 2000 

Hz. However, modern EEG systems can achieve sampling rates of up to 20,000 Hz, 

providing higher resolution data. The amplitude of EEG brain signals in adults generally 

falls within the range of 10 to 50 µV (Xu and Xu, 2019). Because the initial voltage signals 
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detected by EEG are relatively faint, they require amplification to enhance their clarity. The 

amplified signals are then digitised and stored in a computer for further analysis. 

EEG is particularly valued for its high temporal resolution, allowing researchers to track 

rapid changes in brain activity. However, the spatial resolution is relatively lower compared 

to other imaging modalities. Despite this, EEG remains a powerful tool for studying brain 

function, diagnosing neurological disorders, and exploring cognitive processes. 

EEG is a completely safe and widely used instrument for individuals of all ages. It is 

employed across a diverse range of diagnostic and research domains, including the 

assessment of physical damage, cognitive and neurocognitive functions, neurological 

diseases and disorders, brain development, and the evaluation of drug effects (Gevins et al., 

1999). The advancement of digital technology has enhanced the capabilities of EEG systems, 

which are now available with various features, performance levels, and costs. Both wired 

and wireless EEG systems offer ease of use, though each comes with its own set of 

advantages and disadvantages. 

An EEG system comprises four main components: electrodes with conductive media, 

amplifiers with filters, an analogue-to-digital (A/D) converter, and a recording device. The 

electrodes are placed on the scalp according to the internationally recognised 10-20 system, 

which specifies the placement of electrodes to maintain a distance of either 10% or 20% of 

the head's circumference from one another. This system ensures consistent and reproducible 

electrode placement, covering key brain regions such as the frontal, central, parietal, and 

temporal areas. Electrode locations are referenced to anatomical landmarks including the 

nasion, inion, and preauricular points (Abhang, Gawali and Mehrotra, 2016). 

Various types of electrodes are utilised, including disposable, reusable discs, headbands, 

electrode caps, saline-based electrodes, and needle electrodes. Each type has specific 

applications and benefits depending on the requirements of the study or clinical evaluation. 

The amplifiers in the EEG system are responsible for boosting the initially weak electrical 

signals generated by the brain to a level suitable for digitalisation. The A/D converter then 

transforms these analogue signals into digital form, allowing for accurate and efficient data 

processing. Finally, the recording device stores the digitised data for subsequent analysis. 

EEG systems, with their ability to provide detailed information about brain activity, play a 

crucial role in both research and clinical settings, enabling the investigation of brain function 

and the diagnosis of neurological conditions. 
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The design of a typical EEG cap and the positioning of its sensors are illustrated in Figure 

2.4. This figure clearly demonstrates that each channel or sensor in the EEG system is 

assigned a specific name corresponding to a particular region on the surface of the head. The 

fundamental reference points include: 1) Nasion, 2) Inion, and 3) Preauricular Point. 

 

Figure 2.4: International 10-20 EEG system (A) 19 electrodes placement, (B) side view of 

10%-20% electrode distances, (C) top view of 10%-20% electrode distances (Shriram et 

al., 2012). 

Three key reference points are illustrated in Figure 2.4 (A): the nasion, which is the lowest 

point between the forehead and the nose; the inion, located at the lowest point at the back of 

the head; and the left and right preauricular points, positioned just in front of the ears. 

Channels are named as follows: Fp refers to frontpolar, F denotes frontal regions, C denotes 

central regions, P denotes parietal regions, and T denotes temporal regions. The designation 

Z refers to electrodes placed along the midline, while A represents the auricular regions 

(MacDonald, 2015). 

Each channel is strategically located to acquire signals corresponding to specific brain 

functions. For instance, F7 is positioned near areas responsible for rational activities, F8 is 

close to sources of emotional impulses, the cortex around C3, C4, and Cz is associated with 

sensory and motor functions, and T3 and T4 are near emotional processors (Abhang, Gawali 

and Mehrotra, 2016). 

EEG signals are inherently non-linear, non-Gaussian, random, and non-correlated and these 

signals also exhibit variability influenced by factors such as the subject's age, mental state, 

and other conditions (Vaid, Singh, and Kaur, 2015). To understand the variability and 

interpret the EEG signals, various signal analysis techniques are employed. The widely used 

signal analysis techniques include: 

Left

ear

Right

ear

(A) (B) (C)
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i. Spectral Analysis: This technique measures significant frequencies within the 

EEG data. 

ii. Temporal Analysis: This analysis determines both normal and abnormal brain 

wave characteristics and assesses the presence or absence of specific rhythms. 

iii. Spatial Analysis: This method is used to map the distribution of rhythms across 

various brain regions. 

Normal EEG signals exhibit numerous characteristics influenced by parameters such as age, 

disease type, sleep states, and muscle movements (e.g., eye movements). Frequency levels 

can vary depending on these parameters and brain locations, as discussed in detail by 

Marcuse, Fields and Yoo (2016). For instance, maximal beta frequencies are often observed 

in the frontocentral region, and the presence of open eyes does not significantly affect beta 

characteristics.  

EEG signals are significantly impacted by various events such as sleep, epileptic seizures, 

reflexology, anaesthesia, and meditation (Subha et al., 2010). The presence of different 

frequency bands in brain waves plays a crucial role in determining signal characteristics. 

Sleep modes are analysed to diagnose sleep disorders, such as sleep apnoea. Additionally, 

EEG is effective in measuring abnormal neuronal activity associated with epilepsy. Other 

disorders, including dementia, Alzheimer’s disease, cognitive impairment, and autism, can 

be diagnosed through specific feature extraction and selection processes. Different 

meditative states (Hebert et al., 2005) and various types of music (Huisheng, Mingshi and 

Hongqiang, 2005) are also distinguishable within EEG signals. 

The EEG system has gained widespread global acceptance due to its significant features. 

However, a notable limitation arises in accurately identifying the source of electrical activity 

on the scalp. This difficulty is attributed to variations in skull conductivity, which can be 

influenced by factors such as skull size and asymmetrical, non-homogeneous conductivity 

of the skull (Pohlmeier et al., 1997). 

2.3.5 Magnetoencephalography 

MEG is a functional neuroimaging technique that directly measures the magnetic activity 

resulting from the electrical activity of brain neurons. Both chemical and electrical processes 

in the brain are stimulated by the movement of ions and electrolytes, which generates a 

magnetic field within the brain tissues. This technology specifically detects tangential 

dipoles corresponding to the locations of functional activity in the brain. The weak magnetic 
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fields produced by neural activity are recorded using highly sensitive magnetometers, most 

commonly Super-Conducting Quantum Interference Devices (SQUIDs). To minimise 

external magnetic interference, including that from the Earth's magnetic field, MEG systems 

are housed in magnetically shielded rooms. This imaging technique is particularly effective 

in brain mapping and guiding epilepsy surgery (Singh, 2014). MEG offers several 

advantages: it provides high spatial and temporal resolution, operates without inducing noise, 

and does not interfere with patient movement. Moreover, it is a non-contact recording 

method. However, MEG remains more expensive than EEG (Williamson et al., 1991) and 

is not suitable for individuals with metal implants or other metallic objects in their bodies. 

EEG and MEG share similarities, as both utilise neuronal activity as their primary source of 

data. To identify neuronal oscillations using either EEG or MEG, it is necessary to 

demonstrate a spectral peak within a specific frequency band. The characteristics of these 

oscillations—such as peak frequency, bandwidth, and amplitude—define the specific 

brainwave patterns. Lopes da Silva (2013) explores the relevance of EEG and MEG in 

neuroscience, examining the acquisition of brain electric and magnetic fields from the 

perspectives of biophysics and neurophysiology. The study also highlights common signal 

properties and interactions, such as oscillation frequency, and discusses the significance of 

EEG and MEG oscillations in various cognitive processes. The research identifies six types 

of neuronal oscillations: ultra-slow, theta, alpha, beta, gamma, and high-frequency 

oscillations (HFOs). Three fundamental functions of brain oscillations are discovered: 

coding specific information, regulating and modulating brain attentional states, and 

facilitating communication between neuronal populations. 

2.3.6 Near Infrared Spectroscopy and Functional Near Infrared Spectroscopy 

NIRS is a non-invasive spectroscopic technique that has garnered significant attention in the 

field of brain imaging. Similar to MRI, NIRS tracks the real-time oxygenation of brain tissue. 

During cognitive or physical tasks, the brain regions involved consume more oxygen, which 

can be monitored using near-infrared light. Near-infrared (NIR) light, with wavelengths 

between 700 and 900 nm, penetrates biological tissue. This light is scattered minimally, and 

certain biological molecules, such as haemoglobin and myoglobin, absorb it. These 

molecules have distinct absorption spectra depending on their oxygenation states. By 

applying this optical technique, changes in blood flow and oxygenation can be measured. 

NIRS instruments generally fall into three categories: continuous wave (CW) measurement, 

time domain measurement, and frequency domain measurement. Among these, the CW 
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measurement is commonly used to monitor dynamic blood flow in the cerebral region by 

measuring changes in cerebral haemoglobin concentration. However, CW measurement is 

limited in its ability to quantify these concentration changes accurately (Hoshi, 2009). 

Functional NIRS (fNIRS) employs source and detector probes placed on the scalp. Typically, 

a few centimetres of separation are maintained between the source and detector. fNIRS 

acquisition involves recording data both during and outside of tasks to establish baseline 

brain functions. By comparing haemoglobin measurements during resting and task states, 

brain activation can be assessed. However, data processing and analysis can vary widely. 

While fNIRS shares similarities with the fMRI BOLD measurement technique, it is more 

cost-effective and suitable for mobility and dual-task studies, making it frequently used in 

various pathological investigations. Nevertheless, fNIRS has some limitations, such as 

limited probe penetration depth, which restricts measurements to superficial layers of the 

brain cortex. This limitation can result in low spatial resolution and an inability to provide 

whole-brain outputs. Additionally, external contamination from superficial tissues and 

motion artifacts are challenges associated with fNIRS (Udina et al., 2020). 

NIRS is widely used in diverse fields such as agriculture, particle measurement, material 

science, astronomical spectroscopy, and medicine. In the realm of functional neuroimaging, 

it is referred to as functional NIRS (fNIRS). Udina et al. (2020) discuss hemodynamic 

activity in the brain during both movement and cognitive functions in adults. fNIRS allows 

for the monitoring of neuroimaging outputs through the measurement of oxygenated and 

deoxygenated haemoglobin during tasks such as walking. The authors reviewed numerous 

studies tracking hemodynamic functioning of the frontal lobe during motor tasks, cognitive 

activities, and combined actions. Their findings indicated that individuals with various 

neurological conditions exhibited higher cognitive activation compared to healthy 

individuals, suggesting that functional impairments in neurological conditions might be 

characterised by such activation patterns. 

Gallegos-Ayala et al. (2014) successfully developed a brain communication system for fully 

locked-in patients using fNIRS. The system was designed for an individual with ALS, who 

had been in a fully locked-in state for approximately four years and was unable to 

communicate verbally or through body movements, including eye movements. The patient's 

bodily functions were maintained through artificial ventilation and a percutaneous 

endoscopic gastrostomy tube. The study ultimately developed an effective method using 
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hemodynamic brain activity detected by fNIRS. The communication system was used to 

assess correct or incorrect responses processed through the auditory system, resulting from 

functional activation in the brain cortex. Fixed sets of sentences were presented, with 

intervals of 25 seconds to align with hemodynamic activity. Responses were classified into 

'yes' or 'no' using SVM for feature extraction and classification. The accuracy of known 

answers improved with successive sessions, reaching 76.30% in the final period, and 

achieving 100% accuracy in some sessions. This indicated that the system was effective for 

communication with locked-in patients, suggesting that metabolic BCI could be a promising 

and stable solution for individuals with severe physical disabilities. A similar study by 

Chaudhary et al. (2017) developed an online fNIRS classification system for four advanced 

ALS patients, where responses were represented as 'yes' or 'no'. 

fNIRS has certain limitations that merit careful consideration in research contexts. Pinti et 

al. (2023) discuss several challenges associated with current fNIRS systems, particularly the 

reliance on approximate measurements of blood flow, which can impede the accuracy of 

direct neural activity assessments. Additionally, the presence of melanin in individuals with 

darker or thicker hair may further complicate measurements, as melanin is a strong absorber 

of near-infrared light and can interfere with signal acquisition. Moreover, fNIRS measures 

neural activation based on the timing of the hemodynamic response, which operates on the 

order of seconds. This temporal resolution is notably slower than that of EEG system, which 

can detect electrical neural responses within milliseconds (Su et al., 2023). Therefore, while 

fNIRS offers valuable insights into brain activity, its limitations in temporal resolution and 

susceptibility to signal interference must be considered when selecting appropriate 

neuroimaging techniques for research. 

2.3.7 Hybrid EEG-fNIRS 

Both EEG and fNIRS are functional neuroimaging methods that, while differing in their 

measurement techniques, offer complementary benefits in terms of spatial and temporal 

resolution. These methods are cost-effective and portable, making them a holistic approach 

for neuroimaging. Consequently, the hybrid EEG-fNIRS technique has emerged as a 

promising method in the research field of BCI (Almajidy et al., 2023). 

Buccino, Keles and Omurtag (2016) conducted an experiment integrating EEG and fNIRS 

to assess multiple motor tasks. The study involved four types of movements: right-arm, left-

arm, right-hand, and left-hand functions, executed by 15 subjects. Each subject performed 
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these four movements, which included arm rising and hand gripping, a total of 25 times per 

movement, organised into blocks. In total, five blocks were completed. Data acquisition for 

both EEG and fNIRS was conducted simultaneously throughout the experiment. The fNIRS 

system utilised a combination of 12 sources and 12 detectors, with 34 channels in total. An 

extended EEG cap was employed to mount both EEG electrodes and fNIRS optodes. The 

performance of the hybrid EEG-fNIRS technique was evaluated in real-time and was found 

to surpass that of single imaging techniques. The accuracy of the combined EEG-fNIRS 

approach demonstrated a significant improvement over the individual modalities. This 

enhanced performance underscores the potential of hybrid neuroimaging as a valuable 

alternative for investigating central nervous system functions. Ahn and Jun (2017) review a 

range of studies that explore the use of hybrid EEG-fNIRS systems. Their analysis highlights 

the potential benefits of multi-modal integration in enhancing system performance. However, 

they also identify significant challenges associated with this approach. The distinct 

characteristics of blood-based signals and electrical activity present inherent difficulties, and 

the integration of these modalities involves complex and time-consuming experimental 

setups and sensor configurations. These limitations underscore the need for careful 

consideration when designing and implementing multi-modal systems in research. A 

summary of the discussed brain imaging technologies is presented in Table 2.2.  

Table 2.2: Comparison of brain imaging techniques. 

Imaging 

methods 

MRI fMRI CT scan PET scan EEG MEG fNIRS 

Imaging 

type 

Structural Functional Structural Molecular Functional Functional Functional 

Physical 

structure 

Blood 

flow 

Blood 

flow 

Soft 

tissue, 

blood 

vessels 

and bones 

Blood 

flow 

Electrical 

field 

Magnetic 

field 

Blood 

flow 

Signal 

measured 

Anatomic 

informatio

n of grey 

and white 

matter 

Indirect 

metabolic 

Anatomic 

informatio

n of brain 

Indirect 

metabolic 

Direct 

electrical 

Direct 

magnetic 

Indirect 

metabolic 

Concept Detecting 

resonant 

and non-

resonant 

molecules  

Measuring 

hemodyna

mic 

activity 

Create 3D 

image 

from 

multiple 

cross-

sectional 

X-ray 
images 

Detecting 

chemical 

activity by 

injecting 

radiotracer 

Measuring 

electrical 

activity in 

the form 

of brain 

signal 

Measuring 

magnetic 

field 

resulting 

from 

electrical 

activity 

Measuring 

hemodyna

mic 

activity 
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Table 2.2: Comparison of brain imaging techniques. (continued from previous page) 

Imaging 

methods 

MRI fMRI CT scan PET scan EEG MEG fNIRS 

Used 

approach 

Magnet 

and radio 

waves 

Magnet 

and radio 

waves 

Electrom

agnetic 

Radiation 

Electroma

gnetic 

Radiation 

Electrodes, 

amplifier, 

AC/DC 

Converter 

Probes, 

Strong 

magnet 

Probes, 

near 

infrared 

light 

Risk Low Low High High No No No 

Spatial 

resolution 

Very high 

(3-6mm) 

Very high 

(3-6mm) 

Very high 

(1mm) 

Very high 

(5mm) 

Low  

(1-2cm) 

Low  

(1-2cm) 

High 

(<1cm) 

Temporal 

resolution 

Low 

(30s) 

Low 

(30) 

Medium 

(10s) 

Low  

(30-40s) 

Very high 

(0.05s) 

Very high 

(0.05s) 

Low  

(5-8s) 

Moving 

flexibility 

No No No No Yes No Yes 

Cost* ($2-3M) 

(Sarracani

e et al., 

2015) 

($2 M) 

(Lystad 

and 

Pollard, 

2009) 

(<$2M) 

(Rehana 

et al., 

2013) 

$8M 

(Lystad 

and 

Pollard, 

2009) 

$100K 

(Lystad 

and 

Pollard, 

2009) 

$2M 

(Lystad 

and 

Pollard, 

2009) 

$350K 

(Lystad 

and 

Pollard, 

2009) 

Popular 

products 

Siemens, 

GE, 

Philips, 

Toshiba, 

Hitachi 

Siemens, 

GE, 

Philips, 

Toshiba, 

Hitachi, 

Resonance 

Tech etc. 

Siemens, 

GE, 

Philips, 

Shimadzu

, Toshiba, 

Hitachi 

Siemens, 

GE, 

Philips, 

Shimadzu 

NeuroScan

, Greentek, 

Brain 

Products, 

BioSemi, 

Emotiv etc. 

Brain 

Products 

Greentek, 

NIRx, 

Hitachi, 

Artinis 

*Approximate cost 

 

Figure 2.5: Schematic representation of different brain imaging techniques. 

In addition, these technologies are schematically illustrated in Figure 2.5. Both table and 

figure have collected information from multiple online resources (Top 10 Diagnostic 
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Imaging Device Manufacturers & Leading Way, 2012; Top 5 Vendors in the Global Brain 

Monitoring Devices Market From 2017 to 2021: Technavio | Business Wire, 2017; 

Neuroimaging Market - Share, Size and Industry Analysis, 2023). Commercial EEG devices 

have been manufactured with varying numbers of sensors, sampling rates, prices, and 

purposes (Ledwidge, Foust and Ramsey, 2018). Most common manufacturers are Emotiv, 

openBCI, NeuroSky, NeuroScan, Brain Products, Artinis Medical system, g.tech, 

Neuroelectrics, EGI, BioSemi etc. Emotiv released multiple production with different 

configurations (Dadebayev, Goh and Tan, 2022). Table 2.3 provides some of the models, 

their intended purposes, and key specifications. 

Table 2.3: Commercial EEG devices (Ledwidge, Foust and Ramsey, 2018; Dadebayev, 

Goh and Tan, 2022). 

Commercial 

EEG 

Manufacturer 

Device 

name 

Year of 

Release 

Number of 

sensors 

Sampling 

rate (Hz) 

Price* 

(USD) 

Purpose 

Emotiv EPOC+ 2013 14 128/256 699 Academic 

Emotiv INSIGHT 2015 5 128 299 Everyday use 

Emotiv EPOC 

FLEX 

2018 Maximum 

32 

128 1699 Research-grade 

Emotiv EPOC X 2020 14 128/256 799 Neuroscience 

research with 

broader scope 

BioSemi Active Two 2016 32 

256 

≥2048 Hz  

(subjective 

to the 

version 

and 

bandwidth) 

20K 

87K 

EEG lab at 

Undergraduate 

institution 

Brain 

Products 

actiCHamp 2011 

(first) 

32 

160 

Up to 

100kHz 

(latest 

version) 

43K 

80K 

EEG lab  

*Approximate price 

A variety of brain imaging techniques are available, each offering distinct advantages and 

limitations. Among these, EEG is recognised as the most suitable and widely employed 

method. This research opts to utilise EEG system, and the following sections provide a 

detailed discussion of the EEG signal processing methods and algorithms used in the 

development of BCIs. 

2.4 Signal Processing Methods 

EEG brain signals undergo a series of processing and analysis steps, which are crucial for 

the development of BCIs. Some review articles offer an extensive exploration of potential 
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techniques for each stage of EEG signal processing in BCI applications. They also provide 

insights into the various application domains that require sophisticated brain signal 

processing and analysis (Nicolas-Alonso and Gomez-Gil, 2012; Al-Fahoum and Al-Fraihat, 

2014; Vaid, Singh and Kaur, 2015; Niha and Banu, 2016; Aggarwal and Chugh, 2019; 

Huang and Wang, 2021; Stancin, Cifrek and Jovic, 2021). Developing algorithms for EEG 

signal processing is a complex task, given that there are approximately fifty algorithms 

designed to measure brain activity through Event-Related Potentials (ERP). This section 

provides a comprehensive literature review of well-established techniques in signal 

processing, focusing on the basic steps: preprocessing, feature extraction, and feature 

selection. While some research integrates feature extraction and selection concurrently, other 

studies apply these techniques sequentially. Below, we discuss various techniques employed 

in preprocessing, feature extraction, and feature selection: 

2.4.1 Signal Pre-processing 

Once EEG signals are captured, they require processing to enhance their quality, as initial 

signals are often contaminated with noise, power line interference, artefacts, eye or muscular 

movements, and cardiac activity. To address these disruptions, several methods can be 

employed, including Adaptive Filtering, Common Spatial Patterns (CSP), Surface Laplacian 

(SL), Principal Component Analysis (PCA), Common Average Referencing (CAR), and 

Independent Component Analysis (ICA). 

Garcés and Orosco (2008) explore EEG signal processing within the context of BCIs, where 

human thoughts are translated into actionable commands for devices. High-pass and low-

pass filters can be used to remove low-frequency interruptions (<0.5 Hz) and mitigate high-

frequency noise (50-70 Hz), respectively. Additionally, biological signals such as 

electrocardiogram (ECG), eye-blinking (EOG) and artifacts of movements (EMG) often 

contaminate EEG recordings, however techniques like PCA, ICA, or Adaptive Filtering (AF) 

can effectively eliminate these unwanted noises. Signal enhancement can also be achieved 

through Common Average Referencing (CAR) technique, which involves calculating the 

difference between the mean value of all EEG channels and each individual channel, thus 

reducing undesired influences within the channels. A summary of popular techniques for 

preprocessing, feature extraction, and feature selection is presented in Table 2.4, with 

information collected from various sources (Garcés and Orosco, 2008; Lotte, 2012; Nicolas-

Alonso and Gomez-Gil, 2012; Gupta et al., 2014; Sankar et al., 2015; Albuquerque et al., 

2016; Sankar et al., 2019). 
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Table 2.4: Overview of EEG signal pre-processing, feature extraction, and feature selection 

techniques and their key attributes. 

Techniques Type Attribute 

Adaptive 

filter 

 

Signal pre-

processing 

- Removing noise from acquired signal. 

- Effective for signals with overlapped spectra. 

High-pass 

filter 

 

Signal pre-

processing 

 

- Removing low frequency interruptions (e.g. 

breathing). 

- Cut-off frequency is <0.5 Hz. 

 

Low-pass 

filter 

 

Signal pre-

processing 

- Mitigating high-frequency (50-70Hz) noise. 

- Cut-off frequency between 50 and 70 Hz. 

Common 

spatial 

pattern (CSP) 

Signal pre-

processing,  

feature extraction  

- Measuring random activity of signal and 

converting into matrix. 

- No prerequisite skill for patients’ frequency 

band. 

 

Surface 

Laplacian 

(SL) 

Signal pre-

processing 

 

- Estimating the existing density and eliminating 

octal movements from signal. 

-Effective for the artefacts from uncovered head 

area of sensors. 

 

Common 

average 

referencing 

(CAR) 

Signal pre-

processing 

- Reducing noise through placing the electrodes 

and enhancing the signals for better classification. 

- Inadequate result from the area which is not 

covered by sensors as well as with certain sample 

density. 

 

Principal 

component 

analysis 

(PCA) 

Signal pre-

processing, 

Feature 

extraction, 

Feature selection 

- Extracting basic components from 

decomposition of multi-channel sensor 

observations to separate estimated noise. 

- Feature extraction from the domain of space-

time frequency.  

- Higher classification accuracy 

- Detecting the most relevant features from 

multiple attributes. 

 

Independent 

component 

analysis (ICA) 

Signal pre-

processing, 

Feature 

extraction, 

Feature selection 

- Segregating the required artefact according to 

data characteristics and decomposing the multiple 

signal channels to time based independent and 

fixed spatial component.  

- More computation oriented. 

- Adequate decomposition for big data. 

- Good number of features can be extracted. 

- Detecting the most relevant features from 

multiple attributes. 
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Table 2.4: Overview of EEG signal pre-processing, feature extraction, and feature selection 

techniques and their key attributes. (continued from previous page) 

Techniques Type Attribute 

Auto 

regressive 

Feature extraction - Extracting features based on frequency domain. 

- Efficient for non-stationary signals. 

- Different subcategories are available and useful 

for the data with short duration. 

 

Wavelet 

transform 

(WT) 

Feature extraction - Extracting features by B-spline parameters for 

time- frequency domain, and filtering for multi-

resolution analysis. 

- Different window sized signals can be analysed. 

 

Wavelet 

packet 

decomposition 

(WPD) 

Feature extraction - Extracting features for both time and frequency 

domain. 

- Efficient for non-stationary signals. 

- Useful for decomposition of low-frequency 

wavelets. 

-Time-intensive procedure. 

 

Fast Fourier 

transform 

(FFT) 

Feature extraction - Extracting features in frequency domain. 

- Effective for stationary signal to produce 

successful outcome in linear random process. 

 

 

 

Entropy Feature extraction - Extracting features by analysing chaos and 

dynamic characteristics. 

- Provides qualitative estimation of chaos from 

brain signals. 

- Effective subcategories are available. 

 

Wavelength 

optimal 

spatial filter 

(WOSF)  

Feature extraction - Extracting waveform length features. 

- Signal complexity can be measured. 

- Successfully implemented for both motor 

imagery and mental rotation tasks.  

- Higher accuracy towards classification. 

 

Genetic 

algorithm 

Feature selection - Optimisation procedure to select potential 

features. 

- Implement as an automated feature extraction in 

certain applications. 

 

Sequential 

selection 

Feature selection - Selecting optimised features. 

- A subcategory named sequential forward 

floating search (SFFS) is effective in dimensional 

reduction. 
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Table 2.4: Overview of EEG signal pre-processing, feature extraction, and feature selection 

techniques and their key attributes. (continued from previous page) 

Techniques Type Attribute 

Distinctive 

Sensitive 

Learning 

Vector 

Quantisation 

(DSLVQ) 

Feature selection, 

Classifier 

- Detecting unique features towards the accurate 

classification. 

- Applicable for the features within frequency 

domain. 

 

2.4.2 Feature Extraction and Selection 

Visual representation of signals is commonly subjective and not easy to shape for statistical 

analysis or equivalent standardisation. Therefore, intermediate techniques are required to 

quantify the information contained within the signals. In the frequency and time-frequency 

domains, various methods are employed for the feature extraction of EEG signals. Feature 

extraction modalities generally fall into two categories: statistical characteristics and 

syntactic descriptions (Cvetkovic, Übeyli and Cosic, 2008; Al-Fahoum and Al-Fraihat, 

2014).  

Several approaches can be used for extracting features from EEG signals, including time-

domain analysis, spectral analysis, time-frequency analysis (such as wavelet transform), 

chaos and dynamic analysis (including entropy), and others (Garcés and Orosco, 2008). 

Prominent techniques for feature extraction include ICA, PCA, LDA (Atangana et al., 2020), 

Autoregressive models, WT, Wavelet Packet Decomposition (WPD), FFT etc (Sankar et al., 

2019).  

EEG signals are processed and analysed through both feature extraction and feature selection 

stages. This process allows for the extraction of significant characteristics from a set of brain 

signals, and the selection of the most relevant features from these extracted characteristics. 

It is crucial to identify intrinsic characteristics from sensor-generated signals using feature 

extraction techniques that align with the desired objectives. For example, some key 

frequency properties of EEG signals include amplitude value, Band Power, Power Spectral 

Density, Autoregressive parameters, adaptive autoregressive parameters, time-frequency 

features (T-F), and features derived from inverse models (Niha and Banu, 2016). The power 

spectral density, which is computed via the Fourier transform of the estimated 

autocorrelation sequence, is a fundamental method for determining signal characteristics. 
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This sequence is obtained using nonparametric methods, providing insights into the signal’s 

frequency content (Stancin, Cifrek and Jovic, 2021). 

To characterise and analyse brain activity, various properties of EEG signals play a crucial 

role. These properties are essential in the subsequent classification phase, which is pivotal 

for developing effective BCI applications. The choice of feature properties depends on the 

classifier used, making it critical to select the most relevant characteristics for accurate signal 

interpretation. For example,  Stancin, Cifrek and Jovic (2021) reviews a range of EEG brain 

signal features for various domains in terms of driver drowsiness detection system. The 

features are not limited to certain domain, advanced techniques within both the time-

frequency and space-time-frequency domains are employed to extract a combination of 

features from the time and frequency domains (Vaid, Singh and Kaur, 2015). For instance, 

linear analysis methods such as FFT and DWT are widely used for feature extraction from 

EEG signals (Al-Fahoum and Al-Fraihat, 2014).  

2.4.2.1 Frequency Domain Analysis Using FFT 

In the field of signal processing, the FFT is extensively utilised as a technique for frequency 

domain analysis. The EEG spectrum is traditionally divided into four primary frequency 

bands: delta (<4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–35 Hz). The raw EEG 

data, initially presented as a time-domain signal, is transformed into the frequency domain 

using FFT, which decomposes the signal into its constituent frequency components. The 

resulting FFT output quantifies the relative strengths (i.e., magnitudes) of these frequency 

components. 

The FFT output is computed by converting the time-domain signal x(n) into the frequency 

domain X(k). This transformation is mathematically represented by the following Equations 

(2.1) and (2.2) (Akin, 2002). 

𝑋(𝑘) =  ∑ 𝑥(𝑛) ∙  𝑒−
𝑗2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

                 (2.1) 

𝑥(𝑛) =
1

𝑁
 ∑ 𝑋(𝑘) ∙  𝑒−

𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

             (2.2) 

where, 𝑗 = √−1 , N= length of x(n). 
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FFT operates solely in the frequency domain, which contrasts with the DWT, a technique 

capable of analysing both time and frequency domains. Each method has its respective 

advantages and limitations. FFT is particularly effective for identifying and quantifying 

periodic components within the signal, making it a valuable tool for feature extraction in 

various studies (Hadjiyannakis et al., 1997; Uchida et al., 1999; Subasi et al., 2005; Polat 

and Güneş, 2008; Murugappan and Murugappan, 2013; Sałabun, 2014; Jaswal, 2016; 

Delimayanti et al., 2020; Li and Chen, 2021). 

2.4.2.2 Time-frequency Domain Analysis Using DWT 

In contrast to frequency domain analysis, the DWT provides a time-frequency domain 

analysis, capturing both temporal and spectral information through varying window sizes. 

This flexibility allows for the analysis of high-frequency components with shorter windows 

and low-frequency components with longer windows, thus offering a more detailed and 

comprehensive analysis of the signal (Aggarwal and Chugh, 2019). The DWT decomposes 

the original signal into two primary components: the Approximate Component (cA) and the 

Detail Component (cD). This decomposition is achieved using low-pass and high-pass filters, 

respectively. 

 

Figure 2.6: Sub-band decomposition in DWT (Cvetkovic, Übeyli and Cosic, 2008).  

The process of decomposition can be recursively applied to the cA in subsequent stages, 

thereby enabling a multi-resolution analysis of the signal (Cvetkovic, Übeyli and Cosic, 
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2008). The mathematical basis of the DWT is rooted in the Wavelet Transform, where the 

scaling function 𝜑(𝑥) is defined in Equation (2.3) (Alkhadafe, Al-Habaibeh and Lotfi, 2016) 

𝜑(𝑥) = ∑ 𝑐(𝑘)𝜑(2𝑥 − 𝑘)                              (2.3)

𝑙−1

𝑘=0

 

where, 𝑐(𝑘)= wavelet coefficient, k=index, l=decomposition level. 

One of the significant advantages of DWT is its efficiency in data compression and rapid 

computation (Usha Kumari et al., 2020). The breakdown diagram in Figure 2.6 shows the 

procedure of multiresolution decomposition for a signal x(n). This process consists of 

repeated stages and each stage has 2 digital filters [discrete mother wavelet high pass filter 

g(n) and mirror version low pass filter h(n)] and 2 down samplers by 2. Two filters produce 

down-sampled outputs called D1 as detail and A1 as approximation. The process is 

iteratively repeated, with each stage performing down-sampling by a factor of 2, allowing 

for a progressive refinement of the signal's time-frequency representation. 

The standard quadrature mirror filter condition ensures that the low-pass filter used in the 

DWT is appropriate for wavelet transforms, maintaining the integrity of the frequency 

components across different scales. DWT offers a robust framework for time-frequency 

analysis, facilitating the examination of both transient and periodic features within EEG 

signals. Its capability for multiresolution decomposition makes it particularly useful for 

applications requiring detailed time-frequency information. 

For signal analysis, selecting the appropriate wavelet and the number of decomposition 

levels is both crucial and challenging. The outcome of the wavelet transform is highly 

dependent on the choice of wavelet because the basic waveforms differ among wavelet types. 

No single wavelet is universally optimal for all types of input signals; rather, specific 

wavelets may be more suitable for particular situations. Consequently, the choice of wavelet 

affects the quality of the wavelet coefficients, which are used as input features for 

classification tasks. Proper wavelet selection can therefore significantly influence the 

accuracy of classification (Glassman, 2005). 

Various wavelets (Bajaj, 2021) have been employed as mother wavelets in brain signal 

processing, including variations of Daubechies (Shaker, 2007; Cvetkovic, Übeyli and Cosic, 

2008; Murugappan, Ramachandran and Sazali, 2010; Usha Kumari et al., 2020; Jacob et al., 

2021; Rajashekhar, Neelappa and Rajesh, 2022), Haar (Kousarrizi et al., 2009; El Bahy et 
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al., 2017; Abed et al., 2018), Sym9 (Graimann et al., 2004), Meyer (Samar et al., 1999; 

Glassman, 2005), and Rbio (Sairamya, Subathra and Thomas George, 2022) among others. 

Each wavelet has unique properties that make it effective depending on the characteristics 

of the signal being analysed. To determine the most suitable wavelet for a given application, 

researchers sometimes test various wavelets with different numbers of decomposition levels 

and select the one that demonstrates the highest efficiency for the specific application (al-

Qerem et al., 2020). The selection of the appropriate mother wavelet is often based on the 

characteristics of the input signals and a comparative analysis of the outputs produced by 

different wavelets (Glassman, 2005). 

The number of decomposition levels in wavelet analysis is determined by the signal's 

dominant frequency components. The levels of decomposition must be sufficient to ensure 

that the signal's parts are adequately correlated with the desired frequency bands for effective 

classification. For instance, Cvetkovic, Übeyli and Cosic (2008) and Ji et al. (2019) 

employed a four-level decomposition for EEG signals, yielding four cDs (termed as D1 

through D4) and one final cA (termed as A4). On the other hand, Rajashekhar, Neelappa and 

Rajesh (2022) decomposed EEG signals into 7 levels (D1 to D7). The decomposition is 

highly dependent on some parameters such as wavelet function, wavelet order, sampling rate 

of the signal, the characteristic of required frequency bands of interest, such as alpha and/or 

beta waves etc. Thus, the choice of wavelet and the number of decomposition levels are 

fundamental considerations in wavelet-based signal processing, with significant 

implications for the accuracy and effectiveness of the analysis. 

Shaker (2007) conducted a comparative study of both FFT and WT for analysing EEG brain 

signals. The study found that WT outperformed FFT in detecting brain diseases. Despite this, 

the author utilised DWT as a classifier for filtered EEG frequencies. The observation about 

the higher performance of DWT over FFT is consistent in the studies of Akin (2002) and Kit 

et al. (2023), who compared FFT and DWT for feature extraction. Although DWT was 

proposed as a solution, the performance of FFT was found to be comparable. The 

effectiveness of these techniques depends on several factors, including the length of the data, 

wavelet selection, scaling, and shifting properties (Akin, 2002). 

In the realm of feature extraction and selection Bashashati et al. (2007), and Lakshmi, Prasad 

and Chandra Prakash (2014) emphasised that selecting the most appropriate techniques 

remains a significant challenge. It is important to note that no single technique is universally 
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superior for all problems. The efficacy of a particular method can vary widely depending on 

the specific problem being addressed. Therefore, while multiple techniques may offer 

valuable insights, the optimal choice often depends on the unique characteristics of the data 

and the goals of the analysis. 

2.4.3 ASPS Approach 

In the field of brain signal processing and analysis, selecting the most appropriate method 

from a range of feature extractors, selectors, and classifiers presents a significant challenge. 

Researchers often choose separate techniques for feature extraction and optimisation, which 

can be time-consuming and labour-intensive. To tackle this challenge, a groundbreaking 

approach called the ASPS approach has been introduced (Al-Habaibeh and Gindy, 2000; Al-

Habaibeh, 2000). This approach was originally developed based on Taguchi’s orthogonal 

arrays and was initially applied to condition monitoring in milling processes.  

The ASPS approach utilises multiple sensors to acquire signals and processes them to extract 

the most informative SCFs. It offers a straightforward and efficient method for extracting 

useful information from a variety of signals. The process involves collecting data from 

standard sensors, which is then subjected to a systematic processing method to identify the 

most significant features. After basic pre-processing, signals undergo advanced processing 

techniques such as FFT and/or DWT. Following data collection and processing, the ASPS 

approach identifies the most sensitive SCFs necessary for developing the desired system. 

The ASPS approach addresses the challenge of selecting appropriate signal processing 

techniques for specific purposes. It reduces experimental effort, time, and cost by 

streamlining the feature extraction and selection process. The ASPS approach is noted for 

its theoretical simplicity and practical applicability in extracting valuable information from 

multiple sensory signals. Subsequent research has expanded on the ASPS approach, with 

notable contributions by Abbas, Al-Habaibeh and Su (2011), Al-Habaibeh, Zorriassatine and 

Gindy (2002), Alkhadafe (2015), Alkhadafe, Al-Habaibeh and Lotfi (2016), Shakmak 

(2016), and Al-Azmi, Al-Habaibeh and Abbas (2023). These studies demonstrated the 

effectiveness of the ASPS approach in various applications, including condition monitoring 

of gearboxes, tools, and water leakage detection systems. 

2.5 Signal Classification 

For further use of brain signals based application development an inevitable step is signal 

classification which enables brain signals to be operated as control commands. This process 
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allows brain signals to be translated into control commands (Bashashati et al., 2007; 

Aggarwal and Chugh, 2019). The choice of the most suitable classification algorithm is 

determined by the existing feature properties. The importance of selecting appropriate 

feature characteristics is discussed in Section 2.4. Examples of such feature properties may 

include noise and outliers, high dimensionality, temporal information, non-stationarity, and 

the presence of small training datasets. These factors must be carefully considered during 

the feature extraction process to ensure the optimal performance of the BCIs system. 

At this stage, brain signals are referred to as BCI control signals. These signals possess 

certain features related to signal type, training, information transfer rate, and the specific 

BCIs type. The classification method applied at this point further refines the BCIs control 

signals for practical use. Choosing an appropriate classification or regression algorithm is 

critical (Nicolas-Alonso and Gomez-Gil, 2012). 

Classification methods can be evaluated based on themes such as generative versus 

discriminative, dynamic versus static, stable versus unstable, and linear versus non-linear. 

Among the numerous classifiers available, common choices in BCIs development include 

LDA (Trammel et al., 2023), ANNs (Hramov et al., 2017), Hidden Markov Models (HMM) 

(Akrami et al., 2005), KNN (Narayan, 2021), fuzzy logic (Nguyen et al., 2015), and SVM 

(Subasi and Gursoy, 2010). Table 2.5 outlines the major attributes of various classification 

techniques, demonstrating that ANNs and other non-linear classifiers generally outperform 

linear, generative, and static classifiers in terms of effectiveness. 

Table 2.5: Classification algorithms. 

Techniques Type Attribute 

LDA Linear classifier - Easy to implement. 

- Computationally cost effective. 

SVM linear classifier - Produce well generalisation through complexity 

reduction. 

- High performance as well as computational 

complexity. 

Naïve Bayes 

classifier  

 

Generative-model 

classifier  

 

- Generates non-linear decision boundary. 

- Inadequate to estimate the exact class probability. 

- Works for small training dataset. 

KNN Non-linear - Easy implementation and debugging. 

- Higher performance in terms of complex 

classification tasks. 

- Not good for large dataset, irrelevant as well as 

redundant features. 
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Table 2.5: Classification algorithms (continued from previous page) 

Techniques Type Attribute 

ANNs Non-linear 

classifier 

 

- Multilayer perceptron neural network. 

- Supports neurons for bunch of layers. 

- Deep learning techniques are used (e.g. DNN, 

CNN etc.). 

- Works effectively with dataset of varying size, 

contingent upon the choice of classifier.  

- Easy implementation, very efficient and widely 

used 

 

ML techniques, a subset of AI, involves a range of algorithms and statistical models designed 

to train computers to perform tasks autonomously (Abiodun et al., 2018). ML is primarily 

classified into two categories based on learning techniques: supervised and unsupervised 

learning. Supervised machine learning further divides into classification and regression. 

Classification involves predicting discrete labelled outcomes, while regression generates 

continuous output without labelled data(Soofi and Awan, 2017). Prediction tasks can be 

approached as either classification or regression problems depending on the specific 

requirements and availability of data. Similarly, signal features can be learned through either 

supervised or unsupervised methods. In recent years, ML techniques have been increasingly 

applied to brain signal classification. (Fabietti, Mahmud and Lotfi, 2021) provide a 

comprehensive review of 40 articles in portable EEG system, focusing on various ML 

techniques employed in EEG-based BCI applications. Among the diverse array of methods 

explored, including SVM, LDA, Logistic Regression (LR), Markov-ChainMonte-Carlo 

(MCMC), Passive-Aggressive Algorithm type-I, Extreme Gradient Boosting (XGBoost), 

Neural Networks (NN) and Decision Trees (DT), the authors highlight that SVM (37%) and 

NN (42%) have been the most extensively utilised in recent research. Within the category of 

NN algorithms, FFNN and CNN dominate, accounting for 88% of the neural network 

approaches investigated in the literature. This survey underscores a pronounced preference 

for these methods in the development of EEG-based BCI systems. Numerous research 

studies have focused on comparing various classifiers to identify the most effective 

algorithm for specific tasks. For instance, Trammel et al. (2023) conducted a study on EEG 

classification to decode semantic relatedness, in which they compared three machine 

learning classifiers: SVM, RF, and LDA. Among these, the SVM outperformed the others, 

achieving the highest decoding accuracy along with the greatest sensitivity. Notably, even 

with a limited number of training trials, the SVM model was capable of accurately 
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classifying EEG signals, demonstrating its suitability as a robust method in cognitive science 

research. Table 2.6 provides a summary of several such studies, listing the classifiers 

employed and their corresponding accuracies. This table highlights the widespread 

utilisation of SVM and ANN in various EEG classification tasks. 

Table 2.6: Utilisation of classifiers and their accuracies in EEG classification studies. 

Authors Classifiers Best accuracy Study 

(Bilucaglia et 

al., 2020) 

SVM 

KNN 

LDA 

63.8% 

63.7% 

63.68% 

EEG classification in 

emotion‑related brain 

anticipatory activity 

(Xu and Xu, 

2019) 

Proposed Armiti model 

CNN 

SVM 

K-means 

96.4% 

80.1% 

74.7% 

65.6% 

EEG classification with few 

channels 

(El Bahy et 

al., 2017) 

SVM 

NN (Multi-Layer 

Perceptron [MLP]) 

trained with 

backpropagation NN 

84% 

82.6% 

Mental tasks classification 

from EEG signals 

(Jacob et al., 

2021) 

SVM 

Random Forest (RF) 

MLP 

93.17% 

97.67% 

94.67% 

EEG classification for the 

diagnosis of encephalopathy 

(Rajashekhar, 

Neelappa and 

Rajesh, 2022) 

KNN 

Naïve Bayes 

Euclidean distance 

SVM 

ANN 

92.77% 

85.8% 

78.80% 

98.37% 

94.75% 

EEG signals classification for 

detecting left and right-hand 

movements 

(al-Qerem et 

al., 2020) 

SVM 

DT 

Naïve Bayes 

KNN 

AdaBoost 

ANN 

95.5-100% 

94-99.6% 

86.33-100% 

97-100% 

97-100% 

97-100% 

EEG classification for 

proposed feature extraction 

model using wavelet family 

(Sharma, Kim 

and Gupta, 

2022) 

SVM 

KNN 

RF 

Gaussian Naïve Bayes 

Bernaulli Naïve Bayes 

Logistic regression 

MLP 

72% 

76% 

85% 

75% 

59% 

66% 

85% 

EEG classification for 

different motor imagery tasks 

 

Most of the studies listed in Table 2.6 involve performance comparisons across various 

parameters, such as differences between subjects, feature sets, or methods. However, only 

the highest accuracies of the ML techniques are presented here to provide a comparative 

overview of the algorithms' performances. It is important to note that no single algorithm 

consistently outperforms all others across all scenarios. An algorithm such as SVM may 

produce varying results across different research contexts. 
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2.5.1 Artificial Neural Networks 

ANNs, particularly those employing deep learning algorithms, are extensively utilised 

classifiers that deliver remarkable results in pattern recognition, image recognition, natural 

language processing, and emotion recognition. They have found successful applications 

across various fields, including neuroscience, neuro engineering, and biomedical 

engineering. A comprehensive survey on deep learning methods for EEG analysis by (Li et 

al., 2020) reveals that several architectures, such as Deep Belief Networks (DBN), Sparse 

Auto Encoders (SAE), DNN, and semi-supervised DBNs, have been explored by researchers. 

These methods have been applied to classify EEG raw data and frequency spectra in diverse 

contexts, including motor imagery tasks, emotion detection, seizure detection, and 

Alzheimer’s disease detection. 

For motor imagery tasks involving left and right-hand movements, An et al. (2014) 

demonstrated that the DBN model, with eight hidden layers, achieved superior performance 

compared to SVM. Notably, the number of neurons in the network did not significantly 

impact accuracy. In addition to supervised techniques, unsupervised methods have also been 

explored in ongoing state-of-the-art research on EEG classification. Unsupervised learning 

techniques, including various clustering algorithms and association rules, are instrumental 

in analysing unlabelled data. These techniques are prevalent in bioscience research and often 

yield results comparable to those produced by supervised models (Längkvist, Karlsson and 

Loutfi, 2012). Clustering algorithms, for instance, facilitate the partitioning of data into 

distinct classes or clusters based on similarity, thus aiding in the organisation and 

interpretation of complex datasets. 

In the realm of intracranial EEG (iEEG), which provides detailed insights into brain 

functions, Saboo et al. (2019) employed an unsupervised learning technique to identify 

active electrodes. Their study involved data collection from 115 patients performing a verbal 

memory task. By applying Gaussian Mixture Models (GMM) to multiple matrices, both 

separately and in combination, the authors achieved 97% sensitivity and 92.9% specificity 

for the most efficient matrix. 

Pfurtscheller and Pregenzer (1999) investigated the classification of 17-channel EEG signals 

corresponding to four types of body movement tasks using LVQ based on single-trial data. 

They examined both time and frequency components before and after the reaction stimulus 

for each task. Their model achieved a classification accuracy of 70% for the four distinct 
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movements. Mizuno et al. (2010) also utilised LVQ for clustering EEG signals, focusing on 

five mental tasks performed by three subjects. Their approach attained an accuracy of 81%. 

In their study, they employed the maximum entropy method in conjunction with frequency 

analysis to evaluate feature availability within the alpha and beta frequency bands. Figure 

2.7 and Figure 2.8 schematically represent the architecture of FFNN and LVQ, respectively. 

 

Figure 2.7: FFNN architecture (Montesinos López Osval Antonioand Montesinos López, 

2022). 

 

Figure 2.8: LVQ architecture (Bhardwaj, 2012). 

Comparing MLP and LVQ, (Barna and Kaski, 1990) and (Rögnvaldsson, 1992) found that 

LVQ and MLP perform well for high dimensional and lower dimensional inputs respectively. 

However, both techniques have comparable sensitivity in terms of smaller size of training 
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data and MLP is a faster training process. MLP usually follows the form of FFNN 

(Kotsiopoulos et al., 2021) where data progresses in one direction. However, it can be trained 

by backpropagation NN as well (El Bahy et al., 2017). MLP algorithm is commonly 

employed for pattern classification tasks (Atangana et al., 2020). 

2.5.2 Image Processing and CNN 

In recent years, several deep learning algorithms with the capacity to learn discriminative 

features have been successfully applied to EEG classification. These algorithms are 

employed to classify EEG signals based on various cognitive activities, including emotion 

recognition, motor imagery, and mental workload. Among the deep neural networks, CNN 

have demonstrated superior performance compared to other algorithms such as SAE, MLP, 

Recurrent Neural Networks, and DBN (Craik, He and Contreras-Vidal, 2019). 

CNN are typically used with inputs that are either raw signal values or processed images, 

such as spectrograms. CNN consist of multiple convolutional layers with activation 

functions for feature learning, followed by fully connected layers with activation functions 

for output classification. Figure 2.9 shows the schematic representation of a typical CNN’s 

architecture.  

 

Figure 2.9: CNN architecture (Tsinalis et al., 2016). 

The convolutional layers, or lower network layers, perform the majority of the image 

recognition computations. Pooling layers, which down-sample the input image features, 

reduce the computational burden. The fully connected layers, or higher network layers, are 

responsible for classifying images based on the features extracted from the previous layers 

(Sainath et al., 2015). CNN have proven effective in various research areas, including 

automatic sleep stage scoring, anomaly detection, seizure detection, and the imagination of 

geometric shapes (Tsinalis et al., 2016; Wang et al., 2016; Sakhavi and Guan, 2017; Acharya 

et al., 2018; Llorella et al., 2021). 
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2.6 BCI Devices for Communication Systems 

EEG is valued for its simplicity and cost-effective equipment, contributing to its extensive 

use in modern BCI systems. These systems depend on different types of electrical brain 

activity, including the slow cortical potentials, event-related P300, sensorimotor rhythm like 

mu (µ) rhythm, and steady-state visual evoked potentials, to facilitate communication 

(Aggarwal and Chugh, 2019). Of these, only mu (µ) rhythm which is found at routine motor 

activities (Rihana, Damien and Moujaess, 2012) is specifically related to motor tasks. Motor 

imagery based BCI applications encompass a range of technologies, such as wheelchair 

control, virtual reality, and neurorehabilitation. 

Nicolas-Alonso and Gomez-Gil (2012) and Niha and Banu (2016) review various 

applications and devices activated by BCIs. Key categories include medical applications 

(e.g., diagnosis, monitoring, and health forecasting), communication aids, environmental 

control (e.g., managing domestic devices), motor restoration (e.g., functional electrical 

stimulation), entertainment (e.g., games), and locomotion (e.g., wheelchair control). Notable 

EEG-based communication devices include thought translation systems (Hinterberger et al., 

2004), spelling devices (Birbaumer et al., 1999), spelling applications utilising the P300 

component (Farwell and Donchin, 1988) as well as systems that enable spelling through the 

control of intact eye movements (Treder and Blankertz, 2010). 

Bansal and Mahajan (2019) discuss various BCI applications developed using the MATLAB 

programming environment. These include in-house systems for eyeblink-based BCIs, 

external device control applications, Arduino Uno hardware interfacing, prosthetic hand 

control, intelligent stress relief systems, cursor movement control based on imagined limb 

movement, musical brain caps, and mini-drones. Target-oriented computer mouse control 

using brain signals can be achieved through both invasive and non-invasive EEG techniques 

(McFarland et al., 2008). Although invasive methods generally offer superior performance 

due to better signal-to-noise ratios, non-invasive EEG methods are evolving in terms of 

signal acquisition, processing, and analysis for specific applications. The study compared 

BCI systems across healthy and physically disabled individuals, revealing varied accuracies 

in target selection. Correlation values between control signals and target selection reached a 

maximum of 0.38 for horizontal cursor movement and 0.44 for vertical cursor movement. 

EEG-based control applications are particularly beneficial for individuals with physical 

disabilities. For instance, an in-house developed eyeblink-based BCI system can activate 
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specific device control applications. The "Emotiv" neuroheadset, featuring 14 EEG channels 

and an Arduino Uno board, serves as an interface between brain signals and control 

applications. The Emotiv headset operates at a sampling rate of 128 Hz, with data wirelessly 

transmitted to a computer. Control activation occurs when a certain threshold ERP value is 

reached  (Subha et al., 2010). Additionally, g.BCIsys have been employed to control cursor 

movement based on EEG signals. Using the g.STIMunit setup, the imagination of limb 

movements can move the cursor horizontally. Brain signals collected from the C3 sensor 

(left hemisphere) during right-hand movement imagination and from the C4 sensor (right 

hemisphere) during left-hand movement imagination facilitate horizontal cursor movement 

(Bansal and Mahajan, 2019). 

Ramadan and Vasilakos (2017) provide a comprehensive review of various mental control 

signals, BCI hardware and software technologies, highlighting the distinct focus of the BCI 

market across different continents. In North America, there is a significant emphasis on the 

development and investment in invasive BCI technologies. In contrast, European and Asian 

markets are prioritising the advancement of non-invasive EEG-based devices, with particular 

attention to minimising costs. This reflects that these regions are prioritising cost-

effectiveness and accessibility in their approach to BCI technology, likely to make these 

devices more widely available and to cater to a broader audience, including those in 

healthcare or consumer markets where budget constraints might be a significant 

consideration. After reviewing, the authors observe that the BCI community struggles with 

a lack of standardisation, leading to tedious and often complex EEG procedures, as well as 

widespread incompatibility among the various BCI devices. 

A few studies have been attempting to translate brain activity into text. For example, Yang 

et al. (2023) developed a thought-based EEG-to-text system, where the methodology 

incorporates the Eurasian Oystercatcher Wild Geese Migration Optimisation (EOWGMO) 

algorithm for signal processing, the Multiscale Dilated Adaptive DenseNet with Attention 

Mechanism (MDADenseNet-AM) technique for text conversion, and the Morse code 

technique for interpreting alphanumeric letters. The study achieved an accuracy of 96.41% 

using a publicly available dataset based on 14 motor movement or imagery tasks. However, 

the optimisation technique does not guarantee a globally optimal solution, as its performance 

is influenced by problem characteristics and parameter settings. Additionally, the Morse 

code technique requires fast typing, which may pose challenges in practical applications 

(Bhuvaneshwari et al., 2021). 
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Bhuvaneshwari et al. (2021) conducted a review on EEG-based assistive brain-computer 

interface (BCI) systems designed for individuals with neurodegenerative diseases. The study 

categorises these systems into four types: wheelchair control, communication tools (such as 

organ movement decoders), speller-based systems, and eye-tracker systems. However, none 

of the reviewed research focuses on developing an EEG-based communication system 

capable of directly interpreting various thoughts. 

Imran et al. (2024) developed a brain-controlled computer task system for individuals with 

disabilities, enabling cursor movement using thought-based EEG signals. Four cursor 

directions (left, right, up, and down) were generated based on distinct brain states, such as 

alpha, beta, and gamma rhythms, using data from a single sensor. The study compared 

various machine learning techniques including SVM, RF, and NN classifiers, with an 

updated model architecture, achieving an accuracy of 52%. However, employing a CNN 

improved accuracy to 80% (Imran et al., 2024). The authors utilised a private dataset in their 

experiments and recommended future studies to incorporate real data collected from a group 

of participants for further validation. 

Recently, numerous EEG-based emotion recognition systems have been developed for 

brain-computer interface (BCI) applications, achieving high accuracy. However, in practice, 

the establishment of a unified and comprehensive methodological framework is essential 

(Hamzah and Abdalla, 2024). The use of fewer EEG sensors is also recommended to 

minimise setup time, memory requirements, computational load, and overall system 

complexity. 

Current challenges include the reliability of deep learning models in BCI applications across 

diverse participants and the consistency of signal quality in EEG acquisition systems for 

groups of subjects. The authors provide a comprehensive analysis of BCI development 

trends, highlighting user-based and technology-based challenges, as well as potential 

research advancements. Their findings indicate that ongoing studies focus on optimising 

computational techniques and facilitating seamless interaction between individuals and 

automated systems. 

2.7 Summary 

This chapter presents a comprehensive review of brain signal analysis and the development 

of BCIs. To ensure thorough coverage of the relevant areas, the review is divided into five 

sections: biological components of the brain and MND patients which are discussed in 
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Section 2.2, brain imaging systems, detailed in Section 2.3; brain signal processing methods, 

investigated in Section 2.4; classification algorithms, explored in Section 2.5; and relevant 

BCI developments, reviewed in Section 2.6. Each subsection delves into the essential aspects 

and current advancements in its respective area, providing a thorough understanding of the 

state-of-the-art in BCI technology, its applications and developments. 

The development of thought interpretation for communication remains a relatively 

unexplored area, particularly in assistive and non-invasive technologies for individuals with 

severe motor impairments. While a few studies have genuinely attempted to interpret brain 

signals from specific thoughts to facilitate communication with the surroundings, such 

systems remain largely limited to device-based implementations, such as computers, rather 

than directly interpreting thoughts in a natural, device-independent manner. To develop an 

intelligent communication system, the methodology for brain signal interpretation is a 

crucial area where numerous opportunities remain unexamined. 

One of the primary challenges is achieving accurate interpretation of thoughts or 

imaginations, followed by the development of an effective method that can function reliably 

across both individuals and larger groups. Such a method must be computationally efficient, 

minimally complex, cost-effective, and robust in performance. However, existing state-of-

the-art methodologies predominantly focus on specific mental tasks, such as motor imagery, 

and brain signal processing is typically restricted to task-based signals. 

A critical limitation in current research is the lack of exploration beyond conventional task-

based approaches, particularly in the context of communication using brain-computer in BCI 

systems. This research aims to evaluate the applicability and efficacy of the ASPS approach 

for processing EEG-based sensor signals to extract relevant features for recognising mental 

imagery. The ASPS approach introduces delta (Δ) value analysis, which has not yet been 

considered in brain signal processing. According to theoretical principles, brain signals 

should exhibit a deviation when transitioning from a relaxed state to a state of specific 

imagination. If brain signal characteristics can be analysed through Δ value assessment to 

identify these deviations, and the uniqueness of imaginations can be detected using a 

computationally efficient and low-complexity approach, this would represent a significant 

advancement in brain signal analysis. Therefore, further investigation into Δ value-based 

methodologies has the potential to address existing limitations and contribute to the 
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development of more reliable and generalisable EEG-based communication systems capable 

of directly interpreting thoughts in a natural, device-independent manner. 

To the best of the author's knowledge, no existing studies have genuinely attempted to 

explore this approach. Therefore, this research aims to bridge this gap by investigating the 

potential of Δ value analysis, using the ASPS approach, to interpret brain signals associated 

with specific thoughts. This offers a new direction for developing more intuitive and 

accessible communication systems. By focusing on reducing computational complexity and 

enhancing the reliability of the ANN model, this study seeks to contribute to the development 

of EEG-based communication systems that can operate seamlessly across individuals, 

ultimately fostering a more direct and natural interaction between users and their 

environment. 

The methodology of this research is outlined in the next chapter. It discusses the three stages 

of BCI development in this study: signal acquisition, signal processing and analysis, and 

classification. The chapter provides insights into the algorithms used in the methodology, as 

well as the design of signal acquisition, processing, analysis, classification, sensor 

optimisation, and evaluation. 
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Chapter 3: Research Methodology 

 

3.1 Introduction 

This chapter presents the research methodology employed in this PhD study. As established 

in the state-of-the-art review in Chapter 2:, the development of a BCI necessitates three 

fundamental stages: brain signal acquisition, signal processing and analysis, and 

classification. The stages of methodology are depicted in Figure 3.1. These stages are 

initially undertaken to develop an algorithm aligned with the proposed methodology.  

 

Figure 3.1: The methodology of the research. 

Section 3.2 offers an in-depth discussion on the development of this algorithm, utilising the 

necessary stages identified for this research. Section 3.3 elaborates on the sensor 

optimisation process and the subsequent testing of the algorithm with the optimal number of 

sensors. The organisation of the following chapters is briefly outlined in Section 3.4. 

The state-of-the-art review presented in Chapter 2 explores traditional signal processing 

techniques used in BCI development, highlighting the challenge of selecting appropriate 
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techniques. To address this challenge, the ASPS approach, as introduced by (Al-Habaibeh, 

2000) and (Al-Habaibeh and Gindy (2000), is proposed as a solution for technique selection. 

Figure 3.2 presents the block diagram of the ASPS approach, which has been successfully 

applied to machinery condition monitoring. This approach is designed to process a set of 

sensory signals in an innovative manner by amalgamating multiple conventional signal 

processing techniques and applying various statistical functions to their outputs.  

 

Figure 3.2: Block diagram of the ASPS approach developed by Al-Habaibeh and Gindy 

(2000). 

In the figure, step (A) illustrates the signal acquisition process, where sensors (s1, s2... sn) 

capture data from the region of interest. The acquired signals undergo different signal 

processing techniques (sp1, sp2... spi), followed by the application of various statistical 

functions (f1, f2... fj), as depicted in step (B). The resulting function values are compiled 

into an SCF feature matrix in step (C). Using Taguchi's method, this matrix is organised by 

dependency coefficients in step (D), forming the Association Matrix (ASM). The next step 

(E) computes the Δ values by determining the difference between two states of the machinery 

components under monitoring. The necessary values are then grouped and labelled 

according to the objective of the analysis. Step (F) evaluates the performance of the selected 

features using an ANN to predict the machinery condition, and finally, step (G) summarises 

the classification accuracy of the prediction. 

The ASPS approach presents a promising paradigm for application in brain signal processing. 

Similar to machinery condition monitoring, brain signals are also sensory in nature and 
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require signal processing techniques and statistical functions for meaningful feature 

extraction. Since existing literature indicates that each signal processing technique has its 

own advantages and limitations, identifying the most suitable technique through individual 

experimentation is both time-consuming and computationally expensive. The ASPS 

approach offers a more efficient alternative by integrating multiple techniques, thereby 

reducing the overall experimental workload and processing time. 

A key strength of the ASPS approach is its use of Δ values to identify the most significant 

features. This PhD study assumes that computing Δ values from the difference between the 

relaxed state and a specific mental task state could yield valuable insights. Thus, this research 

aims to implement the ASPS approach in brain signal processing and analysis, with the 

objective of investigating its effectiveness in feature extraction and selection for BCI 

development. 

The methodology is presented in two phases. Section 3.2 details the development of the 

algorithm, incorporating the essential stages identified for this research. Section 3.3 focuses 

on sensor optimisation and the evaluation of the algorithm using the optimal sensor 

configuration. 

3.2 First Phase: Algorithm Development and Analysis 

This section outlines the information of acquired brain signal data, the initial development 

of the algorithm for the proposed methodology, and its implementation plan. Given the 

complexity of the overall model, this phase begins with the creation of an elementary 

model—a basic framework designed to scale up gradually in terms of data size and various 

analysis parameters. Different classifiers with diverse architectures will be investigated to 

assess their performance. All performances will be compared to evaluate the different 

models and determine the optimal classifier configuration. The following sections address 

the first phase of data collection, signal processing and analysis, and classification. 

3.2.1 Overview of Dataset 

The development of the algorithm and foundational model in this study leveraged prior data 

available within the university. This data, stored in a dedicated repository, was originally 

acquired using the international 10-20 EEG system (Klem et al., 1999), involved 19 scalp 

sensors to capture brain signals. The TMSi system, developed by Twente Medical Systems 

International, was utilised for EEG recording at a sampling frequency of 2 Hz. TMSi 

produces high-quality EEG acquisition systems for both research and clinical applications, 
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incorporating various amplifiers designed for high-resolution electrophysiological 

recordings. Gel-based electrodes were employed to ensure high-quality signal acquisition. 

Data acquisition, visualisation, and basic analysis were conducted using Polybench, TMSi’s 

proprietary software. As depicted in Figure 3.3, signal acquisition occurred during a previous 

project, collecting data from 19 NTU staff and students. Participants completed 22 mental 

tasks or imagination commands under a consistent recording protocol across two trials: 

Experiment A (trial 1) and Experiment B (trial 2). Trials included alternating relaxation and 

imagination periods within an audio stream. 

      

Figure 3.3: Volunteers wearing EEG cap and participating in prior signal acquisition. 

3.2.2 Signal Pre-processing 

All recorded signals were organised and stored in anonymised, subject-specific folders. The 

22 imaginations encompass a diverse range of mental tasks, including imagining objects, 

motor imagery tasks, experiencing emotions, performing mental calculations, and more. 

From these, five imaginations are selected, taking into account the complexity of the model 

and representing five distinct mental tasks. The objective is to determine whether the 

characteristics of these tasks are distinguishable from one another. To explore thought-based 

communication, five distinguishable imaginations are considered for analysis. Table 3.1 lists 

all five selected imaginations and enumerates a series of consecutive cognitive tasks.  

Table 3.1: Selected imagination list. 

Number Description imagination 

1 Imagine an African Elephant 
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Table 3.1: Selected imagination list. (continued from previous page) 

Number Description imagination 

2 Imagine kicking a football with left foot 

 
3 Calculate of 2x2 in your mind 

 
4 Imagine smelling a rotten egg 

 

 
5 Imagine walking on a warm sandy beach 

 

 
 

 

Two identical experiments, named Experiment A (trial 1) and Experiment B (trial 2), were 

carried out on all participants to detect any potential discrepancies between them. 

Participants were prompted with different mental simulations successively, each comprising 

two segments: an initial relaxation phase followed by a specific cognitive task. The selection 

of mental simulations was based on a range of tasks, including motor imagery, mental 

arithmetic, visualising objects, thinking about smells, and visualising moving around 

coupled with environmental awareness. The recorded raw brain signals are appropriately 

trimmed for each trial, as illustrated in Figure 3.4. 

 

Figure 3.4: Signal pre-processing. 

2x2
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Subsequently, data matrices are created based on each imagination task and the preceding 

relaxation periods. In this stage, no additional preprocessing techniques are employed to 

ensure the preservation of all naturally occurring features. Furthermore, this research aims 

to apply the signal processing technique (ASPS approach) based solely on raw data, thereby 

simplifying the analysis process while maintaining the integrity of these natural features. 

3.2.3 Signal Processing and Analysis 

This stage is carefully designed, taking into account a wide range of parameters. The pre-

processed dataset is characterised by 19 sensors, 19 subjects, and 5 distinct imaginations. 

One of the most challenging tasks is selecting the most suitable signal processing method to 

extract appropriate features that address the project's objectives, as highlighted by the review 

of current advancements presented in Chapter 2. This research aims to investigate the ASPS 

approach in brain signal processing, given its theoretical simplicity and practical utility for 

extracting valuable information from multiple signals.  

The ASPS approach is a ‘black-box’ concept (Al-Habaibeh, 2000; Al-Habaibeh, 

Zorriassatine and Gindy, 2002), in which the transformation between input and output 

parameters is analysed to determine the condition of the monitored entity. This approach is 

considered applicable to specific problems within particular applications and can be 

generalised to various types of processes, provided they share common specific parameters. 

In the development of BCIs, the selection of the optimal number of features significantly 

influences the accuracy of emotion recognition from brain signals (Murugappan et al., 2008). 

Therefore, this research will apply the ASPS approach for feature extraction and 

optimisation of brain signals and investigate the performance of imagination recognition. 

The ASPS approach can employ multiple sensors to acquire and process signals, extracting 

the most useful SCFs. These SCFs are crucial for identifying changes in the collected signals 

as the condition of the monitored entity evolves. Detecting and processing these changes 

enables a precise assessment of the entity's condition. For instance, sensitive features can be 

derived from differences between two distinct states of the monitored entity A higher 

differential indicates greater sensitivity concerning a specific sensor, allowing the 

construction of a sensitivity matrix, referred to as the ASM. Taguchi’s orthogonal array is 

potentially used to determine feature sensitivity and reduce the number of experimental trials. 

In the ASPS approach, the SCFs calculated for various sensors form a 3D matrix called the 

Sensory Feature Matrix, where Taguchi’s method can be applied to assess the sensitivity of 
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each feature. Features with high sensitivity and their corresponding sensors are then selected 

as part of the optimisation process. 

In the domain of brain signal processing, sensitive features are derived from the differences 

observed between relaxed and active phases (e.g., during mental tasks) of brain signal 

recordings. Due to the brain's complexity, where multiple regions may influence specific 

mental processes, the analysis of the ASM differs significantly from that used in mechanical 

processes. The unique nature of brain activity necessitates a more detailed approach to ASM 

analysis to accurately capture the intricate relationships between brain regions and their 

corresponding signal variations. By applying various statistical functions to these parameters 

and combining their results, a substantial matrix can be generated. Figure 3.5 illustrates the 

block diagram of ASPS approach within the context of this research.  

 

Figure 3.5: The block diagram of the ASPS approach applied to brain signal processing in 

this research. 

To evaluate the effectiveness of a new signal processing method and to develop the 

algorithm for this research methodology, it is essential to start with a simplified model that 

has reduced dimensionality. This research aims to explore both an elementary model and the 

subsequent expansion in dimensionality. 

Signal acquisition involves the use of multiple sensors placed on the scalp to capture brain 

wave activity during periods of relaxation as well as during the performance of mental tasks. 

The acquired signals are subsequently processed using various signal processing techniques, 
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including those based on the time domain, frequency domain, and time-frequency domain, 

among others. These methods facilitate the analysis and interpretation of the brain's electrical 

activity, allowing for a deeper understanding of the neural processes underlying different 

cognitive states. 

A range of statistical functions, such as mean, standard deviation, and variance, are applied 

to these domains during both relaxation and mental tasks. Statistics are essential in human 

neuroscience for examining the variability in brain structure and functions (Chén, 2019). 

Investigating this variability is useful for identifying individual differences and group-wise 

patterns, which significantly enhance the understanding of cognitive and neural processes. 

Applying the same statistical functions to signals recorded during relaxation and mental 

tasks should yield distinct significance, as relaxation and mental tasks represent conceptually 

different mental states. These states exhibit variations in amplitude and frequency, 

necessitating differential interpretation of the statistical outcomes. In this study, Δ values are 

computed by subtracting the features of the relaxation state from those of the subsequent 

mental task, allowing for a direct comparison of the changes in brain activity between these 

two distinct states. After extraction, the resultant features, termed SCFs, are organized into 

a matrix structure to form the ASM. For 𝑛 number of EEG sensors and 𝑚 number of signal 

processing techniques (including FFT and/or DWT as well as raw signals), the ASM can be 

expressed in Equation (3.1) (Al-Habaibeh and Gindy, 2000). 

 ASM=[

 𝑑11  𝑑12  𝑑13 … 𝑑1𝑚

𝑑21  𝑑21  𝑑21 … 𝑑2𝑚

… … … … … … … …
𝑑𝑛1  𝑑𝑛2  𝑑𝑛3 … 𝑑𝑛𝑚

] = 𝑑𝑥𝑦 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑥 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑦 ≤ 𝑚              (3.1) 

As a result, the ASM can be constructed, where each element of 𝑑𝑥𝑦 denotes the dependency 

coefficient between features. By analysing these ASMs, a set of SCFs is selected that 

sufficiently distinguishes the uniqueness of each imagination. The ASPS approach has the 

capacity to incorporate additional signal processing techniques for constructing the ASM. 

To assess the effectiveness of the extracted features from the ASM in recognising different 

imaginations, their performance needs to be evaluated. This evaluation is carried out using 

an appropriate classification algorithm. 

Considering all parameters, the signal processing, analysis, and classification in this research 

are designed to be executed in three distinct approaches. The rationale is to use the ASPS 

approach to determine how well imagination can be recognised across varying numbers of 
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subjects, sensory signals, and SCFs. Subsequently, the performance of recognition is 

evaluated through various ANN architectures. These three approaches are termed Bespoke 

analysis, Group-based analysis, and Combined analysis. The purpose of each analysis is 

outlined below: 

a) Bespoke analysis: This process entails the design and experimentation with an 

elementary signal processing model using the ASPS approach for recognising 

imagination, initially focusing on two subjects. In this analysis, EEG signals from 

three sensors are processed, the ASPS approach is applied to both the time-domain 

(raw signals) and frequency-domain components of the EEG data. The analysis 

employs a limited set of SCFs to assess whether the ASPS approach can adequately 

extract the necessary features to distinguish between five imaginations. Chapter 4 

provides a detailed account of the design, development, and evaluation of this 

bespoke analysis. 

b) Group-based analysis: This approach expands upon the bespoke analysis by scaling 

up to three groups, with group-wise analysis conducted to further investigate the 

performance of recognising five imaginations. This analysis extends to additional 

domains, including the time domain, frequency domain, and time-frequency domain, 

to enhance feature extraction from three sensor signals and consequently generate a 

greater number of SCFs in the ASMs. Chapter 5 elaborates on the design, 

development, and assessment of imagination recognition using a group-based 

analysis methodology. 

c) Combined analysis: This experiment involves using all 19 sensory signals from all 

19 subjects to explore the performance in recognising the five imaginations. It 

employs the ASPS approach for feature extraction and image processing techniques 

for classification. The design and implementation of this comprehensive 

experimental work are described in Chapter 6. 

3.2.4 Imagination Recognition Using Classification Algorithm 

This research has designed three distinct analyses using ASPS approach in which ANN 

models are employed to classify signals for the recognition of different imaginations. It is 

crucial to consider the project goals, data size and complexity, and the potential of the ANN 

models in this context. The selected SCFs using the ASPS approach serve as inputs for the 

classification model. In supervised ANN models, inputs are divided into two groups: training 

and testing inputs. The model is trained and tested with the training and testing datasets, 
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respectively. The train-test split ratio typically ranges between 70-30 and 80-20, depending 

on the available data size and number of classes (Gholamy, Kreinovich and Kosheleva, 2018; 

Rácz, Bajusz and Héberger, 2021). Proper training of the ANN models is essential for 

achieving high accuracy, making it a flexible and powerful classifier (Abiodun et al., 2018). 

However, due to the limited number of trials, this phase of analysis and verification employs 

a single trial for training and uses the remaining trial for testing. 

Considering the state-of-the-art in classifier selection and the specific aspects of this research, 

three ANN models are explored to evaluate classification performance. FFNN and LVQ are 

applied as classifiers in both bespoke and group-based analyses and are compared across 

different architectures to assess performance variations. The combined analysis employs 

image processing techniques and CNN for the classification of mental imagery. In this 

approach, an extensive ASM is generated, comprising data from 19 sensors and a larger set 

of statistical functions applied to these data. To explore the broad spectrum of SCFs within 

these ASMs, image processing techniques are employed. CNNs, widely used in deep 

learning for brain signal processing, are selected for classifying mental imagery. The ASMs, 

processed as images, serve as the input to the CNN. Chapter 6 presents the application of 

CNN for classifying different types of mental imagery. Verification is conducted across three 

distinct groups, with performance comparisons made between them.  

The architecture of ANN models allows for significant flexibility, such as varying the 

number of layers and neurons, which can impact the performance of the classification model 

(Montesinos López Osval Antonioand Montesinos López, 2022). Therefore, this research 

investigates various architectural performances for ANN models, as exemplified in Chapters 

4 and 5. Tables 3.2 and 3.3 present the hyperparameters’ values of developed FFNN and 

LVQ model respectively. 

Table 3.2: Hyperparameters of developed FFNN model. 

Hyperparameters of FFNN model Value 

net Patternnet 

Training function Traincgb  

Activation function Tansig for hidden layers, softmax for output layer 

Maximum epochs 1000 

Performance function Crossentropy (default) 
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Table 3.3: Hyperparameters of developed LVQ model. 

Hyperparameters of LVQ model Value 

net Lvqnet 

learning function Learnlv1 

Learning rate 0.01 

Maximum epochs 25 

Performance function performFcn (default) 

 

Pattern recognition networks are a type of feedforward network designed to classify inputs 

into target classes. The target data for these networks should be represented as vectors. The 

function ‘traincgb’ is employed for network training, where it updates weight and bias values 

through conjugate gradient backpropagation with Powell-Beale restarts (Powell, 1977). The 

cross-entropy operation computes the loss between the network's predictions and the target 

values and is applicable to both single-label and multi-label classification problems. 

LVQ neural networks are structured in two layers. In the first layer, input vectors are mapped 

into clusters identified by the network during the training process. The second layer then 

aggregates these clusters into classes as defined by the target data. The number of clusters 

in the first layer is dictated by the number of hidden neurons. A larger hidden layer facilitates 

the learning of more clusters by the first layer, thereby allowing for a more nuanced mapping 

from inputs to target classes. The allocation of clusters to the target classes is determined 

based on the distribution of target classes at the time of network initialisation.  

CNN model implementation includes a number of consecutive layers and hyperparameters, 

which are presented in the Table 3.4.  

Table 3.4: CNN configuration and hyperparameters of developed CNN model. 

CNN configuration and 

hyperparameters 

Value 

Layer 1: image input 256x256x3 images 

Layer 2: 2-D convolution 8, 3x3 convolutions with stride [1 1] and padding [0 0 0 0] 

Layer 3: ReLU ReLU 

Layer 4: 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0] 

Layer 5: 2-D convolution 16, 3x3 convolutions with stride [1 1] and padding [0 0 0 0] 

Layer 6: ReLU ReLU 

Layer 7: 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0] 

Layer 8: Fully connected 5 (Number of class labels) 

Layer 9: Softmax Softmax 

Layer 10: Classification 

Output 

Crossentropyex 

Training function trainNetwork 

Epoch 50 
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Table 3.5: CNN configuration and hyperparameters of developed CNN model (continued 

from previous page). 

CNN configuration and 

hyperparameters 

Value 

Learning rate 0.01 

Validation frequency 30 

Maximum epoch 20 

 

The trainedNet function is designed to train and return a network tailored for classification 

tasks, using an image datastore with categorical labels. In the image datastore, 2D images 

are stored with dimensions of 256x256 pixels and 3 colour channels. The dimensions specify 

the height and width of the input images, with each image being 256 pixels in both height 

and width. The three colour channels indicate that the images are in RGB format, 

representing the red, green, and blue channels. The image input layer allows these 2D images 

to be used as inputs to the CNN model and facilitates data normalisation. Central to a CNN 

is the convolutional layer, which comprises a set of filters whose parameters are optimised 

during training. This layer is essential for feature extraction from given images. Padding is 

a technique employed in CNNs where extra pixels are added around the input image or 

feature map. This approach preserves spatial dimensions throughout the convolution process. 

The Rectified Linear Unit (ReLU) activation function, commonly used in CNN, outputs 0 

for any negative input and returns the positive input value unchanged. 

Max pooling is another fundamental component of CNN architecture. It reduces the spatial 

dimensions of the data while emphasising significant features. The fully connected layer, by 

connecting every neuron from the previous layer to each neuron in the fully connected layer, 

captures global patterns and relationships within the data. Finally, the softmax layer, located 

at the end of the CNN, transforms raw output scores into a probability distribution, 

facilitating classification tasks. 

All LVQ, FFNN, and CNN models are developed using MATLAB 2022a. The system 

specifications utilised include an Intel Core i7 10th Gen Processor and 16 GB of RAM. The 

performance of all experiments is calculated by calculating the average percentage accuracy, 

determined by the proportion of predicted values that match the actual values, as defined in 

Equation 3.2.  

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 × 100%           (3.2) 



61 

 

Each model architecture is executed 100 times to evaluate both the optimal and average 

performance, with the results summarised in the following chapters. 

3.3 Second Phase: Sensor Optimisation and Algorithm Testing 

The methodology outlined in Section 3.2 is centred on the initial phase of collected brain 

signal data. The second phase of data collection and analysis is specifically designed to 

address the challenges identified earlier. This section provides a comprehensive overview of 

the second phase, encompassing brain signal acquisition, signal processing aimed at sensor 

optimisation, and the final evaluation. The evaluation is conducted using a new dataset and 

optimised sensors, applied across various groups of subjects. 

3.3.1 Brain Signal Acquisition: 

The second phase of brain signal recording has been conducted with an expanded scope. The 

focus has been to increase the number of trials to facilitate a more robust analysis of sensor 

performance. Recognising that the two trials from the first phase were insufficient for 

comprehensive analysis, this phase aims to record a minimum of five trials from each of ten 

subjects to evaluate the consistency of sensor performance. Figure 3.6 demonstrates subjects 

participating in data collection.  

 

Figure 3.6: Volunteers participating in EEG signal acquisition (second phase). 

This phase serves two main purposes. Firstly, the increased number of trials allows for a 

more thorough assessment of sensor performance, which aids in developing effective sensor 

optimisation strategies. Secondly, the algorithm developed in Section 3.2 would be evaluated 
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using the newly collected data, incorporating insights gained from the sensor optimisation 

process. 

The brain signal acquisition for the second phase mirrors that outlined in Section 3.2.1. The 

International 10-20 EEG recording system (Klem et al., 1999), which includes 19 sensors, 

is used to collect brain signal data from ten subjects. Participants are given the same set of 

instructions through audio stimuli to imagine a sequence of mental tasks. Each subject 

completes at least five trials under the same conditions. One of the volunteers contributed 

12 trials, which were collected to provide deeper insights into the comparison of different 

set of trials. The study involves ten healthy volunteers from NTU staff and students, all are 

above 18 years old. The details of the participants are written in Table 3.5 

Table 3.6: The summary of participant demographics. 

Participant ID Age (years) Gender Ethnicity 

S1 29 Female Asian/ Asian British -Indian 

S2 28 Male Asian/ Asian British -Indian 

S3 43 Male Asian/ Asian British -Bangladeshi 

S4 23 Male Black/Black British - African 

S5 32 Male Asian/ Asian British -Pakistani 

S6 34 Male Asian/ Asian British-Indian 

S7 56 Male Arab 

S8 60 Male Arab 

S9 41 Female Asian/ Asian British -Bangladesh 

S10 58 Male White-British 

 

3.3.2 Signal Processing for Sensor Optimisation: 

The signal processing procedures adhere to the ASPS approach outlined in Section 3.2.3. 

Specifically, within the analysis categories, bespoke analysis has been designed to develop 

an elementary analysis model for individual aimed at simplifying the feature extraction and 

selection process. Second phase involves applying the bespoke signal processing method 

across 10 subjects, each undergoing 5 trials. A key objective of this phase is to evaluate the 

performance of 19 sensors to determine the optimal number of sensors required. Identifying 

optimised sensors and their corresponding brain locations can highlight the areas responsible 

for the selected mental tasks in this research. In line with current advancements, EEG system 

source imaging plays a crucial role in providing insights into cerebral neural activities. It 
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considers factors such as spatial sampling, signal quality, practical considerations, and 

computational complexity (Michel et al., 2004). Concurrently, efforts to improve system 

feasibility include reducing setup time, managing computational complexity, minimising 

costs, enhancing portability, and ensuring participant comfort (Tacke et al., 2022). 

Sensor performance variation depends on the distribution of cognitive sources and the level 

of cognitive activity within specific brain regions, which is inherently subjective relative to 

anatomical structures. Additionally, overlapping waveforms can occur in experimental 

settings due to brief intervals between stimuli (Tian and Huber, 2008). This study focuses 

on sensor selection based on the performance of ASPS-generated features from specific 

mental tasks. It involves analysing data from five, four, three, and two imagined tasks for 

each of the 19 sensors across all subjects. The primary aim is to conduct a comparative 

analysis to evaluate the effectiveness of imagination recognition for each sensor across all 

subjects. These efforts may aid in grouping subjects based on similarities in source imaging 

and potentially generalise sensor selection, contributing to the development of a subject-

independent BCI system. 

The proposed methodology is designed to support various communication outputs, such as 

cursor movement, with a target range of 2 to 5 control commands. These commands 

correspond to the number of distinct mental imaginations performed by the user. The 

relationship between the number of mental tasks and the resulting control commands is 

established to ensure that interaction with the BCIs is both intuitive and efficient. 

To determine the optimal sensor configuration for the BCI system, the number and 

placement of sensors are guided by the 5, 4, 3, and 2 mental imaginations used in the 

experimental paradigm. The selected mental tasks are chosen for their ability to activate 

specific brain regions, thereby influencing sensor placement. To assess the reliability of 

sensor performance, data from a total of 5 trials are collected and designed to analyse. 

In this experiment, only single layered FFNN architecture is employed as the classification 

model since single layered FFNN is found most suitable in first phase analysis. For each 

subject and sensor combination, the FFNN model is trained and evaluated using data from 

the 5, 4, 3, and 2 mental imaginations. To assess the stability of the FFNN architecture, each 

model is trained and tested 25 times, varying the number of neurons in the single hidden 

layer from i to 3i, where i represents the number of neurons tailored to the dataset's sample 

size. 
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Among the five trials, three are allocated for training, while the remaining two are used to 

test the efficacy of the selected sensor configurations. The classification accuracy of each 

FFNN model is evaluated, recording both the highest and average accuracy achieved. The 

primary aim of this experiment is to achieve higher classification accuracy while minimising 

the number of electrodes utilised in the BCI system. This objective aligns with the goal of 

developing an efficient and user-friendly interface that can reliably translate imaginative 

states into control actions with minimal hardware requirements. 

Initially, a ranking is designed based on the tentative five sensors with the highest accuracy 

for each subject, considering 5, 4, 3, and 2 imaginations separately. These top five sensors 

are assigned rating points of 40, 30, 15, 10, and 5 for the highest to lowest ranks, respectively. 

Determining the optimal number of sensors for different numbers of imaginations at this 

stage would be challenging. However, analysing the tentative top five sensors would provide 

an initial indication of the minimum number of sensors required for various imaginations. 

The performance of top five sensors was considered for rating. The average value of all 

subjects' rating points is then calculated for each number of imaginations. Based on these 

values, the top six performing sensors among the 19 sensors are selected. Cross tables are 

created for the top six sensors (rows) versus subjects 1 to 10 (columns), where the frequent 

relationships between selected sensors and subjects are marked. A cumulative comparison 

is designed for the cross-tabulations, as demonstrated in Figure 3.7. In the figure, each row 

represents the sensor performance for a particular subject, while each column represents the 

performance of a particular sensor across all subjects. Subgroups are formed based on 

subjects with the best three sensors. 

 

Figure 3.7: The cross-tabulation analysis template designed for subject vs sensors. 
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This analysis provides a detailed understanding of sensor performance for each subject and 

the created groups. To evaluate the effectiveness of imagination recognition using optimised 

sensors, a verification step has been designed, incorporating many of the approaches outlined 

in Section 3.2.3. This rigorous validation process utilises the selected sensors and includes 

most of the previously discussed analytical approaches. Chapter 7 provides a detailed 

analysis, results, and discussion of sensor optimisation and verification. The evaluation 

encompasses bespoke analysis, sensor-specific group analysis, and combined analysis using 

the new dataset for two approaches derived in Chapter 4 and 5, with all possible 

combinations considered for validation. A single-layer FFNN model is employed to classify 

all sets of imaginations. Each FFNN model is executed 25 times, and all performance metrics 

are recorded. This comprehensive analysis ultimately identifies the best and average 

performances by comparing the ASPS analysis approaches (as detailed in Chapter 4 and 5) 

across bespoke analysis, various subject groups, and the entire cohort of subjects.  

3.4 Summary 

This chapter outlines the steps of the methodology undertaken in this research. In the first 

phase of the study, three experiments are designed, focusing on feature extraction and 

selection, analytical approaches, subject participation, verification steps, and classification 

algorithms. The study employs the ASPS approach, integrating techniques such as FFT, 

DWT, and classification methods including FFNN, LVQ, and CNN. The second phase 

centres on the design of sensor optimisation and classification with additional trials. The 

detail designs, analyses and results from these phases are described in Chapters 4 through 7. 

During the analysis of the data collected in the first phase, limitations related to data size are 

identified. To address these issues, a second phase of data collection is conducted. The 

proposed methodology is then evaluated using this expanded dataset, and the performance 

outcomes are summarised. 

The following chapter presents a bespoke approach for individual analysis and development, 

utilising a fundamental signal processing model to identify and classify different sets of 

imagined tasks. It aims to assess the effectiveness of the ASPS approach in processing 

individual brain signals for the recognition of imagined tasks. 
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Chapter 4: Bespoke Design for an Individual 

 

4.1 Introduction 

This chapter presents a bespoke design focused on individual analysis, verification of results, 

and a discussion pertaining to the elementary signal processing model briefly introduced in 

Chapter 3, Section 3.2.3. The methodology aims to evaluate the efficacy of the ASPS 

approach in processing brain signals for the recognition of imagined tasks. In Section 4.2, 

the detailed procedure is discussed, in Section 4.3, an in-depth analysis is provided, and in 

Section 4.4, the classifier performance within this customised framework is described. 

4.2 Workflow for Bespoke Analysis 

As an initial exploration of the ASPS approach for brain signal feature extraction, this section 

presents a basic model where three sensors are randomly chosen from a set of 19, with each 

sensor positioned at a different location on the brain, as illustrated in Figure 4.1. The sensors 

include Fp2 and Cz from the frontal lobe and O1 from the occipital lobe.  

 

Figure 4.1: Selected sensors and their scalp locations for bespoke analysis.  

The figure shows the side and top views of the sensor locations on the scalp. The rationale 

for choosing three distinct brain locations is to examine the varying effects of signals from 

electrodes that are spaced apart, as they capture the activities of brain regions associated with 

different functions (Kumar and Bhuvaneswari, 2012; Abhang, Gawali and Mehrotra, 2016).  

This study builds on the basic ASPS approach discussed in Chapter 3, investigating a novel 

method to extract and select brain signal features from both the time and frequency domains. 

The fundamental flowchart of the feature extraction and selection process using the ASPS 
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approach is depicted in Figure 4.2. The algorithm processes EEG data as input, which then 

undergoes feature extraction. Time-domain and frequency-domain features are extracted for 

both relaxed and mental task states.  

 

Figure 4.2: Flowchart of ASPS approach for bespoke analysis. 

An ASM is constructed using Δ feature values from both domains. In the feature selection 

stage, unique feature combinations within the ASM are identified. Relevant SCFs are 

selected, while non-contributory SCFs are discarded. 

This experiment is designed to assess the performance of customised applications using two 

individual subjects. In this study, four statistical functions are employed as features in Table 

4.1 for both the time and frequency domains. The time domain analysis focuses on raw 

signals, while the frequency domain analysis utilises FFT technique. It is crucial to 

emphasise that there is no universally prescribed number of features; instead, the selection 

is based on the number that most effectively characterises the signal.  
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Table 4.1: Definitions and equations of four statistical functions. 

Index Definition Equation 

1 Mean 
𝐸1 =

1

𝑛
Σ𝑖=1

𝑛 𝑥𝑖 

2 STD 

𝐸2 = √
Σ𝑖=1

𝑛 (𝑥𝑖 − 𝐸1)2

𝑁
 

3 Variance 
𝐸3 =

∑ (𝑥𝑖 − 𝐸1)2𝑛
𝑖=1

𝑁
 

4 Max 𝐸4 = max (𝑥𝑖) 

 

For example, Kousarrizi et al. (2009) used three features that achieved an accuracy of 88.75% 

in classifying cursor movements. Usha Kumari et al. (2020) employed four features for 

detecting obstructive sleep apnoea from EEG signals, achieving a success rate of 98% with 

an SVM classifier. Yuen et al. (2009) applied six statistical functions to classify five 

categories of emotion, obtaining an accuracy of 95% with a backpropagation neural network. 

In this experiment, four statistical functions namely, Mean, STD, Variance and Maximum 

are chosen to minimise the costs associated with the microprocessor board and to enhance 

the system's affordability for patients. 

4.3 Feature Extraction and Selection for Bespoke Analysis 

It is observed during the signal acquisition phase that each imagination consists of two 

segments: an initial relaxation phase and a specific mental task, as shown in Figure 4.3.

 

Figure 4.3: (A) Raw signals for relax and mental task and (B) copper scale map. 
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Figure 4.3 (A) illustrates the raw signals for relaxation (blue) and mental tasks (orange) 

across five different imaginations, which are further represented in Figure 4.3 (B) using a 

copper scale map. The imaginations are categorised based on the types of mental tasks, 

including motor imagery, mental calculation, object imagination, olfactory imagination, and 

environmental motion sensing. This approach aims to recognise imaginations based on 

bespoke analysis. In this study, normalised features are extracted from successive signals 

during both relaxation and mental tasks for each imagined task. The raw data, consisting of 

time-domain signals, is processed by applying the statistical functions listed in Table 4.1. To 

derive frequency-domain features, the FFT is performed on the individual raw signal data. 

The significant portion of the FFT output is then divided into two equal segments, with 

statistical functions calculated for each segment. This process generates eight frequency-

domain features, while an additional four features are derived directly from the time-domain 

signal, yielding a total of 12 features as detailed in Table 4.2.  

Table 4.2: SCFs calculation for bespoke analysis. 

Signal pattern Number of input statistical 

functions 

Number of extracted and selected 

features (SCFs)/sensor 

Raw signal 4 4 

FFT signal 4 4 X 2=8 

Total features= 12 

 

The ASPS approach produces 12 SCFs using four statistical functions applied to both the 

time and frequency domains, calculating the difference between relaxation and imagination 

features. According to brain wave theory, a relaxed state is most commonly represented by 

alpha waves, whereas various mental tasks are associated with beta and gamma waves 

(Ishino and Hagiwara, 2003). The amplitude and frequency of each wave category possess 

distinct characteristics, allowing differentiation between a relaxed mind state and one 

engaged in specific imaginations. The features of imagined and relaxed brain signals are 

expected to differ and analysing Δ values can reveal the most sensitive features. The ASMs, 

constructed from the obtained SCFs as outlined in Chapter 3 (Equation 3.1), serve as inputs 

for classifiers. ANNs such as FFNN and LVQ are employed to evaluate the performance of 

imagination recognition. 

A precise analysis is performed to assess the sensitivity of SCFs with individual sensors for 

each type of imagination. The influential characteristics of Δ SCFs are depicted in a heatmap 

in Figure 4.4, with colour representation indicating sensitivity.  
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Figure 4.4: Heatmap of imaginations with selected features for bespoke analysis. 

The analysis steps are: 

a) Observing the combination of SCFs values for individual imaginations. 

b) Comparing different imaginations with each other. 

c) Analysing ASMs between two subjects. 

The first step involves identifying the deflection of SCFs values and recognising a unique 

combination of SCFs within an imagination. The analysis indicates that the uniqueness of 

SCF combinations results in varying levels of sensitivity. This is an important step because 

each mental task or imagination is expected to generate distinct patterns in brain signals. By 

examining the deflection, or variation, in SCFs values, it can be determined how a group of 

SCFs responds to an imagination. The second step is crucial for evaluating the ability of 

SCFs to differentiate individual imaginations. Identifying a unique combination of SCFs is 

essential for several reasons, including imagination differentiation, sensitivity analysis of 

various SCFs, improved classification, and model generalisation. To accurately distinguish 

between different imaginations, each must possess a unique signature or combination of 

SCFs. The sensitivity analysis indicates that the uniqueness of SCFs combinations results in 

varying levels of sensitivity. By identifying unique combinations of SCFs, it becomes 
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apparent which SCFs are most sensitive and informative for distinguishing between different 

imaginations.  

Unique SCFs combinations ultimately enhance the performance of classification models. 

When each imagination has a distinct set of SCFs, the classifier can more easily learn and 

recognise the patterns associated with each mental task, leading to more accurate and reliable 

classification results. Furthermore, unique SCFs combinations contribute to the robustness 

and generalisation of the model. When the model learns from distinct and non-overlapping 

SCF sets, it can better generalise to new data, making it more effective in real-world 

applications where variability in brain signals is common.  

Figure 4.4 presents two significant findings: the variance in the statistical function of the 

FFT's first part (SCF 7) and second part (SCF 11) exhibits substantial alterations compared 

to other SCFs, and individual sensors demonstrate distinct behaviours for each type of 

imagination. For instance, there is a notable difference between sensors for imaginations 3 

and 5. Imagination 1 and 4 are distinguished by SCF 11, whereas imagination 2 contrasts 

with imaginations 1 and 4. These differences result in unique SCF combinations for each 

imagination, although some resemblances are evident between imaginations 1 and 4. Partial 

similarities are also observed between imaginations 3 and 5. 

To evaluate the classification performance across different imaginations, distinct datasets 

are constructed based on the preceding discussion. One dataset comprises imaginations 2, 3, 

4, and 5, while another includes imaginations 2, 4, and 5. A dataset containing all five 

imaginations is considered essential for analysing performance variations across sets with 

five, four, and three imaginations. This approach aims to investigate the performance 

deviation with the inclusion and exclusion of partly similar SCFs sensitivities. All 12 Δ SCFs 

are selected because relying solely on extreme SCFs (both positive and negative) is 

insufficient to recognise an imagination among the five. Moreover, the likelihood of similar 

patterns in certain SCFs for any two or three imaginations increases, thereby reducing the 

distinctiveness of each imagination's characteristics. Unique SCFs combinations contribute 

to the robustness and generalisation of the model. When the model learns from distinct and 

non-overlapping SCF sets, it can better generalise to new data, making it more effective in 

real-world applications where variability in brain signals is common. 

To assess the robustness and generalisation of the selected SCFs, it is crucial to examine the 

consistency of brain wave patterns across different subjects. Consistent patterns indicate that 
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the SCFs can reliably capture essential features of brain signals, ensuring the model's 

applicability to a broader population. Figure 4.5 illustrates the third analysis step, which 

involves mapping all five imaginations (first trial) between two subjects. 

 

Figure 4.5: ASM of bespoke experiment for (A) subject 1 and (B) subject 2. 

The figure shows that imaginations 1, 2, and 4 exhibit consistent SCF combinations for both 

subjects. For imagination 3, sensors 2 and 3 display similar sensitivity patterns; however, 

sensor 2 differs by ±0.5 on the heatmap colour scale between subjects and has lower 

sensitivity than sensor 1 in both cases. For imagination 5, both subjects show identical 

patterns between sensors 2 and 3. For sensor 1 in imaginations 3 and 5, SCFs 7 and 11 exhibit 

opposite combinations between subjects, though both SCFs demonstrate differences in either 

case. Therefore, most SCFs are commonly found, effectively characterising imaginations 3 

and 5. Additionally, imaginations 1 and 2, or imaginations 2 and 4, are quite different, which 

helps create a distinctive nature between the imaginations. 

4.4 Performance of Classifiers for Bespoke Analysis 

The verification step is designed to evaluate the capability of the ASPS approach in 

recognising different imaginations. For bespoke analysis, considering the purpose and input 

data size, two types of ANNs, namely FFNN and LVQ, are utilised as classifiers to verify 

the Δ values extracted and selected using the ASPS approach. To study the performance 
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across different numbers of imaginations for two subjects, three imagination datasets are 

used, and four train-test models are designed in Figure 4.6.  

 

Figure 4.6: The design of verification steps for bespoke analysis. 

Based on the analysis of extracted features, the dataset is divided into three subsets: five, 

four, and a dataset of three imaginations. Given the small data size from the two trials 

conducted during signal acquisition, the train-test splitting ratio is adjusted to meet the 

minimum requirements. Four models are utilised for verification. Model 1 is trained using 

data from subject 1's trial 1 and tested on subject 1's trial 2. Model 2 is trained on subject 2's 

trial 1 and tested on subject 2's trial 2. Model 3 is trained on subject 1's trial 1 and tested on 

trial 2 data from both subjects 1 and 2. Model 4 follows the same structure as Model 3 but 

is trained on subject 2's trial 1. Each model is evaluated using both LVQ and FFNN 

classifiers. Various ANN model architectures are designed for imagination classification, 

with their performances meticulously recorded. 

In both FFNN and LVQ, various ANN architectures are tested, considering the following 

factors: 

i. The number of hidden layers and the number of neurons in each layer. 

ii. Different combinations of training and test data from two subjects. 

iii. Three different combinations of imagination datasets. 
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Six architectures are explored for ANNs as mentioned in Table 4.3. For the LVQ model, a 

single-layer architecture is employed, with the number of neurons ranging from 1 to 100 to 

determine the configuration that yields the best performance.  

Table 4.3: ANN model architectures for imaginations classification for bespoke analysis. 

Architecture 

index 

ANN 

type 

Number of 

imaginations for 

classification 

Number of 

neurons in 

layer 1 

Number of 

neurons in 

layer 2 

Number of 

models run 

1 LVQ 5, 4, 3 N, N=1,2, 

…100 

N/A 100 

2 FFNN 5, 4, 3 N, N=1,2, 

…100 

N/A 100 

3 FFNN 5, 4, 3 i i 100 

4 FFNN 5, 4, 3 i 2i 100 

5 FFNN 5, 4, 3 2i i 100 

6 FFNN 5, 4, 3 2i 2i 100 

 *i = number of neurons in each layer = number of samples 

Similarly, the single-layered FFNN architecture is designed following the same concept. 

Additionally, FFNN architectures with two layers are investigated, featuring four 

combinations of neuron numbers: (i, i), (i, 2i), (2i, i), and (2i, 2i), where i represents the 

number of neurons in each layer and corresponds to the number of samples used in the ANNs. 

All ANN architectures are executed 100 times to assess the stability of performance and to 

measure the average classification accuracy. The classification accuracy, as defined in 

Chapter 3 (Equation 3.2) of, is used to measure both the best and average performances. 

Each model shown in Figure 4.6 is executed using the aforementioned six ANN architectures, 

resulting in 24 different combinations. Each combination is experimented with datasets 

containing 5, 4, and 3 imaginations, respectively, and all ANNs are executed 100 times to 

observe both the best and average performances.  

The experiments involved four models (Model 1, Model 2, Model 3, and Model 4) and are 

conducted across three scenarios involving five, four, and three imaginations. The classifiers 

employed, LVQ and FFNN, are configured with varying numbers of hidden layers and 

neurons to determine the optimal architecture. The highest performances for all models are 

summarised in Figure 4.7.  
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(A)       (B) 

 

(C)     (D)  

Figure 4.7: Best classification accuracy of four models for all ANN architecture. 

The scenario with three imaginations demonstrated uniformly high performance across all 

models and classifiers. Both LVQ and FFNN classifiers, including all FFNN configurations, 

consistently achieved 100% accuracy in Models 1, 2, 3, and 4. This uniformity indicates that 

the classifiers can robustly distinguish among a smaller set of imaginations, irrespective of 

the model or network configuration. When the number of imaginations is four, both LVQ 

and single layered FFNN classifiers achieved 100% accuracy in Models 1 and 2. However, 

a notable decline in performance is observed in Models 3 and 4. LVQ achieved 87.5% 

accuracy in Model 3 and 75% in Model 4. FFNN matched the LVQ performance in Model 

3 with 87.5% and outperformed it slightly in Model 4 with 87.5%. The various FFNN 

configurations showed a general trend of lower accuracy in Models 3 and 4, with the best 

configurations (two layers with (36, 72) and (72, 36) neurons) achieving 75% accuracy in 

Model 3 but only 62.5% in Model 4. This suggests that while Models 1 and 2 maintain high 
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performance, Models 3 and 4 exhibit reduced capability in accurately distinguishing between 

four imaginations. 

In the scenario involving five imaginations, the best performance of the LVQ classifier 

varied significantly across the models. LVQ achieved an accuracy of 80% in Models 1, 3, 

and 4, whereas it attained 100% accuracy in Model 2. The single layer based FFNN classifier 

also demonstrated variability, with the standard configuration achieving 80% accuracy in 

Models 1 and 3, 70% in Model 4, and 100% in Model 2. When considering the different two 

layers-based FFNN configurations: FFNN (36, 36) architecture achieved 60% accuracy in 

Model 1 and 70% in Models 3 and 4. FFNN (36,72) architecture showed improved 

performance in Model 2 with 80% accuracy, while its performance ranged from 50% to 70% 

in other models. FFNN (72, 72) and FFNN (72, 36) both architectures attained a consistent 

60% accuracy in Model 1 but showed higher variability across other models. The overall 

analysis indicates that Model 2 consistently outperforms the other models, particularly with 

LVQ and FFNN achieving perfect accuracy, suggesting subject 2 has superior ability to 

distinguish among the five imaginations. 

Average performance of every architecture is calculated for 100 times each model runs. All 

models’ average performances for subjects 1 and 2 are summarised in Figure 4.8. 

 

Figure 4.8: Average performance of three datasets for all models. 
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The box and whisker plot indicates greater median values for subject 2 across all 

imaginations’ scenarios and wider interquartile ranges for subject 2, indicating more 

variability but consistently higher performance. The higher averages for subject 2 across all 

configurations and number of imaginations indicate a more consistent and robust 

performance. LVQ might be more suitable for applications requiring higher accuracy and 

consistency, particularly when the number of imaginations decreases. However, LVQ is 

performing slightly better due to smaller size of input data. These insights suggest refining 

ANN architectures, improving the generalisation capabilities of models and explore the 

ANN model performances for larger dataset in this research. 

Combining both subject’s performances, 3-imagination datasets achieve an average 

accuracy between 72-100%, while 4-imagination and 5-imagination datasets attain average 

accuracies up to 77% and 67.40%, respectively. An investigation into the average 

performance deviation between the four train-test models is illustrated in Figure 4.9, 

suggesting that the methodology can potentially work in a subject-independent manner.  

 

Figure 4.9: Average performance comparison for subject-wise training and imaginations 

for all models. 
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consistency across different models and datasets further indicates that the ASPS approach is 

capable of extracting necessary brain signal features for BCIs development. 

In line with similar studies on classifiers' performance in brain signal processing, research 

has demonstrated a range of outcomes. For instance, Mizuno et al. (2010) reported highest 

accuracy between 31% and 86% and average performance between 54.8% and 65% for 

classifying five different mental tasks using LVQ. In a comparable experiment employing 

MLP trained with backpropagation neural networks and SVM, El Bahy et al. (2017) 

achieved accuracy rates ranging from 64% to 84%. These variations in performance are 

primarily influenced by the scope of the experiment, the datasets used, and the classifiers 

applied. In the present study, our bespoke experiments yielded overall best performances 

with accuracy rates between 80% and 100% for recognising five imaginations using both 

FFNN and LVQ classifiers. 

4.5 Summary  

This chapter elaborates on the design, analysis, verification results, and discussion for the 

bespoke experimental setup. The study implemented the ASPS approach with a range of 

SCFs, extracting features from raw time domain signals and frequency domain analyses with 

different partitions. The detail of the bespoke design has been presented in Section 4.2. 

Section 4.3 of this chapter thoroughly discusses the analysis of identifying the uniqueness 

of imaginations and similarities between subjects. These obtained SCFs are verified using 

FFNN and LVQ classification algorithms. The results of various ANN architectures for 

different groups of imaginations are summarised in Section 4.4. 

Both LVQ and FFNN are adequate in imaginations recognition. LVQ performed better in 

most cases, as the size of the dataset favoured this classifier. However, FFNN is faster than 

LVQ in all classifications of imagination recognition. The FFNN classifier demonstrated 

flexibility with different hidden layer configurations, although the standard FFNN 

configuration often performed as well or better than the more complex configurations. This 

suggests that while complexity in network architecture can enhance performance, it is not 

always necessary for achieving high accuracy. 

The analysis found that both subjects achieved good results in recognising three and four 

imaginations. However, this indicates that the bespoke experiment is influenced by the 

quality of each individual's thoughts. Different individuals exhibit varying qualities of 

imagination, which affects the recognition accuracy. This variance in performance 
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underscores the importance of considering individual differences in cognitive processes. In 

terms of methodology, the ASPS approach, including two-part FFT features, can recognise 

the five imaginations for the bespoke method. Among the two ANN models (LVQ and 

FFNN), a single hidden layer FFNN is a suitable in terms of accuracy, architectural 

complexity, and computational time. 

The next chapter explores the design, implementation, and assessment of a group-based 

analysis framework for identifying various imagined tasks, employing an advanced brain 

signal processing model. It intends to assess the effectiveness of the ASPS approach in 

analysing brain signals from multiple individuals for the recognition of imagined tasks.  
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Chapter 5: Imaginations Recognition Through Group-Based 

Analysis 

 

5.1 Introduction 

This chapter provides a comprehensive design and development of group-based analysis, 

along with a discussion of the results obtained. The primary focus is to evaluate and validate 

the performance of the ASPS approach in recognising mental imagery across an expanding 

number of participants. Section 5.2 offers a detailed design of the group-based analysis. 

Section 5.3 outlines the analysis of feature extraction and selection, following the framework 

established in the previous section. This analysis aims to assess the efficacy of the ASPS 

approach across different groups of subjects. Subsequently, in Section 5.4, the performance 

of the classifier is examined, providing insights into the verification of group-based 

performance outcomes. Two types of ANNs, namely FFNN and LVQ, are utilised 

individually as classifiers for verification purposes. 

5.2 Workflow for Group-based Analysis 

The ASPS approach enables the integration of multiple signal domain features into the 

ASMs (Al-Habaibeh, Zorriassatine and Gindy, 2002). To explore this capability, the 

experiment incorporates time-domain raw features, frequency-domain features obtained 

through FFT, and time-frequency domain features derived from DWT. The analysis extends 

to additional divisions of FFT to extract more nuanced and detailed characteristics. By 

incorporating a range of signal processing techniques through the ASPS approach, the study 

aims to evaluate the distinctiveness of different mental imaginations concerning signal 

characteristics and their inherent properties. While the range of signal processing domains 

is expanded, the number of statistical functions is maintained at four to ensure that 

dimensionality remains manageable. 

The signals from three spatially distanced EEG sensors, as shown in Chapter 4, Figure 4.1, 

are consistently maintained throughout this study and are processed for all participants 

involved. All four statistical functions listed in Chapter 4, Table 4.1 are applied to raw signals, 

FFT output signals divided into four segments, and DWT output signals with three cDs. The 

decomposition process of this study is illustrated in Figure 5.1 where LPF and HPF denote 

low pass filter and high pass filter respectively.  
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Figure 5.1: Wavelet decomposition (Cvetkovic, Übeyli and Cosic, 2008). 

The decomposition level of the EEG signal is influenced by the sampling rate and the 

targeted frequency bands, such as alpha and/or beta. In this experiment, the signal is 

decomposed up to eight levels (cD8) to capture both beta and alpha frequencies, given the 

sampling rate of 2000 Hz. The analysis revealed that cD8, cD7, and cD6 exhibit significant 

values, covering frequencies between 7 Hz and 62 Hz.  

The selection of wavelet functions is a critical and complex task, as highlighted by the 

literature. Given the varied characteristics of wavelet outputs, this research tested several 

wavelet functions. The study determined that the wavelet functions 'db4' wavelet provides 

the most relevant features compared to other wavelet functions, such as, db2, db10, coif4, 

coif5, and sym9 wavelets. In this context, db4, db2, and db10 correspond to the 4th, 2nd, 

and 10th orders of Daubechies wavelet functions, respectively. Similarly, Coif4 and Coif5 

denote the 4th and 5th coefficients of the Coiflet wavelet function, while Sym9 represents 

the 9th order of the Symlet wavelet function.  

Figures 5.2 illustrates the flowchart for the group-based analysis. The raw data, which 

comprises time-domain signals, is subjected to various statistical functions. To derive 

frequency-domain features, the experiment applies FFT to the raw signal data. The resulting 

FFT output is then divided into four equal segments, with the aforementioned statistical 

functions calculated for each segment. 
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Figure 5.2: Flowchart of ASPS approach for group-based analysis. 

For obtaining time-frequency domain features, the analysis employs DWT with ‘db4’ 

wavelet function and applies the same statistical functions to three components: cD8, cD7, 

and cD6. ASMs are produced as per ASPS approach, analysed, and the SCFs are prepared 

for classification input, specifically for ANNs. 

5.3 Feature Extraction and Selection for Group-based Analysis 

From the design of the previous section, ASPS approach employs time domain, frequency 

domain and time-frequency domain analysis. 4 statistical functions are applied over raw 

signal, FFT output and DWT output resulting greater number of SCFs from all mentioned 

domains. All domains and their subdivision values calculate Δ values by subtracting relax 

from subsequent mental task, aiming to recognise imaginations based on group-based 

experiments.  
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The SCFs are derived according to the calculations outlined in Table 5.1.  

Table 5.1: Features calculation for group-based analysis. 

Signal 

processing 

technique 

Number of 

statistical 

functions 

Number of 

divisions 

Number of 

extracted 

SCFs 

Imagination 

selected for 

specific 

technique 

Number of 

selected 

features 

(SCF) 

Time 

domain 

4 0 4 N/A N/A 

Frequency 

domain 

4  4 4 X 4=16 Imagination# 

2,4,5 

12 

Time-

frequency 

domain 

4 3 4 X 3=12 Imagination# 

1,3 

12 

Total extracted features= 32 Total selected 

features per 

imagination 

12 

 

The SCFs are given as inputs of FFNN and LVQ models to investigate the performance of 

imaginations recognition. Feature extraction is performed using the ASPS approach 

methodology. Time-domain features are extracted from raw signals by calculating four 

statistical functions, as detailed in Table 3.4. Consequently, each raw signal generates four 

SCFs for each sensor. In the frequency domain, features are extracted from the FFT outputs. 

The FFT is divided into four parts, and four statistical functions are applied to each part, 

resulting in a total of 16 SCFs from this domain. For the DWT analysis using the 'db4' 

wavelet function, three components (cD8, cD7, and cD6) are considered, and features are 

extracted from each. 

A total of 12 SCFs are derived after applying four statistical functions to these components. 

After calculating all 32 Δ SCFs, an ASM is produced for each individual and each 

imagination. Similarly, ASMs are generated for other subjects and mapped between them. 

Three key observations emerge at this stage: 

a) Observing the combination of Δ SCFs for individual imaginations across domains. 

b) Comparing domains and five imaginations to identify the uniqueness of each 

imagination within a specific domain. 

c) Analysing ASMs across multiple subjects to form groups. 

Figure 5.3 illustrates the ASM heatmaps of four subjects, facilitating the discussion of these 

observations. 
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Figure 5.3: Illustration of uniqueness of imaginations and mapping between subjects. 
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Firstly, time-domain SCFs are insufficient to distinguish characteristics between 

imaginations. In the frequency domain, for imagination 1, FD3 creates a substantial 

characteristic, while FD7 adds a subtle one alongside other SCFs. Conversely, the time-

frequency domain presents a slightly better set of SCFs, including WD3 and WD7. For the 

second imagination, FD3, FD7, and FD12 from the frequency domain show clear significance 

compared to time-frequency domain SCFs.  

Imaginations 1 and 3 in the frequency domain exhibit similarities, except for sensor 2’s 

characteristics, which differ from those of sensors 1 and 3. Despite minor differences in FD7, 

it suggests a consistency check between subjects. On the other hand, imaginations 1 and 3 

in the time-frequency domain show distinct differences. Imagination 4 closely resembles the 

first imagination, with better FD7 characteristics in the frequency domain. The time-

frequency domain for imagination 4 has a notable combination of SCFs, suggesting a 

consistency check between subjects. Imagination 5 exhibits unique SCF combinations in 

FD3 and FD7 within the frequency domain, while the time-frequency domain shows variable 

sensor characteristics, with WD3 and WD7 differing from other SCFs. 

Secondly, examining the frequency domain and five imaginations reveals those imaginations 

1, 3, and 5 share similarities in FD3 and FD7 attributes. Sensor 2 for imagination 3 might not 

be a strong indicator since sensors are chosen randomly, and sensor optimisation analysis 

might select a different sensor. In such a case, frequency domain SCFs for imagination 3 can 

only be chosen if other subjects exhibit the same characteristics, necessitating its inclusion 

in the sensor optimisation. In contrast, imaginations 2 and 5 show distinct uniqueness with 

the sensitivity of FD3 and FD7. The time-frequency domain offers better distinguishable 

SCFs for imaginations 1, 3, and 4 compared to frequency domain SCFs. Both FFT and 

DWT-generated SCFs show more consistent sensor sensitivity for imaginations 1 and 4, 

suggesting these imaginations might not be significant from either domain.  

Comparing FD3-FD7 and WD3-WD7, imagination 1 is better represented in the time domain, 

while imagination 4 has a stable representation in the frequency domain. However, these can 

be selected only if all subjects exhibit similar characteristics. The third imagination shows 

consistent characteristics for sensor 2 in both frequency and time-frequency domains. 

Comparing FD3-FD7 and WD3-WD7, imagination 3 demonstrates better uniqueness in the 

time-frequency domain. Nonetheless, characteristics between subjects need to be examined 

to finalise the domain for each imagination and select the SCFs. 
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Thirdly, these observations are analysed across subjects. Despite showing stable FD3 

attributes between subjects in the frequency domain, imagination 1 may be confused with 

imagination 4 in the frequency domain. In contrast, WD3-WD7 characteristics in the time-

frequency domain show consistency between subjects for imagination 1. Among 

imaginations 1, 3, and 4, the FFT-generated SCFs show similarities, but only the fourth 

imagination is better represented in the frequency domain. The third imagination shows 

unstable characteristics for sensor 2 in both domains and might have FFT domain similarities 

with either imagination 1 or 4 across subjects. DWT-generated SCFs are more consistent 

than FFT in terms of sensor and subject consistency. Therefore, among imaginations 1, 3, 

and 4, the first and third imaginations have finer SCFs in the time-frequency domain, while 

the second imagination has superior SCFs in the frequency domain. All subjects consistently 

show unique characteristics in the frequency domain for imaginations 2 and 5. Figure 5.3 

illustrates these differences between domains and the resemblance between subjects, with 

various colours highlighting distinct areas of significant SCFs for each imagination. 

The mapping displays data from four randomly selected subjects, leading to the formation 

of groups based on their resemblance. Subjects demonstrating strong similarity are placed 

into group one, while five other subjects exhibiting considerable uniformity form another 

group. The remaining subjects exhibit anomalous characteristics either in sensor readings or 

imagination. The criteria for group formation are not fixed, and different analytical 

perspectives may result in varying cohort sizes. This analysis supports the classification of 

five imaginations. Chapter 4 also successfully identified five imaginations with at least 80% 

accuracy. However, bespoke analysis and the limited number of trials (only two) may bias 

the classifiers. Generalisation should be considered to ensure applicability to a broader 

population. When ASMs for only four subjects are mapped, multiple imaginations may 

produce identical situations within a single domain, as depicted in Figure 5.3. This could 

reduce classification accuracy. The ASPS approach's advantage of integrating multiple 

domains into one matrix suggests that this analysis is optimal for classifying a larger number 

of imaginations across a broader population. 

SCFs are selected based on the preceding analysis. time-domain SCFs (raw signals) are 

excluded due to their lack of substantial intrinsic characteristics. SCFs FD1 to FD12 are 

selected from the first three segments of the frequency domain, and WD1 to WD12 are chosen 

from the time-frequency domain. This outcome supports the classification of imaginations 

2, 3, and 5, demonstrating the capability of the selected SCFs from two different domains. 
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Increasing the number of cohorts leads to the creation of groups based on the resemblance 

of different imaginations between subjects. Three groups are formed: group 1 consists of 

four subjects, group 2 includes nine subjects, and group 3 comprises nineteen subjects. 

5.4 Performance of Classifiers for Group-based Experiment 

For the group-based experiment, feature extraction and selection are conducted differently. 

The study distinguishes the selected features from the total extracted features. Based on 

signal processing techniques, features for three imaginations are derived from FFT, and 

features for two imaginations are derived from DWT. First two groups of subjects are 

identified based on the order of similarity. Third group combines all 19 subjects. The study 

analyses the performance differentiating factors and summarises the results for bespoke and 

group-based experiments in this section. Table 5.2 presents information on the formation of 

groups. 

Table 5.2: Group formation for group-based analysis. 
 

Subjects Train Test 

Group 1 4 Experiment A Experiment B 

Group 2 9 Experiment A Experiment B 

Group 3 19 Experiment A Experiment B 

 

Group 1 is created based on the strong resemblance of the SCF characteristics between 

subjects. Group 2 includes the subjects from Group 1 and adds five more subjects, selected 

based on a considerable resemblance of the SCF characteristics. Group 3 is a combined 

group, consisting of all 19 subjects. Since the dataset contains two trials, one trial is used for 

training and the other for testing the ANN models.  

Various ANN model architectures are explored for group-based analysis, which follows a 

bespoke analysis approach. However, the number of imaginations datasets differs; two 

imaginations' SCFs are derived from DWT, while three imaginations' SCFs are derived from 

FFT. To evaluate the performance of individual techniques, this verification step prepares 

the datasets for two imaginations, three imaginations, and one combined dataset for a total 

of five imaginations. Table 5.3 presents the ANN model architectures used for classifying 

imaginations in group-based analysis. 
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Table 5.3: ANN model architectures for imaginations classification in group-based 

analysis. 

Layer 

architecture 

index 

ANN 

type 

Number of 

imaginations 

set 

Number of neurons 

in layer 1 

Number of 

neurons in 

layer 2 

Number of 

models run 

1 LVQ 2,3,5 N, N=1, 2, …100 N/A 100 

2 FFNN 2,3,5 N, N=1, 2, …100 N/A 100 

3 FFNN 2,3,5 i i 100 

4 FFNN 2,3,5 i 2i 100 

5 FFNN 2,3,5 2i i 100 

6 FFNN 2,3,5 2i 2i 100 

*i = number of neurons in each layer = number of samples 

Figure 5.4 illustrates the overall design of the verification for group-based analysis, clearly 

demonstrating the dataset preparation using three different groups and various imaginations 

derived from FFT, DWT, and a combination of both. The classification algorithms are 

employed with six architectures, and all the performances are summarised.  

 

Figure 5.4: The design of verification steps for group-based analysis. 

FFNN and LVQ, two ANNs are employed to evaluate classification performance. As 

discussed in the beginning of the section, three groups of subjects are selected based on the 

resemblance of their unique features to examine the variability in classification accuracy. 

These groups, named Group 1, Group 2, and Group 3, comprise 4, 9, and 19 subjects, 

respectively. Group 1 is the smallest and includes the subjects of Group 2. Group 3 

encompasses all subjects who participated in the data collection process. This section 

presents the results for recognising 2, 3, and 5 imaginations using classification algorithms. 
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Each model architecture is run 100 times, and the best average performance is determined 

from these iterations. The optimal and mean performances are assessed based on 

classification accuracy, as outlined in Equation (3.2) of Chapter 3. The performance metrics 

for classifying two imaginations using DWT-generated SCFs, three imaginations using FFT-

generated SCFs, and five imaginations using both are detailed in Appendix where each table 

includes the information of layer architecture, highest accuracy, and best average 

performance. All models are executed 100 times, and the best average performance is 

calculated from these runs. For each architecture, a single hidden layer for both LVQ and 

FFNN is tested with 1 to 100 neurons, with each size running 100 times. The neuron counts 

at which the highest accuracy is achieved is indicated in the single-layer models. The best 

accuracies are illustrated in Figure 5.5 (A) and (B) for the recognition of 2 and 3 imaginations, 

respectively, providing a convenient visualisation of the highest results. 

 

(A)                                                                          (B) 

Figure 5.5: Best classification accuracy of group-based analysis for all ANN architecture 

(A) two imaginations, and (B) three imaginations.  

Two classifications of imaginations used DWT-generated Δ SCFs, while three 

classifications used FFT-generated Δ SCFs. From these bar charts, it is evident that the 

FFNN model consistently outperforms the LVQ model across all three groups. In the 

scenario of 2 imaginations recognition for Group 1, the FFNN achieves a perfect 

classification accuracy of 100%, significantly surpassing the LVQ model, which achieves 

an accuracy of 75%. The FFNN also excels in Group 2 with an accuracy of 88.89%, 

compared to the LVQ’s 66.67%. The performance of the FFNN drops slightly in the group 

of 19 subjects (Group 3), with an accuracy of 73.68%, though it remains superior to the 
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LVQ's 60.52%. Two-layer configurations of the FFNN are tested, including variations in the 

number of neurons in the hidden layers. The analysis indicates that the FFNN model 

configurations of (36, 36) and (72, 72) are generally more consistent, achieving high 

accuracies across Groups 1 and 2. The configuration with a size of (72, 36) slightly 

underperforms, particularly in Group 1, where it achieves only 87.50%, while others achieve 

100%. However, no configuration of the 2-layered FFNN performs exceptionally well across 

all groups, highlighting the complexity and variability in EEG signal classification tasks. 

In the case of three imaginations, all models show improved performance when using FFT 

features compared to DWT features. For Group 1 and Group 2, all models achieve perfect 

classification accuracy of 100% across these two groups, indicating that the FFT features are 

highly effective in distinguishing between the three different mental imaginations. In Group 

3 the single layered FFNN and two double layered configurations (size with FFNN (36, 72), 

and FFNN (72, 72)) again demonstrate superior performance, achieving the highest accuracy 

of 94.74%. The LVQ model follows closely with an accuracy of 91.22%. The configurations 

FFNN (36, 36) and FFNN (72, 36) have slightly lower accuracies, both achieving 91.23%. 

Figure 5.6 summarises the highest accuracies achieved for 2, 3, and 5 imaginations across 

all groups. 

 

Figure 5.6: Highest accuracy summary. 
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Classifying five imaginations using a combination of FFT and DWT SCFs proves to be 

particularly challenging across the models evaluated. The LVQ model exhibits moderate 

performance in this context, with accuracy rates of 95.00% in Group 1, 77.78% in Group 2, 

and 78.95% in Group 3. The standard FFNN model maintains high accuracy in Group 1 

(95.00%) and Group 2 (86.67%), but its performance significantly decreases to 70.53% in 

Group 3. The FFNN (36, 72) model emerges as the most reliable model for the five-

imaginations classification task, particularly in Group 1, where it achieves 100% accuracy. 

In contrast, the FFNN (36, 36) and FFNN (72, 72) models demonstrate consistent 

performance across all groups, with accuracy rates ranging from 77.78% to 80.00% in 

Groups 2 and 3. This consistency, while at a slightly lower performance level, reflects a 

stable classification capability in more complex scenarios.  

The analysis reveals that the FFNN models generally outperform the LVQ model across 

most tasks, particularly in scenarios with fewer imaginations. The FFNN models show 

excellent classification performance, especially in the two-imaginations task with DWT 

generated Δ SCFs and the three-imaginations task with FFT generated Δ SCFs. However, as 

the number of imaginations increases to five, the complexity of the classification task 

becomes more apparent, with performance varying significantly across models and groups. 

The combination of FFT and DWT features provides a robust foundation for effective 

classification, and the selection of the neural network model along with the specific group 

of subjects plays a crucial role in determining the maximum accuracy. Moreover, 

investigating the average accuracy across all groups can offer valuable insights into 

optimising model architecture.  

While ANN models are repeated for 100 times of training and testing, allowing for the 

calculation of the average accuracy performance for each model in relation to different 

subject groups. The aggregated results of the best average classification accuracies for two 

and three imaginations are presented in Table 5.4.  

Table 5.4: Best average performances for two-imagination and three-imagination 

classification. 

Layer 

Architecture 

index 

Model 2 imaginations classification 

with DWT SCFs 

3 imaginations classification 

with FFT SCFs 

Group 

1 

Group 

2 

Group 

3 

Group 

1 

Group 

2 

Group 

3 

1 LVQ 61.25% 53.33% 50.52% 98.30% 97.04% 84.03% 

2 FFNN 71.25% 59.44% 55.52% 100.00% 97.04% 88.60% 

3 FFNN (i, i) 56.25% 55.25% 51.34% 99.50% 94.81% 84.56% 
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Table 5.4: Best average performances for two-imagination and three-imagination 

classification (continued from previous page). 

Layer 

Architecture 

index 

Model 2 imaginations classification 

with DWT SCFs 

3 imaginations classification 

with FFT SCFs 

Group 

1 

Group 

2 

Group 

3 

Group 

1 

Group 

2 

Group 

3 

4 FFNN (i, 2i) 56.00% 48.33% 51.26% 100.00% 94.59% 85.72% 

5 FFNN (2i, 2i) 53.50% 57.50% 50.11% 100.00% 95.41% 84.70% 

6 FFNN (2i, i) 53.75% 57.50% 50.13% 99.17% 95.11% 85.19% 

 

Overall average results for 2, 3 and 5 imaginations recognition are plotted in Figure 5.7 along 

with a demonstration of average trend of the results. In the task of classifying two 

imaginations using DWT generated Δ SCFs, the average accuracies across the models reveal 

distinct patterns in performance. 

 

Figure 5.7: Best Average performance summary for group-based analysis. 

The FFNN model consistently outperforms the other models, achieving an average accuracy 

of 71.25% in Group 1, 59.44% in Group 2, and 55.52% in Group 3. This indicates that FFNN 

is particularly effective in Group 1, although its performance diminishes slightly in 

subsequent groups. The LVQ model shows lower performance in two imaginations 

recognition across all groups, with an average accuracy of 61.25% in Group 1, 53.33% in 
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Group 2, and 50.52% in Group 3. These results suggest that while LVQ can provide 

moderate classification accuracy, it does not match the effectiveness of FFNN, particularly 

in more complex scenarios involving a more diverse subject pool.  

The FFNN variants exhibit varying levels of performance in recognising two imaginations, 

with the FFNN (36, 36) and FFNN (36, 72) models achieving slightly higher accuracy 

compared to other configurations, particularly in Group 1 and Group 3, where they reached 

at least 56% and 51%, respectively. Group 2, however, performed better with the FFNN (72, 

72) and FFNN (72, 36) models for recognising two imaginations. 

When considering the classification of three imaginations using FFT features, all models 

exhibit significantly improved performance. The FFNN model achieves perfect accuracy in 

Group 1 (100%) and maintains high performance in Group 2 (97.04%) and Group 3 

(88.60%). This highlights FFNN’s robustness and superior ability to generalise across 

different subject groups when handling more mental tasks. LVQ also demonstrates strong 

performance in this context, particularly in Group 1 (98.30%) and Group 2 (97.04%). 

However, its accuracy drops to 84.03% in Group 3, indicating a slightly lower 

generalisability compared to FFNN. The FFNN (36, 72) and FFNN (72, 72) models both 

reach 100% accuracy in Group 1, matching the standard FFNN model. Their performance 

in Group 2 and Group 3 is slightly lower, ranging from 94.59% to 85.72%. This suggests 

that while these variants can achieve high accuracy in certain groups, they may not 

consistently outperform the single layered FFNN model across all groups. 

The analysis of the five-imaginations recognition task using FFT and DWT features reveals 

distinct performance trends across different model architectures and groups. The LVQ model 

outperforms the other configurations, achieving the highest accuracy in Group 1 (79.75%) 

and showing relatively better performance in Group 2 (72.06%) and Group 3 (64.83%). 

Among the FFNN variants, the single-layer FFNN achieves the highest accuracy in Group 

1 (74.20%) while exhibiting a decline in performance across Groups 2 (69.13%) and 3 

(63.02%). The multi-layer FFNN models, including the FFNN (36, 36), FFNN (36, 72), 

FFNN (72, 72), and FFNN (72, 36) configurations, demonstrate consistent yet slightly lower 

accuracies, particularly in Group 1, where the highest accuracy reached 73.45% (FFNN 36, 

72). These models also show a steady decline in performance across Groups 2 and 3, with 

accuracies clustering around 66-67% and 63-64%, respectively. Overall, the results indicate 

that while LVQ shows a stronger performance, the FFNN models, despite being multi-
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layered, do not significantly surpass the single-layer FFNN, suggesting potential challenges 

in leveraging deeper architectures for this specific task. 

The experimental findings presented in Chapter 4 demonstrated impressive accuracy levels 

ranging from 80% to 100% in recognising 5 imaginations. When comparing these results to 

the outcomes of the current study, it is observed that the same imaginations can be recognised 

with up to 100% accuracy for a group of 4 subjects. The classification accuracies achieved 

for the groups of 9 and 19 subjects are between 78.95% and 86%, respectively. Increasing 

the number of subjects provides a larger dataset for training the ANN models, leading to 

more stable and high-quality performance during testing. However, ensuring the uniformity 

of imaginations across multiple subjects poses a challenge, especially with groups of varying 

sizes. Among the classifiers employed, the FFNN mostly outperformed the LVQ, and the 

overall performance of single-layered FFNN is satisfactory for all subject groups and 

imagination sets. This research follows the ASPS approach investigated in Chapter 4, 

incorporating wavelet analysis as an additional signal processing technique. The meticulous 

selection process of signal processing techniques and features through the ASPS approach 

reveals that recognising 5 imaginations is possible with accuracies ranging from 78.95% to 

100% across groups consisting of 4 to 19 subjects. 

The analysis results reveal that the performance metrics for classifying 2, 3, and 5 

imaginations vary across the groups. Group 1, being the smallest, serves as a baseline, while 

Group 3's results reflect the broader population's variability. The findings suggest that 

employing multiple domains within a single matrix enhances classification accuracy for a 

larger number of imaginations. This approach is particularly beneficial for generalising the 

model to a wider population. 

5.5 Summary:  

In this chapter, the design, analysis, verification results, and discussion of the group-based 

experimental setup are elaborately presented based on advanced signal processing 

methodologies. The experiment conducted aimed to implement the ASPS approach with a 

range of SCFs for various groups of subjects. Features are extracted from raw time-domain 

signals, frequency domain analysis with different partitions, and time-frequency domain 

analysis. Feature selection has been carried out in two ways: identifying significant 

combinations of SCFs that ensure the uniqueness of each imagination and selecting features 

from specific signal processing techniques, such as FFT or DWT-generated SCFs. 
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Furthermore, group-based verifications highlight the potential for generalising the 

methodology to a wider population. The extracted and selected SCFs through the ASPS 

approach are verified using classification algorithms, namely FFNN and LVQ. The results 

of various ANN architectures for different groups of imaginations are summarised in Section 

5.4. Their performance varies depending on the size of input data and the complexity of 

model architectures. In the discussion, the optimised ANN architecture is nearly identified. 

The findings of these experiments will be helpful in finalising the developed algorithm. The 

ASPS approach, including FFT and DWT SCFs, has the capability to recognise five 

imaginations. Group-based, 100% accuracy can be achieved for three imaginations, and 

78.95% accuracy is achievable for the largest group of subjects in recognising five 

imaginations. Among the two ANN models (LVQ and FFNN), a single hidden layered 

FFNN is found to be the most feasible model in terms of accuracy, architectural complexity, 

and computational time. The FFNN, in bespoke analysis, is faster at achieving the best 

results. However, increasing the number of subjects in this analysis slows down the overall 

ANN process. The use of a greater number of statistical functions and trials will be reviewed 

in subsequent experiments to help determine the analytical properties of signal processing 

and finalise the proposed model. 

The following chapter investigates the effectiveness of imagination recognition by 

combining the ASPS approach with image processing technique. It includes an analysis of 

performance across the same groups as in this chapter, with CNN employed as the 

classification method.  
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Chapter 6: Imaginations Recognition Through Image 

Processing 

 

6.1 Introduction 

This chapter presents the design, analysis, verification results, and discussion for the third 

experiment, briefly introduced in Chapter 3. It includes a combined analysis where all 19 

sensor signals are processed, incorporating a broader range of statistical functions and an 

increasing number of subjects. The methodology explores the effectiveness of integrating 

the ASPS approach with image processing techniques to enhance the recognition of 

imagined tasks across a larger subject pool. The design is detailed in Section 6.2, outlining 

the workflow steps. Section 6.3 provides an in-depth analysis based on the outlined design, 

while in Section 6.4, the performance of the CNN classifier is evaluated across different 

subject groups. 

6.2  Workflow for Combined Analysis 

This experiment employs the ASPS approach for feature extraction and selection, along with 

image processing methods, to classify five mental tasks using data from 19 sensors and 15 

statistical functions. Previous analyses were limited to three randomly selected sensors and 

four statistical functions, which were not optimised. Consequently, this study evaluates the 

performance differences between these selected sensors and a full array of sensors and 

investigates whether a broader range of statistical functions can enhance performance and 

effectiveness in brain signal processing. 

Drawing on the performance of the methodologies in Chapters 4 and 5, this analysis focuses 

exclusively on frequency domain features within the ASPS approach. The FFT output is 

segmented into 10 parts, with all 15 statistical functions applied across these segments. This 

approach aims to investigate group-based performance by incorporating all 19 sensors and 

using multiple partitions and statistical functions. The rationale for this analysis is outlined 

as follows: 

I. Sensor Comparison: Previous chapters examined imagination recognition using only three 

randomly selected sensors. This chapter assesses the performance of all 19 sensors, 

comparing it to the previously used subset. 
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II. Statistical Function Analysis: Earlier analyses utilised only four statistical functions. This 

chapter explores the effectiveness of a broader range of fifteen statistical functions in brain 

signal processing.  

III. Domain Performance: Previous studies explored the time, frequency, and time-frequency 

domains, finding that frequency domain analysis improved with increased FFT partitions. 

This chapter further investigates the frequency domain with more detailed partitions and 

additional statistical functions, raising questions about the sufficiency of frequency domain 

features alone for distinguishing between five imagined tasks. 

IV. Image Processing Integration: Earlier investigations used specific SCFs to analyse task 

uniqueness and subject similarity. This analysis incorporates image processing techniques, 

such as CNNs, which enhance data mapping. This integration offers three benefits: (a) it 

simplifies ASM image creation by incorporating more sensors and statistical functions, (b) 

it tests the adaptability of established techniques with the ASPS approach, and (c) it evaluates 

performance in terms of efficiency, time, and complexity. 

All 15 statistical functions are detailed in Table 6.1, these functions are calculated in this 

analysis. Function names and corresponding equations are mentioned in the table. 

Table 6.1: Definitions and equations of fifteen statistical functions for combined 

experiment. 

Definition Equation Definition Equation 

Mean 
𝐸1 =

1

𝑛
Σ𝑖=1

𝑛 𝑥𝑖 
Crest factor 

𝐸9 =
max |𝑥𝑖|

𝐸13
 

STD 

𝐸2 = √
Σ𝑖=1

𝑛 (𝑥𝑖 − 𝐸1)2

𝑁
 

Clearance 

factor 
𝐸10 =

max |𝑥𝑖|

𝐸11
 

Variance 
𝐸3 =

∑ (𝑥𝑖 − 𝐸1)2𝑛
𝑖=1

𝑁
 

Absolute 

Mean 
𝐸11 = (

1

𝑛
∑ √|𝑥𝑖|

𝑛

𝑖=1
)

2

 

Max 𝐸4 = max (𝑥𝑖) Power 
𝐸12 = (

1

𝑛
∑ |𝑥𝑖|

𝑛

𝑖=1
)

2

 

Min 𝐸5 = m𝑖𝑛 (𝑥𝑖) RMS 

𝐸13 = √
∑ (𝑥𝑖)2𝑛

𝑖=1

𝑛
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Table 6.1: Definitions and equations of fifteen statistical functions for combined 

experiment (continued from previous page). 

Definition Equation Definition Equation 

Median 
𝐸6 =

𝑛 + 1

2
 𝑡ℎ 𝑡𝑒𝑟𝑚,  

𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 

𝐸6 =  
𝑛

2
𝑡ℎ 𝑡𝑒𝑟𝑚 

+ 
𝑛 + 1

2
  𝑡ℎ 𝑡𝑒𝑟𝑚,  

𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 

IQR (interquartile 

range of time) 

𝐸14 = 𝑄3 − 𝑄1 

Skewness 
𝐸7 =

∑ (𝑥𝑖 − 𝐸1)3𝑛
𝑖=1

(𝑛 − 1)𝐸2
3  

Range (Range of 

radio wave 

propagation) 

𝐸15 = 𝐸4 − 𝐸5 

Kurtosis   
𝐸8 =

∑ (𝑥𝑖 − |𝑥|)4𝑛
𝑖=1

(𝑛 − 1)𝐸5
4  

  

 

To address the aforementioned rationales, the methodology is designed to employ only the 

frequency domain within the ASPS approach. The schematic diagram illustrating the 

combined analysis is presented in Figure 6.1. 

 

Figure 6.1: Schematic diagram of combined analysis. 
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process is performed based on the analysis. The selected SCFs are then used to prepare an 

image data store as input for the CNN. Finally, the CNN classifies the signals, and 

performance is evaluated. 

6.3 Feature Extraction and Selection with a Combined Method 

Fifteen statistical functions are applied to ten segments of the FFT in both relaxed and mental 

task signals. These functions names and equations are applied in Table 6.1. This process 

results in 150 Δ SCFs for each type of imagination. After producing the ASM, it was found 

that the first 60 rows contain the most significant components for identifying an imagination. 

The remaining components are considered trivial and are excluded in the feature selection 

step to reduce the input size. This analysis step focuses only on the selected 60 SCFs, aiming 

to recognise imaginations based on group-based experiments. Feature calculations for 

extraction and selection are shown in Table 6.2.  

Table 6.2: Features calculation for all subjects combined experiment. 

Signal 

pattern 

Number of input 

statistical functions 

Number of extracted 

features (SCF)/sensor 

Number of selected 

features (SCF)/sensor 

FFT signal 15 10 X 15=150 60 

 

These matrices are converted into heatmap images for further image processing. The 

heatmap images of constructed ASMs for 3, 4, and 5 imaginations are used as inputs to a 

CNN model to investigate the performance of imagination recognition across three groups.  

Figure 6.2 (A – E) illustrates the heatmaps of five imaginations for one subject. The X-axis 

represents 19 sensors, and the Y-axis represents the selected 60 SCFs generated from ten 

segments of the frequency domain. The observations are discussed as follows: 

Imagination 1: The heatmap shows that SCFs numbered 3, 12, 18, 27, 33, and 42 form 

distinct combinations compared to other SCFs. However, these SCFs are not equally 

significant across all 19 sensors. For example, SCFs such as 3, 12 are mostly prominent in 

the frontal, central, and partly temporal areas, while the occipital and partly parietal areas 

show less significance. Since sensor optimisation analysis has not been conducted yet, this 

study focuses on SCFs that show significant differences across all 19 sensors.  
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Figure 6.2: Uniqueness of imaginations in image processing technique (A) imagination 1, 

(B) imagination 2, (C) imagination 3, (D) imagination 4, (E) imagination 5. 
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SCFs numbered 27, 33, and 42, representing part 2 power, and part 3 variance and power of 

the FFT respectively, are found to be the most consistent and significant for imagination 1. 

Imagination 2: The heatmap shows that SCFs numbered 3, 12, 18, 27, 33, 42, and 57 form 

distinct combinations compared to other SCFs. Although not all are very significant, their 

effect is consistent across all 19 sensors, impacting the entire head. SCFs numbered 12, 33, 

42, and 57 are strongly visible in the heatmap. These SCFs correspond to FFT part 1 power, 

part 3 variance, power, and FFT part 4 power. This combination differs from imagination 1. 

Imagination 3: The heatmap shows that SCFs numbered 3, 12, 18, 27, 33, 42, and 57 form 

distinct combinations compared to other SCFs. In this case, most SCFs have less significance 

except for 33 and 42, which represent frequency domain part 3 variance and power. Thus, 

the uniqueness of this imagination is mostly present in part 3 of the FFT output. 

Imagination 4: The heatmap shows that SCFs numbered 3, 12, 18, 27, 33, and 42 form 

distinct combinations compared to other SCFs. As in previous imaginations, all SCFs exhibit 

different levels of sensitivity variation. SCFs numbered 18, 27, and 42 are emphasised for 

identifying the uniqueness of this imagination. These SCFs correspond to variance, and 

power from FFT part 2 and power from FFT part 3. 

Imagination 5: The heatmap shows that SCFs numbered 3, 12, 18, 27, 33, 42, 48, and 57 

form distinct combinations compared to other SCFs. Few SCFs such as 3, 12 etc are almost 

significant between sensors 1 and 12, suggesting that the frontal and central areas are 

valuable. Among them, power (SCF 12) has better representation across sensors. However, 

SCFs numbered 48 and 57 significantly influence the entire heatmap. These values are 

extracted from FFT part 4 with function variance, and power, differing notably from the 

previous imaginations. 

The above observations clearly indicate that each imagination possesses distinct attributes 

across the 19 sensors. Previous analyses identified slight similarities between imaginations 

1, 3, and 4 in the frequency domain. Employing the DWT technique introduced variations 

in the uniqueness of these imaginations. The variances in different parts of the FFT and DWT 

created distinctions between them. From all the functional characteristics, the analysis 

reveals that both variance and power are crucial for the uniqueness of imaginations. 

Furthermore, using more partitions of the FFT demonstrates that increased partitioning 

influences the characterisation of imaginations. This suggests that previous similarities 

between imaginations 1, 3, and 4 can be more distinguishable using additional partitions 



102 

 

and/or statistical functions. Another finding is that some statistical functions have minimal 

impact on imagination characteristics, implying that they can be ignored or removed from 

the ASMs. However, certain functions should be retained to support the creation of various 

sensitivity combinations that contribute to the uniqueness of the imagination. 

6.4 Performance of Classifier for Combined Analysis 

In this study, CNN is employed to explore all possible combinations of three subject groups 

and three sets of imaginations. Figure 6.3 depicts the verification design, which incorporates 

the groups as outlined in the group-based analysis and divides the dataset into three sets 

based on imaginations.  

 

Figure 6.3: The design of verification steps for combined analysis. 

This analysis focuses exclusively on frequency domain SCFs derived from FFT, applying 

15 statistical functions over 10 divisions. Consequently, the dataset is segmented according 

to the bespoke analysis approach. Heatmap images of the produced ASMs are fed into the 

CNN to classify imaginations across all aspects of the groups and imaginations. For 

verification using ASPS and image processing technique is unable to execute bespoke 
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9 subjects and all 19 subjects. ASMs with selected features which are illustrated with 

heatmaps in previous section, these heatmap images are produced for all subjects to feed into 

deep learning method, CNN. The hyperparameters are presented in Chapter 3, Table 3.4. All 
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for classification, they are 3, 4 and 5 imaginations. Classification of two imaginations is 
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excluded from this experiment, as the analysis employed only one frequency domain method, 

and three imaginations have already been recognised with 100% accuracy using FFT-

generated SCFs, as studied in Chapter 4. The performance logically ensures that 2 

imaginations through frequency domain SCFs will be recognised with high accuracy.  

Previous ANN models, such as FFNN and LVQ, were executed 100 times in Chapter 4 and 

5 to assess the stability of their performance. However, due to the significant computational 

demands associated with image processing, the CNN model could not be repeated 100 times. 

The system permits a maximum of 60 runs; therefore, in this study, CNN model is run for 

60 times for each combination and average accuracy is measured along with best result. The 

optimal and average performances are evaluated based on classification accuracy, as 

specified in Equation (3.2) of Chapter 3. Figure 6.4 presents the maximum accuracy 

achievable for group-based analysis using ASPS and image processing technique. 

 

Figure 6.4: Maximum classification accuracy of group-based analysis using ASPS and 

image processing technique. 
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3 imaginations. However, there is a decline to 83.33% accuracy when recognising 4 

imaginations, and a further reduction to 71.11% accuracy for 5 imaginations. This suggests 

that as the number of imaginations increases, the model's ability to accurately distinguish 

between them diminishes. Group 3, the largest group with 19 subjects, showed a recognition 

accuracy of 94.73% for 3 imaginations. The accuracy decreased to 73.68% for 4 

imaginations and further to 57.89% for 5 imaginations. This trend highlights a significant 

challenge in maintaining high accuracy levels as the number of imaginations and the cohort 

size increase. 

The CNN effectively achieved recognition of 3 imaginations across all three groups, similar 

to the performance of the FFNN in previous experiments. Notably, the recognition of 4 

imaginations for Group 1 also achieved 100% accuracy, which is highly promising. 

Furthermore, Groups 2 and 3 demonstrated accuracy in a comparable range (73-83%) for 

the classification of 4 imaginations. The classification of 5 imaginations for 9 subjects is 

accomplished with over 70% accuracy. Overall, the CNN performs adequately, especially 

for scenarios with up to 4 imaginations, although there is room for improvement in 5 

imaginations. The training time of the CNN model is comparatively faster than that of LVQ 

and FFNN. However, preparing images in the appropriate format requires slightly more time 

and storage space compared to ANNs. The average performances of 60 runs for different 

groups and numbers of imaginations are summarised in Figure 6.5.  

 

Figure 6.5: Average performance of group-based analysis using ASPS and image 

processing technique.  
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The figure indicates that the classification of 3 imaginations across all three groups is 

comparatively consistent. Conversely, the classification of 5 imaginations for 19 subjects 

demonstrates the lowest performance throughout. 

Finally, although the performance of the CNN model for the three group sizes is lower than 

that reported in Chapter 5, the results of this study remain significant. The observed decline 

in performance may be attributed to the model's configuration, particularly the use of FFT 

with a relatively high number of 10 partitions. It is likely that reducing the number of 

partitions and incorporating DWT could lead to improved performance. Additionally, while 

using a greater number of statistical functions (15) does not appear to enhance performance, 

incorporating the power feature—due to its significant contribution to the uniqueness in 

imaginations—could improve results. Therefore, adding the power feature to the set of 

features used in previous chapters would be beneficial. Further research into these 

adjustments is recommended, as they may address the performance decline and enhance the 

model's overall efficacy. Moreover, additional experimentation with the CNN, including 

modifications to the number of layers and other specifications, is advised to explore potential 

enhancements in performance. 

6.5 Summary:  

The design, analysis, verification results, and discussion of the group-wise image processing 

experimental setup are comprehensively detailed in this chapter. The experiment is 

conducted to implement the ASPS approach with a diverse range of SCFs across various 

groups of subjects. Features are extracted from frequency domain analysis using 10 

partitions. The extracted and selected features, identified through the ASPS approach, are 

verified using a deep learning algorithm, specifically CNN. This image processing technique 

employs supervised learning to understand feature characteristics from images and classify 

the imaginations accordingly. Two trials of imagination data are used in the CNN: one for 

training and the other for testing. Three cohort sizes are tested. 

For the deep learning model, hardware specifications sometimes limit the number of runs 

possible. For instance, the proposed CNN model could not be run more than 60 times due to 

the high computational demand of image processing. The results of various CNN 

architectures for different groups of imaginations are summarised in Section 6.4. The ASPS 

approach, incorporating only FFT-generated SCFs, has the capability to recognise 5 

imaginations through image processing, achieving more than 70% accuracy for up to 9 



106 

 

subjects. For bespoke experiments, the FFNN is sufficient to achieve the best results. 

However, increasing the number of subjects in this experiment slows down the ANN process. 

Nonetheless, the CNN is also an adequate classifier for the specified imaginations. In the 

group-based experiment, the CNN is generally faster than the LVQ and FFNN. Further 

research and experimentation would focus on reducing the number of partitions and 

incorporating DWT, as well as exploring modifications to the number of CNN layers and 

other model specifications. 

The ASPS approach has proven successful in brain signal processing; however, the analysis 

was conducted using 19 sensors and two trials of data. The focus of the next chapter is on 

sensor optimisation and the evaluation of the proposed model using a new and larger EEG 

signal dataset. Additionally, it compares the performance of the models discussed in 

Chapters Four to Six with the newly obtained results. 
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Chapter 7: Sensor Optimisation and Validation 

 

7.1  Introduction 

This chapter delves into the optimisation and validation of sensors, focusing on brain signals 

collected during the second phase of signal acquisition. In Section 7.2 and in Section 7.3, 

detailed analyses of sensor optimisation and cross-tabulation analysis are provided, 

respectively. Drawing from these analyses, in Section 7.4, various groupings are formulated 

to further refine the approach. In Section 7.5, the validation of these groupings is conducted, 

while in Section 7.6, a comprehensive summary of the results obtained is presented. The 

chapter presents these results through a variety of analytical approaches, including bespoke, 

group-wise, and combined analyses. Additionally, the findings are compared with those 

reported in Chapters 4 and 5 to assess the relative effectiveness of the methods employed. 

7.2 Analysis of Sensor Optimisation 

Based on the methodology design outlined in Section 3.3.2 of Chapter 3, the ranking and 

assignment of rating points across 19 sensors are carried out for each of the 10 subjects, 

taking into account various imagination datasets. The ranking of 19 sensors based on average 

rating points for all subjects with 5, 4, 3 and 2 imaginations is listed down in Table 7.1.  

Table 7.1: Summarised rating point table. 

Sensor# 

(Ch) 

Sensor 

name 

5 

imaginations 

4 

imaginations 

3 

imaginations 

2 

imaginations 

Sensor 

rank 

1 Fp1 17 18 16 2 17 

2 Fp2 7 14 13 7 9 

3 F7 6 19 18 17 19 

4 F3 14 14 5 1 7 

5 Fz 2 1 2 6 2 

6 F4 12 7 8 4 5 

7 F8 17 11 18 12 18 

8 T3 12 8 11 9 8 

9 C3 9 16 16 9 14 

10 Cz 5 3 6 4 4 

11 C4 17 6 9 19 15 
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Table 7.1: Summarised rating point table (continued from previous page). 

Sensor# 

(Ch) 

Sensor 

name 

5 

imaginations 

4 

imaginations 

3 

imaginations 

2 

imaginations 

Sensor 

rank 

12 T4 7 13 6 18 11 

13 T5 9 16 3 15 10 

14 P3 1 1 1 7 1 

15 Pz 3 4 11 14 6 

16 P4 9 12 15 15 15 

17 T6 16 10 10 9 12 

18 O1 4 4 4 3 3 

19 O2 14 9 13 12 13 

 

The sensor performance with frequent top 5 rating is highlighted with yellow. Considering 

the frequency of 1-5 and overall rating point of rest of the columns six sensors are selected 

which are highlighted with green.  

The methodology outlined in Chapter 3 includes the selection of the tentative top 5 sensors. 

However, during the selection process detailed in Table 7.1, the top 4 sensors (Fz, Cz, P3, 

and O1) are readily identified. The selection of the 5th sensor presents a tie between F3 and 

Pz, as both sensors exhibit similar frequency characteristics. Specifically, F3 performs well 

for recognising 2 and 3 imaginations, while Pz is more effective for recognising 4 and 5 

imaginations. Consequently, both F3 and Pz are included in the analysis, resulting in a total 

of 6 sensors being ranked among the top. 

It is also notable in Table 7.1 that sensor 6 has been ignored in this selection though its 

overall ranking is 5. The reason is that the individual performance of 5, 4, 3 and 2 

imaginations for sensor 6 has less significance. Rather sensor 15 and sensor 4 have better 

ranking frequency for different number of imaginations performance. 

7.3 Cross-tabulation Analysis 

In Table 7.1, it is found that selected 6 sensors are 14 (P3), 5 (Fz), 18(O1), 10 (Cz), 15 (Pz) 

and 4 (F3).  Sensors are selected based on the frequency of obtaining top ranked from 5, 4, 

3 and 2 imaginations performance. To investigate more details various number of 

imaginations and selected sensors’ performances for each subject’s is gathered in Table 7.2.  
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Table 7.2: Cross-tabulation between subjects and sensors. 

 

  

Green: Outstanding

Amber: Satisfactory

Yellow: Fair

Red: Inadequate

Imaginations Subject 14 5 18 10 4 15
S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
S1
S2
S3
S4
S5
S6
S7
S8
S9

S10

5 
im

ag
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io
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4 

im
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3 
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Four colours are used: green, amber, yellow and red to indicate the performance category as 

outstanding, satisfactory, fair and inadequate respectively. To obtain the top-ranking sensors, 

the rating has been done through a comparative study. Therefore, there is no such threshold 

value taken to measure the performance of the sensor. Rather for certain number of 

imaginations the performance of 19 sensors is categorised which are found differently for 

different subjects. The green colour (outstanding) is applied to the top 5 performances. The 

satisfactory (ember colour) is taken above -average, often demonstrates significant 

competence closer to top 5 performances. The yellow cells are around average value in the 

performance range. Inadequate or red colour is found very poor functioning in imagination 

recognition. Sensor 4 (F3), 5 (Fz) and 10 (Cz) are located in brain frontal lobe. The brain 

cortex around Cz (sensor 10) covers sensory and motor functions. Frontal lobe overall 

operates higher cognitive functions such as attention, planning, emotionality, mental 

processes and so on (Di Ieva, 2011). Sensor 14 (P3) and 15 (Pz) are located in parietal lobe, 

they deal the human activities of perception and differentiation (Abhang, Gawali and 

Mehrotra, 2016). Sensor 18 (O1) is in occipital lobe which primarily works in visual related 

functions. However, functional activity increases in sensory thalamus and somatosensory 

areas which covers motor activity, sensory motor association functions, emotions, memory 

etc (Wei et al., 2018).  

7.4 Group Creation 

In this study, for any subject at least three sensors are found well performing to recognise 

different set of imaginations. The performance deviation of the sensor’s vs subject in the 

table for 5, 4, 3, and 2 imaginations shows moderate consistency in many cases though it is 

reasonable to relate with the localisation of the brain function for different set of 

imaginations and it may vary subject to subject (McFarland et al., 2008) . Based on the 

consistency of stable sensor performance there are three groups are made as Group G1, G2 

and G3. Table 7.3 is the summary of the groups for the number of subject’s vs sensor with 

similar characteristics.  

 Table 7.3: Group formation based on sensor optimisation. 

Group name Subject number Sensor# Sensor name 

G1 S1, S3, S4, S6, S9, S10 Ch 5, 14, 18 Fz, P3, O1 

G2 S2, S7, S8 Ch 4, 5, 10 F3, Fz, Cz 

G3 S5 Ch 14, 15, 18 P3, Pz, O1 
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Corresponding sensor names are included in the table. This grouping is done by taking three 

sensors which are found either outstanding (green) or satisfactory (Amber) for certain 

subjects in most of the imagination’s recognition. In some cases, fair (yellow) performances 

are taken into account while the same sensor is found outstanding for a subject in other set 

of imaginations recognition. However, inadequate (red) sensors are carefully removed from 

the group where subjects have consistent poor performances. To select or reject the sensors 

the performance of individual sensor in terms of 5 and 4 imaginations are prioritised since 

this project aims to convert the signals into control commands. Therefore, higher number of 

imaginations would be transformed into that number of control commands. Total 6 subjects 

fall in group ‘G1’ where selected sensors are Cz, P3 and O1. 3 subjects are categorised into 

group ‘G2’ where selected sensors are F3, Fz and Cz. Only one subject has a different sensor 

performance report where P4, Pz and O1 are functioning adequately. Therefore, this is 

named as group ‘G3’. 

7.5 Validation 

To assess the collective performance of the selected sensors, evaluations are designed based 

on the framework outlined in Table 7.3. The validation steps are illustrated in Figure 7.1. 

  

Figure 7.1: Validation process of imagination recognition using optimised sensors. 

The method developed for recognising imaginations, using the ASPS feature extraction and 

selection approach detailed in Chapter 3, is applied with the optimised sensors to evaluate 

performance. This comprehensive validation process incorporates the selected sensors and 

integrates the majority of previously discussed analytical methods. A single-layer FFNN 
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model is utilised to classify all sets of imaginations, with each model being executed 25 

times. Performance metrics are recorded and presented in subsequent sections. The 

performance of the optimised sensors is then compared to the results obtained from randomly 

selected sensors in Chapters 4 and 5, which were based on the initial phase of collected data.  

Figure 7.1 shows all possible combinations for verification in terms of subjects (bespoke, 

groups, combined), ASPS approaches (using only FFT or both FFT and DWT generated Δ 

SCFs), and imaginations (ranging from 2 to 5). These combinations are applied based on the 

second phase of collected brain signal data. 

7.6 Result and Discussion 

This discussion is primarily divided into two ASPS analyses that have described in Chapter 

4 and 5. The methodology in Chapter 4 has been applied on bespoke experiment for random 

subjects and random 3 sensors from 1st phase of EEG signal data. In Chapter 5, both the 

frequency domain and time-frequency domain are incorporated in the ASPS approach to 

improve accuracy with an increasing number of imaginations, and group-based evaluations 

have been recorded. Both studies are to apply in 2nd phase data to investigate the overall 

performances. The first study is ASPS feature extraction through only frequency domain and 

the result of 2nd phase data is discussed in the Section 7.6.1. The second part experimental 

result and discussion covers features extraction using both FFT and DWT in ASPS approach. 

A thorough verification of bespoke, group-wise, and combined performances is presented in 

Section 7.6.2.  

The optimised sensors data are used for 5, 4, 3 and 2 imaginations recognition. 75% data are 

used for training and 25% for testing in all cases, FFNN single layer is employed as classifier 

since single layer-based FFNN was obtained adequate classifier in imagination recognition. 

The performance is measure with highest classification accuracy as per in Equation (3.2) of 

Chapter 3. The ANN is run for 25 times and average classification accuracy is recorded. In 

previous chapters the average classification was recorded for 100 runs which consumed huge 

time. To optimise time, it is investigated that how many times the model need to be run that 

does not significantly affect the highest and average accuracy comparing 100 runs. It is found 

that at least 25 runs attain comparable result in terms of maximum, average and standard 

deviation of 100 times model run. 
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7.6.1 ASPS through FFT 

The methodology in Chapter 4 involves implementing bespoke experiment on the 2nd phase 

data. The ASPS feature extraction emphasises 4-part FFT generated Δ SCFs in the ASM. 

The following two subsections include the result and discussion for bespoke, group-wise and 

combined experiment respectively.  

7.6.1.1  Bespoke performance for random subjects using ASPS through FFT 

Three subjects are chosen in this step. 2nd phase data was collected for 10 subjects. Among 

them this research collects 12 trials from only one subject to verify the performance of 

bespoke design analysis with more trials. Rest of the subjects are participated for 5 trials. 

The subject with 12 trials is taken intentionally and other two subjects are randomly selected. 

Following the methodology in Chapter 4, Subject number 3, 5 and 9 are evaluated. In Table 

7.4 the bespoke results using ASPS with only FFT and compare the bespoke results between 

1st and 2nd phase data are demonstrated.  

Table 7.4: Performance summary of bespoke result using ASPS through FFT. 

 

It is noticeable that 2nd phase results with selected optimised sensors obtained higher 

accuracy than 1st phase result with randomly selected sensors. The performance of various 

set of imaginations are subject to the participant, however, highest accuracy is more than 80% 

in all cases. Table shows that both 2 and 3 imaginations are all through recognised with 100% 

for all subjects. Except one subject, 4 imaginations are recognisable with 100% accuracy. In 

the 1st phase of data analysis, 5 imaginations with 2 trials achieved 80% accuracy. However, 

in the 2nd phase, where at least 5 trials are considered, the accuracy improved to 90%. 

Average performance values are overall much higher than 1st phase data analysis. Same 

methodology applied in both phase data, the difference is subject and the number of trials. 

More trials would be able to increase the performance level since more data are used to train 

the ANN model; nevertheless, two subjects with 5 trials have higher (90%) and lower 

performance (80%) than the subject with 12 trials (86.7%). Average classification 

performances are observed increasing for 5, 4 and 3 imaginations. 

Maximum Average Maximum Average Maximum Average Maximum Average Maximum Average

5 imaginations 86.7% 61.6% 90.0% 54.0% 80.0% 52.8% 80.0% 43.2% 80.0% 39.2%

4 imaginations 83.3% 70.3% 100.0% 74.0% 100.0% 74.5% 100.0% 56.8% 100.0% 46.0%

3 imaginations 100.0% 96.0% 100.0% 100.0% 100.0% 94.0% 100.0% 72.0% 100.0% 81.3%

2 imaginations 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

No. of 

imaginations 

Recognition
S3: 12 Trials S9: 5 trials S5: 5 trials S1: 2 trials

Bespoke result

2nd phase data 1st phase data

S2: 2 trials
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7.6.1.2 Group-wise results and combined performance using ASPS through FFT 

In Section 7.4 and Table 7.3, three group-wise evaluations have been conducted for G1, G2 

and G3. Additionally, a combined performance assessment has been measured for all 10 

subjects. All best and average accuracies are listed down in Table 7.5.  

Table 7.5: Performance summary of group-wise result using ASPS through FFT. 

 

The feature extraction and selection are carried out by ASPS approach in Chapter 4. This 

overall result is comparatively lower than bespoke performance in Section 7.6.1.1. It is also 

reflected in Table 7.5 where group 3 (G3) has one subject while G1 and G2 have six and 

three subjects respectively. Group-wise and combined performances are obtained reasonably 

for 4, 3 and 2 imaginations. Improving overall performances of 5 and 4 imaginations yet to 

be investigated with modified methodology. 

7.6.2 ASPS through FFT and DWT 

The analysis applied in Chapter 5 has been conducted on 2nd phase data. The result of 5 

imaginations recognition of the analysis attained promising result (group results in Chapter 

5) comparing the bespoke design analysis (bespoke result in Chapter 4). In this part of 

research, the newly created groups based on the selected optimised sensor from 2nd phase of 

recorded EEG signal data. All 5, 4, 3 and 2 imaginations recognition for bespoke 

performances are discussed in Section 7.6.2.1 and group-wise (G1, G2 and G3) and 

combined in Section 7.6.2.2. 

7.6.2.1 Bespoke performance for random subjects using ASPS through FFT and DWT 

Same three subjects (S3, S5 and S9) are considered to investigate the performance variation 

of using ASPS through FFT and DWT. Table 7.6 summarises all the bespoke performances 

with highest and average accuracy. All sets of imaginations are recognisable with 100% 

accuracy in this manner.  

 

Maximum Average Maximum Average Maximum Average Maximum Average

5 imaginations 66.2% 57.7% 53.3% 41.1% 80.0% 52.8% 60.9% 53.8%

4 imaginations 82.7% 71.2% 70.8% 50.8% 100.0% 74.5% 75.0% 67.0%

3 imaginations 100.0% 92.8% 88.9% 67.6% 100.0% 94.0% 95.2% 87.3%

2 imaginations 96.2% 94.0% 91.7% 86.7% 100.0% 100.0% 97.5% 94.8%

G1: S1,S3,S4,S6,S9,S10 G2: S2,S7,S8 G3: S5

Combined                  

2nd phase data
2nd phase data

No. of 

imaginations 

Recognition

Group-wise result
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Table 7.6: Performance summary of bespoke result using ASPS through FFT and DWT. 

 

The best correctness between subject with multiple trials vs any number of imaginations 

have converged eventually. The average performance values are also greater than previous 

all average performances. The dispersion of the average performance of three different 

subjects as well as set of imaginations is relatively very close which indicates tightly 

clustered accomplishment. The average performance of 1st phase Bespoke analysis 

(discussed in Chapter 4), 2nd phase bespoke analysis with only FFT in Section 7.6.1.1 and 

2nd phase bespoke analysis with both FFT and DWT are illustrated in Figure 7.2.  

 

Figure 7.2: Performance comparison of bespoke analysis between two phases data. 

The plot delineates the improvement in performance while adding the number of trials and/or 

domains such as FFT, DWT. In terms of 4 and 5 imaginations recognition the overall 

achievement is significant. For example, subject 2 from 2nd phase data attained up to 85.2% 

which has an increase of 31.2 percentage points in 5 imaginations recognition and 24 

percentage points increment in 4 imaginations. The achievement rates are nearly doubling 

Maximum Average Maximum Average Maximum Average

5 imaginations 100.0% 82.4% 100.0% 85.2% 100.0% 84.4%

4 imaginations 100.0% 96.7% 100.0% 98.0% 100.0% 89.5%

3 imaginations 100.0% 96.0% 100.0% 100.0% 100.0% 94.0%

2 imaginations 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Bespoke result

2nd phase data
No. of 

imaginations 
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S3: 12 Trials S9: 5 trials S5: 5 trials
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or more for subjects when compared to initial success rate. Overall, the improvement of all 

subjects shows a remarkable increase in achievement rates in changing some aspect of 

methodology. The main properties of the analysis for these three cases as below: 

a) The 1st phase of collected EEG data and the initial analysis had two trials from the 

subject. 3 random sensors location (Fp2, Cz, O1) were selected for EEG signal 

analysis. ASPS approach employed time-domain (raw) and frequency domain (FFT) 

generated SCFs. 

b) The 2nd phase data of EEG data and the analysis carried out based on minimum 5 

trials and maximum 12 trials. Three optimised sensors are selected subject to the 

participant. ASPS approach employed time-domain and frequency domain generated 

SCFs.  

c)  Same EEG data as (b). ASPS approach included both FFT and DWT. Among 5 

imaginations, three imaginations are taken by FFT, and two imaginations are taken 

by DWT technique. 

Figure 7.3 illustrates the performance trend of bespoke analysis across the data and methods 

of the two phases. 

 

Figure 7.3: The performance trend of bespoke analysis between two phases data and 

methods. 

It is noteworthy that, there is an upward trend in Figure 7.3 while changing some aspect of 

the methodology and size of data. The indication clearly imply that the approach (c) is more 

capable in producing consistent performance in order to recognise higher number of 

imaginations (3, 4 or 5). 
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7.6.2.2 Group-wise results and combined performance using ASPS through FFT and 

DWT: 

In Section 7.4, groups have been created into three categories of subjects with selected 

sensors. ASPS approach including frequency and time-frequency domain generated Δ SCFs 

are applied into three individual groups and combining 10 subjects together to see the 

performance deviation. Table 7.7 summarises the group-wise performance using ASPS 

through FFT and DWT, presenting both the highest and average accuracy. 

Table 7.7: Performance summary of group-wise result using ASPS through FFT and DWT. 

 

The performance of Group G1 shows excellent and steady performance for different number 

of imaginations. Starting at 81.5% for five imaginations, Group G1 reaches a perfect 

performance score of 100% when the tasks are reduced to three and two. The average 

performances for 5, 4, 3 and 2 imaginations are pretty good and has similar trend as best 

performances. In four imaginations recognition, the performance gap narrows, with Group 

G1 outperforming Group G2 by 6.4%. Both groups show improvement, but Group G1 

demonstrates a more substantial increase. The performance of 3 imaginations recognition 

between G1 and G2 is closer and show high accuracy. Group G3, represented by a single 

subject, shows consistently very high performance across all sets of imaginations.  

The combined performance of 10 subjects EEG data indicates a clear trend of improvement 

as the number of imaginations decreases. With five imaginations, the highest performance 

recorded is 78.1%, and the average performance is 69.1%. There is a substantial increase in 

both highest and average performance scores in 4 imagination recognition, with the highest 

at 95.2% and the average at 89.1%. Further reduction to three imaginations shows a slight 

decrease in the highest performance score to 86.9%, but the average performance increases 

to 93.7%. This suggests that while individual peak performance may vary, overall group 

performance stabilizes and improves. Finally, with two imaginations, both the highest and 

average performance scores reach 100%, indicating perfect performance across all subjects. 

Maximum Average Maximum Average Maximum Average Maximum Average

5 imaginations 81.5% 70.8% 73.3% 60.7% 100.0% 84.4% 78.1% 69.1%

4 imaginations 98.1% 93.3% 91.7% 78.3% 100.0% 89.5% 95.2% 89.1%

3 imagination 100.0% 92.8% 88.9% 67.6% 100.0% 94.0% 95.2% 87.3%

2 imaginations 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

2nd phase data

G1: S1,S3,S4,S6,S9,S10

Group-wise result
No. of 

imaginations 

Recognition

Combined                  

2nd phase data
G2: S2, S7, S8 G3: S5
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This group analysis clearly outperforms the group analysis presented in Section 7.6.2.2 and 

Table 7.5. Same subjects and same size of dataset are used in both analyses, only adding 

DWT along with FFT in ASPS approach gives a sharp increase in performance. This 

comparison absolutely helps to distinguish the analysis approach. Same approach was 

followed in Chapter 5 where the result shows combined performance of 19 subjects attained 

78.95% accuracy. It is notable that 2 trials were processed for 19 subjects which gathers in 

total 38 trials from 1st phase of collected data. In second phase this combined performance 

has carried out on 10 subjects, 9 subjects with 5 trials and 1 subject with 12 trials that 

incorporates total 57 trials. The 2nd phase data achieves 78.1% best accuracy for 57 trials 

that apparently looks comparable to the 1st phase 38 trials. Moreover, considering the total 

number of trials, the average classification performance has been increased in 2nd phase 

combined experiment. 

 

Figure 7.4: Performance comparison of combined analysis between two phases data. 

Figure 7.4 illustrates a comparative result analysis of combined imagination recognition 

performance in terms of using only frequency domain and time-frequency domain in ASPS 

approach. Three categories:  

i. ASPS using only FFT on the 2nd phase combined data: 

Properties: 10 subjects, 57 trials and 3 sensors 

In the first result set, where only FFT generated Δ SCFs are utilised, the performance metrics 

show a notable progression as the number of imaginations decreases. The best accuracy 
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improves from 60.9% with 5 imaginations to 97.5% with 2 imaginations. Similarly, the 

average accuracy rises from 53.8% to 94.8%. This suggests that FFT generated Δ SCFs alone 

can yield high accuracy, especially with fewer imaginations. 

ii. ASPS using both FFT and DWT on the 1st phase combined data: 

Properties: 19 subjects, 2 trials and 3 sensors 

The second result set combines FFT and DWT generated Δ SCFs and includes a larger 

subject group. The highest accuracies range from 70.5% with 5 imaginations to 100.0% with 

2 imaginations, while the average accuracies improve from 63.0% to 91.2%. Incorporating 

DWT generated Δ SCFs alongside FFT improves the system's signal processing accuracy, 

demonstrating the robustness of the combined Δ SCFs even with a larger number of subjects. 

iii. ASPS using both FFT and DWT on 2nd phase combined data: 

Properties: 10 subjects, 57 trials and 3 sensors 

The third result set also uses combined FFT and DWT generated Δ SCFs, though with the 

same number of subjects as the first dataset. Here, the highest accuracies range from 78.1% 

with 5 imaginations to 100.0% with 2 imaginations. The average accuracies improve from 

69.1% to a perfect 100.0%. This dataset demonstrates the highest performance levels, 

indicating the combined feature set's effectiveness in improving recognition accuracy, 

especially in the 2nd phase of data collection. 

The analysis highlights a positive correlation between reducing the number of imagination 

tasks and improving performance. As the cognitive load decreases, subjects achieve higher 

and more consistent performance levels, culminating in perfect scores when the tasks are 

reduced to two imaginations. The overall classification performance demonstrates 

impressive results when using SCFs generated by both FFT and DWT, compared to using 

SCFs generated by FFT alone. 

7.7 Assessment of Achieved Accuracy and Comparison with Existing Studies 

Validation involves evaluating different methodological approaches (using either FFT alone 

or both FFT and DWT) within the ASPS model for recorded data obtained with optimised 

sensors. As demonstrated in the previous section, superior performance in recognising 

imaginations is achieved when the ASPS approach incorporates SCFs generated by both 

FFT and DWT. Recognition of two imaginations for the largest cohort and five imaginations 

for individuals achieved up to 100% accuracy. The following factors contributing to the 
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achievement of 100% accuracy were identified through the assessment of the achieved 

results. 

Feature extraction with FFT and DWT in ASPS: The combination of FFT and DWT within 

ASPS captures both time and frequency domain characteristics, enhancing SCF separability, 

minimising class overlap, and ensuring high classification performance. 

Uniqueness of feature combination in ASM: The ASPS approach arranges the extracted 

features in a unique combination of values within the ASM, allowing each imagination to be 

distinctly represented. This enhances the ANN's ability to classify effectively when the SCFs 

and corresponding labels are clearly differentiated for each imagination. 

Impact of a small number of imaginations: Fewer imagination classes simplify classification, 

leading to more distinct separations between classes. 100% accuracy is achieved for two 

imaginations in the largest cohort and five imaginations for individual subjects, highlighting 

that fewer decision boundaries improve classification outcomes. 

Consistency in signal nature for individual participants: The recognition of five imaginations 

per individual with 100% accuracy is due to the stability of their neural signals. Unlike multi-

subject studies, where inter-subject variability complicates classification, individual patterns 

remain consistent, supporting perfect classification. Table 7.8 presents a comparison of the 

key aspects of the most relevant studies and the current research. The table highlights the 

study objectives, methodologies, accuracy rates, and other relevant factors that influence 

performance. The methodology includes the feature extraction techniques, number of tasks, 

and number of subjects, providing a comparison of the experimental dimensions and 

corresponding results. 

Table 7.8: Comparative table of similar studies and this study. 

Criteria (Hinterberger et 

al., 2004) 

(Yang et al., 

2023) 

(Imran et al., 

2024) 

This research 

Goals/ 

objectives 

Development of 

thought 

translation 

device using 

self-regulation 

of slow cortical 

potentials. 

conversion of 

thoughts into text 

using EEG 

signals. 

Brain-

controlled 

computer task 

enabling cursor 

movement 

based on 

thought-driven 

EEG signals 

Communication 

system to 

identify thought 

messages via 

EEG signals 
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Table 7.8: Comparative table of similar studies and this study (continued from previous 

page). 

Criteria (Hinterberger et 

al., 2004) 

(Yang et al., 

2023) 

(Imran et al., 

2024) 

This research 

Methodology EEG signals are 

processed 

during eye 

movements for 

two tasks, and 

the classified 

signals are 

converted into 

spelling. 

Number of 

subjects: 20 

Eurasian 

Oystercatcher 

Wild Geese 

Migration 

Optimisation 

(EOWGMO) 

algorithm is used 

for signal 

processing and 

adaptive deep 

leaning for 

classification.  

-14 motor 

movement/ 

imagery tasks 

-Publicly 

available dataset 

of 109 

volunteers.  

EEG brain 

signals are 

collected using 

the BrainLink 

device for eight 

brain states 

(delta, theta, 

alpha, etc.), 

processed, and 

classified for 

four cursor 

movements 

using a CNN-

based approach. 

Privately 

labelled dataset 

is used. 

EEG signals are 

processed and 

analysed across 

2 to 5 different 

mental tasks. 

The ASPS 

approach is 

applied for 

signal 

processing, and 

ANN is used 

for 

classification. - 

1st dataset: 19 

volunteers with 

two trials. - 2nd 

dataset: 10 

volunteers with 

five trials. 

Accuracy Overall: 70% Overall: 96.41% Overall: 80% 

 

Individual: 

100% for any 

number of 

imaginations 

Biggest cohort  

2 imaginations: 

100% 

5 imaginations: 

78.1% 

 

Strength Demonstrates 

significant 

voluntary brain 

control. 

Performance 

improves 

through 

adaptive 

methods. 

Implements a 

powerful 

optimisation 

technique. 

Compares 

various features, 

including 

spectral, 

temporal,  

Enables control 

of a cursor in 

four directions 

(up, down, left, 

right). Utilises a 

low-cost, 

single-channel 

EEG device. 

Supports up to 

five distinct 

communication 

outputs. 

Selects three 

optimal sensors 

for signal 

acquisition. 
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Table 7.8: Comparative table of similar studies and this study (continued from previous 

page). 

Criteria (Hinterberger et 

al., 2004) 

(Yang et al., 

2023) 

(Imran et al., 

2024) 

This research 

 Utilises 

multichannel 

EEG recordings. 

Employs an 

innovative 

methodology. 

statistical, and 

spatial aspects. 

Evaluated with 

multiple 

classification 

algorithms. 

 Identifies 

unique 

imagination 

patterns from 

delta wave 

values using 

feature 

sensitivity 

analysis. 

Evaluated with 

various cohort 

sizes and three 

classification 

algorithms. 

Limitation -High 

intersubject 

variability 

reduces 

generalisability. 

- Sequential 

trial-to-trial 

interactions may 

hinder user 

consistency. 

-No guarantee of 

finding the 

global optimum. 

- Performance is 

influenced by 

problem 

complexity and 

parameter 

settings. 

Accuracy 

depends on 

proper 

preprocessing 

(noise 

reduction, 

artefact 

removal, signal 

normalisation, 

and feature 

extraction). 

Variability in 

volunteer data 

may limit 

scalability. 

Performance is 

affected by the 

number of 

imagined tasks 

and cohort size. 

 

 

7.8 Summary 

This chapter presents the results and discussion of sensor optimisation for the second phase 

of data analysis and overall algorithm validation. The discussion encompasses sensor ratings, 

rankings, and cross-table analyses between sensors and subjects, as well as group formations 

based on the second phase of collected data. Validation involves assessing various 

methodological approaches (using only FFT or both FFT and DWT) using the ASPS model 
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for recorded data with optimised sensors. These approaches examine the effectiveness of 

incorporating frequency domain and/or time-frequency domain in the ASPS model. The 

chapter includes several comparisons between the data from the two phases and the different 

ASPS methods. The comparison results demonstrate higher performance in recognising 

imaginations when the ASPS approach is utilised with both FFT and DWT-generated SCFs. 

Ultimately, the discussion of these comparisons highlights the most suitable approach for 

this research. 

The next chapter details the design and development of a novel EEG-BCI prototype, created 

in accordance with the proposed methodology. It includes the hardware components and the 

integration of hardware and software, as well as the testing of real-time data to validate the 

functionality of the prototype. 
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Chapter 8: Design and Development of EEG-BCI Prototype 

 

8.1 Introduction 

The integration of brain imaging technologies, notably EEG and ANNs, has introduced a 

new dimension in communication between the human brain and computers. Previous 

analyses reveal that recognising imaginations is achievable using commercial EEG systems. 

However, a typical commercial EEG system consists of numerous sensors, such as 19, which 

can be time-consuming to set up and are often unaffordable for many individuals. The cost 

of these systems varies based on hardware and software requirements (Ledwidge, Foust and 

Ramsey, 2018), with a direct correlation between product quality, performance, and cost. 

Comprehensive EEG packages with multiple configurations can exceed $100K (Lystad and 

Pollard, 2009). Although more economical options are available, they often suffer from 

limitations such as lower sampling rates, fewer channels, and reduced functionality 

(Dadebayev, Goh and Tan, 2022). Consequently, these less expensive systems would not 

meet our research needs, which require sensors targeting specific brain locations and 

compatibility with the developed brain signal processing model. 

This research, has established in Chapter 7, demonstrates that three sensors can effectively 

recognise mental imagery. However, to evaluate the efficiency of optimised sensors in 

practical scenarios, a customised system is necessary. Integrating hardware and software for 

specific BCI applications would represent a significant advancement in communication 

systems. Moreover, this system will enhance portability, reduce complexity, and improve 

affordability. 

In response, this research introduces the design and implementation of a cost-optimised 

EEG-BCI prototype as an innovative communication system. The objectives of this study 

are as follows: 

i. Designing a basic prototype where EEG sensors can record signal data from the 

scalp. 

ii. Developing the prototype using reliable and cost-effective equipment as per the 

design specifications. 

iii. Acquiring signals using the prototype. 
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iv. Processing and analysing the signals according to the developed ASPS approach 

model. 

v. Developing a Graphical User Interface (GUI) application to manage signal 

acquisition, processing, and communication output. 

vi. Evaluating the performance of the system. 

This approach aims to advance the current state of BCI technology by providing a more 

accessible and efficient solution for practical applications. 

8.2 Design and Development 

The design and development of the system have been executed in two distinct phases. The 

first phase focuses on creating a prototype of an EEG-based BCI utilising a single sensor for 

signal acquisition. Initially employing a single sensor simplifies the design, development, 

and evaluation processes of the system. Figure 8.1 presents the schematic diagram of the 

EEG-BCI utilised for signal acquisition. In the initial phase, the emphasis is placed on the 

creation of a prototype EEG-based BCI that incorporates a single sensor for signal 

acquisition. This approach simplifies the system's design, development, and evaluation 

processes. Figure 8.1 illustrates the schematic diagram of the EEG-BCI used for signal 

acquisition. 

 

Figure 8.1: The schematic diagram of EEG-BCI for signal acquisition. 

The EEG Click board interfaces with EEG sensors to capture brainwave signals. It is 

equipped with components for signal conditioning, filtering, and amplification, ensuring that 

the EEG signals are both reliable and usable. The board typically connects to development 

platforms via standard communication protocols such as Inter-Integrated Circuit (I2C) or 

Serial Peripheral Interface (SPI). Designed for compatibility with various Mikroelektronika 

development boards and microcontrollers, the EEG Click board is versatile and adaptable to 

Computer

Microcontroller

Electrode

EEG Click board

Subject
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different applications. The Microcontroller Unit (MCU) plays a crucial role in this setup by 

processing inputs from the EEG sensors, executing programmed instructions, and managing 

outputs. As the central component of any embedded system, the microcontroller enables the 

correct combination and connection of the EEG Click board, facilitating accurate recording 

of EEG signal data within the system. 

The design of the EEG-BCI prototype in this study utilises the NI 6009 as the MCU. The NI 

6009, a multifunction DAQ device manufactured by National Instruments (NI), is designed 

for low-cost portable data acquisition applications and is widely used in education, research, 

prototyping, development, and industrial monitoring. The EEG Click Board and the NI 6009 

DAQ are integrated into the data acquisition system, as shown in Figure 8.2.  

 

Figure 8.2: Hardware setup using EEG click board and NI 6009 DAQ for signal 

acquisition. 

The NI 6009 DAQ supports high sampling rates, meeting the requirements of this research. 

Additionally, it offers direct compatibility with the MATLAB programming environment 

via the NI-DAQmx driver, enabling seamless connectivity through the MATLAB Data 

Acquisition Toolbox. Given these advantages, this research adopts the NI 6009 DAQ for 

further development. 

Compared to alternative data acquisition cards such as Arduino and LabJack, the NI 6009 

demonstrates superior feasibility for EEG-BCI applications. While a rate of 512 Hz is 

sufficient, a higher sampling rate can provide even greater precision and reduce the risk of 

aliasing, resulting in more reliable data (Halford et al., 2016). The Arduino Uno R3 is 

unsuitable due to its low sampling rate, which fails to meet the necessary frequency 

requirements for brain signal acquisition. Although the LabJack U6 offers a high sampling 

DRL electrode 

placement
Software and 

data analysis

Data acquisition system
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rate, its incompatibility with MATLAB and the need for additional software integration 

introduce potential reliability and compatibility issues. In contrast, the NI 6009 provides both 

high sampling rates and direct MATLAB integration, ensuring a more robust and efficient 

data acquisition system. The subsequent sections will discuss the implementation and 

evaluation of the prototype in detail. 

8.3 Product Implementation 

This section details the practical application of the developed prototype. The implementation 

process for the EEG-BCI prototype is as follows: 

a) Verification of Connections: Using an AVO meter, all connections between the EEG 

Click Board and the NI 6009 DAQ are verified. 

b) Calibration: Calibration is performed using an oscilloscope, NI MAX software, and 

the MATLAB Data Acquisition Toolbox. The necessary gain adjustments are made. 

c) Health and Safety: Ensuring the main power source adheres to health and safety 

standards. 

d) Signal Monitoring: The sensor is attached to the hand, and signals are monitored 

under both stable and moving conditions. 

e) MATLAB Configuration: Necessary settings in the MATLAB Data Acquisition 

Toolbox are configured. 

 

Figure 8.3: Single sensor-based EEG-BCI prototype. 

Upon completion of these checks, the system is ready for signal acquisition. Figure 8.3 

illustrates the prototype, showing the complete connection between components, all housed 

in a suitable enclosed box. The box is equipped with a high-speed USB cable port and a 3.5 

mm jack port for sensor connectivity and signal acquisition. 
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8.4 Signal Acquisition 

Signal acquisition is conducted using a single EEG sensor, as illustrated in Figure 8.6. The 

sensor cable consists of three components: one for brain location and two for neutralising 

the EEG signals.  

 

Figure 8.4: Signal acquisition using prototype. 

The signal acquisition uses a sampling rate of 1 kHz. To simplify both signal recording and 

processing, this study examines two mental tasks: imagining kicking a football with the left 

foot and imagining walking on a warm sandy beach. These tasks correspond to imaginations 

2 and 5 from the list detailed in Chapter 3, Table 3.1. Following verbal instructions, the 

subject performs each imagination task for 5 seconds. The instructions consist of two phases: 

first, a relaxation period, followed by the specific mental task. 

8.5 Signal Processing 

The captured data are stored directly in the MATLAB workspace, with a total of 40 trials 

recorded from one subject. The signals are processed according to the initially developed 

signal processing model. This model, based on the ASPS approach, focuses exclusively on 

the frequency domain. Given that the experiment involves only two imagination tasks—

while experiments in Chapters 4 and 5 demonstrate successful recognition for three different 

imaginations—the recorded signals are processed using a five-part FFT and four statistical 

functions within the ASPS model, resulting in 20 Δ SCFs for each imagination. The ASM is 

generated from the extracted SCFs, and the normalised SCF values are input into a FFNN 

model for classification of the imaginations. 
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8.6 Classification 

A single-layered FFNN is employed for the classification of mental imaginations. The SCFs 

generated by the FFT for the two mental tasks are used as inputs for the FFNN model. Train-

test datasets are prepared with a 70:30 ratio. Various neuron configurations, ranging from 𝑁 

to 3𝑁 (where 𝑁 represents the number of samples), are tested. For each neuron configuration, 

the model is executed 25 times, and the average performance is calculated. The best and 

average performances are measured using classification accuracy, as defined in Equation 

(3.2) of Chapter 3. Figure 8.5 presents the best and average performances of the single-sensor 

EEG-BCI prototype.  

 

Figure 8.5: The accuracy of single sensor-based EEG-BCI prototype (A) Maximum 

performance and (B) average performance. 

The results indicate that the highest performance across various neuron configurations 

ranges from 60% to 90%, with 70% being achievable in many cases. The hidden layer size 

of 32 neurons yields the overall best results, achieving a maximum accuracy of 80% and an 

average accuracy of 56.4%. This performance is challenging compared to industry 

benchmarks, as there are no existing systems with the same target orientation. Based on 

previous analysis, this research sets a performance goal of at least 70% average accuracy to 

ensure the communication system's quality. Potential factors contributing to the performance 

limitations may include the use of a single sensor and the unshielded sensor cable, which 

can introduce noise. 

8.7 GUI-based Application Development 

A GUI-based application has been developed using MATLAB R2022a. This application 

provides a user-friendly platform for controlling signal recording and processing, as well as 

generating communication outputs for the user. The software leverages various GUI 
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components, such as buttons, labels, and signal plots, to enhance user interaction. The 

application features two buttons designed for recording signals during relaxation and mental 

task periods. Clicking a button initiates a session that connects to the NI 6009 DAQ for data 

acquisition related to the selected task—either relaxation or mental task. Data are collected 

for 5 seconds, and the visualisation panel displays the recorded signals.  

 

Figure 8.6: The application view (A) before recording and (B) after recording. 

Figure 8.6 illustrates the application's interface: (A) before recording and (B) after recording. 

The "Run" button activates the signal processing method in the background, classifies the 

signals, and displays the communication output on a label. This application is designed with 

bespoke manner, where the internal FFNN model is trained offline for individual subjects. 

The system processes real-time data from the subject and generates the corresponding 

communication output based on the trained model.  

 

Figure 8.7: New design of the hardware setup using three sensors-based EEG-BCI 

prototype for signal acquisition. 
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Figure 8.7 depicts the updated design of the EEG-BCI prototype. To enhance the 

performance of the EEG-BCI prototype, this study explores the incorporation of additional 

sensors, based on the analysis presented in Chapter 7. The sensor optimisation analysis has 

determined that three sensors placed at specific brain locations are sufficient for accurate 

imagination recognition. Consequently, this study revisits the initial design phase and 

integrates a three-sensor configuration into the EEG-BCI prototype. Three unit of MIKROE 

EEG Click Boards are utilised to support the three sets of EEG sensors. Given that the NI 

6009 DAQ includes multiple input and output channels, it readily accommodates the three 

EEG Click Boards.  

 

Figure 8.8: The connectivity of three EEG Click boards and NI 6009 DAQ. 

Figure 8.8 illustrates the hardware setup, showing all input and output connections for the 

three EEG Click Boards and the NI 6009 DAQ, all housed within a single enclosure. The 

product implementation process replicates the entire procedure outlined in Section 8.3, but 

with the newly configured hardware setup. To enhance the Signal-to-Noise Ratio (SNR), all 

EEG sensor cables have been shielded. Figure 8.9 highlights the distinction between the 

previous unshielded cables and the new shielded cables. 
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Figure 8.9: Sensor cables (A) unshielded cables (B) shielded cables. 

Following this updated development, the EEG-BCI prototype is reconfigured for signal 

acquisition. Figure 8.10 displays the updated prototype, with (A) showing the top view and 

(B) presenting the side view of the newly designed EEG-BCI prototype. 

 

Figure 8.10: Newly developed EEG-BCI prototype (A) top view and (B) side view. 

Signal acquisition is conducted using a newly developed prototype. Three sensors are 

employed to record simultaneous signals from three specific brain locations: Fp1, Fp2, and 

Fz. These locations are selected based on the findings from the sensor optimisation analysis 

detailed in Chapter 7, which is reviewed in light of this prototype study, currently limited to 

two types of mental imagery. The accuracy ratings for individual sensors corresponding to 

these two mental imaginations are examined, revealing that Fp1, Fp2, and Fz achieve 
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consistently high accuracy. Additionally, these brain locations are chosen for their 

convenience in attaching sensors to the scalp for data recording. Figure 8.11 shows the signal 

acquisition with three sensors using newly developed EEG-BCI prototype. 

   

Figure 8.11: Signal acquisition with newly developed EEG-BCI prototype. 

The signals from the three sensors are processed using the ASPS approach, which focuses 

solely on frequency domain characteristics. The signal processing model explores two 

different partitions of the FFT within the ASPS approach: a four-part and a five-part FFT, 

each associated with four statistical functions—mean, standard deviation, variance, and 

maximum. The equations for these functions are provided in Chapter 3, Table 3.2.  

 

Figure 8.12: Signal visualisation (A) raw signal recording using EEG-BCI prototype and 

(B) corresponding FFT plot. 
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The FFT partitions are determined by considering the FFT outcomes of the raw signals, as 

illustrated in Figure 8.12, which displays (A) the raw signal and (B) the corresponding FFT 

outcome. Environmental noise creates high frequency at 250Hz which is visible in full length 

of FFT outcomes. Signal analysis considers the range of the frequency with a realistic 

manner to process appropriate features in this step. Δ values of SCFs help to minimise the 

line noise and motion noise. The four-part and five-part frequency domain partitions 

generate ASMs with 16 and 20 Δ SCFs, respectively. These SCFs serve as inputs to a single-

layered FFNN, the classification algorithm used to identify the mental imaginations. To 

assess the performance of the FFNN, hidden layer sizes ranging from 1 to 120 neurons are 

applied, and the model is executed 50 times for each layer size. The highest and average 

performances are recorded. Figure 8.13 presents the average performance of the FFNN 

model for both the four-part and five-part FFTs. 

 

Figure 8.13: Average classification accuracies of EEG-BCI prototype between various 

partitions. 

The variation in classification outcomes is evident, with the four-part FFT-generated SCFs 

achieving an average classification accuracy of 55.5%, while the five-part FFT-generated 

SCFs reach an average accuracy of 79%. In 50 runs with any number of neurons, the model 

achieves 100% accuracy at least once, highlighting the effectiveness of the extracted SCFs. 

This variation underscores the significance of FFT partitioning, as it aligns with the 

performance differences observed in Chapters 4, 5, and 6, which explore 2, 4, and 10 

partitions, respectively. In this study, the partitions within the alpha, beta, and gamma 

frequency bands demonstrate a distinct characteristic between relaxation state and the 

corresponding mental task. Figure 8.14 depicts the classification performance of ASPS using 

a four-part frequency domain SCFs. 
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Figure 8.14: Classification performance of EEG-BCI prototype using ASPS using four-part 

frequency domain generated SCFs. 

The chart illustrates the highest performance recorded over 50 runs, with a dotted line 

representing the mean performance across these runs. The values generally fall between 50% 

and 75%, with occasional peaks reaching 100%. Some values decrease to 25%, and 0% 

appears rarely, reflecting instances of minimal output. Figure 8.15 showcases the 

classification performance of ASPS when employing a five-part frequency domain SCFs. 

 

Figure 8.15: Classification performance of EEG-BCI prototype using ASPS using five-part 

frequency domain generated SCFs. 
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As in Figure 8.15, the chart highlights the maximum performance achieved over 50 runs, 

with the dotted line marking the average performance. Here, 50% is frequently observed, 

but 75% appears most often, indicating a strong bias towards higher classification values. 

100% values are notably present in various instances, indicating significant consistency or 

accuracy in those cases. When comparing the two, the four-part FFT-generated SCF output 

displays a wider range of results, with values as low as 0% and many clustering between 50% 

and 75%. On the other hand, the five-part FFT-generated SCF output tends to yield higher 

classification values, with several instances of 100%, pointing to a more consistent or 

superior performance compared to the four-part setup. 

The results and discussion demonstrate the efficacy of the newly developed EEG-BCI 

prototype. The integration of this hardware prototype with its associated software enables 

the recognition of two distinct mental imagery states, thus facilitating communication 

outputs. However, the current system's signal acquisition process is occasionally 

compromised by motion artefacts and/or environmental noise. The GUI-based application 

fulfils the basic requirements for fundamental communication tasks, but there are several 

avenues for potential enhancement. These include the reduction of noise and artefacts, the 

inclusion of additional mental tasks, an increase in the sampling rate, and improvements in 

the signal processing model. Further research should focus on optimising the placement of 

brain electrodes and refining ANN models and their architectures. Additionally, upgrading 

the front-end application to support both training and testing with real-time data from diverse 

subjects would significantly enhance its functionality. 

8.8 Summary 

This chapter presents a novel EEG-BCI product developed to meet the objectives of this 

research. It underscores the importance of integrating cost-effective hardware with bespoke 

software designed for specific BCI applications. The chapter encompasses the design, 

development, and implementation of both the initial and upgraded EEG-BCI prototypes. 

Emphasis is placed on the reliable performance of low-cost hardware, which provides 

adequate channels and sampling rates, alongside advanced GUI-based software for data 

analysis and interpretation. This integration is crucial for achieving effective outcomes in 

BCI applications. The system ensures accurate capture and processing of brain signals, 

delivering reliable and meaningful data for its intended purpose. The model is trained offline 

using a customised approach, while the GUI application supports real-time testing with 
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subject data, enabling practical evaluation of the prototype. Additionally, this chapter 

identifies potential areas for future work aimed at advancing the prototype’s capabilities. 

The following chapter provides a comprehensive summary of the thesis, outlining the 

achievement of the research objectives, the key findings, and the contributions made to the 

field. It also presents recommendations for future research. 
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Chapter 9: Discussion and Conclusion 

 

9.1 Introduction 

The development of BCIs holds the potential for transformative impacts, particularly in 

enhancing communication and well-being for individuals with physical disabilities. This 

thesis outlines the research undertaken to develop an innovative BCI using EEG and AI to 

decode thought messages. The research methodically addresses the objectives set forth in 

Chapter 1. Each objective is pursued with meticulous care, skill, and thorough review, 

advancing step by step towards the overarching aim. Chapters 2 through 8 detail each phase 

of the research. Chapter 2 provides a comprehensive literature review of the relevant areas 

of this study. Chapter 3 explains the methodology employed. In Chapter 4 the bespoke 

analysis results of imaginations recognition are presented. Chapter 5 covers the group-based 

analysis results of imaginations recognition, and in Chapter 6 the results of imaginations 

recognition using image processing technique are explored. Chapter 7 reports on all the 

experimental performances of optimised sensors, and in Chapter 8 the design and 

development of a novel EEG-BCI prototype for thought message identification is discussed. 

This chapter synthesises the research outcomes, addressing the research questions and 

achieving the objectives, highlighting key findings and contributions to the field. It 

concludes with a discussion of the research's limitations and suggests directions for future 

work. 

9.2 Addressing Research Questions and Accomplishing Objectives 

In order to achieve the goal of developing an innovative communication approach employing 

EEG and AI for discerning thought messages, this study addresses the research questions 

and fulfils the objectives outlined in Chapter 1, as detailed below.   

Objective 1: To conduct a comprehensive literature review on fundamental neuroscience 

concepts, brain imaging systems, signal processing methods, classification algorithms, and 

relevant commercial products. 

Outcome: An extensive literature review on the relevant areas of this research topic was 

conducted. As the research aims to design and develop a methodology for implementing BCI 

applications, Chapter 2 explores the state of the art in fundamental neuroscience concepts 

and their role in MND, brain imaging systems, signal processing methods, classification 
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algorithms, and relevant commercial products. The review of fundamental neuroscience 

concepts provides essential understanding of the neurobiological structure of the brain, its 

functional processes, and cognitive aspects. The brain imaging systems study helps to 

understand the capture process of cognitive functions and determine the requirement of the 

data collection arrangement. The review of signal processing methods provides insights into 

diverse methods, their strengths, and weaknesses. The analysis of classification algorithms 

highlights potential classifiers and current trends. Finally, the literature review also high 

lights on relevant commercial products in the field of BCIs. Overall, this literature review 

has enriched the research with critical insights and a deeper understanding of the topic. 

Objective 2: To develop a brain signal processing algorithm and analyse brain signals using 

the algorithm, validating the results with appropriate ANNs. 

Outcome: Considering the limitations of traditional signal processing methods, novel ASPS 

approach was adopted to investigate the capability of extraction and selection of features 

from brain signals. This approach incorporates both frequency domain and time-frequency 

domain analysis. To maintain simplicity and manage dimensionality, an elementary model 

was first designed and developed for examination through bespoke analysis. Prior brain 

signal data were used in this development. A comprehensive study and series of experiments 

were conducted, exploring various methods such as FFT, WT as well as different statistical 

functions. These methods were investigated individually and across several cohort sizes of 

subjects. This study successfully identified the optimal ASPS approach by integrating 

traditional signal processing techniques, configuring individual techniques, and selecting 

statistical functions. Chapter 4 and 5 discuss how the methodology has been developed step 

by step. This methodology has been applied to both bespoke and three group-based analyses, 

demonstrating its effectiveness. 

Objective 3: To conduct experiments to collect brain signals using a commercial EEG device. 

Outcome: EEG signal acquisition was conducted to ensure the development and evaluation 

of the proposed brain communication system. Data were collected from 10 participants, each 

performing five trials of predefined mental tasks, ensuring sufficient variability for robust 

analysis. Additionally, a single subject underwent 12 trials to assess intra-subject consistency 

and comparative performance across different trial numbers. This systematic data collection 

approach facilitated the evaluation of inter-subject variability and the reliability of the 

developed methodology. Practical challenges, including signal noise, artefact removal, and 
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experimental setup, were addressed to enhance data integrity. Chapter 6 discusses these 

experiments in detail, providing insights into sensor optimisation and methodological 

validation. 

Objective 4: To optimise a neural network model and identify the most suitable ANN for 

this research. 

Outcome: Following feature extraction, multiple ANN architectures were evaluated to 

determine the most effective classification model for recognising imagined tasks. LVQ and 

FFNN models with varying layer configurations were systematically tested, including 

architectures with single and dual hidden layers. Five different FFNN models were 

implemented and executed certain number of times to assess performance consistency. 

Comparative analyses of accuracy, computational efficiency, and dataset requirements 

indicated that a single-layer FFNN provided the optimal balance between accuracy and 

complexity. Additionally, CNN was explored for imagery classification, particularly in 

three-group analysis scenarios. Chapters 4 to 7 present detailed performance evaluations, 

leading to the selection of the most suitable ANN for this study. 

Objective 5: To design and develop an EEG-BCI prototype for recording EEG signals and a 

software interface and evaluate its effectiveness in creating a communication system. 

Outcome: A fully functional EEG-BCI prototype was developed, integrating hardware and 

software components to enable brain signal acquisition, processing, and classification. The 

hardware system was designed using EEG Click boards, a microcontroller, and optimised 

sensor placement, ensuring reliable signal acquisition. The prototype accommodates three 

EEG sensors, offering flexible positioning via electrode pads or a hairband mechanism for 

improved usability. A GUI was developed using MATLAB to facilitate data visualisation, 

signal processing, and real-time classification. The system supports automated signal 

acquisition, feature extraction, and classification using the trained FFNN model. This 

comprehensive BCI system represents a novel, low-cost approach to thought-based 

communication, demonstrating significant potential for assistive technology applications. 

Chapter 8 details the prototype’s development, implementation, and performance evaluation. 

9.3 Contribution to The Knowledge 

In this research, the key contributions to the knowledge are presented below: 

i. A novel implementation of the ASPS approach for brain signal processing. 
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ii. A distinct combination of SCFs that demonstrates uniqueness in recognising 

specific imaginations and highlights the resemblance between subjects. 

iii. The optimised number of sensors required and their scalp locations to identify 

the thought messages via brain signals. 

iv. A method for recognising specific imaginations using the ASPS approach for 

feature extraction, combined with LVQ and FFNN for signal classification. 

v. A method for imaginations recognition using the ASPS approach, integrated with 

image processing techniques such as CNN for classification. 

vi. Identification of the most suitable ANN model and layer architecture for different 

sets of imagination recognition in terms of bespoke and broader populations. 

vii. A novel communication product named the EEG-BCI prototype for identifying 

thought messages. 

viii. A method for imagination recognition using the novel EEG-BCI prototype 

communication product. 

9.4  Key Findings 

This research conducts bespoke, group-based, combined analysis in order to recognise the 

imaginations for two phases of recorded data. According to the developed methodology, the 

key findings are organised chapter-by-chapter and presented here. 

In Chapter 4, imaginations recognition through bespoke design analysis involves the 

development and verification of an elementary signal processing model. The findings are as 

follows: 

• The ASPS approach successfully extracts the SCFs from raw signal data in the time 

domain and uses two-part FFT for frequency domain characteristics. 

• Four statistical functions are applied within ASPS method, resulting in a total of 12 

SCFs, which are sufficient for imagination recognition. 

• Both subjects individually achieved 100% accuracy in recognising three and four 

imaginations using LVQ and single-layered FFNN model. 

• Four imaginations were classified with 100% accuracy when both training and 

testing were performed by the same subject. 

• Subjects 1 and 2 achieved 80% and 100% accuracy, respectively, in recognising five 

imaginations, indicating the influence of the quality of each individual's thoughts on 

the bespoke experiment. 



142 

 

• The single-layered FFNN is the most suitable model in terms of accuracy, 

architectural complexity, and computational time. 

• The LVQ model performs well for smaller input datasets but requires longer training 

times compared to the FFNN models. 

• When the model is trained by either subject and tested by both, only three 

imaginations are recognised with 100% accuracy. 

• The best average classification accuracy for both training and testing by subject 2 is 

67.4%, 77%, and 100% for recognising five, four, and three imaginations, 

respectively. 

Chapter 5 discusses the development and verification of an advanced proposed model for 

signal processing through group-based analysis. The findings are: 

• The ASPS approach, including FFT and DWT features, is capable of recognising 

five imaginations. 

• Four statistical functions are applied within the ASPS method, producing a total of 

32 SCFs, from which 12 SCFs are selected. These 12 SCFs are sufficient for 

recognising imaginations. 

• The group-wise analysis consists of three groups based on the resemblance of 

imagination characteristics between subjects and an increasing number of subjects. 

• The best classification accuracy for Group 1 (four subjects) is 100% for recognising 

two, three, and five imaginations. 

• The SCFs for two imaginations are selected from three detailed components 

generated using DWT. The SCFs of three imaginations are extracted from four-part 

FFT, with three-part Δ SCFs selected as the most significant. 

• Group 1 achieves 100% as the highest accuracy in recognising three imaginations 

using any ANN model architecture, and in recognising two imaginations using most 

of the FFNN models. 

• In five imaginations recognition, Group 2 (nine subjects) and Group 3 (nineteen 

subjects) achieve a maximum of 86.67% and 78.95% accuracy, respectively. 

• Group 1 performs with an average classification accuracy of 100% for recognising 

three imaginations. 

• In recognising three imaginations, Group 2 and Group 3 achieve average 

classification accuracies of 100% and 95%, respectively. 
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• Among the two ANN models (LVQ and FFNN), the single hidden layer-based FFNN 

is found to be the most suitable model for group-based analysis in terms of accuracy, 

architectural complexity, and computational time. 

Chapter 6 employs image processing technique using CNNs for imaginations recognition 

through group-based analysis. The findings are: 

• The ASPS approach, including CNN, can recognise different sets of imaginations. 

• The ASPS approach using only FFT can recognise up to five imaginations through 

image processing. 

• Employing EEG signals from 19 sensors is capable of recognising imaginations, 

with FFT involving ten-part analyses in feature extraction. 

• The ASM produced in ASPS signal processing can be processed as heatmap 

images, which can be fed to CNN for classifying imaginations. 

• Fifteen statistical functions are applied within the ASPS method, producing a total 

of 150 SCFs, from which 60 SCFs are selected. 

• Group 1 achieves 100% accuracy in recognising three and four imaginations. 

• Group 2 achieves the highest accuracy of 100% and an average accuracy of 92.47% 

in recognising three imaginations. 

• Group 3 achieves up to 94.73% accuracy in recognising three imaginations. 

• In group-based experiments, CNN is generally faster than LVQ and FFNN. 

 

Chapter 7 includes the analysis of sensor optimisation based on the second phase of recorded 

data. The selected optimised sensors are verified through bespoke, group and combined 

subjects’ data. The key findings are as follows: 

• Brain signal acquisition involves a total of 57 trials from 10 subjects, which enables 

a more comprehensive analysis of both bespoke and various group performances. 

The dataset overcomes the limitations of the trial shortages encountered in previous 

chapters. 

• Sensor optimisation report (summarised rating point table) provides a clear 

understanding of each sensor performance in recognising two, three, four, and five 

imaginations. 

• The cross-tabulation analysis shows the performance of selected sensors for 

individuals in terms of different sets of imaginations recognition.   
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• The group analysis consists of three groups based on resemblance of sensor 

performance, with each group having different subjects. 

• Verification for bespoke analysis, group analysis and combined data analysis is 

thoroughly conducted using the methodologies in Chapters 4 and 5. 

• Comparative analyses among Chapters 4, 5, and 7 are presented. 

• The methodology of feature extraction and selection, followed by the advanced 

proposed model in Chapter 5, produced the best performance for bespoke, groups, 

and combined data. 

• Bespoke results achieve up to 100% accuracy and an average accuracy of more than 

82% in recognising any number of imaginations. 

• Different groups show performance variability, with Group G1 (six subjects) 

achieving up to 81.5% accuracy in recognising five imaginations, 98.1% in 

recognising four imaginations, and 100% in recognising two and three imaginations. 

• Combined performance (Group G3: ten subjects) shows accuracies of 78.1%, 95.2%, 

86.9%, and 100% in recognising five, four, three, and two imaginations, respectively. 

• The overall analysis highlights a positive correlation between reducing the number 

of imagination tasks and improving performance. 

Chapter 8 discusses the design and development of a novel EEG-BCI prototype. The key 

findings of this chapter are as follows: 

• The implementation of an innovative EEG-BCI prototype integrates both hardware 

and software design and development. 

• The prototype can record brain signals simultaneously from three different head 

positions using three sensors. 

• Brain signals are processed and analysed using the ASPS approach, which includes 

FFT-based SCFs to recognise two imaginations. 

• The developed GUI is a user-friendly application, error-free, and does not require a 

high computational system. It operates on Windows OS with MATLAB 

programming language and includes a signal processing toolbox package. 

• The prototype has been tested by bespoke real-time data. 

• The highest accuracies reached 100% when employing both 4-part and 5-part FFT 

generated Δ SCFs. 
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• The average accuracies achieved are up to 55.5% and 79% with the use of 4-part and 

5-part FFT generated Δ SCFs, respectively. 

• Signal acquisition should be carefully conducted, considering environmental factors, 

the subject's physical stability, and basic health and safety. 

• The prototype is affordable, portable, and easy to install. 

9.5 Limitations and Future Work 

In Chapter 4, the bespoke experiments included only two subjects, which may affect the 

generalisability of the results. Varying the subjects or increasing the number of participants 

could yield different performance accuracies. Additionally, the data analysed consists of 

only two trials, often with the ANN model being trained on one trial and tested on another.  

In Chapter 5, the advanced proposed model for signal processing was only applied in the 

group-based analysis. A comparison between the bespoke analysis using the advanced 

proposed model and the elementary model could have provided additional insights. While 

the number of imaginations was verified for two, three, and five imaginations, investigating 

four imaginations could have maintained performance consistency for observation and 

comparison purposes. Given that the dataset contained only two trials, the train-test split was 

performed on a 50%-50% basis. 

Chapter 6 includes deep learning model where sometimes hardware requires computational 

specification. The proposed CNN model cannot run more than 60 iterations due to the high 

computational demands of image processing. Consequently, the validation in this chapter 

did not match the total number of runs in previous analyses. Bespoke design incorporating 

image processing could not be conducted due to having only two trials of data. Additionally, 

this analysis could not include data from the same three sensors used in Chapters 4 and 5, 

making it difficult to compare the performance deviations between ANNs and CNN 

algorithms. The shortage of trials persisted, as in the previous analyses. 

The analysis in Chapter 7 is limited to evaluating group performance based solely on 

optimised sensor data and does not include comparative assessments with data from other 

sensors. This chapter partially compares group results with those in Chapter 5, although the 

group formation concepts differ. The average classification accuracy was calculated from 25 

model runs due to time constraints. 
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In Chapter 8, the EEG-BCI prototype requires further refinement. Nearby electronic devices, 

lights, slight cable movements, or the subject’s muscle movements can introduce noise. The 

internal ANN model currently classifies only two imaginations and is subject-dependent. 

Based on the current limitations of the study, the potential future work could include: 

Extending the research to evaluate the developed systems for individuals with disabilities, 

particularly patients with specific medical conditions such as locked-in syndrome or severe 

speech impairments, aims to enhance their ability to communicate effectively. Developing 

the EEG-BCI prototype with real-time data training and testing capabilities to create a 

subject-independent system. Further exploration of thought messages to enhance 

communication outputs and functionalities for specific applications. 

9.6 Summary 

BCI applications have significantly advanced the potential for enhancing communication by 

converting brain signals into speech, text, and other actionable outputs, particularly 

benefiting individuals with disabilities. This research investigates the development of signal 

processing methods for feature extraction and selection to create viable BCI systems. Despite 

the inherent challenges in this field, this study offers substantial contributions to the 

understanding and utilisation of brain signal characteristics. 

A novel implementation of the ASPS approach has been successfully evaluated, 

demonstrating its adequacy as a brain signal processing technique. This study validates the 

effectiveness of identifying up to five thought messages using the proposed methodologies, 

both for bespoke and broader population analyses. The research underscores the 

compatibility of ANNs and CNN with the proposed methodologies, identifying the most 

suitable ANN model architecture for recognising thought messages. Sufficient brain signal 

data were collected enabling the effectiveness of sensor optimisation, signal feature 

extraction, selection, and classification based on the proposed methodology. Additionally, 

the study introduces a novel EEG-BCI prototype that records EEG data and classifies two 

thought messages using the proposed methodology. Both the hardware and software 

interfaces were designed and developed to meet the research objectives. 

This chapter provides a comprehensive explanation of how each research objective was 

examined in detail, offering insights into the adopted methodologies, obtained results, and 

the contributions made to the field. It also discusses the limitations encountered during the 
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study phases, some of which were addressed in Chapter 7. Finally, the chapter suggests 

directions for future research, taking into account the latest advancements in BCI technology 

and potential areas for further exploration. Overall, this study significantly advances BCI 

technology, setting the stage for future innovations in translating brain signals into functional 

communication modalities. 
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Appendix 

Table A1: Group 1 (4 Subjects) performances for 2 imaginations 

 Group 1 (4 Subjects) performances for 2 imaginations 

Layer 

Architecture 

index 

Model Hidden 

layer 

Size Best average 

performance 

Highest 

accuracy 

1 LVQ 1 3 61.25% 75.00% 

2 FFNN 1 26 71.25% 100.00% 

3 FFNN 2 36, 36 56.25% 100.00% 

4 FFNN 2 36, 72 56.00% 100.00% 

5 FFNN 2 72, 72 53.50% 100.00% 

6 FFNN 2 72, 36 53.75% 87.50% 

 

Table A2: Group 2 (9 Subjects) performances for 2 imaginations 

Group 2 (9 Subjects) performances for 2 imaginations 

Layer 

Architecture 

index 

Model Hidden 

layer 

Size Best average 

performance 

Highest 

accuracy 

1 LVQ 1 3 53.33% 66.67% 

2 FFNN 1 37 59.44% 88.89% 

3 FFNN 2 36, 36 55.25% 87.50% 

4 FFNN 2 36, 72 48.33% 77.78% 

5 FFNN 2 72, 72 57.50% 87.50% 

6 FFNN 2 72, 36 57.50% 87.50% 

 

Table A3: Group 3 (19 Subjects) performances for 2 imaginations 

Group 3 (19 Subjects) performances for 2 imaginations 

Layer 

Architecture 

index 

Model Hidden 

layer 

Size Best average 

performance 

Highest 

accuracy 

1 LVQ 1 5 50.52% 60.52% 

2 FFNN 1 45 55.52% 73.68% 

3 FFNN 2 36, 36 51.34% 68.42% 

4 FFNN 2 36, 72 51.26% 68.42% 

5 FFNN 2 72, 72 50.11% 65.79% 

6 FFNN 2 72, 36 50.13% 65.79% 
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Table A4: Group 1 (4 Subjects) performances for 3 imaginations 

Group 1 (4 Subjects) performances for 3 imaginations 

Layer 

Architecture 

index 

Model Hidden 

layer 

Size Best average 

performance 

Highest 

accuracy 

1 LVQ 1 3 98.30% 100% 

2 FFNN 1 4 100% 100% 

3 FFNN 2 36, 36 99.50% 100% 

4 FFNN 2 36, 72 100% 100% 

5 FFNN 2 72, 72 100% 100% 

6 FFNN 2 72, 36 99.17% 100% 

 

Table A5: Group 2 (9 Subjects) performances for 3 imaginations 

Group 2 (9 Subjects) performances for 3 imaginations 

Layer 

Architecture 

index 

Model Hidden 

layer 

Size Best average 

performance 

Highest 

accuracy 

1 LVQ 1 3 97.04% 100% 

2 FFNN 1 69 97.04% 100% 

3 FFNN 2 36, 36 94.81% 100% 

4 FFNN 2 36, 72 94.59% 100% 

5 FFNN 2 72, 72 95.41% 100% 

6 FFNN 2 72, 36 95.11% 100% 

 

Table A6: Group 3 (19 Subjects) performances for 3 imaginations 

Group 3 (19 Subjects) performances for 3 imaginations 

Layer 

Architecture 

index 

Model Hidden 

layer 

Size Best average 

performance 

Highest 

accuracy 

1 LVQ 1 87 84.03% 91.22% 

2 FFNN 1 23 88.60% 94.74% 

3 FFNN 2 48, 48 84.56% 91.23% 

4 FFNN 2 48, 96 85.72% 94.74% 

5 FFNN 2 96, 96 84.70% 94.74% 

6 FFNN 2 96, 48 85.19% 91.23% 
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Table A7: Group 1 (4 Subjects) performances for 5 imaginations 

Group 1 (4 Subjects) performances for 5 imaginations 

Layer 

Architecture 

index 

Model Hidden 

layer 

Size Best average 

performance 

Highest 

accuracy 

1 LVQ 1 7 79.75% 95.00% 

2 FFNN 1 14 74.20% 95.00% 

3 FFNN 2 36, 36 69.25% 90.00% 

4 FFNN 2 36, 72 73.45% 100.00% 

5 FFNN 2 72, 72 71.00% 95.00% 

6 FFNN 2 72, 36 72.20% 95.00% 

 

Table A8: Group 2 (9 Subjects) performances for 5 imaginations 

Group 2 (9 Subjects) performances for 5 imaginations 

Layer 

Architecture 

index 

Model Hidden 

layer 

Size Best average 

performance 

Highest 

accuracy 

1 LVQ 1 8 72.06% 77.78% 

2 FFNN 1 60 69.13% 86.67% 

3 FFNN 2 36, 36 66.00% 80.00% 

4 FFNN 2 36, 72 66.76% 77.78% 

5 FFNN 2 72, 72 66.33% 77.78% 

6 FFNN 2 72, 36 66.96% 80.00% 

 

Table A9: Group 3 (19 Subjects) performances for 5 imaginations 

Group 3 (19 Subjects) performances for 5 imaginations 

Layer 

Architecture 

index 

Model Hidden 

layer 

Size Best average 

performance 

Highest 

accuracy 

1 LVQ 1 87 64.83% 78.95% 

2 FFNN 1 78 63.02% 70.53% 

3 FFNN 2 36, 36 63.76% 78.95% 

4 FFNN 2 36, 72 63.43% 71.58% 

5 FFNN 2 72, 72 63.21% 77.90% 

6 FFNN 2 72, 36 63.31% 73.68% 
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