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Abstract

Human Activity Recognition (HAR) is crucial for understanding human behaviour through
sensor data, with applications in healthcare, smart environments, and surveillance. While
traditional HAR often relies on ambient sensors, wearable devices or vision-based sys-
tems, these approaches can face limitations in dynamic settings and raise privacy concerns.
Device-free HAR systems, utilising Wi-Fi Channel State Information (CSI) to human move-
ments, have emerged as a promising privacy-preserving alternative for next-generation
health activity monitoring and smart environments, particularly for multi-user scenarios.
However, current research faces challenges such as the need for substantial annotated train-
ing data, class imbalance, and poor generalisability in complex, multi-user environments
where labelled data is often scarce. This paper addresses these gaps by proposing a hybrid
deep learning approach which integrates signal preprocessing, targeted data augmentation,
and a customised integration of CNN and Transformer models, designed to address the
challenges of multi-user recognition and data scarcity. A random transformation tech-
nique to augment real CSI data, followed by hybrid feature extraction involving statistical,
spectral, and entropy-based measures to derive suitable representations from temporal
sensory input, is employed. Experimental results show that the proposed model outper-
forms several baselines in single-user and multi-user contexts. Our findings demonstrate
that combining real and augmented data significantly improves model generalisation in
scenarios with limited labelled data.

Keywords: Human Activity Recognition (HAR); Channel State Information (CSI); data
augmentation; Deep Learning; CNN; transformer; signal processing; time-series analysis;
multi-user recognition; privacy-preserving sensing

1. Introduction
Human Activity Recognition (HAR) is a foundational task in ubiquitous computing,

offering critical insights into human behaviour with broad applications in healthcare
monitoring, smart environments, ambient assisted living, and elder care [1]. Traditional
HAR systems typically rely on ambient sensors, wearable sensors or vision-based systems.
Although effective, these modalities pose considerable limitations; ambient sensors such as
motion detectors do not provide accurate information about a specific activity, wearable
devices demand user compliance, regular charging, and maintenance, while vision-based
systems suffer from occlusion, varying illumination, and severe privacy concerns [2–4].
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To preserve the privacy of users, some research with thermal vision employing thermal
sensor arrays has shown promising results [5].

To address these limitations, recent advances have led to device-free HAR using wire-
less sensing, particularly Wi-Fi Channel State Information (CSI). CSI captures fine-grained
changes in radio signal propagation due to human motion, enabling passive, contactless,
and privacy-preserving activity detection [6]. The advantage of this approach lies in the
sensing through obstacles and across rooms without requiring user-worn devices. However,
CSI-based HAR systems face challenges including sensitivity to ambient noise, temporal
drift, and multipath interference. Performance often degrades in dynamic or densely pop-
ulated multi-user environments due to overlapping activities and spatial interference [7].
The limited availability of labelled datasets, especially for diverse user configurations and
rare activities, hinders the training of generalisable models [8]. Multi-user HAR is further
complicated by simultaneous movements, unpredictable patterns, and spatial entanglement,
requiring models capable of extracting discriminative features from noisy, entangled signals
and generalising across varying spatial configurations [9–11]. Traditional machine learning
techniques, relying on handcrafted features and rigid assumptions, are often inadequate in
these contexts [12]. Deep learning, particularly convolutional and attention-based models,
offers an alternative. However, many current studies treat preprocessing, feature extraction,
and classification as discrete stages, potentially missing the benefits of an integrated pipeline.

Another inherent challenge associated with CSI-based HAR is data scarcity, which
significantly limits the training of deep learning models, especially in complex multi-user
and real-world scenarios where manual annotation is inefficient. Data augmentation
provides a viable strategy to address this and improve model robustness [12,13]. Unlike
image augmentation, time-series augmentation for CSI data must preserve signal continuity,
statistical integrity, and temporal dynamics. Techniques like jittering (Gaussian noise),
scaling (amplitude modulation), magnitude warping (non-linear time scaling), and slice
shuffling (temporal segment permutation) generate realistic signal variations mimicking
unseen behaviours or environments [14]. The application of these augmentations increases
data diversity and enhances the generalisation of models trained with limited data.

Recent advances in deep learning highlight the potential of hybrid architectures com-
bining convolutional layers for local pattern recognition with Transformers for capturing
long-range dependencies [11,15–17]. However, their multi-user application, device-free
HAR, remains largely unexplored. Transformers, particularly when augmented with rela-
tive positional encoding, are well-suited for modelling the complex temporal relationships
inherent in overlapping or concurrent human activities [18]. To address these limitations,
a unified, augmentation-aware framework for CSI-based HAR is proposed, specifically de-
signed to handle the challenges of multi-user recognition and limited training data. Our ap-
proach integrates signal denoising, advanced data augmentation, domain-informed feature
engineering, and deep multimodal learning. As part of this, a custom CNN + Transformer
model is introduced to learn both local and global patterns in the CSI signal space. It is
trained using an augmented dataset mimicking real-world activity variability.

The scientific contributions resulting from the research presented in this paper are
as follows:

• An integrated CSI preprocessing and augmentation pipeline is introduced, combining
Butterworth filtering, Discrete Wavelet Transform (DWT), and random transforma-
tion strategies to augment and enrich training diversity while preserving statisti-
cal properties.

• A custom integration of CNN and Transformer components for effective local and
global temporal feature extraction, specifically adapted for multi-user activity recogni-
tion using augmented CSI data.
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• The proposed architecture is benchmarked against three state-of-the-art hybrid models,
demonstrating better performance and generalisability across varying augmentation
levels and user concurrency.

• Extensive experiments to evaluate different multi-user scenarios are conducted,
demonstrating the effectiveness of the proposed model in mitigating signal over-
lap and spatial interference.

The remainder of the paper is organised as follows: Section 2 presents a review of
related work, while Section 3 details the proposed model and augmentation methods.
Section 4 describes the experimental setup and results, followed by discussion in Section 5.
The paper concludes in Section 6, offering final reflections and directions for future research.

2. Related Work
Advances in HAR using CSI have seen a notable shift from conventional machine

learning methods to advanced deep learning models, with Transformer-based architectures
emerging as a powerful alternative in recent years. This is driven by the increasing need for
scalable, device-free, and privacy-conscious activity recognition systems, especially in smart
homes and IoT-enabled environments [1,4,6,7]. Classical machine learning algorithms like
Support Vector Machines (SVM) and Random Forests (RF) have inherent limitations in
feature generalisation and sensitivity to noise, prompting a transition toward deep learning
models [7,17]. CNN architectures learn spatial representations directly from spectrograms
of CSI signals, outperforming hand-engineered features [4,6,7,17]. To enhance temporal
modelling for capturing sequential dependencies in activities, hybrid architectures have
been utilised by combining CNN architectures with recurrent models such as LSTM and
GRU. Recent approaches have also explored contrastive learning frameworks and diffusion-
based methods for HAR, which learn robust representations by maximising inter-class
separability and modelling temporal dynamics in latent space [19,20]. Diffusion-based
techniques have also been proposed for data augmentation and sensing enhancement in
Wi-Fi-based HAR, offering generative mechanisms for more realistic and diverse training
samples [21,22]. Although these methods show promise, our work focuses on supervised
learning with architectural emphasis on CNN and Transformer integration to support
interpretability and scalability in multi-user environments.

Advances in Transformer-based architectures are emerging in CSI-HAR by incor-
porating self-attention to capture long-range temporal dependencies, offering a robust
alternative to recurrence [11,15,16]. For example, a multichannel attention-based Trans-
former achieved high accuracy in HAR [23], and a lightweight Transformer optimised for
edge computing maintained a good performance—92.4% accuracy with reduced complex-
ity [24]. However, attention-only models can struggle with fine-grained local features to
discriminate similar activities. To overcome this, hybrid CNN–Transformer architectures
have emerged, combining CNNs for spatial pattern extraction with Transformers for global
contextual modelling. Incorporating relative positional embeddings in these frameworks
enhances temporal precision and activity segmentation [23,25]. These hybrid designs
improve recognition accuracy and balance local and global sequence modelling, often a
trade-off in Transformer-only systems.

Table 1 presents a summary of recent advances in CSI-HAR, showcasing a range of
datasets, modelling techniques, signal processing approaches, and evaluation protocols.
The field has evolved significantly from classical machine learning models like SVM
and Random Forest to more adaptive and accurate deep learning architectures such as
CNNs [26], attention-based BiLSTM models. [27], and compact Transformer-based models.
More recent efforts also focus on hybrid frameworks that address domain variability
through domain adaptation and generalisation [28,29].
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Table 1. Literature summary table.

Authors (Year) Dataset/Source Model(s) Used Signal Processing/Augmentation Evaluation Method Key Findings

Muaaz et al. (2021) [26] WiFi NICs CSI CNN CSI ratio, PCA, spectrogram Experimental evaluation 97.78% accuracy; robust to environmental variations

Shi et al. (2022) [28] WiFi CSI CNN + Domain Adapta-
tion CSI enhancement Cross-domain evaluation One-fits-all model with improved generalisation to new

environments

Wang et al. (2022) [29] WiFi CSI data Domain Generalisation
(AFFAR) Adaptive feature fusion Cross-domain testing Combined domain-specific and domain-invariant

features for robustness

Abuhoureyah et al. (2024) [30] Custom multi-user CSI
data

Deep learning + ICA +
CWT ICA, CWT Experimental evaluation Separated overlapping signals; enabled robust multi-user

location-independent HAR

Wang et al. (2021) [31] CSI-based HAR dataset Few-shot Learning Data augmentation Experimental evaluation Few-shot learning enabled improved accuracy in
limited-data settings

Zhang et al. (2022) [32] Custom WiFi CSI Graph Few-shot Learn-
ing Augmented graph features Few-shot evaluation Generalised well across tasks using limited labelled

samples effectively

Xiao et al. (2024) [33] Synthetic WiFi CSI Diffusion + Contrastive
Learning Diffusion-based augmentation Contrastive accuracy eval Outperformed baseline models in generalisation under

limited data

Zhang et al. (2022) [34] CSI-based HAR dataset Zero-effort cross-
domain (Widar3.0) None specified Cross-domain evaluation Achieved high accuracy without requiring user

calibration

Shi et al. (2020) [35] WiFi CSI One-shot Learning + CSI
enhancement CSI signal denoising Experimental testing Enabled recognition with few samples and improved

signal quality

Xiao et al. (2023) [33] WiFi CSI synthetic data Diffusion Model + MLP GAN/Diffusion-based augmentation Comparative experiments Improved training effectiveness using synthetic CSI data

Elkelany et al. (2023) [27] CSI dataset (12 activities,
3 environments) ABiLSTM Spectrogram conversion 10-fold CV Achieved up to 94.03% accuracy across environments
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A recurring challenge across many studies is the limited generalisability of models in
unseen or changing environments. To address this, several works have proposed strategies
like few-shot learning [31,32], one-shot recognition [35], and zero-effort cross-domain
adaptation [34]. These methods aim to reduce the reliance on large, curated training
datasets, enabling models to adapt more flexibly to novel contexts or user behaviours.

Another major focus is data augmentation. Diffusion-based methods [33] have
emerged as a powerful way to create more realistic synthetic CSI samples, often in combi-
nation with contrastive learning to improve performance under limited supervision. These
approaches have shown promise in boosting accuracy and resilience, especially when
training data is scarce or noisy.

Despite these improvements, recognising activities in multi-user environments re-
mains a complex problem. Overlapping signals often reduce model accuracy, even when
advanced techniques are used to separate them. Abuhoureyah et al. [30] tackled this by
applying independent component analysis (ICA) and continuous wavelet transform (CWT),
demonstrating improved performance for location-independent, multi-user HAR. However,
such solutions are still sensitive to dynamic spatial configurations and signal interference.

Finally, evaluation inconsistency remains a barrier to progress. Studies vary signifi-
cantly in their methodologies, with some using 10-fold cross-validation [27], or contrastive
frameworks [33]. This lack of standardisation makes it difficult to compare models directly
or replicate published results reliably.

In light of these ongoing challenges, our proposed work introduces a hybrid CNN + Trans-
former framework that is designed with generalisability and scalability in mind. By combining
spatial–temporal feature extraction with efficient preprocessing and augmentation strategies,
the model aims to deliver robust performance in both single- and multi-user scenarios, with real-
world applicability at its core.

3. Proposed Methods
A four-stage approach for HAR using CSI is proposed. The schematic diagram

of the proposed framework is illustrated in Figure 1, designed to enhance recognition
performance, particularly in complex multi-user home environments. The pipeline of the
proposed approach comprises data acquisition, preprocessing, augmentation, and model
training/classification. The data acquisition involves transmitting Wi-Fi signals through an
indoor space where human activities occur. Motion-induced perturbations of these signals
are captured as CSI measurements at the receiver, inherently encoding characteristics of
static postures and dynamic movements, forming the raw dataset.

A multi-stage preprocessing pipeline extracts meaningful information from raw CSI.
Subcarrier averaging reduces redundancy and smooths signal fluctuations. Butterworth fil-
tering eliminates high-frequency noise, and Discrete Wavelet Transform (DWT) decomposes
the signal, preserving essential features across scales, improving signal quality and retain-
ing informative temporal dynamics. To improve generalisability and reduce overfitting
given limited CSI data, a random transformation-based augmentation module generates
diverse and realistic variations while preserving activity class semantics. This module
incorporates jittering, scaling, slice shuffling, and magnitude warping. The augmented
dataset is then partitioned for model development.

The classification stage trains baseline (CNN, LSTM) and advanced hybrid deep
learning models CNN with Transformer - the proposed model, BiLSTM, GRU and LSTM
to better capture spatial and temporal dependencies inherent in CSI data, enhancing
recognition of complex, multi-user activities due to their increased representational capacity.
Finally, the trained models are evaluated using accuracy and F1-score metrics to assess
their effectiveness and robustness.
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Figure 1. Overview of the proposed Human Activity Recognition framework using CSI data.
The pipeline consists of four main stages: data acquisition through Wi-Fi signal propagation, signal
preprocessing using filtering and wavelet transformation, data augmentation via random transforma-
tion techniques (jittering, scaling, slice shuffling, and magnitude warping), and classification using
both baseline and hybrid deep learning models.

3.1. Data Acquisition

A publicly available CSI-based HAR dataset [36], specifically designed to investigate
the feasibility of indoor activity recognition using fine-grained CSI from wireless signals, is
utilised. The dataset was collected in a controlled laboratory environment, simulating a
typical indoor room measuring 3 m by 2.8 m.

As illustrated in Figure 2, the experimental setup involved two Universal Software
Radio Peripheral (USRP) devices: a USRP X300 as the transmitter and a USRP X310 as the
receiver. Both were equipped with VERT2450 omnidirectional antennas and operated at
a frequency of 3.75 GHz within the 5G sub-6 GHz band, chosen for its ability to capture
subtle human motion with low interference and high signal resolution. The transmitter
and receiver were positioned diagonally opposite each other in the room to establish a
reliable communication link and maximise spatial signal coverage. Within the defined
activity zone, consisting of four chairs arranged in a 1 m grid, participants performed
various daily activities. During these activities, the USRP devices continuously collected
CSI data using the GNU Radio software environment. The communication protocol used
Orthogonal Frequency-Division Multiplexing (OFDM), providing robust frequency-domain
information. The raw CSI data was initially logged in plain text format and subsequently
converted to CSV files for preprocessing and machine learning analysis [36].

Figure 2. Experimental setup for capturing human activities using the 5G frequency band. The indoor
environment measures 3 m by 2.8 m. A USRP X300 (transmitter) and a USRP X310 (receiver) are
positioned at opposite corners. Four chairs are arranged 1 m apart to define the human activity space.
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3.2. Data Processing

To ensure accurate HAR, a data processing pipeline is designed to denoise raw CSI
streams and extract meaningful time–frequency features. A Butterworth low-pass filter
was applied first to eliminate high-frequency noise. Subsequently, a DWT was used to
extract hierarchical temporal–frequency components, capturing subtle variations induced
by human activity. This dual-stage approach effectively handles both single-user and
multi-user scenarios, where overlapping motion patterns often introduce complex signal
artifacts [24,37]. The initial step involved averaging the raw CSI data across all 51 subcarri-
ers to standardise the input and reduce variability, resulting in a single representative time
series x̄(t), as defined by Equation (1):

x̄(t) =
1
N

N

∑
i=1

xi(t), where N = 51 (1)

To mitigate high-frequency noise originating from hardware, environmental factors,
and multipath effects, which can distort activity-related dynamics, a fourth-order Butter-
worth low-pass filter was applied. The maximally flat passband response enables effective
noise suppression while preserving critical signal patterns, with the denoised signal x̃(t)
obtained through zero-phase filtering:

x̃(t) = FLP[x̄(t)], (2)

where FLP denotes the zero-phase Butterworth filtering operation, which avoids phase
shifts that might distort time-domain features. Figure 3 illustrates the filtering effect on CSI
signals for single- and multi-user activities.

(a) (b)

Figure 3. Comparison of original and Butterworth-filtered CSI signals for single-user and multi-user
activity sessions. (a) One subject standing, (b) three subjects sitting.

While the Butterworth filter reduces noise, it does not capture the non-stationary
and transient nature of human motion. Therefore, the denoised signal x̃(t) was further
processed using the DWT. This technique decomposes the signal into time–frequency
components across multiple scales, extracting rich hierarchical features.

Using the Haar wavelet ψ(t) and decomposition level j, the DWT coefficients Wj,k

were computed as

Wj,k =
∫

x̃(t) · ψj,k(t) dt, (3)

where ψj,k(t) = 2−j/2ψ(2−jt − k) represents the scaled and translated mother wavelet.
A decomposition level of J = 3 was selected to balance detail extraction and computational
cost. This produced approximation coefficients A3 (low-frequency structure) and detail
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coefficients D1, D2, and D3 (high-frequency transitions). These coefficients formed the basis
for subsequent feature extraction and classification.

3.3. CSI Augmentation Techniques

Real-world CSI datasets for HAR often exhibit limitations in size and suffer from class
imbalance. These characteristics pose significant challenges for training deep learning mod-
els, frequently leading to overfitting and reduced classification performance, particularly
for underrepresented activity classes. To address these limitations and improve model
generalisation, a data augmentation pipeline based on random transformation strategies
was implemented. This approach aims to generate diverse training instances that effectively
simulate the inherent variability of real-world CSI signals while preserving the key discrim-
inative features associated with each activity, thereby enhancing both model robustness
and its ability to generalise to unseen data [38].

Let x = (x1, x2, . . . , xT) denote a processed CSI data frame, where each xt ∈ Rn

represents the amplitude vector across n subcarriers at a specific time step t, and T is the
total temporal window size of the data frame. The augmentation process then produces a
transformed sequence x′ = A(x), where A represents a specific transformation operator
applied to the original CSI data frame x. In our augmentation pipeline, a combination of
time-series augmentation methods informed by prior research in HAR and time-series
analysis is employed: jittering, scaling, slice shuffling, and window warping. The specific
implementations and parameters for these transformations were adapted from established
techniques and findings in the literature [39,40].

3.4. CSI Augmentation Techniques

Real-world CSI datasets for HAR often suffer from limited size and class imbal-
ance. These characteristics pose significant challenges for training deep learning models,
frequently leading to overfitting and reduced classification performance, especially for
underrepresented activity classes. To mitigate this, a data augmentation pipeline based on
random transformation strategies is implemented. This approach generates diverse training
instances that simulate real-world signal variability while preserving key discriminative
features, thereby enhancing model generalisation and robustness [38].

Let x = (x1, x2, . . . , xT) denote a processed CSI data frame, where each xt ∈ Rn repre-
sents the amplitude vector across n subcarriers at time step t, and T is the temporal window
size. The augmentation process produces a transformed sequence x′ = A(x), where A is a
transformation operator. Multiple time-series augmentation techniques are incorporated.
This include jittering, scaling, slicing, and window warping, each designed to simulate dif-
ferent real-world signal distortions while maintaining temporal coherence [39,40]. Jittering
introduces small Gaussian noise perturbations to simulate sensor noise. Scaling adjusts
the amplitude dynamics to reflect variations in user strength or distance. Slicing randomly
extracts sub-segments of the CSI window to improve robustness against partial observa-
tions, and window warping modifies the temporal progression to mimic speed variations
in activity execution. Collectively, these augmentations expand the diversity of the training
data, aiding the model in learning more invariant and generalisable representations.

Jittering: Gaussian noise is added to simulate sensor or environmental interference.
Given a noise vector ϵ ∼ N (0, σ2), the augmented sequence becomes

x′ = x + ϵ. (4)
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Scaling: A random scalar factor α ∼ U (a, b) adjusts the amplitude to emulate varia-
tions in movement intensity or proximity to the transmitter:

x′ = α · x. (5)

Slicing: To simulate temporal disorder, a segment xk:k+m is repositioned in the se-
quence. This maintains class semantics while introducing variability:

x′ = concat(x1:k, xk+m:T , xk:k+m). (6)

Window Warping: A non-linear warping function ϕ(t) temporally stretches or com-
presses a windowed segment to reflect changes in human motion speed:

x′t = xϕ(t). (7)

The effects are visualised in Figure 4. Each augmentation technique introduces con-
trolled intra-class variability while preserving the core temporal structure essential for accu-
rate recognition. This controlled diversity enhances the ability of the model to generalise to
unseen activity patterns and user behaviours. To ensure label consistency, the augmentation
techniques were applied within bounded transformations that retain the temporal and
structural characteristics of the original signal, thereby preserving class identity across
augmented samples.

Figure 4. Augmentation impact of random-transformation techniques on CSI time-series for different
activities. Each row displays the original and augmented signals using jittering, scaling, slicing,
and window warping, respectively.

3.5. Feature Extraction

Our feature extraction strategy integrates time-domain, frequency-domain, and entropy-
based measures to comprehensively represent both macroscopic motion trends and subtle
signal variations crucial for HAR [41–43]. In total, 34 features are extracted from the prepro-
cessed CSI signals to capture the underlying physical and spectral characteristics of human
motion across a diverse range of activity classes.

Time-Domain Features: Statistical properties of the CSI signal within short temporal
windows are computed to detect gross motion transitions. Metrics such as mean, vari-
ance, standard deviation, skewness, kurtosis, and root mean square (RMS) reflect signal
magnitude and variability, essential for distinguishing static from dynamic states [42].
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For instance, RMS indicates activity intensity, effectively differentiating walking (high RMS)
from sitting (low RMS).

Frequency-Domain Features: Spectral characteristics using Fast Fourier Transform
(FFT) techniques are used to capture periodicity and energy distribution. These include
spectral entropy (quantifying frequency content unpredictability), spectral centroid (indi-
cating dominant frequency band), and specific FFT coefficients, instrumental in identifying
cyclic patterns in repetitive activities like walking, running, or cycling [43].

Entropy-Based Features: Permutation entropy and its weighted variant to quantify sig-
nal complexity and irregularity are incorporated, measuring the temporal unpredictability
and structural complexity of CSI waveforms [41,42]. These are valuable for distinguishing
subtle postural variations or transitions lacking strong spectral or amplitude signatures,
such as differentiating standing from leaning based on their distinct temporal dynamics.

The integration of these features provides a holistic CSI signal representation, captur-
ing magnitude, frequency distribution, and temporal complexity. A detailed breakdown is
in Table 2. The feature set also includes advanced descriptors like wavelet energy, power
bandwidth, and spectral distance, further enriching the feature space and supporting
improved model generalisation across diverse activity contexts.

Table 2. CSI feature categories and descriptions.

Feature Category Description

Time-Domain Statistical Mean, Median, Std Dev, Min, Max, Kurtosis, Skewness, IQR, Variance, Root
Mean Square

Temporal Dynamics Mean Absolute Difference, Mean Difference, Median Absolute Difference, Sum of
Absolute Differences

Signal Shape Characteristics Peak-to-Peak Distance, Area Under Curve, Spectral Slope

Frequency Domain FFT Mean Coefficient, Spectral Centroid (Weighted frequency mean), Spectral Entropy,
Spectral Kurtosis

Signal Complexity Permutation Entropy, Weighted Permutation Entropy, Spectral Variation (Normalised
spectral std dev)

Energy/Power Features Absolute Energy, Average Power, Wavelet Energy (Sum of squared DWT coefficients)

Statistical Distribution Mean Absolute Deviation, Median Absolute Deviation, ECDF Percentile
(25th percentile)

Spectral Relationships Power Bandwidth (Integrated spectrum), Spectral Distance (Cumulative
spectral differences)

3.6. The Proposed CNN + Transformer Model

HAR from CSI data involves mapping complex, high-dimensional time-series in-
puts to discrete activity classes. To guide the architectural design and learning approach,
we first provide a mathematical formulation of the underlying classification task. Let
D = {(x(i), y(i))}N

i=1 be a set of N preprocessed and feature-extracted CSI samples, where
x(i) ∈ Rd denotes the d-dimensional input feature vector and y(i) ∈ {1, 2, . . . , K} is the
corresponding activity label among K possible classes. The goal is to learn a function
fθ : Rd → {1, . . . , K} parameterised by θ, which minimises a classification loss over
the dataset:

min
θ

1
N

N

∑
i=1

L( fθ(x(i)), y(i)), (8)

where L is the cross-entropy loss function appropriate for multi-class classification.
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The preprocessing pipeline aims to enhance feature separability by suppressing irrele-
vant signal variations, including hardware-induced noise and emphasising activity-related
patterns. Subcarrier averaging reduces dimensionality and smooths spatial fluctuations.
Butterworth filtering attenuates high-frequency noise, preserving essential motion-induced
signal changes. The DWT further decomposes signals into localised time–frequency rep-
resentations, which increases the discriminative power of extracted features, particularly
important for distinguishing between static (e.g., sitting, standing) and dynamic (e.g., walk-
ing) activities. This preprocessing improves the signal-to-noise ratio, enhancing inter-class
distances and stabilising intra-class variance.

Our model architecture, depicted in Figure 5, uses a hybrid deep learning framework
combining CNN and Transformer encoders for effective local and global feature extrac-
tion from time-series CSI data. This design captures the complex temporal features of
HAR tasks by taking advantage of the CNN layers to learn local dependencies and the
Transformer block for long-range contextual relationships [44,45]. See also Table 3 for the
hyperparameter settings of the proposed CNN + Transformer model. The model consists
of three components: a CNN layer for feature extraction, a Transformer block for relative
positional encoding, and a classification head. This is denoted as

X = {x0, x1, x2, . . . , xT}, xt ∈ Rd, (9)

where each instance contains T time steps and d features per step. For univariate processing,
the input is reshaped to (T, 1).

CNN Feature Extractor Block. This block comprises three 1D convolutional layers.
The first layer applies 32 filters with a kernel size of 3, followed by Batch Normalisation and
MaxPooling1D with a pool size of 2. The second and third convolutional layers use 64 and
128 filters, respectively, and include similar normalisation and pooling. ReLU activation is
applied throughout:

f (x) = max(0, x), (10)

The output is passed through Global Max Pooling and reshaped to (1, 128) to match the
input expected by the Transformer.

Transformer Encoder Block. To preserve temporal sequence information, vector-based
relative positional encoding is applied:

Xpos = X + Epos, Epos ∈ RL×d, (11)

where L is the sequence length. The Transformer comprises three encoder layers, each with
a multi-head self-attention mechanism:

Attention(Q, K, V) = softmax

(
QK⊤
√

dk

)
V, (12)

Each encoder includes residual connections, Layer Normalisation, and feedforward layers
implemented with 1D convolutions of size (256, d) using ReLU activation.

Classification Head. The Transformer output is passed through a Global Average Pool-
ing layer and two dense layers with 256 and 128 units, respectively. ReLU is used along with
Dropout (0.5 and 0.3) to reduce overfitting. The final output layer uses softmax activation:

ŷ = softmax(Wx + b), (13)
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This architecture provides an optimal balance between representational power and
computational efficiency, making it particularly suitable for deployment in real-time or
edge-based HAR systems [44].

Figure 5. Architecture of the proposed time-series analysis model, incorporating CNN for feature
extraction and a Transformer encoder for temporal representation, followed by a classification block.

3.7. Performance Measurement Criteria

To evaluate our CNN + Transformer model, accuracy and F1-score metrics are chosen
to address the potential class imbalance prevalent in CSI-based HAR datasets. While
accuracy represents the proportion of correct classifications, it can provide a skewed view
in imbalanced scenarios. F1-score, the harmonic mean of precision and recall, and specificity
(true negative rate) to obtain a more balanced performance assessment are also utilised.
The mathematical definitions of these metrics are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1-Score = 2 · Precision · Recall
Precision + Recall

(17)

Model generalisation was evaluated using 10-fold cross-validation. The performance
results are then averaged across the ten folds to provide a reliable estimate of the model’s
ability to perform on unseen data.
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Table 3. Hyperparameter settings for the CNN + Transformer model.

Component Hyperparameter Value

Architecture

Number of Conv1D Layers 3
Conv1D Filter Sizes 32, 64, 128
Kernel Size 3
Pooling Type MaxPooling1D, GlobalMaxPooling1D
Batch Normalisation Yes

Transformer

Encoder Layers 3
Attention Heads 4
Head Size 64
Feedforward Dimension 256
Dropout Rates 0.1 (Transformer), 0.5, 0.3 (Dense)
Positional Encoding Relative (vector-based)

Training

Optimiser Adam
Learning Rate 1 × 10−3

Batch Size 32
Epochs 500
Early Stopping Patience 10
LR Schedule Step decay at epochs 20 and 30
Loss Function Sparse Categorical Cross-entropy

4. Experiments and Results
This section details the experimental setup and presents the results obtained to evalu-

ate the effectiveness and robustness of our proposed CSI-based HAR framework. A thor-
ough analysis of the performance of the novel CNN + Transformer model is provided
in comparison to several established baseline architectures. The experiments were struc-
tured to assess key aspects of our approach, including the impact of data augmentation,
the model’s performance in multi-user scenarios, and its overall classification accuracy
across different activity classes.

The experiments were conducted in a Python 3.12 environment utilising the Tensor-
Flow backend with Keras, with the Scikit-Learn, NumPy, and Pandas libraries for data
manipulation and evaluation. Following the processing of the raw CSI data, the resulting
dataset comprised instances representing the subcarriers across different channels. The orig-
inal dataset contained 1777 instances. For each activity and user, 34 columns represented
the extracted features, as detailed in Section 3.

4.1. Experiment I: Sensitivity Analysis of Augmented vs. Original CSI Data

To evaluate the impact of data augmentation on the statistical properties of the original
CSI dataset, a sensitivity analysis is conducted comparing the distributions of extracted fea-
tures, specifically, mean values across multiple multi-user activity configurations. The main
objective of this experiment was to determine whether the augmentation process introduces
statistically significant deviations in the distributional characteristics of CSI features. To this
end, the following hypothesis is formulated:

• Null Hypothesis (H0): The distributions of the original and augmented data are statis-
tically identical, i.e., augmentation does not significantly alter feature distributions.

• Alternative Hypothesis (H1): The distributions of the original and augmented data
differ significantly.

To determine the appropriateness of parametric versus non-parametric testing, initially
performed normality tests. The test was performed on both the original and augmented
datasets using the Shapiro–Wilk (SW) [46] and Anderson–Darling (AD) tests [47]. For ex-
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ample, the SW test results for the two subjects (one sitting and one standing) class where
W = 0.9842, p = 0.2795 for the original data and W = 0.9885, p = 1.425 × 10−8 for the
augmented data. Similarly, the AD test returned A² = 0.5591 for the original and A² = 7.0680
for the augmented data both exceeding critical thresholds. These results suggest a violation
of the normality assumption, especially for the augmented data. Therefore, non-parametric
statistical tests were chosen.

The Mann–Whitney U test was used to examine whether there were statistically
significant differences in the means of the two datasets. Levene’s test was also used to
assess the homogeneity of variances. As summarised in Table 4, the p-values from both
tests exceeded 0.05 for all classes, indicating no statistically significant differences in central
tendency or variance. Thus, we fail to reject the null hypothesis in all cases.

To complement these statistical findings, visualisations of the feature distributions
were included. Figure 6 shows histograms for the two subjects (one sitting and one standing)
and three subjects (two sitting and one standing) classes. While the augmented data (in
red) displays broader tails, the distributions remain centred around the same mean as the
original data (in blue), suggesting that augmentation preserves core statistical structure.

(a) (b)

Figure 6. Sensitivity analysis comparing the distribution of mean values between original and
augmented CSI data for two multi-user activity scenarios: (a) two subjects performing, one sitting
and one standing, and (b) three subjects performing, two sitting and one standing. Augmented data
(red) show broader tails but remain centred similarly to original data (blue): (a) two subjects, one
sitting and one standing (b) three subjects, two sitting and one standing.

Table 4. Mann–Whitney U and Levene’s test results for original vs. augmented data.

Feature Label Mann–Whitney U p-Value Levene’s W p-Value Interpretation

Mean Empty 144,584.0 0.9139 0.1772 0.6739 Fail to reject H0
Mean 1Subject-1Sit 206,671.5 0.9325 0.0449 0.8322 Fail to reject H0
Mean 2Subjects-1Sit-1Stand 105,480.5 0.9384 0.0819 0.7747 Fail to reject H0
Mean 3Subjects-2Sit-1Stand 105,100.5 0.9871 0.0858 0.7696 Fail to reject H0
Mean 4Subjects-2Sit-2Stand 106,725.5 0.7811 1.0095 0.3151 Fail to reject H0

In Figure 7, the boxplots for four activity configurations are presented, comparing
spread, median, and outliers. The plots confirm that augmentation maintains the original
data’s distributional characteristics, with only minor variability introduced in higher-
subject configurations.
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(a) (b) (c) (d)

Figure 7. Boxplot comparison of mean values between original and augmented CSI data across multi-
user activity scenarios. Augmentation maintains central tendency and spread while introducing
slight variations, especially with increased subject count: (a) one subject sitting (b) two subjects, one
sitting and one standing; (c) three subjects, two sitting and one standing; (d) four subjects, two sitting
and two standing.

4.2. Experiment II: Impact of Varying Augmentation Factors Across Models

This experiment investigates the influence of different data augmentation factors on
the performance of the proposed CNN + Transformer model and three baseline hybrid
architectures: CNN + BiLSTM, CNN + GRU, and CNN + LSTM. The data augmenta-
tion techniques detailed earlier to expand the models’ decision boundaries were applied,
aiming to enhance their generalisation capability on the original dataset and yield more
efficient classifiers. A range of augmentation factors was experimented with to determine
their optimal impact. For example, applying an augmentation factor of 3 increased the
original dataset size from 1777 instances to 5331 instances (1777 multiplied by 3) for each
augmentation method.

Table 5 presents the accuracy scores obtained for augmentation factors ranging from 0
to 10. The results demonstrate a consistent performance improvement from factor 1 to factor
5 across all evaluated models and activity phases, highlighting the benefit of moderate data
augmentation. For example, the CNN + Transformer model’s accuracy increased from 0.757
(no augmentation) to 0.939 at an augmentation factor of 5, while the CNN + GRU model’s
accuracy rose from 0.772 to 0.930 under the same conditions. It is noted that beyond an
augmentation factor of 5, the performance gains begin to plateau, as illustrated by the
CNN + LSTM model and accuracy increased only marginally from 0.927 at factor 5 to 0.959
at factor 10. This observation aligns with the principle of diminishing returns often associ-
ated with excessive data augmentation [38]. Furthermore, none of the models experienced
a performance decline even at the highest tested augmentation factor of 10, underscoring
the robustness of the specific augmentation techniques employed. The consistently lower
performance observed at an augmentation factor of 0 (i.e., without any augmentation)
further emphasises the critical role of data augmentation in enhancing the performance of
deep learning models for HAR tasks, particularly when dealing with datasets that may be
sparse or exhibit class imbalance.
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Table 5. Experiment II results: accuracy across different augmentation factors for each model
and phase.

Model Aug. Factor Phase 1 Phase 2 Phase 3 Phase 4 All Activities

CNN + Transformer

0 0.869 0.840 0.899 0.869 0.757
1 0.963 0.927 0.957 0.885 0.817
3 0.988 0.970 0.976 0.938 0.910
5 0.994 0.979 0.987 0.959 0.939
7 0.994 0.986 0.990 0.965 0.954

10 0.994 0.989 0.991 0.973 0.963

CNN + BiLSTM

0 0.807 0.852 0.885 0.871 0.766
1 0.968 0.925 0.957 0.874 0.805
3 0.987 0.968 0.974 0.933 0.908
5 0.992 0.977 0.986 0.955 0.937
7 0.992 0.984 0.990 0.964 0.948

10 0.995 0.985 0.992 0.972 0.960

CNN + GRU

0 0.762 0.729 0.832 0.881 0.772
1 0.965 0.932 0.960 0.875 0.799
3 0.985 0.969 0.979 0.935 0.906
5 0.993 0.978 0.985 0.954 0.930
7 0.993 0.985 0.989 0.963 0.952

10 0.994 0.987 0.991 0.973 0.958

CNN + LSTM

0 0.746 0.729 0.841 0.869 0.761
1 0.962 0.927 0.952 0.872 0.794
3 0.984 0.966 0.974 0.933 0.901
5 0.990 0.973 0.983 0.954 0.927
7 0.993 0.982 0.988 0.965 0.949

10 0.995 0.985 0.989 0.973 0.959

4.3. Experiment III: Multi-User Presence and Activity Detection

This experiment evaluated activity recognition performance in multi-user scenarios
(ranging from one to four concurrent users, including a mixed-user setting). Table 6 presents
classification results for each model. High performance was observed across all models in
the single-user setting, with the CNN + Transformer achieving an F1-score of 0.997. As the
number of users increased, a marginal decline in performance was noted, particularly in
the four-user configuration.

The CNN + Transformer model demonstrated very good performance with an F1-
score of 0.934 in the mixed multi-user scenario, highlighting its effective use of attention
mechanisms for distinguishing activity signals. CNN + BiLSTM and CNN + GRU per-
formed comparably in the two- and three-user settings, while CNN + LSTM showed a
more noticeable performance drop in the four-user and mixed scenarios (F1-score: 0.926).
These results underscore the necessity for advanced temporal and attention-based models
to manage user concurrency, aligning with trends in ambient intelligence and ubiquitous
computing [48].
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Table 6. Experiment III results: multi-user presence and activity detection.

Model Metric One User Two Users Three Users Four Users Mixed 2/3/4 Users

CNN + Transformer

Accuracy 0.997 0.956 0.971 0.923 0.938
Precision 0.997 0.956 0.970 0.923 0.935
Recall 0.997 0.955 0.971 0.923 0.934
F1-score 0.997 0.955 0.971 0.923 0.934

CNN + BiLSTM

Accuracy 0.995 0.953 0.971 0.916 0.935
Precision 0.995 0.953 0.971 0.917 0.930
Recall 0.995 0.953 0.970 0.917 0.930
F1-score 0.995 0.953 0.971 0.917 0.930

CNN + GRU

Accuracy 0.996 0.952 0.971 0.921 0.933
Precision 0.996 0.952 0.970 0.921 0.930
Recall 0.996 0.952 0.970 0.920 0.929
F1-score 0.996 0.952 0.970 0.920 0.928

CNN + LSTM

Accuracy 0.995 0.953 0.961 0.896 0.930
Precision 0.994 0.953 0.960 0.896 0.926
Recall 0.995 0.952 0.960 0.895 0.926
F1-score 0.995 0.942 0.960 0.895 0.926

5. Discussion
The experimental results demonstrate the performance of the proposed CSI-based

HAR approach across various setups, highlighting its capability to handle data diver-
sity and complex multi-user environments. This can be largely attributed to the inte-
grated pipeline of signal preprocessing, data augmentation, hybrid deep learning archi-
tecture, and comprehensive evaluation. The following key aspects of the system are
further discussed:

5.1. Influence of Augmentation Factor on Performance

Experiment II explored the effect of varying augmentation factors, providing insights
into how training diversity influences generalisation. All models showed improved ac-
curacy with augmentation factors up to 5, with CNN + Transformer experiencing the
highest increase from 0.757 to 0.939. This supports prior research indicating that mod-
erate augmentation mitigates overfitting and enhances robustness [38,49]. Performance
plateaued beyond factor 5, suggesting diminishing returns due to possible redundancy or
over-perturbation [38]. Importantly, there was no decline in accuracy at factor 10, confirm-
ing the soundness of the augmentation strategy and its ability to preserve signal semantics.
Specifically, the results also show the effectiveness of other techniques as jittering, slice
shuffle, scaling and magnitude warping, in enhancing the overall performance. To further
understand the contribution of individual augmentation techniques, additional experi-
ments are conducted, the results of which are presented in Table 7. This table shows
the performance of the CNN + Transformer model (at an augmentation factor of 5) with
different combinations of our augmentation strategies.

Interestingly, while magnitude warping alone led to a noticeable drop in performance
(Table 7), its inclusion within our complete augmentation pipeline contributed positively
when combined with other techniques. This suggests that although aggressive or poorly
controlled warping can distort temporal dynamics and impede learning, the combined
effects, when balanced with jitter, scaling and slice shuffle, can enhance data variability
without compromising the underlying signal integrity. This finding underscores the impor-
tance of carefully designing and balancing augmentation strategies rather than relying on
any single transformation in isolation.
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Table 7. Performance of CNN+Transformer with individual and cumulative augmentations (aug-
mentation factor = 5) across all activity classes.

Model Variant Accuracy (%) F1-Score Precision Recall

CNN + Transformer + No Aug. 0.872 0.890 0.891 0.893
+ Magnitude_Warp 0.837 0.819 0.823 0.819
+ Magnitude_Warp + Slice_Shuffle 0.907 0.900 0.901 0.900
+ Magnitude_Warp + Slice_Shuffle + Scale 0.928 0.922 0.923 0.922
+ Magnitude_Warp + Slice_Shuffle + Scale +Jitters 0.939 0.933 0.940 0.934

5.2. Effectiveness of the Proposed Hybrid Model with Transformer Architecture

Experiments II and III further reinforced the effectiveness of the proposed CNN +
Transformer model. The Transformer’s self-attention mechanism offers an advantage in
modelling temporal dependencies and isolating relevant features within complex signals.
Unlike recurrent models (LSTM, GRU), it captures long-range dependencies without recur-
rence, which is crucial for multi-user activity recognition. In Experiment III, the CNN +
Transformer achieved an F1-score of 0.934 in the mixed multi-user scenario, outperforming
CNN + GRU (0.928), CNN + BiLSTM (0.930), and CNN + LSTM (0.926). These findings
suggest that attention-based modelling enhances temporal resolution and activity dis-
crimination, particularly in noisy multi-user environments. Additionally, its consistent
performance across varying augmentation levels and user configurations highlights its
generalisability and suitability for deployment in dynamic real-world conditions.

5.3. Performance Under HAR Multi-User Configuration

Experiment III focused on assessing the proposed framework’s robustness in multi-
user HAR settings, where concurrent activity signals introduce additional complexity due
to overlapping motion patterns. Despite these challenges, all hybrid models demonstrated
consistently high classification accuracy across two-user and three-user configurations,
with only a moderate degradation observed under four-user and mixed-user scenarios.
Among the models, the proposed CNN+Transformer performed best. This can be attributed
to the global attention mechanism, which proved effective at disentangling simultaneous
motion signals by leveraging contextual dependencies across time, enabling the model to
distinguish activities even when users performed similar or overlapping actions. In con-
trast, purely sequential models with LSTM layers exhibited a more notable decline in
performance as the number of users increased. This decline can be attributed to their
limited ability to capture bidirectional and long-range relationships without explicit archi-
tectural modifications.

The confusion matrices shown in Figures 8–11 provide detailed insights into the
per-activity classification performance under varying multi-user settings, revealing im-
portant patterns and challenges. In the two-user configuration (Figure 8), the proposed
CNN + Transformer model exhibited strong discriminative ability, achieving high precision
and recall across most activities. Dynamic activities such as walking were identified with
particularly high accuracy, with minimal confusion between them. This is reflective of
the distinct temporal patterns which the hybrid model’s CNN and Transformer layers
captured effectively.
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(a) (b)

(c) (d)

Figure 8. Confusion matrix for Experiment II showing the performance of the models for multi-
users—2 subjects for different activities: (a) CNN + Transformer (b) CNN + GRU (c) CNN + BiLSTM
(d) CNN + LSTM.

(a) (b)

(c) (d)

Figure 9. Confusion matrix for Experiment II showing the performance of the models for multi-
users—3 subjects for different activities: (a) CNN + Transformer (b) CNN + GRU (c) CNN + BiLSTM
(d) CNN + LSTM.
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(a) (b)

(c) (d)

Figure 10. Confusionmatrix for Experiment II showing the performance of the models for multi-
users—4 subjects for different activities: (a) CNN + Transformer (b) CNN + GRU (c) CNN + BiLSTM
(d) CNN + LSTM.

(a) CNN + Transformer (b) CNN + GRU

(c) CNN + BiLSTM (d) CNN + LSTM

Figure 11. Confusion matrix for Experiment II showing the performance of the models for multiple
users—combined 2-3-4 subjects for different activities.
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As the number of concurrent users increased to 3 (Figure 9), classification accuracy
remained very good, although slight increases in confusion began to emerge. Specifi-
cally, while dynamic activities such as walking continued to be classified correctly for the
majority of instances, a marginal rise in misclassification between standing and sitting
became apparent. This can be attributed to the overlapping sensor signatures of these low-
movement activities, which become increasingly indistinct when recorded from multiple
users simultaneously.

The four-user scenario (Figure 10) further amplified these challenges. Static activities,
such as standing and sitting, experienced a noticeable drop in classification precision.
Standing was frequently misclassified as sitting, and sitting was sometimes confused with
especially when two users or one user was involved. This degradation is likely due to
the reduced motion variance across users performing sedentary activities at the same
time, leading to highly similar sensor patterns that even the attention mechanism found
difficult to differentiate. Despite this, the activities continued to be reliably classified,
demonstrating the framework’s robustness for dynamic activity detection even in dense
user environments.

Under the mixed-user setting, where two, three, and four concurrent users were
randomly present (Figure 11), the model maintained good performance, albeit with the
most pronounced confusion rates observed across all settings. Again, misclassification was
predominantly limited to low-motion activities. For example, confusion between standing
and sitting reached its highest rate here, reflecting the real-world complexity when diverse
user activities are interleaved. Notably, despite these challenges, the Transformer-based
model was able to maintain separation between more kinetically distinct activities, such as
walking, demonstrating the capability of capturing global temporal dependencies. These
observations suggest that while the Transformer module effectively handles dynamic
activity signals under user concurrency, there is room for enhancement when addressing
static activities in overlapping scenarios.

To further assess model efficacy, an additional comparative experiment was conducted
using classical machine learning classifiers KNN, SVM, and RF across the same multi-
user configurations. The accuracy scores are visualised in Figure 12, with individual bars
representing performance across 1-user, 2-user, 3-user, 4-user, and mixed 2-3-4 user setups.
It is observed that, in contrast to classical models, CNN + Transformer performed best
across all configurations, with performance only marginally affected as user concurrency
increased. KNN and SVM, in particular, showed notable declines in accuracy as the
number of users increased. This is primarily due to their limited ability to disambiguate
overlapping signal sequences in the temporal domain. These results further demonstrate
the proposed model’s effectiveness and its suitability for multi-occupant applications where
distinguishing between concurrent activity streams is critical.

Further comparative analysis based on Table 8 reinforces these observations. A stan-
dalone CNN model was tested, which achieved an accuracy of 89.3%, improving upon prior
CNN-only approaches reported in the literature (85.7% [36]). The LSTM model provided a
slight improvement to 90.0%, benefitting from its temporal sequence modelling capabilities.
However, the proposed CNN+Transformer achieved the highest performance, with an
accuracy of 93.9%, an F1-score of 93.3%, precision of 94.0%, and recall of 93.4%.

This significant gain can be attributed to the hybrid model’s ability to integrate spa-
tial feature extraction (via CNN) with long-range temporal dependency learning (via
Transformer), offering a balanced and comprehensive representation of user activities.
In particular, the high F1-score suggests that the model maintained a strong balance be-
tween precision and recall, essential in avoiding both false positives and false negatives in
critical HAR applications.
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Table 8. Comparison of classification performance across different model architectures, including
standalone CNN, LSTM, and the proposed CNN + Transformer.

Model Variant Accuracy F1-Score Precision Recall

CNN [36] 0.857 – – –
CNN 0.893 0.891 0.893 0.892
LSTM 0.900 0.894 0.894 0.894
Proposed CNN + Transformer 0.939 0.933 0.940 0.934

Figure 12. Comparisonof classification accuracy across different classifiers and proposed
CNN+Transformer architecture under varying user configurations.

6. Conclusions
This paper presents a robust and scalable CSI-based HAR framework tailored for

complex multi-user indoor environments. The method integrates multi-stage preprocess-
ing, data augmentation, and a CNN + Transformer hybrid model, alongside other deep
learning architectures, to effectively capture spatiotemporal CSI dependencies. Extensive
experiments validate the effectiveness of the approach. Sensitivity analysis confirmed that
augmentation preserves the underlying data distribution. Moderate augmentation, specifi-
cally at factor 5, improved model performance in all variants, with CNN + Transformer
consistently outperforming others. The framework demonstrated high adaptability in
multi-user experiments, maintaining strong classification accuracy even in dense user con-
figurations. Overall, the proposed CSI-based HAR system exhibits notable improvements
in robustness, accuracy, and scalability, forming a strong foundation for future intelligent
activity recognition systems in ambient settings. Key limitations include non-adaptive
augmentation, lack of explicit user-level separation, and the Transformer’s computational
demands. While user density and activity diversity are incorporated into the experimental
protocol, the absence of external validation on an independent dataset limits the broader
generalisability of the findings. Future work will focus on adaptive augmentation, finer-
grained user identification, lightweight Transformer variants, and deployment across
diverse real-world environments and populations. We also plan to include deeper multi-
variate analyses, such as principal component analysis and autocorrelation, to examine the
latent structure and the validation of the current model on independently simulated CSI
environments to better evaluate cross-environment robustness and strengthen the broader
applicability of the proposed system.
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