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Abstract
Background: In the past few years, the rapid development of artificial intelligence (AI) and its success in many areas of everyday
life have attracted global attention. Some discussions have noted that generative AI tools canmake decisions on their ownwith the
potential to improve themselves. Subsequently, conspiracy theories have emerged concerning the future implications of AI. In the
present study, the Artificial Intelligence Conspiracy Beliefs Scale (AICBS) was developed to assess conspiracy beliefs concerning
AI, andits psychometric properties were examined.
Methods:A cross-sectional survey was conducted with 788 Turkish participants (Mage = 25.10 years, 56% female). The sample was
split to carry out an exploratory factor analysis (EFA; n = 423) and a confirmatory factor analysis (CFA; n = 365), resulting in a
30-item scale comprising five subdimensions.
Results: The five-factor structure explained 62.58% of the total variance. The CFA showed acceptable model fit indices and
confirmed the EFA’s five-factor structure. Based on the EFA’s factor loadings, a short five-item version of the AICBS (AICBS-
5) was developed with one item from each subdimension (which explained 45.28% of the variance). The CFA confirmed the
unidimensional structure of the AICBS-5. The internal consistency coefficients of the AICBS, its subdimensions, and the AICBS-5
demonstrated very good reliability. Correlation analyses with external criterion measures (AI Anxiety Scale, Generic Conspiracist
Beliefs Scale-5, and Anomie) supported the concurrent validity of the AICBS, its subdimensions, and the AICBS-5.
Conclusion: The findings demonstrate that both AICBS and AICBS-5 are valid and reliable psychometric instruments to assess
AI conspiracy beliefs.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.
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1 Introduction

The rapid development and integration of artificial intelligence
(AI) in different areas of human life over the past few years have
increased efficiency and productivity (Sowa et al. 2021; Tasheva
and Karpovich 2024), while working costs have significantly
decreased (Liu and Li 2024). The effective use of AI can make
daily routines easier, more efficient, and more useful than in
the past. It has also paved the way for innovative solutions that
benefit individuals in their daily work and has facilitated the
usability of big data (Zhang 2023). The contribution of AI to
society and its wide range of applications has led to rapid and
radical developments (Yang 2022). AI has penetrated humanity
rapidly and has had an intense, transformative effect on both
individuals and society.

Although AI has brought many benefits (e.g., Wu and Zhang
2022), it has also become the focus of dark conspiracy theories.
Since the concept of AI was first introduced seven decades ago
(McCarthy et al. 2006), the rapid pace of developments in this
field has led some to worry about the future impact of AI.
Artificial Narrow Intelligence (ANI) refers toAI systems designed
for specific tasks and has achieved significant success in machine
learning (Shadbolt 2022). However, its ability to infer or general-
ize is limited. It has not been viewed as a worry because it cannot
go beyond its own narrow framework of understanding and
coded responses (Kuusi and Heinonen 2022). Artificial General
Intelligence (AGI) refers tomachine intelligence that can perform
any intellectual task that a human can perform (Chehreghani
2024). Some researchers argue that AGI is unattainable (Fjelland
2020), while others argue that it is achievable (Chehreghani 2024;
Mitchell 2024). Moreover, the potential of AGI to outperform
human intelligence in cognitive tasks such as problem-solving
and adaptation has been emphasized (Groppe and Jain 2024;
McLean et al. 2021).

Another type of AI, Artificial Super Intelligence (ASI), is often
referred to as a type of AI substantially higher than human
intelligence. It can quickly solve complicated problems, self-
educate, and learn (Novikov 2024). The rapid integration of AI
technologies, which are rapidly advancing towards becoming
AGI and ASI, into critical areas (e.g., cybersecurity, health, and
education) has brought along threats to professional identity,
transformative impact on the labor force, and ethical concerns
(e.g., cashiers and translators could be replaced by AI) (Jussupow
et al. 2022; Richie 2022; Wang 2024). Moreover, in the absence of
controllability and transparency, it is foreseen that uncertainties
and misinformation will continue to increase in society against
AI. Consequently, it is thought that motion pictures, science
fiction-based printedworks, andmythology aboutAIwill feed the
concerns on this issue and cause it to become a conspiracy theory
(Carillo 2020; Gherkeş 2018).

Despite its many positive aspects, the probability that AI can
develop in ways that may exceed human capacity causes anxiety
and fear among many individuals (Gherheş 2018). This may lead
to conspiracy theories about AI. These concerns often stem from
unpredictability and unknowability. Concerns that it will take
away people’s jobs, turn into a mass weapon under the control
of dangerous people, and destroy the human species (Schmeltzer
2019) have turned into conspiracy theories. Accountability is

crucial in integrating AI systems into society (Shepherd and
Majchrzak 2022; Weber et al. 2024. Because AI and decision-
making processes can create a highly intertwined relationship
between humans and machines (e.g., AI), decision-makers or
managers may avoid moral responsibility by attributing negative
situations to AI (Meissner and Narita, 2023).

Therefore, it has become necessary to comprehensively consider
AI’s ethical dimensions (Teo et al. 2023). When studies on the use
and development of AI technology are considered, ethical issues
arise concerning privacy, bias, transparency, and responsibility
(Akinrinola et al. 2024;Huriye 2023). There are societal prejudices
about AI applications and algorithms, as well as concerns about
the violation of the principle of privacy regarding personal data.
Moreover, the compliance of developers and administrators with
the principles of transparency and responsibility can be seen as
factors that significantly affect the acceptance of AI in society
(Yazdani and Darbani 2023). Problems concerning implementing
ethical principles can result in AI conspiracy theories (Akhter
et al. 2024; Liu et al. 2023).

In addition, many conspiracy theories popularized during
COVID-19 are thought to have contributed to the spread of con-
spiracy theories in different fields (Douglas 2021; Stein et al. 2021;
Stojanov and Hannawa 2023). Moreover, if individuals believe in
one conspiracy theory, they aremore likely to believe in other con-
spiracy theories (Freeman et al. 2022; Miller 2020). For example,
as beliefs in COVID-19 conspiracy theories increased, beliefs in
COVID-19 vaccination conspiracy theories also increased (Gökalp
et al. 2025). This is because conspiracy theories are predicted
by a frame of mind that tends to believe in conspiracy theories
(Uscinski and Parent 2014).

It has also been reported that individuals who are predisposed
to believe in conspiracy theories pay less attention to external
sources of information (i.e., scientists, official sources) that are
accepted as reliable by the general public, ignore sources that
provide information that contradicts their personal beliefs, and
tend to believe more speculative sources (Freeman et al. 2022;
Imhoff et al. 2022; Rosman et al. 2021). Conspiracy theories
are based on low-quality and weak evidence with gaps and
vague details (Brotherton et al. 2013). Individuals who are firmly
committed to epistemic rationality and who think analytically
are less likely to believe in conspiracy theories (Ståhl and Van
Prooijen 2018).

In contemporary society, where fake news and alternative facts
are popular with the influence of social media (e.g., Brailovskaia
et al. 2021), conspiracy beliefs about AI (a relatively new phe-
nomenon) and its function in future societies have a high
potential to emerge. To show how and in what way conspiracy
beliefs towards AI develop and to conduct new studies that can
provide novel perspectives on this topic, there is a need for a
psychometric instrument that helps to define the conceptual
framework of AI conspiracy beliefs. Identifying individuals who
are prone to conspiracy theories can provide insights into prevent-
ing psychological conditions that negatively affect individuals’
mental health, such as social isolation, anxiety, PTSD, and
paranoid thoughts (Martinez et al. 2022). Moreover, it is also
important to determine which emotional needs individuals act
on in the context of conspiracy beliefs (Wheeler 2021). Therefore,
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the first step in developing effective ways to combat social
negativities such as resistance to change, health security, mis-
information, polarization, narcissism, and insecurity associated
with conspiracy beliefs may be to identify individuals who are
prone to conspiracy beliefs (Enders et al. 2023). It is important
to take preventive measures such as training, media literacy, and
activities to prevent these negativities and to develop critical
thinking. This situation is also important regarding establishing
public health and creating an environment of trust.

The present study aimed to develop a new instrument assessing
AI conspiracy beliefs (i.e., the Artificial Intelligence Conspiracy
Beliefs Scale [AICBS]) and to examine its psychometric proper-
ties. To date, available literature has provided instruments for the
assessment of general conspiracy beliefs (Brotherton et al. 2013;
Bruder et al. 2013; Stojanov and Halberstadt 2019; Stojanov and
Hannawa 2023), AI anxiety (Wang and Wang 2019), and fear of
AI (Kieslich et al. 2021). However, an instrument for assessing
AI conspiracy beliefs is lacking. Therefore, the development of
the AICBS addresses an important research gap and provides
a novel instrument for future studies to assess AI conspiracy
beliefs. In addition, the spread of AI conspiracy beliefs may cause
fear and prejudice towards AI at the societal level. As a result,
there may be resistance against the integration of AI research and
applications. For this reason, the AICBS can help to understand
the reasons behind the conspiracy beliefs towards AI, to reveal
their foundations, to determine their limits, and to predict the
risks.

2 Method

2.1 Participants and Recruitment Procedure

A convenience sampling technique was employed to select
participants from various parts of Türkiye. The data collection
process was conducted online using Google Forms. The survey
link was advertised on internet forums and social networking
sites such as Facebook and WhatsApp in Türkiye. All partic-
ipants had to be 18 years or older and provide their written
informed consent before starting the online survey anonymously.
There were no missing data because the survey could not be
submitted unless all questions were answered. No incentive was
given to the participants. Data were collected between May and
June 2024. Table 1 provides information about the participants
(N = 788).

Most participants were female (subsample 1: 56%, subsample 2:
57%, entire sample: 56%). Participantswere generally young adults
(entire sample Mage = 25.10 years, SD = 8.27). More than half of
the participants were university students (51.6%). In addition, the
participant’s average daily social media use time was 3.65 hours
(SD = 2.01).

2.2 Measure Development

Before commencing data collection, ethics approval was obtained
from the first author’s university ethics committee. The AICBS
was developed based on principles proposed by DeVellis and
Thorpe (2022). Because a comprehensive literature review indi-

cated therewere no existing scales assessingAI conspiracy beliefs,
conspiracy theories about AI in social networks and studies
examining AI concerns were examined (Wang and Wang 2019;
Zou and Liu 2023). Following this, an item pool comprising
49 items (e.g., AI systems will surpass human intelligence and
eventually become capable of ruling humans) with five subdimen-
sions (Global Control [GC], Disinformation [DIS], Human Labor
and Human Intelligence [HUM], Arms Rivalry and World Peace
[ARM], and Interpersonal Relationships and Social Influence
[INT]) was generated (see Table A1 in Supporting Information).

The increase in the scores obtained from the 5-point Likert-type
scale (1 = Strongly disagree, 5 = Strongly agree) was interpreted
as an increase in the conspiracy belief levels of individuals
towards AI. The AICBS was developed in the Turkish language
and named the AICBS. Three Turkish language experts and
four measurement and evaluation experts evaluated the 49 items
regarding content validity, grammar, and semantic clarity. In line
with the experts’ opinions, some items were revised, and five
items were removed from the item pool. For example, the item
The power behind the world order controlled by AI will be only
a handful of people and will direct humanity in line with their
own interests was revised in line with expert opinion to Only a
handful of humanswill be the power behind anAI-controlled world
order. After deleting itemswith a low factor loading (i.e.,< 0.4) or
having a cross-loading problem (i.e., > 0.4 in two or more factors;
please see the Data analysis section for details), the final AICBS
comprised 30 items and five subdimensions: GC: 8 items; DIS: 5
items; HUM: 7 items; ARM: 5 items; and INT: 5 items.

2.3 Other Measures

Generic Conspiracist Beliefs Scale (GCB-5). The five-item GCB-
5 (Kay and Slovic 2023) was used to assess conspiracist beliefs.
The items (e.g., Evidence of alien contact is being concealed from
the public) are rated on a 6-point Likert-type scale (1 = strongly
disagree; 6 = strongly agree). Higher scores indicate greater
conspiracist beliefs. Previous studies have indicated the validity
and reliability of the GCB-5 (Dagnall et al. 2023; Liekefett et al.
2024). Because the GCB-5 has never been translated and validated
into Turkish, the present study used the standard translation
procedure (i.e., forward translation, back translation, and recon-
ciliation) to translate the GCB-5 into the Turkish language. In
the present study, the psychometric properties of the GCB-5 were
good (see Table A3 in Supporting Information).

Anomie Scale (AS). The three-item AS (Goertzel 1994) was used
to assess anomie. Items (e.g., I think that the life of an ordinary
person is getting worse every day) are rated on a 5-point Likert-
type scale (1 = strongly disagree; 5 = strongly agree). Higher scores
indicate greater levels of anomie. Because the three-item AS has
never been translated and validated into Turkish, a standard
translation procedure (i.e., forward translation, back translation,
and reconciliation) was used to translate the AS into the Turkish
language. The psychometric properties were adequate in the
present study (Cronbach’s α and McDonald’s ω were 0.651 and
0.654, respectively).

Artificial Intelligence Anxiety Scale (AIAS). The Turkish 21-item
AIAS (Terzi 2020; Wang and Wang 2019) was used to assess AI
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TABLE 1 Descriptive statistics of the demographic variables.

Mean (SD) or n (%)
Entire sample (N = 788) EFA subsample (n = 423) CFA subsample (n = 365)

Age 25.10 (8.27) 24.72 (8.10) 25.55 (8.45)
Gender
Female 442 (56%) 235 (56%) 207 (57%)
Male 346 (44%) 188 (44%) 158 (43%)

Educational level
High school 92 (11.7%) 58 (13.7%) 34 (9.3%)
Undergraduate 407 (51.6%) 217 (51.3%) 190 (52.1%)
Graduate 289 (36.7%) 148 (35.0%) 141 (38.6%)

Abbreviations: CFA, confirmatory factor analysis; EFA, exploratory factor analysis.

anxiety. The AIAS has four subdimensions (learning, job replace-
ment, social blindness, and AI configuration). Items (e.g., I don’t
know why, but humanoid AI techniques/products (e.g., humanoid
robots) scareme) are rated on a 7-point scale (1= strongly disagree;
7 = totally agree). Higher scores indicate greater AI anxiety. The
learning subdimension was unrelated to AI conspiracy theories,
so it was not used in the present study. In the present study, the
internal consistencies of the AIAS subdimensions were very good
(job replacement: α= 0.881;ω= 0.885; social blindness: α= 0.826;
ω = 0.832; AI configuration: α = 0.906; ω = 0.906).

2.4 Data Analysis

The study sample was randomly divided into two subsamples:
(i) an exploratory factor analysis (EFA) subsample to explore the
initial factor structure of the AICBS and (ii) a confirmatory factor
analysis (CFA) subsample to verify the factor structure derived
from the EFA. The second subsample was then used to examine
the AICBS’s discriminant validity based on the heterotrait–
monotrait (HTMT) ratio method. The two subsamples were
sufficient for each factor analysis according to the recommended
minimum item–participant ratio of 5 to 1 (i.e., each item needs a
minimumof five participants) (Lorenzo-Seva andFerrando 2024).
Given that the original version of AICBS contained 44 items, 220
participants for each factor analysis were deemed to be sufficient.
In addition, the entire samplewas used for the following analyses:
internal consistency, concurrent validity with external criterion
measures, and difference tests between gender and educational
levels. The CFA, HTMT ratio, and internal consistency analyses
were performed using JASP 0.18.3; the rest was performed using
IBM SPSS version 25.0.

The EFA was performed using the following steps: (i) checking
if the subsample was adequate for factor analysis via the Kaiser–
Mayor–Olkin (KMO) test (i.e., to check if the items in the AICBS
had sufficient explained variance to extract factors),where aKMO
value > 0.7 indicates adequacy for factor analysis (Field 2024);
(ii) using principal axis factoring extraction to extract the factors
using the Kaiser rule (i.e., number of extracted factors is based on
how many factors have an eigenvalue > 1) (Ledesma and Valero-
Mora 2007); (iii) adopting the promax oblique rotation method

to identify the item-factor relationship; (iv) examining the factor
loading for every item by removing any item having a loading
< 0.4 or any item having cross-loading (i.e., one item has two
or more loadings > 0.4) (Field 2024); and (v) repeating steps
(iii) and (iv) until all items have only one-factor loading > 0.4
in a factor. A short five-item version of the AICBS (i.e., AICBS-
5) was also developed using the EFA. Specifically, the item in
each AICBS subdimension with the highest loading was used to
generate the AICBS-5. The AICBS-5 was also tested using EFA to
examine if it could simplify the multidimensional AICBS into a
unidimensional measure.

After using EFA to derive the factor structure of the AICBS,
the entire AICBS with all its factors and the AICBS-5 were
examined for their internal consistency using both Cronbach’s α
and McDonald’s ω. A value > 0.7 in Cronbach’s α or McDonald’s
ω indicates good internal consistency (George and Mallery 2016).
Then, CFA was performed using the maximum likelihood esti-
mator for both the AICBS and AICBS-5. The following fit indices
calculated from theCFAwere used to define if the factor structure
derived from the prior EFA results was verified: comparative fit
index (CFI) > 0.9, Tucker–Lewis index (TLI) > 0.9, root mean
square error of approximation (RMSEA)< 0.08, and standardized
root mean square residual (SRMR) < 0.08 (Lin et al. 2018;
Whittaker and Schumacker 2022). The factor loadings derived
from the AICBS CFA were then used for the HTMTmethod, and
discriminant validity is supported when an HTMT ratio is lower
than 0.85 (Kline 2023).

The entire AICBS with all its factors and the AICBS-5 were
examined for concurrent validity with relevant measures (i.e., the
external criterion measures of AIAS, AS, and GCB-5). Pearson
correlations were used for the concurrent validity, and coeffi-
cients > 0.3 indicated moderate or stronger correlations (Cohen
1988). Lastly, the entire AICBS with its factors and the AICBS-5
were examined to see if their scores were significantly different in
gender groups (i.e., male vs. female) and educational level groups
(i.e., high school, undergraduate, and graduate). An independent
t-test was used to compare genders; analysis of variance (ANOVA)
with Bonferroni adjustment was used for comparison between
educational levels. More specifically, the adjusted alpha level was
set at p < 0.016 to indicate significance.
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TABLE 2 The final factor structure and factor loadings of the Artificial Intelligence Conspiracy Beliefs Scale based on exploratory factor analysis.

GC DIS HUM ARM INT

GC1 0.524
GC2 0.790
GC3 0.786
GC5 0.882
GC6 0.746
GC7 0.678
GC9 0.814
GC12 0.537
DIS1 0.419
DIS2 0.482
DIS3 0.616
DIS4 0.756
DIS5 0.679
HUM1 0.665
HUM2 0.422
HUM4 0.552
HUM5 0.656
HUM6 0.844
HUM7 0.646
HUM8 0.594
ARM2 0.533
ARM3 0.632
ARM4 0.705
ARM5 0.650
ARM6 0.688
INT3 0.605
INT4 0.719
INT5 0.520
INT6 0.608
INT7 0.640

Note: The item numbers were reported based on the original item number without item deletion. The extraction method was principal axis factoring, and the
rotation method was promax oblique rotation. Factor loading values < 0.4 are not reported.
Abbreviations: ARM, Arms Rivalry and Less World Peace; DIS, Disinformation; GC, Global Control; HUM, Human Labor and Human Intelligence; INT,
interpersonal Relationships and Social Influence.

3 Results

Table 2 shows the final factor structure and factor loadings based
on EFA for the AICBS. The KMO value was acceptable for
conducting EFA, andEFA results suggested a five-factor structure
for the AICBS. All items loaded on the expected five factors
(62.58% of total variance explained), although some items were
deleted due to low factor loadings (see Table 2). The EFA results
supported the unidimensional structure of the AICBS-5. The
factor loadings of the AICBS-5 items ranged between 0.590 and
0.740 (see Table 2).

Table 3 shows the CFA results for the AICBS. The five-factor
structure of the AICBS found in the EFA was confirmed by the
acceptable fit of the CFA fit indices of the second subsample (i.e.,
CFI = 0.913; TLI = 0.904; RMSEA = 0.064; and SRMR = 0.049).
Because the HTMT ratio of factor loadings was less than 0.85,
discriminant validity was supported. CFA results confirmed the
unidimensional structure of AICBS-5 obtained with EFA. CFA
results for AICBS-5 indicated a significant and acceptable fit (i.e.,
CFI = 0.988; TLI = 0.976; RMSEA = 0.057; and SRMR = 0.020).
The entire AICBS, its subdimensions, and AICBS-5 had reliable
internal consistency coefficients (see Table 3).
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TABLE 3 Scale properties of the Artificial Intelligence Conspiracy Beliefs Scale (AICBS).

AICBS GC DIS HUM ARM INT AICBS-5

Cronbach’s αa 0.954 0.898 0.811 0.885 0.873 0.873 0.799
McDonald’s ωa 0.955 0.899 0.818 0.888 0.875 0.873 0.804
EFAb

Eigenvalue — 12.58 2.32 1.57 1.20 1.11 —
Variance explained — 41.94 7.73 5.22 4.00 3.69 45.28
KMO 0.947 — — — — — 0.826

CFAc

χ2 (df) 979.80 (393) — — — — — 11.1 (5)
p value < 0.001 — — — — — < 0.05
CFI 0.913 — — — — — 0.988
TLI 0.904 — — — — — 0.976
RMSEA 0.064 — — — — — 0.057
SRMR 0.049 — — — — — 0.020

HTMT methodc

GC — 1.00 —
DIS — 0.73 1.00 —
HUM — 0.75 0.79 1.00 —
ARM — 0.63 0.67 0.80 1.00 —
INT — 0.66 0.76 0.84 0.75 1.00 —

Abbreviations: ARM, Arms Rivalry and Less World Peace; CFA, confirmatory factor analysis; CFI, comparative fit index; DIS, Disinformation; EFA, exploratory
factor analysis; GC, Global Control; HTMT, heterotrait–monotrait ratio; HUM, Human Labor and Human Intelligence; IFI, incremental fit index; INT,
Interpersonal Relationships and Social Influence; KMO, Kaiser–Meyer–Olkin measure of sampling adequacy; RMSEA, root mean square error of approximation;
SRMR, standardized root mean square residual; TLI, Tucker–Lewis index.
aBased on the entire sample.
bBased on the EFA subsample.
cBased on CFA subsample.

TABLE 4 Concurrent validity of the Artificial Intelligence Conspiracy Beliefs Scale (AICBS).

Pearson correlation with an external criterion measure

AIAS: Job
Replacement

AIAS: Social
Blindness

AIAS: AI
Configuration Anomie Scale GCB-5

AICBS 0.65 0.62 0.56 0.38 0.51
GC 0.52 0.50 0.48 0.28 0.44
DIS 0.46 0.47 0.41 0.30 0.42
HUM 0.62 0.56 0.54 0.36 0.43
ARM 0.56 0.56 0.47 0.33 0.46
INT 0.56 0.52 0.43 0.34 0.38
AICBS-5 0.60 0.57 0.53 0.35 0.45

Note: All p values < 0.01. AICBS-5 is a five-item short version of the AICBS.
Abbreviations: AIAS, Artificial Intelligence Anxiety Scale; ARM, Arms Rivalry and World Peace; DIS, Disinformation; GC, Global Control; GCB-5, Generic
Conspiracist Beliefs Scale-5; HUM, Human Labor and Human Intelligence; INT, Interpersonal Relationships and Social Influence.

Table 4 shows correlations between the whole AICBS, its sub-
dimensions, the AIAS subdimensions, AS, GCB-5, and AICBS-5.
The AICBS had a strong positive correlation with all subdimen-
sions of AIAS and GCB-5 (r ≥ 0.49) and a moderate positive
correlation with the AS (r = 0.30–0.49). AICBS-5 was strongly

positively correlated with AIAS subdimensions and GCB-5, and
moderately positively correlated with the AS.

Table 5 shows the differentiation of AICBS, its subdimensions,
and AICBS-5 according to gender and education level. The
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mean scores obtained from the AICBS, its subdimensions, and
the AICBS-5 differed statistically significantly between genders.
Females had higher scores than males (see Table 5).

Themean scores of GC, HUM, ARM subdimensions, and AICBS-
5 did not differ statistically significantly according to the gender
groups. This means that gender does not have a statistically sig-
nificant effect on the aforementioned variables. AICBS, DIS, and
INT subdimensionmean scores differed significantly according to
educational level. Following Bonferroni correction, the findings
indicated that graduates had higher scores than individuals
with high school as the highest education level on the AICBS
(M = 3.75 > M = 3.51), DIS (M = 3.79 > M = 3.48), and INT
(M = 4.11 > M = 3.80). There was also a significant difference
in the DIS subdimension, with graduates scoring higher than
undergraduates (M = 3.79 >M = 3.62).

4 Discussion

In recent years, the rapid development of AI has caused uncer-
tainty and unpredictability about what this technology may
cause in the future (Nan et al. 2023). Therefore, it is important
to assess conspiracy beliefs regarding the future state of AI.
Identifying individuals with conspiracy beliefs provides insight
into their psychological conditions and the emotional needs
that drive their actions (Douglas and Sutton 2023; Marchlewska
et al. 2022). Therefore, it can provide an important basis for
developing an effective defense mechanism against the spread of
false information and the resulting environment of insecurity. In
this context, education and awareness-raising activities can direct
individuals to more robust sources of information and strengthen
their critical thinking skills (Georgiu et al. 2021). Consequently,
individualsmay become able to recognize the implausible aspects
of conspiracy theories more easily.

The AICBS was developed to understand the reasons underlying
AI conspiracy beliefs. Predicting possible risks may have the
potential to make significant contributions to the gap in the
literature. The five-factor structure of the AICBS explained
62.58% of the total variance with good psychometric properties,
demonstrating good internal and external validity as well as very
good internal consistency. Moreover, the short unidimensional
version of the scale (AICBS-5) was additionally developed and
also showed very good internal consistency. Based on this psycho-
metric evaluation, both the AICBS (with a five-factor structure)
and the AICBS-5 (with a unidimensional structure) are valid
instruments for assessing AI conspiracy beliefs.

Conspiracy theories are usually based on the belief that a secret
and harmful plan is being carried out (Hodapp and Von Kannon
2008). Therefore, these beliefs are unlikely to be based on
empirical evidence. The development of such a psychometric
measurement tool specifically on AI conspiracies could have
impacts regarding the motivations underlying conspiracy theo-
ries and contribute to a deeper and more nuanced understanding
of their role. The AICBS and AICBS-5 have the potential to help
researchers to understand how AI conspiracy theories work and
how they evolve in the context of anxiety, worry, and fear.
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Using the AICBS or AICBS-5, relevant stakeholders (e.g., gov-
ernment personnel) can identify individuals’ conspiracy theory
tendencies and design appropriate programs to prevent their
spread. Consequently, it may be possible to reduce the potential
negative impact on societal acceptance and integration of AI and
to understand the structural characteristics and prevalence of
AI-related conspiracy theories. In addition, the AICBS can help
develop specific intervention strategies for the individual, society,
and institutions to reduce misinformation about AI and create a
healthy, evidence-based perspective. Therefore, the AICBS can be
used in needs analysis to develop training and awareness-raising
programs.

The question of whether AI is a threat or an opportunity for
humanity shows the complexity and unpredictability of the
relationship between humanity and AI (Zimmerman et al. 2024).
Accordingly, this relationship will have ethical and social conse-
quences. In terms of ethics, the question of who is responsible for
AI’s actions creates serious concerns (Huriye 2023; Pflanzer et al.
2023). Future empirical studies using the AICBS or AICBS-5 may
help to show concrete indicators of these concerns.

It is expected that with the emergence of AGI and ASI types
of AI, questions about the future of humanity and the meaning
of being human will be raised (Kelly et al. 2023; Putnik et al.
2021). Discussions on these questions are likely to lead to the
spread of AI conspiracy theories to the masses. From this point
of view, the AICBS can contribute to understanding the reception
of AI conspiracy beliefs and help take measures against possible
adverse reactions. In addition, the spread of AI conspiracy beliefs
may cause fear and prejudice towards AI at the societal level.
As a result, there may be resistance against the integration of AI
research and applications.

4.1 Limitations and Directions for Future
Research

Although the AICBS and its short form AICBS-5 were developed
as a consequence of rigorous and detailed methods, they have
some limitations. First, test–retest reliability was not assessed
for either the AICBS or the AICBS-5. Therefore, it is unclear
whether both measures are valid to be used in studies with
severalmeasurement time points. Second, due to the convenience
sampling method used for data collection, the generalizability
of the present findings is restricted. Future research should use
more representative sampling techniques to test the AICBS and
AICBS-5. Third, the responses to the AICBS and AICBS-5 relied
on self-report. Therefore, participants may not have disclosed
their true feelings due to factors such as social desirability. AI
conspiracy beliefs can be examined holistically in studies where
different types of measurement tools are used together. For
example, the AI Self-Efficacy Scale (AISES; Wang and Chuang
2024), developed to assess the AI self-efficacy levels of educators
and practitioners, could be included in the same study as the
AICBS or the AICBS-5. Therefore, it can be tested whether AI
conspiracy beliefs have an effect on AI self-efficacy behavior.
Fourth, the AICBS was developed in the context of the Turkish
culture. The psychometric structure of the AICBS needs to be
evaluated in different cultures and languages. Future studies are

needed to both replicate and validate the scale in other languages
to ensure that the AICBS is both reliable and valid worldwide.

5 Conclusions

The AICBS is a useful psychometric instrument for under-
standing AI conspiracy beliefs. The AICBS and its short form
(AICBS-5) have good psychometric properties, including internal
consistency and concurrent validity. They can be considered valid
and reliable psychometric instruments for the assessment of AI
conspiracy beliefs. In large-scale studies with many variables,
the AICBS-5 can help researchers to test complex mechanisms
involving AI conspiracy beliefs and to reduce survey fatigue.
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