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A B S T R A C T   

Most mammalian genes have multiple polyadenylation (PA) sites, and alternative polyadenylation (APA) has 
been linked to diseases such as obesity. Studies have shown that changes in the polyadenylation signal (PAS) can 
influence the efficiency of cleavage and affect disease susceptibility and phenotype. In our recent study we used 
inbred mouse models of polygenic obesity and leanness and identified single-nucleotide polymorphisms in PAS 
(PAS-SNPs) within several obesity candidate genes, including five with differential expression. Nevertheless, to 
date, there has been no systematic, whole-genome-level approach aiming to prioritise PAS-SNPs potentially 
affecting APA. Therefore, in this study, we build upon our previous work by integrating existing genomics data 
with transcriptomics. DEGs were identified in nine tissues by Affymetrix GeneChip. PA and PAS sites were from 
the PolyASite 2.0 portal. Prioritisation of candidate PAS-SNPs was performed based on whether they were 
located in DEG, the type of PAS changes they caused, locations of PA sites relative to PAS, and location(s) and 
expression(s) of Affymetrix probes within a given gene in various tissues. For the candidates, potential conse-
quences due to the alteration in APA events were investigated using bioinformatics databases and tools. The 
analysis found 127 PAS-SNPs in 101 DEGs across different tissues and identified 12 high-priority and 7 moderate- 
priority PAS-SNP candidates in 10 and 7 DEGs, respectively. Candidate PAS-SNPs were in 3′ UTR of 12 protein- 
coding genes (Lean line: Edil3, Eif2s1, Fbxl3, Hlf, Hsf2bp, Knop1, Lair1, Nmrk1; Fat line: Ehd1, Rpl14, Spon1, 
Txndc9), introns of four protein-coding genes (Lean line: Abi3bp, Prr16; Fat line: Agmo, Itga7) and intron of one 
lncRNA (Lean line: 1700086O06Rik). The integration of whole-genome sequencing and transcriptome analyses in 
this study has identified potential genome-wide candidate SNPs that could affect APA by altering/disrupting PAS 
motifs and be related to obesity in mice. The data provides a foundation for further research into these PAS-SNPs, 
their genes, and their contribution to the obesity/leanness phenotype, and contributes a part in explaining 
missing heritability commonly observed in complex traits.   

1. Introduction 

Polyadenylation (PA), i.e. the addition of a poly(A) tail to the 3′-end 
of the transcript, determines the mRNA stability, localisation, and 
translational potential of the mRNA. Approximately 70 % of mammalian 

genes contain more than one polyadenylation site (Derti et al., 2012). 
Alternative cleavage followed by polyadenylation (alternative poly-
adenylation, APA) increases the diversity of transcripts encoded by the 
same gene, which significantly affects gene expression and gene func-
tion (Yuan et al., 2021). 

Abbreviations: 3′ UTR, three prime untranslated region; APA, alternative polyadenylation; BAT, brown adipose tissue; DEG, differentially expressed gene; eWAT, 
epididymal white adipose tissue; mWAT, mesenteric white adipose tissue; PA, polyadenylation; PAS, polyadenylation signal; PAS-SNP, single nucleotide poly-
morphism in polyadenylation signal; SNP, single nucleotide polymorphism; sWAT, subcutaneous white adipose tissue; WAT, white adipose tissue. 
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Studies have shown the relationship between APA and cell devel-
opmental stage (Ji et al., 2009; Ulitsky et al., 2012), tissue-specificity 
(Lianoglou et al., 2013), and various diseases (Chang et al., 2017), 
including obesity (Brutman et al., 2018), one of the most significant 
public health challenges (Lancsar et al., 2022). For example, Brutman 
et al. (2018) identified 763 differentially expressed coding genes and 
one miRNA with APA in the hypothalamus of a high-fat-diet-induced 
obesity rat model. The alternative polyadenylation involved genes 
broadly involved in the development of neuron projection and synapse 
organisation (Brutman et al., 2018). More recently, 574 differentially 
expressed APA sites between the Fat and Lean selection mouse lines on 
high-fat diet were identified in hypothalamus by Mikec et al. (2023), 
including within seven genes previously associated with obesity or 
obesity-related traits (Pdxdc1, Smyd3, Rpl14, Copg1, Pcna, Ric3, Stx3) 
and ten potentially novel obesity candidate genes (Ccdc25, Dtd2, 
Gm14403, Hlf, Lyrm7, Mrpl3, Pisd-ps3, Sbsn, Slx1b, Spon1) (Mikec et al., 
2023). 

PA is regulated by both cis-elements and trans-factors (Xiao et al., 
2016). For cis-elements, single nucleotide changes in the poly-
adenylation signal (PAS-SNP), typically located about 20-nt upstream of 
the PA site (Shulman and Elkon, 2020), have been shown to affect 
cleavage efficiency (Neve et al., 2017) and influence disease suscepti-
bility (Fahiminiya et al., 2015; Wang et al., 2016b). For example, ho-
mozygosity for the G allele at rs10954213 in PAS (AAUAAA ➔ 
AAUGAA) favours the IRF5 mRNA expression with longer 3′ UTR and is 
linked to human lupus (Graham et al., 2007). Meanwhile, genetic var-
iants can decrease mRNA expression levels by increasing usage of 
intronic PAS (Mittleman et al., 2020). 

Recently, Yang et al. (2020) developed a catalogue of whole-genome 
genetic variants associated with APA in human cancer, and Xiao et al. 
(2016) showed that SNPs near PA sites, where PAS is localised, signifi-
cantly contribute to the differential whole-genome utilisation of PA sites 
between the mouse strains C57BL/6J and SPRET/EiJ. In our previous 
study (Šimon et al., 2023), we developed a catalogue of potential 
“obesity” or “leanness” PAS-SNP alleles present in our unique inbred 
mouse models for the polygenic obesity and leanness, which are the 
most common clinical manifestations in the human population (Huv-
enne et al., 2016), making our mouse models a valuable resource for 
investigating these conditions. By integrating genome (whole-genome 
sequencing (Mikec et al., 2022)) and bioinformatics data (PA and PAS 
sites from the PolyASite 2.0 portal (Herrmann et al., 2020)), we iden-
tified in those previous studies 682 PAS-SNPs within 583 genes involved 
in various biological processes, including transport, protein modifica-
tion and degradation, cell adhesion and immune response. Orthologous 
genes in human have been linked to various diseases such as nervous 
system and physical disorders, immune system, endocrine system and 
metabolic diseases, and PAS-SNPs have been identified in genes asso-
ciated with obesity (Abcc6, Col4a1, Lhfpl3, Npc1, Lsamp, and Ppargc1a) 
and broadly with PA (Mnat1, Polr2c, Snd1, Ints11, Dhx15, and Eif3e). 
Among these genes, Car8, Itga7, Lat, Nmnat1, and Col4a1 were also 
differentially expressed genes (Šimon et al., 2023). These results suggest 
that some of the identified PAS-SNPs in the two lines could potentially 
contribute to their divergent body fat content. However, to our knowl-
edge, no study has been conducted to prioritise genome-wide PAS can-
didates involved in obesity by potentially affecting alternative 
polyadenylation (Supplementary Fig. 1). 

Therefore, in the present study, we have continued our previous 
work by integrating results obtained at a DNA level with transcriptome 
data (Affymetrix Mouse Genome 430-2.0 GeneChip) to 1) prioritise 
high-likelihood PAS-SNP candidates and 2) provide clues on the po-
tential alterations in genes carrying candidate PAS-SNPs that may 
contribute to obesity and healthy leanness. 

2. Material and methods 

2.1. Genotyping of mouse selection lines 

Whole-genome sequencing (WGS) of DNA samples isolated from the 
spleens of Fat and Lean mouse lines (n = 2 inbred animals), established 
by divergent selection on body fat percentage over more than sixty 
generations (Bünger and Hill, 1999; Sharp et al., 1984), and PAS-SNPs 
identification were previously performed (Mikec et al., 2022; Šimon 
et al., 2023) by overlapping the positions of SNPs identified by WGS 
with the positions of PAS motifs obtained from the PolyASite 2.0 portal 
(https://polyasite.unibas.ch/) (Herrmann et al., 2020). Although per-
forming WGS of two animals in these lines may seem a low number, it’s 
essential to consider the context of their high level of inbreeding. Lines 
first went through 60 generations of intense phenotypic selection on 
high and low body fatness (Sharp et al., 1984) which has already made 
lines genetically homogenous. A genome wide genetic mapping study 
using microsatellites (Horvat et al., 2000) revealed that by the end of the 
selection experiment, these lines exhibited minimal genetic diversity 
within themselves. Subsequently, a rigorous brother-sister inbreeding 
protocol was implemented, resulting in the animals chosen for WGS 
analysis being subjected to 68 and 70 generations of such inbreeding for 
the Lean and Fat lines, respectively. Regular genetic monitoring using 
microsatellites, performed across each generation, has consistently 
shown a lack of polymorphisms within these lines for the past two de-
cades. While the possibility of new mutations and genetic drift intro-
ducing novel genetic variation remains, this risk is effectively mitigated 
by the stringent protocol of utilizing a single brother-sister mating 
procedure in each generation. Hence, it is reasonable to assert that the 
WGS of just two animals adequately represents the genome of all in-
dividuals within our Fat and Lean lines. Variant calling and hard 
filtering of WGS data were performed according to the Genome Analysis 
Toolkit (GATK) (McKenna et al., 2010) Best Practices recommendations 
(Depristo et al., 2011; Van der Auwera et al., 2013). Variants were an-
notated using the Ensembl Variant Effect Predictor (https://www.en 
sembl.org/Tools/VEP) (McLaren et al., 2016). 

Sanger sequencing was used to validate selected PAS-SNPs. PCR 
products were purified using the QIAGEN Qiaquick PCR purification kit 
(Cat. No. 28104) and sequenced by Macrogen Europe (Macrogen 
Europe, Amsterdam, The Netherlands). The primer pairs used for PCR 
are listed in Supplementary Table 2. 

2.2. Gene expression analysis 

To investigate the expression of genes carrying PAS-SNPs, micro-
array transcriptome profiling was performed using the Affymetrix 
Mouse Genome 430-2.0 GeneChip on pooled RNA samples (n = 1) 
extracted using Qiagen RNeasy kits from various mouse tissues, 
including white adipose tissue (subcutaneous (sWAT), epididymal 
(eWAT), mesenteric (mWAT), and pooled (WAT)), brown adipose tissue 
(BAT), liver, muscle, adrenal gland, thymus and kidney. The data ob-
tained were processed as previously described (Morton et al., 2011; 
Pedroni et al., 2014). A non-statistical approach was used to compare 
the Fat and Lean samples for each of the tissues due to a single replicate 
for each strain/tissue. The data was normalized using a variance- 
stabilizing transformation VSN. The fold-changes for each of the nine 
single tissue comparisons were the VSN moderated fold-changes with p- 
value artificially set to 1e-10 to facilitate analysis through the standard 
Fios Genomics analysis pipeline. Significance values were further 
controlled for false discovery, yielding adjusted p-value. For pooled 
WAT, the expression data from the three tissues depots (epididymal 
WAT, subcutaneous WAT, mesenteric WAT) were then joined and cor-
rected for the batch effect using Empirical Bayes Analysis to obtain 
expression data in WAT. Expression of genes was considered differential 
if the expression of the single Affymetrix probe differed between Fat and 
Lean mouse lines by at least 1.5-fold at an adjusted p < 0.05. The 
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expression of Affymetrix probes within the differentially expressed 
genes (DEGs) carrying PAS-SNPs can be found in Supplementary 
Table 3. 

2.3. PAS-SNP prioritisation 

Affymetrix GeneChips often have probe sets that map to different 
locations within the gene and have been used to identify alternative 
splicing/polyadenylation events (Ji and Tian, 2009; Lembo et al., 2012). 
In the present study, the positions of the PAS-SNPs, PA sites and the 
positions and expressions of the Affymetrix probes were first visualized 
by the Golden Helix GenomeBrowse® v3.1.0 visualisation tool (http:// 
www.goldenhelix.com) (Golden Helix, Inc., Bozeman, n.d.). Subse-
quently, all differentially expressed genes carrying PAS-SNPs were 

manually examined to prioritise PAS-SNPs that are most likely to in-
fluence the use of PA sites within a gene, according to the prioritisation 
criteria described below and shown in Fig. 1. 

For the 3′ UTR APA, the effect of PAS-SNP on APA can be suggested 
by considering the type of changes in PAS motif caused by a PAS-SNP, 
the location of the PA sites relative to PAS, and the location of at least 
2 Affymetrix probes with different expressions. For the intronic APA, the 
effect of PAS-SNP on APA can be suggested by considering the type of 
changes in PAS motif caused by a PAS-SNP, the location of the PA sites 
relative to PAS, and the location and expression of the Affymetrix probe 
(s). 

In addition, genes, where the Affymetrix probe sets map to different 
transcripts, were discarded. For example, the gene Abca5 (ATP-binding 
cassette, sub-family A (ABC1), member 5) has 5 transcripts. The 

Fig. 1. Schematic representation of prioritisation criteria for PAS-SNPs.  
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Affymetrix Mouse Genome 430-2.0 GeneChip contains two probe sets 
for this gene (1434474_at and 1459391_at). While a probe set 
1434474_at maps to the Abca5 transcript ENSMUST00000043961 
(higher expression in the Fat line), a probe set 1459391_at maps to the 
ENSMUST00000127318 transcript (no differential expression between 
the lines). Therefore, the conclusion about the potential effect of PAS- 
SNP rs52557469 in the Fat line on the 3′ UTR length cannot be drawn 
(Supplementary Fig. 2). 

Finally, for the genes carrying candidate PAS-SNPs, we obtained 
SNPs and indels 60 bp upstream and within the corresponding PA-site 
cluster to check whether other genetic variants may generate PAS de- 
novo. In this way, we also obtained all PAS motifs for the correspond-
ing PA site, which served to prioritise the PAS-SNPs. 

2.4. Bioinformatics analyses 

The number of DEGs carrying PAS-SNPs shared by different tissues 
was analysed and visualized using the UpSetR package for R (Conway 
et al., 2017; Lex et al., 2014). Functional annotation of DEGs carrying 
PAS-SNPs was performed using the g:Profiler web tool (https://biit.cs. 
ut.ee/gprofiler/gost) (Raudvere et al., 2019). 

To investigate the potential effects of 3′ UTR PAS-SNPs on 3′ UTR 
length and the resulting abundance of sequence motifs for miRNAs and 
RNA-binding proteins (RBPs), RNA modifications and RNA-RNA in-
teractions, we used the DIANA-TarBase v8 (Karagkouni et al., 2018) and 
RISE (RNA Interactome from Sequencing Experiments) (Gong et al., 
2018) databases. The region between the PA site potentially affected by 
the PAS-SNPs and the PA site downstream or upstream, such that the 
differentially expressed Affymetrix probe lies within the two PA sites, 
was examined (Fig. 2). 

For the intronic PAS-SNPs, the potentially lost protein domains and 

sites for RNA-RNA and protein-protein interactions were determined for 
the protein/lncRNA region downstream of the last potentially encoded 
exon using the Ensembl (Howe et al., 2021), RISE and UniProt (Bateman 
et al., 2021) databases (Fig. 2). 

3. Results 

In the present study, whole-genome sequencing, transcriptome and 
bioinformatics data were integrated to prioritise genetic variants that 
might affect APA of our mouse models of obesity and leanness. A total of 
101 differentially expressed genes (DEGs) carrying 127 PAS-SNPs were 
identified. By manually examining the positions of the SNPs and the PA 
sites, as well as the positions and expressions of the Affymetrix probes 
within these genes, 19 PAS-SNPs within 17 genes were identified as 
priority “obese” or “lean” PAS-SNP candidates. The workflow of the 
study and the main results are shown in Fig. 3. 

3.1. Analysis of differentially expressed genes carrying PAS-SNPs 

A total of 309 and 373 PAS-SNPs specific to either the Fat or Lean line 
located in 583 genes (Fat: 257, Lean: 318, Both: 8) were identified by 
Šimon et al. (2023). Sanger sequencing confirmed the presence of 
selected PAS-SNPs (Supplementary Fig. 3). 

Of the 583 genes carrying PAS-SNPs, differential expression of 
microarray probes was detected for 101 genes, most of which were 
differentially expressed in pooled WAT samples (29 genes), followed by 
the adrenal gland (27). The tissues with the lowest number of DEGs with 
PAS-SNPs were liver (15) and kidney (17). Four genes are shared by all 
tissues; Gsn, H2-D1, Rpl14, and Snx6 (Supplementary Fig. 4). 

The vast majority of the 101 genes are protein-coding (96 genes), 
while 5 genes encode lncRNAs. Affymetrix probe sets of 50 genes were 

Fig. 2. Potential consequences of APA caused by PAS-SNPs on mRNA and protein. APA in 3′ UTR affects the number of mRNA interaction and modification sites, and 
protein truncation caused by intronic APA alters the protein function by reducing the number of interactions and disrupting protein domains. 
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Fig. 3. Study workflow. The main steps include whole-genome sequencing, identification of PAS-SNPs, gene expression analysis, PAS-SNPs in DEGs, manual ex-
amination and PAS-SNPs prioritisation. Stars near the genes in the tables indicate genes carrying high-priority PAS-SNP candidates. Arrows in the 3′ UTR length and 
Transcript length columns indicate transcript truncation (→←) and lengthening (←→). Steps and results on the grey background, “Previous results”, are from our 
previous studies (Bünger and Hill, 1999; Šimon et al., 2023). 
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expressed to a higher level and 43 to a lower level in the Fat line than in 
the Lean (not considering the tissue studies). In addition, probe sets of 8 
genes were both up- and down-regulated in the Fat line: Bltp1, Abi3bp, 
Fbln7, H2-Aa, H2-D1, Nrg4, Sptbn1, and Tenm4. Functional enrichment 
analysis of DEGs with the g:Profiler showed that DEGs with higher 
abundance in the Fat line are involved in cell adhesion and are part of 
the organelle membrane. Meanwhile, DEGs with lower abundance are 
localised in the cytoplasm and plasma membrane, where they are part of 
neurons and the MHC immune complex. KEGG and Wikipathways 
enrichment analyses revealed that DEGs with higher expression may be 
involved in arrhythmogenic right ventricular cardiomyopathy and 
eicosanoid metabolism via cytochrome P450 monooxygenases, while 
the DEGs with lower abundance are involved in focal adhesion: PI3K- 
Akt-mTOR-signaling pathway. In addition, the more abundant DEGs 
were enriched as mmu-miR-1932 and mmu-miR-450a-5p targets and 
those with lower abundance might be under the regulatory control of the 
miRNA mmu-miR-5104 (Supplementary Fig. 5). 

3.2. Candidate PAS-SNPs 

To identify PAS-SNPs with potential impact on alternative usage of 
PA sites, we compared the positions of PAS-SNPs and PA sites with the 
positions and expressions of microarray probes within a single gene. A 
manual examination of 101 genes identified 19 PAS-SNPs with the 
likelihood to influence the APA of 17 genes. Among the 17 genes, PAS- 
SNPs could affect the 3′ UTR length of 12 genes, the length of 1 lncRNA 
(1700086O06Rik) and the length of proteins encoded by 4 genes 
(Table 1). 

The examples of manual examination of PAS-SNPs in the 3′ UTR and 
intronic regions of two genes are given in Fig. 4. The rs245246928 and 
rs265523112 in Nmrk1 of the Lean line cause the loss of the PAS motif 
(CATAAA→CATAGG) of the predominantly used 3′ UTR PA site of 
Nmrk1, possibly extending the 3′ UTR of Nmrk1 in the kidney (Fig. 4a). 
Meanwhile, in Agmo of the Fat line, rs29207890 changes a less abundant 
motif ACTAAA to the second most abundant motif ATTAAA, possibly 
resulting in a very short protein in the adrenal gland and kidney encoded 

by only the first two exons (Fig. 4b). 

3.3. Candidate 3′ UTR PAS-SNPs 

The 14 identified PAS-SNPs (Fat: 4, Lean line: 10) could cause 
different 3′ UTR lengths of 12 protein-coding genes (Fat: 4, Lean line: 8) 
between the two lines. Among these, the 3′ UTR length of 8 transcripts 
would be shorter in the Fat line and 4 longer than in the Lean line. These 
differences would result in a different number of available sites for 
miRNA and RBP binding, RNA-RNA interactions and RNA modifica-
tions. For example, in the Lean line, the rs52133194 causes the loss of 
PAS (AACAAA→AACACA), which lengthens the 3′ UTR of Eif2s1, 
resulting in a higher number of miRNA-, RNA-RNA interaction- and 
RBP-binding sites in the 3′ UTR compared to the Fat line (Table 2). 

3.4. Candidate intronic PAS-SNPs 

5 PAS-SNPs (Fat line: 2, Lean line: 3) within 5 genes (Fat line: 2, Lean 
line: 3) may affect the length of 1 lncRNA (1700086O06Rik) and 4 
protein-coding genes (Abi3bp, Agmo, Itga7, Prr16). Consequently, 
mRNAs transcribed from these genes may lose/maintain interactions 
with other RNAs (depending on the effect of PAS-SNP on the PAS motif), 
while proteins may lose/maintain functional domains (Table 3). 

For example, the rs254851498 (ATTAAA→AATAAA) of the Lean line 
may truncate the lncRNA 1700086O06Rik, however, the RNA-RNA 
interaction sites in this transcript would be conserved. The PAS-SNP 
rs29207890 (ACTAAA→ATTAAA) in the second intron of Agmo in the 
Fat line would result in a lost interaction with Sf3a2 and a shorter 
protein with lost fatty acid hydroxylase and transmembrane domains 
(Supplementary Fig. 6a). Meanwhile, the rs32060094 PAS-SNP in Prr16 
of the Lean line changes AATAGA to a more abundant motif AATACA, 
possibly leading to the production of a shorter transcript with lost 
interaction sites for multiple RNAs and a shorter protein encoded by 
only a single exon with loss of the Largen/Inhibitory synaptic factor 1 
domain (Supplementary Fig. 6b). 

Table 1 
Candidate PAS-SNPs identified in the fat and lean mouse selection lines.  

Mouse 
line 

PAS-SNP Gene symbol Region Consequence (Fat vs 
Lean) 

Tissueb 

Lean rs48329771 Edil3 3′ UTR Longer 3′ UTR Adrenal gland 
Fat rs37844368 Ehd1 3′ UTR Shorter 3′ UTR WAT 
Lean rs52133194 Eif2s1 (Fob2 QTLa) 3′ UTR Shorter 3′ UTR Adrenal gland, liver, thymus, sWAT, mWAT 
Lean rs31062829 Fbxl3 3′ UTR Shorter 3′ UTR Muscle 
Lean rs229072835 Hlf 3′ UTR Shorter 3′ UTR Thymus 
Lean rs255472708, 

rs221503910 
Hsf2bp 3′ UTR Shorter 3′ UTR Liver 

Lean rs32227744 Knop1 3′ UTR Longer 3′ UTR Adrenal gland 
Lean rs244789005 Lair1 3′ UTR Longer 3′ UTR WAT, sWAT, mWAT 
Lean rs245246928, 

rs265523112 
Nmrk1 3′ UTR Shorter 3′ UTR Kidney 

Fat rs263963399 Rpl14 3′ UTR Shorter 3′ UTR Adrenal gland, kidney, liver, muscle, thymus, BAT, WAT, sWAT, 
mWAT, eWAT 

Fat rs31703795 Spon1 3′ UTR Shorter 3′ UTR adrenal gland, kidney, muscle, thymus, sWAT, mWAT, eWAT 
Fat rs32967435 Txndc9 3′ UTR Longer 3′ UTR muscle 
Lean rs254851498 1700086O06Rik intron (1/1) Longer lncRNA Adrenal gland, BAT 
Lean rs50706522 Abi3bp intron (14/ 

34) 
Shorter protein Adrenal gland 

Fat rs29207890 Agmo (Fob2 QTLa) intron (2/12) Shorter protein Adrenal gland, kidney 
Fat rs260246262 Itga7 intron (1/24) Longer protein WAT 
Lean rs32060094 Prr16 intron (1/1) Longer protein WAT, sWAT, mWAT 

Genes: Edil3: EGF-like repeats and discoidin I-like domains 3; Ehd1: EH-domain containing 1; Eif2s1: eukaryotic translation initiation factor 2, subunit 1 alpha; Fbxl3: F- 
box and leucine-rich repeat protein 3; Hlf: hepatic leukemia factor; Hsf2bp: heat shock transcription factor 2 binding protein; Knop1: lysine rich nucleolar protein 1; 
Lair1: leukocyte-associated Ig-like receptor 1; Nmrk1: nicotinamide riboside kinase 1; Rpl14: ribosomal protein L14; Spon1: spondin 1, (f-spondin) extracellular matrix 
protein; Txndc9: thioredoxin domain containing 9; Abi3bp: ABI family member 3 binding protein; Agmo: alkylglycerol monooxygenase, transcript 
ENSMUST00000049874; Itga7: integrin alpha 7; Prr16: proline rich 16. 

a The gene is located within the Fat-line obesity QTL 2 (Fob2) determined by (Horvat et al., 2000). 
b sWAT - subcutaneous white adipose tissue (WAT), mWAT - mesenteric WAT, eWAT - epididymal WAT, WAT - pooled WAT, BAT - brown adipose tissue. 
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3.5. DNA sequence analysis upstream of PA sites having candidate PAS- 
SNPs 

Finally, we checked for the presence of other PAS sites in the region 
60 bp upstream of PA sites with PAS-SNPs. In addition, we obtained 
other SNPs and indels 60 bp upstream for these PA sites to check 
whether other genetic variants could generate de-novo PAS. In priori-
tising the PAS-SNPs, we primarily considered their effects on the two 
major PAS motifs, AATAAA and its main variant ATTAAA, and in 
particular whether they affect a single PAS motif of the corresponding 
PA site. None of the other SNPs produce de-novo PAS. Fig. 5 shows the 
location and impact of the high-priority candidate PAS-SNPs. Of 
particular note here are PAS-SNPs in Abi3bp, Fbxl3, Hsf2bp, and Nmrk1 
of the Lean line, which cause a complete loss of the known PAS motifs of 
the corresponding PA sites, thus likely preventing PA from occurring 
here (Fig. 5). 

4. Discussion 

In the present study, WGS, transcriptome and bioinformatics data 
were combined to prioritise the PAS-SNP candidates that could affect the 
function and mRNA to protein translation of the corresponding genes. 
Out of 583 genes carrying 688 PAS-SNPs, 101 are differentially 

expressed between the Fat and Lean mouse lines. The manual inspection 
identified 12 high-priority and 7 moderate-priority PAS-SNP candidates 
within 10 and 7 genes, respectively, including within genes previously 
associated with obesity and obesity-related traits and comorbidities. 

4.1. Pathway enrichment analysis 

KEGG and WikiPatways enrichment analyses of DEGs carrying PAS- 
SNPs revealed that DEGs with higher expression may be involved in 
arrhythmogenic right ventricular cardiomyopathy and participate in 
eicosanoid metabolism via cytochrome P450 (CYP) monooxygenases, 
while those with lower abundance are involved in focal adhesion: PI3K- 
Akt-mTOR pathway. Obesity is a known risk factor for cardiovascular 
disease, and a study by Sokmen et al. (2013) found that obesity is 
associated with abnormalities in right ventricular structure and func-
tion. Regarding eicosanoid metabolism, it was suggested that the in-
crease in CYPs-mediated eicosanoid metabolites contributes to the 
pathology of obesity and associated health problems (Wang et al., 
2016c). Meanwhile, the dysregulated PI3K-Akt-mTOR pathway has 
been linked to obesity, diabetes, hyperglycaemia, and insulin resistance 
(Khan et al., 2016; Schultze et al., 2012; Yin et al., 2017), which were 
found in our Fat mice (Morton et al., 2005, 2016; Simončič et al., 
2008b). Finally, DEGs with higher abundance in the Fat line were 

Fig. 4. Examples of manual examination for the prioritisation of PAS-SNP candidates involved in (a) 3′ UTR (gene Nmrk1) and (b) intronic (gene Agmo) APA. 
Legend: 2nd track, purple arrow – the most used 3′ UTR PA site, blue arrow – the most used intronic PA site, the purple box indicates the PAS-SNPs could affect the 
most used 3′ UTR PA site; 4th to 13th track (Affymetrix probes (AP) in different tissues), black rectangles – no expression difference between the lines, red and green 
rectangles – the expression being higher and lower in the Fat line compared to the Lean line, respectively, black box – tissue where PAS-SNP could affect APA. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 
Candidate 3′ UTR PAS-SNPs and their potential effect on 3′ UTR lengths and, consequently, the abundance of regulatory motifs in their corresponding genes.  

Mouse 
line 

SNP Gene 
symbol 

Effect on 
PAS 

Consequence (fat 
vs lean) 

miRNA (Tarbase v8) RNA-RNA 
interaction (RISE) 

RBP binding 
(RISE) 

RNA editing/ 
modification (RISE) 

Lean rs48329771 Edil3 lost motif Longer 3′ UTR mmu-miR-19a-3p / / / 
mmu-miR-19b-3p 
mmu-miR-7a-5p 
mmu-miR-1a-3p 
mmu-miR-206-3p 
mmu-miR-218-5p 
mmu-miR-706 

Fat rs37844368 Ehd1 lost motif Shorter 3′ UTR mmu-miR-26a-5p Optn CPSF6 / 
mmu-miR-26b-5p PABPC1 
mmu-miR-155-5p UPF1 
mmu-miR-762  
mmu-miR-882  

Lean rs52133194 Eif2s1 lost motif Shorter 3′ UTR mmu-miR-26a-5p Gm42418 U2AF2 (also 
upstream) 

/ 

mmu-miR-26b-5p SRRM4 (also 
upstream) 

mmu-miR-133a-3p EZH2 (also 
upstream) 

mmu-miR-133b-3p 
(also upstream) 

APC (also 
upstream) 

mmu-miR-499-5p RBFOX2 (also 
upstream) 

mmu-miR-677-5p  
Lean rs31062829 Fbxl3 MA → LA 

motif (C2) 
Shorter 3′ UTR mmu-miR-20a-5p (also 

upstream) 
U1 CELF4 (also 

upstream) 
Y 

mmu-miR-669k-3p 
(also downstream)  

FUS (also 
upstream)  

mmu-miR-106b-5p 
(also upstream)  

RBFOX2 (also 
upstream)  

mmu-miR-142a-5p 
(also upstream)  

EZH2 (also 
upstream)  

mmu-miR-26a-5p (also 
upstream)  

LIN28A (also 
upstream)  

mmu-miR-23a-3p (also 
upstream)  

TARDBP (also 
upstream)  

mmu-miR-669c-5p 
(also upstream)    
mmu-miR-499-5p (also 
upstream)    
mmu-miR-142a-3p    
mmu-miR-15a-5p    
mmu-miR-15b-5p    
mmu-miR-16-5p    
mmu-miR-21a-3p    
mmu-miR-23b-3p (also 
upstream)    
mmu-miR-26b-5p    
mmu-miR-31-3p    
mmu-miR-486a-5p    
mmu-miR-21a-5p    
mmu-miR-28a-3p    
mmu-miR-501-5p    

Lean rs229072835 Hlf MA → LA 
motif (C1) 

shorter 3′ UTR / Ptbp1 / / 
Gm22748 
Gm25855 

Lean rs255472708, 
rs221503910 

Hsf2bp lost motif shorter 3′ UTR / U1 RBFOX2 (also 
upstream) 

/ 

Gm23105   
Lean rs32227744 Knop1 LA → MA 

motif (C1) 
longer 3′ UTR mmu-miR-1a-3p (also 

upstream) 
U1 LIN28A (also 

upstream) 
m6A (also upstream - 
few) 

mmu-miR-206-3p (also 
upstream) 

Gm24119 EZH2 (also 
upstream)  

mmu-miR-15a-5p Snhg17 LIN28A (also 
upstream)  

mmu-miR-16-5p Snora33 RBFOX2 (also 
upstream)  

mmu-miR-15b-5p Snora34 APC  
mmu-miR-532-5p Zc3h13 SRRM4 (also 

upstream)  
mmu-miR-133a-5p Gm26224 RBFOX2 (also 

upstream)  
mmu-miR-322-5p  U2AF2  

(continued on next page) 

M. Šimon et al.                                                                                                                                                                                                                                  



Gene Reports 35 (2024) 101903

9

enriched as mmu-miR-1932 and mmu-miR-450a-5p targets, while those 
with lower abundance might be under the regulatory control of the 
miRNA mmu-miR-5104. Interestingly, up-regulation of miR-450a-5p 
restored insulin sensitivity and reduced lipid accumulation (Wei et al., 
2020). A more detailed exploration of how these pathways interact and 
contribute to the complex phenotype of obesity would be beneficial. 
Systems biology approaches based on larger datasets would provide 
more holistic view of the interplay between different genetic and 
metabolic pathways. 

4.2. Potential effect of candidate PAS-SNPs in 3′ UTR 

In the present study, PAS-SNPs within 12 genes could affect the 3′ 
UTR APA, resulting in transcripts with different 3′ UTR lengths and 
therefore abundance of binding motifs for RNAs in the Fat and Lean 
lines. Due to the PAS-SNPs, the 3′ UTR of 4 transcripts in the Fat line 
(Edil3, Knop1, Lair1, and Txndc9) would be longer and 8 (Edh1, Eif2s1, 
Fbxl3, Hlf, Hsf2bp, Nmrk1, Rpl14, and Spon1) shorter. 

The PAS-SNP in the Lean line may shorten the 3′ UTR of Edil3 in the 
adrenal gland, resulting in lost target sequences for 7 miRNAs. Edil3 was 
recently identified as a novel candidate obesity-driven gene (Cobb et al., 

Table 2 (continued ) 

Mouse 
line 

SNP Gene 
symbol 

Effect on 
PAS 

Consequence (fat 
vs lean) 

miRNA (Tarbase v8) RNA-RNA 
interaction (RISE) 

RBP binding 
(RISE) 

RNA editing/ 
modification (RISE) 

mmu-miR-125b-5p  PABPC1 (also 
upstream)  

mmu-miR-19a-3p    
mmu-miR-19b-3p    
mmu-miR-125a-3p    
mmu-miR-155-5p    
mmu-miR-18a-5p    
mmu-miR-195a-5p    
mmu-miR-26b-5p    
mmu-miR-29b-1-5p    
mmu-miR-378a-5p    
mmu-miR-381-3p    
mmu-miR-500-3p    
mmu-miR-501-5p    
mmu-miR-532-3p    

Lean rs244789005 Lair1 MA → LA 
motif (C1) 

longer 3′ UTR / / / / 

Lean rs245246928, 
rs265523112 

Nmrk1 lost motif shorter 3′ UTR mmu-miR-29b-3p / / / 

Fat rs263963399 Rpl14 MA → LA 
motif (C1) 

shorter 3′ UTR / Malat1 FUS (also 
upstream) 

m6A 

U1 LIN28A  
Snord35a PABPC1  

Fat rs31703795 Spon1 LA → MA 
motif 

shorter 3′ UTR / Kif13a / / 

Fat rs32967435 Txndc9 lost motif longer 3′ UTR / / PABPC1 (also 
upstream) 

/ 

Column “Effect of PAS-SNP”, MA – more abundant, LA – less abundant, C1 – canonical PAS AATAAA, C2 – most important canonical PAS analogue ATTAAA. 

Table 3 
Candidate intronic PAS-SNPs and their potential effect on lncRNA/protein lengths and, consequently, the abundance of interaction sites and functionality.  

Mouse 
line 

PAS-SNP Gene symbol Intron Transcript Domain (Ensembl) RNA-RNA 
interaction (RISE) 

Protein 
interactions 
(UniProt) 

Effect (fat vs 
lean) 

Lean rs254851498 1700086O06Rik – ENSMUST00000181757 – Gm12896 / Unchanged 
Sesn3 
Gm22620 
Snora44 
Mir5117 
Snord104 
Smg5 
Cntnap5b 
Plekha2 

Lean rs50706522 Abi3bp 14/ 
34 

ENSMUST00000096012 C-terminal fibronectin type 
III 

Gm22457 / Less 

Fat rs29207890 Agmo 2/12 ENSMUST00000049874 Fatty acid hydroxylase; 
transmembrane domains 

Sf3a2 / Less 

Fat rs260246262 Itga7 1/24 ENSMUST00000099112 Integrin alpha chain; 
transmembrane domain 

Crtc2 / More 
Plagl1 
Mer81 
Mettl7b 

Lean rs32060094 Prr16 1/1 ENSMUST00000116639 Protein Largen/Inhibitory 
synaptic factor 1 

Snora34 / More 
Tbc1d13 
Rab3b 
Gm26447 
Gm26448 
Mtd  
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2021), and may regulate the hypothalamic-pituitary-adrenal axis 
(Kanczkowski et al., 2013). Considering this, dysregulated Edil3 
expression observed in the present study could contribute to the distinct 
phenotypes of our mouse models. PAS-SNPs in the Lean line potentially 
also truncate 3′ UTR of Knop1 and Lair1 in the adrenal gland and WAT, 
respectively. KNOP1 was recently considered a new candidate for body 
mass index in children (Yao et al., 2021). The 3′ UTR of Knop1 in the 
Lean line would lose binding sites for several miRNAs, RNA and protein 
interactions, and most m6A modification sites. Among the possible in-
teractions with miRNAs, miR-532-5p (Ortega et al., 2013), miR-19a-3p 
(Huang et al., 2018), and miR-125a-3p (Chen et al., 2015) have been 
linked to obesity, while the long non-coding RNA SNHG17 (small 
nucleolar RNA host gene 17) and the protein U2AF2 (U2 small nuclear 
RNA auxiliary factor 2) have been linked to diabetes (Li et al., 2021; 
Vastrad and Vastrad, 2021). Meanwhile, a higher expression of a longer 
Lair1 isoform was noted in the present study. The interaction of human 
LAIR1 with adiponectin, a hormone modulating insulin resistance, 
glucose and lipid metabolism, has been demonstrated to suppress T cell 
activation (Zhang et al., 2021), suggesting Lair1 and its PAS-SNPs 
rs244789005 as candidates that influence immune environment and 
metabolic health in WAT. 

On the other hand, PAS-SNPs within Eif2s1, Fbxl3, Hlf, Hsf2bp and 

Nmrk1 of the Lean line, could shift PA to more distal PA sites, resulting in 
transcripts with longer 3′ UTRs compared to the Fat line. Mice Eif2s1 
(eukaryotic translation initiation factor 2, subunit 1 alpha), located 
within the obesity quantitative trait locus, was genetically mapped in 
the F2 cross between the Fat and Lean line, Fob2 (Horvat et al., 2000). It 
has a function in minor initiation pathways and affects the translation of 
a small number of mRNAs (Anderson et al., 2021). EIF2S1 is essential for 
the integrity of the endoplasmic reticulum, and heterozygous Eif2s1+/ 

tm1Rjk mice became obese and diabetic on a high-fat diet (Scheuner et al., 
2005), linking endoplasmic reticulum stress and obesity. Expression of 
the longer transcript in the adrenal gland, thymus and WAT was lower in 
the Fat line, suggesting that some of regulators targeting 3′ UTR may 
promote Eif2s1 translation in the Lean line. Given that Eif2s1 maps to the 
Fob2 QTL genomic interval in a Fat and Lean line cross (Horvat et al., 
2000), that independent transgenic mice demonstrated obesity pheno-
type along with other physiological and functional relevance of EIF2S1 
to metabolism and obesity development, makes Eif2s1 and its PAS site 
polymorphism in the Lean line a high priority candidate gene for future 
experiments in examining the causal role of differential PA site usage in 
obesity or leanness. 

Fbxl3 plays a crucial role in controlling the length of the circadian 
period (Siepka et al., 2007). Disruption of circadian clock in skeletal 

Fig. 5. DNA sequences of PA clusters and 60 bp upstream of genes carrying high-priority PAS-SNP candidates. PA site ID - most often cleavage site in this region 
according to PolyASite 2.0 portal, PA cluster - the longer the box the more variable the cleavage site. For each gene, the DNA sequence of the mouse line differing 
from the reference is provided. 
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muscle impairs glucose and energy metabolism and leads to insulin 
resistance (Gutierrez-Monreal et al., 2020), changes in muscle mass and 
strength and eventually to a decrease in daily physical activity (Aoyama 
and Shibata, 2017). More importantly, loss-of-Fbxl3-function mice 
exhibited longer free-running period (Srikanta and Cermakian, 2021), 
which was observed for our Lean compared to the Fat line (Simončič 
et al., 2008a), suggesting a higher Fbxl3 expression in the Fat line may 
contribute to its lower physical activity and obese phenotype, making 
the rs31062829 a candidate “lean” allele. 

The PAS-SNP in Hlf of the Lean line may result in a higher expression 
level of Hlf with a shorter 3′ UTR in the thymus of the Fat line. HLF is an 
oncogenic transcription factor that is a strong negative regulator of 
lymphoid development (Wahlestedt et al., 2017), also involved in T-cell 
differentiation in thymus (Smith et al., 1999). Its potential regulator 
Ptbp1 (polypyrimidine tract binding protein 1) is also associated with 
thymocyte development (Bertonha et al., 2020). Interestingly, knock-
down of HLF significantly reduced lipid content in 3T3-L1 cells (Dzi-
toyeva and Manev, 2013), suggesting that higher expression of a shorter 
transcript in the Fat line may contribute to its adiposity. 

Our previous study found higher hepatic expression of cholesterol 
biosynthesis genes and protective HDL cholesterol levels in the Lean line 
(Simončič et al., 2011). In the present study, two PAS-SNPs were iden-
tified as high-priority candidates in the Lean line. They might cause 
higher expression of Hsf2bp with a shorter 3′ UTR in the Fat line liver. 
Oprea (2019) suggests that HSF2BP plays a role in lowering HDL 
cholesterol levels. The retained sequence in the 3′ UTR of Hsf2bp of the 
Lean line would attract the potential regulator Rbfox2, which has been 
shown to regulate genes involved in lipid and cholesterol biosynthesis 
(Wu et al., 2018). 

Two PAS-SNPs in Nmrk1 of the Lean line cause the region upstream 
of their PA site to be devoid of known PAS, likely rendering this PA site 
inactive, resulting in a longer 3′ UTR length. In kidneys, NMRK1 (also 
known as NRK1) plays a key role in NAD+ biosynthesis, which is 
required for their proper function (Hershberger et al., 2017). Dysregu-
lation of NAD+ metabolism is associated with obesity and the develop-
ment of diabetic kidney disease (Ralto et al., 2020). According to the 
Ensembl database, both SNPs are also present in obesity-resistant mice 
strain CAST/EiJ (Karunakaran and Clee, 2018), suggesting a positive 
effect of the longer transcript on leanness. Preclinical models show that 
NAD+ pools decline also in obesity and replenishment prevents meta-
bolic syndrome and reduces blood pressure (Abdellatif et al., 2021). 
Since our Lean line has higher expression of the longer variant of 
NMRK1 (Supplementary Table 3), this results further supports Nmrk1 
and genetic variation in PAS site as a high priority anti-obesity 
candidate. 

In the Fat line, PAS-SNPs may cause shortening of the 3′ UTR of Ehd1, 
Rpl14 and Spon1, but elongating the Txndc9 transcript. Mice lacking 
EHD1 have less esterified cholesterol and triglycerides stored in lipid 
droplets (Naslavsky et al., 2007). A motif lost by PAS-SNP in a distal part 
of the Ehd1 transcript would move the site of PA upstream. Considering 
that protein and transcript expression levels of EHD1 were among the 
highest in obesity-prone rats compared to obesity-resistant rats (Joo 
et al., 2011), miRNAs likely have a negative impact on the Ehd1 
transcript-to-protein conversion in the Lean line. For example, the 
expression level of miR-26b correlates negatively with increasing body 
mass index (Xu et al., 2015), suggesting that rs37844368 may be a 
candidate “obesity” allele. 

The rs263963399 in the Fat line may shorten the 3′ UTR of the Rpl14 
in all tissues examined. RPL14 expression is downregulated in obese 
individuals (Wang et al., 2016a), possibly increasing apoptosis (Germani 
et al., 2018; Wang et al., 2016a). Evidence suggests that pathways of 
programmed cell death are activated in hypertrophied adipocytes, 
contributing to metabolic abnormalities (Eguchi and Feldstein, 2014). 
Compared to the longer 3′ UTR of Rpl14 in the Lean line, the 3′ UTR of 
the Fat line would lose target sites for PABPC1 (poly(A) binding protein, 
cytoplasmic 1), which is one of the key proteins in post-transcriptional 

regulation, acting as both a translational stimulator and repressor 
(Kini et al., 2016; Liu et al., 2016; Zhang et al., 2015). As in the case of 
Rpl14, a PAS-SNP in Spon1 may shorten its 3′ UTR in several tissues of 
the Fat line, resulting in the loss of an interaction site for Kif13a (kinesin 
family member 13A). Lower SPON1 protein abundance was associated 
with body mass index (Lind et al., 2020). A potentially lost interaction 
with Kif13a could, according to previous studies (Delevoye et al., 2014; 
Gutiérrez et al., 2021; Nakagawa et al., 2000; Zhou et al., 2013), indicate 
changes in the localisation of SPON1 in the Fat line. 

4.3. Potential effect of candidate intronic PAS-SNPs 

Compared to the 3′ UTR APA (which accounts for about 80 % of APA 
events), intronic APA occurs less frequently because it can lead to mRNA 
decay or the production of proteins with altered functions (Nourse et al., 
2020; Yuan et al., 2021). Here, we report 5 PAS-SNPs with a likelihood 
to influence the length and thus the functionality of 5 genes 
(1700086O06Rik, Abi3bp, Agmo, Itga7 and Prr16). 

LncRNAs play important regulatory roles in various human diseases 
(Chen et al., 2021). In the present study, a PAS-SNP in the 
1700086O06Rik of the Lean line potentially truncates the 
1700086O06Rik transcript. However, the position for several known 
interactions with other RNAs is retained in this short transcript, 
consistent with previous observations that only 15–45 % of conserved 
elements in lncRNAs localise after the first polyadenylation site (Chen 
et al., 2021). Nevertheless, alternative cleavage could direct the two 
transcripts of different lengths between the lines into different cellular 
compartments (Chen et al., 2021), where the potential biological sig-
nificance of interactions with other RNAs could change. Among its RNA 
interaction partners, Sesn3 (sestrin 3) has been linked to type 2 diabetes 
(Nascimento et al., 2013), dyslipidaemia (Sundararajan et al., 2021), 
insulin sensitivity/resistance (Tao et al., 2015), and adipogenesis (Lin 
et al., 2021). 

The PAS-SNP within Abi3bp of the Lean line destroys PAS, possibly 
allowing the entire protein to be encoded. Should this site be active, 
transcription of this gene would be prematurely terminated in the ad-
renal gland of the Fat line, resulting in a protein with a partially lost C- 
terminal fibronectin type III domain. ABI3BP is a multifunctional 
autocrine/paracrine factor (Hodgkinson et al., 2013) linked to several 
diseases, including cardiovascular diseases (Delfín et al., 2019), and 
various cancers and tumours (Cai et al., 2020; Feng et al., 2023; Latini 
et al., 2008). Perhaps more noteworthy, its expression responded to 
refeeding (Qiao et al., 2019), and its interaction partner Gm22457 
(Snora9) (RISE) was identified as a candidate gene for intramuscular fat 
content (Cesar et al., 2018). The above results suggest that the Fat line 
may suffer from various comorbidities due to the alteration of Abi3bp, 
and its possible role in obesity (feeding behaviour, intramuscular fat) 
requires further investigation. 

Meanwhile, a PAS-SNP in the second intron of Agmo in the Fat line 
may cause transcription termination at this site, which would result in a 
truncated protein with lost fatty acid hydroxylase and transmembrane 
domains in the adrenal gland and kidney. The result suggests changes in 
the lipidome in these two organs of the Fat line, which has been previ-
ously shown in obesity (Escasany et al., 2019; Witt et al., 2020). 

In contrast, the PAS-SNPs within Itga7 and Prr16 in the Fat and Lean 
lines, respectively, may lead to longer proteins in the WAT of the Fat 
line. Extracellular vesicle populations expressing ITGA7 (integrin alpha 
7) have been associated with human adiposity (Zhai et al., 2022). In the 
study by Chen et al. (2022), ITGA7 was demonstrated to transduce 
signals from extracellular matrix deposits such as collagens, activating 
phosphorylation cascades to promote adipogenesis. The Itga7 RNA in the 
Fat line would retain interaction sites for three RNAs and the trans-
posable element Mer81. As for the RNAs, CRTC2, PLAGL1 and METTL7B 
have been linked to whole-body energy homeostasis (Han et al., 2020), 
diabetes (Kamiya, 2000) and cellular lipid accumulation (Yang et al., 
2021), respectively. As for Mer81, human MER81 serves as a precursor 
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for hsa-mir-584 (Piriyapongsa et al., 2007), which has been linked to 
adipocyte growth and differentiation (Machal et al., 2015). 

Consistent with this, the PAS-SNP in Prr16 of the Lean line possibly 
causes the truncated protein with a loss of Largen/inhibitory synaptic 
factor 1 domain in WAT. PRR16/Largen protein has been demonstrated 
to regulate mammalian cell size independently of the mTOR and Hippo 
regulatory pathways (Yamamoto and Mak, 2017). Considering the 
findings of Petäjä et al. (2013), who showed that increased adipocyte 
size alone strongly promotes fat accumulation in the liver independent 
of other factors (Petäjä et al., 2013), the higher expression of active 
PRR16 in the Fat line compared to the Lean line could contribute to the 
increased adipocyte size and consequently increased fat accumulation. 
In other words, the lost functional domain in the Lean line protein could 
be a strategy to resist obesity and contribute to the lean phenotype, 
making the Prr16 and its PAS polymorphism rs32060094 an interesting 
candidate for future functional studies. 

In our study focused on alternative polyadenylation and its genetic 
determinants, we have identified 19 PAS-SNPs within 17 genes with a 
potential influence on APA. Prioritized candidate SNPs and genes pro-
vide a foundation for translation to human obesity, representing a step 
towards development of diagnostic markers and the identification of 
novel targets for therapeutic interventions. 

However, it is imperative to address certain considerations for future 
research. The complexity, particularly related to Affymetrix probe sig-
nals amalgamating various splice forms, may be particularly relevant 
when considering intronic APA, where the distribution and number of 
probes further contribute to this challenge. Consequently, observed 
differences in probe set expressions may not solely arise from PAS-SNPs 
but could also be attributed to variations in transcript isoforms, as well 
as other expression regulations such as SNPs in promoters, methylation, 
and RNA-RNA interactions. In the future, eQTL analysis will be done to 
validate the proposed effect of PAS-SNPs on expression (transcript iso-
form abundance). Additionally, our reliance on PolyASite 2.0 portal 
data may not comprehensively represent all PA sites in our models. 
Looking ahead, advanced techniques for the detection of poly-
adenylation sites like whole transcriptome termini site sequencing 
(WTTS-seq) will facilitate the exploration of tissue-specific APA events 
and their functional consequences, with a particular focus on employing 
proteomics to confirm translation potential. Furthermore, extending our 
investigation to encompass genetic variants located in regulatory re-
gions beyond PAS, such as upstream U-rich and downstream G-rich re-
gions, will broaden our understanding of APA events; the whole genome 
SNP analysis of these mouse lines can be found in ̌Simon et al. (in press). 
Future research could employ RNA-seq for a more comprehensive and 
quantitative assessment of transcriptomic differences and APA events. 
These collective considerations will enrich our comprehension of APA’s 
genetic mechanisms, particularly in obesity development. 

To demonstrate functional effects for prioritized SNPs, it would be 
beneficial to examine protein expression levels or conduct RNA-binding 
protein immunoprecipitation assays. Techniques such as CRISPR-Cas9 
mediated SNP editing and reporter assays could validate the effects on 
gene expression and phenotype. Since obesity is a complex trait influ-
enced by numerous genetic and environmental factors, future studies 
should account for potential confounders such as diet, physical activity 
levels, and background genetic variations that could influence the 
observed associations. 

5. Conclusion 

The integration of whole-genome sequencing and transcriptome 
analyses in this study has identified genome-wide candidate SNPs that 
could affect APA by altering/disrupting PAS motifs and be related to 
obesity in mice. The analysis revealed 13 “lean” and 6 “obese” candidate 
PAS-SNPs in 11 and 6 genes, respectively, representing an important 
resource for future functional studies focusing on these PAS-SNPs, their 
effects on APA and their contribution to the obese/lean phenotype. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.genrep.2024.101903. 
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M. Šimon et al.                                                                                                                                                                                                                                  

https://doi.org/10.1371/journal.pone.0227547
http://www.goldenhelix.com
http://www.goldenhelix.com
https://doi.org/10.1016/j.physbeh.2018.01.026
https://doi.org/10.1016/j.physbeh.2018.01.026
https://doi.org/10.1007/s003359901063
https://doi.org/10.1007/s003359901063
https://doi.org/10.1155/2020/3420946
https://doi.org/10.1186/s12864-018-4871-y
https://doi.org/10.3803/EnM.2017.32.4.413
https://doi.org/10.1038/srep11909
https://doi.org/10.1038/srep11909
http://refhub.elsevier.com/S2452-0144(24)00026-8/rf0060
http://refhub.elsevier.com/S2452-0144(24)00026-8/rf0060
https://doi.org/10.1002/mnfr.202101088
https://doi.org/10.1002/mnfr.202101088
https://doi.org/10.1016/j.ygyno.2021.08.010
https://doi.org/10.1093/bio-informatics/btx364
https://doi.org/10.1093/bio-informatics/btx364
https://doi.org/10.1016/j.celrep.2014.01.002
https://doi.org/10.3389/fcvm.2019.00023
https://doi.org/10.3389/fcvm.2019.00023
https://doi.org/10.1038/ng.806
https://doi.org/10.1101/gr.132563.111
https://doi.org/10.1155/2013/297932
https://doi.org/10.1159/000360509
https://doi.org/10.1159/000494694
https://doi.org/10.1159/000494694
https://doi.org/10.1093/hmg/ddu471
https://doi.org/10.3389/fgene.2022.1085785
https://doi.org/10.7554/eLife.39939
https://doi.org/10.1093/nar/gkx864
https://doi.org/10.1073/pnas.0701266104
https://doi.org/10.1083/jcb.202003183
https://doi.org/10.1083/jcb.202003183
https://doi.org/10.1002/oby.22826
https://doi.org/10.1002/oby.22826
https://doi.org/10.4093/dmj.2019.0200
https://doi.org/10.4093/dmj.2019.0200
https://doi.org/10.1093/nar/gkz918
https://doi.org/10.1038/nrneph.2017.5
https://doi.org/10.1038/nrneph.2017.5
https://doi.org/10.1002/stem.1416
https://doi.org/10.1007/s003350010002
https://doi.org/10.1093/nar/gkaa942
https://doi.org/10.1080/1828051X.2017.1403297
https://doi.org/10.1080/1828051X.2017.1403297
https://doi.org/10.1159/000445061
https://doi.org/10.1159/000445061
https://doi.org/10.1371/journal.pone.0008419
https://doi.org/10.1073/pnas.0900028106
https://doi.org/10.1073/pnas.0900028106
https://doi.org/10.1002/pmic.201000515
https://doi.org/10.1002/pmic.201000515
https://doi.org/10.1093/hmg/9.3.453
https://doi.org/10.1210/en.2012-1617
https://doi.org/10.1093/nar/gkx1141
https://doi.org/10.1152/physiolgenomics.00059.2017
https://doi.org/10.1152/physiolgenomics.00059.2017
https://doi.org/10.1634/theoncologist.2015-0248
https://doi.org/10.1634/theoncologist.2015-0248
https://doi.org/10.1261/rna.053447.115
https://doi.org/10.1002/hec.4451
https://doi.org/10.1002/hec.4451
https://doi.org/10.1677/ERC-08-0079
https://doi.org/10.1677/ERC-08-0079


Gene Reports 35 (2024) 101903

14

Lembo, A., Di Cunto, F., Provero, P., 2012. Shortening of 3′UTRs correlates with poor 
prognosis in breast and lung Cancer. PloS One 7, e31129. https://doi.org/10.1371/ 
journal.pone.0031129. 

Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., Pfister, H., 2014. UpSet: visualization 
of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20, 1983–1992. https://doi. 
org/10.1109/TVCG.2014.2346248. 

Li, J., Du, B., Geng, X., Zhou, L., 2021. Lncrna snhg17 is downregulated in gestational 
diabetes mellitus (GDM) and has predictive values. Diabetes. Metab. Syndr. Obes. 
Targets Ther. 14, 831–838. https://doi.org/10.2147/DMSO.S263942. 

Lianoglou, S., Garg, V., Yang, J.L., Leslie, C.S., Mayr, C., 2013. Ubiquitously transcribed 
genes use alternative polyadenylation to achieve tissue-specific expression. Genes 
Dev. 27, 2380–2396. https://doi.org/10.1101/gad.229328.113. 

Lin, W., Zhao, J., Yan, M., Li, X., Yang, K., Wei, W., Zhang, L., Chen, J., 2021. SESN3 Inhi- 
bited SMAD3 to relieve its suppression for MiR-124, thus regulating pre-adipocyte 
adipogenesis. Genes (Basel) 12, 1852. https://doi.org/10.3390/genes12121852. 

Lind, L., Figarska, S., Sundström, J., Fall, T., Ärnlöv, J., Ingelsson, E., 2020. Changes in 
proteomic profiles are related to changes in BMI and fat distribution during 10 years 
of aging. Obesity 28, 178–186. https://doi.org/10.1002/oby.22660. 

Liu, Y., Lu, X., Shi, J., Yu, X., Zhang, X., Zhu, K., Yi, Z., Duan, E., Li, L., 2016. BTG4 is a 
key regulator for maternal mRNA clearance during mouse early embryogenesis. 
J. Mol. Cell Biol. 8, 366–368. https://doi.org/10.1093/jmcb/mjw023. 

Machal, J., Novak, J., Hezova, R., Zlamal, F., Vasku, A., Slaby, O., Bienertova-Vasku, J., 
2015. Polymorphism in miR-31 and miR-584 binding site in the angiotensinogen 
gene differen- tially influences body fat distribution in both sexes. Genes Nutr. 10, 
37. https://doi.org/10.1007/s12263-015-0488-9. 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., 
Garimella, K., Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A., 2010. The genome 
analysis toolkit: a MapReduce framework for analyzing next-generation DNA 
sequencing data. Genome Res. 20, 1297–1303. https://doi.org/10.1101/ 
gr.107524.110. 

McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A., Flicek, P., 
Cunningham, F., 2016. The Ensembl variant effect predictor. Genome Biol. 17 
https://doi.org/10.1186/s13059-016-0974-4. 
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