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Large scale phenotype imputation and
in vivo functional validation implicate
ADAMTS14 as an adiposity gene

Katherine A. Kentistou 1,2,3, Jian’an Luan 3, Laura B. L. Wittemans3,
Catherine Hambly 4, Lucija Klaric 5, Zoltán Kutalik 6,7,
John R. Speakman 4,8,9, Nicholas J. Wareham 3, Timothy J. Kendall 10,
Claudia Langenberg 3,11, James F. Wilson 2,5, Peter K. Joshi 2 &
Nicholas M. Morton 1

Obesity remains an unmet global health burden. Detrimental anatomical dis-
tribution of body fat is a major driver of obesity-mediated mortality risk and is
demonstrably heritable. However, our understanding of the full genetic con-
tribution to human adiposity is incomplete, as few studies measure adiposity
directly. To address this, we imputewhole-body imaging adiposity phenotypes
in UK Biobank from the 4,366 directly measured participants onto the rest of
the cohort, greatly increasing our discovery power. Using these imputed
phenotypes in 392,535 participants yielded hundreds of genome-wide sig-
nificant associations, six ofwhich replicate in independent cohorts. The leading
causal gene candidate, ADAMTS14, is further investigated in amouse knockout
model. Concordant with the human association data, the Adamts14−/− mice
exhibit reduced adiposity and weight-gain under obesogenic conditions,
alongside an improved metabolic rate and health. Thus, we show that pheno-
typic imputation at scale offers deeper biological insights into the genetics of
human adiposity that could lead to therapeutic targets.

Obesity is the fifth leading cause of death and affects more than 600
million adults worldwide1. Although it is simply defined as a bodymass
index (BMI) over 30 kg/m2, the presentation of the condition is het-
erogeneous. Adipose tissue can be distributed in many different ways
throughout the human body and is often categorised into two main
patterns; central and lower-body adiposity. The former is char-
acterised by excess visceral adipose tissue (VAT) surrounding the intra-
abdominal organs and greatly increases the chances of developing

disease2. Conversely, lower-body adiposity and particularly gluteofe-
moral subcutaneous adipose tissue (SAT), reduces disease risk3,4.
Anthropometric measures, such as BMI and waist-hip ratio (WHR),
offer simple and non-invasive ways to infer adiposity. They are easy to
attain and calculate but are crude representations of the underlying
body shape. Bioelectrical impedance analysis (BIA) is another widely
used low-cost method for inferring whole-body fat content with some
accuracy5. Dual-emission X-ray absorptiometry (DXA) scans are a rapid
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and precise whole-body imaging technology. Unlike other imaging
technologies, DXA scans offer the possibility of whole-body, as well as
regional adiposity analyses6 and it has been shown that both whole-
body and regional DXA adipositymeasures associatewith an increased
mortality risk7. In addition, DXA measures compared to the above
anthropometric measures, correlate more strongly with cardiometa-
bolic risk factors8.

Even though facilitated by today’s obesogenic environments,
geneticpredispositionalsoplays an important role in the development
of obesity9. Genome-wide association studies (GWAS) have been very
successful at identifying genomic loci that associate with measures of
obesity. Since the first large GWAS meta-analysis10, which led to the
identification of the first and strongest BMI-associated locus to date,
FTO11, the number of SNP associations with obesity has now reached
over a thousand12,13. However, very few functional genomics and
experimental studies have been conducted on these GWAS loci, which
forms a bottleneck in elucidating the role of these association signals
in human health and disease. At the same time, obesity GWAS have
primarily focused on easily accessible anthropometric phenotypes,
such as BMI and WHR, and not on disease-relevant adiposity endo-
phenotypes, due to the associated expense. This has led to more var-
iants of minute effect being discovered, which amount to incremental
increases in the proportion of the accountable trait variance13,14.
Therefore, focusing onphenotypes that assay body compositionmore
directly could help explain more of the observed trait variation.

Results
GWAS of imputed DXA phenotypes
We used proxies of body composition within the UK Biobank (UKB)
cohort to try and estimate some of the underlying DXA adiposity
phenotypes. The DXA measures were available in a small subset of
UKB (4366 participants) and were regressed against the available
anthropometric and BIA phenotypes. In thismodel training subset, the
imputed DXA (iDXA) phenotypes showed, on average, a 0.81 correla-
tion to the measured DXA and 66% predictive accuracy (Fig. 1a and
Supplementary Data 1).

The resultant models were then used to estimate iDXA in the
remaining UKB participants and the iDXA phenotypes were used as
outcomes inGWAS in the extendedUKB cohort (392,535 participants),
excluding the individuals thatwere used to train the iDXAmodels. This
resulted in an effective GWAS sample size of ~ 259,073 participants
(i.e., 66% of the total iDXA cohort).

Cumulatively, the iDXA GWAS yielded just under 5000 over-
lapping genome-wide significant signals, mapping to 1251 quasi-
independent loci, at the multiple-testing adjusted threshold of
P < 1.25 × 10−8 (Fig. 1b and Supplementary Fig. 1). Among these, many
were well known and had been previously associated with BMI and
other obesity traits, such as FTO, MC4R, and other loci.

At the genome-wide level, the iDXA GWAS were predominantly
enriched for genes expressed throughout the different brain regions.
This is concordant with previous findings for BMI-associated loci14.
However, we also observed some enrichment for adipose-, breast- and
pituitary-expressed genes (Supplementary Data 2 and Supplemen-
tary Fig. 2).

iDXA signal replication in independent DXA cohorts
This list of identified loci was checked against all known associations in
theGWAScatalogue and for associationswithBMI andWHR in theUKB
cohort (Fig. 1c). After excluding those known signals, the iDXA SNPs
mapped to 242 independent loci (Supplementary Data 3). We then
sought to replicate some of these signals in themeta-analysis of 4 DXA
cohorts, consisting of ~18,000 participants (Supplementary Data 4).

We determined that of the 242 loci identified in the iDXA GWAS,
27would be replicablewithin the smaller replication sample size, given
the observed iDXA effect sizes. At an FDR of 10%, 6 SNPs replicated

successfully in this directly measured and independent DXA cohort, in
or near genesMAFF/PLA2G6, CPS1, ACVR2B/EXOG, FBXO36, ADAMTS14
and ACADVL/DLG4. Collectively the variants (19/27) showed evidence
of directional consistency between discovery and replication
(equivalent to a sign test P value of 0.03, Fig. 1d and Supplemen-
tary Fig. 3).

To better understand these replicated DXA associations, we also
analysed the association patterns they exhibit with the BIA and
anthropometric phenotypes used to derive the iDXA traits (Supple-
mentary Data 5 and Supplementary Fig. 4) and also with other iDXA
traits (Supplementary Data 6 and Supplementary Fig. 5). Notably,most
of these signals appear to be quite pleiotropic and show several
associations in the different iDXA GWAS.

We also queried the replicated SNPs for associations with the
discovery iDXA traits in the non-white-British participants of UKB
(Supplementary Data 7 and Supplementary Fig. 6). While three of the
six SNPs showed some concordant evidence of association, most of
the ancestry-specific sub-cohort analyses appeared underpowered to
confirm or refute the discovered associations due to the smaller
sample sizes. It is also important to note that the iDXA phenotypes
were derived using the white-British imputation cohort, while body
shape and composition have been shown to vary significantly between
different ancestries15.

Gene prioritisation at the six replicated loci
The six replicated variants were followed up to establish causal gene
candidates within their respective genomic loci, using the GTEx
expression quantitative trait loci (eQTL) data16. The Approximate
Bayes Factor (ABF) posterior probability17 and/or the Summary data-
based Mendelian Randomization and Heterogeneity in Independent
Instruments (SMR and HEIDI) tests18 were used to establish pleiotropy
between iDXA GWAS signals and the eQTL data.

At most of the replicated loci, these analyses implicated multiple
causal gene candidates making prioritisation challenging (Supple-
mentary Fig. 7). However, we saw strong evidence of colocalisation
between the leg fat-to-lean mass ratio (Leg FMR) GWAS locus at
chromosome 10 and ADAMTS14 eQTLs. The lead variant in the iDXA
GWAS at this locus, rs12359330-T, was associated with an increase in
leg adiposity and an increase in ADAMTS14 expression. Specifically,
homozygous carriers of rs12359330-T exhibit increased expression of
ADAMTS14 (Fig. 2c) and had 36 more grams of fat on their legs. Thus,
the expected effect of null mutations in ADAMTS14 would be reduced
adiposity.

Nullmutations inAdamts14 confer resistance toweight gain and
increased energy expenditure under obesogenic conditions
in mice
To test this hypothesis, we obtained mice with a null mutation in
Adamts1419 to assess adiposity phenotypes (Supplementary Fig. 8).
Adamts14+/− and Adamts14−/− animals were viable, bred normally and
did not exhibit embryonic lethality. Both genotypes were resistant to
weight gain compared to their C57BL/6J littermates over a 13-week
period of high-fat diet (HFD) administration (−0.216 ±0.082 g,
t = −2.653, P =0.009). This was especially evident in Adamts14+/− mice
after 6 weeks of HFD administration, with a pronounced divergence in
fat mass (5.03 g lower fat mass, P =0.033, Supplementary Data 10 and
Supplementary Fig. 9), but not in the Adamts14−/− mice after the end of
theHFD administration (Supplementary Fig. 10).Adamts14−/−mice also
had proportionately fewer small adipocytes (Fig. 3b), but adipose
morphology was otherwise indistinguishable between the Adamts14+/+

and Adamts14−/− animals and depots of the two groups exhibited
comparable proportions of collagen content, as quantified by picro-
sirius red staining (Supplementary Data 15 and Supplementary Fig. 11).

Homozygous-null mice were also assessed in terms of their
energy expenditure (EE), activity and food intake before and after the
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Fig. 1 | iDXA phenotypes provide accurate representations of DXA and much
greater GWAS power leading to the identification of replicable genomic loci.
a Example iDXA sex-separated prediction models as a function of DXA-measured
Android fat mass. Correlations between DXA and iDXA given as Pearson’s R. Pre-
dictions for all other iDXA phenotypes can be found in Supplementary Data 1.
bGWAS loci associatedwith collated DXA and iDXA phenotypes in the UKB cohort.
DXA GWAS were conducted on the 4366 participants that were used in the pre-
diction models, while iDXA GWAS were conducted in the rest of the cohort,
excluding these 4366 individuals. iDXA P values capped at 10−30 for visibility. Red
line indicates the multiple-testing adjusted GWS threshold, set at 1.25 × 10−8. Man-
hattan and QQ plots for each GWAS can be found in Supplementary Fig. 1. c Fil-
tering and exclusion of identified loci based mainly on known associations with

other phenotypes. Cumulative number of overlapping GWS SNPs (4764) across all
iDXA GWAS were screened against known obesity associations in the GWAS Cata-
logue and for discoverable associations with BMI or WHR, within UKB. The
remaining SNPs mapped to 242 QC novel loci, 27 of which were replicable for a
replication sample size of 18,000 DXA-measured participants (Supplementary
Data 3). d SNP effect sizes for the 27 replicable SNPs in Discovery (iDXA) and
Replication (DXA meta-analysis (MA)). Genes annotated by proximity (±500 kb) to
the lead-associated variant. Effect sizes in Discovery (iDXA) given as positive values
for the corresponding allele and shown as beta ± 95% confidence intervals. The six
highlighted SNPs were replicated successfully in the measured-DXA MA cohort
(FDR< 10%). Detailed locus and phenotype information is given in Table 1, and
replication summary statistics are given in Supplementary Data 4.
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administration of the HFD (Fig. 4). The Adamts14−/− animals consumed
more food compared to their WT littermates, particularly after expo-
sure to the HFD (0.026 ±0.003 g, z = −9.68, P = 4x10−22). The same
pattern was observed with EE, which was significantly increased after
the diet treatment (0.295 ±0.117W/kg, z = 2.517, P =0.012), while
physical activity was higher at both timepoints (1.118 ± 0.489 beam

breaks, t = −2.285, P = 0.022 before HFD and 0.427 ±0.197 beam
breaks, z = −2.17, P = 0.03 after). The respiratory exchange ratio (RER)
was comparable between the two groups at the beginning of the
experiment, but the Adamts14−/− mice had significantly higher RER at
the end of the experiment (0.027 ± 0.013, z = −2.12, P =0.034). Finally,
the Adamts14−/− animals exhibited shorter tibial (0.23 cm, P =0.008)

Fig. 2 | ADAMTS14 is a strong causal gene candidate in the iDXA GWAS.
a Association statistics for SNPs within a 1-Mb window of the index SNP,
rs12359330-T, on chromosome 10 and their association to the iDXA phenotype.
b Variants in moderate LD (R2 > 0.6) with rs12359330-T, were direct eQTLs of
ADAMTS14 within the GTEx tissue-wide fixed-effects (FE) meta-analysis (MA) from
up to 714 donors, showing a positive effect on gene expression (upper, shown as
beta ± SE) and the eQTL pattern colocalisedwith the GWAS pattern (lower), with PP
H4 ABF of 97.31% and P SMR 10−6 (P HEIDI 0.31). c Tissue-level colocalisation

analysesbetween theGWASassociation pattern in (a) and changes in tissue-specific
expression of ADAMTS14 across the GTEx tissues. For the SMR analyses (on the
right), all displayed tissues had an FDR-corrected SMR two-sided P value < 5% and
HEIDI-test P value > 5%, indicating pleiotropy at all displayed tissues and for the ABF
(on the left) colocalisation was confirmed in tissues where PP H4 ABF is >0.75, thus
confirmingADAMTS14 as a causal candidate gene. Extended data from the SMR and
colocalisation analyses can be found in Supplementary Data 8 and 9.

Fig. 3 | The Adamts14−/− mice showed resistance to weight gain and altered
adipose histomorphology under HFD conditions. a Body weight increase of WT
andhomozygous-null animals, starting at 2months old and through the 13weeks of
HFD exposure. Data expressed asmean ± s.e. and analysed in a linear mixed model
with repeated measures. N = 8 per genotype initially, down to 6 Adamts14+/+ and 7
Adamts14−/− by week 13. Extended data can be found in Supplementary Data 11.
b Cumulative frequency distribution of adipocyte cell-surface area for the gluteo-
femoral and gonadal fat pads, compared between the two genotypes using a

two-sided Kolmogorov–Smirnov test (P = 1.376 × 10−6 for gluteofemoral fat and
<2.2 × 10−16 for gonadal fat). The inset shows the total number of cells (expressed as
mean ± s.e.) and violin plots for the proportional adipocyte size distributions with
the overall means for the two genotypes.N = 6Adamts14+/+ and 7 Adamts14−/− and at
least 3 independent images quantified per fat pad per animal. Significance denoted
as * for P <0.05, ** for P <0.01 and *** for P <0.001. Extended data can be found in
Supplementary Data 13.
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and gut length (7.5 cm, P = 0.009, Supplementary Fig. 10). However,
their faecal energy content was unaltered (0.133 ± 0.36 kJ/g, t =0.369,
P =0.715, Supplementary Data 14 and Supplementary Fig. 12).

Discussion
Accurate whole-body and segmental adipositymeasures are needed in
order to fully delineate the genetic drivers of body composition and its
contributions to disease. To this end, several population cohorts have
invested in whole-body scans of their participants, such asMRI or DXA
scans. GWAS in these cohorts have started to provide some insights
into the genetics of human body composition20–22. However, these are
laggingbehind theGWAS signals for traits like BMIandWHR12,13, largely
due to sample size discrepancies and in turn due to the associated
expense. Importantly, the loci emerging from these analyses often
show little overlap and thus, viable alternatives are needed to derive
detailed adiposity measures.

To this end, we developed a linear model method that success-
fully imputed DXA measures in UKB, using anthropometric and BIA
phenotypes with 66% overall predictive accuracy. This resulted in an
effective iDXA sample size of ~259,073, which is almost two orders of
magnitude greater than the sample size which was available for the
direct DXAmeasures alone (n = 4366). Using the iDXA phenotypes in a
GWAS markedly increased our discovery power and led to the identi-
fication of hundreds of loci associated with body composition. In an
effort to not only replicate the iDXA associations, but also verify the
imputationmethod, we sought replication in themeta-analysis of four
separate DXA cohorts. Out of 27 tested signals, 19 were directionally
consistent and 6 replicated.

The DXA imputation approach increased our discovery power
greatly, however it is important to consider the following issues.
Firstly, while the imputation method worked reasonably well for most
DXA phenotypes, some predictions were poor (i.e., R2 ~ 0.25–0.5,

Supplementary Data 1). This was predominantly an issue for indices
accounting for a leanmass phenotype (i.e., Android LMI, Leg FMR and
TLI), which was perhaps to be anticipated, as none of the proxy phe-
notypes used in the models offer direct measures of lean mass. When
using BIA, lean mass is often underestimated in lean subjects and
overestimated in subjects with obesity23,24, which could help explain
the prediction issue.

Secondly, as with any similar approach, there is the concern of
whether the genetic signals were associations to the underlying DXA
phenotypes or merely to some of the components of the prediction
models. This would be impossible to preclude without having a much
largerDXAcohort to test oruseof out-of-sample validationof the iDXA
predictions, which is a limitation of the current study. However,
arguably even if that were the case, the resulting associations would
still provide knowledge towards human body composition. If accept-
ing the six iDXA loci which were replicated in the meta-analysis of
independent DXA cohorts as true DXA associations, we saw that all of
them exhibited significant or suggestive associations towards several
components of the prediction models (Supplementary Fig. 4), while
also associating with several of the iDXA traits (Supplementary Fig. 5).
Specifically, some loci appear to be associated with nearly all iDXA
traits, regardless of underlying body fat depot. Such loci may affect
whole-body composition, while other loci may have more depot-
specific effects.

Finally, the six replicatedSNPs all had larger effect sizes in theDXA
than they did in the iDXA analysis, suggesting that the iDXA GWAS
underestimated the effect of the variants on the phenotypic variation,
although thiswouldneed tobe shown in largerDXA samples.While the
opposite phenomenon (i.e., inflation of the effect sizes) would have
been more problematic, the observed attenuation remains something
to consider when using similar methods. Taken altogether this could
indicate that, due to study design and limitations surrounding DXA

Fig. 4 | The Adamts14−/− mice exhibited hyperphagia and altered energy
homoeostasis under normal diet and HFD conditions. Food intake (a), activity
(b), RER (c) and energy expenditure (EE,d),measured every 15min over a 24-h time
period before (left) and after (right) the 13-week HFD treatment. Data expressed as
mean ± s.e. and analysed in a linear mixed model with repeated measures over the
24-h. All tests are two-sided. EE is displayed divided by individual mouse weights,
while EE models incorporated mouse weight as a covariate. All models were
adjusted for inter-individual mouse and litter variation. For the Chow analyses,
N = 3 Adamts14+/+ and 5 Adamts14−/− (left panels) and N = 6 Adamts14+/+ and 7

Adamts14−/− for the HFD analyses (right panels). Significance denoted as * for
P <0.05, ** for P <0.01 and *** for P <0.001, while the observed test statistics were:
food intake on chow (estimate = 0.007, z = 1.12, P =0.263) and on HFD (estimate =
0.026, z = 9.68, P = 3.733x10−22); activity on chow (estimate = 1.118, z = 2.285,
P =0.022), and on HFD (estimate = 0.427, z = 2.17, P =0.03); RER on chow (esti-
mate = 0.01, z = 1.33,P =0.182) and onHFD (estimate = 0.027, z = 2.12, P =0.034); EE
on chow (estimate =0.013, z = 1.061, P =0.289) and on HFD (estimate = 0.295,
z = 2.517, P =0.012). Extended data can be found in Supplementary Data 12.
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data availability at scale, this studymay have picked up on some of the
more pleiotropic and obvious associations with human body compo-
sition, which are pervasive enough to be detectable through proxy
phenotypes and in smaller sample sizes.

We followed up the six replicated loci with colocalisation analyses
using eQTL data. These showed several candidate causal genes atmost
loci (Supplementary Fig. 7), but clearly highlighted ADAMTS14 as the
putative causal candidate gene at the chromosome 10 locus sur-
rounding signal rs12359330 (Fig. 2). Specifically, colocalisation ana-
lyses showed that variants associating with a decrease in expression of
ADAMTS14 also associated with decreased fatmass. Subsequent to the
selectionofADAMTS14 for further follow-up, Johanssonand colleagues
conducted GWAS on the same cohort, focusing on BIA-based seg-
mental adiposity25. In doing so they identified 29 novel associations,
many of which were highlighted in this work, ADAMTS14 inclusive.

To better understand this genetic association, we obtained
Adamts14-null mice and characterised their metabolic and physiolo-
gical response to an obesogenic diet intervention. While we used a
limited number of mice which reduced our statistical power, the
effects of Adamts14 gene knockout were sufficiently large to reveal
significant and consistently reduced adiposity, weight gain, hyper-
phagia and increased energy expenditure, alongside adipocyte
hypertrophy (Figs. 3 and 4). Specifically, by the end of the HFD expo-
sure the Adamts14−/− mice weighed on average 4.5 g less than their WT
littermates despite consuming, on average, 1.3 g more food daily. The
resistance to weight gain in Adamts14−/− mice was explained, at least in
part, by their higher energy expenditure (Fig. 4). Their RER, which is an
index of carbohydrate versus lipid fuel utilisation, diverged after
exposure to HFD, such that the expected RER suppression with HFD
was less pronounced in Adamts14−/− animals, indicative of maintained
metabolic health. They also exhibited shorter tibial and gut lengths,
but similar nasoanal lengths. As the latter is the most commonly used
measure of murine body size26, a more specialised phenotype, i.e., a
bone or cartilage phenotype could explain the reduced tibial length.
Gut length has been shown to fluctuate under different dietary com-
positions and availabilities27 and couldhave an impacton the efficiency
of dietary fat assimilation and adiposity. However, the increased RER
on the HFD suggests a greater reliance on carbohydrate oxidation and
we observed no direct evidence of impaired nutrient resorption on the
lipid-dense diet (Supplementary Fig. 12). Impaired nutritionwould also
arguably be contradictory towards the observed adipose hypertrophy.

Adamts14 encodes a metalloproteinase and aminoprocollagen
peptidase and takes part in the maturation of type-I collagen fibres28.
Metalloproteinases are known regulators of body composition and, of
direct relevance29–32, in the absence of certain metalloproteinases,
adipogenesis is halteddue to impaireddegradationof the extracellular
matrix (ECM), which becomes dense and fibrotic, hindering the
hypertrophic expansion of adipocytes. Since Adamts14 plays a role in
the deposition, as opposed to degradation, of ECM components, it
could exert the opposite effect. However, we did not observe a gen-
otype effect when quantifying the fibrillar collagen in the adipose tis-
sue of the Adamts14+/+ and Adamts14−/− animals. This indicates that the
observed adipose effect could be mediated via change in the avail-
ability of other Adamts14 substrates. Notably, Dupont et al.33 recently
showed that ADAMTS14 was an efficient activator of VEGFC signalling,
and its absence caused altered lymphangiogenesis inmice. As elevated
VEGFC is associated with obesity and overexpression of Vegfc pro-
motes fatmass gain and insulin resistance34,35, the reduced weight gain
and improved metabolic profile we observed in the Adamts14−/− mice,
couldbecaused via a reductionof VEGFC levels, concordantwithother
published models34,35. Other ADAMTS14 substrates include members
of the TGF-β receptor signalling pathway36 which are known regulators
of adipogenesis37,38, offering alternate explanations for the adipocyte
hypertrophy observed in the Adamts14-null mice. While more experi-
mental work at a larger scale is needed to pinpoint the exactmolecular

mechanism linking reduced weight gain and altered adipocyte size
with improvedmetabolic rate andhealth in theAdamts14−/−mice, these
results confirm directionality and conservation of effect across mam-
malian species.

Methods
Human cohort data
TheUKBcohort. TheUKB is a large population-based cohortwith over
500,000 participants, aged 40–69, which were recruited in the UK
over a period of 5 years, from 2006 to 2010. Its aim is to improve the
prevention, diagnosis and treatment of serious and life-threatening
illnesses affecting people of middle- and old-age. UKB includes
extensive phenotypic and genotypic data on its participants, including
questionnaire data, physicalmeasures, blood and urine sample assays,
accelerometry, multimodal imaging, genome-wide genotyping and
longitudinal follow-up39. All participants gave written informed con-
sent, and the study was approved by the North West Multicentre
Research Ethics Committee.

Relevant to this study, participants underwent anthropometric
examinations of their height, weight, waist and hip circumference and
BIA on a Tanita BC418MA body composition analyser. These mea-
surements were available for the entirety of the cohort (493,088 par-
ticipants). Participants’ body composition was further assessed using
the GE Lunar iDXA scanner, for a subset of 5170 individuals. Scans of
the whole body are analysed by the radiographer at acquisition to
generate all numerical measures of bone mass and body composition.
These measures are transferred directly from the instrument to UKB
servers and require no post-processing.

UKB participants were genotyped under two Affymetrix arrays,
which show a 96% SNP overlap and resulted in 820,967 genetic mar-
kers being genotyped. SNPs were excluded on the basis ofmissingness
and departure fromHardy–Weinberg equilibrium (HWE)40. Imputation
was performed by UKB, using SHAPEIT2 and IMPUTE2 on the UK10K,
HRC and 1000 Genomes Phase 3 reference panels39.

Phenotypes and genotypes used within this work were directly
downloaded from the UKB website, under application 19655.

ORCADES. The Orkney Complex Disease Study—ORCADES cohort is a
population-based isolate that includes 2215 individuals. Its aim is to
characterise the genetic and epidemiological components that
underlie quantitative traits and diseases in the Orkney Islands of
Scotland. Individuals of all ages were recruited based on the basis of
their Orcadian heritage and have at least two Orcadian grandparents,
thusmaintaining the homogeneous genetic background of the cohort.
Data collection was carried out between 2005 and 2011 in Orkney by
trained research nurses. The Orkney Research Ethics Committee and
North of Scotland Local Research Ethics Committee granted the study
ethical approval and all participants individuals gavewritten, informed
consent prior to participating in any research, such as broad-ranging
health and disease or population research, including biobanking of
samples or record linkage to hospital admissions or to other records41.

A subset of 1256 individuals of the ORCADES cohort underwent
full body composition analysis on the Hologic fan beam DXA scanner
(GE Healthcare). Trained radiology research nurses generated the
scans and ensured the correct positioning of the participants’ pelvis,
arms and legs. The APEX2 software was used to generate individual
measurements for bone, lean, and fat tissue of the head, arms, trunk,
legs and total body. Subsequently, the APEX4 software was used to
estimate the individuals’ android, gynoid and visceral fat and leanmass
content by others and used in the context of this project.

DNA was extracted from whole blood and genotyped on three
different SNP chips: Illumina Infinium Human Hap300v2, OMNI1 and
OMNI Express. Each covers between ~300,000 and 1,000,000 variants
across the genome, only ~160,000 ofwhichoverlap between the chips.
Genotypes were called via the Illumina BeadStudio andGenomeStudio
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software. Samples or SNPswith a call rate of under 97%, samples with a
gender mismatch and SNPs deviating from HWE with a P value of
smaller than 1e-6 were excluded from all further analyses. Imputation
was done separately for the Hap and Omni chips, using the IMPUTE
software (version 2.2.2) on the 1000 Genomes European imputation
panel and the exomes of 90Orcadians. The two imputations were then
merged, covering 37.5 million polymorphisms across the genome42.

In the context of this work, we used SNP-phenotype associations
for the 27 SNPs outlined in Table 1, resulting from 1253 total ORCADES
participants.

EPIC-Norfolk. The European Prospective Investigation of Cancer
(EPIC) is a large multicentre prospective cohort study that focuses on
the connection between diet, lifestyle factors and cancer. The Norfolk
cohort includes 25,639 individuals, aged 40–79, living in Norwich and
the surrounding towns and rural areas. The participantswere recruited
between 1993 and 1997 and have been contributing information about
their lifestyle and health through questionnaires and health checks for
over two decades. All participants gave signed informed consent
andTheNorwichDistrictHealth Authority Ethics Committee approved
the study43.

A subset of the cohort was DXA scanned at the fourth health
check, 20 years after initial recruitment, at the EPIC-Norfolk Unit at the
Norwich Community Hospital. The Lunar Prodigy advanced fan beam
scanner (GE Healthcare) and the enCORE software version 14.10.022
(GE Healthcare) were used. Participants were scanned by trained
operators, using standard imaging and positioning protocols. The
enCORE software was used to demarcate the regional boundaries. All
the images were manually processed by one trained researcher, who
corrected demarcations according to a standardised procedure44.

The EPIC samples were genotyped using Affymetrix UK Biobank
Axiom Array and genotypes were called using Axiom GT1. SNPs and
samples were subject to the following quality control (QC) criteria:
Hardy–Weinberg P value > 10e-6, MAF >0%, sample and SNP call rate
≥95%, and samples’ heterozygosity check and gender check. Imputa-
tion was performed on Haplotype Reference Consortium r1.0/r1.1 and
the UK10K plus 1000 Genomes phase 3 reference panels via
IMPUTE4 software and via Sanger Imputation Service, and all SNPs
with an info-score ≥0.4 were kept45.

In the context of this work, we used SNP-phenotype associations
for the 27 SNPs outlined in Table 1, resulting from 4134 total EPIC-
Norfolk participants.

Fenland. The Fenland Study is an ongoing population-based cohort
study, that includes 12,435 adults aged 29–65 years in Cambridgeshire,
UK. The first phase of the study investigates the interaction between
environmental and genetic factors determining obesity, T2D, and
related metabolic disorders. Volunteers were recruited from general
practice registers between 2005 and 2015. A follow-up study (Phase 2)
was launched in 2014 with the objective of studying the relationship
between change in objectively quantified behaviours and body com-
position and metabolic risk. The Fenland study was approved by the
Cambridge Local Research Ethics Committee and all participants gave
written informed consent46.

Body composition by DXA was assessed, using the Lunar Prodigy
Advanced fan beam scanner (GE Healthcare) with a constant pixel size
of 1.2mm. Estimates of total body fat mass and total abdominal fat (g)
were derived with Prodigy enCORE software (version 10.51.006; GE
Healthcare). The DXA abdominal fat region (g) was defined by quad-
rilateral boxes with the base of the box touching the pelvis and
the lateral boundaries extending to the edge of the abdominal
soft tissue46,47.

Participantswere genotypedon theAffymetrixUKBiobankAxiom
Array, and genotypes were called using Axiom GT1. SNPs and samples
inclusion criteria were Hardy–Weinberg P value > 10e-6, MAF >0%,

sample and SNP call rate ≥95%, and samples’ heterozygosity check and
gender check. Imputation was performed on Haplotype Reference
Consortium r1.0/r1.1 and the UK10K plus 1000 Genomes phase 3
reference panels via IMPUTE4 software and via Sanger Imputation
Service, and all SNPs with an info-score ≥0.4 were kept45.

In the context of this work, we used SNP-phenotype associations
for the 27 SNPs outlined in Table 1, resulting from 8034 total Fenland
participants.

Phenotype imputation
In March 2018, derived DXA phenotypes were available for a subset of
5170 individuals within the UKB study. These phenotypes included fat
mass, lean mass, bone mass and total mass, for the following seven
general body areas: android, gynoid, arm, leg, trunk, VAT and total
body. Phenotypes were downloaded and used for the purposes of this
work, alongside anthropometric (height, weight, waist and hip cir-
cumference), BIA (fat, fat-free and total mass for the arms, legs, trunk
and total body, basal metabolic rate and total water weight) and
demographic phenotypes (sex, age, assessment centre, Townsend
deprivation index, educational attainment, Northing and Easting,
genetic ethnicity). For the physical measures, where these phenotypes
had been recorded at multiple instances, the measurements were
averaged. Related and non-white-British individuals were excluded
from all analyses, based on fields 22011 and 22006.

After exclusions, the remaining UKB participants were separated
into two sub-cohorts; the UKB DXA cohort (4,366 participants), used
to impute the DXA phenotypes (iDXA) onto the UKB iDXA cohort
(392,535 participants), which was used for subsequent genetic dis-
covery analyses. The UKB DXA cohort was also part of the DXA repli-
cation meta-analysis (MA) cohort. Apart from the derived DXA
phenotypes, we also created composite phenotypes and indices to
approximate adipose distribution patterns (calculated as outlined in
Supplementary Data 1).

DXA phenotypes were sex-separated and imputed, using linear
models that incorporated all of the available anthropometric and BIA
phenotypes, as mentioned above and seen below,

DXA=β0+β1 × 1 +β2 × 2 +β3 × 3 + . . . +βn×n+ ε

where, β is the effect of each x phenotype on themeasured DXA, β0 is
the intercept of the linear model, ε is the normally distributed residual
error and the proxies (x) used were Age, Height, Waist circumference,
Hip circumference, WHR, Weight, BMI, BIA total fat %, BIA total fat
mass, BIA total fat-freemass, BIA total watermass, BIA basal metabolic
rate, BIA trunk fat %, BIA trunk fat mass, BIA trunk fat-free mass, BIA
total trunk mass, BIA leg fat %, BIA leg fat mass, BIA leg fat-free mass,
BIA leg total mass, BIA arm fat %, BIA arm fat mass, BIA arm fat-free
mass and BIA arm total mass.

Effect estimates for each of these model components were then
used to estimate the iDXA phenotypes in the individuals which had
anthropometric and BIA phenotypes measured but lacked the DXA
ones. To assess imputation efficacy, the iDXA phenotypes were cor-
related to the original DXA ones.

GWAS methodology
All of the sex-separated iDXA phenotypes were natural log-
transformed to achieve a normal distribution, prior to GWAS. Follow-
ing that, iDXA values lying further than six standard deviations on
either side of the population mean were removed. They were cor-
rected for age, assessment centre, geographical coordinates, Town-
send deprivation index, educational attainment, the first 20 principal
components (PCs), genotyping array and batch, as is standard practise
and as seenbelow.QQplotswere visually inspected to confirm that the
covariates used to adjust for population stratificationwere sufficient to
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control type-I error rate.

iDXAphenotype ∼ Age+Assessment centre+Northing

+ Easting +Townsend deprivation index + Educational attainment

+Genotyping batch+Genotyping array+PC1 + . . . +PC20

The resulting residuals were inverse rank transformed and values
lying four standard deviations at either side of the population mean
were removed. Residuals from males and females were merged and
used for GWAS. For each SNP, the iDXA phenotypes were regressed on
the three possible genotypes using REGSCAN (v0.5)48 and assuming
additive genetic effects. SNPs with a MAF <0.001 and an imputation
quality score <0.4 were excluded from analyses.

To correct for multiple testing, the R package PhenoSpD
(v1.0.0)49, was used to ascertain the effective number of tests con-
ducted, given the phenotypic similarity of the iDXAphenotypes, which
was four. The genome-wide significance threshold was then adjusted
accordingly and set at 1.25 × 10−8.

SNP associations below this threshold were compiled across all
iDXA phenotypes, sorted into quasi-independent signals based on
their location (i.e., signals lying more that 1Mb apart were considered
independent) and assessed for novelty, checking for previous asso-
ciations with any adiposity or anthropometry phenotypes in the GWAS
Catalogue, under the keyword obesity (accessed April 2018, as seen in
Supplementary Data 16—an updated version can also be found in
Supplementary Data 17)50. SNPs within published loci and SNPs which
were associated with BMI or WHR in UKB (P value < 10−12) were
excluded. The remaining associations were manually inspected to
exclude residual known or linked loci.

A tissue enrichment analysis was also performed on the iDXA
GWAS, using LD score regression applied to specifically expressed
genes (LDSC-SEG v1.0.151) and tissue-specific annotations from GTEx52,
accessed via https://github.com/bulik/ldsc/wiki/Cell-type-specific-
analyses. Results were FDR-corrected for the number of tested tis-
sues, multiplied by the effective number of GWAS traits.

Replication
Independent novel loci were followed up with a replication power
calculation assuming the effect sizes in the iDXAGWASwould be equal
to those in the DXA analyses, as follows:

seDXA =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ×NDXA × f req1iDXA × 1� f req1iDXA
� �

q �1

pDXA =Normal ∣βiDXA=seDXA∣,0 , 1
� �

Where freq1iDXA is the frequency of the effect allele and βiDXA is the
effect estimate per copy of that allele, as observed in the iDXA Dis-
covery, and NDXA corresponds to ~18,000 DXA participants from the
EPIC-Norfolk, Fenland, UKB DXA and ORCADES studies.

Genotype and DXA phenotype information were submitted to
analysts from EPIC-Norfolk and Fenland as outlined in Table 1 and
Supplementary Data 1. We conducted the UKB DXA and ORCADES
analyses in the same manner. The DXA phenotypes were transformed
in the same way the iDXA were and were used to test for association
with allelic dosage for the selected 27 iDXA SNPs, in a total replication
cohort size of 17,787 DXA participants. Replication was considered
successful when the direction of effect was consistent with the one
observed in iDXA and the DXA one-sided P value was < 0.1 after FDR
correction. A binomial test was used as a sign test over all 27
iDXA SNPs.

Replicated signals were looked-up within the UKB non-white-
British participants, for the corresponding iDXA phenotypes. Indivi-
duals were grouped into three further broad ancestry groups using
data from field 21000, as follows; Other white (n = 29,015) comprising

individuals not included in the Discovery analyses who were ethnically
white, Irish or of Any other white background, Asian (n = 10,920)
including Chinese, Indian, Bangladeshi, Pakistani, Any other Asian
background and Asian or Asian British individuals and Black (n = 7644)
consisting of African, Any other Black background, Black or Black
British and Caribbean participants. For participants within each of
these ancestry groups, genotypes at the replicated loci were extracted
using qctool (v2.0.6) and regressed against the corresponding Dis-
covery iDXA trait in a linear mixed model. To do this, fixed effects of
SNP dosage and ancestry group were fit alongside a random effect of
ethnicity (field 21000). Effect estimates were aligned towards the dis-
covery effect alleles.

Replicated signals were further looked-up for associations
with the anthropometric and BIA phenotypes used in the iDXA
models, using UKB summary statistics from ref. 53 accessed via
Phenoscanner54.

Causal gene identification
Tests of colocalisation between the iDXA GWAS and gene expression
data were conducted, using Summary data-based Mendelian Rando-
misation and Heterogeneity in Independent Instruments (SMR-HEIDI,
version 0.6818) and the Approximate Bayes Factor (ABF)method in the
R package coloc (version 3.2-117). Analyses were performed on either
theGTExmulti-tissuemeta-analysis statistics or the tissue-specific data
(both available via https://gtexportal.org for V716) and using the fixed-
effects summary statistics for the former. Statistical thresholds for
colocalisation were set at an FDR-corrected SMR P value < 5% and
HEIDI-test P value > 5% and at PP H4 ABF was >75%, in accordance with
others55–57 and in these cases it was deemed that there is sufficient
evidence for a shared variant to drive the changes in gene expression
and in the GWAS phenotype.

Mouse husbandry
The Adamts14−/− mice were created as described in19 and obtained in
collaborationwith theColige group at the University of Liege. Briefly, a
genetrap cassette was inserted between exons 4 and 5 in ES cells.
Clones were fused to C57bl/6 blastocysts to obtain mosaics that were
crossed to give homozygous mice. The protein was not detectable in
embryonic or adult skin in homozygous mice. Sperm from hetero-
zygous (Adamts14+/−) C57BL/6J animals was shipped to Edinburgh
frozen and used to perform in vitro fertilisation (IVF) to C57BL/6J
females, at the BVS Transgenic Core facility. To do this, ten embryos
were transferred per oviduct of four female mice. All mice became
pregnant and subsequently produced37pups. Resultingheterozygous
animals were initially metabolically characterised and also bred to
create colonies of Adamts14−/− and Adamts14+/+ animals.

All experiments were performed under PPL 60/8117, appropriate
PILs granted under the Home Office Scientific Procedures (Animals)
Act 1983 and after full ethical review by the University of Edinburgh
Biological Sciences Services. Male mice were used for all experiments
and were maintained single-housed in either standard or individually
ventilated cages with ad libitum access to food (CRM E, Special Diets
Services) and water at the Little France BRR facility. They were kept at
19–22 °C and maintained with a 12-h light/dark cycle with lights
on at 7 am.

Mouse genotyping
Genomic DNA from all live-born mice was extracted from ear tissues
and used to genotype by PCR for the targeted alterations. DNA
extraction was performed via the digestion of the ear tissues in 20μl
DNAreleasy (1:3 dilution in water, Anachem, UK) at 75 °C for 5min,
followed by 95 °C for 2min. In total, 1–2μl of DNA were used as a
template per PCR reaction. PCR reactions that specifically amplify
the targeted alteration were designed. Primers used were: GFPF:
5′-AGCTGGACGGCGACGTAAAC-3′ with GFPR: 5′-GCGCTTCTCGTTGG
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GGTCTT-3′ and F: 5′-GTTCAGTGGGGAGTGAGCCATTAA-3′ with WTR:
5′-CTGTGTGCTTGCTGTGATGGCTG-3′ or KOR: 5′-CCTGGACCAGCTGT
GATGGCTG-3′. The first reaction amplified part of the GFP sequence
within the inserted cassette and yielded a 596-bp-sized amplicon.
The second reaction spanned the break site (where the cassette was
inserted) and yielded a 252 or 251-bp sized amplicon. Both assays were
run as follows: 95 °C for 5min, 30 cycles of 95 °C for 30 s, 65 °C
for 45 s and 72 °C for 45 s, then 72 °C for 5min and according to the
Platinum™ SuperFi™ PCR Master Mix (Thermofisher, 12358250) sug-
gested concentrations.

In vivo metabolic phenotyping
At the age of approximately two (for Adamts14−/− mice) or three (for
Adamts14+/− mice)months, themicewere subject to a 58% high-fat diet
(Research Diets Inc, 12331) for up to 13 weeks by allowing the animals
ad libitum access to the diet. Our experimental design included the
initial cohort ofAdamts14+/− and Adamts14+/+ mice, which comprised of
five mice per group (and 2 litters per group), the 12-week cohort of
Adamts14−/− and Adamts14+/+ mice, with groups of 10 (7 litters) and 8
mice (5 litters) accordingly andfinally the6-week cohort ofAdamts14−/−

and Adamts14+/+ mice, in groups of 10 (2 litters) and 8 (1 litter) over a
6-week period. This is also represented in Supplementary Fig. 8.

Animals were weighed weekly and had their lean and fat mass
determined by time domain-nuclear magnetic resonance (TD-NMR,
Bruker) at multiple timepoints throughout each experiment.

PhenoMaster cages (TSE systems, Germany) were used to assess
energy expenditure, locomotor activity and food and drink intake of
the mice at the beginning and end of the experimental period. To do
this, mice were placed in individual monitored cages with ad libitum
access to food and water. The animals were allowed to acclimate to
their environment for 24 h before the collection of experimental data.
Measurements for each parameter were taken continuously for a
period of at least 24 h and were recorded every 15min.

oGTTswere carriedout at least at thebeginning andendof theHFD
treatments. On themorning of the oGTT, the animals were fasted for 5 h
by removing their food and transferring them to fresh cages, with ad
libitum access towater. A 20% glucose solution inwaterwas ingested by
oral gavage at a concentration of 2mgglucose per gramof bodyweight.
Blood glucose levels were measured using a glucometer (OneTouch
Ultra, LifeScan), prior to glucose administration and after at 15-, 30-, 60-
and 120-min intervals from a small drop of blood from a tail-nick.

At the end of experiments, animals were sacrificed humanely, by
rising CO2 concentration and death was confirmed by cervical disloca-
tion.Micewere also culled in accordancewith theproject license, if they
appeared unwell, i.e., exhibited a significance weight loss, absence of
grooming, etc. Measurements were removed from experiments insofar
as they were affected by the reason a mouse failed to reach the
experimental endpoint. Tissueswere harvested and immediately frozen
under dry ice and stored at −80 °Cor collected in 4%paraformaldehyde
(PFA) and then dehydrated for at least 24 h in 75% ethanol.

Adipose histomorphometry and collagen quantification
Fixed and dehydrated adipose tissue was embedded in paraffin and
sectioned. For collagenquantification, 5-μmsectionswere stainedwith
Picro Sirius Red (PSR) (Abcam, ab150681). Mounted sections were
viewed with brightfield microscopy. Histomorphometry of adipocytes
from the gonadal and gluteofemoral depots was assessed using the
Adiposoft plugin in ImageJ. To quantify fibrillar collagen, a pixel clas-
sifier was trained in QuPath 0.3.2 using RTrees with ‘gaussian’ and
‘weighted deviation’ features selected at ‘Full’ resolution58. Pixels in
each image were classified as one of ‘psr_positive’, ‘psr_negative_cel-
lular’, and ‘fat’ and a categorical classified .tiff saved as an output along
with the number and percentage of pixels of each class. The percen-
tage of ‘psr_positive’ across the total image area was then used to
indicate the amount of fibrillar collagen per section.

Faecal bomb calorimetry
At the end of the HFD exposure period, faecal samples were collected
from the individual mouse cages, alongside a diet sample, and stored
at −80 °Cuntil ready formeasurement. Tomeasure the energy content
of the food and faeces, samples were weighed before and after drying
at 60 °C (Gallenkamp Oven) for 14 days until weight stable (Ohaus
balance 4 d.p.). This enabled the water content to be calculated. They
were then homogenised in a blender, compressed into one or two
carefully weighed pellets of 0.15–0.25 g (weighed to 4 d.p.) per mouse
and combusted in a Bomb calorimeter (Parr 6100 calorimeter using a
1109 semi-microbomb). Themachinewas calibrateddaily using pellets
of Benzoic Acid.

Statistical analysis of mouse data
All statistical analyses of mouse data were carried out in R (4.0.1)
statistical environment59. Comparisons between genotype groups
were performed using Two-Sample t-tests for analyses at singular
timepoints and linear mixed models, accounting for the individual
animal and litter variation, for analyses over multiple timepoints,
using glmmTMB (v1.0.2.1). For the indirect calorimetry experiments,
the models were also adjusted for phase (day/night) to account for
nocturnal behaviours and in cases where the response variable
was a count distribution (i.e., for activity counts), a Poisson error
structure was used. The cumulative frequency distribution of adi-
pocyte sizes in different genotype groups was compared using a
Kolmogorov–Smirnov test. Mixed models were used for the com-
parison of fibrosis levels in different tissues for the two genotype
groups and included a random effect for individual mice and litter.
The area under the curve (AUC) was additionally calculated to com-
pare glucose levels between the two genotypes, using the AUC
function in the DescTools package60.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This research has been conducted using the UK Biobank Resource,
approved under application 19655. Processed cross-tissue and tissue-
wide GTEx data are available on the GTEx portal (https://gtexportal.
org). GWAS summary statistics are available from the University of
Edinburgh’s DataShare repository (https://doi.org/10.7488/ds/2973).
All other data supporting the findings of this study are available
through the supplement.
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