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Abstract. Emergency departments (EDs) are vital components of healthcare sys-

tems, often operating under extreme pressure, especially during seasonal peaks 

of respiratory diseases like influenza, Respiratory Syncytial Virus (RSV), or 

COVID-19. These peaks lead to significant overcrowding, prolonged waiting 

times, and increased strain on clinical staff, which compromise patient outcomes 

and system efficiency. The challenge lies in dynamically allocating resources and 

predicting patient flow with enough accuracy to maintain operational stability. 

Digital twin (DT) technology, a virtual real-time representation of physical sys-

tems, offers a transformative solution. By mirroring the ED operations and con-

tinuously synchronising with real-world data, digital twins can simulate various 

scenarios and inform optimal decision-making strategies. This paper presents the 

application of digital twins for shortening waiting times in EDs during respiratory 

disease peaks. First, we characterized the patient journey within the ED using the 

Supplier-Input-Process-Output-Customer (SIPOC) diagram. Secondly, we per-

formed an input data analysis and then modelled the ED through a DT designed 

in ARENA® software. After this, we validated the model by conducting a 1-

sample t test on the waiting time for treatment in ED (3-5 triaged patients). Fi-

nally, we implemented a what-if analysis considering two scenarios: i) increasing 

the number of beds and general doctors, ii) reducing delays caused by clinical 

labs in delivering test results. The proposed approach was verified in a European 

hospital group during one of the first COVID-19 waves. The results showed that 

the treatment waiting time in 3-5 triaged patients (4.682 hours) can be signifi-

cantly lessened if both scenarios are applied. 
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1 Introduction 

Emergency Departments (EDs) worldwide face escalating pressures during seasonal 

peaks of respiratory illnesses such as influenza, Respiratory Syncytial Virus (RSV), and 

COVID-19. These surges often drive patient demand beyond ED capacity, resulting in 

severe overcrowding, prolonged waiting times, and strain on healthcare staff [1]. ED 

overcrowding has been recognized as a critical problem since the 1980s, reflecting an 

imbalance between incoming patient volume and the resources available for care [1]. 

Seasonal epidemics, such as winter influenza outbreaks, can suddenly increase ED at-

tendance by large margins, a factor largely outside the ED’s control. Recent conver-

gences of multiple respiratory viruses (a so-called “tripledemic” of flu, RSV, and 

COVID-19) exemplify this challenge as the simultaneous surges in 2022–2023 taxed 

hospitals to the point of near-overwhelm in many regions [2]. The consequences of 

such peaks are well-documented, as ED crowding is associated with decreased quality 

of care, higher patient morbidity and mortality, and an overall compromised ability to 

deliver timely emergency interventions [1]. This highlights an urgent need for more 

adaptive and proactive approaches to managing patient flow and resources during pub-

lic health crises. 

However, dynamically allocating resources and forecasting patient flow in an ED 

amid unpredictable surges is complex [3,4]. Traditional staffing algorithms and static 

capacity plans often fail to adjust to rapid changes in demand, contributing to extended 

length of stay and throughput bottlenecks [3]. Past studies have shown that ED over-

crowding is multifactorial and resists a simple solution [4]. Key contributing factors 

include population aging and seasonal illness waves to inpatient bed shortages and pro-

cess inefficiencies [1]. Hospitals have implemented various mitigation strategies, such 

as expanding surge capacity or redirecting low-acuity patients, but these measures are 

typically reactive and limited in scope. A clear gap exists for intelligent decision-sup-

port tools to anticipate surges and optimize ED operations in real-time. In other words, 

healthcare systems require predictive, data-driven solutions that go beyond retrospec-

tive analysis to continuously model the evolving state of an ED and guide timely inter-

ventions. 

Digital twin (DT) technology offers a novel and promising path to fill this gap [5-6]. 

A digital twin is a virtual, real-time representation of a physical system maintained 

through continuous data synchronisation between the physical entity and its digital 

counterpart [5,7]. In the context of an ED, a digital twin serves as a live, computational 

mirror of the department, ingesting real-world data (e.g., patient arrivals, triage statuses, 

bed occupancy) and running simulations of ED processes in parallel to actual opera-

tions. Unlike traditional simulations or dashboards, a true digital twin is adaptive as it 

updates itself with streaming data and can monitor the current state (“digital shadow”) 

and project future states through predictive modelling. This capability allows stake-

holders to experiment with “what-if” scenarios on the virtual ED to identify optimal 

responses before implementing changes on the floor [5]. Recent work in hospital 
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systems likens this approach to an Industry 4.0 transformation, where digital twins lev-

erage real-time data, IoT sensors, and AI analytics to enable faster data access and sim-

ulation-enhanced decision-making [5,7]. Indeed, the use of digital twins across indus-

tries has surged in recent years, and healthcare is now viewed as a frontier where DTs 

could revolutionise system management and service delivery [6]. By creating a virtual 

replica of a hospital or ED, administrators can review operational strategies, predict 

future challenges under various outbreak scenarios, and optimise resource allocation 

proactively [7]. The potential impact of such technology on patient outcomes and sys-

tem efficiency during crises is significant, as it effectively provides a safe testing 

ground for interventions and a foresight tool for impending demand. 

In this paper, we address the above research gap by deploying a digital twin to 

shorten ED waiting times during peaks of respiratory disease activity. We present a 

simulation-based DT model of an ED that is continuously informed by hospital data 

and integrated with predictive analytics. In our approach, we first mapped the ED pa-

tient journey and processes using a Supplier-Input-Process-Output-Customer (SIPOC) 

framework to understand key delay points. We then performed an input data analysis 

(examining arrival rates and service times) to assess variability and fit to statistical dis-

tributions, ensuring the simulation model is grounded in real-world patterns. The ED 

digital twin was implemented in Arena® discrete-event simulation software, calibrated 

with empirical data from a European hospital network. We validated the model by com-

paring simulated waiting time distributions against historical ED data (using a 1-sample 

t-test on treatment waiting times for mid-acuity triage levels 3–5) to confirm that the 

twin accurately mirrors the physical ED’s performance. Finally, we conducted a series 

of what-if analyses through the digital twin to evaluate potential surge management 

strategies. In particular, we simulated two intervention scenarios: (i) increasing critical 

resources (adding ED beds and on-call physicians) and (ii) reducing internal process 

delays (expediting laboratory test turnaround times to shorten the length of stay). The 

digital twin experiments, applied to data from one of the first COVID-19 waves in 2020, 

revealed that these measures can achieve substantial reductions in patient treatment 

waiting times under peak conditions. Notably, for moderate-acuity patients (triage lev-

els 3–5), the average waiting time of 4.68 hours was significantly lowered when extra 

staffing was combined with faster lab results. These findings illustrate how a digital 

twin can guide data-informed decisions to bolster ED resilience during respiratory dis-

ease surges. In the following sections, we review related work and position our contri-

bution within the literature before detailing the methodology and results of our study. 

2 Literature Review 

2.1 Digital Twins in Healthcare and Emergency Departments 

Digital twin technology has rapidly gained traction in healthcare, motivated by its suc-

cess in engineering domains and the growing availability of real-time health data [6]. 

Broadly, a digital twin for health (DT4H) is envisioned as a virtual replica of a 

healthcare entity, whether an individual patient, an organ, or an entire clinical system, 

that continuously mirrors the state of its physical counterpart and enables advanced 
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analysis and forecasting [5-6]. Early applications of healthcare digital twins have fo-

cused on personalised medicine (e.g., patient-specific cardiac models or virtual organs). 

Still, increasingly there is interest in operational and system-level twins that can im-

prove how care is delivered [8]. By integrating streams of data (e.g., sensor readings, 

electronic health records) with AI and simulation, digital twins have demonstrated po-

tential benefits such as streamlining care processes, optimising facility management, 

and enhancing patient safety [7]. For instance, recent reviews highlight that digital 

twins have been used to model entire hospitals, creating virtual testbeds to refine work-

flows, assess resource needs, and identify bottlenecks under different scenarios [7-8]. 

These capabilities translate directly into improved efficiency and quality of care since 

a well-implemented digital twin can predict patient volumes, evaluate intervention im-

pacts in silico, and recommend adjustments to prevent disruptions in service delivery. 

In the context of emergency departments, digital twin research is still emerging but 

shows great promise for patient flow management [5]. An ED is a complex, high-vari-

ety environment where conditions change by the minute, and this makes it an ideal but 

challenging candidate for DT modelling. Moyaux et al. in [5] proposed an agent-based 

architecture for an ED digital twin explicitly designed to improve the management of 

patient pathways. In their framework, software agents represent key ED entities (staff, 

equipment, patients) within the twin, and the twin’s information system stays regularly 

synchronised with the hospital’s real-time data. The ED digital twin can operate in mul-

tiple modes: a digital shadow for real-time monitoring of the current state, a synchro-

nised twin that runs predictive simulations in parallel with live data to foresee short-

term future states, and an exploratory twin for running scenario analyses (e.g., Monte 

Carlo experiments) to test various “what-if” situations. Notably, the synchronised dig-

ital twin mode acts as a decision-support system for the ED. It continuously projects 

ahead based on current conditions, allowing decision-makers to anticipate problems 

(like an impending bed shortage or staff overload) before they fully materialise [5]. 

This work demonstrated the feasibility of maintaining a live ED model that could vir-

tually alert managers to future performance trajectories and evaluate interventions. Few 

real-world EDs have such digital counterparts yet, but these results underscore how a 

DT can bridge the gap between monitoring and forecasting in emergency care. 

Another example of ED-oriented digital twin innovation is the study in [7], which 

explored a novel emergency service model using digital twins to expedite patient treat-

ment. Here, the focus was on patients arriving without readily available medical histo-

ries (e.g., unconscious or unidentified). The proposed system created a digital twin for 

the patient’s journey, leveraging biometric identification (face recognition) to retrieve 

the patient’s digital health records quickly and prior conditions. By doing so, clinicians 

could immediately access critical information and initiate appropriate care without de-

lay. This DT-enabled fast-tracking significantly reduced the length of stay in the ED, 

as doctors no longer wasted time obtaining medical history or duplicate tests [7]. It also 

improved triage accuracy since the digital twin helped match unknown patients to their 

records with over 80% success rate. This work also illustrates a different facet of digital 

twins in emergency care, as it is about modelling system operations and enhancing in-

dividual patient processing through data integration and IoT technologies. The digital 

twin effectively served as a coordination hub, bringing together identification, medical 
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data, and communication with external parties (family, specialists, insurers) to stream-

line the care of emergency patients. 

Beyond these, more incipient works apply digital twins for ED management. Some 

projects aim to formalise the requirements and design considerations for a full ED dig-

ital twin platform (e.g., specifying data integration needs, visualisation, and user inter-

face for real-time decision support) [9]. Others have drawn parallels to related domains; 

for example, a simulation-based digital twin was used to assess emergency call centre 

operations in France, revealing how reorganising call dispatch could improve service 

response times [10]. These studies collectively reinforce the notion that digital twins 

can serve as adaptive, learning systems in healthcare operations. A DT can provide 

hospital leaders with unprecedented situational awareness and agility by continuously 

updating real data and employing high-fidelity simulations. Nevertheless, challenges 

remain. Researchers have noted interoperability and data governance as major hurdles 

for implementing digital twins at scale in healthcare [8]. Large volumes of heterogene-

ous data must be processed securely and in real-time for a DT to be effective, and inte-

grating these with existing hospital IT systems is non-trivial [8]. Despite these chal-

lenges, the trajectory is clear since digital twin technology is steadily moving from con-

cept to reality in healthcare. EDs benefit immensely from its capabilities to forecast 

demand surges, test interventions virtually, and support critical decision-making during 

peak crises. 

 

2.2 AI, Simulation, and Hybrid Modelling for Patient Flow Management 

The use of simulation and artificial intelligence in modelling patient flow and hospital 

operations has a rich history, which is now evolving into more hybrid, intelligent meth-

odologies. Discrete-event simulation (DES) and related techniques have long been em-

ployed to study ED crowding and to evaluate interventions for reducing waiting times. 

For example, numerous DES models have been built to identify bottlenecks in ED pro-

cesses and to estimate how changes, such as adding a new triage nurse or expanding 

bed capacity, would impact patient length of stay [3]. Agent-based simulation (ABS) 

has likewise been used to capture the interactions of individual patients and staff, of-

fering fine-grained insight into dynamics like patient diversion or workflow rerouting 

[5]. Such simulation studies have repeatedly shown benefits since simulation is an ef-

fective tool for improving complex systems like EDs, particularly by tackling chal-

lenges of variable patient arrivals and resource allocation in a risk-free virtual environ-

ment [3]. In fact, most hospitals that have optimised operations have done so by exper-

imenting with models to determine how many resources are needed at peak times and 

where the worst delays occur. Traditionally, these models assume a certain static set of 

inputs (like average arrival rate or service time distributions) and yield strategic recom-

mendations (e.g., increasing the number of doctors to reduce waiting time). While val-

uable, static models struggle to capture the real-time fluctuations inherent to EDs. 

This is where Artificial Intelligence (AI) and Machine Learning (ML) have increas-

ingly been introduced to complement simulation. AI techniques, especially predictive 

modelling, can analyse historical and real-time data to forecast ED conditions in the 
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future.  For instance, predicting how many patients will arrive in the next hour or which 

admitted patients will likely deteriorate and require ICU care. Accurate prediction of 

ED arrivals is key to optimising staffing and resources, thereby cutting patient waiting 

times [3, 11]. Many researchers have focused on forecasting patient attendance using 

time-series models like ARIMA and exponential smoothing [11]. These statistical mod-

els are effective when patterns are regular but falter with irregular surges and complex 

nonlinear trends. To address this, recent studies have turned to machine learning algo-

rithms (such as random forests, gradient boosting, and neural networks), which can 

incorporate a wider range of features, such as calendar effects, weather data, upstream 

infection rates, etc., to improve forecast accuracy. Notably, hybrid approaches have 

been proposed that combine traditional time-series methods with machine learning and 

even text mining of contextual information [11]. Such hybrid models have demon-

strated superior predictive performance compared to any single modelling approach, 

particularly in forecasting ED arrivals. For example, Porto and Fogliatto in [11] report 

that an ensemble of machine learning models (e.g., XGBoost and neural network auto-

regression) after feature engineering achieved 5–14% mean absolute percentage error 

in predicting daily ED visits, outperforming prior ARIMA-based studies. The implica-

tion is that leveraging AI for prediction can provide the foresight needed to initiate pre-

emptive actions (like calling in additional staff or opening surge areas) rather than re-

acting after queues have already formed. 

The true power for operations management emerges when these predictive tools are 

integrated with simulation in a hybrid modelling framework. The work presented in [4] 

developed a hybrid system combining real-time forecasting with discrete-event simu-

lation to support short-term decision-making in urgent care networks. Their approach 

used seasonal ARIMA models to continuously forecast patient arrivals across multiple 

EDs, triggering scenario simulations of the EDs under various diversion policies. By 

doing so, the system could proactively identify when an ED’s projected queue would 

become unmanageable and then simulate diverting a portion of low-acuity patients to 

alternative clinics before the ED became overwhelmed. This hybrid forecasting–simu-

lation strategy, essentially an early form of a digital twin, allowed the researchers to 

achieve proactive service recovery in the ED: instead of waiting for crowding to cause 

harm, the model would advise interventions (like patient re-direction or resource real-

location) ahead of time. Similarly, this work showed that sharing real-time data across 

an integrated simulation model can support dynamic ED control policies – for example, 

temporarily rerouting incoming ambulances when predicted wait times exceed a thresh-

old [4]. The results indicated a clear benefit in reducing patient congestion and avoiding 

service breakdowns. 

Another study [12] focused on hospitalisation departments during respiratory disease 

seasons and integrated artificial intelligence with DES to shorten bed waiting times. In 

that work, machine learning models predicted the probability of clinical deterioration 

for each admitted patient and the likely length of stay, information which was fed into 

a simulation of hospital bed management. This hybrid model optimised bed assign-

ments and prioritised transfers, yielding an impressive reduction of nearly 8 hours in 

the average bed waiting time during peak respiratory illness periods. Although that 

study dealt with inpatient beds, the principle is highly relevant to ED operations by 
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anticipating bottlenecks (in their case, predicting which patients would soon need a bed 

and clearing capacity), the combination of AI forecasting and simulation can dramati-

cally improve flow. The ED is tightly coupled with downstream units like wards and 

Intensive Care Units (ICUs), so forecasting admissions and expediting throughput di-

rectly benefits ED waiting times. Ortíz-Barrios et al. [12] effectively prevented back-

logs in the ED by ensuring beds were ready when needed, demonstrating how hybrid 

AI-simulation systems can mitigate the domino effect of crowding. 

Beyond patient forecasting and bed management, AI is also used in resource sched-

uling and operational optimisation in conjunction with simulation. A recent study by 

Kim in [3] developed a simulation model of an ED and applied machine learning to 

dynamically select the best physician scheduling policy in response to current condi-

tions. Six different staffing schedules (varying mixes of senior and junior doctors by 

shift) were embedded in the simulation, and a learning algorithm was trained on histor-

ical data to pick which policy would minimize patient length of stay for a given incom-

ing patient load. This integrated ML–DES approach achieved about 90% accuracy in 

matching the optimal schedule to the situation, and the resulting average patient length 

of stay in the ED fell to ~323 minutes, compared to ~327 minutes under a static sched-

uling method [3]. While the improvement might seem modest, it underscores the po-

tential of real-time adaptive scheduling powered by AI, as even small reductions in 

average LOS can translate to dozens of freed bed hours and markedly improved waiting 

times across hundreds of patients. More importantly, the study highlights that increas-

ing resources is not always feasible (due to financial or personnel constraints); thus 

optimising the utilisation of existing staff is crucial. Machine learning provides a way 

to make optimal use decisions on the fly, something traditional heuristic schedules can-

not accomplish. We see similar trends in operating rooms, inpatient units, and ambu-

lance services, where AI and simulation coalesce to tackle complex scheduling and 

routing problems better than either could alone. 

In summary, the literature on patient flow management is moving toward the con-

vergence of AI and simulation, effectively laying the groundwork for hospital digital 

twins. Discrete-event and agent-based simulations supply a tested framework for mod-

elling the ED and evaluating interventions. In contrast, AI supplies predictive and adap-

tive capabilities to inform those models with up-to-the-minute insights. Hybrid models 

have been shown to prevent overcrowding by acting ahead of time, streamlining hos-

pital pathways by intelligent resource allocation, and enhancing the precision of oper-

ational decisions (like scheduling) under uncertainty [4]. These advances directly re-

duce patient waiting times and improve throughput, especially during demand surges. 

The ongoing challenge is integrating these components into a cohesive system that can 

run continuously in a real hospital setting – precisely the ambition of a true digital twin. 

2.3 Decision-support Systems and Forecasting during Public Health Crises 

Public health crises, such as pandemic waves or severe seasonal outbreaks, put extraor-

dinary pressure on hospitals and demand robust decision-support systems for effective 

response. In these situations, having tools that forecast patient surges and support rapid 

operational adjustments is invaluable. During the COVID-19 pandemic, for example, 
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many health systems learned the importance of real-time situational awareness and pre-

dictive analytics to manage capacity [1-2]. Large hospital networks like NYC Health + 

Hospitals (the largest municipal system in the US) activated emergency coordination 

centres that relied on analytic tools and live dashboards to track incoming cases, avail-

able beds, ventilators, and staffing levels across the city. This real-time data visibility, 

combined with predictive models, enabled administrators to anticipate where resources 

would be overwhelmed and to redistribute patients or staff accordingly. Indeed, situa-

tional awareness and forecasting are critical components of crisis response, allowing 

decision-makers to stay ahead of rapidly evolving demand [2]. For respiratory virus 

surges, this might include short-term forecasts of ED visits based on community infec-

tion trends or early warning triggers when a certain threshold of flu cases is reached. 

Even simple time-series models (e.g., weekly ARIMA forecasts of ED respiratory 

cases) have been shown to improve preparedness by giving a few days lead time to 

implement surge protocols [4,11]. 

At a more advanced level, digital twin and simulation approaches have been ex-

plored as decision-support systems during crises. The idea is that a hospital or regional 

healthcare system can maintain a continuously running simulation model, fed by cur-

rent data, to test the impact of different emergency strategies. For instance, researchers 

in Denmark created a detailed nation-level simulation (termed a digital twin of the pop-

ulation’s health status) to evaluate COVID-19 mitigation measures [13]. Their simula-

tion results showed that without certain interventions (mass testing and targeted lock-

downs), hospital admissions would have surged by 150% during the Alpha variant 

wave. While that study was on a public health scale, the underlying principle applies to 

ED operations. Virtual scenario testing can inform policy decisions that directly affect 

waiting times and outcomes. In an ED setting, this could mean simulating various triage 

protocols during a pandemic (e.g. streaming respiratory patients to separate zones) or 

testing the effect of expanding ED capacity using hall beds or field units. By comparing 

scenarios in the twin, hospital leaders can choose strategies that best mitigate over-

crowding and treatment delays before implementing them on the ground [4-5]. 

One concrete example of an ED-focused decision support system is the hybrid fore-

casting simulation model presented in [4]. Although developed prior to COVID-19, it 

essentially functioned as a crisis management tool, enabling proactive diversion of pa-

tients when an impending overflow was predicted. In practice, such a system during a 

respiratory pandemic could automate decisions like directing ambulances between hos-

pitals or activating urgent care centres to absorb low-acuity cases when a surge is an-

ticipated. The value of this approach was endured during COVID-19 as many regions 

that fared better did so by balancing loads across hospitals and utilising alternate care 

sites, actions that rely on timely data and forecasts. A digital twin of a hospital network 

can facilitate these decisions by continuously computing scenarios of patient distribu-

tion and resource utilisation under current conditions. Researchers have noted that dig-

ital twins, by virtue of their real-time fidelity, can serve as nerve centres during crises, 

aggregating data, analysing risks, and recommending interventions in one unified plat-

form [5]. In other words, a digital twin is a model and an intelligent agent in the decision 

loop, advising human operators on the best course of action to preserve care quality. 
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During the COVID-19 pandemic, numerous predictive tools were developed to fore-

cast hospital admissions, ICU demand, and ED presentations. Machine learning models 

using live syndromic surveillance data could predict COVID-related ED visits several 

days in advance, helping emergency departments plan for surges in respiratory patients 

[1]. In parallel, decision-support dashboards integrated these forecasts with hospital ca-

pacity information to trigger predefined escalation plans (such as converting recovery 

rooms into ICU beds or calling reserve clinicians). Khan et al., in a scoping review of 

digital twins for COVID-19 [14], identified hospital capacity management as a key area 

where DTs were proposed to aid the pandemic response. By simulating patient flow 

and resource consumption, a hospital digital twin can forecast when critical resources 

(like isolation beds or ventilators) will run out and evaluate the impact of mitigation 

steps (cancelling elective surgeries, expanding telemedicine triage, etc.) [15]. The re-

view noted that while many such applications were conceptual, they highlight a con-

sensus that DT technology can greatly enhance crisis decision-making by providing a 

system-wide perspective and predictive insight beyond human intuition alone. 

Crucially, public health emergencies often require decisions that balance competing 

needs and uncertain outcomes. A decision-support system grounded in simulation and 

AI can illuminate the likely consequences of each option. For example, during the 2022 

flu/RSV/COVID tripledemic, paediatric EDs had to decide whether to cohort patients, 

divert them, or stretch staff ratios, each with trade-offs in patient wait and safety. With 

a digital twin, they could simulate these options: how would opening a fast-track for 

flu patients affect overall wait times? What if 10% of lower-priority cases were redi-

rected to urgent care clinics? By examining such questions virtually, hospitals can 

choose strategies that minimize harm [16]. Real-world experience from NYC during 

the tripledemic showed the importance of improving comprehensive situational aware-

ness and adjusting resource levels system-wide promptly [2]. Hospitals that employed 

central monitoring and agile reconfiguration (such as shifting staff to EDs under strain 

or pooling ICU beds across a system) managed better throughput than those that didn’t. 

These are essentially manual precursors to what a digital twin could automate – contin-

uously sensing the load and recommending reallocation of resources or rerouting of 

patients to prevent any one facility from collapsing under pressure [17]. 

In summary, the literature and recent crisis experiences underscore that forecasting 

and decision-support tools are indispensable during public health surges. Integrating 

forecasting models (ARIMA, ML, etc.) with ED operations allows hospitals to act be-

fore queues mount [4,11,18,19]. Simulation-based decision support enables scenario 

planning for worst-case conditions and optimal use of scarce resources [5,13,20,21]. 

Digital twins represent the cutting edge of these capabilities, bringing together real-

time data, predictive analytics, and simulation in a cohesive platform. Although still in 

the early stages of deployment, they have been envisioned as key assets for enhancing 

resilience in healthcare [22, 23]. 
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3 Proposed Methodology 

The proposed methodology entails the implementation of four main phases, as fine-

grained in Fig. 1. The details of each component are described below: 

 

 

Fig. 1. The step-by-step procedure for reducing the ED waiting times using digital twins 



 Contribution Title (shortened if too long) 11 

 

Phase 1 - Digital twin modelling: Direct observation and Supplier-Input-Process-

Output-Customer (SIPOC) diagram are utilized to identify the main stations of the pa-

tient journey within the ED, discriminate parameters/process variables, and hypothesize 

the potential causes of ED deficiencies during Respiratory Disease Seasons (RDSs). 

 

Phase 2 - Input data assessment: In this phase, we evaluate the process variable 

data’s autocorrelation, homogeneity, and goodness-of-fit. While the autocorrelation is 

analyzed using a run test (α = 0.01), the homogeneity is elucidated through an Analysis 

of Variance (ANOVA) test (α = 0.01). Finally, the goodness-of-fit is examined by em-

ploying a Kolmogorov-Smirnov (KS) test (α = 0.01).  

 

Phase 3 - Experimentation and validation of the digital twin model: The proba-

bility expressions derived from the KS tests are included in the digital twin model. This 

model is diagrammed in Arena ® software considering the findings of previous steps. 

A pre-sample of 10 iterations is then run to estimate the variability of the waiting times 

[24]. With this information, a final sample size is calculated, and the digital twin model 

is validated through a 1-sample t-test (α = 0.01). If the digital twin model is comparable 

with the real-world ED, performance diagnosis and further can be performed; other-

wise, the model must be checked and calibrated.  

  

Phase 4 - Performance diagnosis: The waiting time performance metrics emanated 

from the validated digital twin are now examined for ED operational diagnosis. No 

intervention will be necessary if the waiting time is satisfactory (≤ 20 minutes). Other-

wise, improvement strategies should be created and pretested in the digital twin. The 

intervention will be categorized as effective if it significantly lowers the waiting time.  

4 Results 

Seasonal Respiratory Diseases (SRDs) put EDs under pressure and, it is, therefore, nec-

essary to anticipatedly pretest interventions that significantly lower the associated wait-

ing times and the consequent negative effects on patient’s health and operational costs 

[25-26]. A large European hospital group experienced these shortcomings during one 

of the first COVID-19 waves in 2020. Being aware of this situation, the ED managers 

decided to build a robust dataset containing patient data, attendance times, triage times, 

treatment times, and other critical process variables to model the patient pathway in a 

digital twin. Official approval was given by the ethics committee of the hospital group 

(Consent number: 14-12-2021-004; Access request ID:39) to employ the data. Thereby, 

it was possible to lay the groundwork for devising remedies tackling the main opera-

tional problems during current and future SRDs. Specifically, we focused on diminish-

ing the waiting time for ED treatment in 3-5 triaged respiratory-affected patients, con-

sidering its high association with overcrowding, intra-hospital infection, and the prob-

ability of poor health evolution.  
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The following sub-sections will describe how the proposed methodology was deployed 

in this case and how the outcomes improved the ED response during the SRD (“tri-

pledemic” of flu, RSV, and COVID-19). 

 

4.1 Digital Twin Modelling 

 

 

Fig. 2. SIPOC diagram for describing the ED journey and its interactions with suppliers and 

customers 

Direct observation and a SIPOC diagram were used to identify the ED care stations, 

suppliers, inputs, outputs, and customers. It is good to highlight that patients and phar-

macies behave as both suppliers and customers, which demonstrates the key role that 

they play in EDs during SRDs. Also, waiting times for triage and treatment were iden-

tified and corroborated by direct observation and waiting time indicators. Likewise, it 

became glaring how EDs depend on different satellite processes, indicating that inter-

vening in ED response requires designing improvement strategies at different opera-

tional levels.   
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4.2 Input Data Assessment 

The SIPOC diagram allowed us to identify three principal process variables: Time be-

tween arrivals of respiratory-affected patients, Triage categorization time, and Length 

of Stay in the emergency ward. The next step involves analyzing the data representing 

these variables. Initially, run tests are undertaken to verify potential autocorrelations (α 

= 0.01). P-values higher than the significance level and absolute T values not exceeding 

2 support the independence behaviour in all three variables. Afterwards, the Analysis 

of Variance (ANOVA) was carried out to discriminate subgroups of data within the 

main datasets (α = 0.01). Upon examining the times between arrivals, it was concluded 

that the number of attendances is significantly different depending on the day of the 

week and time slot (A: 00:00 – 08:00; B: 08:00 – 16:00; C: 16:00 – 00:00) (Fobs = 4.9; 

p-value = 0). Similarly, diverse triage categorization times (Group 1: 1-2; Group 2: 3-

5) were observed, evidencing assorted characteristics of ED respiratory-related admis-

sions during the tripledemic surge (Fobs = 16; p-value = 0) [27]. Given above, a prob-

ability expression was defined for each heterogeneous subset (Table 1).  

 

Table 1. Probability expressions incorporated into the digital twin 

 

Process variable Probability expression p-value 

 

 

 

 

 

 

 

Time between 

arrivals of 

respiratory-

affected  

Monday – A GAMM(120.18, 978) min >0.10 

Monday – B -1.2 + LOGN(26.4, 57) min >0.10 

Monday – C -1.2 + LOGN(18.6, 28.8) min 0.2 

Tuesday – A WEIB(91.2, 1164.6) min >0.10 

Tuesday – B -1.2 + LOGN(31.8, 60.6) min >0.10 

Tuesday – C -1.2 + LOGN(18, 26.4) min >0.10 

Wednesday – A WEIB(89.4, 840.6) min >0.10 

Wednesday – B -1.2 + WEIB(32.4, 1101.6) min 0.08 

Wednesday – C -1.2 + LOGN(19.2, 25.8) min >0.10 

Thursday – A WEIB(70.8, 1141.8) min >0.10 

Thursday – B -1.2 + LOGN(42.6, 92.4) min >0.10 

Thursday – C  -1.2 + LOGN(18, 28.2) min >0.10 

Friday – A WEIB(69.6, 990) min >0.10 

Friday – B -1.2 + LOGN(34.8, 71.4) min >0.10 

Friday – C -1.2 + LOGN(19.2, 31.8) min 0.08 

Saturday – A -1.2 + GAMM(74.4, 1203.6) min >0.10 

Saturday – B -1.2 + LOGN(40.8, 81) min >0.10 

Saturday – C -1.2 + LOGN(23.4, 36.6) min >0.10 

Sunday – A -1.2 + GAMM(129, 780) min 0.07 

Sunday – B -1.2 + LOGN(36, 69.6) min >0.10 

Sunday – C -1.2 + GAMM(25.8, 1353.6) min 0.07 

Triage 

categorization 

time 

Group 1 UNIF(4, 12) min 0.2 

Group 2 TRIA(4, 4, 12) min 0.2 

Length of Stay in the emergency 

ward 

(60 + 2100*BETA(56.16, 60.6))/450 

min 
>0.10 
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4.3 Experimentation and Validation of the Digital Twin Model 

The probability expressions derived from the input data assessment were then inserted 

into Arena® 16.10.00 software to create the digital twin mimicking the ED response 

during the tripledemic. The replication term considered in the DT was two weeks with 

24 hours per day, given the characteristics of ED operations. Meanwhile, four months 

were deemed necessary to stabilize the DT.  

A pre-sample of ten iterations was run to estimate the repetitions required for denot-

ing the current real system variability. The validation procedure was concentrated on 

the ED waiting time for moderate-acuity patients (triage levels 3–5). In view of the 

significant variability observed in the DT, more than 300 runs were necessary to epito-

mize the real ED under the tripledemic context. Then, a 1-sample t-test was executed 

to compare the DT and real models. The statistical test provided enough support for the 

equivalence hypothesis (p-value = 0.8; μ = 4.68 hours), and the DT can be therefore 

utilized for performance analysis and remedy pretesting if needed.  

 

4.4 Performance analysis 

The average waiting time for moderate-acuity ED patients (4.68 hours) is a clear symp-

tom of the congestion, cost overruns, and poor efficiency reported by the ED decision-

makers during the tripledemic. Given this critical outcome derived from the DT model, 

the board of supervisors has been asked to underpin the expected design of improve-

ment strategies tackling the problem [28]. Working closely with those involved in the 

day-to-day routine of the ED is important to ensure the generation of feasible remedies. 

As a result, two potential remedies were proposed: i) increasing the number of beds and 

general doctors, ii) reducing the length of stay by diminishing delays caused by clinical 

labs in delivering test results. 

The improvement strategies were modeled and simulated into the DT (Fig. 3). The 

strategy (i) generates a waiting time for III-IV triaged patients oscillating between 1.34 

and 1.98 hours (95% CI) with a mean of 1.66 hours. On the other hand, scenario (ii) 

would lead the ED to range from 2.49 hours to 5.18 hours (95% CI) with a mean of 

3.83 hours. Therefore, scenario (i) would be the winning solution and is hence recom-

mended for implementation in the wild.  
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Fig. 3. Digital twin mimicking the ED ward: Clinical lab-ED interface 

5. Conclusions and Future Directions 

This study demonstrates the great potential of digital twin technology (DT) to improve 

the operational efficiency of hospital emergency departments (EDs), particularly during 

seasonal peaks of respiratory diseases such as influenza, RSV, and COVID-19. This 

research successfully identified and tested reductions in patient wait times by develop-

ing a simulation-based DT model using primary data and validating it with statistical 

tests. Implementing two key strategies—increasing critical resources and reducing la-

boratory delays—proved to be effective in reducing treatment wait times in patients at 

triage levels 3 to 5. These findings emphasize the value of DTs as proactive decision-

support tools capable of simulating complex healthcare scenarios and guiding appro-

priate data-driven interventions. In conclusion, this approach improves patient clinical 

outcomes, reduces healthcare congestion, and increases EDs resilience during public 

health crises. 

Future work suggests integrating digital twins with real-time hospital and social data 

systems to enable real-time decision-making. Implementing this approach in other hos-

pital units is also advised to provide a more comprehensive view of hospital operations 

and improve interdepartmental coordination. Likewise, integrating advanced machine 

learning models into the DT models could improve their predictive capabilities, ena-

bling more accurate forecasting of patient arrivals and resource needs. Ultimately, ex-

ploring the development of individualized TDs for patients could facilitate personalized 

care pathways and improve triage and treatment decisions in emergency settings. 

 

Disclosure of Interests. The authors have no competing interests to declare that are relevant to 

the content of this article. 
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