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Abstract. During respiratory demand peaks, such as seasonal influenza out-

breaks or COVID-19 surges, healthcare systems often face significant strain, es-

pecially in Intensive Care Units (ICUs). Bed shortages and long waiting times 

can lead to delayed care and worsened patient outcomes. To address this, 

healthcare systems increasingly turn to digital technologies, such as digital twins, 

to optimise patient flow and resource allocation. This paper illustrates the imple-

mentation of digital twins for managing bed waiting times in intensive care units 

during respiratory demand peaks. First, we described the patient’s journey from 

the ED to the ICU using Supplier-Input-Process-Output-Customer (SIPOC) dia-

grams. After this, we analyzed input data analysis, verifying the process variable 

data’s randomness, heterogeneity, and goodness-of-fit. We then modelled the ED 

through a digital twin designed in ARENA® software. Following this, we vali-

dated the model by applying a Kruskal Wallis test on the waiting time for ICU 

beds. Lastly, we pretested two improvement scenarios: increasing the number of 

ICU beds by i) 3 and ii) 5. The suggested method was applied in a European 

hospital group during one of the first COVID-19 waves. The outcomes revealed 

that the waiting time for ICU beds (1.88 hours) can be meaningfully reduced if 

strategy ii) is applied.  

Keywords: Digital Twin (DT), Intensive Care Units (ICUs), Healthcare, Respir-

atory Syncytial Virus (RSV), Influenza, COVID-19  

1 Introduction 

Intensive care units (ICUs) often face surge periods of respiratory illness, such as the 

COVID-19 pandemic and seasonal influenza waves, which lead to demand spikes for 
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critical care beds. During the COVID-19 crisis, many hospitals experienced unprece-

dented ICU demand, requiring the conversion of non-ICU spaces into critical care beds 

[1]. Similarly, peak influenza seasons have strained ICU capacity; one U.S. study found 

that 41% of ICUs had to alter staffing or refuse transfers at the height of a severe flu 

season [2]. These scenarios underscore a pressing problem that has to do with ICU bed 

waiting times increasing when demand exceeds supply, forcing critically ill patients to 

board in emergency departments or other wards while awaiting ICU admission. 

Delayed admission to ICU is not just a trivial inconvenience, as it significantly af-

fects patient outcomes and hospital operations. Research has consistently shown that 

delays in ICU transfer correlate with higher mortality and morbidity. A meta-analysis 

in [1] reported approximately a 60% increase in odds of death for patients with delayed 

ICU admission compared to timely admission. It also showed that each hour of ICU 

admission delay was associated with an approximately 1.5% increase in ICU mortality 

risk. These delays also prolong ventilation times and ICU length of stay, compounding 

resource strain [3,4]. In short, when critically ill patients cannot access ICU care 

promptly, their condition may deteriorate, leading to worse outcomes [1]. Operation-

ally, backlogs of patients waiting for ICU beds create bottlenecks, occupying emer-

gency department bays or general ward resources and hampering the flow of new pa-

tients. ICU bed shortages have even been identified as forcing elective surgery cancel-

lation and refusal of inter-hospital transfers during surges [2]. The problem is worsened 

in health systems with limited baseline critical care capacity (e.g., the UK’s average of 

6.2 ICU beds per 100,000 people, one of the lowest in Europe [5]). Thus, reducing ICU 

waiting times during demand peaks is crucial to improve patient survival and maintain 

hospital throughput. 

Approaches to address ICU bed crises range from expanding physical capacity to 

improving the existing resource management. During COVID-19, hospitals worldwide 

rapidly added surge ICU beds and redistributed resources to meet explosive demand 

[6]. However, simply adding beds has limits, as the study presented in [5] found that 

increasing ICU capacity did not fully avert high occupancy if discharge delays per-

sisted. Effective solutions must also optimise how patients flow through the system. 

For example, reducing downstream delays (expediting transfers out of ICU when ready) 

cut ICU crowding by a more than a 20% bed increase [5]. This suggests that smarter 

utilisation of ICU resources can significantly alleviate waiting times. In this context, 

advanced decision-support technologies have become attractive. Digital twin technol-

ogy, in particular, has emerged as a promising tool to model and manage complex 

healthcare operations in real-time. A digital twin is essentially a virtual replica of a 

physical system, continuously fed with data, enabling simulation of scenarios and fore-

casting system behaviour [7]. In healthcare, digital twins are increasingly seen as a way 

to optimise patient flow and resource allocation [7-8]. By linking real hospital data to 

a live simulation model, a hospital or ICU twin can test what-if interventions (like open-

ing surge beds, adjusting staffing, or rerouting patients) without risk to patients and 

provide clinicians and managers with decision support for reducing bottlenecks. 

Delayed ICU admissions during respiratory demand peaks represent a critical chal-

lenge with both clinical and operational implications. Traditional capacity planning 

methods often lack the agility and predictive power to handle sudden surges. Digital 
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twin technology offers a novel, data-driven approach to anticipate and mitigate ICU 

bottlenecks. For instance, a hospital ICU digital twin could forecast incoming critical 

cases, highlight impending bed shortages, and evaluate interventions (e.g., diverting 

admissions or expediting discharges) in silico to minimise wait times. A digital twin 

can support timely decisions that ensure critically ill patients receive care without dan-

gerous delays by providing a real-time, system-wide view of ICU operations and run-

ning scenarios. In this paper, we address the problem of ICU bed waiting times during 

respiratory surges through a digital twin application. The following sections define the 

state of the art and methodologies that inform our approach. 

2 Literature Review 

2.1 Digital Twins in Healthcare and ICU Operations 

Digital twin (DT) technology, i.e., maintaining a digital, dynamically updated model of 

a physical system, has gained growing interest in healthcare. Originally established in 

engineering, DTs integrate real-time data with simulation models to mirror system 

states and predict future behaviour [7]. Researchers and practitioners in healthcare are 

exploring DTs to improve patient-specific care and operational management. The re-

view in [8] notes that although most early healthcare DT applications focused on pre-

cision medicine and personal health, an emerging class of DTs targets healthcare sys-

tems and processes. These system-level DTs are designed to optimise patient flows, 

resource utilisation, and care delivery with minimal risk, essentially creating “living” 

simulations of hospital operations. For example, Elkefi and Asan [8] found that digital 

twin studies for health system management, though limited in number (17 studies by 

2022), demonstrated functions like safety monitoring, operational control, and perfor-

mance optimisation in hospitals. This signals a promising but significant trend toward 

using DTs to support decision-making in complex care environments. 

In the ICU context, digital twins promise to transform critical care delivery. Halpern 

et al. [7] describe the ICU as a prime opportunity for cyber-physical-human systems 

driven by DT technology, where real-time data from patients and units feed into virtual 

models to inform care and logistics. A DT can simulate scenarios at multiple scales, 

from an individual patient or organ to an entire ICU or hospital. This enables stake-

holders to experiment with interventions in silico before applying them in practice [7]. 

Early applications in critical care include virtual patient models for medical education 

and decision support. For instance, [7] also describes that a patient digital twin for ICU 

training was developed to let trainees practice managing virtual critical illness cases 

safely. Augmented with AI algorithms, Intelligent digital twins are also being explored 

for real-time clinical decision support such as early warning of deterioration and per-

sonalised treatment predictions [9]. In cardiovascular care, prototypes of DTs can pre-

dict how a patient will respond to therapies (e.g., simulating cardiac resynchronisation 

outcomes) by continuously updating the model with patient data [10]. These examples 

illustrate the broad potential of DTs in improving ICU patient outcomes. 
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Several studies have proposed or implemented DTs replicating the hospital or ICU 

environment to assist with resource management. Karakra et al. built an early hospital 

digital twin prototype by integrating pervasive IoT data with a discrete-event simulation 

of patient pathways [11]. Their approach, termed “HospiT’Win”, created a near-real-

time model of hospital units, demonstrating how a DT could continuously monitor pa-

tient flow and test improvements in bed allocation or scheduling [12]. In the critical 

care domain, Zhong et al. developed a multidisciplinary framework for a digital twin 

of ICU care processes [13]. This work outlined how to combine clinical data, simulation 

modelling, and clinician input to mirror ICU delivery and evaluate interventions (e.g., 

admission triage rules or staffing changes). Another work by Trevena et al. [14], mod-

elled critically ill patient pathways using a digital twin approach to support ICU service 

planning. Their model, validated on intensive care workflows, allowed the exploration 

of how patients move through critical care, from emergency presentation to ICU ad-

mission, transfers, and discharge, under different policies. Such applications indicate 

that digital twins can be used to optimise ICU operations by providing a testbed for 

strategies to reduce waiting times, balance occupancy, and improve overall throughput.  

Despite these advances, the literature reveals that digital twin adoption for ICU lo-

gistics is still in the early stages. Many reported “ICU digital twins” remain conceptual 

or in pilot phases [7,15]. For instance, several prototypes focus on ventilator manage-

ment or sepsis treatment within a virtual patient model [16,17] rather than system-wide 

flow. There is a clear opportunity to extend digital twin methods to hospital-wide surge 

management. Khan et al. conducted a scoping review of digital twins during the 

COVID-19 pandemic and highlighted the technology’s potential in pandemic response, 

but also noted the lack of fully implemented ICU-wide twins for managing resource 

spikes [18]. In summary, digital twin research in healthcare shows promises (with early 

successes in personalised care and operational modelling), yet applications that specif-

ically tackle ICU bed capacity and patient flow during demand peaks are only begin-

ning to emerge. Our work aims to contribute to this area by developing a digital twin 

focused on ICU bed waiting times in surge conditions. 

 

2.2 Simulation and AI Approaches for ICU Capacity Management 

To ground our digital twin approach, we review related methodological strategies used 

to study and mitigate ICU bottlenecks. Discrete-event simulation (DES) has long been 

employed in health operations research to model patient flow and resource utilisation. 

A recent systematic review by Vecillas-Martin et al. analysed 616 healthcare DES stud-

ies and confirmed its growing diffusion, especially following the COVID-19 pandemic 

[19]. DES models represent healthcare processes (admissions, transfers, discharges, 

etc.) as sequences of events, enabling analysts to run virtual scenarios without risking 

patient care. In hospitals, DES is commonly used to identify process improvements that 

reduce wait times and optimise capacity. For instance, simulation has been applied to 

emergency departments and surgical units to test interventions and has shown signifi-

cant benefits like throughput increases and wait time reductions. Notably, many DES 

case studies report reductions in patient waiting times, the review in [19] found about 
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32% of published healthcare DES projects achieved waiting time improvements as an 

outcome. This underscores the simulation’s value in determining and relieving bottle-

necks. 

In the ICU context, DES has demonstrated particular utility in capacity planning. 

Griffiths et al. used discrete-event simulation to determine optimal ICU bed numbers 

and nurse staffing, showing that better capacity planning could reduce ICU admission 

delays by approximately 28% [20]. Their study modelled ICU patient arrivals and 

lengths of stay to evaluate how often patients would be deferred if only a given number 

of beds were available. More recently, Williams et al. built a comprehensive ICU flow 

simulation to support a UK health board’s decision-making for a merged ICU unit [5]. 

Using 2 years of patient data, their DES model was validated against real admission 

and occupancy patterns. The simulation explored what-if scenarios such as increasing 

bed count, altering admission rates, and reducing discharge delays. A key finding was 

that reducing the proportion of patients experiencing transfer delays out of the ICU 

yielded a greater drop in ICU occupancy and full capacity time than adding extra beds. 

This result highlights that operational improvements (e.g., speeding up step-down 

transfers or improving ward availability) can markedly relieve ICU congestion [5]. 

Overall, the literature supports DES as a powerful tool to test interventions for ICU 

capacity management, from adjusting staffing levels to dividing patients into groups 

and to quantify their impact on wait times and outcomes. It is, therefore, natural that 

DES often forms the backbone of healthcare digital twins, providing the simulation 

engine that runs the virtual ICU.  

While DES models the system at a macroscopic process level, agent-based model-

ling (ABM) offers a complementary approach by simulating agents’ individual behav-

iours and interactions (e.g., patients, staff, or even microscopic entities). In an ABM, 

each agent follows simple rules and complex system dynamics emerge from their col-

lective behaviour. In [21], ABM has been used to capture phenomena like hospital in-

fection transmission or the cascading effects of individual patient decisions on system 

load. For ICU operations, ABM can incorporate heterogeneous patient characteristics 

and stochastic events such as sudden clinical deterioration. For example, an agent-based 

model could simulate each patient’s trajectory (with varying acuity, length of stay, etc.) 

and how they compete for limited ICU beds. Though ABM is less prevalent than DES 

in this domain, it has been applied to problems like patient-to-patient interactions and 

staff scheduling. It also provides flexibility in modelling adaptive behaviours (such as 

dynamic triage decisions). Some researchers have combined ABM with DES to lever-

age both strengths: a hybrid model might use DES for high-level patient flow and ABM 

for detailed interactions. During the COVID-19 pandemic, hybrid simulation proved 

useful. For instance, Adamczyk et al. integrated ABM and DES in a regional COVID-

19 management model to simulate hospital responses across multiple ICUs [22]. Such 

hybrid approaches allowed representation of individual hospitals (with agents for each 

ICU or patient) within a DES of the broader network, helping policymakers evaluate 

strategies like patient transfers between ICUs. This indicates the value of multi-method 

simulations for complex, multi-scale challenges like pandemic surges. 
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Another crucial methodological thread is incorporating artificial intelligence (AI) 

and real-time analytics into ICU capacity management. AI techniques can enhance sim-

ulation models by providing data-driven predictions (for example, forecasting how 

many ICU admissions are likely in the next 24 hours) and adaptive decision rules. A 

study by Ortiz-Barrios et al. combined machine learning with DES to support ICU bed 

management during COVID-19. They first trained a Random Forest classifier to predict 

ICU admission probability for incoming emergency patients based on clinical features 

[23]. The output of this AI model (a prognosis of how many patients would need ICU 

care) was then fed into a DES model of the hospital’s ICU to evaluate different capacity 

expansion plans. The hospital could use this AI-informed simulation to test interven-

tions like adding surge beds or adjusting admission thresholds. The results were signif-

icant by proactively reallocating resources based on the model, the median ICU bed 

waiting time dropped by 32–48 minutes in their case study. This demonstrates how AI 

integration can make simulations prescriptive in real time, essentially forming a digital 

twin that not only mirrors the current state but also recommends actions.   

Real-time data feeds (e.g., from electronic health records, monitoring systems, or 

IoT devices) are a pillar of digital twin systems. Traditional simulations are often run 

offline with static datasets, but a digital twin for ICU operations should update contin-

uously with live data like admissions, discharges, vital signs, etc. Karakra et al. demon-

strated this concept by linking IoT sensors tracking hospital patients to a DES model, 

creating a continuously updating “living simulation” of hospital workflow [11]. This 

approach enabled near real-time bed occupancy and patient locations monitoring and 

could alert managers to developing bottlenecks. The literature indicates that such real-

time or streaming data integration is still challenging (due to interoperability and data 

quality issues), but it is being actively explored. Chase et al. (2023) discuss ICU digital 

twins with closed-loop control, where the twin can autonomously suggest or trigger 

actions like calling in reserve staff or triaging patients to intermediate units [24]. While 

fully autonomous control is futuristic, even current studies show that timely analytics 

and simulation can help ICU teams optimise resource use under pressure. During pan-

demic peaks, for instance, some hospitals developed dashboard systems (akin to sim-

plified twins) to track capacity and trigger load-balancing between ICUs [25]. These 

efforts align with the vision of a digital twin that not only forecasts problems but also 

aids in coordinating response across the hospital or region. 

2.3 Resource Optimisation During Demand Peaks  

The COVID-19 pandemic prompted several studies on crisis capacity management. 

Beyond the aforementioned Ortiz-Barrios study [23], other researchers used simula-

tions to evaluate emergency policies like cancelling elective surgeries, inter-hospital 

transfers, or temporary ICU expansions. One study at Addenbrooke’s Hospital in the 

UK found that proactive cancellation and temporary ICU expansion significantly re-

duced ICU occupancy and staff workload compared to doing nothing [26]. Another 

study by Alban et al. reported using a process simulation to manage ICU surge capacity 

in Amsterdam, helping to anticipate when COVID admissions would overwhelm ICU 
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beds and guiding the activation of additional beds and staff [27]. Their approach illus-

trated how modelling could support adaptive responses in real-time. Likewise, scenario 

analyses were conducted in various countries to project ICU bed demand under differ-

ent outbreak trajectories, often influencing policy decisions on lockdowns or patient 

transfers. These studies underscore that data-driven planning was vital to mitigating 

ICU overload in COVID-19’s peak phases. 

Seasonal influenza surges, while smaller in scale, have also been examined. Lane et 

al. (2022) performed a multicentre prospective study on ICU operational stress during 

a severe flu season [2]. They found that nearly half of participating ICUs had to imple-

ment extraordinary measures (like stretching staffing ratios or declining external ad-

missions) during peak influenza activity. Notably, 17% of sites reported potential 

avoidable patient harm due to resource shortfalls. This evidence highlights why proac-

tive strategies are needed by the time an ICU is scrambling during a surge; patient care 

may already suffer. It also stresses the multi-faceted nature of resource optimisation as 

it’s not just about beds but also about staffing, triage protocols, and inter-departmental 

coordination. 

The literature suggests several key tactics to improve ICU capacity management 

during peaks: (1) dynamic staffing and flexible care models (e.g., “critical care without 

walls” where ICU expertise is deployed to monitor patients in step-down units when 

ICU beds are full [1]), (2) streamlined admissions and discharges (for instance, using 

rapid response teams to identify patients who can be transferred out sooner); (3) cross-

training and repurposing of staff/rooms (as was done in COVID-19 by turning recovery 

rooms into ICU pods [1]), and (4) load-balancing across networks (transferring patients 

between hospitals to avoid any single ICU exceeding capacity). Simulation and digital 

twin studies have begun to evaluate such interventions. For example, Harper, in [28], 

showed that modelling multiple hospital departments together (rather than an ICU in 

isolation) improved overall efficiency by 15%, as it captured how relieving one bottle-

neck (like step-down bed availability) affects the whole system.  

Researchers have applied simulation, modelling, and AI to understand and improve 

ICU patient flow, demonstrating that delayed ICU admissions significantly harm pa-

tients and that proactive management can reduce these delays. Discrete-event simula-

tions have quantified how changes in capacity or process might alleviate waiting times, 

while newer digital twin frameworks aim to make these simulations continuously re-

sponsive to real-world data. However, a gap remains in fully realising digital twin so-

lutions for surge scenarios. To the best of our knowledge, the literature lacks docu-

mented cases of a true real-time ICU digital twin deployed during events like a flu 

pandemic or COVID wave. Most studies either retrospectively simulate scenarios or 

run prospective models offline. Thus, there is a compelling need for research that im-

plements and evaluates a digital twin in practice for ICU capacity optimisation. This 

work addresses that need by proposing a digital twin application tailored to ICU bed 

waiting times during respiratory demand peaks. Building on the methods and findings 

reviewed above, our approach integrates discrete-event simulation, real-time data feeds, 

and AI-based predictive components to create a dynamic model of ICU operations. In 

the next sections, we detail the design of this digital twin and assess its potential to 
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support ICU decision-makers in ensuring timely critical care access when it is most 

challenged. 

 

3 Proposed Methodology 

Digital twins must be reliable and representative of the real healthcare system to pro-

vide appropriate support for decision-makers. In this regard, it is necessary to follow a 

step-by-step procedure described below (Fig. 1) [29]:  

 

Phase 1 – Description of ED-ICU pathway: The pathway to upstream healthcare 

services includes several stations that depend on the patient’s health evolution and mul-

tiple treatment options. This must be clearly portrayed through Supplier-Input-Process-

Output-Customer (SIPOC) maps complemented by Gemba walks. Thereby, it is possi-

ble to pinpoint the main process variables/parameters, principal stations, and potential 

inefficiencies during Respiratory Disease Seasons (RDSs).  

 

Phase 2 - Input variable analysis: In addition to verifying the data quality, it is 

essential to derive the stochastic expressions denoting the behaviour of each process 

variable in the system. Three statistical tests are required to achieve this aim: interde-

pendence, homogeneity, and goodness-of-fit. The run test (α = 0.01) evaluates whether 

the variable is random. Afterwards, the Analysis of Variance (ANOVA) (α = 0.01) is 

utilized to verify if the variable can be decomposed into several layers. A stochastic 

expression must be defined per layer if heterogeneity is detected. Otherwise, only one 

probability distribution is enough to represent the variable’s behaviour. Kolmogorov-

Smirnov (KS) tests (α = 0.01) are recommended to reach these distributions.  

 

Phase 3 - Digital twin creation and validation: The stochastic distributions are 

later inserted into the digital twin designed in the Arena ® software. As recommended, 

a pre-sample of 10 runs is deployed to assess the variance of the bed waiting times. The 

required number of iterations is finally computed considering this variance. The vali-

dation process evaluates whether the DT produces a similar waiting time for ICU beds 

compared to the one derived from the real system. A Mann-Whitney test (α = 0.01) 

supports this process. If the DT is statistically equivalent to the real-world ICU in terms 

of this key indicator, decision-makers and ICU managers can proceed with the response 

diagnosis; otherwise, the model must be refined until its reliability can be certified.  

  

Phase 4 – Operability analysis: The ICU bed waiting time derived from the DT is 

now analyzed against the standard required in this service. In case of inefficiency, DT 

can provide helpful information for studying ICU interactions with other services while 

identifying stations that are wasting time. Besides, it will be necessary to formulate 

some improvement scenarios with the hospital administrators and clinical staff. Such 

remedies can be pretested in the DT to determine if they will be effective in case of 
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implementation. Comparative statistical tests (α = 0.01) will be employed to reach this 

conclusion.  

 

 

Fig. 1. The methodological framework for addressing bed waiting times in ICUs based on digi-

tal twins 
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4 Results 

SRDs provoke a huge burden on ICUs, which, in some cases, do not respond timely in 

bed provision. The problem is even more sharpened considering the convergence of 

several respiratory pathogens whose spread rates tend to peak every season. This is the 

context of an extensive European medical group during the initial COVID-19 surges.  

The General Management Office of the hospital group collected relevant process 

data to underpin the deployment of a digital twin. The primary aim was to evaluate its 

current performance during the pandemic and devise feasible remedies if necessary. 

The project received informed approval from the ethical body (Consent number: 14-

12-2021-004; Access request ID:39) to use and analyze the gathered data for improve-

ment purposes. The decision-makers also considered employing the model to define 

how to increase its readiness when addressing future respiratory-related outbreaks. 

Likewise, the intervention was directed towards the ICU bed waiting time as it had been 

identified as highly correlated with elevated cost overruns and greater patient mortality 

probability.  

The next subsections will illustrate how the proposed methodology was deployed in 

this case study and what outputs were derived from each phase. 

 

4.1 Description of ED-ICU pathway 

 

 

Fig. 2. SIPOC diagram for characterizing the patient journey from ED to ICU 

Gemba walks, and a SIPOC diagram (Fig. 2) were used to discriminate the suppliers, 

inputs, process steps, outputs, and clients. It is good to note that patients act as both 

providers and customers, highlighting these actors’ critical role. Also, it is evident how 
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clinical history travels along the healthcare system while recording the patient’s evolu-

tion. This means that this document is a key source of information from which the dig-

ital twin can be fed and updated. No less important is the role of pharmacy in the correct 

and timely provision of medication, which is highly associated with prolonged length 

of stay and elevated bed waiting times. Likewise, the SIPOC map reflects how interac-

tive the ICU is with other healthcare stations, demonstrating the need to effectively 

administer the interdependences beyond an individual view over the ICU.  

 

4.2 Input variable analysis 

After characterizing the healthcare system, four process variables were pinpointed 

to be analyzed: Time between attendances in the ED, Triage classification time, ED 

Length of Stay, and ICU stay period. First, we confirmed the interdependence assump-

tion of the variables through run tests (α = 0.01; p-value > 0.15). Then, we performed 

an Analysis of Variance (ANOVA) to validate the presence of subsets within each var-

iable. The results evidenced that all the variables (α = 0.01; p-value > 0.073), except 

the Triage classification time, are heterogeneous, and a probability expression must be 

defined for each data stratum (Table 1). The likelihood distributions were determined 

through χ2 tests (α = 0.01).  

 

Table 1. Likelihood distributions of process variables inserted in the digital twin 

 

Process variable Likelihood distributions p-value 

Time between attendances in the 

ED  

EXPONENTIAL, LOGNORMAL, 

WEIBULL 
>0.06 

Triage classification time UNIFORM >0.15 

ED Length of Stay  UNIFORM >0.15 

ICU stay period GAMMA, EXPONENTIAL >0.092 

 

4.3 Digital twin creation and validation 

The input data analysis and process characterization results were employed to design a 

digital twin imitating the real functioning of the ICU. The Arena® 16.10.00 software 

was utilized for this aim, given its advantage of modeling by blocks, its user-friendly 

interface, and its versatility to represent the inefficiencies of operational workflows. 

The replication length defined for the digital twin was 15 days with 24 hours/day. This 

is because healthcare operations, including intensive care, are constantly open to the 

public. 

An initial sample of 10 runs was executed to calculate the number of iterations re-

quired for portraying the real variability of bed waiting times derived from the intensive 

care operations. The outcomes evidenced that more than 2,100 replications are neces-

sary to clear understand the ICU operability under the SRD pressure. Following this, a 
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1-sample sign test (α = 0.01) was implemented to verify whether the digital twin is 

comparable with the real ED-ICU operation regarding bed waiting times. The test un-

derpinned the similarity (p-value = 0.7; η = 1 hour), and the virtual model can be hence 

adopted for operability assessment and design of effective interventions if needful. 

 

 

4.4 Operability analysis 

 

The digital twin revealed that the median waiting time for an ICU bed was 1.88 hours. 

This is an undeniable sign that the patient flow from the ED and other downstream 

services has surpassed ICU installed capacity. Of note, operational healthcare mis-

matches in the presence of rapidly-evolving respiratory viruses threaten patients’ health 

and thus claim unified improvements. Embedding effective solutions is urgently needed 

to tackle this problem. The digital twin comes to the ground again to empower decision-

makers on what to do in a highly iteratively interacted healthcare system [30]. Two 

proposals were envisioned and examined to tackle the bed waiting time problem: aug-

menting the number of ICU beds by i) 3, ii) 5.  

 

 

Fig. 3. ICU interface in the digital twin model 

After retrieving the information from the digital twin runs, we observed that the waiting 

time indicator would reduce between 6.48 min and 9.60 min (95% CI) if intervention 

(i) is implemented. In turn, the remedy (ii) would shorten this time between 10.8 min 

and 16.01 min (95% CI). Although the winning solution is (ii), there is still room for 

improvement. Hence, integrating this remedy with other solution perspectives is fun-

damental, which can contribute to a more favorable outcome. 

 

Conclusions 

Shaping the future response of ICUs when undergoing SRDs is pivotal to ensure more 

auspicious outputs in respiratory-affected patients. The core fabric of this project will 

be the correct administration of unit-to-unit interactions along the ED-ICU pathway. 
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One-size-fits-all solutions are inefficient and do not correspond to the intrinsic charac-

teristics of each system. The underlying digital twin model is a promising alternative to 

address the operational problems that ICUs may face during respiratory-disease out-

breaks, including out-of-control waiting times. The respiratory disease burden is ex-

pected to ramp up every season in the coming decades, and healthcare decision-makers 

will need advanced approaches like the digital twins to strengthen the supporting oper-

ational pillars.  

 

The road forward dictates that these virtual replicas will be even more fundamental if 

combined with endeavors from the Artificial Intelligence field. Extracting high-quality 

data will ensure the reliability and usability of these integrations. In this regard, ICU 

managers are challenged to monitor the data culture within their departments continu-

ously. Ultimately, it is advised to cross the ICU boundaries and establish collaborative 

agreements with other ICUs where some patients can be transferred to other units that 

can guarantee timelier care [31-33].  
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