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Abstract. Modelling high-frequency mechanical or electromagnetic waves is important for
a wide range of applications, including noise and vibration of lightweight electric vehicles and
mobile network coverage. We will explain the connection between high-frequency asymptotic
solutions to frequency domain wave equations and the radiative transfer equation (RTE) via
a kinetic formulation of the classical Hamiltonian ray dynamics. The numerical solution
of the arising RTE requires a discretisation in both the position and direction coordinates.
We will introduce a computational framework based on the Discontinuous Galerkin (DG)
method in space, and compare the commonly used discrete ordinate method in direction with
a Fourier based approach. The DG method can be viewed as a boundary integral method
since we reformulate the PDE in a weak form including both domain and boundary integrals,
the latter of which describe inter-elemental fluxes. Finally, we discuss the potential of this
approach for analysing complex built-up structures, highlighting its promise for addressing
challenges in high-frequency wave propagation in the future.

1.1 Introduction

High-frequency wave phenomena arise in a myriad of applications, from seismology [1] and
acoustics [2] to optics [3] and electromagnetism [4], and occur whenever the wavelength is
significantly smaller than the characteristic length scales of the medium. This provides challenges
in complex media/structures where the requirement to adequately resolve the rapid wave
oscillations, as well as the complex geometric features can lead to very large and computationally
costly numerical schemes as the frequency is increased [5, 6, 7]. In this paper, we explore the
connection between high-frequency asymptotic solutions of frequency domain wave equations
and the radiative transfer equation (RTE) through a kinetic formulation rooted in classical
Hamiltonian ray dynamics. This is beneficial as it offers a framework that captures the detailed
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local wave dynamics accurately and efficiently, which is crucial for modelling high-frequency
waves, and thereby enabling the development of simulation techniques that are both more robust
and computationally efficient in complex media.
During the presentation, we will explain in detail how the RTE can be numerically solved
using a discretisation framework based on the Discontinuous Galerkin (DG) method. I will
also present simulation results that underscore the potential of this integrated framework in
addressing challenges in high-frequency wave modelling.

1.2 Monochromatic wave problems at high-frequencies

We begin by considering frequency domain wave equations of the form:

∆αϕ(x, y)− (ik)2αϕ(x, y) = 0, (1.1)

for a given α = 1, 2, where k = ω/c with ω being the angular frequency and c > 0 the wave
speed in the medium [7]. When α = 1, Eqn. (1.1) is the Helmholtz equation which models,
for example, acoustic waves or in-plane waves in thin plates. When α = 2 and c ∝

√
ω, Eqn.

(1.1) is the biharmonic wave equation describing the flexural motion of thin plates [6]. In the
high-frequency regime for the Helmholtz equation, we adopt the usual ansatz [8]:

ϕ(x) = A(x)eiωS(x) (1.2)

with x = (x, y) representing the two-dimensional spatial coordinates, A(x) denoting the
amplitude function, and S(x) the phase function [7]. The idea is to replace the task of
approximating the rapidly oscillating function ϕ, with instead approximating the more slowly
varying functions A and S. Substituting (1.2) into the Helmholtz equation, we obtain:

∆α
(
A(x)eiωS(x)

)
+ k2A(x)eiωS(x) = 0. (1.3)

We can then expand in terms of x and y to obtain:

∂2(A(x)eiωS)

∂x2
+

∂2(A(x)eiωS)

∂y2
+ k2AeiωS = 0. (1.4)

Evaluating the second order partial derivatives and summing relevant terms we arrive at:(
∂2A

∂x2
+

∂2A

∂y2

)
eiωS + 2iω

(
∂A

∂x

∂S

∂x
+

∂A

∂y

∂S

∂y

)
eiωS

+A

[
iω

(
∂2S

∂x2
+

∂2S

∂y2

)
− ω2

((
∂S

∂x

)2

+

(
∂S

∂y

)2
)]

eiωS + k2AeiωS = 0, (1.5)

which simplifies to

∆A+ 2iω (∇A · ∇S) + iωA∆S − ω2A|∇S|2 + k2A = 0. (1.6)

In the high-frequency regime ω ≫ 1, equation (1.6) is predominantly influenced by the highest
order ω terms. Therefore, considering only the O(ω2) terms and noting that k = ω/c we obtain:

ω2

c2
A− ω2 |∇S|2A = 0. (1.7)

2



This can be rearranged to yield the standard form of the eikonal equation [6]

|∇S| = 1

c
= η, (1.8)

where η is referred to as the slowness. Similarly for the biharmonic wave equation, where α = 2
in equation (1.1), the solution ansatz is modified to

ϕ(x) = A(x)ei
√
ωS(x), (1.9)

in order to ensure that |∇S| is independent of ω. Following a similar procedure to the one
outlined for the Helmholtz equation, we again arrive at the eikonal equation

|∇S| =
√
ω

c
= η. (1.10)

Note that since c ∝
√
ω, then |∇S| is frequency independent and thus S may be assumed to be

slowly varying. In general, the eikonal equation for the phase S can be written as:

|∇S| = ω
α−1
2

c
= η, (1.11)

where α is either 1 or 2 for the Helmholtz or the biharmonic equations, respectively.

1.3 Derivation of the ray equations

We now shall seek to transform the eikonal equation (1.11) into an ODE system, by using the
method of characteristics [9]. We introduce the notation

p1 =
∂S

∂x
, p2 =

∂S

∂y
, (1.12)

so that the square of the eikonal equation (1.11) becomes

p21 + p22 = η2. (1.13)

Also as an aside, since

p1 =
∂S

∂x
then

∂p1
∂y

=
∂2S

∂y∂x
(1.14)

and since

p2 =
∂S

∂y
then

∂p2
∂x

=
∂2S

∂x∂y
. (1.15)

Clairaut’s theorem ensures that ∂2S
∂y∂x = ∂2S

∂x∂y [11], so that we obtain

∂p1
∂y

=
∂p2
∂x

, (1.16)

which we shall use later. Now, we differentiate the eikonal equation (1.13) with respect to x to
obtain

2p1
∂p1
∂x

+ 2p2
∂p2
∂x

= 2η
∂η

∂x
, (1.17)
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and similarly with respect to y to give

2p1
∂p1
∂y

+ 2p2
∂p2
∂y

= 2η
∂η

∂y
. (1.18)

Dividing the equations (1.17) and (1.18) by 2η2 yields

p1
η2

∂p1
∂x

+
p2
η2

∂p2
∂x

=
1

η

∂η

∂x
, (1.19)

p1
η2

∂p1
∂y

+
p2
η2

∂p2
∂y

=
1

η

∂η

∂y
. (1.20)

We now introduce a parameter t along the characteristic curves. The total derivative of p1 along
these curves is given by the chain rule:

dp1
dt

=
dx

dt

∂p1
∂x

+
dy

dt

∂p1
∂y

=
1

η

∂η

∂x
, (1.21)

dp2
dt

=
dx

dt

∂p2
∂x

+
dy

dt

∂p2
∂y

=
1

η

∂η

∂y
. (1.22)

Now by applying (1.16) and comparing equations (1.19) and (1.20) with equations (1.21) and
(1.22) gives us

dx

dt
=

p1
η2

,
dy

dt
=

p2
η2

. (1.23)

Therefore, the full system of ODEs is given by

dx

dt
=

p1
η2

,
dy

dt
=

p2
η2

,
dp1
dt

=
1

η

∂η

∂x
,

dp2
dt

=
1

η

∂η

∂y
. (1.24)

We denote the momentum vector by p = (p1, p2) and the position by x = (x, y), as before, to
give

dp

dt
=

1

η
∇xη and

dx

dt
=

1

η2
p. (1.25)

These equations, which describe the evolution of both x and p along the ray trajectories, are
known as the ray equations. They can be recast in Hamiltonian form as

dx

dt
= ∇pH(x,p),

dp

dt
= −∇xH(x,p), (1.26)

with the Hamiltonian defined by

H(x,p) =
|p|
η(x)

. (1.27)

Therefore, we find that the ray dynamics follow Hamiltonian mechanics [12].

1.4 The Liouville equation and radiative transfer

Adopting a kinetic interpretation of the rays as trajectories of particles following the Hamiltonian
dynamics of (1.26) and (1.27), we can introduce a phase-space particle density function ρ(t,x,p)
that will satisfy the Liouville equation [7]:

ρt +∇pH · ∇xρ−∇xH · ∇pρ = 0. (1.28)
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Since we are solving frequency domain wave equations (1.1), which are considered independently
of their harmonic time-dependence until after a solution of (1.1) has been found, we assume
that in the high-frequency regime the particle density has reached a steady state. Therefore, we
consider the stationary Liouville equation, with ρt = 0. Now let u(x,p) satisfy the stationary
Liouville equation as follows

∇pH · ∇xu = ∇xH · ∇pu. (1.29)

Using equation (1.26), the stationary Liouville equation (1.29) can be re-written as

1

η2
p · ∇xu = −1

η
∇xη · ∇pu. (1.30)

For a spatially constant slowness function η we have ∇xη = 0, and thus the stationary Liouville
equation can be simplified again to give:

1

η2
p · ∇xu = 0. (1.31)

Note that in general, we will consider the slowness η to be piecewise constant due to abrupt
changes of media or material properties/parameters. Hence Eqn. (1.30) will model our system
locally within each region of constant slowness. Fixing the energy as a constant normalised to
unity, then the Hamiltonian H ≡ 1, and Eqn. (1.27) then gives us:

|p| = η. (1.32)

Taking p1 and p2 as the x and y components of the direction of the ray normalised so that p
satisfies (1.32), we obtain

p =

(
p1
p2

)
=

(
ηcos(θ)

ηsin(θ)

)
, (1.33)

where θ ∈ [−π, π) is the angle between the ray vector and the positive x-axis. Therefore, Eqn.
(1.31) can be written as:

1

η

(
cos(θ)

sin(θ)

)
·

(
∂u
∂x
∂u
∂y

)
= 0. (1.34)

Now, setting ŝ = (cos(θ), sin(θ))⊺, we obtain:

1

η
ŝ · ∇u = 0, (1.35)

where we have simplified the notation and used∇ to represent∇x. Equation (1.35) describes the
transport of energy along ray trajectories. However, it does not account for scenarios where the
energy density is reduced as the wave travels through the medium, for example due to material
damping. Therefore, to incorporate these energy losses, we introduce a dissipative term with
decay rate µ in agreement with the Beer–Lambert law [13]. This leads to a modified equation

ŝ · ∇u+ µu = 0, (1.36)

which is the standard radiative transfer equation without the scattering term [14]. In many
contexts, such as tomography or meteorology, the scattering term in the RTE is essential to
model the redirection of rays due to turbidity of the medium. However, for our application
involving high-frequency waves in complex built-up media, we assume that the waves propagate
unimpeded until they encounter a boundary or an abrupt change in material or medium.
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1.5 Conclusions

In this work, we demonstrated that applying a high-frequency asymptotic ansatz to classical wave
equations leads naturally to the eikonal equation, which effectively characterises the evolution
of the wave phase. By utilising the method of characteristics, we transformed the eikonal
equation into a Hamiltonian system of ray equations, thereby establishing a robust framework
for tracking the evolution of ray trajectories. Finally, we introduced a phase-space density
that satisfies the stationary Liouville equation, laying the foundation for deriving the radiative
transfer equation without scattering. During the conference, I will discuss the numerical solution
of the aforementioned RTE by discretising both the spatial and directional variables. We
will introduce a computational framework that utilises DG for spatial discretisation, and we
will compare the conventional discrete ordinate method with a Fourier-based approach for the
directional discretisation. Ultimately, our aim is to apply this integrated framework to simulate
high-frequency wave propagation in complex built-up structures.
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