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Abstract 

 

 We investigated whether the difference between chronological and modelled brain age 

explains individual differences in language performance among healthy older adults. Age-

related decline in language abilities is widely documented, with considerable variability among 

healthy older individuals in both language performance and underlying neural substrate. We 

derived predicted brain age from grey and white matter using machine learning and used this 

measure to estimate neurological deviations from chronological age. Using Bayesian mixed-

effects modelling, we tested whether brain-age deviations predict language performance in a 

sample of 86 adults aged 60 years and above. We assessed the effect of brain-age deviations 

on performance across four well-established language processing tasks, each tapping into 

linguistic domains known to be vulnerable to ageing and show individual variability in skill 

levels, in both comprehension and production. Our findings suggest that, in healthy older 

individuals, predicted deviations of brain age from chronological age do not predict language 

abilities. This challenges the idea that brain age is a reliable determinant of language processing 

variability, at least in healthy (as opposed to pathological) ageing and highlights the need to 

consider other neural and cognitive factors when studying language decline. 
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1. Introduction 

The way we process language undergoes changes in older adulthood, yielding a complex 

picture of preservation in some language functions alongside decline in others. In language 

production, word-finding difficulties, rooted in the weakening of connections between lexical 

and phonological representations, are a well-documented hallmark of age-related changes 

(Burke et al., 1991; 2004; Burke & Shafto, 2011; Gollan, & Brown, 2006; Heine et al., 1999; 

Rossi & Diaz, 2016; Salthouse & Mandell, 2013; Segaert et al., 2018). Another age-related 

deficit in production is reduced syntactic complexity of spoken and written language, such as 

fewer embedded clauses and a lower number of clauses per utterance (Kemper & Sumner, 2001; 

Kemper et al., 2001a; 2001b; 2003). However, some real time production measures suggest 

that syntactic processing remains relatively preserved, at least for relatively simple structures 

(Hardy et al., 2020). Ageing also affects language comprehension, although findings vary 

depending on the tasks and methods used to assess this relationship. Some studies suggest that 

older adults rely more on contextual information for comprehension than younger adults 

(Madden, 1988; Pichora‐Fulleret al., 1995; Sommers, & Danielson, 1999; Steen-Baker et al., 

2017; Stine-Morrow et al., 2008; Fernandes et al., 2024b). However, work on predictive 

processing using electroencephalography (Federmeier et al., 2002; 2003; Federmeier & Kutas, 

2005) indicates that, compared to younger adults, older adults are slower and less effective at 

using information from more predictive contexts to guide their word processing. When testing 

syntactic processing, age-related effects are most often detected in comprehension accuracy 

rather than processing speed (DeDe et al., 2004; Obler et al., 1991; Waters, & Caplan, 2001; 

Caplan & Waters, 2005; though see also Caplan et al. (2011)).  Some of the discrepancies in 

the available literature could stem from the different nature of the linguistic tasks and 

underlying processes they tap into, as well as from significant variability among individuals in 

the extent to which age-related decline in these language functions transpires, with some 
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individuals clearly experiencing more decline than others (Federmeier & Kutas, 2005; 

Federmeier et al., 2010). Chronological age may not fully capture the variability in cognitive 

processes across individuals, and further research using measures with greater predictive 

validity is needed.  One such measure is predicted brain age – a neuroimaging-based marker 

that indicates whether a person’s brain appears older or younger than average for their 

chronological age – which may more closely reflect biological ageing. In this paper, we 

examine the potential of predicted brain age as a determinant of individual differences in 

language abilities. 

Previous research links age-related changes in cognitive (including language) functions to 

the degeneration of brain matter (Charlton et al., 2006; Ferreira et al., 2014; Koini et al., 2018; 

Lockhart et al., 2012; Oschwald et al., 2019). There is a general pattern of age-related brain 

atrophy, with different regions of grey and white matter undergoing distinct trajectories of 

change in both pace and extent (Fjell & Walhovd, 2010; Hedman et al., 2012). Despite 

extensive ongoing research aimed at identifying the neural structural correlates of changes in 

linguistic function during healthy ageing (Diaz et al., 2016; Houston et al., 2019; Oschwald et 

al., 2019; Pelletier et al., 2017; Rizio, & Diaz, 2016; Shafto et al., 2007; Stamatakis et al., 2011; 

Zhang et al., 2013; Zhu et al., 2022), it is still not possible to draw definitive conclusions about 

the relationship between brain structural changes and language performance in this context. 

One of the challenges lies in isolating language-specific processes from domain-general 

cognitive functions, as linguistic processing typically engages multiple neural systems, 

including those involved in attention, memory, and executive function. There are discussions 

in the literature regarding whether each of these functions is independently affected by ageing 

or whether there is a global developmental process, underlying changes in these different 

domains (Tucker-Drob, 2011). This overlap introduces an additional layer of complexity to 

efforts aimed at mapping the relationship between brain structure and language in ageing. 
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Another challenge is substantial individual variability (Raz et al., 2005; Raz et al., 2010): unlike 

chronological ageing, biological ageing can be modulated by lifestyle factors such as education 

(Steffener et al., 2016), physical activity (Dunås et al., 2021; Steffener et al., 2016), body mass 

index (Ho et al., 2011), socio-economic status (Busby et al., 2023), sleep (Baril et al., 2021), 

and substance use (Cole, 2020), as well as genetic predispositions (Ferrucci et al., 2020; López-

Otín et al., 2013; see also Wittens et al., 2024; Cabeza et al., 2018; Fratiglioni et al., 2020; 

Livingston et al., 2020, 2024). 

In this paper, we use a machine learning approach to address the possibility that variability 

in language abilities is related to whether a person's brain appears younger or older than 

expected for their chronological age. Previous research on predicted brain age (described in 

detail below) has demonstrated that it may account for decline in cognitive performance beyond 

what would be expected from chronological age (Cole et al., 2018; Dunås et al., 2021; Elliott 

et al., 2021), providing evidence that brain age prediction could potentially explain variability 

in ageing whether it is pathological or not (Liem et al. 2017; Franke & Gasser, 2012; Wittens 

et al., 2024). However, no research to date has investigated if and how predicted brain age 

relates to specific aspects of language comprehension and production in healthy ageing.  

Cole and Franke (2017), describe the process of predicting brain age as follows. First, 

neuroimaging data, typically T1-weighted structural MRI scans from healthy individuals, are 

labeled with participants' chronological ages and used as input for a machine learning 

regression model. To validate the model's accuracy, a portion of the participants' images is 

excluded during training. For instance, in tenfold cross-validation, the model is trained on 90% 

of the participants' data, and then age predictions are generated for the remaining 10%. This 

process is repeated until predictions have been made for all participants. The predicted values 

are then compared to the actual chronological ages to evaluate the model's accuracy. Once the 

model is deemed sufficiently accurate, it is trained on the entire training set. The resulting 
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model coefficients are then applied to the structural brain scans of new participants to generate 

brain age predictions. The predicted brain age is then compared with the chronological age of 

the participants. Brains that appear older – relative to chronological age – are assumed to reflect 

advanced brain ageing, while those that appear younger suggest slower or healthier brain 

ageing. The difference between brain age and chronological age can then be analyzed in 

relation to other participant characteristics. 

Associations between brain age and cognitive functioning appear consistent across the 

literature. However, existing studies primarily rely on broad cognitive assessments and show 

that the relationship is most robust in pathological samples. For example, Cole et al. (2018) 

and Elliott et al. (2021) demonstrated that increased brain age was associated with poorer 

cognitive performance (in 45- and 70-year-old individuals). Dunås et al. (2021) found similar 

evidence for non-pathological ageing. Other studies have focused on the predictive validity of 

brain age in cohorts exhibiting pathological ageing. For instance, Liem et al. (2017) revealed 

that more severe objective cognitive impairment was associated with higher brain age scores. 

Franke and Gasser (2012) report a longitudinal investigation of four groups of participants 

classified as either healthy ageing, stable mild and progressive cognitive impairment or 

Alzheimer’s Disease. They found that brain age scores were moderately correlated with 

cognitive functioning and clinical disease severity over four years. Similarly, Wittens et al. 

(2024) found an association between overall cognitive impairment (assessed using Mini Mental 

State Examination scores, Folstein et al., 1975) and brain predicted age difference, primarily 

observed in individuals with mild cognitive impairment and Alzheimer's Disease, indicating 

that disease stage may drive this relationship. 

It is yet unclear whether and how brain age relates to more nuanced cognitive functions, 

specifically language. Indeed, existing evidence relating to language abilities is sparse. For 

example, Kristinsson et al. (2022) tested if brain age at stroke onset is associated with cross-
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sectional language function and long-term recovery (2.4 to 5.4 years post-stroke). Brain age 

difference significantly accounted for variance in overall language score at stroke onset and a 

few years later, as well as in naming and speech repetition (BEST-2; West et al., 1998) at stroke 

onset, beyond chronological age. This study thus demonstrates the effectiveness of a brain age 

measure in accounting for differences in language outcomes, at least in a population of 

recovering stroke patients. The only other study which took a psycholinguistic approach to 

exploring the relationship between brain age and language was work presented at the Society 

for the Neurobiology of Language Annual Meeting by Matchin (2023). They reported that 

brain age predicts sentence processing declines in healthy ageing beyond chronological age 

and working memory. The outcome variable in this work was reading times on subject- and 

object-relative clauses. However, this effect did not survive more rigorous statistical modeling, 

and the research group proceeded to investigate other metrics such as grey matter volume 

which did show age-related effects in language processing (personal communication with Dr 

Matchin).  

As the field of the neurobiology of language is increasingly moving towards explaining 

individual variability in language (Kidd et al., 2017; Rothman et al., 2023) among individuals 

and across the lifespan, it is becoming more important to find new approaches to explain such 

variability. Uncovering the effects of different lifestyle and genetic factors and their 

interactions on language in ageing is an incredibly complex task. Using machine learning to 

compute a measure of structural brain health (i.e., predicted brain age) which is sensitive to all 

these factors and could explain language effects in ageing would be a significant advancement 

for both the basic and clinical cognitive neuroscience of language. The work on brain age and 

its relationship with cognition reviewed above does suggest that this is a promising avenue. In 

the present study, we assessed four key components of language processing, each previously 

demonstrated to be subject to age-related differences to varying degrees, and investigated 
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whether brain-age gap explained individuals’ performance levels, namely in phonological, 

lexical, semantic and syntactic aspects of both comprehension and production processes. We 

used two sentence comprehension tasks: a listening comprehension task manipulating 

sentence-level syntax and semantics, and a reading comprehension task manipulating levels of 

syntactic complexity; as well as two production tasks: a tip-of-the-tongue task to measure 

single-word retrieval and a phrase production task to measure syntactic production (an 

overview of the tasks with example stimuli is provided in Figure 1 and Table 1). We 

hypothesized that larger brain-age gap scores - where brain age appears “older” relative to 

chronological age - would be associated with poorer performance across language tasks, 

particularly in production, which is the hallmark of language processing changes in ageing 

(Burke et al., 1991; 2004; Rossi & Diaz, 2016; Segaert et al., 2018; Salthouse & Mandell, 

2013). 

 

Figure 1 

Examples of all four language tasks 
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Note. (A) Listening comprehension, (B) reading comprehension, (C) tip-of-the-tongue, and (D) 

phrase production tasks. Each panel illustrates either a single trial, a selection of trials, or an 

overview of conditions. 

 

Table 1 

Conditions and example stimuli across tasks in the study 

Task Conditions Examples 

Listening 

Comprehension 

Random word order Tried I find to quickly the spatula without 

pancake it to flip the breaking. 

Low-constraining 

(syntactic structure, but 

no semantic prediction) 

I tried to quickly find the spatula to flip the 

pancake without breaking it. 

High-constraining 

(syntactic structure and 

semantic prediction) 

I flipped the pancake with the spatula without 

breaking it. 

Reading 

Comprehension 

Simple syntactic 

structure 

The boy is blessing the girl and he is hugging a 

fuzzy cushion. 

Moderate syntactic 

structure 

The boy who is blessing the girl is hugging a 

fuzzy cushion. 

Complex syntactic 

structure 

The girl is being blessed by the boy who is 

hugging a fuzzy cushion. 

Highly complex 

syntactic structure 

The cushion which the boy who is blessing the 

girl is hugging is fuzzy. 

Tip-of-the-

tongue 

Definition The act of refusing to cast one’s vote (target 

word: abstention). 

Phrase 

Production 

Coordinate simple The cone and the grape. 

Coordinate complex The cone and the pink grape. 

Prepositional simple The cone above the grape. 

Prepositional complex The cone above the pink grape. 

 

2. Methods 

2.1 Participants 

The data for the present study were collected as part of a larger study (preregistration: 

https://osf.io/6fqg7, materials and data for the present report: https://github.com/yanina-

prystauka/FAB_BrainAge). Research Question 3 in the pre-registration pertains to language 

performance related to age and we expand upon this by exploring the relationship to brain age. 

The present contribution has unique outcome measures to other publications within the larger 

project (Fernandes et al., 2024a; Fernandes et al., 2024b; Feron et al., 2024a; Feron et al., 2024b; 
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Fosstveit et al., 2024; Markiewicz et al., 2024; Rahman et al., 2025). The data in the present 

contribution are from a sub-group of a larger participant cohort and focuses on those 

participants for whom T1-weighted structural imaging data, language data and the relevant 

demographic data were available.  

Specifically, 86 participants underwent structural MRI, used to compute predicted brain 

age. Their chronological age ranged from 60 to 81 years old (mean = 65.5, SD = 4.8, N females 

= 42). Due to missing behavioural or demographic data for some participants for some of the 

tasks, the number of participants included in each task ranged from 80 to 85. We used 

chronological age, education level, and a measure of working memory (digit span) as 

background variables in our statistical models. This information is summarised in Table 2 and 

described in section 2.5. 

All participants underwent the Montreal Cognitive Assessment (MoCA, Nasreddine et 

al., 2005). Only participants who scored 23 or higher on the MoCA (Carson, Leach, & Murphy, 

2018; Nasreddine et al., 2005) were included in the study. While the original MoCA study 

recommended a cutoff of 26 (Nasreddine et al., 2005), later research has shown that this 

threshold may produce a higher rate of false positives. Carson et al. (2018) found that a cutoff 

of 23 provides better classification accuracy and is therefore more appropriate for identifying 

cognitive impairment in older adults. All participants provided informed consent and were 

compensated for their time. All were British-English monolinguals with no history of speech, 

language, or other health disorders. The study was granted institutional ethics approval 

(University of Birmingham, ERN 20_1107) and complied with the Declaration of Helsinki. 

Table 2 

Demographic Characteristics of Participants 

Measure  Value  

Mean Age (SD)  65.5 (4.8); range = 60-81)  

Mean Digit Span (SD)  5.3 (1.3)  
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Education    
no formal education  1 (1.2%)  

compulsory  22 (25.6%)  

further  28 (32.6%)  

undergrad  17 (19.8%)  

postgrad  14 (16.3%)  

higher  4 (4.7%)  

Male/female Males N=44; Females N = 42 

Education (in years) 13.7 (2.8) 

BMI 27.1 (3.6) 

MoCA 27.5 (1.8) (range: 23-30) 

Sedentariness (mins/day) 631.9 (74) 

Light physical activity (LPA) 

(mins/day) 

174 (39.3) 

Moderate-to-vigorous physical activity 

(MVPA) (mins/day) 

45.4 (22.3) 

Parental education  

compulsory  63 (73.3%) 

further  13 (15.1%)  

undergrad  1 (1.2%)  

postgrad  7 (8.1%)  

Parental occupation  

Professional  22 (25.6%) 

Intermediate 22 (25.6%) 

Manual 39 (45.3%) 

Note. Inclusion criteria for participation in the study required the absence of hearing loss, a history of 

concussion or neurological disorders, and any diagnosed learning disabilities. Participants were 

required to have controlled blood pressure (including those on medication) to be included in our study. 

Individuals with a diagnosis of diabetes or heart disease were excluded. While cerebrovascular disease 

and hyperlipidemia were not explicitly screened for, the overall health-related inclusion criteria, along 

with medication records, suggest that participants with clinically significant conditions were unlikely 

to be included in the final sample. Sedentariness, LPA and MVPA measures are obtained from 

accelerometers. 
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2.2 MRI Data Acquisition 

The neuroimaging data were acquired using a 3-T Siemens PRISMA system with a 32-

channel head-coil at the Centre for Human Brain Health at the University of Birmingham, UK. 

A T1-weighted 3D-structural MRI (GRAPPA) was acquired with the following parameters: 

repetition time (TR) = 2000 ms, echo time (TE) = 2.01 ms, inversion time (TI) = 880 ms, flip 

angle = 8 deg, FOV = 256 x 256 x 208 mm, voxel dimension (resolution) = 1 mm isotropic, 

GRAPPA factor = 2; with a total acquisition time of 4 min and 54 s. 

2.3 Brain Age Prediction 

The brainageR model for v2.1 was trained on n = 3377 healthy individuals (mean age 

= 40.6 years, SD = 21.4, age range 18-92 years) from seven publicly available datasets, and 

tested on n = 857 (mean age = 40.1 years, SD = 21.8, age range 18-90 years) (Cole et al., 2018). 

T1-weighted MRI scans were first segmented into grey matter (GM) and white matter (WM). 

These images were then normalized into a common space through non-linear spatial 

registration. After normalization, the GM and WM images were concatenated and transformed 

into a similarity matrix of the training subjects' data, which was used to predict chronological 

age using a Gaussian Process regression model. The model's accuracy was evaluated through 

ten-fold cross-validation, comparing brain-predicted age to chronological age. We applied this 

model to our cohort to estimate each participant’s predicted brain age using their structural 

imaging data (T1). To account for variability in chronological age, we computed a relative 

measure which we will refer to as brain-age gap, in the following way: (predicted brain age – 

chronological age)/chronological age. The resulting measure - brain-age gap - is not correlated 

with chronological age (r < 0.001), allowing us to include both chronological age and brain-

age gap in the same statistical models without introducing multicollinearity issues. Positive 

brain-age gap values indicate accelerated brain ageing while negative values reflect delayed 

brain ageing. This information is visualized in Figure 2. 
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Figure 2 

Panel A shows the distribution of chronological age and brain age illustrating that 

chronological age has a narrower distribution than brain age. Their positive correlation is 

illustrated in panel B. Panel C shows the distribution of the normalised Brain-age gap 

computed as (brain age – chronological age)/chronological age. The correlation of brain age 

and chronological age disappears for the normalised Brain-age gap scores as can be seen in 

panel D. 
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2.4 Language Tasks 

We report information from two comprehension and two production tasks. The tasks 

are summarized in Figure 1 and Table 1. 

2.4.1 Listening Comprehension 

This task explored age-related differences in the use of syntactic and semantic 

information during sentence comprehension. Participants engaged in a speech monitoring task, 

where they listened to spoken sentences and were asked to press a button as quickly as possible 

upon hearing a target word (e.g., spatula). The sentences varied in structure: they could be lists 

of words in random order, low-constraint, or high-constraint sentences (see Table 1 for 

examples). 

Shorter word monitoring response times (RTs) suggest easier lexical access driven by 

expectations derived from different types of linguistic representations that listeners build 

incrementally word by word. The difference between the random-word order and low-

constraint conditions indexes the use of syntactic cues, while the contrast between low- and 

high-constraint conditions indexes the role of semantic information. 

The stimuli for this experiment included 60 target items, each integrated within 

sentence contexts. The targets were presented either in a low-constraining context, a high-

constraining context, or in the random-word order condition (the latter was generated by 

randomizing the words from the low-constraint sentences). The stimuli were pretested in a 

cloze task to confirm differences in predictability across conditions. 

Each of the 60 items appeared in all three context conditions across three separate lists 

(using a Latin Square Design). To ensure variety, 12 additional filler items with different target 

words/sentences were included. Thus, each list consisted of 72 trials, divided into four blocks 

of 18 (15 experimental and 3 filler items per block). Four practice sentences were presented at 

the beginning of the experiment, prior to the main trials. All sentences were recorded by a 
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female native speaker of Standard British English. Each trial began with a fixation cross (‘+’) 

displayed for 500 ms, followed by a 1000 ms blank screen, after which the target word appeared 

on screen for 1000 ms. Half a second after the target word ended, the spoken sentence began. 

Participants were asked to monitor the auditory input for the visually presented target word and 

to press the space bar when they detected the target. Each trial concluded 2000 ms after the 

audio file ended. Response times were recorded from the onset of the target word in the spoken 

sentence.  

2.4.2 Reading Comprehension 

In the reading comprehension task, participants were visually presented with sentences 

one at a time. Participants were instructed to press the space bar when they had finished reading 

the sentence, after which they responded to a comprehension question assessing the identity of 

the agent or patient referenced in the sentences (e.g., Who is being blessed?). The two animate 

nouns, "boy" and "girl" (which remained constant across all items), were displayed below the 

question, and participants had to choose the correct answer by pressing either 'A' or 'L' on the 

keyboard. 

The sentences varied across four levels of increasing syntactic complexity, as illustrated 

in Table 1. A total of 24 sentences were used, organized into four lists, each containing six 

items from each condition. The sentences were rotated across conditions using a Latin Square 

design so that every item appeared in all four conditions across the different lists. The initial 

four lists were duplicated, with the item order rearranged to create four additional lists. 

Participants were randomly assigned to one of the eight lists. Before the main task, participants 

completed four practice trials featuring sentences with similar syntactic structures to the 

experimental items.  

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/doi/10.1162/nol.a.21/2536562/nol.a.21.pdf by guest on 15 July 2025



Brain Age and Language 
 

   

 

15 

2.4.3 Tip-of-the-tongue task 

In this task, definitions were visually presented alongside three response options: (1) 

Know, (2) Don’t Know, and (3) Tip-of-the-tongue (ToT). Participants were asked to select 

Know if they knew the word the definition was referring to, Don’t Know if they did not know, 

and ToT if they experienced a tip-of-tongue state. We calculated the proportion of tip-of-the 

tongue responses by dividing the amount of true tip-of-the-tongues by the total number of trials.  

We only considered a trial as a true tip-of-the-tongue if the participants answered they 

experienced a tip-of-the-tongue state and pressed Yes when subsequently asked “Is this the 

word you were thinking of?”.  

Therefore, trial length varied depending on whether a tip-of-the-tongue was reported 

(as only on those trials an additional verification slide was presented to the participant). Each 

definition was shown for 12000 ms followed by a 2000 ms ISI. Verification slides (only 

following tip-of-the-tongue responses) were presented for a maximum of 6000 ms (they 

disappeared as soon as the participants answered with yes of no). A jittered ITI was used with 

an average of 5750 ms (range 3500 – 8000 ms; 500 ms increments). 200 unique definitions 

were displayed in total, split over four blocks (50 definitions per block). We counterbalanced 

correct target responses across those four blocks to match for the number of proper and 

common nouns and average syllable, phoneme, letter count and word frequency. 

2.4.4 Phrase production 

This task assessed utterance planning scope. Participants were asked to describe two 

objects within one phrase, with the objects’ location manipulated such that participants 

produced phrase types known to have differing planning scopes:  coordinate noun phrases 

(CNP; e.g., ‘The cone and the grape’) and noun phrases (NPs) modified by prepositional 

phrases (PP; e.g., ‘The cone above the grape’). We further manipulated complexity by having 

the second NP modified or not modified by an adjective (simple vs. complex; e.g., ‘The cone 
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and the grape’ vs. ‘The cone and the pink grape’). The speech onset is believed to be a measure 

of the amount of preparation that is needed to start producing utterances, i.e., planning scope 

(e.g., Allum & Wheeldon, 2007; Konopka & Meyer, 2014). Longer onsets are observed for 

coordinate than for prepositional phrases (Allum & Wheeldon, 2007) and for more vs. less 

complex utterance.  

On each trial, four pictures were displayed. Two of the pictures were surrounded by a 

rectangular red line frame, indicating they were the target words to be used in the to-be-

produced phrase. Coordinate phrases were cued by a horizontal red frame (which could either 

appear at the top or at the bottom), and prepositional phrases were cued by a vertical red frame 

(which could either appear on the right or on the left). The second NP was either simple or 

complex (i.e. modified by an adjective). A complex second NP was elicited by making this 

target words appear twice, once as a colour-modified target and once as the original (Figure 1 

(d)). The design crossed phrase type (coordinate; prepositional) and complexity (simple: not 

modified; complex: adjective modified).  

The materials included 20 target pictures (selected from the MultiPic database 

(Duñabeitia et al., 2018)), combined in 20 unique word-pairs to make up a phrase (each picture 

occurred both as the first or second target in a word-pair). Each of the 20 word-pair items 

appeared in the four experimental conditions such that each participant experienced every item 

in each condition. As such, 80 experimental items were divided across four conditions, with 

each individual experimental image presented 8 times (rotated across screen locations). The 

other two of the four pictures were images that did not appear in another experimental item but 

only as part of the filler displays (we had 48 filler items).  

Prior to this experiment, participants completed two practice blocks (based on the 20 

experimental pictures re-arranged and 16 fillers). A central fixation cross (‘+’) was displayed 

at the beginning of each trial for 500 ms, followed by a 500 ms blank screen, after which the 
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multi-picture display was shown and recording of phrase production started. We automatically 

registered speech onset, while the experimenter recorded response accuracy (responses in 

which participants did not use the expected names or phrase type, where they did not mention 

the adjective, or disfluent responses were all categorized as errors). The trial finished after the 

participant stopped speaking (or after 3000 ms of silence).  

2.5 Additional Measures 

2.5.1 Education 

Education has been suggested as a protective factor against cognitive decline (Tucker 

& Stern, 2011; Zahodne et al., 2015) and as a predictor of language performance (Le Dorze & 

BÉDard, 1998; Béland et al., 1993; Mackenzie, 2000). Consequently, we included it as a 

control variable in all our models. Education was treated as a binary variable, where 

participants with university-level education or higher were assigned a value of 1, and those 

without college-level education were assigned a value of 0. We also tested alternative coding 

approaches (e.g., using years of education as a continuous variable or education level as a 

categorical variable), but these did not affect the results. 

2.5.2 Working Memory 

Given that working memory is associated with both ageing and syntactic and semantic 

processing (DeDe et al., 2004; Waters & Caplan, 2001), we included it as a control variable in 

models analyzing tasks that manipulate semantic and/or syntactic complexity, specifically 

listening comprehension, reading comprehension, and phrase production. We operationalized 

working memory based on participants' performance on a Digit Span task.  

In the Digit Span task, participants were shown single digits (0-9) one at a time on a 

computer screen, with each digit appearing for 1000 ms. The sequences started with three digits 

and could extend up to twelve digits. After the entire sequence was displayed, participants were 

required to type the digits in the exact order they appeared using the computer keyboard, 

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/doi/10.1162/nol.a.21/2536562/nol.a.21.pdf by guest on 15 July 2025



Brain Age and Language 
 

   

 

18 

pressing the Enter key to confirm their entry. Feedback was provided after each trial. Each 

level consisted of three trials, and participants had to correctly complete two out of three trials 

to advance to the next level. The task automatically terminated if the participant made two 

incorrect responses within a level. The highest level where the participant correctly completed 

two trials determines their digit span. Measuring working memory using Digit Span tests is a 

common method in psychological research (Feier & Gerstman, 1980; Grégoire & Van der 

Linden, 1997). The entire task took approximately 5 minutes to complete. 

2.5.3 Vocabulary Size 

Vocabulary size estimations were based on a custom Vocabulary task in which 

participants were presented with 30 words for which they had to select either a synonym or an 

antonym between four options (mean = 77.22, SD = 11.89). This measure was used as regressor 

in the analysis of the tip-of-the-tongue task. 

3. Preprocessing and Analysis 

We first refined our datasets for each task by retaining only those participants who had 

available T1-weighted MRI scans, as well as the required demographic and behavioural 

information. This resulted in the following final participant counts for each task: N = 85 for 

listening comprehension, N = 80 for reading comprehension, N = 80 for tip-of-the-tongue and 

N = 82 for phrase production. To exclude implausibly fast or slow responses, we then removed 

trials with RTs below 150 msec and above 1500 msec in the listening comprehension task and 

below 250 msec and above 2500 msec in the phrase production task (see Fernandes et al. 

(2024b) for the justification of the trimming procedure, where the same tasks were used). RTs 

were then log-transformed to reduce positive skew in the data. We also removed RTs which 

were more than 2.5 standard deviations from the mean in the listening comprehension, reading 

comprehension and phrase production tasks. Additionally, in the phrase production task we 

removed incorrect trials (e.g. wrong syntax, missing/wrong adjective, incorrect noun, 
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hesitation, 23.4 %). These preprocessing steps resulted in the removal of 4.9% of data in the 

listening comprehension task, 1.72 % of data in the reading comprehension task and 28.3 % of 

data in the phrase production task.  

We analyzed our data using Bayesian mixed-effects models (as implemented in the 

brms package in R; Bürkner, 2018). We summarised the evidence for a parameter estimate 

along with its 95% probability intervals (also known as credible intervals). We calculated 

Bayes Factors (BF; Wagenmakers et al., 2018) to assess the strength of the evidence in favour 

of the alternative hypothesis over the null hypothesis. For example, a BF of 1 means that 

evidence for either hypothesis is equally strong, values above 3 provide moderate evidence and 

values above 10 show strong evidence (e.g. Dickey & Lientz, 1970; Wagenmakers et al., 2010). 

In addition, BFs also allow us to test the evidence in favour of the null hypothesis which is not 

possible with traditional inferential methods (Dienes, 2014; Schad et al., 2023).  

Model specifications are summarized in Table 3. All models included brain-age gap, 

chronological age, and education as fixed effects. Additionally, for listening comprehension, 

reading comprehension and phrase production, a measure of working memory (performance 

on a digit span task) was included. For the tip-of-the-tongue task, target word frequencies and 

length as well as participants’ vocabulary size were included. Random intercepts were included 

for participants and items. When required by the design, random slopes for linguistic 

manipulations were also included for participants and items. Continuous predictors (brain-age 

gap, chronological age, digit span, frequency, length and vocabulary size) were standardized. 

For the listening and reading comprehension tasks, categorical predictors were sum coded.  

Table 3 

Model specifications for the four experimental tasks, presented using expressions similar to 

the formula syntax of brms in R. For RT measures we used log-Gaussian distributions. For 
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reading comprehension accuracy and Tip-of-the-Tongue data we used Bernoulli distributions. 

Colons ‘:’ indicate interactions. 

 

Task Model specification 

Listening 

comprehension 

log(RT) ~  

Semantics +  

Syntax + Digit Span +  

Education + 

Brain-age gap + 

Age +  

Brain-age gap : (Semantic + Syntax) +   

Age : (Semantics + Syntax) +  

(Semantics + Syntax | Participant) + 

(Semantics + Syntax | Item) 

 

Reading 

Comprehension 

logit(Accuracy) ~  

Complexity + 

Digit Span + 

Education + 

Brain-age gap + 

Age +  

Brain-age gap : Complexity +  

Age : Complexity +  

(Complexity | Participant) +  

(Complexity | Item)  

 

Tip-of-the-tongue logit(ToT) ~  

Length + 

Frequency +  

Vocabulary size + 

Education + 

Brain-age gap +  

Age +  

(1 | Participant) +  

(1 | Item) 

 

Phrase production log(RT) ~  

Phrase type +  

Complexity +  

Digit Span + 

Education +  

Brain-age gap + 

Age + 

Brain-age gap : Phrase type + 

Brain-age gap : Complexity + 

Age : Phrase type + 

Age : Complexity + 

Phrase type : Complexity + 
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(Phrase type + Complexity | Participant) + 

(Phrase type + Complexity | Item) 

 

4. Results 

 

4.1 Listening Comprehension 

Listening comprehension was substantially faster for sentences with syntactic structure 

and constraining semantic meaning (BF10s > 100, see Figure 3a). No evidence was found for 

effects of Digit Span, education, or brain-age gap.  Linguistic structure of the stimulus did not 

interact with age and brain-age gap (evidence for the null hypothesis of all interactions was 

strong; BF01s > 10.). All model coefficients can be found in Table 4. 

Figure 3 

Modeled posterior estimates for reaction times (in ms) in the listening-comprehension task (A), 

response accuracy (in proportions) in the reading comprehension task (B), and response times 

(in ms) in the phrase production task (C). Error bars represent 95% probability intervals (PIs). 
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4.2 Reading Comprehension 

The analysis revealed evidence for longer reading times for increased sentence 

complexity (simple vs moderate: BF10 = 6.68; moderate vs complex: BF10 = 5.41) which 

showed no further increase for highly complex phrases (BF10 = 0.35; see Figure 3b). 

Performance on the Digit Span task predicted accuracy on the reading comprehension task, 

with higher Digit Span scores being positively associated with greater reading comprehension 

accuracy (BF10 = 11.43). Effects of education, brain-age gap, age and their interactions with 

sentence complexity were negligible. Model coefficients are summarized in Table 5. 

Table 4 

Bayes Factors (BF) and estimates of predictor coefficients in the Listening Comprehension 

task. The table shows the posterior estimates, 95% probability intervals and Bayes Factors 

(BF01 and BF10) for each predictor. BF01 represents the evidence in favour of the null 
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hypothesis and BF10 represents evidence favouring the alternative hypothesis. As a rule of 

thumb, values larger than 3 indicate support for either hypothesis. 

predictor estimate PI BF01 BF10 

Semantics: high vs low-

constraining 
-0.07 -0.1 - -0.04 <0.01 >100 

Syntax: low-constraining vs 

random word order 
-0.22 -0.25 - -0.19 <0.01 >100 

Age 0.02 -0.02 - 0.06 27.94 0.04 

Brain-age gap -0.02 -0.06 - 0.02 25.3 0.04 

Digit span -0.01 -0.05 - 0.02 41.4 0.02 

Education 0.04 -0.03 - 0.11 15.78 0.06 

Age : Semantics 0.00 -0.01 - 0.02 >100 0.01 

Age : Syntax -0.00 -0.03 - 0.02 90.9 0.01 

Brain-age gap : Semantics 0.01 0 - 0.03 28.41 0.04 

Brain-age gap : Syntax -0.02 -0.04 - 0.01 32.39 0.03 

 

 

Table 5 

Bayes Factors (BF) and estimates of predictor coefficients in the Reading Comprehension task. 

The table shows the posterior estimates, 95% probability intervals and Bayes Factors (BF01 

and BF10) for each predictor. BF01 represents the evidence in favour of the null hypothesis 

and BF10 represents evidence favouring the alternative hypothesis. Values larger than 3 

indicate evidence in support of either hypothesis. 

 

predictor estimate PI BF01 BF10 

Complexity 1: simple vs moderate -0.90 -1.73 - -0.17 0.15 6.68 

Complexity 2: moderate vs 

complex 
-0.70 -1.3 - -0.13 0.18 5.41 

Complexity 3: complex vs highly 

complex 
0.14 -0.52 - 0.81 2.82 0.35 

Brain-age gap 0.26 -0.06 - 0.59 1.56 0.64 
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Age 0.17 -0.2 - 0.53 3.79 0.26 

Education 0.46 -0.11 - 1.04 1.03 0.97 

Digit Span 0.49 0.18 - 0.82 0.09 11.43 

Brain-age gap : Complexity 1 0.43 -0.12 - 1 1.10 0.91 

Brain-age gap : Complexity 2 -0.36 -0.83 - 0.12 1.31 0.76 

Brain-age gap : Complexity 3  -0.13 -0.6 - 0.3 3.53 0.28 

Age : Complexity 1 -0.09 -0.75 - 0.6 2.94 0.34 

Age : Complexity 2  0.00 -0.54 - 0.53 3.65 0.27 

Age : Complexity 3  -0.16 -0.68 - 0.35 3.15 0.32 

 

 

4.3 Tip-of-the-tongue 

A mean of 59% (SD = 13%) of responses were recorded as known, and 17% (SD = 7%) 

were in the tip-of-the tongue state. Unknown words were removed from the analysis (mean = 

22%, SD = 10%). There was weak evidence for a negative effect of frequency (BF10 = 2.31). 

For all other predictors we found moderate (BF01s > 4) to strong (BF01 > 10) evidence for the 

null hypothesis. A summary of all predictor coefficients can be found in Table 6. 

4.4 Phrase Production 

The results (summarized in Table 7 and Figure 3c) revealed evidence for Phrase Type 

(BF10 = 7.9) and Complexity (BF10 > 100), whereby coordinate phrases took longer to 

produce than prepositional phrases, and complex phrases (phrases with adjectives) took longer 

to produce than simple phrases. For all other predictors we found moderate (BF01s > 8) to 

strong (BF01 > 10) evidence for the null hypothesis.  

Table 6 

 Bayes Factors (BF) and estimates of predictor coefficients in the Tip-of-the-tongue task. The 

table shows the posterior estimates, 95% probability intervals and Bayes Factors (BF01 and 

BF10) for each predictor. BF01 represents the evidence in favour of the null hypothesis and 
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BF10 represents evidence favouring the alternative hypothesis. Values larger than 3 indicate 

evidence in support of either hypothesis. 

 

predictor estimate PI BF01 BF10 

Brain-age gap 0.07 -0.1 - 0.23 9.37 0.11 

Education -0.08 -0.46 - 0.29 5.39 0.19 

Age 0.12 -0.06 - 0.31 4.68 0.21 

Frequency -0.15 -0.25 - -0.04 0.43 2.31 

Length (# of phonemes) 0.05 -0.05 - 0.15 14.21 0.07 

Vocabulary size -0.10 -0.29 - 0.09 6.02 0.17 

 

Table 7 

 Bayes Factors (BF) and estimates of predictor coefficients in the Phrase Production task. 

The table shows the posterior estimates, 95% probability intervals and Bayes Factors (BF01 

and BF10) for each predictor. BF01 represents the evidence in favour of the null hypothesis 

and BF10 represents evidence favouring the alternative hypothesis. Values larger than 3 

indicate evidence in support of either hypothesis. 

predictor estimate PI BF01 BF10 

Phrase type -0.04 -0.06 - -0.02 0.13 7.9 

Complexity -0.05 -0.07 - -0.03 0 >100 

Brain-age gap -0.02 -0.07 - 0.03 28.37 0.04 

Education 0.06 -0.03 - 0.15 8.57 0.12 

Digit Span 0.02 -0.02 - 0.07 28.25 0.04 

Age 0.02 -0.02 - 0.07 27.8 0.04 

Brain-age gap : Phrase type  0.00 -0.01 - 0.02 >100 0.01 

Brain-age gap : Complexity  -0.01 -0.02 - 0 40.63 0.02 

Age : Phrase type  -0.00 -0.01 - 0.01 >100 0.01 

Age : Complexity  0.00 -0.01 - 0.01 >100 0.01 

Phrase type : Complexity 0.01 -0.01 - 0.03 40.22 0.02 

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/doi/10.1162/nol.a.21/2536562/nol.a.21.pdf by guest on 15 July 2025



Brain Age and Language 
 

   

 

26 

 

 

5. Discussion 

We tested whether the extent to which the modelled age of a participant’s brain deviates 

from chronological age (i.e. brain-age gap) explains individual differences in language abilities 

in healthy older adults. Brain-age related effects have previously been linked to individual 

differences in various cognitive functions (Cole et al., 2018; Elliott et al., 2021) in both healthy 

and pathological ageing, and to language abilities in pathological ageing (Kristinsson et al., 

2022). We used Bayesian inferential methods to analyze four established measures of language 

comprehension and production abilities of a relatively large sample of healthy older 

participants (n = 86; 60 to 81 years). Our results provide consistent evidence that brain-age gap 

does not predict language performance in healthy older adults which challenges the idea that 

brain age is a reliable determinant of language processing. 

Effects of the linguistic manipulations within our comprehensive set of language tasks 

were as predicted: In the listening-comprehension task, the presence of syntactic structure 

facilitated target word recognition (compared to the random word order condition) and 

participants further benefited from having a more predictive semantic context. In the reading 

comprehension task, accuracy declined as syntactic complexity increased. Additionally, higher 

working memory capacity was associated with better overall comprehension accuracy. In the 

picture description task, prepositional phrases (as opposed to coordinate phrases) and simpler 

syntactic structures led to faster naming onset times. And finally, in the tip-of-the-tongue task, 

the proportion of observed tip-of-the-tongue responses was consistent with what is typically 

expected in such tasks. Each of the tasks thus showed effects which were predicted and in line 

with previous literature (Burke & Shafto, 2011; Peelle, 2019). 

Our results are unlikely to be a failure to find an effect because of methodological 

limitations. This is for three reasons: First, our study has a relatively large sample size (for 
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comparison, Kristinsson et al., 2022 found robust effects with 49 participants). Second, 

Bayesian tools allow for robust conclusions about the absence of an effect (Dienes, 2014; 

Wagenmakers er al., 2014). Third, we used a comprehensive set of language tasks that have 

previously demonstrated sensitivity to ageing and individual variability in language abilities 

between older adults (Caplan et al., 2011; Fernandes et al., 2024b; Hardy et al., 2020; Segaert 

et al., 2018; Waters & Caplan, 2001; Caplan & Waters 2005). Yet, despite robust task effects, 

there was strong evidence against relationships with brain-age gap. 

Given the mixed findings in the literature, it is perhaps not surprising that our study did 

not detect an effect of chronological age on language processing performance (Tyler et al., 

2010; Fernandes et al., 2024b). Such variability across studies may be attributed to differences 

in age ranges, processing contexts, task-specific demands, and potential methodological 

limitations. For example, some changes in language processing may be more strongly 

associated with neurodegenerative or otherwise atypical ageing decline, rather than healthy 

ageing. Our sample, however, included only cognitively healthy individuals. Another possible 

explanation for the absence of chronological age effects in our study is the limited age range 

of the participants (60 to 81 years old, with 86% between 60 and 70 years old). Chronological 

age effects may be more pronounced when considering age as a continuous variable across a 

broader age range (Brysbaert, 2024), or, when comparing younger to older adults. For example, 

Fernandes et al. (2024b) found age-related effects in the same phrase-production-task data 

when comparing older adults to younger adults, whereby older speakers were slower than 

younger speakers in producing small-scope prepositional phrases (e.g., “the cone above the 

grape”), which suggests that older adults may engage in more extensive planning. They also 

reported that older adults generally outperformed younger adults on high-constraint sentences 

in the listening comprehension task, arguably because they have accumulated word and world 

knowledge. While our study did not include a younger comparison group (since there was no 
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structural brain data available for them), we made use of the available data to examine 

individual differences the age range that was accessible to us. 

Effects of brain-age gap on language performance are, to some extent, independent of 

chronological age effects. In other words, the absence of effects of chronological age on 

language performance does not have to coincide with the absence of brain-age gap effects.  

While chronological age is commonly used as proxy for cognitive ageing, brain-age gap was 

introduced in the literature to provide a more individualized measure of brain health that 

captures more nuanced aspects of the ageing process beyond age alone. Maintenance models 

of healthy ageing put forth that neural resources can be maintained or restored to their former 

levels in response to the typical “wear and tear” associated with non-pathological ageing 

(Habeck et al., 2017; Nyberg et al., 2012). Factors such as genetics, environment, and lifestyle 

can promote such maintenance – explaining why there is wide interindividual variability within 

the healthy older adult population – supporting brain and cognitive functions (Cabeza et al., 

2018). Much of the literature linking brain age to cognitive outcomes has focused on clinical 

groups, such as individuals with Mild Cognitive Impairment or Alzheimer’s Disease, where 

the effects of brain ageing are more pronounced. In contrast, healthy older adults may have 

greater potential for mechanisms of maintenance which may weaken the association between 

brain age estimates and specific linguistic outcomes in healthy older individuals. Using a multi-

modal approach (e.g., combining structural MRI, fMRI, DTI, or ASL) to predict brain age may 

provide a more comprehensive estimate of overall brain health in healthy older adults and thus 

have stronger associations with cognitive performance measures (Dijsselhof et al., 2023; Liem 

et al., 2017; Mooraj et al., 2025).  

One limitation of the present study concerns the generalizability of our findings. Our 

sample was relatively homogeneous, predominantly consisting of cognitively healthy, white 

older adults, which may limit applicability to more diverse populations. Additionally, the age 
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range was restricted (60 to 81 years, with most participants between 60 and 70), which may 

have affected the ability to detect age-related effects on language performance. It is possible 

that a wider age range may have revealed significant age-related effects on language 

performance. 

In the present paper we present consistent evidence that brain-age gap does not predict 

language processing, at least in healthy (as opposed to pathological) ageing and highlights the 

need to consider other neural and cognitive factors when studying language decline. Individual 

variability in language decline within the older population is large, and the complex 

interactions between factors determining individuals’ ageing trajectories are difficult to 

quantify, which motivated our endeavor to assess the utility of a biological brain age marker 

as a tool to explain this variability to begin with. Future research could aim to further explore 

how we can explain individual variability in older adults’ language decline using different and 

more sensitive approaches. These could include longitudinal designs that track changes in brain 

structure and language performance over time and a wider age range, or neuroimaging 

techniques using a multimodal approach to predict brain age. The long-term goal is to advance 

our understanding of cognitive ageing, including in the domain of language, ultimately 

contributing to targeted interventions aimed at preserving language abilities in later life. 
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