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Abstract 

Programmable assembly of proteins on molecular frameworks requires the development of 

facile and orthogonal chemical approaches and molecular scaffolds. In this research, the unique 

characteristics of PNA were applied to create controllable protein assemblies directed by 

precise PNA-DNA hybridization. The signatures of assembly were studied via FRET, providing a 

powerful tool which should be effective in live system imaging. Two model systems were 

developed in this study. In the first model system, site-selective conjugation of monomeric teal 

fluorescent protein (mTFP) to PNA was achieved by covalent linkage of mTFP to PNA via 

expressed protein ligation. The mTFP-PNA conjugates were efficiently aligned on a DNA beacon, 

to create a hetero-FRET system. The FRET indicated by decrease of fluorescence intensity and 

lifetime of the donor and an increase of donor anisotropy. The assembly of similar multiple 

mTFP-PNA constructs on DNA scaffolds provided dimeric and oligomeric forms which were 

studied by SEC-HPLC and SDS-PAGE. A decrease of anisotropy was exhibited due to homo-FRET 

following induced formation of dimers and oligomers. In the second model system, fluorescent 

SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers and 

oligomers. The site-selective covalent linkage of peptide nucleic acid (PNA) to SNAP protein was 

achieved by modification of PNA with O6-benzyl guanine (BG) which is a specific substrate for 

SNAP. The modified BG-PNA has been labeled with Atto dyes and thereafter, chemo-selectively 

conjugated to SNAP protein. Efficient assembly into dimeric and oligomeric forms were 

observed using SEC-HPLC and SDS-PAGE. DNA directed assembly of homo- and hetero-dimers 

of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds 

controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting 

homo-FRET. These systems could readily extend from homodimers and oligomers to binary, 

ternary, and higher oligomer systems containing any number of different dyes or fluorescent 

proteins in precisely engineered arrangements. 
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Chapter 1 

 

Assembly of PNA-protein conjugate: Application to study controlled 

assembly of proteins 

The nano scale supramolecular assemblies of proteins, such as those occurring in cell 

membranes during the first steps in signal transduction, play crucial roles in cell functions. The 

complex dynamic ordering of cell membrane proteins, such as clustering, typically changes after 

external stimulation. However, the mechanisms of these processes and their consequences on 

regulating cell growth, differentiation, shape changes and cell death are still not completely 

understood. Developing a protein model system to control over aggregation of proteins allows 

studying of protein clustering and its effect on downstream signaling. In this project, model 

systems based on assemblies of two popular protein tags, fluorescent proteins and SNAP, were 

created which can be easily applied to study other proteins by fusing them to these tags using 

molecular biology techniques. The assembly is based on the specific recognition of PNA for 

complementary DNA or PNA scaffolds. Peptide nucleic acids (PNA) are functional mimics of 

DNA with a pseudo-peptide backbone. Compared to DNA, the better biological robustness and 

unique chemistry of PNA makes it a useful component to controllably assemble biomolecules. 

The use of fluorescence resonance energy transfer (FRET) together with model systems 

undergoing PNA induced assembly can provide a new perspective to observe protein clustering.   
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1.1 Peptide nucleic acid (PNA) 

PNA is a DNA mimic in which the regular phosphodiester backbone has been replaced by a 

pseudopeptide skeleton. The backbone consists of repeating N-(2-aminoethyl) glycine units 

with purine and pyrimidine nucleobases attached to the aminoethyl glycine nitrogens via a 

methylene-carbonyl linkage (Scheme 1.1).1-5 PNA binds to the complementary PNA, DNA and 

RNA sequences through Watson-Crick base pairs and preferentially in the antiparallel manner 

(N-terminus of PNA facing the 3’ end of a complementary oligonucleotide) with high affinity 

and sequence specificity. PNA-DNA and PNA-RNA hybrids are more stable than the equivalent 

oligonucleotide complexes because of the absence of electrostatic interference between their 

neutral chain and the polyanionic oligonucleotide.6-8 Due to resistance to nuclease and 

protease digestion and high thermal stability, PNA has been proposed as an antigen or 

antisense agent in molecular biology and in gene diagnosis and therapy.3, 9 

 
 
 
Scheme 1.1: Chemical structure of PNA in comparison to DNA. The backbone consists of repeating N-(2-

aminoethyl) glycine units with purine and pyrimidine nucleobases attached to the aminoethyl glycine nitrogens via 

a methylene-carbonyl linkage
9
. 
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1.1.1 PNA conjugation 

Due to the peptide structure of the PNA backbone, PNA conjugation can be performed using 

peptide bioconjugation techniques. Several kinds of peptide-peptide conjugation chemistries 

are available. For example, conjugation is possible through carboxyl, amine and thiol groups. 

Thiol becomes a powerful nucleophile at physiological pH in aqueous solutions which provides 

the most specificity and is conveniently introduced in peptides or PNA via a cysteine.2, 3 

PNA-peptide conjugates can be produced through two strategies: on-line continous solid phase 

peptide synthesis ((9-fluorenylmethyloxycarbonyl (Fmoc) or tert-butyloxycarbonyl (tBoc)) or 

conjugation of fragments through regular peptide-peptide conjugation methods. 9PNA- peptide 

ligation is done under conditions compatible with the amino acid side chains and PNA 

nucleobases using a variety of methods to link the PNA and peptide moieties.2 In one of these, 

peptide and PNA fragments incorporating a cysteine residue at either the N- or C-terminus are 

ligated via a disulfide bond.4, 10 The direct oxidation of free thiol groups causes formation of 

desired products as well as symmetric dimers. Using an excess of one of the fragments can 

improve the ligation yield through increasing conversion selectivity.2 However, it is worth 

noting that an excess of one part can result in the formation of more homo-dimers as well 

which may interfere during purification steps. A more profitable method to make disulfide 

bonds utilizes the nucleophilic substitution of a free thiol group of one fragment and an 

activated thiol group of the other part.11  To prevent the unwanted dimerization of fragments 

possessing free thiol groups, the coupling reaction should be done in an oxygen free 

environment.2 The nucleophilic substitution of thiol groups can also result in a more stable 

thioether linkage through reacting a free thiol group of either PNA or peptide part in a Michael 

type reaction with the double bond of a maleimide functionality of the other part9 (Scheme 

1.2). For example, Nielsen et al. conjugated maleimide-containing PNAs with N-terminal 

cysteine oligopeptides to produce a variety of bacterial antisense probes.12   
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Scheme 1.2: Thioether bond formation through reacting a free thiol group of either PNA or peptide part in a 

Michael type reaction with the double bond of a maleimide functionality of the other part 
2
. 

Unlike the poor control over the modification of the side chains of cysteine or lysine in classical 

peptide bioconjugation methods (for example carbodiimide or maleimide crosslinking 

strategies) which may cause loss of the biological activity of peptide or PNA, novel methods 

provide controlled site-specific modification and minimize the chance of inactivation. A more 

chemoselective alternative strategy to produce PNA-peptide conjugates is via oxime 

formation.13 In this method, an amino-oxy group of a peptide was reacted with a ketone 

functionalized PNA (Scheme 1.3). The condensation was done in an aqueous buffer at pH 4.2 

with high efficiency.9  

 
 

Scheme 1.3: Conjugation of PNA-peptide by oxime formation through  reaction of an amino-oxy group of a peptide 

with a ketone functionalized PNA.
2
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Assembly of a PNA-peptide conjugate via Kent’s native chemical ligation (NCL) strategy14 is an 

alternative method which was reported for conjugation of a nuclear localization signal (NLS) 

peptide-thioester with an N-Cys (tBoc)-PNA fragment in a denaturing (guanidine hydrochloride) 

aqueous buffer at pH 7-8 with thiophenol and tris (2-carboxyethyl) phosphine (TCEP) as a 

catalyst and reducing agent, respectively.4, 9 

1.2 Native chemical ligation 

NCL is used extensively for chemoselective ligation of unprotected peptides.15 In conventional 

ligation methods, enthalpic activation by coupling reagents needs to use a protection scheme 

for other competing functional groups. These protections often cause poor solubility of 

protected fragments and low ligation efficiency. High and specific reactivity between thiol and 

thioester groups which is often not seen in amino acids and the stability of the native peptide 

bond are some advantages of NCL. The NCL reaction can be carried out in mild conditions 

(buffered aqueous solution and neutral pH) ideal for protein chemistry since those conditions 

have minimal effect on the native structure and function of proteins.16 Strongly basic conditions 

decrease the stability of thioester groups and have an impact on some residues such as Lys 

making them susceptible to react with thioesters.17 On the other hand, the reactivity of the 

thiol group and the N-terminal amine is reduced in acidic conditions.16  

NCL is based on the transthioesterification reaction of peptide thioesters with thiol groups of 

peptides with N-terminal cysteine. The reaction proceeds through a series of reversible thiol-

thioester exchanges, initially with an exogenous alkyl or aryl thiol component and then with the 

thiol groups of cysteine residues. Transthioesterification with the side chain thiol of N-terminal 

cysteine produces a thioester-linked intermediate18 which spontaneously undergoes a rapid 

intramolecular S-N transfer through a favourable intramolecular nucleophilic attack by the α 

amine group of cysteine. This forms a native peptide bond between the two peptide fragments 

(Scheme 1.4).  
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Scheme 1.4: Native chemical ligation consisting of two steps of transthioesterification between a thioester group 

and a SH group followed by intermolecular acyl rearrangement to form a native peptide bond. 

All 20 amino acid thioesters undergo the NCL reaction, but their side chains have a perceptible 

impact on the reaction rate. Glycine thioesters react quickly while beta-branched side chains 

and proline react slowly. More reactive thiols assist sterically hindered thioester ligation.19-21 

Another important factor is the nature of the thioester which can significantly affect the NCL 

reaction. Aryl thioesters more effectively increase the rate of the thiol-thioester exchange step 

than alkyl thioesters.  

Peptide thioesters are usually synthesized as alkyl derivatives (using 2-mercaptoethansulfonic 

acid (MESNA))22 and then converted into aryl thioesters by addition of an excess of an aryl thiol 

such as the odourless and water soluble 4-mercaptophenylacetic acid (MPAA). NCL usually 

proceeds at low peptide concentration without side reactions and in high yield. NCL reactions 

can be done in the presence of denaturing agents or detergents such as SDS (sodium dodcyl 

sulphate) especially for insoluble peptides under standard conditions.23  

Thioester-linked 

intermediate 

Peptide bond 

Transthioesterification 

Intermolecular acyl 

rearrangement 
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It has been shown that high concentrations of MPAA (up to 400 mM) increased the rate of 

thiol-thioester exchange and do not interfere with the transthioesterification or subsequent 

rearrangement of the peptide-peptide ligation.18 

1.3 Expressed protein ligation  

NCL has become a popular and successful method for peptide conjugation due to the 

accessibility and high stability of the starting materials. Cysteine residues and thioester groups 

can be introduced into peptides through standard solid phase peptide synthesis and the 

cysteine at the ligation site does not need to be further processed.16, 24 

Using NCL for polypeptide ligation and semi-synthesis of proteins is a major advance in protein 

chemistry and exhibits a powerful unity of biology and chemistry.25 Expressed protein ligation 

(EPL) and less frequently, intein-mediated protein ligation are semi-synthetic versions of NCL. 

Since it was reported in 1998, NCL has achieved wide use in protein structure and function 

analysis, especially in protein modification and labelling.26, 27 In this method, a recombinant 

protein with thioester or cysteine at the C- or N-terminus can be prepared biosynthetically via 

thiolysis of a corresponding protein-intein fusion (Scheme 1.5).28 Inteins are protein splicing 

elements that can be introduced using molecular biology methods. They are able to excise 

themselves from precursor proteins with accompanying fusion of the neighboring regions of 

the protein. Inteins approximate the self-splicing behavior of RNA introns and can play a 

powerful role in protein manipulation.29 

The modified intein can be cleared by treatment with thiols, generating a thiol or thioester 

group at the end of the protein. The next steps toward conjugation of this modified protein to a 

peptide fragment are similar to those of the NCL method.27 EPL has been used previously for 

the ligation and synthesis of a variety of peptide-protein 16, 30-32 and PNA- protein conjugates.33 
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Purification of a protein fragment possessing a thioester-linked moiety consists of thiol 

dependent cleavage of an engineered protein containing a modified intein.29, 34-36 More than 

100 inteins have been reported in unicellular eukaryotic organisms, eubacteria and 

archeobacteria.25, 37 Inteins exhibit some conserved portions in their structure.   For example  a  

cysteine or serine residue is very common at the N- terminus of inteins and is responsible for an 

acyl shift at that splice junction. The nucleophilic sulfohydryl or hydroxyl group of the cysteine 

or serine side chain attacks the linkage at the N terminal splice junction leading to a branched 

intermediate.37 The scissile peptide bond of the intermediate is replaced by a thioester linkage 

through induced cleavage by a nucleophilic substitution with a thiol reagent such as MESNA 

which is normally used in standard EPL reaction. Nucleophilic attack on the thioester linkage 

creates the base point for the production of a C-terminal thioester moiety on a protein of 

interest (Scheme 1.6). 22, 34, 38 

 

 

 

 

 

 

 

 

 

 

 
 
Scheme 1.5: Graphical representation of plasmid PHT 581 for expression of mTFP-Intein-CBD constructs. 
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Scheme 1.6: Schematic depiction of expressed protein ligation. Nucleophilic substitution with a thiol reagent such 

as MESNA induces N-terminal cleavage of intein which generates a thioester group at the C-terminus of target 

protein. The next steps are similar to NCL in which ligation occurs via chemoselective reaction and a subsequent S-

N acyl rearrangement to form a peptide bond between reacting species. 
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1.4 The importance of protein clustering  

Protein oligomerization plays a prominent role for regulating the function of many proteins 

including enzymes, receptors, ion channels, and transcription factors. However, the unwanted 

self-assembly of proteins into toxic misfolded aggregates interrupts the formation of their 

regular functional states and leads to some serious diseases such as Alzheimer’s, Huntingdon’s, 

and Parkinson’s diseases. Therefore, understanding, predicting and engineering of protein 

oligomers attracts considerable interest.39-43     

In signal transduction, transmission of the signal is conducted via protein interactions in the 

signal transduction chain. Activation of a signaling chain is usually thought to be mediated 

through dimerization or oligomerization of the same proteins.44 Cell membrane proteins which 

regulate the transfer of small molecules into and out of the cell, are estimated to compose 20-

30% of all proteins in the sequenced genome.45 The tendency of many of these proteins, such 

as the G-protein coupled receptor (GPCR) family and the epidermal growth factor receptor 

(EGFR), to assemble in dimer or higher order complexes has been widely reported. For 

example, it was traditionally assumed that the monomeric form of GPCR participated in ligand 

binding and signal transduction. A single ligand induced conformational changes in receptor 

which led to the activation of receptor followed by the subsequent activation of G protein or 

effector. This assumption has been challenged recently by the discovery of homo- and/or 

hetero oligomers of GPCRs suggesting that ligand(s) binding to a single or more receptors might 

activate neighboring receptors in the oligomeric forms which may significantly affect signaling 

process (Scheme 1.7). 46, 47   
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Scheme 1.7: Traditional and current views of GPCR signaling. a) In traditional view, it was assumed that one ligand 

activated one monomer receptor which participated in signal transduction. b) In current view, GPCRs might get 

together in homomeric and/or heteromeric oligomer forms in which ligand(s) binding may activate neighbouring 

receptors. 
47

       

Nanoclusters in the cell membrane are assembled from lipid-lipid, lipid-protein and protein-

protein interaction.44 Generation of these self-assembled structures is extremely important for 

regulating signal transduction through the cell membrane and maintaining homeostasis. These 

features indicate the importance of controlling assembly of these proteins to reduce the risk of 

converting cells to a cancerous state and many aspects of this conversion remain unclear.44, 48-64  

Designing a model system with control over the process of forming nanoclusters could help 

answer some of the critical questions about these organized biological phenomena. 

1.5 Clustering based on PNA 

Studying inducible aggregation such as that occurring in cell membrane proteins requires a 

model system that can be controllably assembled.  Biological macromolecules such as DNA and 

proteins are currently being studied as building blocks of self-assembled nanoarchitectures due 
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to their size and unique recognition capabilities.65 Furthermore self-assembled DNA-protein 

conjugate systems could be used as a superb controllable template for spatially arraying other 

molecules with increased relative accuracy and programmability.1, 65-67  The programmable 

hybridization of nucleic acid provides a framework to design nanoscopic assemblies.6, 68-76   

PNA provides superior control properties over the dynamics of assembled system including 

better stability than DNA duplexes, even for short sequences, and higher mismatch sensitivity. 

Moreover, its neutral net charge allows for tuning the structural and electrostatic 

characteristics through using other amino acids instead of glycine.  Modification with other 

amino acids is easily accessible through synthesis or conjugation methods and should allow 

good control over the dynamics of assembly.6, 7 The unique properties of PNA gave good results 

for programmable assembly of nanoparticles1, 77 which potentially can be extended to 

clustering of other molecules such as proteins.  

PNA tagged encoding technology has been used to assemble libraries of small molecules,78, 79 

carbohydrate,80 peptide,81-83 and protein fragments33, 84 into organized microarrays through 

hybridization to DNA.  Due to the compatibility with standard peptide chemistry, PNA is the 

only oligonucleotide tag which can be co-synthesized with small molecules by solid phase 

synthesis. It allows PNA-encoded libraries sensitized by split- and -mix method to be decoded in 

one step.85, 86 

Recently, the self-assembly of PNA-α HER2 antibody Fab fragment conjugates into homodimer, 

heterodimer,and higher order multimers of defined composition, valency and controlled 

geometry has been reported. The tetrameric assembly showed superb activity in comparison 

with parent monocolonal antibody. Site specific modification of antibody using genetically 

encoded unnatural amino acids allowed precise control of PNA-antibody conjugation (Scheme 

1.8).70, 84, 87   
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Scheme 1.8: αHer2 PNA dimer (a) and PNA tetramer (b). In dimer, the complementary oligonucleotides A and A’ 

are coupled to Fab fragments and allow formation of dimer. In tetramer, four complementary oligonucleotides A, 

B, C, D are coupled to Fab fragments leading to the formation of a cruciform
84

. 

The oligomeric self-assembly of PNA- tagged carbohydrates with controlled topology has also 

been reported.80, 88  Scheibe and Seitz used the hybridization of a PNA-sugar conjugate with 

complementary DNA as a powerful tool to create well defined spatial arrangement of 

carbohydrates which can be applied for precise spatial screening of carbohydrate-lectin 

interactions.8, 89-91 

1.5 Protein tags 

The site-specific labeling of protein with synthetic molecules such as PNA can provide an 

intriguing and versatile tool to study the function and structure of proteins and their behavior 

in clustering forms.  The non-invasive imaging of the dynamics of proteins in living systems can 

be obtained by fusion of proteins of interest with protein or peptide tags as a means for 

subsequent attachment of a fluorophore or other biophysical probes.92, 93 

The introduction of fluorescent proteins in 1994 as selective, genetic tags revolutionized live 

cell imaging.94 Green fluorescent protein (GFP) and its variants showed great fluorescent 

properties and compatibility with living systems. GFP is a stable, 27kDa protein with distinctive 

a b 
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spectral characteristics. GFP is a β-barrel composed of eleven antiparallel β-strands forming a 

compact cylinder. There is an α-helix inside the barrel which contains a chromophore in the 

middle. The cylinder has a diameter and length of about 30 Å and 40 Å, respectively.95-97 The 

chromophore forms by rearrangement and oxidation of three amino acid residues of Ser, Tyr 

and Gly after spontaneous folding of the protein (Scheme 1.9).94 Variants of GFP have been 

used frequently as FRET pairs. For example, they can be easily fused to proteins of interest 

through cloning methods. Due to the flexibility of the N- and C- termini on the surface of the β-

barrel, the structure is maintained in fused proteins.98-101 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scheme 1.9: Schematic structure and dimension of A. Victoria GFP (left) and formation of its chromophore after 

rearrangement and oxidation of three amino acids : Ser, Tyr, and Gly after spontaneous folding of protein (right).
102

  

Currently, the development of a wide variety of improved monomeric fluorescent proteins with 

a broad range of spectral properties has provided a potent tool for multiparameter imaging of 

cellular structure and processes.95-98, 101, 103-117  

Self-labeling protein tags introduced another alternative modification of proteins. The 

advantage of these tags is their high specificity and selectivity.93 Furthermore, a wide range of 
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colours with unique photophysical properties can be obtained by subsequent modification of 

self-labeling tags with organic fluorophores which make them a great method to localize and 

study the fusion protein behaviors in living systems.118-120 

The SNAP tag is a 19-20 kDa self-labeling tag which was developed by mutation of the DNA 

repair protein O6-alkylguanine-DNA alkyltransferase (AGT). The labeling of a SNAP-tag is based 

on the specific reaction of benzylguanine (BG) derivatives with a reactive cysteine residue of 

AGT leading to an irreversible covalent linkage (Scheme 1.10).119-127 The BG derivatives can be 

applied in different conjugation procedures allowing specific labeling to a wide variety of 

synthetic probes including PNA. It should be noticed that the nature of the ligand attached to 

BG does not have an impact on the rate of the SNAP-tag reaction with a BG derivative.120, 128-130 

 

Scheme 1.10: Schematic structure of SNAP-tag bound to its substrate benzylguanine. The labeling of a SNAP-tag is 

based on the specific reaction of benzylguanine (BG) derivatives with a reactive cysteine residue of AGT leading to 

an irreversible covalent linkage (182 amino acid,(PDB entry 3KZZ:  DOI:10.2210/pdb3kzy/pdb). 

SNAP-tag labeling has been used for many in vitro and in vivo experiments such as localization 

and trafficking of fusion proteins in cell membranes, labeling of antibody fragments, designing 

 

Benzylguanine 

http://dx.doi.org/10.2210/pdb3kzy/pdb
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fluorescent biosensors, controlling yeast transcription and visualization of metabolite 

signaling.131-138  

Both FP and SNAP tags can be easily fused to the proteins of interest to study their localization, 

clustering and dynamics in living systems. The combination of the unique recognition 

characteristics of PNA with the wide application of these tags can provide versatile, well 

defined units to create programmed self-assembled protein model systems. The induced 

assembly by DNA templates can be studied through fluorescent techniques and especially using 

fluorescence resonance energy transfer (FRET) methods.   

Protein clustering is normally studied via co-immunoprecipitation or chemical cross-linking 

which are inclined to artifacts since the conditions of experiments may induce protein 

clustering.139 Lately, microscopy methods based on FRET have been developed to investigate 

clustering of proteins.57, 140   

The nonradiative nature of FRET makes it a powerful tool to follow protein dynamics and 

protein-protein interaction in physiological conditions. Moreover, it can be applied to study cell 

membrane protein aggregation in vivo. The development of analytical methods and 

instrumentation is on-going particularly in the case of homo-FRET. The extent of FRET (and its 

reversibility) can be assessed as a function of time, thus revealing the dynamics of donor and 

acceptor proximity.114, 139, 141, 142
 

1.6 Aims and outline of thesis 

PNA with its unique properties is well suited to use as a recognition tag for programmable 

assembly of proteins. Conjugation of PNA to protein tags (FP and SNAP tags) provides an 

opportunity to combine the high recognition specificity and stability of PNA with the versatile 

applications of protein tags to create protein self-assembly model systems. This model system 

allows alignment of PNA-protein tag conjugates in a controllable manner which can be used to 
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mimic other protein self-assembled systems in biological processes and study their behaviors. 

The compatibility and nonradiative characteristics of FRET in living systems makes it a powerful 

tool to understand the signatures of protein assembly via the designed PNA-protein model 

system.  

The aim of this thesis is to develop such model systems based on DNA directed controllable 

self-assembly of PNA-protein conjugates to study protein clustering behavior. Fluorescent 

protein and SNAP tags are used to represent programmable self-assembly of proteins. 

Assembly directed by PNA-PNA hybridization was originally proposed but discarded for this part 

of the project mostly for cost reason. However, they may still be needed in case of using model 

systems in membrane.  

In Chapter 2, expressed protein ligation as a semisynthetic version of native chemical ligation is 

used to conjugate PNA to a fluorescent protein tag. The recombinant fluorescent protein with a 

thioester group at the C-terminus is expressed in E. coli and subsequently purified as a 

precursor form to conjugate an N-terminal thiol group of a PNA. The final FP-PNA conjugate 

provides a building block to create a model system of protein assembly.  

In Chapter 3, DNA scaffolds direct programmable assembly of FP-PNA conjugates. One DNA 

template is a fluorescent beacon with 6-FAM and Dabcyl at its ends. This beacon directs 

assembly of the FP-PNA conjugate to create an assembled hetero-FRET system. Using two other 

DNA scaffolds allows assembly of multiple FP-PNA constructs in dimer and tetramer forms. 

Assembly of multiple similar FP-PNAs in a row induced homo-FRET. The visualization of self-

assembled FRET systems can be obtained through fluorescence techniques such as intensity, 

frequency domain lifetime and anisotropy measurements. This model system provides control 

over self-assembly of FP-PNA through precise recognition of PNA on the DNA framework. The 

well-defined characteristics of the model system can be extended to any other proteins through 

fusion to FPs. 
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Chapter 4 reports the use of the self-labeling SNAP-tag to create PNA-protein conjugate units 

for developing self-assembly. The model system based on a SNAP-PNA conjugate can provide 

another permissive approach to study behaviors of other proteins of interest which can be 

fused to a SNAP tag.  This chapter describes creating PNA-SNAP tag conjugates which require 

modification of PNA with a specific substrate for SNAP (O6-benzyl guanine (BG)). The 

subsequent conjugation of BG-PNA with fluorophores allows the study of the model system 

with fluorescent techniques. 

The controllable self-assembly of SNAP-PNA on DNA scaffolds is discussed in Chapter 5. Three 

DNA scaffolds are used as frameworks to create dimer and oligomer forms. Using different 

fluorophores creates a hetero dimer that exhibits hetero-FRET system. Additional assembled 

models feature homo-dimer and homo-oligomer forms by assembly of similar fluorescent 

SNAP-PNAs in a row which can be studied by fluorescent techniques.  
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Chapter 2 

Conjugation of fluorescent protein to PNA  

The specific binding characteristics of oligonucleotides make them an attractive platform to 

direct programmable assembly of biomolecules. PNA, as a functional analogue of DNA, provides 

unique chemistry and robustness to conveniently conjugate to proteins and induce their 

assembly through precise recognition of complementary DNA scaffolds. The pseudo-peptide 

backbone of PNA facilitates attachment of PNA to proteins through protein conjugation 

methods. In this chapter, a site-specific conjugation of PNA to monomeric teal fluorescent 

protein (mTFP) was achieved using EPL and NCL, producing a native peptide bond at the ligation 

site. Recombinant mTFP was expressed in E. coli and purified thereafter. The purity and 

integrity of the expressed protein was confirmed by mass spectrometry, SDS-PAGE analysis and 

UV-Vis spectrophotometry. The conjugation was assessed by mass spectrometry and 

spectrophotometry, showing almost complete conversion of mTFP to the ligated form. The 

resulting conjugates can be used as units to create a model system to assemble fluorescent 

proteins in a controllable manner (Chapter 3).             
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2.1 Introduction  

Alignment of biomolecules in a precisely programmed manner is of a great interest in the study 

of their function and interaction. One of the attractive molecular building blocks to assemble 

controllable architectures is nucleic acid. The programmable hybridization of nucleic acid 

provides a framework to design nanoscopic assemblies.1-10 PNA, as a DNA mimic, has a unique 

chemistry which makes it a better building block than DNA for programming self-assembly. The 

main advantage of PNA is that it achieves more specific and stable duplexes with shorter 

sequences during the hybridization than DNA while providing less sensitivity to the ionic 

strength of the solution.11, 12 

During the past two decades, the development of fluorescent proteins as genetically encoded 

markers which can be fused to virtually any protein has revolutionized the investigation and 

manipulation of proteins involved in complex biochemical processes in living systems. Today, a 

vast number of improved monomeric FPs are available with a broad range of spectral 

properties and these provide a valuable tool for multiparameter imaging of cellular structure 

and processes.13-32  

 Efficient approaches for labelling, assembling and tracking proteins are needed to understand 

their function and interaction in living systems.33 Numerous methods have been developed for 

protein conjugation. Novel methods of bioconjugation which are based on bioorthogonal 

chemoselective approaches are more efficient in terms of the site-specificity of the conjugation 

reaction while minimizing perturbations to the structure and the function of the target 

biomolecules.34-38 One of the most successful semisynthetic protein ligation techniques is 

expressed protein ligation (EPL) in which a recombinant protein containing a C-terminal α- 

thioester group is ligated to the thiol group of a cysteine residue at the N-terminus of another 

protein via native chemical ligation (NCL) generating a native peptide bond at the ligation site. 

EPL has been successfully used on a wide variety of proteins for conjugation of proteins to 

peptides and to an oligonucleotide.36, 39-43   
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 In this chapter, EPL enables ligation of a recombinant FP possessing a thioester group at the C-

terminus with the N-terminal cysteine residue of a PNA, producing a native peptide bond at the 

ligation site. Creating FP-PNA conjugates via EPL provides an ideal system to study 

programmable protein assembly. The unique recognition characteristics of PNA provide precise 

control over the inducible DNA-directed assembly of FP-PNA conjugates. Also, it allows the 

study of protein assembly by observing the photophysical properties of assembled FPs.  

2.2 Results and Disscussion 

2.2.1 Expression and purification of fluorescent proteins with a thioester group 

at   the C-terminus using EPL method 

Recombinant plasmids of mCFP, mYFP, mKate, mTFP, mGFP and mCherry were expressed 

through EPL in E. coli. The expressed constructs included a chitin binding domain (CBD) used for 

protein purification through CBD affinity chromatography. The FPs were expressed in E. coli 

with additional histidine or streptividin tag residues at the N-terminus which can be used for 

extra purification. 

Incubation of the FP-intein-CBD construct bound to a chitin column with MESNA resulted in 

cleavage of thioester-FP from the rest of the construct (Scheme 2.1).  

The proteins were isolated in different final concentrations (mYFP: 15.2 mg/ml (530 µM), mTFP: 

8 mg/ml (287 µM), mCFP: 22.8 mg/ml (798 µM), and mKate: 11.2 mg/ml (395 µM)). Expression 

was poor for mGFP and mCherry. SDS-PAGE and mass spectrometry showed single purified 

proteins for mYFP and mCFP. However, impurities were observed with mTFP and mKate. These 

two proteins were further purified via a Ni-NTA His-tag chromatography. SDS-PAGE 

electrophoresis indicated good purity of the final products (Fig 2.1).  
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Scheme 2.1:  Schematic depiction of expressed recombinant FP constructs. There is a polyhistidine ( 8XHis) at the 

N-terminal of all constructs except for mYFP which instead possesses an N-terminal-strep-tag (Trp-Ser-His-Pro-Gln-

Phe-Glu-Lys).  

 

 

 

 

 

 

Figure2.1: SDS-PAGE electrophoresis result of purified mCFP-thioester (1), mYFP-thioester (2), mKate-thioester (3) 

and mTFP-thioester (4) after staining with Coomassie Blue. In all cases only single bands were observed indicating 

high purity. 

15 
20 

1 2 3 4 

25 

30 

40 
KDa 

His-mCFP Intein CBD N-terminal C-terminal 

Strep-myFP Intein CBD N-terminal C-terminal 

His-mTFP Intein CBD N-terminal C-terminal 

His-mKate Intein CBD N-terminal C-terminal 

 His-mCherry Intein CBD N-terminal C-terminal 

His-mGFP Intein CBD N-terminal C-terminal 

http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/Serine
http://en.wikipedia.org/wiki/Histidine
http://en.wikipedia.org/wiki/Proline
http://en.wikipedia.org/wiki/Gln
http://en.wikipedia.org/wiki/Phe
http://en.wikipedia.org/wiki/Glutamic_acid
http://en.wikipedia.org/wiki/Lysine


PNA-protein conjugates for nano scale modeling of protein aggregates 

[Pick the date] 

 

32 

 

Among those expressed FPs, the newly developed monomeric teal fluorescent protein (mTFP) 

was chosen for the rest of the study due to its greater brightness and photostability compared 

to CFP, YFP and mKate. It has also been reported as a good donor in different FRET pairs. 27, 44-49 

Mass Spectrometry showed the integrity of the purified mTFP-thioester (measured m/z 

27975±4 Da, calculated m/z 27990 Da) and SDS-PAGE (28 kDa) indicated the purity of the 

resulting mTFP-thioester.   

2.2.2 PNA-mTFP ligation by NCL method 

Purified mTFP (100 µM) with a thioester group at the C-terminus was conjugated with excess 

cysteine–PNA (Cys-ACGTAC) (400µM) through NCL in the presence and absence of 50 mM 

MPAA as a catalyst at pH 7. Solutions were incubated for 20-485 min and overnight (   18hrs) 

at room temperature. Mass spectrometry results showed that the ligation of PNA to mTFP 

occurred only in the presence of MPAA as catalyst. The ligation did not proceed using MESNA as 

a catalyst or with DTE as a reducing agent even after overnight incubation.  

Three peaks appeared in the mass spectrum (Fig 2.2). The peaks were related to hydrolysed 

mTFP at m/z 27833±7 Da (calculated m/z 27844 Da), the mTFP-PNA product at m/z 29560±6 Da 

(calculated m/z 29555 Da), and partial double PNA attachment to mTFP at m/z 31293±7 Da 

(calculated m/z 31286 Da). The trace of second PNA attachment was efficiently removed by 

incubation with the reducing agent TCEP followed by centrifugation assisted dialysis. Since 

native mTFP does not feature a cysteine and the ligation solution was not oxygen free, the 

appearance of the second peak might be attributed to disulphide bond formation between the 

second PNA and the newly introduced SH group at the ligation site. HPLC analysis of the final 

product confirmed purity and integrity of the mTFP-PNA following with treatment with TCEP 

with a yield near 100% (Chapter 3).  
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Figure 2.2: Mass spectrometry results of mTFP ligation to PNA (1734 Da) in the presence of MPAA (50 mM) and 

TCEP (70 mM) at pH 7 after 4 hrs incubation. Assignments: mTFP: 27833 Da and mTFP-PNA: 29560 Da. The third 

peak at 31293 Da is consistent with attachment of a second PNA to mTFP which was efficiently removed by 

incubation with the reducing agent TCEP followed by centrifugation assisted dialysis.  

The mTFP-PNA ligation condition was chosen after optimising the ligation yield in terms of the 

effect of catalyst concentration (5-300mM), ligation time (20-485 min and overnight) and the 

ratio of PNA to mTFP (400-600 and 700 µM). Based on the data, an optimised 1:4 ratio of mTFP 

to PNA in the presence of 50 mM MPAA and 70 mM TCEP at pH 7 and 60 min ligation time was 

used in all ligation experiments. Excess PNA and MPAA and TCEP were removed using 

centrifugation.  

2.2.3 Kinetic study of mTFP-PNA NCL 

The kinetic behaviour of mTFP-PNA ligation consists of three key steps involving i) reversible 

thiol-thioester exchange, ii) reversible transthioesterification reaction and iii) fast and 

irreversible intramolecular acyl-transfer rearrangement 50-52 (Scheme 2.2).  

 

[mTFP-PNA+H]+ 

[mTFP+H]+ 

[mTFP-(PNA)2+H]+ 
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Scheme 2.2: mTFP-PNA ligation via native chemical ligation (NCL).  NCL is based on the transthioesterification 

reaction of mTFP- thioesters with thiol groups of PNA N-terminal cysteine. The transthioesterification reaction is 

followed by a fast and irreversible intramolecular acyl-transfer rearrangement forming a native peptide bond 

between mTFP and PNA. 

Native chemical ligation is also thought to be a concerted anionic SN2 substitution reaction. This 

reaction is second order overall, and first order on each of the reactants.53 

In theory, the following steps represent a complex set of reactions which, depending on the 

conditions, can be reduced to pseudo first order behaviour (Table 2.1). 

 

 

Transthioesterification 

Thioester-linked intermediate 

mTFP-thioester 

S-N acyl shift 

mTFP-PNA 
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In the above steps of mTFP-PNA ligation, P is PNA, T is mTFP, M is MPAA, TM is the mTFP-

MPAA, TP* is the mTFP-PNA intermediate, and TP is mTFP-PNA with the native peptide bond. 

The eqn 2.1 and 2.2 are the reversible thiol-thioester exchange of mTFP-thioester with MPAA. 

The reversible transthioesterification with PNA is shown in eqn 2.3 and 2.4. The last eqn (2.5) is 

related to irreversible intramolecular acyl-transfer rearrangement. 

Considering a variety of treatments,53-55 both pre-equilibrium and steady state approximation 

result in a pseudo first order kinetics for PNA (P) and mTFP (T) consumption and yield of ligated 

mTFP (TP) in our experiment conditions which is in accord with the observed data (Fig 2.3). The 

reaction summarized in Table 2.1.   
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Table 2.1 Kinetic behaviour of PNA-mTFP NCL system. 

Assumptions
53-55

 Saturated concentration Proposed NCL kinetic reaction 

 

Assumption 1: 

k1>k2+k-1 

Rate limiting step:  

Transthioesterification step  

Kinetic approximation: 

1. Pre-equilibrium 

approximation for thiol-

thioester exchange reaction 

(k1and k-1) 

2. Steady state approximation 

for intermediate TP* (k3+k-

2> k2 

 

Catalyst MPAA (M): 

[M] >> [T] so [M]≈[M0] (initial  

Concentration of M) 

 

PNA (P): 

 

[P]>[T] so 

 

[P] ≈ [P0] (initial  

Concentration of P) 

 

 

      [  ][  ]

       [  ]     
   

   

  
  [ ] 

   

  
 

      [  ][  ]

       [  ]    
 [T] 

 

 

Pseudo first order reaction  

 [TP]= T0 (1-    ) 

Thus: 

 

i. If k-2[M0] <k3 (before consuming all of [T] as a 

reactant)   
    [   ][   ]

   
 

ii. If k-2[M0] >k3 (after consuming all of [T] as a reactant) 

  
      [  ]

      
 

 

Assumption 2: 

k1 < k2+k-1 

Rate limiting step:  

Thiol-thioester exchange step 

Kinetic approximation:  

1. Steady state approximation 

for intermediate TM  

2. Steady state approximation 

for intermediate TP* (k3+k-

2> k2) 

 

  

 

 

Catalyst MPAA (M): 

[M] >> [T] so [M]≈[M0] (initial  

Concentration of M) 

 

PNA (P): 

 

[P]>[T] so 

 

[P]≈[P0] (initial  

concentration of P) 

   

  
  [ ] 

   

  
 

      [  ][  ]

       [[  ]     [  ]    
 [T] 

If k-1<<k2[P0]: 

    [  ]

    [  ]    
 K 

          

Pseudo first order reaction 

[TP]= T0 (1-    ) 

Thus: 

i. If k-2[M0] <k3 (before consuming all of  [T] as a 

reactant)     [   ] 

 

ii. If k-2[M0] >k3 (after consuming all of [T] as a reactant) 

  
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The kinetic study of mTFP-PNA ligation was performed using 50 mM MPAA , 70 mM TCEP at pH 

7 with 20-485 min incubation time. The ligation yield was estimated through 

spectrophotometry at 260 nm as an indicator of the ligated PNA concentration and it was 

compared with the calculated absorbance of 100% ligation PNA to mTFP (1:1 ratio) to obtain 

the final percent yield. The results showed that the yield increased with time to a maximal 

value of 90%. 

The plot of yield as a function of time (Fig 2.3) showed a good fit to a first order rate law for 

mTFP-PNA ligation. Thus, in good agreement with theory, it can be concluded that the 

behaviour of native chemical ligation of mTFP-PNA is consistent with a pseudo-first order 

reaction.  

 

Figure 2.3 fitting of final mTFP-PNA yield in a pseudo first order growth model. 

To test whether the addition of growth and decay terms in a kinetic model will explain sufficient 

variance to justify their inclusion; the F-test was used:56  
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where ss1 and ss2 are the sum of squared residuals for the reduced (fewer parameters) and 

complete (more parameters) models. k is the number of parameters of complete model, g is 

the number of parameters of reduced model, and  n is the number of data points. 

The sum of squared residuals ss1 and ss2 are calculated based on following equation: 

    ∑            
 
                

                   [2.7]  

In which yobserved  , ycalculated  are the observed and calculated values for PNA according to a 

particular model and n is the number of data points. 

The null hypothesis (H0) is that the additional parameters do not explain sufficient variance to 

justify their inclusion. If the F-statistics is larger than the critical F value with k-g and n-k degree 

of freedoms, H0 is rejected and it can be concluded that the addition of more parameters is 

justified.  

The F-test showed that the data significantly fit in a pseudo first order growth model and there 

is no evidence of any competing reaction. The errors of fitted parameters were estimated using 

macro SolvStat.xls57 and are shown in Table 2.2 for mTFP-PNA production. The estimated 

pseudo-first order rate constant would be 0.026±0.003 min-1.  

Table 2.2 : Errors estimated for the fitted parameters of a pseudo first order growth model mTFP-PNA production 

 

Parameters Minimized value  R2 (coefficient of 

determination) 

SE(y) (the standard 

error of y(t)) 

k1 0.026 ±0.003 (min-1) 0.97 4.88 

A1 86 ±2 (μM) 
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The rate of NCL depends on a number of variables including pH, the identity of C-terminal 

amino acid in the thioester segment and the nature of the thiol leaving group. 51, 58  

Hupe and Jencks reported that the reaction of thiol RS- with thioester is a completely 

symmetrical reaction. Therefore, as a tetrahedral intermediate is produced it will convert into 

products and reactants equally. When RS- is more basic, it is a stronger nucleophile and worse 

leaving group than the thiol part of the thioester. In this condition, the intermediate will 

convert to products preferentially and the attack of RS- will be rate limiting. When RS- is less 

basic and therefore a better leaving group the intermediate will convert to reactants 

preferentially. Thus, intermediate production will be at equilibrium and expulsion of the leaving 

group will be the rate limiting step (scheme 2.3). 59  

 

Scheme 2.3: Reaction of thiol and thioester 59. 

The above explanation in conjunction with the absence of an observable thioester-linked 

intermediate ligation product in other NCL reports suggested that the rate limiting-step in NCL 

is the transthioesterfication with the thiol group of N-terminal cysteine residue.51 In contrast, 

Johnson and co-workers demonstrated that the addition of aryl thiols such as MPAA as a 

catalyst (instead of alkyl thiols) can increase the rate of NCL and the rate limiting step of Cys-

NCL catalysed by low concentration of added aryl thiols is the thiol-thioester exchange at the C-

terminus of the thioester moiety with catalyst. They showed that aryl thiols increase the NCL 

rate since they are good thioester leaving groups and the transthioesterification of an aryl 

thioester is more rapid than the reverse thiol-thioester reaction which is followed by a fast and 

irreversible intramolecular acyl-transfer rearrangement generating a peptide bond at the 

ligation site.50-52 
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In our experiment, the initial MALDI-TOF mass spectrometry data of mTFP-PNA ligation samples 

(containing 5-300 mM MPAA with 240 min ligation time at the similar conditions mentioned 

above) exhibited an increase of ligation yield up to using 50 mM MPAA followed by a decrease 

of yield (Fig 2.4).   

 

Figure 2.4: The graph of the ligation yield vs. different concentration of MPAA (5-300mM) after 240 min ligation 

time obtained by MALDI-TOF mass spectrometry. 

It should be noticed that MALDI-TOF is a powerful method to recognize and investigate ligation 

product but there are issues about the lack of peak reproducibility and fragmentation60-62. 

Although this kind of data is not normally used for quantitative applications like this, the 

decreasing yield when the concentration exceeds 50 mM in a roughly 1/[MPAA] function (based 

on fitting) in conjunction with the above discussion on NCL rate limiting step may imply that the 

rate limiting step of mTFP-PNA ligation is transthioesterification of MPAA-thioester with the 

thiol group of N-terminal cys-PNA.  This may be due to MPAA molecules competing with PNA in 

transthioesterification and also by catalyst molecules preventing the bulky PNA molecules from 

reaching the mTFP. Competition between MPAA and PNA could lead to the decrease of yield 
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The decreasing trend of MS data was not observed when the effect of catalyst concentration on 

mTFP–PNA ligation was investigated by varying concentration of MPAA (5-200mM) at fixed pH 

(7) and incubation time (60 min) using UV-visible spectrophotometry.  

The UV-visible spectrophotometry results were obtained by using the estimated absorbance of 

the mTFP-PNA at 260 nm as an indicator of PNA concentration and it was compared with the 

estimated absorbance of 1:1 ratio of PNA conjugation to mTFP (100%) to calculate the 

percentage of final ligation yield .The absorbance of the same concentration of pure mTFP was 

subtracted from the total absorbance. The data showed more than 90% yield. The yield 

increased monotonically with added catalyst up to 100 mM (Fig 2.5). 

 

Figure 2.5: Ligation yield (µM) vs. catalyst: MPAA (5-300mM) with a 60 min reaction time at room temperature 

measured by UV.Vis spectrophotometry. 

The difference of results between mass spectrometry and spectrophotometry is believed to be 

due to the effect of pH on NCL rate since the pH of two sets of experiments was slightly 

different. The MS experiments were done early in the project with less pH control. The MPAA 

stock was not prepared fresh for the MS experiment and the pH paper that was used to adjust 
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pH  of MPAA and TCEP to 7 was less accurate (pH paper 1-14) compared to the 

spectrophotometry experiment. MPAA is soluble in water in pH 7 so the pH of the stock 

solution should be adjusted to pH 7 by adding NaOH. Using more accurate pH paper 6.4- 8 for 

that solution showed higher pH (maximum 0.6 differences).  

As mentioned above, the rate of NCL is affected by the pH of the ligation solution since the rate 

of thiol-thioester exchange and hydrolysis for thioester is pH-dependent.51, 63 For the MS 

experiment, using higher concentration of MPAA could increase the pH of the ligation solution 

more than similar solutions used in UV-Vis experiment.  For example, the observed pH of the 

ligation solution was 7.6 using 300 mM of not fresh MPAA. Therefore, the concentration of OH-  

could be 4 times more in that ligation solution. More OH-  could lead to increase of base 

hydrolysis of thioester group of the protein via the reaction below:  

      
   

→             

Consequently, the decrease of thioester reactant leads to lower yield like what was observed in 

mass results using 100-300 mM MPAA.  Moreover, the increase of pH for example from 7 to 7.6 

can result in increase of the MPAA anionic form by a factor of 4 based on the Hendersson- 

Hasselbach equation (pka MPAA= 6.6): 

pH = pka + log  
[   ]

[  ]
 

The active form of MPAA in NCL reaction is the anionic form and its concentration can increase 

in higher pH. 52  Therefore, the competition of MPAA with PNA could be even more in this 

situation.  

Therefore, even slight difference in pH adjustment may decrease the amount of active thioester 

and increasing the competition of MPAA and PNA, leading to the reduction of mTFP-PNA yield 

in a fixed time (Ms data, Fig 2.4). A full exploration of the effects of pH was beyond the scope of 

the current study.    
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2.4 Conclusion and outlook 

In this chapter, expressed protein ligation as a semisynthetic version of native chemical ligation 

provided a site-specific and facile conjugation of fluorescent protein bearing C-terminal 

thioester to N-terminal thiol group of PNA.  

Four different fluorescent proteins: mTFP, mYFP, mKate and mCFP with thioester group at C 

terminus were successfully expressed and purified using molecular biology techniques. Mass 

spectrometry and SDS-PAGE analysis confirmed the purity of the final FPs. Among those 

purified FPs, mTFP was chosen for further study because of its greater brightness and 

photostability compared to mCFP, mYFP, and mKate and its good characteristic to be a donor in 

a FRET pair.  

The ratios of PNA, MPAA and TCEP were optimized for the ligation and the trace of the second 

PNA attached to the final mTFP-PNA product was removed using TCEP. The conjugation was 

assessed by mass spectrometry and spectrophotometry and showed complete conversion of FP 

to ligated form. The reaction rate (k) of the ligation of 4:1 ratio of PNA:mTFP in the presence of 

MPAA (50 mM) and TCEP (70 mM) at pH 7 and room temperature was estimated as 

0.026±0.003 min-1.  

It was shown that EPL as a chemo-selective ligation strategy could enable the production of FP-

PNA conjugates for potential use as self-assembly units. These units can be used as models of  

protein aggregation through specific recognition of PNA for DNA frameworks. Fluorescent 

proteins can be fused to proteins of interest via cloning methods allowing the progress of 

assembly to be measured. Together with EPL, FPs and PNA can provide a framework of self-

assembling units to study aggregation using model systems.                 

2.5 Experimental part 

All reagents unless specifically noted were purchased from Sigma-Aldrich. 
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2.5.1 Protein expression and purification 

The fluorescent proteins including monomeric teal fluorescent protein (mTFP) , monomeric 

yellow fluorescent protein (mYFP), mCherry, monomeric green fluorescent protein (mGFP), 

mKate and monomeric cyan fluorescent protein (mCFP) modified plasmids  were generated in 

the group of Prof. Brunsveld 64 (University of Eindhoven, Netherlands, especial thanks to H. D. 

Nguyen and D. T. Dang for plasmid pHT581 and help with protein expression) using IMPACTTM 

system (New England Biolabs (NEB), USA)  to express and purify thioesters linked to 

recombinant proteins via intein-mediated cleavage and an affinity based chitin binding domain 

purification tag (Scheme 2.4).    

 

Scheme 2.4: C-Terminal thioester introduced at the end of the protein using intein modified IMPACT 
TM

system 

(NEB). 

The modified plasmids were transformed into competent E. coli BL21 cells. The recombinant 

plasmids expressed FP-modified intein-chitin binding domain protein constructs.  

For expression experiments, 2 litre LB (lysogeny broth) media containing ampicillin (100 µg/ml) 

were inoculated with 20 ml of overnight (18 hrs) grown culture for each plasmid. The cultures 
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were grown at 37 ˚C at 200 rpm shaking for 2-3 hours. When the OD600 reached between 0.5-

0.7, the protein expression was induced with 500 µl IPTG (Isopropyl β-D-1-

thiogalactopyranoside) (1M) and incubated at 15 ˚C, 180 rpm overnight. Cells were harvested 

by centrifugation at 10000 g, 4 ˚C for 10 min to collect the cell pellets. The pellets were 

resuspended in 40 ml Bugbuster ( Novagen, Germany) reagent and 40µl Benzonase (25 unit/ml) 

(Novagen, Germany) with several times vortexing. The cell suspension was incubated on a 

shaking platform for 20 min at room temperature. The insoluble cell debris was removed by 

centrifugation at 40000g for 40 min at 4˚C. The clear supernatant was collected for protein 

purification with chitin beads (New England Biolab, UK). 

Four mililitre of chitin resin (New England Biolabs) was transferred to a 10 ml disposable 

chromatography column (Biorad) and equilibrated with 10 volumes of washing buffer (Na2HPO4 

(19.3 mM), NaH2PO4 (25 mM), NaCl (500 mM), EDTA (0.5 mM) in distilled deionised water 

(ddH2O) , pH 7). Cleavage of  the C-terminal intein-tag on the fluorescent proteins was 

performed through incubation of loaded proteins with 20 ml elution buffer (Na2HPO4 (23.2 

mM), NaH2PO4 (25mM), NaCl (100mM), EDTA (0.5 mM), MESNA (400 mM) in ddH2O, pH 7.5) 

overnight in the dark with slow shaking at room temperature. MESNA elution buffer was always 

prepared fresh immediately before use. Afterwards, the proteins were eluted from the column 

with another 20 ml of elution buffer and washed with two column volumes of storage buffer 

(Na2HPO4 (19.3 mM), NaH2PO4 (25mM), NaCl (50 mM), EDTA 0.1 mM, in ddH2O pH 7). The 

collected proteins were concentrated by centrifuging several times at 3700 g for 10-16 min to 

remove the MESNA and stored at -80˚C. The chitin beads were regenerated by washing with 3 

column volumes of 0.3 M NaOH solution and soaking with that for 30 min at room 

temperature. The sodium hydroxide then was removed by washing with 20 column volumes of 

distilled water and 5 column volumes of 20% ethanol. The regenerated chitin beads then were 

stored at 4 ˚C.  

The purified protein was checked on a sodium dodecyl sulfate (SDS)-PAGE gel (12% resolving 

polyacrylamide gel and 5% stacking gel). The resulting mTFP and mKate were further purified 
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using His tag affinity column chromatography. To prepare the Ni-NTA resin, it was washed with 

2-3 column volumes of distilled water. About 20 ml nickel sulphate solution (50 mM) was added 

to the column followed by washing with distilled water and His-tag buffer (Na2HPO4 (19.3 mM), 

NaH2PO4 (25 mM), NaCl (50 mM), EDTA (0.1 mM), imidazole (20 mM) in ddH2O, pH 7). After 

adding protein, the column was washed again with 10 ml of His-tag washing buffer and the 

proteins eluted using 4 ml His-tag elution buffer (Na2HPO4 (19.3 mM), NaH2PO4 (25 mM), NaCl 

(50 mM), EDTA (0.1 mM), imidazole (250 mM) in ddH2O, pH 7). The His-tag elution and washing 

buffers with imidazole were made fresh. The final concentration of purified proteins was 

determined by UV-visible spectrophotometer at 280 nm (Perkin Elmer, Lambda 25). 

2.5.1.1 SDS-PAGE electrophoresis  

10 µl of each sample containing 10 µM of purified protein was heated at 90◦C for 5 min and 

mixed with 10µl of SDS sample loading buffer (Biorad). The denatured protein was applied to a 

precast acrylamide gel (Biorad)(12% resolving polyacrylamide gel and 5% stacking gel) and the 

electrophoresis was run in premixed Tris/Glycine/SDS Running Buffer (Biorad) for 70 min at 100 

V. The gels were stained with  Coomassie Briliant Blue (Sigma) was used. 

2.5.2 PNA- Protein ligation 

Ligation reactions were run on a 100 µl scale using a 4-fold excess of PNA ((Cys-

ACGTAC)(Advanced Peptides, USA). Solutions containing 100 µM mTFP in storage buffer 

(Na2HPO4 (19.3 mM), NaH2PO4 (25mM), NaCl (50mM), EDTA (0.1 mM), in ddH2O, pH 7), 400 µM 

PNA1 (ACGTAC), 50 mM MPAA as a catalyst, and 70 mM aqueous TCEP (pH 7) as a reducing 

agent  were incubated at room temperature for 60 min. These conditions were chosen after 

optimising the effects of MPAA (0-300 mM), PNA (400, 600, and 700 µM) and incubation time 

(20-485 min and overnight) on the ligation reaction while other conditions were maintained 

constant. 
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Isolation of the product from the remaining reactants was performed using centrifugal filter 

tubes (Amicon 10000 MW, Millipore) at 13000 rpm. The retained portion was resuspended in 

70 mM TCEP, incubated, and centrifuged several times to remove any second PNA attached via 

a disulphide bond generated at the ligation site. The mTFP-PNA conjugate was subsequently 

stored at 4˚C (short times) or -20˚C (long term storage).  

The effect of other thiol catalysts (such as MESNA) and DTE as a reducing agent were 

investigated using the same conditions and for 8, 24 and 48 hrs reaction time.  

The ligation results of each experiment were investigated by MALDI-TOF mass spectrometry 

and UV.Vis spectrophotometry.  

2.5.2.1 MALDI-TOF Mass spectrometry analysis  

Ligation samples were desalted using C18 Ziptip (Millipore) and the dried-droplet method with 

1 µl of sample with 1µl of sinapinic acid (Bruker) matrix put on the sample plate spot. The mass 

spectrometry analysis was performed using Bruker Ultraflex lll MALDI TOF/TOF system. The 

Bruker flexAnalysis software was used for analysis of the data. 

2.5.2.1.1 C18 ZipTip Protocol  

The ZipTip protocol consists of three steps. In the first step, the C18 Ziptip was washed  3 times 

with 10 L of acetonitrile followed by  3 washes with 80% acetonitrile/0.1% TFA and 4 times 

with 0.1% TFA. In the second step, samples were bound to the tip by 20 times cycling (aspirate-

dispense-aspirate-dispense) of 2-10 L of sample followed by 3-4 washes with 10 L 0.1% TFA 

to remove salts. In the final step, the sample was eluted from the Ziptip  with 1.5-5L of 80% 

acetonitrile/0.1% TFA  to use for MALDI –TOF analysis (Bruker Ultraflex III MALDI TOF/TOF).    
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2.5.2.2 UV-Vis Spectrophotometry  

Ligation samples incubated for 20-485 minutes were diluted after purification and their 

absorbance at 260 nm measured to estimate PNA concentration. Pure mTFP or mYFP 

absorbance at 260 nm was measured and subtracted from the mTFP-PNA and mYFP-PNA 

absorbance. The absorbance of the supernatant containing the unreacted PNA was also 

measured. The extinction coefficient of the PNA was estimated based on the published values 

for the molar extinction coefficients of PNA bases. Following this method the overall extinction 

coefficient is the sum of the individual absorbances from the bases comprising the oligomer : 

     ∑   
 
     

Where εi is the molar extinction coefficient of ith base at 260 nm (ε260 (A) =13.7, ε260 (G) = 11.7, 

ε260 (C) = 6.6, ε260 (T) = 8.6 mL/(μmole x cm), obtained from PANAGENE) and n is the number of 

PNA bases. 
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Chapter 3 

Induced assembly of fluorescent protein-PNA conjugates using DNA as 

a framework 

The prominent role of protein clustering in biological processes such as signal transduction has 

been widely studied. Some aspects of protein behavior in clusters are still unclear. Further 

effort in this area is vital for understanding the mechanism of disease. For example, membrane 

protein clustering behavior is thought to be involved in the conversion of cells to a cancerous 

state. Developing a model system for studying protein clustering could be useful in elucidating 

the role of protein aggregation in cells. As described in previous chapters, PNA can provide 

unique functionality to controllably direct the assembly of proteins. In chapter 2, PNA was 

conjugated to mTFP to provide a fluorescent monomer which could be inducibly assembled and 

studied by fluorescent techniques. In this chapter, DNA scaffolds are shown to programmably 

align FP-PNA conjugates to create hetero-FRET or homo-FRET systems. Directed assembly on a 

DNA beacon with 6-FAM and Dabcyl at its ends, creates an assembled hetero-FRET system with 

the mTFP-PNA conjugate. Using fluorescence techniques such as intensity, frequency domain 

lifetime and anisotropy measurements, the assembled system exhibited decreased donor 

intensity, changes in frequency domain lifetime, and increased anisotropy as indicators of 

hetero-FRET. Using a DNA scaffold allowed for the assembly of multiple mTFP-PNA constructs 

exhibiting homo-FRET. Efficient assembly of protein in dimers and oligomers forms on the DNA-

PNA frameworks was confirmed with size exclusion chromatography (SEC) and SDS-PAGE. 

Assembly of multiple proteins in a row induced homo-FRET among the mTFP-PNAs assembled 

on the DNA scaffolds. The PNA directed assembly on DNA provides an induced and controllable 

model system of protein clustering suitable for studying protein behavior. 
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3.1 Introduction 

Previous chapters have discussed the need for getting control over protein assembly. Template 

directed assembly would allow a connection to be made between protein aggregation and the 

crucial functionality of aggregates in vital biological processes. This could assist in 

understanding and targeting dysfunctional aggregation associated with a variety of diseases 

including cancers and neurodegenerative disorders. 1-14 

The ability of nucleic acid to controllably self-assemble supramolecular architectures can 

provide a versatile tool to study protein function and structure.15, 16 PNA with its flexible 

chemistry and biological robustness has been applied as an oligonucleotide tag to be organized 

into microarrays by self-assembling on a DNA platform.15-21 Additionally, it has been reported 

that PNA could be successfully used to self-assemble carbohydrate ligands, receptor ligands and 

antibody fragments in programmed dimeric or multimereic complexes. 16, 22-25    

Clustering of receptors along the cell membrane is a fundamental feature of signal transduction 

and cellular recognition.24, 26, 27 Insight into the behavior of cell-membrane receptors in clusters 

can be achieved by a study of a model of controllable, well-organized and assembled protein 

oligomers. In this chapter, the FP-PNA conjugates prepared by NCL  (Chapter 2) will be used as  

building blocks to assemble in dimer and oligomer forms using DNA scaffolds as frameworks. 

The first model system consisted of a PNA-fluorescent protein (FP) conjugate hybridized to a 

DNA beacon with a quencher and a fluorophore at its ends, proving the principle of PNA 

directed inducible assembly (Scheme 3.1). A second model system was engineered consisting of 

DNA strands containing repeating motifs complementary to the PNA sequence on a fluorescent 

protein. Such a system will exhibit homo-FRET on assembly and could in theory assemble any 

number of engineered building blocks (Scheme 3.2).  
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Scheme 3.1: DNA beacon structure in closed and open forms (top) and chemical structures of 6-FAM (Life 

Technologies) and 3’-dabcyl (Gene Link 
TM

) (bottom). In the assembled system hetero-FRET can occur from mTFP to 

either the 6-FAM or the Dabcyl group in DNA beacon. 
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Scheme 3.2: Assembly of mTFP-PNA in tetramer form using DNA2 as a framework. Shorter or longer strands may 

be used to assemble dimer, trimer & higher oligomers.  

3.1.1 DNA beacon 

NCL and EPL allow specific PNA sequences to be attached to peptides and proteins (Chapter 2). 

Assembly of the ligated molecules can be induced by combining with complementary PNA or 

DNA oligonucleotides. One framework for monitoring assembly is with the assistance of a 

molecular beacon (Scheme3.1). 

Molecular beacons have been widely used for biomolecular recognition in biology, chemistry, 

medical sciences and biotechnology since they were reported in 1996.28 A molecular beacon is 

a synthetic DNA molecule with a basic stem-loop or hairpin structure. The loop sequence 

consists of a 15-30 base oligonucleotide complementary to a target sequence while the 5-7 

base stem sequence is complementary to itself in the closed state. A fluorophore donor is 

covalently attached to one end and the other end has an acceptor/quencher. The donor and 

acceptor are in close proximity when the stem region is in its closed form. For donor-quencher 

molecular beacons the system is thought to quench fluorophore via static quenching.28 In the 

presence of target sequences, the longer and more stable target–loop hybrid is formed leading 

FRET FRET FRET 
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to a conformational change to an open form. Due to a longer distance between fluorophore 

and quencher, the fluorescence signal of the beacon becomes observable indicating target 

binding. 29, 30 Choosing an appropriate fluorophore-quencher pair is an important part in 

designing a DNA beacon to reduce the background fluorescence of the beacon in the absence 

of target. Another concern is the selection of the nucleotide base positioned adjacent to the 

fluorophore due to quenching by the nucleotide. The most strongly quenching base is 

guanidine followed by adenosine, cytidine and thymidine. The electron donating capability of 

guanidine is responsible for its quenching properties, which allows for charge transfer to the 

flourophore. Therefore, the sequence of the stem region has to be designed carefully in terms 

of neighboring nucleotide and stability.28  

A variety of different molecular beacons based on chimeric DNA-PNA and purely PNA beacons 

have been reported to provide stronger binding to templates.31, 32 Molecular beacons have the 

ability to detect targets in living cells. Fluorescence resonance energy transfer (FRET) has been 

studied in a DNA beacon.30 FRET was demonstrated between fluorophores of two beacons 

when they hybridized to adjacent regions on a target or between two dyes coupling at the ends 

of a similar beacon in its closed form.28, 29  

3.1.2 Fluorescence resonance energy transfer (FRET) 

An assembly induced by hybridization with a beacon or fluorescently labeled protein can be 

studied using fluorescent methods and FRET. Fluorescence occurs when excited state electrons 

return to the ground state with emission of light at a longer wavelength.33 Fluorescence is one 

of the most sensitive spectroscopic methods and can be used down to the single molecule 

level. This sensitivity is much lower than NMR, EPR, CD and many other spectroscopic 

techniques. The fluorescence signal provides a variety of information such as intensity, lifetime, 

rotational diffusion (polarization and anisotropy) and energy (wavelength). These parameters 

allow the study of molecular structure, environment and proximity.34, 35 Moreover, fluorescence 

is a nondestructive phenomenon allowing kinetic studies by measuring the signal changes as a 

function of time.36 Excitation energy is sometimes transferred from one fluorophore to another 
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through resonance energy transfer.37, 38 The efficiency of energy transfer depends on the 

distance between two fluorophores (1-10nm), the relative orientation of the transition dipoles 

and overlap of their spectra.39, 40  

FRET is often observed via reduction of donor emission intensity or lifetime and sensitized 

acceptor emission. Measuring acceptor intensity increase is more difficult because of the 

overlap of donor emission spectra. A review of FRET methods with an extensive discussion is 

available in Jares-Erijman and Jovin.35, 41 

FRET is most often implemented in donor-acceptor hetero-systems. When donor and acceptor 

are the same, FRET still happens and is called homo-FRET. In this case, the best way to assess 

energy transfer is by reduction of the fluorescence anisotropy of the emitted light.42-44 Due to 

the nonradiative nature of FRET, it is a powerful tool to study protein dynamics and protein-

protein interaction in physiological conditions. FRET measurements are now being performed in 

vivo using fluorescent proteins fused to other proteins or domains. The development of 

analytical methods and instrumentation is on-going particularly in the case of homo-FRET. FRET 

can be applied to measure the aggregation of plasma membrane proteins in living cells. 

Moreover, the extent of FRET (and its reversibility) can be assessed as a function of time, thus 

revealing the dynamics of donor and acceptor proximity.41, 42, 45, 46  

3.1.3 Fluorescence anisotropy  

Aggregation of like molecules, such as might be expected from induced protein assembly, 

leaves a FRET signature which can be assessed with fluorescent anisotropy measurements. 

Normally, anisotropy measurements provide information on the shape and size of proteins or 

the rigidity of the different molecular environments.33 The basis of anisotropy measurements is 

photoselective excitation of fluorophores by polarized light. Preferentially, photons whose 

electric vectors are aligned parallel to the transition moment of the fluorophore are absorbed. 

In the absence of motion or homo-FRET, when fluorophores are excited with the polarized light 

they will emit light which is polarized with respect to the polarization of the incoming beam. 
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The maximum fluorescence anisotropy (r) is determined by the relative angles between 

excitation and emission dipole moments of the molecule. Fluorescence anisotropy is measured 

by assessing the intensity of fluorescence through polarizers oriented parallel (Ill) and 

perpendicular (I┴) to the excitation light.33 

 

Due to the fact that molecules are moving in a solution, the polarized emission light direction is 

different from the excited light. A large protein molecule moves slowly in the solution and if 

another molecule binds to that protein a more stable complex is generated which moves even 

slower and further increases the polarization of the emission light.33 Another reason to increase 

anisotropy of a donor is hetero-FRET which happens between two different fluorophores. In 

this event, the time that the donor spends in the excited state is decreased relative to its 

rotational motion resulting in an increase of donor anisotropy.47  

When homo-FRET occurs, the fluorescence emission of randomly oriented dyes becomes 

depolarized relative to the linearly polarized excitation light. Due to the reversible energy 

transfer among similar dyes in homo-FRET, the fluorescence emission is not completely 

depolarized since it contains contributions from both acceptor and donor (Scheme 3.3). The 

total reduction of anisotropy in homo-FRET depends on the number of participating dyes and 

their relative orientation. This effect may enable cluster size quantification by measuring the 

degree of depolarization.48, 49    

[3.1] 
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Scheme 3.3: Graphical depiction of homo-FRET principle. a) The overlap between the absorption and emission 

spectra of a single type of fluorophore results in  homo-FRET. b) In randomly oriented dimeric forms, the same 

fluorophore acts as both donor and acceptor in homo-FRET resulting in the reversible energy transfer which give 

rise to the donor emission with a polarization parallel to the original excitation light polarization direction. 

Therefore, when homo-FRET occurs the final emitted fluorescence is not completely depolarized since it consists of 

both direct donor emission and sensitized acceptor emission. Homo-FRET depolarization increase with the number 

of participating fluorophores (the left arrow is related to the polarized excitation light direction and the right 

vertical and horizontal arrows are respectively related to I ǁ and I┴ (eqn 3.1).
48

 

3.1.4 Fluorescence lifetime   

Detecting FRET through fluorescence intensity methods leads to uncertain interpretation such 

as detector noise effects, autofluorescence, photobleaching and spectral bleedthrough. As a 

result fluorescence lifetime methods are preferred.50 Fluorescence lifetime can be assessed by 

the complementary time domain and frequency domain techniques. In the time domain, a 

fluorophore is excited with a series of short light pulses and the resulting fluorescence emission 

is recorded as a function of time.51 In the frequency domain technique, the fluorophore is 

excited with a sinusoidally modulated light source and the lifetime measurement relies on 

assessing the phase shift and modulation depth of the fluorescence emission. The modulation 

depth and phase shift of the emission light can be extracted from intensity images using Fourier 

methods or sinusoidal fitting procedures.52-55  
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Polar coordinate methods (AB-plots, Phasors, etc. ) aid in the analysis and visualization of 

frequency domain lifetime data in terms of two and three component models.56 Via this 

method, the phase and modulation become linear functions of species population. This has led 

to the development of global analysis algorithms for frequency domain FLIM (Fluorescence 

lifetime imaging microscopy) data.44, 53, 55, 57-59   

3.2 Results and Discussion 

3.2.1 Size exclusion HPLC analysis of mTFP-PNA assembly on DNA scaffolds 

To test the capability of model system to assemble mTFP-PNAs, a DNA beacon (Scheme 3.1), 

DNA1 and DNA 2 (Scheme 3.2) containing two and four complementary parts for mTFP-PNA 

monomer were chosen as frameworks for directed assembly.  

SDS-PAGE analysis of mTFP-PNA assemblies on DNA1 and DNA2 was performed as described in 

section 3.5. Since the samples were heated before applying the sample to the gel in SDS-PAGE 

analysis, part of the mTFP-PNA:DNA complex became unhybridized. As a result, three distinct 

bands at 29, 33 and 62 kDa were observed in SDS-PAGE analysis of 2:1 ratio of mTFP-PNA:DNA1 

due to the presence of mTFP-PNA monomer, monomer:DNA1 and dimer:DNA1, respectively 

(Fig 3.1).  

 

 

 

 

Figure 3.1: SDS-PAGE results for mTFP-PNA dimer. The bands at 29, 33, and 62 kDa, respectively, related to : a) 

monomer, b) DNA1: monomer, c) DNA1: dimer(left) and standard protein ladder (right). 
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Similarly, five distinct bands at 29, 40, 70, 99 and 129 kD, related to mTFP-PNA monomer, 

monomer:DNA2, dimer:DNA2, trimer:DNA2 and tetramer:DNA2 were observed in solution 

featuring 4:1 ratio of mTFP-PNA: DNA2 indicating oligomer assembly (Fig 3.2).  

 

 

 

 

 

Figure 3.2: SDS-PAGE results for mTFP-PNA tetramer. The bands at 29, 40, 70, 99 and 129 kDa respectively related 

to: a) monomer, b) monomer:DNA2, c) dimer:DNA2, d) trimer:DNA2 and e) tetramer:DNA2 (left) and standard 

protein ladder (right). 

The SEC-HPLC analysis was calibrated against a molecular weight standard (Fig 3.3). A single 

peak (8.7min) was observed for mTFP-PNA at 462 nm (maximum absorption of mTFP) and 214 

nm (general absorption of all components), in line with the expected molecular mass of a 

monomeric construct. After adding the DNA beacon to mTFP-PNA solution, a single peak was 

observed at 492 nm (maximum absorption of 6-FAM) at the same elution time for monomer, 

showing the hybridization of DNA beacon to mTFP-PNA. 
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Figure 3.3: SEC-HPLC calibration curve based on the protein standard marker containing Cytochrome c (12.4 kDa), 

Carbonic Anhydrase (29 kDa), Bovine serum albumin (66 kDa), and Alcohol dehydrogenase (150 kDa).  

Efficient formation of assembled mTFP-PNA dimer on DNA1 scaffold was confirmed by the 

appearance of a new single peak at 8.3 min (predicted to be 8.4 min based on SEC-HPLC 

calibration curve, Fig 3.3) in the solution of a 2:1 ratio of  mTFP-PNA:DNA1 (Fig 3.4). 
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Figure 3.4: SEC–HPLC chromatograms of mTFP-PNA (red line, peak at 8.7 min) and mTFP-PNA-DNA1(blue line, peak 

at 8.3 min related to DNA1:dimer). 

A chromatogram of the solution featuring a 4:1 ratio of mTFP-PNA:DNA2 showed an additional 

peak at 7.5 min (predicted to be 7.2 min based on SEC-HPLC calibration curve, Fig 3.3) related 

to the formation of an assembled mTFP-PNA tetramer (Fig 3.5).  
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Figure 3.5: SEC–HPLC chromatograms of mTFP-PNA (red line, peak at 8.7 min) and mTFP-PNA:DNA2 (blue line, 

peak at 7.5 and 8.4 min related to tetramer:DNA2 and dimer:DNA2 , respectively.) .  

A gradual decrease of the mTFP-PNA monomer (8.7 min) was observed on titration of DNA2 

with increasing amounts of mTFP-PNA monomer (Fig 3.6). At a 4:1 ratio of mTFP-PNA to DNA2, 

the monomer peak reached zero with a concomitant increase in assembled protein tetramer  

(7.5 min). The complete disappearance of the monomeric form of mTFP-PNA upon addition of 

DNA shows that the assembly proceeded very efficiently. Also, the peak related to unbound 

DNA2 (12 min) could be observed after addition of excess DNA2 to the solution.  
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Figure 3.6:  SEC analysis of showing the increase of the tetramer peak (7.5 min ) and decrease of the monomer 

peak (8.7 min ) monitored at 462 nm while titrating DNA2 (0.62 µM) with mTFP-PNA (0.62-2.5 µM). 

3.2.2 Hetero-FRET occurrence after hybridization of PNA-mTFP to DNA beacon  

A hetero-FRET system was developed based on the hybridization of mTFP-PNA to a DNA beacon 

(Scheme 3.1). Due to quenching of 6-FAM by Dabcyl group, no fluorescence was observed from 

the closed form of the beacon. The beacon changed its conformation to the open form and 

emitted at 521 nm upon addition of mTFP-PNA or PNA2 (CAGTCA), each of which is 

complementary to the DNA beacon loop sequence (5`-TGCATGGTCAGT-3`). Three phenomena 

indicative of FRET were observed, including: 1) quenched donor emission; 2) frequency domain 

lifetime in the acceptor region exhibiting τø greater than τm; and 3) increased donor anisotropy. 

3.2.2.1 Intensity measurements  

DNA beacon (0-27 µM) was added to 2.5 µM of the mTFP-PNA solution. Due to energy transfer 

to the acceptors in the beacon (Fig 3.7), donor (mTFP-PNA) emission decreased by addition of 

DNA beacon.   

0

0.3

0.6

0.9

0 1 2 3

A
b
s
o
rb

a
n
c
e
 (

m
A

) 

Protein Conc. (µM) 



PNA-protein conjugates for nano scale modeling of protein aggregates 

[Pick the date] 

 

45 

 

 

Figure 3.7: Spectral overlap between mTFP emission and 6-FAM excitation as a FRET pair: solid black and grey 

peaks are related to normalized excitation and emission of mTFP (maximum at 462 and 492 nm, respectively), 

dashed and dotted peaks is related to normalized excitation and emission of 6-FAM, (maximum at 494 and 521 

nm, respectively) (spectra for 6-FAM from Life Technologies). 

The mTFP-PNA:DNA beacon assembly showed a 59±4 percent energy transfer over the range of 

490-510 nm relative to a control sample of unligated mTFP:DNA beacon in which the estimated 

distance between 6-FAM and mTFP chromophore was approximately about 4.4±0.1 nm. The 

control sample showed up to 40% intensity decrease (Fig 3.8). This decrease can be related to 

the inner filter effect 33 arising from highly colored solution seen with the highest beacon 

concentrations and quenching  by the Dabcyl group on mTFP or FAM (in 7 nm distance) in open 

form (R0: 4.7 nm 42).    

No inner filter effects were observed with dilute solutions (e.g.: 2.7 µM DNA beacon). The 

correction of energy transfer efficiencies (eqn 3.3, Experimental part) has been done by 

computing relative to the control solutions of mTFP:beacon.  
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Figure 3.8: Energy transfer efficiency (59±4 percent  across 490-510 nm wavelength range) between donor (mTFP) 

and acceptor (6-FAM) in the hetero-FRET system produced after hybridization of mTFP-PNA to DNA beacon 

obtained by intensity measurments.  

3.2.2.2 Lifetime measurements 

The mTFP-PNA:Beacon:PNA2 system exhibited changes in frequency domain lifetime 

characteristics upon assembly (Fig 3.5). In the absence of DNA Beacon, mTFP-PNA exhibited a 

single component lifetime of 3.3 ns. Under conditions of high excess Beacon:PNA2, the system 

was dominated by free Beacon:PNA2 (2.4 ns). At near stoichiometric conditions, the acceptor 6-

FAM exhibited lifetime heterogeneity with  (3.1 ns) greater than m (2.5 ns). This behaviour is 

characteristic of FRET and results in the appearances of points outside the semi-circle of single 

component lifetimes in a polar plot (Fig 3.9).54, 60 These data are consistent with partial 

unfolding of the Beacon in the presence of PNA2 and with the production of an assembled 

system of mTFP-PNA:Beacon:PNA2 in which there is energy transfer from mTFP to 6-FAM.  
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Figure 3.9: Polar co-ordinate presentation of frequency domain lifetime measurements from mTFP-PNA: Beacon: 

PNA2 complexes. The data correspond to measurements dominated by  6-FAM (■). The position of the rhodamine 

6G standard is also shown (). Position (a) indicates the position of mTFP-PNA in the absence of added 

Beacon:PNA2 and corresponds 3.3 ns. Position (b) represents the position of a mixture of mTFP-PNA (2.5 M) and 

Beacon:PNA2 (2.7 M).  As the concentration of Beacon:PNA2 increases relative to mTFP-PNA the system follows 

the trajectory from (b) to (c). At point (c) the signal is dominated by Beacon:PNA2 (2.4 ns). The dotted arrow 

represents the expected path of a non-interacting mixture of mTFP-PNA and Beacon:PNA2. 

3.2.2.3 Anisotropy measurement of mTFP-PNA: DNA beacon assembly 

In the developed hetero-FRET system, the modification and assembly of mTFP-PNA resulted in a 

slight increase in fluorescence anisotropy of mTFP. The initial anisotropy of mTFP (0.32) 

increased to 0.33 after ligation to PNA. A further increase (0.35) was observed after subsequent 

hybridization to the DNA beacon.  The correlation times (eqn 3.8, Experimental part) calculated 

for mTFP-PNA1 (θ1) and mTFP-PNA1:DNA (27 µM DNA) (θ2) were 18 and 25 ns respectively, 

using experimentally determined average lifetimes and r0=0.39 from previous studies of 

fluorescent proteins. These estimated rotational correlation times are in the typical range of 

monomeric fluorescent FPs in buffer 33, 52. 
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The 36% increase of θ which was observed when mTFP-PNA (29567 Da) formed the mTFP-

PNA:Beacon assembly (37368 Da) was close to the 26% increase in mass. These results were 

interpreted as supporting the previous intensity and polar plot analyses which together proved 

the success of ligation and assembly strategy and the accessibility of assemblies to 

photophysical analysis.  

3.2.3 Homo-FRET system demonstrating dimer and oligomer assembly   

3.2.3.1 Anisotropy measurements of homo-FRET system 

Anisotropy changes of the system were studied by adding a range of DNA1 and DNA2 

concentration (0–2.5 μM) to 2.5 μM of mTFP-PNA. At a 1:1 ratio of mTFP-PNA to DNA1 and 

DNA2 (monomer:DNA), maximum anisotropy values of 0.34 (DNA1) and 0.36 (DNA2) were 

observed. In comparison with the observed anisotropy for free mTFP-PNA (0.32), these 

increases were consistent with a slight increase in the rotational correlation time of the larger 

assemblies and similar to the values obtained in the presence of DNA beacon. 

Adding DNA1 and DNA2 scaffolds to the mTFP-PNA system resulted in a decrease of measured 

anisotropy indicative of homo-FRET. Titration of mTFP-PNA with DNA1 showed a gradual 

decrease of anisotropy in comparison with mTFP-PNA:DNA1 monomer. At a 2:1 ratio of mTFP-

PNA to DNA1, a maximum decrease of 45% was observed which was close to the expected 50% 

reduction (eqn 3.7, Experimental part). Addition of more mTFP-PNA resulted in a gradual 

recovery of the anisotropy (Fig 3.10).   
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Figure 3. 10: Anisotropy changes of the DNA1-mTFP-PNA system after adding different concentration of DNA1 (0-

2.5 µM) to 2.5 µM mTFP-PNA ( a) 1.25 µM : DNA1-dimer and b) 2.5 µM: DNA1-monomer). 

On the DNA2 scaffold (Fig 3.10), a 15% decrease in anisotropy was observed with a 2:1 ratio of 

mTFP-PNA:DNA2. This value is significantly less than predicted by eqn 3.7, this could be because 

of the expected distance range (from 3.3-10 nm) between monomer units on four 

complementary binding locations on DNA2 scaffold and distribution of different species in 

solution.  The larger distances are outside 0.8 R0 42, 61 resulting in less change in anisotropy than 

seen in the DNA1 assembly. Similarly, at a 3:1 ratio of mTFP-PNA to DNA2 a 44% decrease was 

observed in the system. The lowest observed anisotropy (0.082 showing 77% decrease of 

anisotropy) with a 4:1 ratio mTFP-PNA to DNA2 was consistent with a tetramer. The resulting 

DNA directed tetramer assembly was in reasonable agreement with the predictions of eqn 3.7 

in Experimental part (Fig 3.11).  
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Figure 3.11: Anisotropy changes of the DNA2-mTFP-PNA system after adding different concentration of DNA2(0-

2.5 µM) to 2.5 µM  mTFP-PNA (a) 0.62 µM: DNA2-tetramer, b) 0.83 µM: DNa2-trimer, c) 1.25 µM: DNA2-dimer and 

d) 2.5 µM: DNA2-monomer). Assemblies illustrated at points a, b, and c represents the stoichiometry. The mixtures 

of assembled species at these locations are more complex. For example, the 2:1 species can exist in 3 forms and a 

randomly assembled system will include some amount of 1:1, 2:1, 3:1, and 4:1 species. 

The PNA-directed assemblies developed in this chapter can provide a well-defined scaffold for 

adjusting the number, distance and distribution of proteins in cluster forms. The current model 

system can be used to induce aggregation of proteins of interest such as membrane proteins by 

modifying them with fluorescent proteins as protein tags through cloning methods. The 

signature of protein assemblies could be traced by fluorescence measurements. As described in 

section 3.3, hetero- and homo-FRET permitted noninvasive detection and quantification of the 

protein clusters by measuring the intensity, lifetime, and anisotropy of the systems. The clear 

and readily interpreted photophysical properties of the assembled mTFP-PNA model system 

can provide a practical tool to investigate the behavior of protein clusters.  This may introduce a 

novel approach to control the nano scale spatial organization of cell-membrane proteins in 

living systems and to study the relevant consequences on cellular signaling mechanisms.  
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3.3 Conclusion and outlook 

 The FP-PNA units generated by NCL (Chapter 2) proved to be a good system for directed 

protein self-assembly demonstrating a new way to controllably induce and monitor protein 

assembly. The characteristics of PNA and the capability of studying this model system by FRET 

techniques provides a promising way to study protein assemblies in controlled conditions. The 

convenient formation of dimers and oligomers on DNA scaffolds was performed by the precise 

recognition capability of PNA to complementary DNA. The assemblies gave clear and readily 

interpreted photophysical signatures providing a practical tool to investigate the behavior of 

protein clusters. By fusing EPL enabled FPs to protein of interest, such as cell membrane 

proteins, control of both assembly and visualization is provided following addition of template 

to the PNA ligated proteins. Further work could readily extend this approach from homo dimers 

and oligomers to binary, ternary, and higher oligomer systems containing any number of 

different dyes or fluorescent proteins in precisely engineered arrangements.  

3.4 Experimental part 

3.4.1 Hybridization and assembly of mTFP-PNA with DNA 

A DNA beacon (6FAM5`ACAGCTGCATGGTCAGTGCTGT3`Dabcyl) (The Midland Certified Reagent 

Company, Inc, USA) was used to assemble mTFP-PNA. In the same way, two DNA sequences 

(DNA1:5`TGCATGGATCTGCATG3’) and (DNA2:5`TGCATGGATCTGCATGGATCTGCATGGATCTGCA- 

TG3`) (Life technologies corporation, USA) were used to make assembled mTFP-PNA dimers and 

tetramers, respectively. The titration of 1.25 µM mTFP-PNA with (1.25-2.5 µM) of DNA1, and 

0.62 µM mTFP-PNA with 0.62-2.5 µM DNA2 was carried out in phosphate buffer (100mM, NaCl 

200 mM, pH 7) with 2 hrs incubation at room temperature. The results were assessed by SDS-

PAGE electrophoresis and SEC-HPLC at (214 nm, 462 and 492 nm using phosphate buffer (150 

mM, pH 7) as mobile phase). The SEC-HPLC was carried out on a SRT SEC-150, 5µm, 

4.6x300mm; Chromex Scientific, UK) calibrated with molecular weight protein marker kit 12-

200 kDa (sigma). 
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3.4.2 Photophysical measurements  

A range of a DNA beacon concentrations (0-27 µM) were added to 2.5 µM mTFP-PNA solution 

and PNA2 (CAGTCA) (Advanced Peptide Inc., USA ). Similarly, varying concentration of DNA1 

and DNA2 (0-2.5 µM) were added to 2.5 µM mTFP-PNA and the emission intensity and 

anisotropy recorded between 480-530 nm (excitation at 462 nm) using a fluorimeter equipped 

with polarisers (Cary Eclipse; Varian). Energy transfer efficiency (E) can be measured based on 

eqn 3.2. R0 is the Förster distance in which the transfer efficiency E is 50% and r is the distance 

between fluorophores.33 

66

0
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R
E


                        [3.2] 

In a hetero-FRET system, the energy transfer efficiency can be measured by lifetimes or 

intensity,  
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Where 1 and 2 are respectively the lifetimes of donor in the absence and presence of the 

acceptor. Similarly, 1 and 2 are the intensities of the donor in the absence and presence of 

acceptor. Fluorescence lifetimes measurement were performed using a spectroscopic 

fluorescence lifetime imaging system operating in the frequency domain62 with rhodamine 6G 

as a lifetime reference.  

In case of frequency domain lifetime measurements, the measured phase, i and modulation, 

mi, may be presented in polar co-ordinates.  

[3.3] 
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)cos( iii mx                                                                                                                                   [3.4] 

)sin( iii my               [3.5] 

In polar co-ordinate analysis, the following equation gives the estimated fraction of mTFP-PNA 

in the hybridized form (α):   
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yyxx ii


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         [3.6] 

Where (x1, y1), ( x2, y2), and (xi, yi) are the coordinates in the absence of acceptor, the fully 

hybridized form, and mixture of free and hybridized forms, respectively. 

In homo-energy transfer, lifetime does not in general change therefore the fluorescence 

anisotropy can be used as a useful indicator of assembly. To a first approximation, the 

anisotropy can be estimated based on eqn 3.7 in which rmonomer and roligomer are the anisotropy 

of a fluorophore monomer and the anisotropy of oligomer of fluorophores undergoing homo-

FRET, respectively, and n is the number of fluorophores in the oligomer. 

monomer
oligomer

r
r

n
          [3.7] 

This equation can be used when the inter-fluorophore distance is < 0.8 R0. In more complicated 

systems, treatment of homo-FRET is more difficult since it can be affected by the cluster size, 

the orientation between fluorophores, and inter-fluorophore distances.61, 63  

An increase of molecular mass competes with homo-FRET induced depolarisation. This 

phenomenon can be estimated based on the Perrin equation:33, 64  
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Where r, r0, ,τ , and θ are measured and initial anisotropy of the system, fluorescence lifetime, 

and the rotational correlation time, respectively. The following equation indicates the 

dependency of rotational correlation time on viscosity, η, the molecular weight, M, the specific 

volume and hydration, h , the gas constant, R, and the temperature, T.   

 h
RT

M
 


           [3.9] 

Assuming all other parameters are equal (temperature, viscosity, etc.), the rotational 

correlation time scales with the mass showing that as mass increases, the measured r will 

approach r0.  
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Chapter 4 

Coupling of Purified SNAP protein with fluorescent PNA 

 

Gaining control over protein assembly holds promise for the investigation of protein 

aggregation. The useful properties of PNA and its sequence-specific recognition for DNA 

templates have been applied in previous chapters to create assembly units. Assembled units 

were produced via expressed protein ligation of fluorescent proteins with PNA and subsequent 

oligomerization induced using DNA templates to create FRET systems. Although fluorescent 

proteins have many unique characteristics which make them a powerful tool as imaging tags 

when fused to proteins, they have some limitations such as slow maturation and a tendency to 

form aggregates. A self-labeling moiety such as the SNAP-tag is another approach used widely 

to fuse to proteins of interest and study their behavior. This method has been adopted here 

based on ligation of PNA to SNAP protein. The ligation requires modification of PNA with O6-

benzyl guanine which is a specific substrate for SNAP. To create FRET systems, the modified 

PNA has been labeled with organic fluorophore. Successful modification of PNA with O6-benzyl 

guanine and fluorophore followed by rapid and selective coupling to SNAP protein has been 

demonstrated in this chapter for use in later studies of assembly.  
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4.1 Introduction 

During the last century, fundamental studies of proteins have been influenced significantly by 

chemical site specific labeling of protein with organic fluorophores and other biophysical 

probes.1 The labeling of purified proteins based on selective reactivity with cysteine and lysine 

residues in living cells is not as effective as in vitro due to the presence of various proteins and 

reactive species in the cell environment.2  

As mentioned in previous chapters, the application of FPs as selective, genetically encoded tags 

to study protein-protein interaction, protein localization and oligomerization has had major 

impact on live cell imaging progress. 3-9 In spite of the significant role of FPs in studies of cellular 

processes, they have limitations. The size of FPs (238 amino acid, ~30 kDa) can interfere with 

the assembly, function, and dynamic behavior of proteins.9-11 Although FPs with a broad range 

of absorption and emission spectra are available providing multicolour imaging of several 

proteins in a single cell 12, 13 they are not comparable with the wide variety of organic 

fluorophores in terms of photostability and the brightness. 10 The slow maturation of FPs and 

their tendency to form aggregates can restrict applications in more sophisticated biophysical 

studies in living cells.14, 15 

Recently, application of tag-mediated labeling methods has increased widely for studying 

protein dynamics, localization and trafficking in live cells.16-19 Therefore, more alternative 

approaches to label proteins of interest are via self-labeling and assemblies protein tags. One 

such approach could be via conjugation of PNA.  

A 15 amino-acid tetracysteine (TC) with the consensus sequence CCXXCC (X could be any amino 

acid but not cysteine) was the first peptide tag for specific protein labeling.20 TC binds 

specifically to membrane permeable bis-arsenical fluorescent compound such as FlAsH, a 

fluorescein derivative, or ReAsH, a resorufin derivative. The fluorescence of these dyes is 

switched on by binding to the TC tag.2, 21, 22 In similar approach, metal ion chelating 
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nitrilotriacetate (NTA) derivitives bind reversibly to oligohistidine tags on fusion proteins.23 This 

approach is also reported based on Zn2+ and lanthanide fluorophore complexes.24, 25 The 

limitations of these strategies are the cytotoxicity of high dose metal complexes and non-

specific binding to similar, non-target sequences.2 To overcome the specificity limitation of 

short peptide tags, the introduction of protein-based tags provides a simple, selective strategy 

to label target proteins with a protein receptor or enzyme followed by subsequent labeling to 

substrate-probe.10  

Self-labeling protein tags including Halo-tag,26 interacting with Halo ligand, SNAP tag and Clip 

tag 2, 27 interacting with benzylguanine/benzylcytosine derivatives are smaller than FPs. 10    

Moreover, subsequent modifications with organic fluorophores provide a vast array of colors 

with better photophysical properties and functionalities.28-30  

A 19-20 kDa SNAP-tag is available commercially based on mutation of the DNA repair protein 

O6-alkylguanine-DNA alkyltransferase (AGT). The labeling step involves the specific reaction of 

benzylguanine (BG) derivatives with a reactive cysteine residue of AGT leading to irreversible 

covalent linkage.2, 29-36 In vitro labeling of the SNAP-tag proceeds with a relatively fast reaction 

and 100% efficiency regardless of the fused protein attached.22, 27, 37 The large variety of BG 

derivatives available to use in different conjugation procedures and the specificity of their 

labeling are considerable advantages with this approach. Since the nature of the ligand 

attached to BG does not influence the rate of the SNAP-tag reaction with BG derivatives it 

allows labeling to a wide variety of synthetic probes. 16, 30, 38, 39 

The versatility and efficiency of the SNAP-tag labeling makes it a promising method to localize 

and study fusion protein behaviors in living systems. A number of in vitro and in vivo 

applications have been reported using SNAP-tag labeling including, localization and trafficking 

of the fusion protein in cell membranes, labeling of antibody fragments, designing a fluorescent 

biosensor, control of yeast transcription and visualization of metabolite signaling.40-47  



PNA-protein conjugates for nano scale modeling of protein aggregates 

 

 

75 
 

In the last stage of this project, purified SNAP protein was used to ligate a BG-PNA-dye 

conjugate (Scheme 4.1). Then a DNA template was used to assemble these units in dimer and 

oligomer form to generate an assembled FRET system (Chapter 5). The chemistry allowing the 

SNAP proteins to be modified with PNAs will be discussed in this chapter.  

 

 

 

 

 

 

 

 

Scheme 4.1: Coupling of BG-PNA-Atto dyes to SNAP protein by producing a thioether bond between the cysteine 

of SNAP and the benzyl linker of a modified construct.  

4.2 Results and Discussion 

To prepare a fluorescent SNAP-PNA conjugate, the first step is coupling PNA to O6-

benzylguanine (BG) derivatives for use as SNAP substrates. The resulting PNA-BG conjugate can 

be labeled with fluorescent dyes. 

Three PNA sequences with N-terminal cysteine and C-terminal lysine or aspartic acid residues 

(PNA1: Cys-O-ACGTAC-Lys, PNA2: Cys-O-ACGTAC-Asp and PNA3: Cys-O-CAATGA-Lys) were 

labeled firstly with BG derivatives and then with fluorescent dyes containing thiol-reactive and 

amine reactive groups. The Atto and Alexa dyes were selected and BG-PNA conjugates were 

labeled with Atto488, Atto532 and Alexa fluor488. This allows a SNAP protein to be labeled 

specifically with BG attached to a fluorescent PNA. After transferring the benzyl group of the BG 
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to a cysteine residue in the active site of the SNAP, fluorescent PNA is covalently conjugated to 

SNAP. This gives a handle for directed assembly and allows visualization of the protein.  

4.2.1 Labeling of PNA to BG substrates 

Two crosslinking approaches based on the reactivity of BG derivatives toward thiol and amine 

groups of PNAs were used. In the first approach (Scheme 4.2), a maleimide derivative of BG 

underwent an alkylation reaction with the thiol group of cysteine at the N-terminus of PNA1, 

PNA2 and PNA3 sequences (Cys-O-ACGTAC-Lys, Cys-O-ACGTAC-Asp and Cys-O-CAATGA-Lys) 

forming stable thioether bonds 48 in the presence of a reducing agent (TCEP ) at 4◦C overnight at 

pH 7.2.  

The specific reactivity of maleimide with thiol groups is optimal in the pH ranges 6.5-7.5. Above 

pH 7.5, maleimide begins to undergo hydrolysis and react with amine groups. Thiols tend to 

form disulfide bonds in the presence of oxygen. Therefore, a reducing agent such as DTT or 

TCEP restricts the formation of disulfide bonds.48 

 

 

 

 

 

Scheme 4.2: Conjugation of thiol group of cysteine residue of PNA to BG-maleimide. 

In the second strategy (Scheme 4.3), an N-hydroxysuccinimidyl (NHS-ester) derivative of BG was 

conjugated to the amine group of the C-terminal lysine residues of PNA1 (Cys-O-ACGTAC-Lys) 

and PNA3 (Cys-O -CAATGA-Lys). The carbonyl group of NHS ester undergoes a nucleophilic 

attack by the amine group of lysine followed by rapid leaving of the NHS group generating an 
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amide bond between BG and PNA. This reaction was run at pH 7.2 as both amine reactivity and 

hydrolysis of NHS ester increase above physiological pH 48. 

 

 

 

 

 

 

 

Scheme 4.3: Conjugation of amine group of lysine residue of PNA to BG-NHS ester derivative. 

The production of BG-PNA conjugates based on these strategies was investigated by MALDI-

TOF-MS and reverse phase HPLC (RP-HPLC). The data indicated that the reaction of BG with the 

thiol group of the PNA cysteine residue was more efficient than coupling using NHS-ester 

reactivity. The RP-HPLC showed a single peak for PNA1 at 24.32 min which is completely 

disappeared after conjugation to BG- maleimide, indicating complete conversion to PNA1-BG 

conjugated form in comparison to the 74% conversion using NHS-ester coupling.  

Mass spectrometry of conjugates showed peaks at 2492 Da (calculated: 2494 Da), 2479 Da 

(calculated: 2481 Da) and 2514 Da (calculated: 2516) related to BG-PNA1 (Fig 4.1a), BG-PNA2 

(Fig 4.1b) and BG-PNA3 (Fig 4.1c), respectively. 
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Figure 4.1a: Mass spectrometry data of BG-PNA1 conjugate at 2492 Da (calculated: 2494 Da) .  

 

Figure 4.1b: Mass spectrometry data of BG-PNA2 at 2479 Da (calculated: 2481 Da).  

 

 

 

 

[BG-PNA1+H]+ 

[PNA1+H]+ 

[BG-PNA2+H]+ 

[PNA2+H]+ 
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Figure 4.1c: Mass spectrometry data of BG-PNA3 at 2514 Da (calculated: 2516).  

The RP-HPLC results showed a distinct peak for each product of BG-PNAs (BG-PNA1 at 23.83 

min, BG-PNA2 at 23.74 min and BG-PNA3 at 23.8 min) and confirmed the purity of final BG-

PNA1 conjugate. The chromatograms of BG-PNA2 and BG-PNA3 showed that BG-PNA 

conjugates are dominant products and a small amount of contamination was observed (Fig 4. 

2). 

 

 

[BG-PNA3+H]+ 

[PNA3+H]+ 
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Figure 4.2: RP-HPLC chromatographs of BG-PNA1 at 23.83 min, BG-PNA2 at 23.74 min and BG-PNA3 at 23.8 min 

(from top to bottom). 
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4.2.2 Labeling of BG -PNA conjugates with fluorescent dyes 

The BG-PNAs produced in the previous section were subsequently labeled with fluorescent 

dyes. Due to their high photostability and brightness two Atto dyes (Atto488 ex: 501nm and 

em: 523nm and Atto532 ex: 532nm and em: 553nm) and Alexa fluor488 (ex: 493nm and em: 

517nm) were chosen to label BG–PNA conjugates. Labeling was carried out via NHS-esters (Atto 

dyes) and carboxyl reactive groups (Alexa fluor488)(Fig 4.3). 

 

 

 

 

  

 

 

Figure 4.3: Excitation (dashed lines) and emission (solid lines)Spectra and chemical structures of a)  Atto488 (ex: 

501nm and em: 523nm, Q(Quantum yield):80%, εmax (Max molar absorptivity):90000M-1cm-1, b) Atto532 (ex: 

532nm and em: 553nm, Q: 90%, εmax:115000 M
-1

cm
-1

) and c) Alexa fluor488 (ex: 493nm and em: 517nm, 

Quantum yield:92%, εmax:73000 M-1cm-1)(Data from ATTOTECH Gmbh, and Life Technologies) .  
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Atto488 and Atto532 were coupled to BG-PNA via reaction of the NHS group on the Atto dyes 

with the primary amine group of the C-terminal lysine of BG-PNA1 and BG-PNA3 conjugates 

forming a stable amide bond (Scheme 4.4). The reaction with NHS-ester derivative was 

performed in pH 7.2 at room temperature with 1 hour incubation in phosphate buffer in dark. 

 

 

 

 

 

 

 

Scheme 4.4: Conjugation of the amine group of the lysine residue at the C-terminus of BG-PNA1 to an Atto488-NHS 

ester derivative.  

Alexa flour488 hydrazide was used to label BG-PNA2 possessing an aspartic acid at the C-

terminus. The carboxylate group of aspartic acid was coupled using Alexa fluor488 hydrazide via 

a carbodiimide (EDC)–mediated reaction forming an amide linkage (Scheme 4.5). 48  
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Scheme 4.5: Conjugation of the carboxyl group of aspartic acid residue at C-terminal of BG-PNA2 to Alexa fluor488 

hydrazide mediated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC).  

Mass spectral analysis revealed peaks at 3066 Da (calculated: 3065 Da) and 3147 Da 

(calculated: 3148 Da) confirming the production of BG-PNA1-Atto488 and BG-PNA3-Atto532 

(Fig 4.4a and b) .  
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Figure 4.4a: Mass spectrometry data of BG-PNA1-Atto488 at 3066 Da (calculated: 3065 Da). 

 

Figure 4.4b: Mass spectrometry data of BG-PNA3-Atto532 at 3147 Da (calculated: 3148 Da). 

[BG-PNA1+H]+ 

[BG-PNA3-Atto532+H]+ 

[BG-PNA1-Atto488+H]+ 
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The RP-HPLC data showed complete conversion to BG-PNA- Atto conjugates by showing new 

distinct peaks at 23.78 and 23.74 min related to BG-PNA1-Atto488 and BG-PNA3-Atto532 

conjugates, respectively, in comparison with BG-PNA1 and BG-PNA3 at 501 nm and 532 nm (Fig 

4.5). 

 

Figure 4.5: RP-HPLC chromatograms of BG-PNA3-Atto532 (grey line) at 23.74 min compare to the same 

concentration of BG-PNA3 (black line) at 532 nm (top).BG-PNA1-Atto488 (grey line) at 23.78 min compared to the 

same concentration of BG-PNA1 (black line) at 501 nm (bottom)  
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Neither MALDI-TOF nor RP-HPLC indicated the production of BG-PNA2-Alexa fluor488. 

Therefore, BG-PNA1-Atto488 and BG-PNA3-Atto532 constructs were chosen to couple with 

SNAP protein.  

4.2.3 Coupling of BG-PNA-fluorophore to SNAP protein 

The coupling of BG-PNA-Atto constructs prepared in the previous section to SNAP was 

performed by mixing two equivalents of modified PNA1-BG-Atto488 and PNA3-BG-Atto532 

constructs with one equivalent SNAP in phosphate buffer pH 7.4 and incubated for 2hrs at 37◦C 

in dark. The reaction proceeded successfully with about 100% yield by producing a thioether 

bond between cysteine of SNAP and benzyl linker of modified constructs (Scheme 4.1). The final 

products were purified subsequently by dialysis to remove unreacted compounds.  

The fluorescent intensity measurements showed 1:1 ratio of PNA-Atto dyes was attached to 

SNAP with no significant changes or shift of Atto dye’s spectra (Fig 4.6). 

 

Fig 4.6: The normalized emission peak related to free Atto488 () and SNAP-PNA-Atto 488 (5µM)() after 

excitation at 501 nm (maximum emission at 521 nm). 
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MALDI-TOF confirmed the production of SNAP-PNA-Atto488 and SNAP-PNA-Atto532 conjugates 

at 22900 kDa (calculated: 22896 kDa) and 22980 kDa (calculated: 22976 kDa), respectively. 

However, because of the fragmentation behaviour of MALDI-TOF system, both peaks related to 

unconjugated and conjugated SNAPs were observed (Fig 4.7 a and b). 

 

Figure 4.7 a: Mass spectrometry data related to pure SNAP protein at 19830 kDa (calculated 19838 kDa) and SNAP-

PNA1-Atto488 at 22900 kDa (calculated: 22895 kDa). 

19831 

22901 

[SNAP+H]+ 
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Figure 4.7b: Mass spectrometry data related to pure SNAP protein at 19836 kDa (calculated 19838 kDa) and SNAP-

PNA3-Atto532 at 22980 kDa (calculated: 22975 kDa).  

The regular SDS-PAGE of SNAP-PNA-Atto dyes conjugates indicated almost complete conversion 

of SNAP protein to conjugated forms (Fig 4.8). 

 

Figure 4.8: SDS-PAGE results for SNAP-PNA-Atto conjugates. The bands related to purified SNAP, SNAP-PNA-

Atto488 and SNAP-PNA-Atto532conjugate at 20, 23 kDa, and 23 kDa, respectively.  
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SEC-HPLC data indicated a single peak related to the final products when observed at the 

maximum absorption wavelength of Atto 488 (ex 501 nm) for SNAP-PNA-Atto488 at 9.4 min 

and Atto 532 (ex 532nm) for SNAP-PNA-Atto532 at 9.44 min with similar elution time with 

purified SNAP at 9.37 nm (Fig 4.9). 

 

Figure 4.9: SEC-HPLC chromatograms of: a) SNAP-PNA-Atto532 conjugate (grey line) at 532 nm, peak at 9.4 min, 

insert: SDS-PAGE bands related to purified SNAP and SNAP-PNA-Atto532 conjugate at 20 and 23 kDa. b) SNAP-

PNA-Atto488 conjugate (grey line) at 501 nm , peak at 9.44 min.   
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The SEC-HPLC data showed that the higher ratio of construct to SNAP and longer incubation 

time did not have a strong effect on conjugation. However, performing the reaction at room 

temperature dramatically decreased the coupling efficiency (Fig 4.10 a and b).  

 

Figure 4.10: SEC-HPLC chromatograms of the SNAP-PNA-Atto488 conjugate at 501 nm: a) with different ratio of 

BG-PNA-Atto 488 concentration to SNAP, b) with different incubation time at 37 and 25 °C (room temperature).   
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SNAP-PNA-fluorophore (~23kDa) is smaller than FP-PNA (~29kDa) which may interfere less with 

SNAP-PNA-fluorophore conjugates allowing introduction of assembly directing moieties on any 

protein expressing the SNAP sequence. Such proteins can be subjected to template directed 

oligomerization similar to those described in Chapter 3. 

4.3 Conclusion and outlook 

In this chapter, the successful synthesis of modified PNAs with benzyl guanine (BG-PNA) and 

fluorescent dyes (BG-PNA-Atto) was shown. After applying different labeling approaches, BG 

was conjugated to PNA through the reaction of a BG maleimide derivative with a cysteine thiol 

residue on PNA with high efficiency. The resulting BG-PNA was labeled with NHS-EDC 

derivatives of Atto dyes (488 and 532). The mass spectrometry and RP-HPLC Data  confirmed 

the final product.  

The couplings of prepared constructs with SNAP were performed efficiently with high specificity 

and nearly complete conversion of SNAP to the conjugated form. SDS PAGE, SEC-HPLC, mass 

spectrometry and fluorescence anisotropy measurements (Chapter 5) all verified generation of 

the final conjugates.  

The SNAP-PNA conjugate was designed as a unit to assemble into dimer and higher oligomers 

via hybridization to a complementary DNA or PNA as a framework to provide homo- and 

hetero-FRET systems (Chapter 5). 
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4.4 Experimental Part 

4.4.1 Conjugation of BG to PNA 

4.4.1.1 Conjugation of BG maleimide to cysteine residue at the N-terminus of 

PNA 

The conjugation was run on a 500 µl scale using 1.5-fold excess of BG-maleimide (150µM) (New 

England Biolabs, USA). The conjugation solution was 100 µM of PNA (PANAGENE, USA) in 500 µl 

PBS buffer pH 7.2, 150µM freshly prepared BG-maleimide, and 1mM of TCEP (sigma-Alderich) 

as a reducing agent. The mixture incubated overnight at 4◦C.  

4.4.1.2 Conjugation of BG-NHS ester to lysine residue at the C-terminus of PNA 

Ten equivalents of freshly prepared BG-NHS ester (New England Biolabs, USA) (1mM) were 

added to 100 µM of PNA in 500 µl PBS buffer pH 7.2. The reaction solution was incubated 2hrs 

at room temperature with shaking. 

4.4.2 Conjugation of BG-PNA to fluorophore 

4.4.2.1 Coupling of Atto dyes (488 and 532) -NHS ester derivative to lysine 

residue at the C-terminus of BG-PNA 

Coupling reactions were carried out by adding approximately 10 equivalents of freshly prepared 

solutions of dye NHS-ester (1mM) (ATTO-TEC GmbH, Germany) to 200 µl of prepared BG-PNA 

conjugate in section 4.5.1.1. The reaction mixture then incubated at room temperature for 2hrs 

with shaking in the dark. 

4.4.2.2 Coupling of Alexa-fluor 488 hydrazide derivative to aspartic acid residue 

at the C-terminus of BG-PNA 

Approximately 5 equivalents of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) (Sigma-

Alderich) were combined with BG-PNA prepared previously in section 4.5.1.1 to a final volume 
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of 200 µl. The mixture was incubated for 30 min at room temperature to activate the free 

carboxyl group of aspartic acid at the C-terminus. Thereafter, 10 equivalents of freshly prepared 

Alexa-flour488 hydrazide (1mM) (Life technologies, UK) were added to the reaction solution 

and incubated for 2hrs at room temperature with shaking in the dark.  

4.4.3 Coupling of purified SNAP protein with BG-PNA-Atto 488 and 532 

constructs 

Coupling was run on a 200 µl scale using 2-fold excess of BG-PNA-Atto. The conjugation solution 

was 5 µM of purified SNAP protein (New England Biolab, USA) in 200 µl phosphate buffer pH 

7.4, 10 µM of the prepared BG-PNA-Atto 488 and 532, and 1 mM of TCEP as a reducing agent. 

The reaction mixture incubated for 2hrs at 37◦C in the dark. Afterwards, the final solution was 

purified by dialysis to remove unreacted compounds. These conditions were selected after 

evaluating the effects of temperature (37°C and room temperature (25°C)),2 and 3-fold excess 

of BG-PNA-Atto (10 µM and 15 µM) and different incubation times (2, 3, and 4 hrs) on the 

conjugation reaction while maintaining other conditions constant. 

4.4.4 Dialysis purification of SNAP-PNA-Atto constructs  

The dialysis tube (Avg. flat width 35 mm (1.4 in), 12000 Da MW) (Sigma-Aldrich) was boiled in 

10 mM bicarbonate buffer (pH 9) and rinsed with distilled deionized water. The dialysis was 

carried out twice at room temperature for 2-3 hrs each time and finally overnight at 4◦C. The 

final product was stored at -20◦C in the dark. 

4.4.5 SDS-PAGE electrophoresis of SNAP-PNA-Atto 488 and 532 conjugates  

SNAP-PNA-Atto488 and SNAP-PNA-Atto 532 conjugates samples (10 µM) were heated at 90◦C 

for 5 min and mixed with the same equivalent of SDS sample loading buffer (Biorad) on precast 

acrylamide gels (Biorad) (12% resolving polyacrylamide gel and 5% stacking gel). The 

electrophoresis ran for 70 min at 100 V. To stain the protein bands Briliant coomassie blue 

(Sigma-Alderich) was used. 
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4.4.6 MALDI-TOF mass spectrometry analysis  

MALDI-TOF mass spectrometry analysis was carried out as described in Chapter 2 after C18 zip-

tip preparation of samples. 

4.4.7 RP-HPLC of BG-PNA and BG-PNA-Atto 488 and 532 conjugates  

The RP-HPLC was performed using C18 reverse phase column eluted with flow rate 1ml/min by 

40 min linear gradient of Acetonitrile/0.1% TFA in H2O started at 10-90% . Eluted compounds 

were detected by absorbance. 

4.4.8 SEC-HPLC of SNAP-PNA-Atto 488 and SNAP-PNA-Atto 532 conjugates 

The SEC-HPLC analysis was carried out as described in Chapter 3. The detection wavelengths 

were 214, 501 (maximum absorption wavelength of Atto 488) and 532 nm (maximum 

absorption wavelength of Atto 532). 
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Chapter 5 

Hetero- and Homo-FRET systems created by assembly of fluorescent 

SNAP-PNA units in dimer and higher oligomer forms  

The SNAP protein is a widely used self-labelling tag that can be a used as an alternative or 

orthogonal group to FPs for tracking protein localization and trafficking in living systems. A 

model system providing controlled alignment of SNAP-tag units can provide a new way to study 

clustering of fusion proteins.  In chapter 3, the precise recognition characteristics of PNA for 

complementary DNA templates led to successful assembly of FP-PNA units in dimer and 

tetramer forms. In this chapter, the fluorescent SNAP-PNA constructs prepared in chapter 4 

were assembled to create dimer, trimer, and tetramer forms on different DNA scaffolds. Dimer 

forms were prepared based on template directed assembly of both homo- and hetero-dimers 

of SNAP-PNA constructs. Two longer DNA scaffolds were applied to provide inducible assembly 

of fluorescent SNAP-PNA constructs into higher oligomers. Size exclusion chromatography, SDS-

PAGE and fluorescence techniques confirmed the assembly formation. The results 

demonstrated the production of the assembled dimers and higher oligomers exhibiting hetero- 

and homo-FRET which can be used to study clustering behavior of other proteins attached to 

the SNAP-tag. Variations of this system are capable of directed assembly of non-fluorescent 

molecules which may allow study of downstream processes in cells.  
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5.1 Introduction 

The role of dimer and higher oligomer formation in the functionality of proteins remains an 

important question, especially in the case of cell membrane proteins.1 Biophysical tools helping 

to address this relationship would bring better understanding of the role of malfunctioning 

proteins in diseases and potentially aid in fighting those diseases.2  

In Chapters 2 and 3, the combination of protein bioconjugation techniques to produce protein-

PNA with identical programmability of DNA provided a controllable self-assembled FRET-system 

which was used successfully to investigate fluorescent proteins oligomerization. 

As stated in chapter 4, the self-labelling SNAP protein technology has been widely used to 

visualize and study protein localization, dynamics and trafficking in living cells.3-15 For example, 

the SNAP-tag approach has been recently used to address the oligomerization behavior of 

GPCRs. It showed the predominant assembly of mGlu receptors as a homodimer and the 

existence of homomers of the heteromeric GABAB receptors.1, 16, 17 The importance of these 

assemblies on the function of receptors is still under investigation. 

The high efficiency and specificity of this labelling technology combined with ease of use and 

speed of application makes it a promising platform to study proteins of interest. The SNAP 

technology makes accessible a wide range of chemical probes and unlike fluorescent proteins 

does not show detrimental effects on fused proteins.18-21  

FRET has been widely employed to detect SNAP-tag fusion protein localization and 

oligomerization.6, 17, 22-28 Specific conjugation of ligands to SNAP tag fusion proteins allowed the 

analysis of ligand-receptor interaction using time resolved fluorescence energy transfer (TR-

FRET).29 The combination of SNAP technology and TR-FRET was also applied for investigation of 

GPCRs oligomerization behaviour.1, 17 
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In this chapter, the fluorescent SNAP-PNA units (prepared in chapter 4) where assembled into 

dimer and higher oligomer forms creating hetero or homo-FRET systems as shown with 

intensity and anisotropy measurements.   

5.2 Results and Discussion 

5.2.1 Assembly of fluorescent SNAP-PNA in dimer and higher oligomer forms 

BG-PNA1-Atto488 and BG-PNA3-Atto532 constructs were prepared as described in chapter 4. 

Two DNA sequences (DNA1 and DNA2) having two complementary parts to hybridize to SNAP-

PNA constructs were engineered as frameworks to assemble two SNAP-PNA1-Atto 488s as 

homo-dimer and SNAP-PNA1-Atto488 and SNAP-PNA3-Atto 532 as hetero-dimer, respectively 

(Scheme 5.1). To test whether it can be assembled into oligomers, DNA3 and DNA4 which 

respectively consist of three and four complementary parts for SNAP-PNA1-Atto488 were used 

to make trimer and tetramer assemblies of SNAP-PNA (Scheme 5.2). 

.    

 

 

 

Scheme 5.1: Assembly of two SNAP-PNA1-Atto488 constructs into homo-dimer (top: DNA1-dimer) and SNAP-

PNA3-Atto532 and SNAP-PNA1-Atto488 into hetero-dimer forms (bottom: DNA2-dimer).  

Homo-dimer 

Hetero-dimer 
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Scheme 5.2: Assembly of SNAP-PNA1-Atto488 in higher oligomer forms. The top one is related to assembly of 

three SNAP-PNA1-Atto488 constructs into trimer (DNA3-trimer) and likewise the lower assembly consists of four 

SNAP-PNA1-Atto488 constructs in a tetrameric form (DNA4-tetramer). 

 

Table 5.1: Oligonucleotide sequences used for making assembled SNAP dimer and oligomer forms.  

Name Oligonucleotide sequence 

PNA1 5'- ACGTAC-3' 

PNA3 5'- CAATGA-3' 

DNA1 5'- TGCATGGATCTGCATG-3' 

DNA2 5'- TGCATGGATCGTTACT-3' 

DNA3 5'-TGCATGGATCTGCATGGATCTGCATG3' 

DNA4 5'- TGCATGGATCTGCATGGATCTGCATGGATCTGCATG-3' 
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After assembly SDS-PAGE analysis was carried out after 5 min heating of each sample at 90°C . 

Adding 2:1 ratio of SNAP-PNA1-Atto 488: DNA1 resulted in three distinct bands at 23, 27 and 50 

kDa related to SNAP-PNA-Atto488 (monomer), monomer:DNA1 and dimer:DNA1, respectively. 

Similarly, mixing 1:1:1 ratio of SNAP-PNA1-Atto488: SNAP-PNA3-Atto532:DNA2 indicated the 

same three bands at 23, 27 and 50 kDa related to SNAP-PNA1-Atto488 and SNAP-PNA3-Atto532 

(both as monomer), monomer:DNA2 and dimer:DNA2 consists of both SNAP-PNA1-Atto488 and 

SNAP-PNA3-Atto532 hybridized to DNA2 .Under similar conditions, adding a 3:1 ratio of SNAP-

PNA1-Atto 488: DNA3 produced four distinct bands at 23, 31, 54 and 77 kDa related to SNAP-

PNA1-Atto 488 (monomer), monomer:DNA3, dimer:DNA3 and trimer:DNA3 , respectively. Also, 

4:1 ratio of SNAP-PNA1-Atto 488:DNA4 resulted in five distinct band at 23, 34, 57, 80,103 kDa 

related to SNAP-PNA1-Atto488 (monomer), monomer:DNA4, dimer:DNA4, trimer:DNA4 and 

tetramer:DNA4 , respectively (Fig 5.1). 

 

Figure 5.1: SDS-PAGE analysis of dimers (homo-dimer: column D and hetero-dimer: column C with bands at 23, 27, 

and 50 kDa) and oligomers (trimer : column B with bands at 23, 31, 54, and 77kDa and tetramer:column A with 

bands at 23, 34, 57, 80, and 103 kDa). Mono1 and Mono2 are related to SNAP-PNA-Atto488 (column F with bands 

at 23 kDa) and SNAP-PNA3-Atto532 (Column E with bands at 23 kDa) (both as monomers).  
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SEC-HPLC data was calibrated against a molecular weight standard (Chapter3, Fig 3.3). The 

chromatograms of SNAP-PNA1-Atto488 and SNAP-PNA3-Atto532 monomers showed single 

peaks at 9.4 and 9.44 min at the wavelengths of maximum absorbtion of Atto488 ( 501 nm) and 

Atto532 (532 nm), respectively. The solution containing 2:1 ratio of SNAP-PNA1-Atto 488:DNA1 

indicated a new peak at 8.59 min (estimated to be 8.64 min) at 214 and 501 nm attributed to 

the efficient assembly of homo-dimer on the DNA1 scaffold (Fig 5.2). The same result was 

observed when-PNA1-Atto 488 SNAP and SNAP-PNA3-Atto 532 assembled as a hetero-dimer on 

the DNA2 scaffold by showing a new peak at 8.58 min (estimated to be 8.64 min) at the 

maximum wavelength of Atto 488 and atto 532 and at 214 nm (Fig 5.3). A titration of DNA1 

with an increasing amount of SNAP-PNA1-Atto488 indicated a gradual decrease of peak related 

to free SNAP-PNA1-Atto488 monomer which reached zero at 2:1 ratio of SNAP-PNA1-Atto488 

to DNA1 while the peak related to DNA1:dimer reached its highest, showing the complete 

conversion of monomer to dimer assembly.  

The solutions featuring 3:1 SNAP-PNA1-Atto488:DNA3 and 4:1 ratio of SNAP-PNA1-

Atto488:DNA4 showed additional peaks at 8.16 min (estimated to be 8.14 min) and 7.79 min 

(estimated to be 7.65 min) at 501 and 214 nm respectively related to assembly in trimer form 

on DNA3 scaffold (Fig 5.4) and tetramer form on DNA4 scaffold (Fig 5.5). Titrations of these 

solutions with an increasing amount of SNAP-PNA1-Atto488 showed the same gradual decrease 

of monomer peak which eventually reached zero at 3:1 and 4:1 ratio of SNAP-PNA1-

Atto488:DNA3 and SNAP-PNA1-Atto488:DNA4, respectively, while both peaks of trimer:DNA3 

and tetramer:DNA4 reached their maximum which were attributed to the efficient formation of 

trimer and tetramer assemblies (Fig 5.6).  
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Figure 5.2: Normalized SEC–HPLC chromatograms of SNAP-PNA1-Atto488 (dashed line, peak at 9.4 min) at 214nm 

and SNAP-PNA1-Atto488-DNA1(solid line, peak at 8.59 min related to DNA1:dimer) at 501 nm.  

 

 

Figure 5.3: Normalized SEC–HPLC chromatograms of SNAP-PNA-Atto488 (dashed line, peak at 9.4 min) and SNAP-

PNA1-Atto488- SNAP-PNA3-Atto532- DNA2 (solid line, peak at 8.58min related to DNA2:dimer) at 532 nm
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Figure 5.4: Normalized SEC –HPLC chromatograms of SNAP-PNA1-Atto488 (dashed line, peak at 9.4 min) and SNAP-

PNA1-Atto488- DNA3 (solid line, peak at 8.16 min related to DNA3:trimer) at 501 nm.  

 

 

Figure 5.5: Normalized SEC–HPLC chromatograms of SNAP-PNA1-Atto488 (dashed line, peak at 9.4 min) and SNAP-

PNA1-Atto488- DNA4 (solid line, peak at 7.79 min related to DNA4:tetramer) at 501 nm.  
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Figure 5.6:   SEC analysis of showing the increase of the tetramer peak (7.79 min) and decrease of the monomer 

peak (9.4 min) monitored at 501 nm while titrating DNA4 (0.25 µM) with SNAP-PNA-Atto488 (0.25-1 µM). 

The characterization of the assembled homo- and hetero-dimers and oligomers by SDS-PAGE 

electrophoresis and SEC-HPLC confirmed the assembly of SNAP-PNA-Atto488 and SNAP-PNA-

Atto532 monomers using the specific recognition capability of conjugated PNAs to DNA 

templates.  

5.2.2 Hetero-FRET system  

 To study the ability of fluorescent SNAP-PNA to assemble, DNA2 template (5'-

TGCATGGATCGTTACT-3') was used as a framework to make hetero-dimer. The DNA template 

had two complementary parts for SNAP-PNA1-Atto488 and SNAP-PNA2-Atto532 with the 

distance (3.7 nm) below the Forster distance of Atto488 and Atto532 as a FRET pair (6.4 nm) 

(Scheme 5.1- bottom). Due to the spectral overlap of the dyes, the excitation energy of donor 

fluorophore (Atto488) transfers to acceptor fluorophore (Atto532) after assembly indicating the 

formation of dimer.  
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Figure 5.7: Spectral overlap between Atto488 emission and Atto532 excitation as a FRET pair: solid black and grey 

peaks are related to normalized excitation and emission of Atto488, dashed and dotted peaks is related to 

normalized excitation and emission of Atto532, respectively (data from ATTo-TEC Gmbh). 

To study the assembly of SNAP-PNA constructs on DNA2, the emission intensity of the solution 

containing 1:1 ratio of SNAP-PNA1-Atto488:DNA2 which plays the role of donor in expected 

hetero-FRET systems was measured with excitation at 501 nm. Simultaneous decrease of donor 

emission intensity was observed by adding the same ratio of acceptor, SNAP-PNA-Atto532, 

while a new peak related to sensitized emission intensity of acceptor at 553 nm was appeared 

(Fig 5.8).   
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Figure 5.8: () Emission intensity spectrum of SNAP-PNA1-Atto 488 was excited at 501 nm. () decreasing the 

emission intensity of SNAP-PNA1-Atto 488 after addition the same ratio of acceptor (SNAP-PNA3-Atto532) which 

was also excited at 501 nm.  

 

Four replicate measurements (Fig 5.9) demonstrated similar sensitized emission intensity.  The 

donor region (514- 525 nm) appeared to be nearly completely quenched in all but one of the 

four samples with any residual fluorescence close to instrument offset. The dashed line (Fig 5.9) 

was the only one which showed the structure of donor fluorescence and exhibited 90±1% 

energy transfer over the range of 514-525 nm which was less than the other three, perhaps due 

to an excess of Atto488.   The average FRET efficiency of the system based on all 4 graphs of Fig 

5.7 was estimated to be about 93±2 percent which confirms the assembly of two monomers 

separated by approximately 4.1±0.2 nm (=0.64 R0) and efficient energy transfer between donor 

and acceptor. This is in reasonable agreement with homo-FRET data in section 5.3.2 which 

would predict ~94% energy transfer between two fluorophores when they are located in <0.8 

R0 =4 nm distance from each other in dimer assembly. 
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Figure 5.9:  Replicates observed for sensitized emission intensity ( in Fig 5.6), only the dashed graph shows the 

structure of donor spectrum over the range of 514-525 nm an. The rest look like offsets over that range.  

A PNA-DNA double helix (16 base pairs per turn and 28° twist and 3.3 angstrom rise30) 

demonstrates different conformation compared to regular B-DNA. A four base gap (GATC) was 

engineered between each monomer location on the DNA scaffold in our system which makes 

the helix conformation more complex. The estimated distance between Atto488 and Atto532 in 

the dimer assembly  was about 3.7 nm based on summation of the lengths of 4 bases (GATC) 

gap, 6 PNA-DNA base pairs and a lysine residue ( 4 Angstrom31). This distance assumes two 

fluorophores in the PNA-DNA duplex (3.7 nm) are on the same side.  The estimated distance 

based on FRET (4.1 nm) suggests a twist in PNA-DNA helix introducing a slight increase in the 

spatial position of fluorophores with respect to each other in dimer assembly. 
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5.2.3 Homo-FRET system 

5.2.3.1 Anisotropy measurement of Homo-FRET system indicating the assembly 

in dimer and higher oligomer forms 

A range of DNA1 and DNA3 and DNA4 concentrations (0–1 μM) were added to 1 μM of SNAP-

PNA1-Atto488 to study anisotropy changes of the system. In comparison to the measured 

anisotropy for SNAP-PNA1-Atto488 (monomer) (0.237±0.002), the maximum anisotropy 

observed for each system was at 1:1 ratio DNA:monomer. The measured anisotropies of 

DNA1:monomer, DNA3:monomer and DNA4:monomer were 0.255±0.002, 0.275±0.002, and 

0.264±0.002 respectively, which is in accord with the slight increase of rotational correlation 

time of the larger size of the assemblies. It should be noted that 1:1 ratio represents the 

stoichiometry and the mixture of randomly assembled species existed in this ratio is more 

complex. For example, at 1:1 stoichiometry, DNA2:monomer can exist in four forms and a 

randomly assembled systems will include some amount of free DNA2, monomer, and dimer 

species as shown in Scheme 5.3. 

 

     Scheme 5.3: a distribution of randomly assembled species at 1:1 stoichiometry of DNA2:monomer.   

 As mentioned in previous chapters, fluorescence anisotropy measurement is an indicator of 

homo-energy transfer generated after assembly. The following equation gives an 

approximation of the expected anisotropy of an oligomer undergoing homo-FRET when the 

inter-fluorophore distance is < 0.8 R0. roligomer, rmonomer, are the anisotropy in oligomer and 

monomer forms, and  n is the number of fluorophores in the oligomer.32 

n

r
r monomer

oligomer 
         [5.1] 

Free DNA2 

monomer  

Dimer 
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Depending on the orientation, the distance between fluorophores, and the cluster size, this 

approximation may not hold rigorously and more detailed treatment required.32-34 

A decrease of measured anisotropy after adding more monomer to the complementary DNA 

templates confirmed production of homo-FRET systems. Titration of SNAP-PNA-Atto488 with 

DNA1 resulted in a gradual decrease of anisotropy compared to DNA1:monomer which reaches 

maximum decrease of 52% at 2:1 ratio of SNAP-PNA-Atto488:DNA1. Since the distance 

between two complementary parts for SNAP-PNA-Atto488 constructs on DNA1 scaffold is less 

than the 0.8 R0 for Atto488 in homo-transfer (R0=5nm) eqn 5.1 predicts 50% depolarization 

which is very close to the measured decrease. Upon further addition of SNAP-PNA-Atto488 the 

anisotropy gradually increased (Fig 5.10). 

 

Figure 5.10: Anisotropy changes of the SNAP-PNA-Atto488:DNA1 homo FRET system after adding different 

concentration of DNA1 (0-1 µM) to 1 µM SNAP-PNA-Atto488.:a) monomer, b) 0.5 µM : DNA1:dimer, and c) 1 µM: 

DNA1:monomer. The assembly illustrated at point c represents the stoichiometry. The mixture of randomly 

assembled species in these locations is more complex (see Scheme 5.4).  

In template directed oligomer formation via DNA3, a 48% decrease of anisotropy was obtained 

with a 2:1 ratio of SNAP-PNA-Atto488:DNA3. The maximum decrease of 48% was observed 
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when a 2:1 ratio of SNAP-PNA-Atto488 to DNA3 was applied to make DNA3:dimer (Fig 5.11). 

This value is close to the approximately 50% decrease predicted by eqn 5.1 but less than 

DNA2:dimer. As mentioned in chapter 3, this might be due to the distribution of different 

probable assemblies with different distances between SNAP-PNA-Atto488 monomers on DNA3 

scaffold (the probable inter-fluorophore distances could be between 3.7-7.4 nm, Scheme 5.4). 

 

 

Scheme 5.4: an example of different Inter-fluorophore distances (3.7-7.4 nm) between two monomer on DNA3 

which has 3 locations to bind (at 2:1 stoichiometry of SNAP-PNA-Atto488:DNA3, the expected randomly assembled 

species is more than the above two species). 

 

Figure 5.11: Anisotropy changes of the DNA3:trimer  homo FRET system after adding (0-1 µM) concentration of 

DNA3 to 1 µM SNAP-PNA-Atto488: a) monomer b) 0.33 µM: DNA3: trimer , c) 0.5 µM: DNA3: dimer , and d) 1 µM: 

DNA3: monomer. The assemblies illustrated at points c and d represent the stoichiometry. The mixture of 

randomly assembled species in these locations is more complex. 
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For 3:1 ratio of SNAP-PNA-Atto488 to DNA3 64% decrease was observed which is close to the 

predicted decrease given by eqn 5.1 (Fig 5.11). 

Similarly, maximum 37% anisotropy decrease was observed when 2:1 ratio of SNAP-PNA-

Atto488 to DNA4 was applied to make DNA4:dimer (Fig 5.12) which is less than predicted by 

eqn 5.1. However, DNA4 has 4 locations to bind, and with two SNAP-PNA-Atto488 attached, the 

inter-fluorophore distances between monomer units is expected to range from 3.7-11 nm. The 

larger distances are outside 0.8 R0 resulting in less change in anisotropy than seen in DNA2 and 

DNA3 assemblies. Also 57% decrease for 3:1 ratio of SNAP-PNA-Atto488 to DNA4 was observed. 

The lowest anisotropy measured for tetramer assembly on DNA scaffolds was 0.088±0.002 in 

the solution featuring 4:1 ratio of SNAP-PNA-Atto488 monomer to DNA4 showing 67% 

anisotropy decrease which is slightly less than the predicted 75% decrease of anisotropy by eqn 

5.1 due to the mixture of randomly assembled species in system.   

 

Figure 5.12:  Anisotropy changes of the DNA4:tetramer homo FRET system after adding different concentration of 

DNA4 (0-1 µM) to 1 µM SNAP-PNA-Atto488: a) monomer, b).0.25 µM: DNA4: tetramer, c) 0.33 µM: DNA4:trimer , 

d) 0.5 µM: DNA4: dimer,  and f) 1 µM: DNA3: monomer. The assemblies illustrated at points  c, d and e represent 

the stoichiometry. The mixture of randomly assembled species in these locations is more complex. 
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As Described in chapter3, the PNA-directed fluorescent SNAP protein assembled system can be 

used to induce aggregation of other proteins of interest by fusion to SNAP-tag through 

molecular cloning techniques. It offers site-selective modification of SNAP-tagged fused protein 

with a vast variety of organic flourophores and other biophysical probes. The straightforward 

photophysical interpretation of the assembled systems confirmed the benefit of homo- and 

hetero-FRET measurements to study protein clustering behaviour. 

5.3 Conclusion and outlook 

In conclusion, model systems incorporating controllable assembly of SNAP-PNA conjugates on 

DNA frameworks were demonstrated in this chapter. Taking advantage of the unique 

recognition capability of PNA for complementary DNA scaffolds, fluorescent SNAP-PNA units 

were precisely assembled in dimer and higher oligomer forms. The assemblies were 

characterised by HPLC, SDS-PAGE and fluorescent techniques. Two dimer forms were created in 

this chapter using DNA scaffolds. The first one was a homo dimer composed of two SNAP-

PNA1-Atto488 constructs. The second one was a hetero-dimer of SNAP-PNA1-Atto488 and 

SNAP-PNA3-Atto532. SEC-HPLC and SDS-PAGE showed distinct bands and peaks related to each 

dimer species. Photophysical studies of both systems confirmed FRET occurred between the 

fluorophores. Assembly of SNAP-PNA1-Atto488 into trimer and tetramer forms was also 

confirmed with HPLC and SDS-PAGE. The anisotropy measurement of homo-dimer and other 

homo-oligomers showed a clear evidence of homo-FRET among the flourophores. The induced 

hetero- and homo-FRET systems based on fluorescent SNAP-PNA will provide a useful tool to 

study hetero- and homo oligomerization of interest proteins which can be fused to a SNAP tag 

in vitro or in vivo. 
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5.4 Experimental part 

5.4.1 Hybridization and assembly of fluorescent SNAP-PNA with DNA 

Four DNA scaffolds (Life Technologies, USA) were used to hybridize to fluorescent SNAP-PNA 

constructs prepared in chapter 4. DNA1 (5'- TGCATGGATCTGCATG-3') was used as template to 

assemble two SNAP-PNA1-Atto488 constructs in dimer form. In the same way, DNA2 (5'- 

TGCATGGATCGTTACT-3') was applied to make hetero-dimer of SNAP-PNA1-Atto488 and SNAP-

PNA3-Atto532. DNA3 (5'-TGCATGGATCTGCATGGATCTGCATG3') and DNA4 (5'- 

TGCATGGATCTGCATGGATCTGCATGGATCTGCATG-3') scaffolds were both used to assemble 

SNAP-PNA1-Atto488 constructs in trimer and tetramer forms, respectively. The titration of 0.5 

µM DNA1, 0.33 µM DNA3, and 0.25 µM DNA4 with different concentrations of SNAP-PNA-

Atto488 (0-1 µM) was carried out in phosphate buffer (100 mM, NaCl 200 mM, pH 7) with 2 hrs 

incubation at room temperature. The results were assessed by SDS-PAGE electrophoresis and 

SEC-HPLC at (214 nm and 501 and 532 nm) as described in previous chapters. The SEC-HPLC 

calibrated with molecular weight protein marker kit 12-200 kDa (MWGF200-sigma). 

5.4.2 SDS-PAGE electrophoresis analysis 

SDS-PAGE electrophoresis of SNAP-PNA-Atto 488 and 532 conjugates  SNAP-PNA-Atto488 and 

SNAP-PNA-Atto 532 conjugates samples  (10 µM) were heated at 90◦C for 5 min and mixed with 

the same equivalent of SDS sample loading buffer (Biorad) on precast acrylamide gels  (Biorad)  

(12% resolving polyacrylamide gel and 5% stacking gel). The electrophoresis  ran  for 70 min at 

100 V. To stain the protein bands Briliant coomassie blue (Sigma-Alderich) was used. 

5.4.3 SEC HPLC analysis  

SEC-HPLC of SNAP-PNA-Atto 488 and SNAP-PNA-Atto 532 conjugates The SEC-HPLC analysis was 

carried out as described in Chapter3. The detection wavelengths were 214, 501 (maximum 

absorption wavelength of Atto 488) and 532 nm (maximum absorption wavelength of Atto 

532). 

http://www.sigmaaldrich.com/catalog/product/sigma/mwgf200?lang=en&region=GB
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5.4.4 Photophysical measurements 

Different concentration of DNA1, DNA3 and DNA4 (0-1 µM) were added to 1 µM SNAP-PNA1-

Atto488 in phosphate buffer (100 mM, NaCl 200 mM, pH 7) with 2 hrs incubation at room 

temperature. The anisotropy was recorded using a multimode microplate reader (Infinite F200 

PRO, Tecan Group Ltd.). The excitation and emission wavelengths were 485 and 535nm, 

respectively.  

Similarly, 1 µM of SNAP-PNA1-Atto 488 and SNAP-PNA3-Atto 532 were added to the same 

concentration of DNA2. The intensity measurement was carried out using fluorimeter (Cary 

Eclipse; Varian) over the range of 515-600 nm when the solution was excited at 501 nm which is 

the maximum absorption wavelength of Atto 488 .  
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Summary  

The functional DNA mimic peptide nucleic acid (PNA) provides superb control properties over 

the dynamics of assembled systems. Precise recognition of PNA for complementary DNA or PNA 

templates enables self-assembly of PNA-protein conjugates in a well-defined programmed 

manner. The PNA-guided assemblies developed in this work provide scaffolding for adjusting 

the number, distance and distribution of proteins using chemical and molecular biology. This 

model system can be used to induce aggregation of proteins of interest which are modified 

with tags by molecular or chemical biology in living systems. Such a programmed self-assembly 

model system may bridge the gap between studies on isolated proteins that cannot account for 

protein clustering in the native environment and whole cell studies, which do not allow 

currently the controlled actuation of the nano-clusters.  

Plasma membrane-resident signaling proteins such as glycosylphosphatidylinositol (GPI) 

anchored proteins and EGFR show complex dynamic ordering, such as clustering, on a 

nanoscale level which typically changes after external stimulation.1-10 Controlling the 

distribution of plasma membrane-resident signaling proteins will allow the study of relevant 

cellular signaling mechanisms that depend on complex nanoscale molecular ordering. Inducing 

nano-scaffolds that would bind multiple membrane proteins in a defined way into a cluster has 

been employed previously but they have some limitations including incomplete control over 

the location and number of proteins in clusters.11-13 The PNA-directed nano-clustering of 

proteins described here may provide a well-defined model system to feature controlled levels 

of aggregation and surface density at the plasma membrane which has not, to our knowledge, 

been reported so far.  

In summary, the aim of this research was to use the unique characteristics of PNA to create 

controllable protein assemblies directed by precise PNA-DNA hybridization, studying the photo- 
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physical signatures of this self-assembled model system via FRET and providing a powerful tool 

for live system imaging. Fluorescent protein (FP) and SNAP tag groups were chosen as two 

popular protein tags to conjugate to PNA and assemble in dimeric and higher order oligomeric 

forms.  

In Chapter 2, expressed protein ligation (EPL) provided a site-selective and facile conjugation of 

fluorescent proteins to PNA to create units which can be assembled through specific 

recognition of PNA for DNA frameworks. In EPL, an intein-mediated protein expression and 

purification procedure was employed to create fluorescent proteins bearing a C-terminal 

thioester. The modified FPs were able to conjugate to the thiol group of a cysteine residue at 

the N-terminus of a PNA using mercaptophenylacetic acid (MPAA) as a catalyst. Different 

modified fluorescent proteins with C-terminal thioesters were expressed and purified. Mass 

spectrometry and SDS-PAGE analysis confirmed the final proteins purity. Among those, the 

monomeric teal fluorescent protein (mTFP) was chosen for conjugation to PNA and subsequent 

assembly studies due to the greater brightness and photostability. The conjugation was 

assessed by mass spectrometry and spectrophotometry and showed complete conversion of 

the FP to a ligated form.  

Assembly of mTFP-PNA units on DNA frameworks can provide a model system mimicking 

protein aggregation which can be studied by FRET techniques. Such a model system was 

described in Chapter 3. To prove the principle of PNA directed inducible assembly, a DNA 

beacon with 6-FAM and Dabcyl at its ends was used to assemble a hetero-FRET system with the 

mTFP-PNA conjugate. Using fluorescence techniques such as intensity, frequency domain 

lifetime and anisotropy measurements, the assembled system exhibited decreased donor 

intensity, changes in frequency domain lifetime, and increased anisotropy as an indicator of 

hetero-FRET. Different DNA scaffolds allowing the alignment of multiple mTFP-PNA in a 

controllable manner provided model systems exhibiting homo-FRET. Efficient assembly of 

protein in dimeric and oligomeric forms on the DNA-PNA frameworks was confirmed with size 

exclusion chromatography (SEC) and SDS-PAGE. The assemblies gave clear and readily 
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interpreted photophysical signatures providing a practical tool to investigate the behaviour of 

protein clusters. The well-defined characteristics of this model system can be extended to any 

other protein through fusion to FPs.   

Self-labeling tags such as the SNAP-tag are smaller than FPs and can be easily modified with 

organic fluorophores providing a broad range of colours with an extended range of 

photophysical properties and functionalities. The versatility and efficiency of SNAP-tag labeling 

makes it a promising method to localize and study fusion protein behaviors in living systems. In 

Chapter 4, the SNAP-PNA conjugate was created as an alternative assembly unit. The ligation of 

SNAP-PNA required modification of a PNA with O6-benzyl guanine which is a specific substrate 

for SNAP. To create FRET systems, the modified PNA was labeled with Atto dyes. Successful 

modification of PNA with O6-benzyl guanine and Atto dyes was confirmed by mass 

spectrometry and reverse phase HPLC. The efficient coupling of a BG-PNA-Atto dye construct 

with SNAP was performed with high specificity and almost complete conversion of SNAP to the 

conjugated form. SDS-PAGE, SEC-HPLC, mass spectrometry and fluorescent measurements all 

verified generation of the final conjugates.  

In Chapter 5, the controllable assembly of fluorescent SNAP-PNA units on DNA scaffolds to 

create dimeric and higher order oligomeric forms was discussed. The assemblies were 

characterized by SEC-HPLC, SDS-PAGE and fluorescent techniques. Different DNA scaffolds were 

used to create hetero-dimer, homo-dimers and homo-oligomers. Photophysical studies of 

assembled systems confirmed FRET occurred between the different fluorophores in the hetero-

dimer (hetero-FRET) and among similar fluorophores in homo-dimers and homo-oligomers 

(homo-FRET). This model system can be used to study clustering behavior of other proteins 

expressing the SNAP sequence.  

Further work could readily extend these systems from homodimers and oligomers to binary, 

ternary, and higher oligomer systems containing any number of different dyes or fluorescent 

proteins in precisely engineered arrangements. 
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Fluorescent proteins and fluorescently labeled SNAP-tags have been widely used as markers for 

visualization of cell membrane protein clusters using FRET combined with fluorescent 

microscopy. 14-17 To investigate and address unresolved questions in regard to the role of cell 

membrane proteins (e.g. EGFR cluster formation and activation), gaining external control on 

clustering across cell membrane could be informative and helpful.18 Variations of the model 

systems developed in this research are capable of directed assembly of proteins which may 

provide a new insights into studying the mechanism of cell membrane proteins clustering, 

leading to new methods for regulation of signaling pathways which rely on biophysical and 

chemical inputs.  

To address this goal, in collaboration with Max Planck Institute of Molecular Physiology in 

Dortmund, the developed SNAP-PNA:DNA assembled model system in Chapter 4 and 5 were 

applied to controllably assemble dimeric forms of EGFR in vivo.  Therefore, the BG-PNA-Atto488 

constructs (Chapter 4) were used to modify EGFR –or EGFR transmemberane domain (TMD)-

SNAP tag fusion proteins (SNAP-EGFR-mCherry, SNAP-TMD-mCherry and SNAP-TMD-mCitrine) 

which were expressed in transfected MCF-7 cell line (breast cancer cell line). Thereafter, DNA1 

template (Chapter 5) was added to the transfected cells to assemble the modified PNA-SNAP-

EGFR in dimer forms. The fluorescent anisotropy imaging and total internal 

reflection fluorescence (TIRF) microscopy were used to analyse labelling and assembly 

efficiency. The initial result was not that conclusive and more control experiments will be 

needed to optimize the labelling and assembly. Unfortunately, lack of time did not allow further 

progress within the timeline of this research but due to the important goals behind approach, it 

is highly suggested as a future work.  

6.1 References 

1. A. H. Clayton, F. Walker, S. G. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. C. Nice and A. W. Burgess, 
Journal of Biological Chemistry, 2005, 280, 30392-30399. 

2. L. t. Comps-Agrar, J. Kniazeff, C. Brock, E. Trinquet and J.-P. Pin, FASEB Journal, 2012, 26, 3430-3439. 
3. D. Calebiro, F. Rieken, J. Wagner, T. Sungkaworn, U. Zabel, A. Borzi, E. Cocucci, A. Zurn and M. J. Lohse, 

Proceedings of the National Academy of Sciences, 2013, 110, 743-748. 
4. D. Maurel, L. Comps-Agrar, C. Brock, M. L. Rives, E. Bourrier, M. A. Ayoub, H. Bazin, N. Tinel, T. Durroux, L. 

Prezeau, E. Trinquet and J. P. Pin, Nature Methods, 2008, 5, 561-567. 

http://en.wikipedia.org/wiki/Total_internal_reflection
http://en.wikipedia.org/wiki/Total_internal_reflection


PNA-protein conjugates for nano scale modeling of protein aggregates 

[Pick the date] 

 

120 
 

5. T. W. Gadella, Jr. and T. M. Jovin, Journal of Cell Biology, 1995, 129, 1543-1558. 
6. J. Ichinose, M. Murata, T. Yanagida and Y. Sako, Biochemical and Biophysical Research Communications, 2004, 

324, 1143-1149. 
7. L. Albizu, M. Cottet, M. Kralikova, S. Stoev, R. Seyer, I. Brabet, T. Roux, H. Bazin, E. Bourrier, L. Lamarque, C. 

Breton, M.-L. Rives, A. Newman, J. Javitch, E. Trinquet, M. Manning, J.-P. Pin, B. Mouillac and T. Durroux, 
Nature Chemical Biology, 2010, 6, 587-594. 

8. G. Milligan, Molecular Pharmacology, 2013, 84, 158-169. 
9. L. Pin Jp Fau-Comps-Agrar, D. Comps-Agrar L Fau-Maurel, C. Maurel D Fau - Monnier, M. L. Monnier C Fau - 

Rives, E. Rives Ml Fau-Trinquet, J. Trinquet E Fau-Kniazeff, P. Kniazeff J Fau-Rondard, L. Rondard P Fau - Prezeau 
and L. Prezeau,  Journal of Physiology, 2009, 587, 5337-5344. 

10. M.-L. Prezeau L Fau - Rives, L. Rives Ml Fau - Comps-Agrar, D. Comps-Agrar L Fau - Maurel, J. Maurel D Fau - 
Kniazeff, J.-P. Kniazeff J Fau - Pin and J. P. Pin, Current Opinion in Pharmacology, 2010, 10, 6-13 

11. K. G. N. Suzuki, T. K. Fujiwara, F. Sanematsu, R. Iino, M. Edidin and A. Kusumi,  Journal of Cell Biology, 2007, 177, 
717-730. 

12. A. T. Reynolds, C ; Verveer, PJ ; Rocks, O ; Bastiaens, PIH, Nature Cell Biology, 2003, 5, 447-453. 
13. P. J. W. Verveer, F S ; Reynolds, A R ; Bastiaens, P I, Science (New York, N.Y.), 2000, 290, 1567-1570. 
14. A. N. Bader, E. G. Hofman, J. Voortman, P. M. en Henegouwen and H. C. Gerritsen, Biophysical Journal, 2009, 

97, 2613-2622. 
15. N. Kozer, D. Barua, S. Orchard, E. C. Nice, A. W. Burgess, W. S. Hlavacek and A. H. A. Clayton, Molecular 

BioSystems, 2013, 9, 1849-1863. 
16. K. Noga, H. Christine, T. J. Jacob, C. N. Edouard, W. B. Antony and H. A. C. Andrew, Physical Biology, 2011, 8, 

066002. 
17. A. Sorkin, M. McClure, F. Huang and R. Carter, Current Biology : CB, 2000, 10, 1395-1398. 
18. D. Stabley, S. Retterer, S. Marshall and K. Salaita, Integrative Biology, 2013, 5, 659-668. 

 
 

 

 


