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Abstract—The deployment of multiple Autonomous Under-
water Vehicles (AUVs) is vital for achieving comprehensive
cooperative missions and extensive spatial coverage. However,
limited communication between agents necessitates a robust
and distributed coordination strategy to maintain operational
effectiveness and reliability. This study explores the design and
implementation of a new distributed Nonlinear Model Predic-
tive Control (NMPC) scheme that integrates Control Barrier
Functions (CBFs) with a relaxed decay rate of the barrier
function for trajectory tracking and formation control of mul-
tiple BlueRov2 underwater robots. Acting as safety constraints,
CBFs guarantee system safety and performance objectives are
simultaneously considered within a short prediction horizon,
reducing the computational burden in real-time implementation.
Additionally, the relaxed decay rate technique enhances the
feasibility of the optimisation and system safety at the same time.
The stability analysis of the closed-loop system is provided. A
series of challenging scenarios, including obstacles, are conducted
in the Software-in-the-loop (SITL) simulation, as well as the open
sea and river environments, to demonstrate the robustness and
flexibility of the proposed control strategy, guaranteeing safe and
coordinated operations of multiple underwater robots.

Index Terms—Underwater robot, Nonlinear Model Predictive
Control, Control Barrier Function, Multiple Agents, BlueRov2.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are crucial for
oceanographic research, underwater exploration, and environ-
mental monitoring. They operate autonomously in hazardous
underwater environments, performing tasks impractical for
human divers or Remotely Operated Vehicles (ROVs). AUVs
enable detailed ocean floor mapping, essential for understand-
ing geological features and tectonic activities [1], and support
long-term monitoring of oceanographic parameters crucial for
climate change studies [2]. They also assess oil spill impacts,
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track harmful algal blooms, and monitor marine ecosystems
[3]. The increasing reliance on AUVs across these diverse
applications highlights the potential and necessity of deploying
multiple AUVs in coordinated operations to enhance data
collection efficiency and spatial coverage.
Various methods have been developed to address the chal-
lenges of coordination and control, enabling the maintenance
of desired formations and the achievement of specific ob-
jectives in complex environments. The behavioural strategy
designs individual behaviours for each agent to achieve de-
sired group dynamics [4], [5]. The virtual structure scheme
treats the entire formation as a cohesive entity, controlling
its motion to maintain relative positions [6], [7]. Consensus-
based approaches enable agents to agree on key state variables,
such as position or velocity, through local interactions [8],
[9]. Artificial potential-based techniques use potential fields
to create attractive or repulsive forces among agents and
obstacles, guiding the formation while preventing collisions
[10], [11]. The leader-follower method designates specific
agents as leaders to navigate, with followers adjusting their
positions to maintain formation [12]- [14].
The leader-follower formation control method is widely recog-
nised for its practicality and prevalence in the domain of for-
mation control. In this approach, a team of AUVs can include
one or multiple leaders. As the leader’s posture changes, the
followers determine the estimation errors of its displacement
and direction through a combination of perception, calculation,
and communication. Consequently, the control problem for
the followers transforms into a point stabilisation task relative
to the leader’s pose, independent of the leader’s dynamics.
This is particularly advantageous for AUVs due to the low
bandwidth, weak underwater communication, and low update
rates [15]. For the leader’s trajectory tracking control, vari-
ous advanced methods have been developed to enhance the
tracking accuracy and robustness of AUVs. Sliding Mode
Control (SMC), including distributed bioinspired SMC [16]
and terminal SMC [17], provides robust performance and
adaptability, crucial for stability in uncertain underwater envi-
ronments. Finite-time control strategies [18]- [20] ensure rapid
convergence and accurate tracking for time-sensitive missions.
Fixed-time control methods [12], [21], [22] address challenges
like communication delays and system nonlinearities, offering
consistent performance regardless of initial conditions. Neural
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network-based approaches and reinforcement learning [23]-
[25] incorporate adaptive learning, improving tracking accu-
racy and handling complex, unmodeled dynamics effectively.
In addition to the advanced control approaches mentioned,
NMPC emerges as a highly promising strategy for AUV
tracking control due to its ability to handle multi-objective
optimisation problems, which is crucial for complex under-
water missions that require balancing multiple performance
criteria such as energy efficiency, collision avoidance, and
precise trajectory tracking. Another major advantage of NMPC
is its capability to manage hard constraints for actuator satura-
tions, communication range limitations, and safety issues. The
adoption of NMPC for a single AUV in [26] - [28] and for
multi-AUV systems in [29], [30] has proven to be a strategic
advancement, leveraging predictive modelling and optimisa-
tion to navigate the challenges of underwater environments,
ensuring robust, efficient, and adaptive performance. However,
none of the NMPC schemes [27] - [30] explicitly considered
obstacle avoidance ability for AUVs. NMPC in [26] integrated
safety through predefined state and input constraints based
on a static map of the environment, which includes fixed
obstacles and workspace boundaries. However, this strategy
may not be as effective in dynamic environments with moving
obstacles due to its reliance on predefined constraints that
may not adapt quickly to changes in the environment. CBFs
are designed to rigorously enforce state constraints to adapt
to changes [31], allowing the robot to dynamically adjust its
path to avoid obstacles while considering real-time feedback.
Additionally, the NMPC-CBF scheme can achieve comparable
performance to traditional safety constraint approaches within
a short prediction time, as in our previous work [32], which
is beneficial for the limited computational resources of AUVs.
Recent studies on new types of CBFs with a relaxed decay
rate of the barrier function have shown potential to enhance
both system safety and optimisation feasibility [33], [34].
In summary, there are existing research gaps in the reconfig-
uration and safe navigation of the multi-AUVs system:

1) Lack of investigation on integrating NMPC with CBF
constraints for the safety-critical control of single or
multi-AUV systems.

2) Notable absence of real-time reconfiguration and trajec-
tory tracking verification for multi-agent systems.

3) Lack of validation for underwater robots in enhanced
sea-state environments.

4) Lack of stability analysis for the NMPC-Relax-CBF
scheme.

Motivated by the preceding analysis, this paper studies the
leader-follower formation control problem of multiple AUVs
(or underwater robots) where only one AUV knows the
reference trajectory. Most of the aforementioned strategies
require each robot to communicate with the entire team, which
restricts the number of robots involved in the cooperative task
and limits the team’s spatial coverage. To overcome this limita-
tion, a configuration of AUVs is proposed where the AUVs are
interconnected to form a network, facilitating data transmis-
sion over extended distances. Two distributed NMPC schemes
are designed for trajectory tracking and stabilisation problems.

The proposed controllers are verified in the ArduPilot SITL
simulation as an intermediate step before working with AUV
hardware. Multiple challenging experimental setups, both with
and without obstacles, are devised to evaluate the safety and
formation control performance of the proposed approach. The
main contributions of this manuscript are outlined as follows:

• A novel safety-critical control scheme integrates NMPC
and CBF with a relaxed decay rate of the barrier function
across the prediction horizon for the AUVs for the first
time. This method can resolve the trade-off between fea-
sibility and safety in Optimal Control Problems (OCP).

• A new distributed formation algorithm that uses a net-
work of AUVs as relaying units to maximise the team’s
operational coverage. This algorithm incorporates a 6-
DOF kinematic model of the AUV (e.g., BlueRov2), en-
abling full spatial manoeuvrability and precise orientation
control for executing complex collaborative tasks.

• Several simulations in ArduPilot SITL, including obsta-
cles, are set up to develop the proposed framework.

• Unlike all of the aforementioned papers [4] - [30],
which verified proposed controllers only in simulation or
indoor water tanks that may not consider environmental
disturbances and practical issues, this study validates the
proposed control strategy through real-time experiments.
These experiments involve multiple BlueRov2 underwa-
ter robots in various challenging scenarios, including
open sea and river environments.

The paper is organised as follows: Section 2 formulates the
control problems for the AUV (i.e., BlueRov2). Section 3
covers the control approach, encompassing the development
of NMPC, safety constraints, and proof of the stability of the
closed-loop system. Section 4 presents experimental imple-
mentations, including a comparative analysis and discussion.
Finally, Section 5 concludes the article.

II. PROBLEM FORMULATION

Fig. 1. The reference frames of the BlueRov2.

We study the coordinated motion control of a group of
n AUV (i.e., BlueRov2). For each AUV i ∈ {1, ..., n}, its
kinematic is described by a differential equation involving its
position and velocity. In the i-th AUV, the position vector
ξi = [xi, yi, zi, ϕi, θi, ψi]

T ∈ ℜ6×1 represents the relative
pose of the vehicle with respect to a fixed global reference
system (NED). This vector includes the spatial coordinates
of its body centre ξsi = [xi, yi, zi]

T (m) and the orientation
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angles ξoi = [ϕi, θi, ψi]
T (rad) around the axes, as shown in

Fig. 1. Meanwhile, the velocity of the i-th AUV is defined by
the velocity vector, Vi = [ui, vi, wi, pi, qi, ri]

T ∈ ℜ6×1. The
directional velocities Vdi = [ui, vi, wi]

T (m/s) and the angular
velocities Vai = [pi, qi, ri]

T (rad/s) represent the rate of turn
around the x, y, and z axes. The relationship of the body frame
velocity Vi and position ξi in the fixed global frame is:

ξ̇i(t) = fi(ξi(t),Vi(t))
= R(ξoi(t))Vi(t)

(1)

where R(ξoi) ∈ ℜ6×6 represents the coordinate transformation
from the vehicle body frame to the NED reference frame.

R(ξoi) =

[
R1(ξoi) 03×3

03×3 R2(ξoi)

]
(2)

where the rotation matrix R1(ξoi) ∈ ℜ3×3 is calculated as:

R1(ξoi) =

cψicθi cψisθisϕi − sψicϕi cψicϕisθi + sϕisψi

sψicθi sψisθisϕi + cψicϕi sψisθicϕi − cψisϕi

−sθi cθisϕi cθicϕi


(3)

and the angular transformation matrix R2(ξoi) ∈ ℜ3×3

R2(ξoi) =

1 sϕisθi/cθi cϕisθi/cθi
0 cϕi −sϕi
0 sϕi/cθi cϕi/cθi

 (4)

This study addresses two core control challenges: stabilisation
and trajectory tracking. For stabilisation, the goal is a constant
target pose ξr and a zero control vector Vr = 06×1. In
trajectory tracking, both ξr and Vr vary over time following
a predetermined path. Both scenarios utilise a discretised
kinematic model with a sampling period τ > 0. Denoting
ξ(k) = ξ(tk), the integration over the fixed interval is
numerically approximated with a piecewise constant control
during each sampling interval and the Runge-Kutta 4 (RK4)
method.

ξi(k + 1) = Fi(ξi(k),Vi(k))

= ξi(k) +

∫ tk+τ

tk

fi(ξi(t),Vi(t)) dt
(5)

Denoting k ∈ N0 is the current sampling instant and Fi(·) :
ℜ6×ℜ6 → ℜ6 is the discrete nonlinear kinematic mapping of
i-th AUV. In the stabilisation control problem, the feedback
control is designed such that the solution of (5) starting from
the initial condition ξ0,i := ξi(0) ∈ X stays close to a desired
set point, ξr,i ∈ X, and converges, i.e.

lim
k→∞

∥ξe,i(k)∥ = lim
k→∞

∥ξi(k)− ξr,i∥ = 0 (6)

In the trajectory control problem, the goal of the feedback
control is to guide the solution of (5) to follow a time-varying
reference such that

lim
k→∞

∥ξe,i(k)∥ = lim
k→∞

∥ξi(k)− ξr,i(k)∥ = 0 (7)

III. CONTROL DESIGN

Consider n AUV agents operating in a workspace W ⊂ ℜ3.
The team is organized into pairs of leaders and followers,
forming n − 1 decentralized subsystems, each consisting
of two AUVs. In each subsystem, the follower AUV aims
to maintain a specific distance and orientation relative to
its leader. The formation is considered achieved when all
AUVs reach their designated positions, as shown in Fig.
2 (a). The leader-follower formation problem is described
as follows: Given the pose ξL of the leader vehicle, the
follower’s reference trajectory is determined by shifting its
position by a distance d and angles (∆ϕ,∆θ,∆ψ) relative to
the leader. The follower’s reference trajectory is continuously
updated as the leader moves. This study employs a network
of AUVs as relaying units to extend the operational coverage
capacity of the team. In this network, only AUV1 receives the
desired trajectory directly from a base computer. AUV1 then
broadcasts its current state, denoted as ξ1, and a formation
vector, A = [∆x,∆y,∆z,∆ϕ,∆θ,∆ψ]T , to its follower. This
process is sequentially continued until the last agent, with
AUV3 receiving information from AUV2, as illustrated in Fig.
2 (b).

Fig. 2. A pair of leader-follower formation.

A. Proximity Graph

The communication structure among the AUV team is
represented by a dynamic proximity graph G = (H,E(t)).
Here, H signifies the set of vertices corresponding to each
AUV i in the team, i ∈ 1, . . . , n. The edge set E(t) at time step
tk reflects the existing communication links between AUVs
if the Euclidean distance between their positions ξs,i(t) and
ξs,j(t) is within communication range C. Thus, E(t) is defined
by

E(t) = {(i, j) | ∥ξs,i(t)−ξs,j(t)∥ ≤ C,∀i, j ∈ H, i ̸= j} (8)

At any time t, a pair of AUVs (i, j) are considered neighbours
if they are connected by an edge in E(t), and the set of neigh-
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bours for each AUV i is defined as Ni(t) = {j|(i, j) ∈ E(t)}.
Notably, the configuration of the proximity graph G changes
dynamically as AUVs move within the workspace, altering
both E(t) and Ni(t).

B. Control Barrier Function

Definition 1. Let R≥0 denotes the non-negative real. A
function α : R≥0 → R≥0 is a class K-function if it is
continuous, strictly increasing, and α(0) = 0. A function
α : R≥0 → R≥0 is of class K∞ if it is a K-function and
α(s)→ +∞ as s→ +∞.
Inspired by the work done in [31], this section derives a
safety constraint for the optimal control input that guarantees
the robot’s spatial position, ξs, always lies within a defined
safe set, Z ∈ ℜ3. That is Z is forward invariant, i.e. if
ξs(0) = ξs0 ∈ Z then ξs = ξs(t) ∈ Z,∀t. The set Z is
defined as:

Z = {ξs ∈ X ⊂ ℜ3|B(ξs) ≥ 0}, (9a)

∂Z = {ξs ∈ X ⊂ ℜ3|B(ξs) = 0}, (9b)

Int(Z){ξs ∈ X ⊂ ℜ3|B(ξs) > 0}. (9c)

Let Z denote the superlevel set of a continuously differentiable
function B : ℜ3 → ℜ. The function B qualifies as a CBF if
there exists an K∞-function γ for the control system (5) to
satisfy:

∃ V(t) s.t. Ḃ(ξs(t),V(t)) ≥ −γB(ξs(t)), γ ∈ K∞ (10)

Extending this inequality constraint to the discrete-time do-
main and using γ as a scalar, we can consider the set consisting
of all control values at a point ξs(k) ∈ X as:

κcbf = {V ∈ U : ∆B(ξs(k),V(k))− γB(ξs(k)) ≥ 0,

0 ≤ γ ≤ 1}
(11)

where ∆B(ξs(k),V(k)) = B(ξs(k + 1)) − B(ξs(k)).
Remark 1. By Theorem 2 in [31], if B is a CBF in X
and ∂B

∂ξs
(ξs) ̸= 0 for all ξs ∈ ∂Z , then any control signal

V ∈ κcbf (ξs(k)) for the system (5) renders the set Z safe.
Additionally, the set Z is asymptotically stable in X.
Most recent obstacle detection systems for AUVs using sonar
and camera were reviewed in [35]. This paper focuses on
control strategy design; hence, we assume that the AUV can
detect obstacles through its sensors. The rigid body obstacle
is conceptualized as a union of spheres with centroids φob =
[xob, yob, zob]

T (m) and a fixed radius rob (m). Similarly, the
AUV safety zone is defined by a sphere centred on the AUV
with a radius rrb. Safety sets for n obstacles are denoted as
follows:

Zn = {ξs(k) ∈ X ⊂ ℜ3 : Bn(ξs(k),P(k)) ≥ 0} (12)

where

Bn(ξs(k),P(k)) =(x(k)− xob,n(k))2 + (y(k)− yob,n(k))2

+ (z(k)− zob,n(k))2 − (rrb + rob,n)
2

(13)
The parameter vector P is constructed to store obstacle infor-
mation for the OCP discussed in the next section. To guarantee
safe operation while regulating to the target state, the condition

in (11) is incorporated into the OCP as a safety constraint. In
our previous analysis on safety-critical control [33], the CBF
with a relaxed decay rate of the barrier function simultaneously
enhanced OCP feasibility, system safety, and computational
efficiency compared to traditional CBF and Euclidean distance
constraints. This study combines Relax-CBF with NMPC for
AUV control problems.

C. NMPC-Relax-CBF for Trajectory Tracking Control

The subsequent section outlines the OCP setup for trajectory
tracking of AUV1, which is configured to follow a prede-
termined path. The standard NMPC framework is developed
by establishing and optimizing a cost function alongside
constraints over the prediction horizon N . The OCP is detailed
in a parametric format as described below:

J1N (ξ1(k),V1(k),P1(k)) = min
S1

{
Ω1(ξ1(k +N),P1(k))

+

N−1∑
m=0

(
Γ1(ε1(m)) + ℓ1(ξ1(k +m),V1(k +m),P1(k))

)}
(14a)

Subject to:
ξ1(k)− ξfb,1 = 0, (14b)
ξ1(k +m+ 1)− F1(ξ1(k +m),V1(k +m)) = 0, (14c)
ξ1(k +m) ∈ X, V1(k +m) ∈ U, (14d)
Bn(ξs1(k +m+ 1),P1(k))

− ε1(m)(1− γ)Bn(ξs1(k +m),P1(k)) ≥ 0.
(14e)

Where S1 contains decision variables as S1 =
[ξ1(k)

T , ..., ξ1(k + N)T ,V1(k)T , ...,V1(k + N −
1)T , ε1(k), ..., ε1(k + N − 1)]. Besides obstacle information,
parameter vector P also stores reference state vector ξr,
desired velocity vector Vr, and feedback state vector ξfb.
Meanwhile, ε1(m) are decay-rate slack variables added
to enhance the feasibility of the OCP, and the Γ1(ε1(m))
are included in the cost function to minimise those slack
variables.

Γ1(ε1(m)) = wε1(ε1(m)− 1)2 (15)

where wε1 is the positive penalty gains for the slack variables.
The stage cost includes two quadratic terms: one will penalise
the tracking error, and another will minimise the deviation of
the control input from its reference value, ℓ1 : ℜ6×ℜ6 → ℜ≥0.
The terminal cost is a quadratic function of the state variable
error, Ω1 : ℜ6 → ℜ≥0.

ℓ1(ξ1(k),V1(k),P1(k)) = ξe1(k)
TWξ1ξe1(k)

+ (V1(k)− Vr1(k))TWu1(V1(k)− Vr1(k)),
Ω1(ξ1(k),P1(k)) = ξe1(k)

TWΩ1ξe1(k).
(16)

Where Wξ1, Wu1, and WΩ1 are positive definite symmetric
matrices.
The multiple shooting approach [36] is used to transform the
OCP into a Nonlinear Program (NLP). Constructing a vector
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that contains all decision variables as Ξ1 = ST
1 , the NLP is

introduced as below:

min
Ξ1

T1 (Ξ1,P1) s.t.

{
H1 (Ξ1,P1) = 0,

G1 (Ξ1,P1) ≤ 0.
(17)

The NLP constraints are categorized into two types: the
equality constraint vector H1(Ξ1,P1), which ensures com-
pliance with the system dynamics as specified in (14b) and
(14c), and the inequality constraint vector G1(Ξ1,P1), which
enforces the restrictions outlined in (14d) along with the safety
constraints described in (14e), thereby keeping the decision
variables within safe operational limits.

D. NMPC-Relax-CBF for Position Tracking Control

The follower’s objective is to maintain a desired relative
position with respect to its leader. All other agents i = 2, ..., n
are unaware of the desired path. Within a pair of AUVs, the
leader broadcasts its state and formation vector to its follower
at time step k. Thus, the following control framework for
position tracking is suggested:

JiN (ξi(k),Vi(k),Pi(k)) = min
Si

{
Ωi(ξi(k +N),Pi(k))

+

N−1∑
m=0

(
Γi(εi(m)) + ℓi(ξi(k +m),Vi(k +m),Pi(k))

)}
(18a)

Subject to:
ξi(k)− ξfb,i = 0, (18b)
ξi(k +m+ 1)− Fi(ξi(k +m),Vi(k +m)) = 0, (18c)
ξi(k +m) ∈ X, Vi(k +m) ∈ U, (18d)
Bn(ξsi(k +m+ 1),Pi(k))

− εi(m)(1− γ)Bn(ξsi(k +m),Pi(k)) ≥ 0.
(18e)

Di(ξsL, ξsi(k +m)) ≤ C. (18f)

All constraints of OCP (18) are set up similarly to the OCP
(14), only additional constraint (18f) guarantees the follower
stays within the communication range with its leader. The
stage cost, terminal cost, and distance constraint Di are defined
as:
ℓi(ξi(k),Vi(k),Pi(k)) =

(Vi(k)− Vri(k))TWui(Vi(k)− Vri(k))+
((ξL +Ai)− ξi(k))TWξi((ξL +Ai)− ξi(k)),
Ωi(ξi(k),Pi(k)) =

((ξL +Ai)− ξi(k))TWΩi((ξL +Ai)− ξi(k)),
Di(ξsL, ξsi(k)) =

√
(xL − xi)2 + (yL − yi)2 + (zL − zi)2.

(19)
Where Wξi, Wui, and WΩi are positive definite symmetric
matrices.
Similar NLP for other agents in the team are constructed as

min
Ξi

Ti (Ξi,Pi) s.t.

{
Hi (Ξi,Pi) = 0,

Gi (Ξi,Pi) ≤ 0.
(20)

The proposed NMPC-Relax-CBF strategies are solved using
an Interior Point OPTimizer (IPOPT). Based on the current

feedback state and environmental data, the IPOPT solver
derives an optimal trajectory ξ∗N , control sequence V∗

N−1,
and slack variable ε∗N−1. The initial element of the optimized
sequence V∗

N−1, designated as V∗
1 (k), is subsequently imple-

mented in the system. The remaining portion of the optimized
sequence is utilized as the initial estimate for the decision
variable vector in the following iteration. Consequently, the
solver is re-engaged to determine new control input values.
This control strategy is outlined in Algorithm 1.

Algorithm 1 IPOPT - NMPC-Relax-CBF

Given Ξ0
i

Initialise (m,Ξm
i )← (0, Ξ0

i )
while ControllerIsRunning() do

ξfb,i ← StateFeedback()
ξr/ξL, Ai ← Commands()
φob,n ← Sensors
Pi ← [ξTfb,i, ξ

T
r /ξ

T
L ,AT

i , φ
T
ob,n]

T

Ξm+1
i ← IPOPT solver(Ξm

i ,Pi)
V∗

N−1,i ← ExtractInputSequence(Ξm+1
i )

V∗
1,i(k) ← ExtractFirstInput(V∗

N−1,i)
AUVi ← ApplyInput(V∗

1,i(k))

Ξm+2
i ← Shift(ξ∗N,i,V

∗
N−1,i, ε

∗
N−1,i)

m ← m+ 1
end while

E. Stability Analysis

Consider that system (5) is controlled by the NMPC control
law κ(k) = V∗

1 (k), obtained from NLP (17) or NLP (20), then
a closed loop system can be expressed as:

ξ(k + 1) = F(ξ(k), κ(k)) (21)

Definition 2. Xf is a forward invariant set for the system
(5), i.e. for all ξ(k) ∈ Xf there exists κ(k) such that
F(ξ(k), κ(k)) ∈ Xf . A continuous function Ω is a Control
Lyapunov Function (CLF) in Xf for all ξ(k) ∈ Xf if the
following holds:

1) There exist K∞-function α1 and α2 satisfying

α1(∥ξe(k)∥) ≤ Ω(ξ(k),P(k)) ≤ α2(∥ξe(k)∥) (22)

2) The decay rate of Ω is bounded by a positive function

Ω(F(ξ(k), κ(k)),P(k))−Ω(ξ(k),P(k))
+ (ℓ(ξ(k), κ(k),P(k)) + Γ (ε(k))) ≤ 0

(23)

Assumption 1. There exists a control input κ(k) ∈ U for all
ξ, ξr ∈ X that satisfy ∥ξ(k + 1)− ξr∥2 < ∥ξ(k)− ξr∥2.
Remark 2. This assumption refers to the controllability
properties of the AUV, where the AUV’s thrusters are
functioning correctly and within their designed operational
parameters. The fulfilment of the accessibility rank condition
guarantees that every point in the state space can be reached.
Thus, there exists a path from the current configuration
ξ(k) to a new configuration ξ(k + 1) that aligns with the
reference state ξr. The steady decrease of the cost function
JiN (·) in (14) and (18) and the systematic convergence of
the system’s state variables towards the desired configuration
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in control Algorithm 1 will be established in Theorem 2.
First, we present Theorem 1, which provides the necessary
groundwork.
Theorem 1. Let Assumption 1 hold, then the terminal cost
function Ω is a CLF on D ∈ R6, where D is a small
neighborhood of the reference state.
Proof. Considering the diagonal matrices,
Wξ = diag(wξ, wξ, wξ, wξ, wξ, wξ), Wu =
diag(wu, wu, wu, wu, wu, wu), and WΩ =
diag(wΩ , wΩ , wΩ , wΩ , wΩ , wΩ , ), where wξ, wu, wΩ are
strictly positive constants, the stage cost and terminal cost are
rewritten as:

ℓ(ξ(k), κ(k),P(k)) =wξ∥ξ(k)− ξr(k)∥2

+ wu∥V(k)− Vr(k)∥2,
Ω(ξ(k),P(k)) = wΩ∥ξ(k)− ξr(k)∥2.

(24)

Substituting (24) into (23) yields:

wΩ∥ξ(k + 1)− ξr(k)∥2 − wΩ∥ξ(k)− ξr(k)∥2 + wε(ε− 1)2

+ wξ∥ξ(k)− ξr(k)∥2 + wu∥V(k)− Vr(k)∥2 ≤ 0
(25)

Under the Assumption 1, it can be proven that:

wΩΛ+ wξ∥ξ(k)− ξr(k)∥2 + wu∥V(k)− Vr(k)∥2

+ wε(ε− 1)2

≤ wΩΛ+ wξ∥ξe(k)∥2 + wu∥Vmax − Vr(k)∥2 + wε ≤ 0
(26)

where Λ = ∥ξ(k + 1)− ξr(k)∥2 − ∥ξ(k)− ξr(k)∥2.
By choosing wΩ ≥ wξ∥ξe(k)∥2+wu∥Vmax−Vr(k)∥2+wε

|Λ| the
inequality (23) is satisfied and the terminal cost Ω(·) is a
CLF.
Remark 3. Within a small proximity of the reference state,
as Λ → 0 (ξ → ξr), the inequality in (26) is not satisfied.
Hence, selecting a higher value for wΩ ensures that this
vicinity remains close to ξr. Parameters wξ, wu, wΩ can
be fine-tuned using a trial and error approach to achieve
satisfactory performance.
Assumption 2. There exists a K∞-function α3 such that the
state cost satisfies ℓ(ξ(k), κ(k), p(k)) ≥ α3(∥ξe(k)∥) for all
ξ ∈ X and V ∈ U. This is a common assumption in the
design of NMPC [37], [38].
Theorem 2. Assume that WΩ is selected based on Theorem
1 and Assumptions 1 and 2 are satisfied, then the closed-loop
system (21) is asymptotically stable in a neighbourhood of
the desired state D : ∥ξe∥ < ζ.
Proof. Considering the optimal value function
J∗
N (ξ∗(k), κ(k),P(k)) as a Lyapunov function candidate,

recall the cost function in (14) or (18)

JN (ξ(k),V(k),P(k)) = Ω(ξ(k +N),P(k))

+

N−1∑
m=0

(
Γ (ε(m)) + ℓ(ξ(k +m),V(k +m),P(k))

)

=

N−2∑
m=0

(
Γ (ε(m)) + ℓ(ξ(k +m),V(k +m),P(k))

)
+Ω(ξ(k +N),P(k))
+ Γ (ε(N − 1)) + ℓ(ξ(k +N − 1),V(k +N − 1),P(k))

(27)

Taking into account the cost function for (N − 1) prediction
horizon as follows:
JN−1(ξ(k),V(k),P(k)) = Ω(ξ(k +N − 1),P(k))

+

N−2∑
m=0

(
Γ (ε(m)) + ℓ(ξ(k +m),V(k +m),P(k))

)
(28)

Substituting (28) into (27) yields:

JN (ξ(k),V(k),P(k))− JN−1(ξ(k),V(k),P(k)) =
Ω(ξ(k +N),P(k))−Ω(ξ(k +N − 1),P(k))
+ Γ (ε(N − 1)) + ℓ(ξ(k +N − 1),V(k +N − 1),P(k))

(29)
From Theorem 1, it is inferred that

JN (ξ(k),V(k),P(k)) < JN−1(ξ(k),V(k),P(k)) (30)

This inequality extends to the corresponding optimal value
functions:
J∗
N (ξ∗(k), κ(k),P(k)) = inf

V(·)∈U
JN (ξ(k),V(k),P(k))

≤ inf
V(·)∈U

JN−1(ξ(k),V(k),P(k)) = J∗
N−1(ξ

∗(k), κ(k),P(k))
(31)

Bellman’s principle of optimality [39] is used to obtain the
relationship of optimal value functions at different horizons
N and points in space. This approach yields

J∗
N (ξ∗(k), κ(k),P(k)) = ℓ(ξ∗(k), κ(k),P(k)) + Γ (ε∗(k))

+ J∗
N−1(ξ

∗(k + 1), κ(k + 1),P(k + 1))
(32)

From Assumption 2, the lower bound of the optimal value
function is defined as:

J∗
N (ξ∗(k), κ(k),P(k)) ≥ ℓ(ξ∗(k), κ(k),P(k))

≥ α3(∥ξ∗(k)− ξr(k)∥)
(33)

Expanding (31) consecutively from N to 1 leads to:

J∗
N (ξ∗(k), κ(k),P(k)) ≤ J∗

N−1(ξ
∗(k), κ(k),P(k))

≤ · · · ≤ J∗
1 (ξ

∗(k), κ(k),P(k)) ≤ Ω(ξ∗(k + 1),P(k))
≤ α2(∥ξ∗(k + 1)− ξr(k)∥)

(34)

Considering the difference between the J∗
N evaluated at k and

k + 1, using the Bellman equation in (32), and the inequality
in (31)

J∗
N (ξ∗(k + 1), κ(k + 1),P(k + 1))− J∗

N (ξ∗(k), κ(k),P(k))
= J∗

N (ξ∗(k + 1), κ(k + 1),P(k + 1))− ℓ(ξ∗(k), κ(k),P(k))
− Γ (ε∗(k))− J∗

N−1(ξ
∗(k + 1), κ(k + 1),P(k + 1))

≤ −(ℓ(ξ∗(k), κ(k),P(k)) + Γ (ε∗(k)))
(35)

By Definition 2, J∗
N (ξ∗(k), κ(k),P(k)) is a control Lyapunov

function, and the closed-loop system (21) is asymptotically
stable to the desired state.
Remark 4. It should be noted that the terminal cost function
Ω(·) may not qualify as a CLF as the robot’s state approaches
the vicinity D where ∥ξe∥ < ζ. Consequently, the aforemen-
tioned property does not hold in this domain. However, the
initial values of the control sequence in Ξ can be set to zero
for all ξ(k) ∈ D. The resulting OCP for the next step becomes
JN (ξ(k+1),V(k),P(k)) ≤ (N−1)wξζ+wΩζ, which serves
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Fig. 3. Circle trajectory tracking and formation control in SITL simulation.

Fig. 4. Square trajectory tracking and formation control in SITL simulation.

as an upper bound for J∗
N (ξ∗(k + 1), κ(k),P(k)). Therefore,

selecting a sufficiently large wΩ ensures that the system’s
trajectory remains confined within the region D.
Remark 5. As proven by Theorem 3.5 in [39], the proposed
scheme for the closed-loop system (21) is recursively feasible.
Furthermore, with the implementation of the relaxed decay-
rate technique for the barrier function, as analyzed in [34] and
[33], the safety performance of agents is enhanced by allowing
a slower decrease in the barrier function while not harming the
feasibility of the OCP.

IV. RESULTS AND DISCUSSION

A. ArduPilot Software-In-The-Loop Simulation

To test the NMPC-Relax-CBF code intended for the
BlueRov2, we utilized the ArduPilot SITL open-source pack-
age. This simulation operated in real-time with an indepen-
dently generated model of the BlueRov2, using the same

software control interfaces as the AUV hardware. Three AUVs
followed a circle with a diameter of 20 m, as shown in Fig.
3, and a 20x20 m square, as shown in Fig. 4, with random
static obstacles along the paths. Three different formations
were configured during the tracking, as shown in Table I.
The sampling time for all agents was chosen as τi = 0.1
s and the prediction horizon Ni = 30. The CBF parameter
was chosen based on the observed robot performance, with a
smaller value of γ enhancing safety performance. Therefore,
γi = 0.1 was chosen for all AUVs, effectively generating
smooth trajectories and improving the robots’ ability to avoid
obstacles. The penalty gain for the slack variables wε regulated
the proximity of ε to 1 to minimise the deviation from the
nominal decay rate, and it was not set too small to avoid over-
relaxing the CBF constraints. Hence, wε,i = 10 was chosen
for all agents. The try-and-error method was used to tune
the controller’s weights. For the trajectory tracking of AUV1,
the weights for the state and control inputs were chosen as
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TABLE I
FORMATION CONTROL REFERENCE - SITL SIMULATION

Time A1 A2 Case study
0-30 s [−4 cos(ψ1),−4 sin(ψ1), 0, 0, 0, 0]T [−4 cos(ψ2),−4 sin(ψ2), 0, 0, 0, 0]T 1

30-109 s [−4 cos(ψ1 − 0.25),−4 sin(ψ1 − 0.25), 0, 0, 0, 0]T [−4 cos(ψ2 − 0.25),−4 sin(ψ2 − 0.25), 0, 0, 0, 0]T

109-155 s [−3 cos(ψ1) + 3 sin(ψ1),−3 sin(ψ1)− 3 cos(ψ1), 0, 0, 0, 0]T [−6 sin(ψ2), 6 cos(ψ2), 0, 0, 0, 0]T

155-190 s [cos(ψ1) + 2.5 sin(ψ1), sin(ψ1)− 2.5 cos(ψ1), 0, 0, 0, π/2]T [−5 cos(ψ2),−5 sin(ψ2), 0, 0, 0,−π]T
190-335 s [−4 cos(ψ1 − 0.25),−4 sin(ψ1 − 0.25), 0, 0, 0, 0]T [−4 cos(ψ2 − 0.25),−4 sin(ψ2 − 0.25), 0, 0, 0, 0]T

0-97 s [−4 cos(ψ1),−4 sin(ψ1), 0, 0, 0, 0]T [−4 cos(ψ2),−4 sin(ψ2), 0, 0, 0, 0]T 2
97-153 s [−3 cos(ψ1) + 3 sin(ψ1),−3 sin(ψ1)− 3 cos(ψ1), 0, 0, 0, 0]T [−6 sin(ψ2), 6 cos(ψ2), 0, 0, 0, 0]T

153-224 s [−4 cos(ψ1),−4 sin(ψ1), 0, 0, 0, 0]T [−4 cos(ψ2),−4 sin(ψ2), 0, 0, 0, 0]T

224-299 s [cos(ψ1) + 2.5 sin(ψ1), sin(ψ1)− 2.5 cos(ψ1), 0, 0, 0, π/2]T [−5 cos(ψ2),−5 sin(ψ2), 0, 0, 0,−π]T

Wξ,1 = diag(7, 7, 3, 1, 1, 10), Wu,1 = diag(3, 3, 1, 1, 1, 3), and
WΩ,1 = 103 ∗ diag(1, 1, 1, 1, 1, 1). For the point stabilization
of AUV2 and AUV3, Wξ,i = diag(30, 30, 5, 1, 1, 30), Wu,i =
diag(5, 5, 1, 1, 1, 10), and WΩ,i = 103∗diag(1, 1, 1, 1, 1, 1) for
i = 2, 3. The state weights were increased to achieve a faster
response in the formation adjustment. The simulation results
demonstrated that both trajectory tracking and formation con-
trol were successfully achieved, with safety ensured by the
Relax-CBF.

B. Real-time Experiment

Fig. 5. (a) Experimental hardware setup. (b) Communication diagram

1) Experimental Setup: This section detailed the outdoor
experimental setup used to verify the proposed approach on
three BlueRov2 (heavy configuration) underwater robots, as
shown in Fig 5 (a). The test locations were Queen’s University
Belfast (QUB) Marine Laboratory in Portaferry and QUB
Boat Club in Lagan. The main challenges at these locations
were seaweed, tides, and river currents. Fig 5 (b) shows
the communication diagram for the multi-AUVs system. We
accessed the onboard Auto-Pilot (AP) via tether using the
Mavlink protocol. Mavlink handled data between the topside

computer and AUV, while ROS communications occurred over
a local gigabit Ethernet with one AUV control computer as the
ROS-Master node.
Orientation angles were reasonably well estimated by low-
cost sensors, gyro, and accelerometer. However, a major
challenge for trajectory tracking controllers in underwater
systems was accurately measuring current position states. To
address this, we added a GPS/GNSS sensor on an elevated
mast to each AUV system, allowing independent localization
within the working area. We used the ArduSimple-RTK2B-
GPS-RTK-Receiver-Kit with the modern u-blox F9P GPS pro-
cessing module, which came with a compact active multi-band
(L1/L2/E5b) antenna and RTK capability for more accurate
positioning. To improve the accuracy of the localisation, a
fixed base station with a clear sky view was added nearby.
Fig 5 (b) also shows the hardware upgrade on the BlueRov2.
The antenna was mounted to the main frame using a plastic
top plate designed to bolt to existing fixing holes on the outer
frame.
To obtain the same NED frame for the three AUVs, we set
the same root GPS (lat, lon, alt) location for the three units,
then used the Pymap3d function ‘geodetic2ned’ to convert
individual feedback GPS signals to corresponding positions in
a common NED frame. Our hardware modifications required
the GPS antenna to remain above the water’s surface. We
ignored vertical (”down”) offsets and adjusted the offsets for
follower AUVs’ local frames to ensure all AUVs used a
common frame for relative positioning.

2) Line Tracking and Formation Control of Multiple
BlueRov2 at The Open Sea: The following section
demonstrated the effectiveness of the NMPC-Relaxed-
CBF control strategy in guiding multiple BlueRov2 vehicles
along a predefined trajectory with different desired formations
in an open sea environment. AUV1 was controlled to
follow a line from ξr1 = [5.7,−8, 0.5, 0, 0,−2.7]T to
ξr2 = [6.7,−33, 0.5, 0, 0,−2.7]T with a fixed velocity of
0.4 m/s, and other AUVs tracked the desired positions
to maintain formations as shown in Fig 6. The AUVs
transitioned between three different formations during the
mission. These transitions were presented in Table II. A
virtual obstacle was located at φob = [5,−25, 0.5]T (m) with
a radius rob = 1.5 m, which was indicated by the brown
circle. The hyperparameters τi = 0.1 s, Ni = 40, γi = 0.1,
wε,i = 10 were chosen for all agents. For the trajectory
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TABLE II
FORMATION CONTROL REFERENCE - REAL-TIME EXPERIMENT

Time A1 A2 Case study
0-15 s [−2 cos(ψ1) + 2 sin(ψ1),−2 sin(ψ1)− 2 cos(ψ1), 0, 0, 0, 0]T [−4 sin(ψ2), 4 cos(ψ2), 0, 0, 0, 0]T 1

15-63 s [−2 cos(ψ1),−2 sin(ψ1), 0, 0, 0, 0]T [− cos(ψ2),− sin(ψ2), 0, 0, 0, 0]T

63-85 s [3 sin(ψ1),−3 cos(ψ1), 0, 0, 0, π/2]T [6 cos(ψ2),−6 sin(ψ2), 0, 0, 0,−π]T

0-47 s [−5 cos(ψ1),−5 sin(ψ1), 0, 0, 0, 0]T [3 cos(ψ2), 3 sin(ψ2), 0, 0, 0, π/2]T 2
47-93 s [−2 cos(ψ1),−2 sin(ψ1), 0, 0, 0, 0]T [− cos(ψ2),− sin(ψ2), 0, 0, 0, 0]T

93-109 s [−5 cos(ψ1),−5 sin(ψ1), 0, 0, 0, 0]T [3 cos(ψ2), 3 sin(ψ2), 0, 0, 0, π/2]T

0-73.5 s [−5 cos(ψ1),−5 sin(ψ1), 0, 0, 0, 0]T [3 cos(ψ2), 3 sin(ψ2), 0, 0, 0, π/2]T 3
73.5-95 s [−2 cos(ψ1),−2 sin(ψ1), 0, 0, 0, 0]T [− cos(ψ2),− sin(ψ2), 0, 0, 0, 0]T

0-15 s [− cos(ψ1) + 2 sin(ψ1),− sin(ψ1)− 2 cos(ψ1), 0, 0, 0, 0]T [−4 sin(ψ2), 4 cos(ψ2), 0, 0, 0, 0]T 4
15-25 s [cos(ψ1) + 2 sin(ψ1), sin(ψ1)− 2 cos(ψ1), 0, 0, 0, 0]T [−4 sin(ψ2), 4 cos(ψ2), 0, 0, 0, 0]T

25-36 s [2 cos(ψ1) + 3 sin(ψ1), 2 sin(ψ1)− 3 cos(ψ1), 0, 0, 0, 0]T [−6 sin(ψ2), 6 cos(ψ2), 0, 0, 0, π/2]T

36-73 s [− cos(ψ1) + 2 sin(ψ1),− sin(ψ1)− 2 cos(ψ1), 0, 0, 0, 0]T [−4 sin(ψ2), 4 cos(ψ2), 0, 0, 0, 0]T

73-97 s [cos(ψ1) + 2 sin(ψ1), sin(ψ1)− 2 cos(ψ1), 0, 0, 0, 0]T [−4 sin(ψ2), 4 cos(ψ2), 0, 0, 0, 0]T

tracking of AUV1, the weights for the state and control inputs
were chosen as Wξ,1 = diag(10, 10, 5, 1, 1, 100), Wu,1 =
diag(5, 5, 1, 1, 1, 50), and WΩ,1 = 104 ∗ diag(1, 1, 1, 1, 1, 1).
High gains were selected for the yaw angle to compensate
for the disturbance caused by the tether cable. For
the point stabilization of AUV2 and AUV3, Wξ,i =
diag(30, 30, 5, 1, 1, 100), Wu,i = diag(5, 5, 1, 1, 1, 50), and
WΩ,i = 104 ∗ diag(1, 1, 1, 1, 1, 1) for i = 2, 3. The state

Fig. 6. (a) Overhead view of AUV trajectories. (b) Ground-level view of
AUVs in Portaferry.

tracking performance of three AUVs was plotted in Fig 7
with the initial poses as ξ0,1 = [5.8,−7.5, 0.53, 0, 0,−2.65]T ,
ξ0,2 = [8.2,−6, 0.47, 0, 0,−2.82]T , and ξ0,3 =
[3.8,−5.9, 0.55, 0, 0,−3.1]T and Vi = 06×1, i ∈ {1, 2, 3}
were the initial velocities. The x, y, and z position plots
showed that AUV1 exhibited effective trajectory tracking.
Transitions between formations were executed with minor
deviations but were generally well-maintained. Furthermore,
the proposed strategies successfully navigated AUV1 and
AUV3 along the desired path without compromising safety.
Each agent had its own Relax-CBF, allowing them to detect

and avoid obstacles independently. Moreover, to eliminate
the effect of obstacle avoidance manoeuvres on the follower
trajectory, the leader broadcasted its reference pose instead
of its current pose when encountering an obstacle. Notably,
AUV2 drove through the virtual obstacle. This behaviour
occurred because the Relax-CBF of AUV2 was intentionally
disabled to provide crucial data for assessing the system’s
performance. This decision was made to simplify the process
of locating the virtual obstacle, particularly since the robot
was operating at a significant distance from the base computer.
The optimal control signals for velocities and the Pulse Width

Fig. 7. Position and orientation tracking of AUV1, AUV2, and AUV3

Modulation (PWM) control inputs for the thrusters of the
three AUVs were plotted in Fig 8 and Fig 9. The velocity plots
demonstrated that AUV1 maintained relatively stable forward
motion, while AUV2 and AUV3 exhibited more significant
variations, particularly in the lateral direction and yaw angle,
reflecting their dynamic roles in formation maintenance.
The thruster’s PWM revealed that AUV1 had stable control
efforts with occasional spikes, whereas AUV2 displayed less
variability around the obstacle due to its disabled Relax-CBF.
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AUV3 exhibited the highest variability, indicating a reactive
control strategy to handle the dynamic formation changes
and interactions with the obstacle. Overall, the proposed
schemes effectively and safely handled the complexities of
multi-AUV coordination and formation maintenance in an
open sea environment.

Fig. 8. Optimal control signals of AUV1, AUV2, and AUV3

Fig. 9. Normalised PWM for eight thrusters of AUV1, AUV2, and AUV3

3) Square Tracking and Formation Control of Multiple
BlueRov2 at The River: This section presented the square
tracking and formation control performance of the NMPC-
Relaxed-CBF for multiple BlueRov2 vehicles in a river envi-
ronment. AUV1 was controlled to form a square from an initial
corner at ξr1 = [5, 17, 0.5, 0, 0, 6.2]T with an edge length of
10 m and a fixed velocity of 0.3 m/s, and other AUVs tracked
the desired positions to maintain formations as shown in Fig
10. The AUVs transitioned between three formations during

the mission. These transitions were presented in Table II. All
of the controller parameters were selected to be the same as
in Section B-2.

Fig. 10. (a) Overhead view of AUV trajectories. (b) Ground-level view of
AUVs in Lagan.

The state tracking performance of three AUVs was
plotted in Fig 11 with the initial poses as ξ0,1 =
[4.7, 17.5, 0.47, 0, 0, 5.8]T , ξ0,2 = [5.7, 9.3, 0.48, 0, 0, 5.47]T ,
and ξ0,3 = [5.5, 14, 0.51, 0, 0, 2.8]T and Vi = 06×1, i ∈
{1, 2, 3} were the initial velocities. AUV1 closely followed
the reference x and y positions with minor deviations, while
AUV2 and AUV3 exhibited more significant variations, partic-
ularly during transition periods around 40 to 60 s, indicating
the challenges of maintaining formation during sharp turns and
under the influence of river flow disturbances. The z position
plot showed that all AUVs maintained relatively stable depths.
The ϕi and θi angles exhibited small fluctuations, with more
pronounced variations during transitions, highlighting the dy-
namic adjustments required for stability. AUV3 displayed
larger variations in ψ3 due to a 90-degree offset in forma-
tion. As observed, the NMPC-Relaxed-CBF control strategy
still effectively managed the square tracking and formation
control of the AUVs in response to the river current, with
AUV2’s higher variability underscoring its role in dynamically
adjusting to maintain formation. The optimal control signals
for velocities and the PWM control inputs of the three AUVs
were plotted in Fig 12 and Fig 13. The velocity plots showed
that AUV1 maintained relatively stable forward and lateral
velocities, while AUV2 and AUV3 exhibited more significant
variations, especially during formation changes. This indicated
the dynamic adjustments needed for formation maintenance.
Consequently, the PWM control inputs for AUV1 showed
stable control efforts with occasional spikes, while AUV2 and
AUV3 displayed more variability.

4) Circle Tracking and Formation Control of Multiple
BlueRov2 at The River: Similar to Section C, the NMPC-
Relaxed-CBF control strategy was verified by a persistent
excitation trajectory in the river environment. The reference
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Fig. 11. Position and orientation tracking of AUV1, AUV2, and AUV3

Fig. 12. Optimal control signals of AUV1, AUV2, and AUV3

was circular, defined by ξsr = [4.3 + 5 cos(0.085t), 28.9 +
5 sin(0.085t), 0.5]T (m). The AUVs transitioned between two
formations during the tracking. These transitions were pre-
sented in Table II. All of the controller parameters were
selected to be the same as in Section B-2.
The state tracking performance of three AUVs was
plotted in Fig 15 with the initial poses as ξ0,1 =
[9.7.58.9, 0.46, 0, 0, 1.63]T , ξ0,2 = [4.5, 25, 0.51, 0, 0, 0.6]T ,
and ξ0,3 = [6.8, 26.7, 0.52, 0, 0, 0.74]T and Vi = 06×1, i ∈
{1, 2, 3} were the initial velocities. All agents closely followed
the reference trajectory with different formations. Moreover,
AUV3 effectively tracked AUV2 in its lateral direction, show-
casing the flexibility of the proposed controllers in providing
full spatial manoeuvrability and precise orientation control
despite disturbances caused by tether cables and river currents.
The optimal velocities and PWM control inputs of the three
AUVs were plotted in Fig 16 and Fig 17. The control signals

Fig. 13. Normalised PWM for eight thrusters of AUV1, AUV2, and AUV3

Fig. 14. (a) Overhead view of AUV trajectories. (b) Ground-level view of
AUVs in Lagan.

for all states, as well as the thrusters, reflected the dynamic
efforts required to adapt to the water flow and the drag force
of the tether cable.

5) Line Tracking and Formation Control of Multiple
BlueRov2 at The River: In the last run, a more challenging
scenario was set up by a long run against the river current.
Five formations were formed along the predefined path. These
transitions were presented in Table II. All of the controller
parameters were selected to be the same as in Section B-2.
The state tracking performance of three AUVs was
plotted in Fig 19 with the initial poses as ξ0,1 =
[15, 6.7, 0.5, 0, 0, 0]T , ξ0,2 = [16.5, 7.5, 0.55, 0, 0, 0.3]T , and
ξ0,3 = [13.4, 5.3, 0.53, 0, 0, 0.1]T and Vi = 06×1, i ∈ {1, 2, 3}
were the initial velocities. The x and y plots showed the
deviations of AUV2 and AUV3 from AUV1, aligning with the
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Fig. 15. Position and orientation tracking of AUV1, AUV2, and AUV3

Fig. 16. Optimal control signals of AUV1, AUV2, and AUV3

strategic offsets required for the desired formations. All agents
consistently tracked the reference trajectory despite the river
flow. Notably, a significant error occurred in the y direction
of AUV1 from 25 to 47 s because the tether cable from
AUV2 was hanging over AUV1 while AUV2 was reaching
a 3-m offset. This caused a large lateral force on AUV1.
However, when the fourth formation was executed, the drag
force disappeared as AUV2 reached its new position. The
return of AUV1 to the defined path highlighted the robustness
of the proposed controller. A similar situation occurred near
the end of the run, around 80 s, when the controllers for AUV2
and AUV3 were shut down; the unstable state of these robots
also caused a significant disturbance on AUV1. Nevertheless,
AUV1 managed to return to the desired state by 97 s. A video
demonstrating the experiment in detail is available online
(Video 1). The optimal control signals for velocities and
the PWM control inputs of the three AUVs were plotted

Fig. 17. Normalised PWM for eight thrusters of AUV1, AUV2, and AUV3

Fig. 18. (a) Overhead view of AUV trajectories. (b) Ground-level view of
AUVs in Lagan.
(See Video 1 at https://youtu.be/9pJ6FKsCJBM)

in Fig 20 and Fig 21. Stable velocities and PWM control
signals were observed for AUV1, while AUV2 and AUV3
exhibited large spikes due to the strategic offsets required for
formation. Overall, the NMPC-Relax-CBF strategy effectively
managed the control outputs, ensuring robust performance in
the challenging river environment.

V. CONCLUSIONS

The experiment results aligned well with the SITL simu-
lations and demonstrated the effectiveness of the distributed
NMPC-Relaxed-CBF control strategy for coordinating mul-
tiple AUVs in both river and open sea environments. The
independent Relax-CBF for each AUV enabled successful
obstacle detection and avoidance, with the leader’s strategy of

https://youtu.be/9pJ6FKsCJBM
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Fig. 19. Position and orientation tracking of AUV1, AUV2, and AUV3

Fig. 20. Optimal control signals of AUV1, AUV2, and AUV3

broadcasting reference poses ensuring smooth follower trajec-
tories. Despite occasional disturbances from tether cables, river
currents, ocean waves, and tides, the AUVs maintained stable
depths and dynamically adapted their velocities and control
inputs to handle environmental influences. The experiment
underscored the robustness and flexibility of the proposed
control strategy, ensuring safe and coordinated multi-AUV
operations.
For future work, a key area to examine is the localisation
solution. Currently, we use a GPS mast for the global posi-
tioning of each ROV, which was chosen due to time and budget
constraints. However, for full underwater manoeuvrability,
alternative localisation mechanisms like Ultra-Short-Baseline
and Doppler-Velocity-Logger should be considered. These
systems may require modifications to the AUV platform for the
necessary electrical and mechanical interfaces. Additionally, a

Fig. 21. Normalised PWM for eight thrusters of AUV1, AUV2, and AUV3

custom AUV controller AP could enable the dynamic NMPC
to run locally on each ROV, paving the way for untethered,
fully autonomous operation.
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